瀏覽代碼

model : add AfmoeForCausalLM support (#16477)

* Add AFMOE model support

* Update to vocab

* Add model sizing

* Undo Rope change for ARCEE model

* Address review comments

* Update modeling code is_sliding -> use_rope, replace hard-coded logic

* Fix AFMOE tokenizer

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update AFMoE tokenizer class identification to be more unique

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Bartowski 2 月之前
父節點
當前提交
e1fcf8b09b

+ 78 - 0
convert_hf_to_gguf.py

@@ -1124,6 +1124,9 @@ class TextModel(ModelBase):
         if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
             # ref: https://huggingface.co/JetBrains/Mellum-4b-base
             res = "mellum"
+        if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
+            # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
+            res = "afmoe"
         if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
             # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
             res = "bailingmoe2"
@@ -2533,6 +2536,81 @@ class ArceeModel(LlamaModel):
             self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
 
 
+@ModelBase.register("AfmoeForCausalLM")
+class AfmoeModel(LlamaModel):
+    model_arch = gguf.MODEL_ARCH.AFMOE
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+
+        # MoE parameters
+        if (n_experts := self.hparams.get("num_experts")) is not None:
+            self.gguf_writer.add_expert_count(n_experts)
+        if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
+            self.gguf_writer.add_expert_shared_count(n_shared_experts)
+        if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
+            self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
+        if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
+            self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
+
+        # Expert Gating Function
+        score_func = self.hparams.get("score_func")
+        if score_func == "sigmoid":
+            self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
+        elif score_func == "softmax":
+            self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
+        elif score_func is not None:
+            raise ValueError(f"Unsupported score_function value: {score_func}")
+
+        # Route normalization and scaling
+        if (route_norm := self.hparams.get("route_norm")) is not None:
+            self.gguf_writer.add_expert_weights_norm(route_norm)
+        if (route_scale := self.hparams.get("route_scale")) is not None:
+            self.gguf_writer.add_expert_weights_scale(route_scale)
+
+        # Sliding window attention
+        if (sliding_window := self.hparams.get("sliding_window")) is not None:
+            self.gguf_writer.add_sliding_window(sliding_window)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # Handle expert weights - they're already merged in the HF format
+        # process the experts separately
+        if name.find("mlp.experts") != -1:
+            n_experts = self.hparams["num_experts"]
+            assert bid is not None
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                tensors: list[tuple[str, Tensor]] = []
+
+                # merge the experts into a single 3d tensor
+                for w_name in ["gate_proj", "up_proj", "down_proj"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+                        datas.append(self._experts[bid][ename_to_retrieve])
+                        del self._experts[bid][ename_to_retrieve]
+
+                    data_torch = torch.stack(datas, dim=0)
+                    merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+                    new_name = self.map_tensor_name(merged_name)
+                    tensors.append((new_name, data_torch))
+
+                return tensors
+            else:
+                return []
+
+        if name.endswith(".expert_bias"):
+            name = name.replace(".expert_bias", ".expert_bias.bias")
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
 @ModelBase.register(
     "LlavaForConditionalGeneration", # pixtral
     "Mistral3ForConditionalGeneration", # mistral small 3.1

+ 1 - 0
convert_hf_to_gguf_update.py

@@ -139,6 +139,7 @@ models = [
     {"name": "lfm2",             "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
     {"name": "exaone4",          "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
     {"name": "mellum",           "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
+    {"name": "afmoe",            "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/arcee-ai/Trinity-Tokenizer", },
     {"name": "bailingmoe2",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-mini-base-2.0", },
     {"name": "granite-docling",  "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
     {"name": "minimax-m2",       "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/MiniMaxAI/MiniMax-M2", },

