Просмотр исходного кода

clip: move model cgraphs into their own files (#17965)

* clip: move model cgraphs into their own files

* more explicit enums

* fix linux build

* fix naming

* missing headers

* nits: add comments for contributors
Xuan-Son Nguyen 1 месяц назад
Родитель
Сommit
e39a2ce66d

+ 16 - 2
tools/mtmd/CMakeLists.txt

@@ -6,11 +6,25 @@ add_library(mtmd
             mtmd.cpp
             mtmd-audio.cpp
             mtmd.h
+            mtmd-helper.cpp
+            mtmd-helper.h
             clip.cpp
             clip.h
             clip-impl.h
-            mtmd-helper.cpp
-            mtmd-helper.h
+            clip-model.h
+            clip-graph.h
+            models/models.h
+            models/cogvlm.cpp
+            models/internvl.cpp
+            models/kimivl.cpp
+            models/llama4.cpp
+            models/llava.cpp
+            models/minicpmv.cpp
+            models/pixtral.cpp
+            models/qwen2vl.cpp
+            models/qwen3vl.cpp
+            models/siglip.cpp
+            models/whisper-enc.cpp
             )
 
 set_target_properties(mtmd PROPERTIES

+ 115 - 0
tools/mtmd/clip-graph.h

@@ -0,0 +1,115 @@
+#pragma once
+
+#include "ggml.h"
+#include "ggml-cpp.h"
+#include "clip.h"
+#include "clip-impl.h"
+#include "clip-model.h"
+
+#include <vector>
+#include <functional>
+
+struct clip_graph {
+    const clip_model & model;
+    const clip_hparams & hparams;
+    projector_type proj_type;
+
+    // we only support single image per batch
+    const clip_image_f32 & img;
+
+    const int patch_size;
+    const int n_patches_x;
+    const int n_patches_y;
+    const int n_patches;
+    const int n_embd;
+    const int n_head;
+    const int d_head;
+    const int n_layer;
+    const int n_mmproj_embd;
+    const float eps;
+    const float kq_scale;
+    const clip_flash_attn_type flash_attn_type;
+
+    // for debugging
+    const bool debug_graph;
+    std::vector<ggml_tensor *> & debug_print_tensors;
+
+    ggml_context_ptr ctx0_ptr;
+    ggml_context * ctx0;
+    ggml_cgraph * gf;
+
+    clip_graph(clip_ctx * ctx, const clip_image_f32 & img);
+
+    virtual ~clip_graph() = default;
+    virtual ggml_cgraph * build() = 0;
+
+    //
+    // utility functions
+    //
+    void cb(ggml_tensor * cur0, const char * name, int il) const;
+
+    // siglip2 naflex
+    ggml_tensor * resize_position_embeddings();
+
+    // build vision transformer (ViT) cgraph
+    // this function should cover most of the models
+    // if your model has specific features, you should probably duplicate this function
+    ggml_tensor * build_vit(
+                ggml_tensor * inp,
+                int64_t n_pos,
+                norm_type norm_t,
+                ffn_op_type ffn_t,
+                ggml_tensor * learned_pos_embd,
+                std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos);
+
+    // build the input after conv2d (inp_raw --> patches)
+    // returns tensor with shape [n_embd, n_patches]
+    ggml_tensor * build_inp();
+
+    ggml_tensor * build_inp_raw(int channels = 3);
+
+    ggml_tensor * build_norm(
+            ggml_tensor * cur,
+            ggml_tensor * mw,
+            ggml_tensor * mb,
+            norm_type type,
+            float norm_eps,
+            int il) const;
+
+    ggml_tensor * build_ffn(
+            ggml_tensor * cur,
+            ggml_tensor * up,
+            ggml_tensor * up_b,
+            ggml_tensor * gate,
+            ggml_tensor * gate_b,
+            ggml_tensor * down,
+            ggml_tensor * down_b,
+            ffn_op_type type_op,
+            int il) const;
+
+    ggml_tensor * build_attn(
+            ggml_tensor * wo,
+            ggml_tensor * wo_b,
+            ggml_tensor * q_cur,
+            ggml_tensor * k_cur,
+            ggml_tensor * v_cur,
+            ggml_tensor * kq_mask,
+            float kq_scale,
+            int il) const;
+
+    // implementation of the 2D RoPE without adding a new op in ggml
+    // this is not efficient (use double the memory), but works on all backends
+    // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
+    ggml_tensor * build_rope_2d(
+        ggml_context * ctx0,
+        ggml_tensor * cur,
+        ggml_tensor * pos_a, // first half
+        ggml_tensor * pos_b, // second half
+        const float freq_base,
+        const bool interleave_freq
+    );
+
+    // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
+    // support dynamic resolution
+    ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor);
+};

+ 6 - 0
tools/mtmd/clip-impl.h

@@ -1,3 +1,5 @@
+#pragma once
+
 #include "ggml.h"
 #include "gguf.h"
 #include "clip.h"
@@ -134,6 +136,10 @@
 // align x to upper multiple of n
 #define CLIP_ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))
 
+// forward declaration
+// TODO: improve this later
+struct clip_ctx;
+
 enum projector_type {
     PROJECTOR_TYPE_MLP,
     PROJECTOR_TYPE_MLP_NORM,

