|
|
@@ -3211,7 +3211,7 @@ private:
|
|
|
|
|
|
struct llm_bigram_bpe {
|
|
|
struct comparator {
|
|
|
- bool operator()(llm_bigram_bpe & l, llm_bigram_bpe & r) {
|
|
|
+ bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
|
|
|
return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
|
|
|
}
|
|
|
};
|
|
|
@@ -3359,23 +3359,22 @@ private:
|
|
|
}
|
|
|
|
|
|
// probably not 100% correct
|
|
|
- // TODO: this is quite slow - how to make it more efficient?
|
|
|
- static std::vector<std::string> bpe_gpt2_preprocess(std::string text) {
|
|
|
+ static std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
|
|
|
std::vector<std::string> words;
|
|
|
|
|
|
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
|
|
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
|
|
const std::regex re(pattern);
|
|
|
- std::smatch m;
|
|
|
|
|
|
- while (std::regex_search(text, m, re)) {
|
|
|
- for (auto x : m) {
|
|
|
- words.push_back(x);
|
|
|
- }
|
|
|
- text = m.suffix();
|
|
|
+ auto words_begin = std::sregex_iterator(text.begin(), text.end(), re);
|
|
|
+ auto words_end = std::sregex_iterator();
|
|
|
+ auto n_words = std::distance(words_begin, words_end);
|
|
|
+ words.reserve(n_words);
|
|
|
+ for (auto it = words_begin; it != words_end; ++it) {
|
|
|
+ words.push_back(it->str());
|
|
|
}
|
|
|
-
|
|
|
return words;
|
|
|
+
|
|
|
}
|
|
|
|
|
|
const llama_vocab & vocab;
|