+ 31 - 0
gguf-py/gguf/constants.py

@@ -409,6 +409,7 @@ class MODEL_ARCH(IntEnum):
     BAILINGMOE2      = auto()
     DOTS1            = auto()
     ARCEE            = auto()
+    AFMOE            = auto()
     ERNIE4_5         = auto()
     ERNIE4_5_MOE     = auto()
     HUNYUAN_MOE      = auto()
@@ -464,6 +465,7 @@ class MODEL_TENSOR(IntEnum):
     ATTN_POST_NORM       = auto()
     ATTN_ROT_EMBD        = auto()
     ATTN_SINKS           = auto()
+    ATTN_GATE            = auto()
     FFN_GATE_INP         = auto()
     FFN_GATE_INP_SHEXP   = auto()
     FFN_NORM             = auto()
@@ -776,6 +778,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.BAILINGMOE2:      "bailingmoe2",
     MODEL_ARCH.DOTS1:            "dots1",
     MODEL_ARCH.ARCEE:            "arcee",
+    MODEL_ARCH.AFMOE:            "afmoe",
     MODEL_ARCH.ERNIE4_5:         "ernie4_5",
     MODEL_ARCH.ERNIE4_5_MOE:     "ernie4_5-moe",
     MODEL_ARCH.FALCON_H1:        "falcon-h1",
@@ -828,6 +831,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
     MODEL_TENSOR.ATTN_OUT:                  "blk.{bid}.attn_output",
     MODEL_TENSOR.ATTN_ROT_EMBD:             "blk.{bid}.attn_rot_embd",
     MODEL_TENSOR.ATTN_SINKS:                "blk.{bid}.attn_sinks",
+    MODEL_TENSOR.ATTN_GATE:                 "blk.{bid}.attn_gate",
     MODEL_TENSOR.ATTN_Q_NORM:               "blk.{bid}.attn_q_norm",
     MODEL_TENSOR.ATTN_K_NORM:               "blk.{bid}.attn_k_norm",
     MODEL_TENSOR.ATTN_OUT_NORM:             "blk.{bid}.attn_output_norm",
@@ -2693,6 +2697,33 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
+    MODEL_ARCH.AFMOE: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_POST_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.ATTN_Q_NORM,
+        MODEL_TENSOR.ATTN_K_NORM,
+        MODEL_TENSOR.ATTN_GATE,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.FFN_GATE_INP,
+        MODEL_TENSOR.FFN_GATE_EXP,
+        MODEL_TENSOR.FFN_DOWN_EXP,
+        MODEL_TENSOR.FFN_UP_EXP,
+        MODEL_TENSOR.FFN_GATE_SHEXP,
+        MODEL_TENSOR.FFN_UP_SHEXP,
+        MODEL_TENSOR.FFN_DOWN_SHEXP,
+        MODEL_TENSOR.FFN_PRE_NORM,
+        MODEL_TENSOR.FFN_POST_NORM,
+        MODEL_TENSOR.FFN_EXP_PROBS_B,
+    ],
     MODEL_ARCH.ERNIE4_5: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,

+ 8 - 1
gguf-py/gguf/tensor_mapping.py

@@ -314,6 +314,10 @@ class TensorNameMap:
             "model.layers.{bid}.self_attn.sinks", # openai-moe
         ),
 
+        MODEL_TENSOR.ATTN_GATE: (
+            "model.layers.{bid}.self_attn.gate_proj", # afmoe
+        ),
+
         # Feed-forward norm
         MODEL_TENSOR.FFN_NORM: (
             "gpt_neox.layers.{bid}.post_attention_layernorm",                # gptneox
@@ -340,11 +344,12 @@ class TensorNameMap:
             "model.layers.{bid}.feedforward_layernorm",                      # apertus
         ),
 
-        # Post feed-forward norm
+        # Pre feed-forward norm
         MODEL_TENSOR.FFN_PRE_NORM: (
             "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
             "layers.{bid}.pre_feedforward_layernorm",       # embeddinggemma
             "model.layers.{bid}.pre_ff_layernorm.weight",
+            "model.layers.{bid}.pre_mlp_layernorm",        # afmoe
         ),
 