+ 279 - 0
tools/mtmd/clip-model.h

@@ -0,0 +1,279 @@
+#pragma once
+
+#include "ggml.h"
+#include "clip.h"
+#include "clip-impl.h"
+
+#include <vector>
+#include <unordered_set>
+#include <cstdint>
+#include <cmath>
+
+enum ffn_op_type {
+    FFN_GELU,
+    FFN_GELU_ERF,
+    FFN_SILU,
+    FFN_GELU_QUICK,
+};
+
+enum norm_type {
+    NORM_TYPE_NORMAL,
+    NORM_TYPE_RMS,
+};
+
+enum patch_merge_type {
+    PATCH_MERGE_FLAT,
+    PATCH_MERGE_SPATIAL_UNPAD,
+};
+
+struct clip_hparams {
+    int32_t image_size = 0;
+    int32_t patch_size = 0;
+    int32_t n_embd = 0;
+    int32_t n_ff = 0;
+    int32_t projection_dim = 0;
+    int32_t n_head = 0;
+    int32_t n_layer = 0;
+    // idefics3
+    int32_t image_longest_edge = 0;
+    int32_t image_min_pixels = -1;
+    int32_t image_max_pixels = -1;
+    int32_t n_merge = 0; // number of patch merges **per-side**
+
+    float image_mean[3];
+    float image_std[3];
+
+    // for models using dynamic image size, we need to have a smaller image size to warmup
+    // otherwise, user will get OOM everytime they load the model
+    int32_t warmup_image_size = 0;
+    int32_t warmup_audio_size = 3000;
+
+    ffn_op_type ffn_op = FFN_GELU;
+
+    patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
+
+    float eps = 1e-6;
+    float rope_theta = 0.0;
+
+    std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
+    int32_t image_crop_resolution;
+    std::unordered_set<int32_t> vision_feature_layer;
+    int32_t attn_window_size = 0;
+    int32_t n_wa_pattern = 0;
+
+    // audio
+    int32_t n_mel_bins = 0; // whisper preprocessor
+    int32_t proj_stack_factor = 0; // ultravox
+
+    // legacy
+    bool has_llava_projector = false;
+    int minicpmv_version = 0;
+    int32_t minicpmv_query_num = 0;         // MiniCPM-V query number
+
+    // custom value provided by user, can be undefined if not set
+    int32_t custom_image_min_tokens = -1;
+    int32_t custom_image_max_tokens = -1;
+
+    void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
+        const int cur_merge = n_merge == 0 ? 1 : n_merge;
+        const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
+        image_min_pixels = (custom_image_min_tokens > 0 ? custom_image_min_tokens : n_tokens_min) * patch_area;
+        image_max_pixels = (custom_image_max_tokens > 0 ? custom_image_max_tokens : n_tokens_max) * patch_area;
+        warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
+    }
+
+    void set_warmup_n_tokens(int n_tokens) {
+        int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
+        GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
+        const int cur_merge = n_merge == 0 ? 1 : n_merge;
+        warmup_image_size = n_tok_per_side * patch_size * cur_merge;
+        // TODO: support warmup size for custom token numbers
+    }
+};
+
+struct clip_layer {
+    // attention
+    ggml_tensor * k_w = nullptr;
+    ggml_tensor * k_b = nullptr;
+    ggml_tensor * q_w = nullptr;
+    ggml_tensor * q_b = nullptr;
+    ggml_tensor * v_w = nullptr;
+    ggml_tensor * v_b = nullptr;
+    ggml_tensor * qkv_w = nullptr;
+    ggml_tensor * qkv_b = nullptr;
+
+    ggml_tensor * o_w = nullptr;
+    ggml_tensor * o_b = nullptr;
+
+    ggml_tensor * k_norm = nullptr;
+    ggml_tensor * q_norm = nullptr;
+
+    // layernorm 1
+    ggml_tensor * ln_1_w = nullptr;
+    ggml_tensor * ln_1_b = nullptr;
+
+    ggml_tensor * ff_up_w = nullptr;
+    ggml_tensor * ff_up_b = nullptr;
+    ggml_tensor * ff_gate_w = nullptr;
+    ggml_tensor * ff_gate_b = nullptr;
+    ggml_tensor * ff_down_w = nullptr;
+    ggml_tensor * ff_down_b = nullptr;
+
+    // layernorm 2
+    ggml_tensor * ln_2_w = nullptr;
+    ggml_tensor * ln_2_b = nullptr;
+
+    // layer scale (no bias)
+    ggml_tensor * ls_1_w = nullptr;
+    ggml_tensor * ls_2_w = nullptr;
+
+    // qwen3vl deepstack merger
+    ggml_tensor * deepstack_norm_w = nullptr;
+    ggml_tensor * deepstack_norm_b = nullptr;
+    ggml_tensor * deepstack_fc1_w = nullptr;
+    ggml_tensor * deepstack_fc1_b = nullptr;
+    ggml_tensor * deepstack_fc2_w = nullptr;
+    ggml_tensor * deepstack_fc2_b = nullptr;
+
+    bool has_deepstack() const {
+        return deepstack_fc1_w != nullptr;
+    }
+};
+
+struct clip_model {
+    clip_modality modality = CLIP_MODALITY_VISION;
+    projector_type proj_type = PROJECTOR_TYPE_MLP;
+    clip_hparams hparams;
+
+    // embeddings
+    ggml_tensor * class_embedding = nullptr;
+    ggml_tensor * patch_embeddings_0 = nullptr;
+    ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
+    ggml_tensor * patch_bias = nullptr;
+    ggml_tensor * position_embeddings = nullptr;
+
+    ggml_tensor * pre_ln_w = nullptr;
+    ggml_tensor * pre_ln_b = nullptr;
+
+    std::vector<clip_layer> layers;
+
+    int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer
+
+    ggml_tensor * post_ln_w;
+    ggml_tensor * post_ln_b;
+
+    ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
+    ggml_tensor * mm_fc_w;
+    ggml_tensor * mm_fc_b;
+
+    // LLaVA projection
+    ggml_tensor * mm_input_norm_w = nullptr;
+    ggml_tensor * mm_input_norm_b = nullptr;
+    ggml_tensor * mm_0_w = nullptr;
+    ggml_tensor * mm_0_b = nullptr;
+    ggml_tensor * mm_2_w = nullptr;
+    ggml_tensor * mm_2_b = nullptr;
+
+    ggml_tensor * image_newline = nullptr;
+
+    // Yi type models with mlp+normalization projection
+    ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
+    ggml_tensor * mm_1_b = nullptr;
+    ggml_tensor * mm_3_w = nullptr;
+    ggml_tensor * mm_3_b = nullptr;
+    ggml_tensor * mm_4_w = nullptr;
+    ggml_tensor * mm_4_b = nullptr;
+
+    // GLMV-Edge projection
+    ggml_tensor * mm_model_adapter_conv_w = nullptr;
+    ggml_tensor * mm_model_adapter_conv_b = nullptr;
+
+    // MobileVLM projection
+    ggml_tensor * mm_model_mlp_1_w = nullptr;
+    ggml_tensor * mm_model_mlp_1_b = nullptr;
+    ggml_tensor * mm_model_mlp_3_w = nullptr;
+    ggml_tensor * mm_model_mlp_3_b = nullptr;
+    ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
+    ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
+    ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
+    ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
+    ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
+    ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
+    ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
+    ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
+    ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
+    ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
+    ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
+    ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
+    ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
+    ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
+    ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
+    ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
+    ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
+    ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
+    ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
+    ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
+
+    // MobileVLM_V2 projection
+    ggml_tensor * mm_model_mlp_0_w = nullptr;
+    ggml_tensor * mm_model_mlp_0_b = nullptr;
+    ggml_tensor * mm_model_mlp_2_w = nullptr;
+    ggml_tensor * mm_model_mlp_2_b = nullptr;
+    ggml_tensor * mm_model_peg_0_w = nullptr;
+    ggml_tensor * mm_model_peg_0_b = nullptr;
+
+    // MINICPMV projection
+    ggml_tensor * mm_model_pos_embed_k = nullptr;
+    ggml_tensor * mm_model_query = nullptr;
+    ggml_tensor * mm_model_proj = nullptr;
+    ggml_tensor * mm_model_kv_proj = nullptr;
+    ggml_tensor * mm_model_attn_q_w = nullptr;
+    ggml_tensor * mm_model_attn_q_b = nullptr;
+    ggml_tensor * mm_model_attn_k_w = nullptr;
+    ggml_tensor * mm_model_attn_k_b = nullptr;
+    ggml_tensor * mm_model_attn_v_w = nullptr;
+    ggml_tensor * mm_model_attn_v_b = nullptr;
+    ggml_tensor * mm_model_attn_o_w = nullptr;
+    ggml_tensor * mm_model_attn_o_b = nullptr;
+    ggml_tensor * mm_model_ln_q_w = nullptr;
+    ggml_tensor * mm_model_ln_q_b = nullptr;
+    ggml_tensor * mm_model_ln_kv_w = nullptr;
+    ggml_tensor * mm_model_ln_kv_b = nullptr;
+    ggml_tensor * mm_model_ln_post_w = nullptr;
+    ggml_tensor * mm_model_ln_post_b = nullptr;
+
+    // gemma3
+    ggml_tensor * mm_input_proj_w = nullptr;
+    ggml_tensor * mm_soft_emb_norm_w = nullptr;
+
+    // pixtral
+    ggml_tensor * token_embd_img_break = nullptr;
+    ggml_tensor * mm_patch_merger_w = nullptr;
+
+    // ultravox / whisper encoder
+    ggml_tensor * conv1d_1_w = nullptr;
+    ggml_tensor * conv1d_1_b = nullptr;
+    ggml_tensor * conv1d_2_w = nullptr;
+    ggml_tensor * conv1d_2_b = nullptr;
+    ggml_tensor * mm_norm_pre_w = nullptr;
+    ggml_tensor * mm_norm_mid_w = nullptr;
+
+    // cogvlm
+    ggml_tensor * mm_post_fc_norm_w = nullptr;
+    ggml_tensor * mm_post_fc_norm_b = nullptr;
+    ggml_tensor * mm_h_to_4h_w = nullptr;
+    ggml_tensor * mm_gate_w = nullptr;
+    ggml_tensor * mm_4h_to_h_w = nullptr;
+    ggml_tensor * mm_boi = nullptr;
+    ggml_tensor * mm_eoi = nullptr;
+
+    bool audio_has_avgpool() const {
+        return proj_type == PROJECTOR_TYPE_QWEN2A
+            || proj_type == PROJECTOR_TYPE_VOXTRAL;
+    }
+
+    bool audio_has_stack_frames() const {
+        return proj_type == PROJECTOR_TYPE_ULTRAVOX
+            || proj_type == PROJECTOR_TYPE_VOXTRAL;
+    }
+};

+ 445 - 2186
tools/mtmd/clip.cpp

@@ -1,9 +1,9 @@
-// NOTE: This is modified from clip.cpp only for LLaVA,
-// so there might be still unnecessary artifacts hanging around
-// I'll gradually clean and extend it
-// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
 #include "clip.h"
 #include "clip-impl.h"
+#include "clip-model.h"
+#include "clip-graph.h"
+#include "models/models.h"
+
 #include "ggml.h"
 #include "ggml-cpp.h"
 #include "ggml-alloc.h"
@@ -26,18 +26,6 @@
 
 struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL};
 
-enum ffn_op_type {
-    FFN_GELU,
-    FFN_GELU_ERF,
-    FFN_SILU,
-    FFN_GELU_QUICK,
-};
-
-enum norm_type {
-    NORM_TYPE_NORMAL,
-    NORM_TYPE_RMS,
-};
-
 //#define CLIP_DEBUG_FUNCTIONS
 
 #ifdef CLIP_DEBUG_FUNCTIONS
@@ -149,267 +137,6 @@ static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u
 #endif
 
 
-//
-// clip layers
-//
-
-enum patch_merge_type {
-    PATCH_MERGE_FLAT,
-    PATCH_MERGE_SPATIAL_UNPAD,
-};
-
-struct clip_hparams {
-    int32_t image_size = 0;
-    int32_t patch_size = 0;
-    int32_t n_embd = 0;
-    int32_t n_ff = 0;
-    int32_t projection_dim = 0;
-    int32_t n_head = 0;
-    int32_t n_layer = 0;
-    // idefics3
-    int32_t image_longest_edge = 0;
-    int32_t image_min_pixels = -1;
-    int32_t image_max_pixels = -1;
-    int32_t n_merge = 0; // number of patch merges **per-side**
-
-    float image_mean[3];
-    float image_std[3];
-
-    // for models using dynamic image size, we need to have a smaller image size to warmup
-    // otherwise, user will get OOM everytime they load the model
-    int32_t warmup_image_size = 0;
-    int32_t warmup_audio_size = 3000;
-
-    ffn_op_type ffn_op = FFN_GELU;
-
-    patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
-
-    float eps = 1e-6;
-    float rope_theta = 0.0;
-
-    std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
-    int32_t image_crop_resolution;
-    std::unordered_set<int32_t> vision_feature_layer;
-    int32_t attn_window_size = 0;
-    int32_t n_wa_pattern = 0;
-
-    // audio
-    int32_t n_mel_bins = 0; // whisper preprocessor
-    int32_t proj_stack_factor = 0; // ultravox
-
-    // legacy
-    bool has_llava_projector = false;
-    int minicpmv_version = 0;
-    int32_t minicpmv_query_num = 0;         // MiniCPM-V query number
-
-    // custom value provided by user, can be undefined if not set
-    int32_t custom_image_min_tokens = -1;
-    int32_t custom_image_max_tokens = -1;
-
-    void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
-        const int cur_merge = n_merge == 0 ? 1 : n_merge;
-        const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
-        image_min_pixels = (custom_image_min_tokens > 0 ? custom_image_min_tokens : n_tokens_min) * patch_area;
-        image_max_pixels = (custom_image_max_tokens > 0 ? custom_image_max_tokens : n_tokens_max) * patch_area;
-        warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
-    }
-
-    void set_warmup_n_tokens(int n_tokens) {
-        int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
-        GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
-        const int cur_merge = n_merge == 0 ? 1 : n_merge;
-        warmup_image_size = n_tok_per_side * patch_size * cur_merge;
-        // TODO: support warmup size for custom token numbers
-    }
-};
-
-struct clip_layer {
-    // attention
-    ggml_tensor * k_w = nullptr;
-    ggml_tensor * k_b = nullptr;
-    ggml_tensor * q_w = nullptr;
-    ggml_tensor * q_b = nullptr;
-    ggml_tensor * v_w = nullptr;
-    ggml_tensor * v_b = nullptr;
-    ggml_tensor * qkv_w = nullptr;
-    ggml_tensor * qkv_b = nullptr;
-
-    ggml_tensor * o_w = nullptr;
-    ggml_tensor * o_b = nullptr;
-
-    ggml_tensor * k_norm = nullptr;
-    ggml_tensor * q_norm = nullptr;
-
-    // layernorm 1
-    ggml_tensor * ln_1_w = nullptr;
-    ggml_tensor * ln_1_b = nullptr;
-
-    ggml_tensor * ff_up_w = nullptr;
-    ggml_tensor * ff_up_b = nullptr;
-    ggml_tensor * ff_gate_w = nullptr;
-    ggml_tensor * ff_gate_b = nullptr;
-    ggml_tensor * ff_down_w = nullptr;
-    ggml_tensor * ff_down_b = nullptr;
-
-    // layernorm 2
-    ggml_tensor * ln_2_w = nullptr;
-    ggml_tensor * ln_2_b = nullptr;
-
-    // layer scale (no bias)
-    ggml_tensor * ls_1_w = nullptr;
-    ggml_tensor * ls_2_w = nullptr;
-
-    // qwen3vl deepstack merger
-    ggml_tensor * deepstack_norm_w = nullptr;
-    ggml_tensor * deepstack_norm_b = nullptr;
-    ggml_tensor * deepstack_fc1_w = nullptr;
-    ggml_tensor * deepstack_fc1_b = nullptr;
-    ggml_tensor * deepstack_fc2_w = nullptr;
-    ggml_tensor * deepstack_fc2_b = nullptr;
-
-    bool has_deepstack() const {
-        return deepstack_fc1_w != nullptr;
-    }
-};
-
-struct clip_model {
-    clip_modality modality = CLIP_MODALITY_VISION;
-    projector_type proj_type = PROJECTOR_TYPE_MLP;
-    clip_hparams hparams;
-
-    // embeddings
-    ggml_tensor * class_embedding = nullptr;
-    ggml_tensor * patch_embeddings_0 = nullptr;
-    ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
-    ggml_tensor * patch_bias = nullptr;
-    ggml_tensor * position_embeddings = nullptr;
-
-    ggml_tensor * pre_ln_w = nullptr;
-    ggml_tensor * pre_ln_b = nullptr;
-
-    std::vector<clip_layer> layers;
-
-    int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer
-
-    ggml_tensor * post_ln_w;
-    ggml_tensor * post_ln_b;
-
-    ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
-    ggml_tensor * mm_fc_w;
-    ggml_tensor * mm_fc_b;
-
-    // LLaVA projection
-    ggml_tensor * mm_input_norm_w = nullptr;
-    ggml_tensor * mm_input_norm_b = nullptr;
-    ggml_tensor * mm_0_w = nullptr;
-    ggml_tensor * mm_0_b = nullptr;
-    ggml_tensor * mm_2_w = nullptr;
-    ggml_tensor * mm_2_b = nullptr;
-
-    ggml_tensor * image_newline = nullptr;
-
-    // Yi type models with mlp+normalization projection
-    ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
-    ggml_tensor * mm_1_b = nullptr;
-    ggml_tensor * mm_3_w = nullptr;
-    ggml_tensor * mm_3_b = nullptr;
-    ggml_tensor * mm_4_w = nullptr;
-    ggml_tensor * mm_4_b = nullptr;
-
-    // GLMV-Edge projection
-    ggml_tensor * mm_model_adapter_conv_w = nullptr;
-    ggml_tensor * mm_model_adapter_conv_b = nullptr;
-
-    // MobileVLM projection
-    ggml_tensor * mm_model_mlp_1_w = nullptr;
-    ggml_tensor * mm_model_mlp_1_b = nullptr;
-    ggml_tensor * mm_model_mlp_3_w = nullptr;
-    ggml_tensor * mm_model_mlp_3_b = nullptr;
-    ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
-    ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
-    ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
-    ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
-    ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
-    ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
-    ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
-    ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
-    ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
-    ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
-    ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
-    ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
-    ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
-    ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
-    ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
-    ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
-    ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
-    ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
-    ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
-    ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
-
-    // MobileVLM_V2 projection
-    ggml_tensor * mm_model_mlp_0_w = nullptr;
-    ggml_tensor * mm_model_mlp_0_b = nullptr;
-    ggml_tensor * mm_model_mlp_2_w = nullptr;
-    ggml_tensor * mm_model_mlp_2_b = nullptr;
-    ggml_tensor * mm_model_peg_0_w = nullptr;
-    ggml_tensor * mm_model_peg_0_b = nullptr;
-
-    // MINICPMV projection
-    ggml_tensor * mm_model_pos_embed_k = nullptr;
-    ggml_tensor * mm_model_query = nullptr;
-    ggml_tensor * mm_model_proj = nullptr;
-    ggml_tensor * mm_model_kv_proj = nullptr;
-    ggml_tensor * mm_model_attn_q_w = nullptr;
-    ggml_tensor * mm_model_attn_q_b = nullptr;
-    ggml_tensor * mm_model_attn_k_w = nullptr;
-    ggml_tensor * mm_model_attn_k_b = nullptr;
-    ggml_tensor * mm_model_attn_v_w = nullptr;
-    ggml_tensor * mm_model_attn_v_b = nullptr;
-    ggml_tensor * mm_model_attn_o_w = nullptr;
-    ggml_tensor * mm_model_attn_o_b = nullptr;
-    ggml_tensor * mm_model_ln_q_w = nullptr;
-    ggml_tensor * mm_model_ln_q_b = nullptr;
-    ggml_tensor * mm_model_ln_kv_w = nullptr;
-    ggml_tensor * mm_model_ln_kv_b = nullptr;
-    ggml_tensor * mm_model_ln_post_w = nullptr;
-    ggml_tensor * mm_model_ln_post_b = nullptr;
-
-    // gemma3
-    ggml_tensor * mm_input_proj_w = nullptr;
-    ggml_tensor * mm_soft_emb_norm_w = nullptr;
-
-    // pixtral
-    ggml_tensor * token_embd_img_break = nullptr;
-    ggml_tensor * mm_patch_merger_w = nullptr;
-
-    // ultravox / whisper encoder
-    ggml_tensor * conv1d_1_w = nullptr;
-    ggml_tensor * conv1d_1_b = nullptr;
-    ggml_tensor * conv1d_2_w = nullptr;
-    ggml_tensor * conv1d_2_b = nullptr;
-    ggml_tensor * mm_norm_pre_w = nullptr;
-    ggml_tensor * mm_norm_mid_w = nullptr;
-
-    // cogvlm
-    ggml_tensor * mm_post_fc_norm_w = nullptr;
-    ggml_tensor * mm_post_fc_norm_b = nullptr;
-    ggml_tensor * mm_h_to_4h_w = nullptr;
-    ggml_tensor * mm_gate_w = nullptr;
-    ggml_tensor * mm_4h_to_h_w = nullptr;
-    ggml_tensor * mm_boi = nullptr;
-    ggml_tensor * mm_eoi = nullptr;
-
-    bool audio_has_avgpool() const {
-        return proj_type == PROJECTOR_TYPE_QWEN2A
-            || proj_type == PROJECTOR_TYPE_VOXTRAL;
-    }
-
-    bool audio_has_stack_frames() const {
-        return proj_type == PROJECTOR_TYPE_ULTRAVOX
-            || proj_type == PROJECTOR_TYPE_VOXTRAL;
-    }
-};
-
 struct clip_ctx {
     clip_model model;
 
@@ -492,2081 +219,613 @@ struct clip_ctx {
     }
 };
 