         # Post feed-forward norm
@@ -370,6 +375,7 @@ class TensorNameMap:
             "model.layers.{bid}.mlp.gate.wg",                   # hunyuan
             "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
             "model.layers.{bid}.feed_forward.gate",               # lfm2moe
+            "model.layers.{bid}.mlp.router.gate",               # afmoe
         ),
 
         MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
@@ -380,6 +386,7 @@ class TensorNameMap:
             "model.layers.{bid}.mlp.gate.e_score_correction",               # deepseek-v3 dots1
             "model.layers.{bid}.mlp.moe_statics.e_score_correction",        # ernie4.5-moe
             "model.layers.{bid}.mlp.gate.expert_bias",                      # bailingmoe2
+            "model.layers.{bid}.mlp.expert_bias",                           # afmoe
             "model.layers.{bid}.feed_forward.expert_bias",                  # lfm2moe
             "model.layers.{bid}.block_sparse_moe.e_score_correction",       # minimax-m2
         ),

+ 1 - 0
src/CMakeLists.txt

@@ -35,6 +35,7 @@ add_library(llama
             unicode-data.cpp
             unicode.cpp
             unicode.h
+            models/afmoe.cpp
             models/apertus.cpp
             models/arcee.cpp
             models/arctic.cpp

+ 32 - 0
src/llama-arch.cpp

@@ -90,6 +90,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_BAILINGMOE2,      "bailingmoe2"      },
     { LLM_ARCH_DOTS1,            "dots1"            },
     { LLM_ARCH_ARCEE,            "arcee"            },
+    { LLM_ARCH_AFMOE,            "afmoe"            },
     { LLM_ARCH_ERNIE4_5,         "ernie4_5"         },
     { LLM_ARCH_ERNIE4_5_MOE,     "ernie4_5-moe"     },
     { LLM_ARCH_HUNYUAN_MOE,      "hunyuan-moe"      },
@@ -333,6 +334,36 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_AFMOE,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_POST_NORM,  "blk.%d.post_attention_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_Q_NORM,     "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_ATTN_K_NORM,     "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_ATTN_GATE,       "blk.%d.attn_gate" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_POST_NORM,   "blk.%d.post_ffw_norm" },
+            { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_GATE_EXPS,   "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,   "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
+            { LLM_TENSOR_FFN_GATE_SHEXP,  "blk.%d.ffn_gate_shexp" },
+            { LLM_TENSOR_FFN_UP_SHEXP,    "blk.%d.ffn_up_shexp" },
+            { LLM_TENSOR_FFN_DOWN_SHEXP,  "blk.%d.ffn_down_shexp" },
+            { LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
+        },
+    },
     {
         LLM_ARCH_LLAMA4,
         {
@@ -2444,6 +2475,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
     {LLM_TENSOR_ATTN_V,                     {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
     {LLM_TENSOR_ATTN_QKV,                   {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
     {LLM_TENSOR_ATTN_OUT,                   {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
+    {LLM_TENSOR_ATTN_GATE,                  {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
     {LLM_TENSOR_FFN_GATE,                   {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
     {LLM_TENSOR_FFN_DOWN,                   {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
     {LLM_TENSOR_FFN_UP,                     {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},

+ 2 - 0
src/llama-arch.h

@@ -94,6 +94,7 @@ enum llm_arch {
     LLM_ARCH_BAILINGMOE2,
     LLM_ARCH_DOTS1,
     LLM_ARCH_ARCEE,
+    LLM_ARCH_AFMOE,
     LLM_ARCH_ERNIE4_5,
     LLM_ARCH_ERNIE4_5_MOE,
     LLM_ARCH_HUNYUAN_MOE,
@@ -312,6 +313,7 @@ enum llm_tensor {
     LLM_TENSOR_ATTN_POST_NORM,
     LLM_TENSOR_ATTN_ROT_EMBD,
     LLM_TENSOR_ATTN_SINKS,
+    LLM_TENSOR_ATTN_GATE,
     LLM_TENSOR_FFN_GATE_INP,
     LLM_TENSOR_FFN_GATE_INP_SHEXP,
     LLM_TENSOR_FFN_NORM,