-struct clip_graph {
-    clip_ctx * ctx;
-    const clip_model & model;
-    const clip_hparams & hparams;
-
-    // we only support single image per batch
-    const clip_image_f32 & img;
-
-    const int patch_size;
-    const int n_patches_x;
-    const int n_patches_y;
-    const int n_patches;
-    const int n_embd;
-    const int n_head;
-    const int d_head;
-    const int n_layer;
-    const float eps;
-    const float kq_scale;
-
-    ggml_context_ptr ctx0_ptr;
-    ggml_context * ctx0;
-    ggml_cgraph * gf;
-
-    clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
-            ctx(ctx),
-            model(ctx->model),
-            hparams(model.hparams),
-            img(img),
-            patch_size(hparams.patch_size),
-            n_patches_x(img.nx / patch_size),
-            n_patches_y(img.ny / patch_size),
-            n_patches(n_patches_x * n_patches_y),
-            n_embd(hparams.n_embd),
-            n_head(hparams.n_head),
-            d_head(n_embd / n_head),
-            n_layer(hparams.n_layer),
-            eps(hparams.eps),
-            kq_scale(1.0f / sqrtf((float)d_head)) {
-        struct ggml_init_params params = {
-            /*.mem_size   =*/ ctx->buf_compute_meta.size(),
-            /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
-            /*.no_alloc   =*/ true,
-        };
-        ctx0_ptr.reset(ggml_init(params));
-        ctx0 = ctx0_ptr.get();
-        gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
-    }
-
-    ggml_cgraph * build_siglip() {
-        ggml_tensor * inp = build_inp();
-
-        ggml_tensor * learned_pos_embd = model.position_embeddings;
-        if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
-            learned_pos_embd = resize_position_embeddings();
-        }
-
-        ggml_tensor * cur = build_vit(
-                                inp, n_patches,
-                                NORM_TYPE_NORMAL,
-                                hparams.ffn_op,
-                                learned_pos_embd,
-                                nullptr);
-
-        if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
-            const int batch_size = 1;
-            GGML_ASSERT(n_patches_x == n_patches_y);
-            const int patches_per_image = n_patches_x;
-            const int kernel_size = hparams.n_merge;
-
-            cur = ggml_transpose(ctx0, cur);
-            cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
-
-            // doing a pool2d to reduce the number of output tokens
-            cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
-            cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
-            cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
-
-            // apply norm before projection
-            cur = ggml_rms_norm(ctx0, cur, eps);
-            cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
-
-            // apply projection
-            cur = ggml_mul_mat(ctx0,
-                ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
-                cur);
-
-        } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
-            // pixel_shuffle
-            // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
-            const int scale_factor = model.hparams.n_merge;
-            cur = build_patch_merge_permute(cur, scale_factor);
-            cur = ggml_mul_mat(ctx0, model.projection, cur);
-
-        } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
-            // pixel unshuffle block
-            const int scale_factor = model.hparams.n_merge;
-            cur = build_patch_merge_permute(cur, scale_factor);
-
-            // projection
-            cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
-            cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
-            cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
-
-            cur = build_ffn(cur,
-                model.mm_1_w, model.mm_1_b,
-                nullptr, nullptr,
-                model.mm_2_w, model.mm_2_b,
-                FFN_GELU,
-                -1);
-
-        } else if (ctx->proj_type() == PROJECTOR_TYPE_JANUS_PRO) {
-            cur = build_ffn(cur,
-                model.mm_0_w, model.mm_0_b,
-                nullptr, nullptr,
-                model.mm_1_w, model.mm_1_b,
-                hparams.ffn_op,
-                -1);
-
-        } else {
-            GGML_ABORT("SigLIP: Unsupported projector type");
-        }
-
-        // build the graph
-        ggml_build_forward_expand(gf, cur);
-
-        return gf;
-    }
-
-    ggml_cgraph * build_pixtral() {
-        const int n_merge = hparams.n_merge;
-
-        // 2D input positions
-        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
-        ggml_set_name(pos_h, "pos_h");
-        ggml_set_input(pos_h);
-
-        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
-        ggml_set_name(pos_w, "pos_w");
-        ggml_set_input(pos_w);
-
-        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
-            return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
-        };
-
-        ggml_tensor * inp = build_inp();
-        ggml_tensor * cur = build_vit(
-                                inp, n_patches,
-                                NORM_TYPE_RMS,
-                                hparams.ffn_op,
-                                nullptr, // no learned pos embd
-                                add_pos);
-
-        // mistral small 3.1 patch merger
-        // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
-        if (model.mm_patch_merger_w) {
-            GGML_ASSERT(hparams.n_merge > 0);
-
-            cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
-
-            // reshape image tokens to 2D grid
-            cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
-            cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
-            cur = ggml_cont(ctx0, cur);
-
-            // torch.nn.functional.unfold is just an im2col under the hood
-            // we just need a dummy kernel to make it work
-            ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
-            cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
-
-            // project to n_embd
-            cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
-            cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
-        }
-
-        // LlavaMultiModalProjector (always using GELU activation)
-        {
-            cur = build_ffn(cur,
-                model.mm_1_w, model.mm_1_b,
-                nullptr, nullptr,
-                model.mm_2_w, model.mm_2_b,
-                FFN_GELU,
-                -1);
-        }
+//
+// clip_graph
+//
 
-        // arrangement of the [IMG_BREAK] token
-        if (model.token_embd_img_break) {
-            // not efficient, but works
-            // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
-            // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
-            // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
-
-            const int p_y             = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
-            const int p_x             = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
-            const int p_total         = p_x * p_y;
-            const int n_embd_text     = cur->ne[0];
-            const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
-
-            ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
-            ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
-            tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
-            tok = ggml_add(ctx0, tok, model.token_embd_img_break);
-            tmp = ggml_concat(ctx0, tmp, tok, 1);
-            cur = ggml_view_2d(ctx0, tmp,
-                n_embd_text, n_tokens_output,
-                ggml_row_size(tmp->type, n_embd_text), 0);
-        }
+clip_graph::clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
+        model(ctx->model),
+        hparams(model.hparams),
+        proj_type(ctx->proj_type()),
+        img(img),
+        patch_size(hparams.patch_size),
+        n_patches_x(img.nx / patch_size),
+        n_patches_y(img.ny / patch_size),
+        n_patches(n_patches_x * n_patches_y),
+        n_embd(hparams.n_embd),
+        n_head(hparams.n_head),
+        d_head(n_embd / n_head),
+        n_layer(hparams.n_layer),
+        n_mmproj_embd(clip_n_mmproj_embd(ctx)),
+        eps(hparams.eps),
+        kq_scale(1.0f / sqrtf((float)d_head)),
+        flash_attn_type(ctx->flash_attn_type),
+        debug_graph(ctx->debug_graph),
+        debug_print_tensors(ctx->debug_print_tensors) {
+    struct ggml_init_params params = {
+        /*.mem_size   =*/ ctx->buf_compute_meta.size(),
+        /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
+        /*.no_alloc   =*/ true,
+    };
+    ctx0_ptr.reset(ggml_init(params));
+    ctx0 = ctx0_ptr.get();
+    gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
+}
 
-        // build the graph
+void clip_graph::cb(ggml_tensor * cur0, const char * name, int il) const {
+    if (debug_graph) {
+        ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
+        std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
+        ggml_set_name(cur, cur_name.c_str());
+        ggml_set_output(cur);
         ggml_build_forward_expand(gf, cur);
-
-        return gf;
+        debug_print_tensors.push_back(cur);
     }
+}
 
-    // Qwen2VL and Qwen2.5VL use M-RoPE
-    ggml_cgraph * build_qwen2vl() {
-        GGML_ASSERT(model.patch_bias == nullptr);
-        GGML_ASSERT(model.class_embedding == nullptr);
-
-        const int batch_size       = 1;
-        const bool use_window_attn = hparams.n_wa_pattern > 0;
-        const int n_wa_pattern     = hparams.n_wa_pattern;
-        const int n_pos            = n_patches;
-        const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
-
-        norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
-            ? NORM_TYPE_RMS // qwen 2.5 vl
-            : NORM_TYPE_NORMAL; // qwen 2 vl
-
-        int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
-
-        ggml_tensor * inp_raw = build_inp_raw();
-        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
-
-        GGML_ASSERT(img.nx % (patch_size * 2) == 0);
-        GGML_ASSERT(img.ny % (patch_size * 2) == 0);
-
-        // second conv dimension
-        {
-            auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
-            inp = ggml_add(ctx0, inp, inp_1);
-
-            inp = ggml_permute(ctx0, inp, 1, 2, 0, 3);  // [w, h, c, b] -> [c, w, h, b]
-            inp = ggml_cont_4d(
-                ctx0, inp,
-                n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
-            inp = ggml_reshape_4d(
-                ctx0, inp,
-                n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
-            inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
-            inp = ggml_cont_3d(
-                ctx0, inp,
-                n_embd, n_patches_x * n_patches_y, batch_size);
-        }
-
-        ggml_tensor * inpL           = inp;
-        ggml_tensor * window_mask    = nullptr;
-        ggml_tensor * window_idx     = nullptr;
-        ggml_tensor * inv_window_idx = nullptr;
-
-        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
-        ggml_set_name(positions, "positions");
-        ggml_set_input(positions);
-
-        // pre-layernorm
-        if (model.pre_ln_w) {
-            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
-        }
-
-        if (use_window_attn) {
-            // handle window attention inputs
-            inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
-            ggml_set_name(inv_window_idx, "inv_window_idx");
-            ggml_set_input(inv_window_idx);
-            // mask for window attention
-            window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
-            ggml_set_name(window_mask, "window_mask");
-            ggml_set_input(window_mask);
-
-            // if flash attn is used, we need to pad the mask and cast to f16
-            if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
-                window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
-            }
-
-            // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
-            GGML_ASSERT(batch_size == 1);
-            inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
-            inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
-            inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
-        }
-
-        // loop over layers
-        for (int il = 0; il < n_layer; il++) {
-            const auto & layer = model.layers[il];
-            const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
-
-            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
-
-            // layernorm1
-            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
-            cb(cur, "ln1", il);
-
-            // self-attention
-            {
-                ggml_tensor * Qcur = ggml_add(ctx0,
-                    ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
-                ggml_tensor * Kcur = ggml_add(ctx0,
-                    ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
-                ggml_tensor * Vcur = ggml_add(ctx0,
-                    ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
-
-                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
-                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
-                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
-
-                cb(Qcur, "Qcur", il);
-                cb(Kcur, "Kcur", il);
-                cb(Vcur, "Vcur", il);
-
-                // apply M-RoPE
-                Qcur = ggml_rope_multi(
-                    ctx0, Qcur, positions, nullptr,
-                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
-                Kcur = ggml_rope_multi(
-                    ctx0, Kcur, positions, nullptr,
-                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
-
-                cb(Qcur, "Qcur_rope", il);
-                cb(Kcur, "Kcur_rope", il);
-
-                ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
-
-                cur = build_attn(layer.o_w, layer.o_b,
-                    Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
-                cb(cur, "attn_out", il);
-            }
-
-            // re-add the layer input, e.g., residual
-            cur = ggml_add(ctx0, cur, inpL);
-
-            inpL = cur; // inpL = residual, cur = hidden_states
-
-            cb(cur, "ffn_inp", il);
-
-            // layernorm2
-            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
-            cb(cur, "ffn_inp_normed", il);
-
-            // ffn
-            cur = build_ffn(cur,
-                layer.ff_up_w, layer.ff_up_b,
-                layer.ff_gate_w, layer.ff_gate_b,
-                layer.ff_down_w, layer.ff_down_b,
-                hparams.ffn_op, il);
-
-            cb(cur, "ffn_out", il);
-
-            // residual 2
-            cur = ggml_add(ctx0, inpL, cur);
-            cb(cur, "layer_out", il);
-
-            inpL = cur;
-        }
-
-        // post-layernorm
-        if (model.post_ln_w) {
-            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
-        }
-
-        // multimodal projection
-        ggml_tensor * embeddings = inpL;
-        embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
-        embeddings = build_ffn(embeddings,
-                            model.mm_0_w, model.mm_0_b,
-                            nullptr, nullptr,
-                            model.mm_1_w, model.mm_1_b,
-                            FFN_GELU,
-                            -1);
-
-        if (use_window_attn) {
-            window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
-            ggml_set_name(window_idx, "window_idx");
-            ggml_set_input(window_idx);
-
-            // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
-            GGML_ASSERT(batch_size == 1);
-            embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
-            embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
-            embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
-        }
+// siglip2 naflex
+ggml_tensor * clip_graph::resize_position_embeddings() {
+    ggml_tensor * pos_embd = model.position_embeddings;
+    const int height       = img.ny / patch_size;
+    const int width        = img.nx / patch_size;
+    const uint32_t mode    = GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS;
+    const int n_per_side   = (int)std::sqrt(pos_embd->ne[1]);
 
-        // build the graph
-        ggml_build_forward_expand(gf, embeddings);
+    GGML_ASSERT(pos_embd);
 
-        return gf;
+    if (height == n_per_side && width == n_per_side) {
+        return pos_embd;
     }
 
-    // Qwen3VL
-    ggml_cgraph * build_qwen3vl() {
-        GGML_ASSERT(model.patch_bias != nullptr);
-        GGML_ASSERT(model.position_embeddings != nullptr);
-        GGML_ASSERT(model.class_embedding == nullptr);
-
-        const int batch_size       = 1;
-        const int n_pos            = n_patches;
-        const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
-
-        norm_type norm_t = NORM_TYPE_NORMAL;
-
-        int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
+    pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side);  // -> (n_embd, n_per_side, n_per_side)
+    pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3);                         // -> (n_per_side, n_per_side, n_embd)
+    pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
+    pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3);                         // -> (n_embd, width, height)
+    pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height);             // -> (n_embd, width * height)
 
-        ggml_tensor * inp_raw = build_inp_raw();
-        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
-
-        GGML_ASSERT(img.nx % (patch_size * 2) == 0);
-        GGML_ASSERT(img.ny % (patch_size * 2) == 0);
-
-        // second conv dimension
-        {
-            auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
-            inp = ggml_add(ctx0, inp, inp_1);
-
-            inp = ggml_permute(ctx0, inp, 1, 2, 0, 3);  // [w, h, c, b] -> [c, w, h, b]
-            inp = ggml_cont_4d(
-                ctx0, inp,
-                n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
-            inp = ggml_reshape_4d(
-                ctx0, inp,
-                n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
-            inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
-            inp = ggml_cont_3d(
-                ctx0, inp,
-                n_embd, n_patches_x * n_patches_y, batch_size);
-        }
-
-        // add patch bias
-        if (model.patch_bias != nullptr) {
-            inp = ggml_add(ctx0, inp, model.patch_bias);
-            cb(inp, "patch_bias", -1);
-        }
+    return pos_embd;
+}
 