+ 102 - 0
src/llama-model.cpp

@@ -84,6 +84,7 @@ const char * llm_type_name(llm_type type) {
         case LLM_TYPE_15B:           return "15B";
         case LLM_TYPE_16B:           return "16B";
         case LLM_TYPE_20B:           return "20B";
+        case LLM_TYPE_26B:           return "26B";
         case LLM_TYPE_27B:           return "27B";
         case LLM_TYPE_30B:           return "30B";
         case LLM_TYPE_32B:           return "32B";
@@ -695,6 +696,37 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_AFMOE:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
+                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
+                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
+                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func, false);
+                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale, false);
+                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,         hparams.expert_weights_norm, false);
+                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa, false);
+
+                // Set up interleaved sliding window attention (ISWA)
+                // Pattern: 3 sliding - 1 full (global_attn_every_n_layers = 4)
+                if (hparams.n_swa > 0) {
+                    hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
+                    hparams.set_swa_pattern(4);
+                } else {
+                    hparams.swa_type = LLAMA_SWA_TYPE_NONE;
+                }
+
+                // Default to sigmoid if not set
+                if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
+                    hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
+                }
+
+                switch (hparams.n_layer) {
+                    case 56: type = LLM_TYPE_6B; break;
+                    case 32: type = LLM_TYPE_26B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_DECI:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -5749,6 +5781,71 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                     }
                 } break;
+            case LLM_ARCH_AFMOE:
+                {
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
+
+                    // if output is NULL, init from the input tok embed
+                    if (output == NULL) {
+                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
+                    }
+
+                    const int64_t n_ff_exp = hparams.n_ff_exp;
+                    const int64_t n_expert_shared = hparams.n_expert_shared;
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = layers[i];
+
+                        // dual attention normalization
+                        layer.attn_norm      = create_tensor(tn(LLM_TENSOR_ATTN_NORM,      "weight", i), {n_embd}, 0);
+                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
+
+                        // attention projections
+                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
+                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
+
+                        // Q/K normalization
+                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
+                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
+
+                        // attention gating
+                        layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+
+                        // dual ffn normalization
+                        layer.ffn_norm      = create_tensor(tn(LLM_TENSOR_FFN_NORM,      "weight", i), {n_embd}, 0);
+                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
+
+                        if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) {
+                            // MoE layers
+                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
+                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
+
+                            // grouped expert weights
+                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
+                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
+                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
+
+                            // shared expert
+                            if (n_expert_shared > 0) {
+                                const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
+                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
+                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
+                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_shexp}, 0);
+                            }
+                        } else {
+                            // Dense layers
+                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
+                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
+                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
+                        }
+                    }
+                } break;
             case LLM_ARCH_ERNIE4_5:
             case LLM_ARCH_ERNIE4_5_MOE:
                 {
@@ -7243,6 +7340,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
             {
                 llm = std::make_unique<llm_build_arcee>(*this, params);
             } break;
+        case LLM_ARCH_AFMOE:
+            {
+                llm = std::make_unique<llm_build_afmoe>(*this, params);
+            } break;
         case LLM_ARCH_ERNIE4_5:
             {
                 llm = std::make_unique<llm_build_ernie4_5>(*this, params);
@@ -7528,6 +7629,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_MINIMAX_M2:
         case LLM_ARCH_COGVLM:
         case LLM_ARCH_PANGU_EMBED:
+        case LLM_ARCH_AFMOE:
             return LLAMA_ROPE_TYPE_NEOX;
 
         case LLM_ARCH_QWEN2VL:

+ 2 - 0
src/llama-model.h

@@ -76,6 +76,7 @@ enum llm_type {
     LLM_TYPE_15B,
     LLM_TYPE_16B,
     LLM_TYPE_20B,
+    LLM_TYPE_26B,
     LLM_TYPE_27B,
     LLM_TYPE_30B,
     LLM_TYPE_32B,
@@ -234,6 +235,7 @@ struct llama_layer {
     struct ggml_tensor * wk_enc    = nullptr;
     struct ggml_tensor * wv_enc    = nullptr;
     struct ggml_tensor * wo_enc    = nullptr;
+    struct ggml_tensor * wqkv_gate = nullptr;
 
     // attention bias
     struct ggml_tensor * bq   = nullptr;

+ 15 - 0
src/llama-vocab.cpp

@@ -443,6 +443,17 @@ struct llm_tokenizer_bpe : llm_tokenizer {
                     "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                 };
                 break;
+            case LLAMA_VOCAB_PRE_TYPE_AFMOE:
+                regex_exprs = {
+                    // Digit handling - uses custom implementation in unicode.cpp
+                    // Groups digits with leading 1-2 based on total length modulo 3
+                    "\\p{AFMoE_digits}",
+                    // CJK and Asian scripts (using direct Unicode literals)
+                    "[一-鿿㐀-䶿豈-﫿぀-ゟ゠-ヿ・-゚⼀-⿟เ-๿຀-໿ក-៿က-႟ꩠ-ꩿꧠ-꧿가-힯ᄀ-ᇿ]+",
+                    // Main BPE pattern
+                    "[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\\r\\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+                };
+                break;
             default:
                 // default regex for BPE tokenization pre-processing
                 regex_exprs = {
@@ -1993,6 +2004,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
                 tokenizer_pre == "grok-2") {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_GROK_2;
                 clean_spaces = false;
+            } else if (
+                tokenizer_pre == "afmoe") {
+                pre_type = LLAMA_VOCAB_PRE_TYPE_AFMOE;
+                clean_spaces = false;
             } else if (
                 tokenizer_pre == "minimax-m2") {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;

+ 1 - 0
src/llama-vocab.h

@@ -50,6 +50,7 @@ enum llama_vocab_pre_type {
     LLAMA_VOCAB_PRE_TYPE_GROK_2          = 39,
     LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
     LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2      = 41,
+    LLAMA_VOCAB_PRE_TYPE_AFMOE           = 42,
 };
 
 struct LLM_KV;