-        // calculate absolute position embedding and apply
-        ggml_tensor * learned_pos_embd = resize_position_embeddings();
-        learned_pos_embd = ggml_cont_4d(
-            ctx0, learned_pos_embd,
-            n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
-        learned_pos_embd = ggml_reshape_4d(
-            ctx0, learned_pos_embd,
-            n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
-        learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
-        learned_pos_embd = ggml_cont_3d(
-            ctx0, learned_pos_embd,
-            n_embd, n_patches_x * n_patches_y, batch_size);
+// build vision transformer (ViT) cgraph
+// this function should cover most of the models
+// if your model has specific features, you should probably duplicate this function
+ggml_tensor * clip_graph::build_vit(
+            ggml_tensor * inp,
+            int64_t n_pos,
+            norm_type norm_t,
+            ffn_op_type ffn_t,
+            ggml_tensor * learned_pos_embd,
+            std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
+        ) {
+    if (learned_pos_embd) {
         inp = ggml_add(ctx0, inp, learned_pos_embd);
-        cb(inp, "inp_pos_emb", -1);
-
-        ggml_tensor * inpL = inp;
-
-        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
-        ggml_set_name(positions, "positions");
-        ggml_set_input(positions);
-
-        // pre-layernorm
-        if (model.pre_ln_w) {
-            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
-        }
-
-        // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
-        ggml_tensor * deepstack_features = nullptr;
-        const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl
-
-        // loop over layers
-        for (int il = 0; il < n_layer; il++) {
-            auto & layer = model.layers[il];
-
-            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
-
-            // layernorm1
-            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
-            cb(cur, "ln1", il);
-
-            // self-attention
-            {
-                cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
-                cur = ggml_add(ctx0, cur, layer.qkv_b);
-
-                ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
-                        /* nb1    */ ggml_row_size(cur->type, d_head),
-                        /* nb2    */ cur->nb[1],
-                        /* offset */ 0);
-
-                ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
-                        /* nb1    */ ggml_row_size(cur->type, d_head),
-                        /* nb2    */ cur->nb[1],
-                        /* offset */ ggml_row_size(cur->type, n_embd));
-
-                ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
-                        /* nb1    */ ggml_row_size(cur->type, d_head),
-                        /* nb2    */ cur->nb[1],
-                        /* offset */ ggml_row_size(cur->type, 2 * n_embd));
-
-                cb(Qcur, "Qcur", il);
-                cb(Kcur, "Kcur", il);
-                cb(Vcur, "Vcur", il);
-
-                // apply M-RoPE
-                Qcur = ggml_rope_multi(
-                    ctx0, Qcur, positions, nullptr,
-                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
-                Kcur = ggml_rope_multi(
-                    ctx0, Kcur, positions, nullptr,
-                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
-
-                cb(Qcur, "Qcur_rope", il);
-                cb(Kcur, "Kcur_rope", il);
-
-                cur = build_attn(layer.o_w, layer.o_b,
-                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
-                cb(cur, "attn_out", il);
-            }
-
-            // re-add the layer input, e.g., residual
-            cur = ggml_add(ctx0, cur, inpL);
-
-            inpL = cur; // inpL = residual, cur = hidden_states
-
-            cb(cur, "ffn_inp", il);
-
-            // layernorm2
-            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
-            cb(cur, "ffn_inp_normed", il);
-
-            // ffn
-            cur = build_ffn(cur,
-                layer.ff_up_w, layer.ff_up_b,
-                layer.ff_gate_w, layer.ff_gate_b,
-                layer.ff_down_w, layer.ff_down_b,
-                hparams.ffn_op, il);
-
-            cb(cur, "ffn_out", il);
-
-            // residual 2
-            cur = ggml_add(ctx0, inpL, cur);
-            cb(cur, "layer_out", il);
-
-            if (layer.has_deepstack()) {
-                ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
-                feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
-                feat = build_ffn(feat,
-                    layer.deepstack_fc1_w, layer.deepstack_fc1_b,
-                    nullptr, nullptr,
-                    layer.deepstack_fc2_w, layer.deepstack_fc2_b,
-                    ffn_op_type::FFN_GELU, il);
-
-                if(!deepstack_features) {
-                    deepstack_features = feat;
-                } else {
-                    // concat along the feature dimension
-                    deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
-                }
-            }
-
-            inpL = cur;
-        }
-
-        // post-layernorm
-        if (model.post_ln_w) {
-            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
-        }
-
-        // multimodal projection
-        ggml_tensor * embeddings = inpL;
-        embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
-
-        embeddings = build_ffn(embeddings,
-            model.mm_0_w, model.mm_0_b,
-            nullptr, nullptr,
-            model.mm_1_w, model.mm_1_b,
-            ffn_op_type::FFN_GELU, -1);
-
-        embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
-
-        // build the graph
-        ggml_build_forward_expand(gf, embeddings);
-
-        return gf;
-    }
-
-    ggml_cgraph * build_minicpmv() {
-        GGML_ASSERT(model.class_embedding == nullptr);
-        const int n_pos       = n_patches;
-        const int n_embd_proj = clip_n_mmproj_embd(ctx);
-
-        // position embeddings for the projector (not for ViT)
-        // see: https://huggingface.co/openbmb/MiniCPM-o-2_6/blob/main/resampler.py#L70
-        // base frequency omega
-        ggml_tensor * omega = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_embd_proj / 4);
-        ggml_set_name(omega, "omega");
-        ggml_set_input(omega);
-
-        // 2D input positions (using float for sinusoidal embeddings)
-        ggml_tensor * pos_h = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
-        ggml_set_name(pos_h, "pos_h");
-        ggml_set_input(pos_h);
-        ggml_tensor * pos_w = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
-        ggml_set_name(pos_w, "pos_w");
-        ggml_set_input(pos_w);
-
-        // for selecting learned pos embd, used by ViT
-        struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
-        ggml_set_name(positions, "positions");
-        ggml_set_input(positions);
-
-        ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
-
-        ggml_tensor * inp = build_inp();
-        ggml_tensor * embeddings = build_vit(
-                                inp, n_pos,
-                                NORM_TYPE_NORMAL,
-                                hparams.ffn_op,
-                                learned_pos_embd,
-                                nullptr);
-
-        // resampler projector (it is just another transformer)
-
-        ggml_tensor * q = model.mm_model_query;
-        ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
-
-        // norm
-        q = build_norm(q, model.mm_model_ln_q_w,  model.mm_model_ln_q_b,  NORM_TYPE_NORMAL, eps, -1);
-        v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
-
-        // calculate sinusoidal pos embd
-        ggml_tensor * pos_embed = nullptr;
-        {
-            // outer product
-            ggml_tensor * omega_b = ggml_repeat_4d(ctx0, omega, omega->ne[0], n_pos, 1, 1); // n_pos rows
-            ggml_tensor * theta_x = ggml_mul(ctx0, omega_b, pos_w);
-            ggml_tensor * theta_y = ggml_mul(ctx0, omega_b, pos_h);
-            // sin and cos
-            ggml_tensor * pos_embd_x = ggml_concat(
-                ctx0,
-                ggml_sin(ctx0, theta_x),
-                ggml_cos(ctx0, theta_x),
-                0 // concat on first dim
-            );