+ 187 - 0
src/models/afmoe.cpp

@@ -0,0 +1,187 @@
+#include "models.h"
+
+llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
+    const int64_t n_embd_head = hparams.n_embd_head_v;
+    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+    ggml_tensor * cur;
+    ggml_tensor * inpL;
+
+    inpL = build_inp_embd(model.tok_embd);
+
+    // MuP scaling: embeddings * sqrt(hidden_size)
+    // mup_enabled = true, hidden_size = 1024, scale = 32.0
+    inpL = ggml_scale(ctx0, inpL, sqrtf(float(n_embd)));
+    cb(inpL, "inp_embd_scaled", -1);
+
+    // inp_pos - contains the positions
+    ggml_tensor * inp_pos = build_inp_pos();
+    auto * inp_attn = build_attn_inp_kv_iswa();
+    ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+    const float kq_scale = 1.0f/sqrtf(float(n_embd_head));
+
+    for (int il = 0; il < n_layer; ++il) {
+        ggml_tensor * inpSA = inpL;
+
+        // dual attention normalization (pre)
+        cur = build_norm(inpL,
+                model.layers[il].attn_norm, NULL,
+                LLM_NORM_RMS, il);
+        cb(cur, "attn_norm", il);
+
+        // self-attention
+        {
+            ggml_tensor * attn_inp = cur;  // save input for gate computation
+
+            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+            cb(Qcur, "Qcur", il);
+
+            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+            cb(Kcur, "Kcur", il);
+
+            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+            cb(Vcur, "Vcur", il);
+
+            // compute gate from input
+            ggml_tensor * gate = build_lora_mm(model.layers[il].wqkv_gate, attn_inp);
+            cb(gate, "attn_gate_proj", il);
+
+            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+            // Q/K normalization
+            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
+            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
+            cb(Qcur, "Qcur_normed", il);
+            cb(Kcur, "Kcur_normed", il);
+
+            // RoPE only for sliding_attention layers
+            const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
+                                ((il + 1) % hparams.n_no_rope_layer_step) != 0;
+            if (use_rope) {
+                Qcur = ggml_rope_ext(
+                        ctx0, Qcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Qcur, "Qcur_rope", il);
+
+                Kcur = ggml_rope_ext(
+                        ctx0, Kcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Kcur, "Kcur_rope", il);
+            }
+
+            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+            cur = build_attn(inp_attn,
+                    NULL, NULL,  // wo will be applied after gating
+                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
+            cb(cur, "attn_out", il);
+
+            // attention gating: attn_out * sigmoid(gate) BEFORE o_proj
+            gate = ggml_sigmoid(ctx0, gate);
+            cb(gate, "attn_gate_sig", il);
+            cur = ggml_mul(ctx0, cur, gate);
+            cb(cur, "attn_gated", il);
+
+            // now apply output projection
+            cur = build_lora_mm(model.layers[il].wo, cur);
+            cb(cur, "attn_o_proj", il);
+        }
+
+        // dual attention normalization (post)
+        cur = build_norm(cur,
+                model.layers[il].attn_post_norm, NULL,
+                LLM_NORM_RMS, il);
+        cb(cur, "attn_post_norm", il);
+
+        if (il == n_layer - 1 && inp_out_ids) {
+            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+        }
+
+        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+        cb(ffn_inp, "ffn_inp", il);
+
+        // dual ffn normalization (pre)
+        cur = build_norm(ffn_inp,
+                model.layers[il].ffn_norm, NULL,
+                LLM_NORM_RMS, il);
+        cb(cur, "ffn_norm", il);
+
+        // MoE or dense FFN
+        if ((uint32_t)il >= hparams.n_layer_dense_lead) {
+            // MoE layer with sigmoid routing, normalization, and scaling
+            ggml_tensor * moe_out = build_moe_ffn(cur,
+                    model.layers[il].ffn_gate_inp,
+                    model.layers[il].ffn_up_exps,
+                    model.layers[il].ffn_gate_exps,
+                    model.layers[il].ffn_down_exps,
+                    model.layers[il].ffn_exp_probs_b,
+                    n_expert, n_expert_used,
+                    LLM_FFN_SILU,
+                    hparams.expert_weights_norm,           // norm_w (route_norm=True)
+                    hparams.expert_weights_scale,          // scale_w
+                    hparams.expert_weights_scale,          // w_scale (route_scale=2.826)
+                    (llama_expert_gating_func_type) hparams.expert_gating_func,
+                    il);
+            cb(moe_out, "ffn_moe_out", il);
+
+            // shared expert
+            if (hparams.n_expert_shared > 0) {
+                ggml_tensor * ffn_shexp = build_ffn(cur,
+                        model.layers[il].ffn_up_shexp,   NULL, NULL,
+                        model.layers[il].ffn_gate_shexp, NULL, NULL,
+                        model.layers[il].ffn_down_shexp, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, il);
+                cb(ffn_shexp, "ffn_shexp", il);
+
+                cur = ggml_add(ctx0, moe_out, ffn_shexp);
+                cb(cur, "ffn_out", il);
+            } else {
+                cur = moe_out;
+            }
+        } else {
+            // dense layer
+            cur = build_ffn(cur,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    model.layers[il].ffn_gate, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, il);
+            cb(cur, "ffn_out", il);
+        }
+
+        // dual ffn normalization (post)
+        cur = build_norm(cur,
+                model.layers[il].ffn_post_norm, NULL,
+                LLM_NORM_RMS, il);
+        cb(cur, "ffn_post_norm", il);
+
+        cur = ggml_add(ctx0, cur, ffn_inp);
+        cur = build_cvec(cur, il);
+        cb(cur, "l_out", il);
+
+        // input for next layer
+        inpL = cur;
+    }
+
+    cur = inpL;
+
+    cur = build_norm(cur,
+            model.output_norm, NULL,
+            LLM_NORM_RMS, -1);
+    cb(cur, "result_norm", -1);
+
+    res->t_embd = cur;
+
+    // lm_head
+    cur = build_lora_mm(model.output, cur);
+    cb(cur, "result_output", -1);
+    res->t_logits = cur;
+
+    ggml_build_forward_expand(gf, cur);
+}