-            ggml_tensor * pos_embd_y = ggml_concat(
-                ctx0,
-                ggml_sin(ctx0, theta_y),
-                ggml_cos(ctx0, theta_y),
-                0 // concat on first dim
-            );
-            pos_embed = ggml_concat(ctx0, pos_embd_x, pos_embd_y, 0);
-        }
-
-        // k = v + pos_embed
-        ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
-
-        // attention
-        {
-            const int d_head = 128;
-            int n_head = n_embd_proj/d_head;
-            // Use actual config value if available, otherwise fall back to hardcoded values
-            int num_query = ctx->model.hparams.minicpmv_query_num;
-            ggml_tensor * Q = ggml_add(ctx0,
-                ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
-                model.mm_model_attn_q_b);
-            ggml_tensor * K = ggml_add(ctx0,
-                ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
-                model.mm_model_attn_k_b);
-            ggml_tensor * V = ggml_add(ctx0,
-                ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
-                model.mm_model_attn_v_b);
-
-            Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
-            K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
-            V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
-
-            cb(Q, "resampler_Q", -1);
-            cb(K, "resampler_K", -1);
-            cb(V, "resampler_V", -1);
-
-            float resampler_kq_scale = 1.0f/ sqrtf(float(d_head));
-            embeddings = build_attn(
-                model.mm_model_attn_o_w,
-                model.mm_model_attn_o_b,
-                Q, K, V, nullptr, resampler_kq_scale, -1);
-            cb(embeddings, "resampler_attn_out", -1);
-        }
-        // layernorm
-        embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
-
-        // projection
-        embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
-
-        // build the graph
-        ggml_build_forward_expand(gf, embeddings);
-
-        return gf;
-    }
-
-    ggml_cgraph * build_internvl() {
-        GGML_ASSERT(model.class_embedding != nullptr);
-        GGML_ASSERT(model.position_embeddings != nullptr);
-
-        const int n_pos = n_patches + 1;
-        ggml_tensor * inp = build_inp();
-
-        // add CLS token
-        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
-
-        // The larger models use a different ViT, which uses RMS norm instead of layer norm
-        // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
-        norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
-            ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
-            : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
-
-        ggml_tensor * cur = build_vit(
-                                inp, n_pos,
-                                norm_t,
-                                hparams.ffn_op,
-                                model.position_embeddings,
-                                nullptr);
-
-        // remove CLS token
-        cur = ggml_view_2d(ctx0, cur,
-            n_embd, n_patches,
-            ggml_row_size(cur->type, n_embd), 0);
-
-        // pixel shuffle
-        {
-            const int scale_factor = model.hparams.n_merge;
-            const int bsz    = 1; // batch size, always 1 for now since we don't support batching
-            const int height = n_patches_y;
-            const int width  = n_patches_x;
-            GGML_ASSERT(scale_factor > 0);
-            cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
-            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
-            cur = ggml_cont_4d(ctx0, cur,
-                n_embd * scale_factor * scale_factor,
-                height / scale_factor,
-                width / scale_factor,
-                bsz);
-            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
-            // flatten to 2D
-            cur = ggml_cont_2d(ctx0, cur,
-                n_embd * scale_factor * scale_factor,
-                cur->ne[1] * cur->ne[2]);
-        }
-
-        // projector (always using GELU activation)
-        {
-            // projector LayerNorm uses pytorch's default eps = 1e-5
-            // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
-            cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
-            cur = build_ffn(cur,
-                model.mm_1_w, model.mm_1_b,
-                nullptr, nullptr,
-                model.mm_3_w, model.mm_3_b,
-                FFN_GELU,
-                -1);
-        }
-
-        // build the graph
-        ggml_build_forward_expand(gf, cur);
-
-        return gf;
-    }
-
-    ggml_cgraph * build_llama4() {
-        GGML_ASSERT(model.class_embedding != nullptr);
-        GGML_ASSERT(model.position_embeddings != nullptr);
-
-        const int n_pos = n_patches + 1; // +1 for [CLS]
-
-        // 2D input positions
-        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
-        ggml_set_name(pos_h, "pos_h");
-        ggml_set_input(pos_h);
-
-        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
-        ggml_set_name(pos_w, "pos_w");
-        ggml_set_input(pos_w);
-
-        ggml_tensor * inp = build_inp_raw();
-
-        // Llama4UnfoldConvolution
-        {
-            ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
-                                                    patch_size, patch_size, 3, n_embd);
-            inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
-            inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
-            inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
-            cb(inp, "patch_conv", -1);
-        }
-
-        // add CLS token
-        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
-
-        // build ViT with 2D position embeddings
-        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
-            // first half is X axis and second half is Y axis
-            // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
-            // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
-            return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
-        };
-        ggml_tensor * cur = build_vit(
-                                inp, n_pos,
-                                NORM_TYPE_NORMAL,
-                                hparams.ffn_op,
-                                model.position_embeddings,
-                                add_pos);
-
-        // remove CLS token
-        cur = ggml_view_2d(ctx0, cur,
-            n_embd, n_patches,
-            ggml_row_size(cur->type, n_embd), 0);
-
-        // pixel shuffle
-        // based on Llama4VisionPixelShuffleMLP
-        // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
-        {
-            const int scale_factor = model.hparams.n_merge;
-            const int bsz = 1; // batch size, always 1 for now since we don't support batching
-            GGML_ASSERT(scale_factor > 0);
-            GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
-            cur = ggml_reshape_4d(ctx0, cur,
-                n_embd * scale_factor,
-                n_patches_x / scale_factor,
-                n_patches_y,
-                bsz);
-            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
-            cur = ggml_cont_4d(ctx0, cur,
-                n_embd * scale_factor * scale_factor,
-                n_patches_x / scale_factor,
-                n_patches_y / scale_factor,
-                bsz);
-            //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
-            // flatten to 2D
-            cur = ggml_cont_2d(ctx0, cur,
-                n_embd * scale_factor * scale_factor,
-                n_patches / scale_factor / scale_factor);
-            cb(cur, "pixel_shuffle", -1);
-        }
-
-        // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
-        {
-            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
-            cur = ggml_gelu(ctx0, cur);
-            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
-            cur = ggml_gelu(ctx0, cur);
-            cb(cur, "adapter_mlp", -1);
-        }
-
-        // Llama4MultiModalProjector
-        cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
-        cb(cur, "projected", -1);
-
-        // build the graph
-        ggml_build_forward_expand(gf, cur);
-
-        return gf;
+        cb(inp, "pos_embed", -1);
     }
 