+ 4 - 0
src/models/models.h

@@ -57,6 +57,10 @@ struct llm_build_rwkv7_base : public llm_graph_context {
                                        int                  il) const;
 };
 
+struct llm_build_afmoe : public llm_graph_context {
+    llm_build_afmoe(const llama_model & model, const llm_graph_params & params);
+};
+
 struct llm_build_apertus : public llm_graph_context {
     llm_build_apertus(const llama_model & model, const llm_graph_params & params);
 };

+ 77 - 0
src/unicode.cpp

@@ -729,6 +729,80 @@ static std::vector<size_t> unicode_regex_split_custom_kimi_k2(const std::string
     return bpe_offsets;
 }
 
+// AFMOE digit handling: splits digits with leading 1-2 based on total length modulo 3
+static std::vector<size_t> unicode_regex_split_custom_afmoe(const std::string & text, const std::vector<size_t> & offsets) {
+    std::vector<size_t> bpe_offsets;
+    bpe_offsets.reserve(offsets.size());
+
+    const auto cpts = unicode_cpts_from_utf8(text);
+
+    size_t start = 0;
+    for (auto offset : offsets) {
+        const size_t offset_ini = start;
+        const size_t offset_end = start + offset;
+        assert(offset_end <= cpts.size());
+        start = offset_end;
+
+        auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags {
+            return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{};
+        };
+
+        size_t _prev_end = offset_ini;
+        auto _add_token = [&] (const size_t end) -> size_t {
+            assert(_prev_end <= end && end <= offset_end);
+            size_t len = end - _prev_end;
+            if (len > 0) {
+                bpe_offsets.push_back(len);
+            }
+            _prev_end = end;
+            return len;
+        };
+
+        for (size_t pos = offset_ini; pos < offset_end; ) {
+            const auto flags = _get_flags(pos);
+
+            // Handle digit sequences with special splitting logic
+            if (flags.is_number) {
+                size_t digit_start = pos;
+                size_t digit_count = 0;
+
+                // Count consecutive digits
+                while (_get_flags(pos).is_number && pos < offset_end) {
+                    digit_count++;
+                    pos++;
+                }
+
+                // Split based on total length modulo 3
+                size_t remainder = digit_count % 3;
+                size_t current = digit_start;
+
+                // Emit leading 1-2 digits if needed
+                if (remainder > 0) {
+                    _add_token(current + remainder);
+                    current += remainder;
+                }
+
+                // Emit groups of 3
+                while (current < digit_start + digit_count) {
+                    _add_token(current + 3);
+                    current += 3;
+                }
+                continue;
+            }
+
+            // For non-digits, just move forward
+            pos++;
+        }
+
+        // Add any remaining content
+        if (_prev_end < offset_end) {
+            _add_token(offset_end);
+        }
+    }
+
+    return bpe_offsets;
+}
+
 static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
     std::vector<size_t> bpe_offsets;
 
@@ -742,6 +816,9 @@ static std::vector<size_t> unicode_regex_split_custom(const std::string & text,
     } else if (regex_expr == "\\p{Han}+") {
         // K2's first pattern - handle all K2 patterns together
         bpe_offsets = unicode_regex_split_custom_kimi_k2(text, offsets);
+    } else if (regex_expr == "\\p{AFMoE_digits}") {
+        // AFMOE digit pattern - use custom implementation for proper splitting
+        bpe_offsets = unicode_regex_split_custom_afmoe(text, offsets);
     }
 
     return bpe_offsets;