-    ggml_cgraph * build_kimivl() {
-        // 2D input positions
-        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
-        ggml_set_name(pos_h, "pos_h");
-        ggml_set_input(pos_h);
+    ggml_tensor * inpL = inp;
 
-        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
-        ggml_set_name(pos_w, "pos_w");
-        ggml_set_input(pos_w);
-
-        ggml_tensor * learned_pos_embd = resize_position_embeddings();
-
-        // build ViT with 2D position embeddings
-        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
-            // first half is X axis and second half is Y axis
-            return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
-        };
-
-        ggml_tensor * inp = build_inp();
-        ggml_tensor * cur = build_vit(
-                                inp, n_patches,
-                                NORM_TYPE_NORMAL,
-                                hparams.ffn_op,
-                                learned_pos_embd,
-                                add_pos);
-
-        cb(cur, "vit_out", -1);
-
-        {
-            // patch_merger
-            const int scale_factor = model.hparams.n_merge;
-            cur = build_patch_merge_permute(cur, scale_factor);
-
-            // projection norm
-            int proj_inp_dim = cur->ne[0];
-            cur = ggml_view_2d(ctx0, cur,
-                n_embd, cur->ne[1] * scale_factor * scale_factor,
-                ggml_row_size(cur->type, n_embd), 0);
-            cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
-            cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
-            cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
-            cur = ggml_view_2d(ctx0, cur,
-                proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
-                ggml_row_size(cur->type, proj_inp_dim), 0);
-            cb(cur, "proj_inp_normed", -1);
-
-            // projection mlp
-            cur = build_ffn(cur,
-                model.mm_1_w, model.mm_1_b,
-                nullptr, nullptr,
-                model.mm_2_w, model.mm_2_b,
-                FFN_GELU,
-                -1);
-            cb(cur, "proj_out", -1);
-        }
-
-        // build the graph
-        ggml_build_forward_expand(gf, cur);
-
-        return gf;
+    // pre-layernorm
+    if (model.pre_ln_w) {
+        inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
+        cb(inpL, "pre_ln", -1);
     }
 
-    // this graph is used by llava, granite and glm
-    // due to having embedding_stack (used by granite), we cannot reuse build_vit
-    ggml_cgraph * build_llava() {
-        const int batch_size = 1;
-        const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
+    // loop over layers
+    for (int il = 0; il < n_layer; il++) {
+        auto & layer = model.layers[il];
+        ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
 
-        GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
+        // layernorm1
+        cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
+        cb(cur, "layer_inp_normed", il);
 
-        // Calculate the deepest feature layer based on hparams and projector type
-        int max_feature_layer = n_layer;
+        // self-attention
         {
-            // Get the index of the second to last layer; this is the default for models that have a llava projector
-            int il_last = hparams.n_layer - 1;
-            int deepest_feature_layer = -1;
-
-            if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
-                il_last += 1;
-            }
-
-            // If we set explicit vision feature layers, only go up to the deepest one
-            // NOTE: only used by granite-vision models for now
-            for (const auto & feature_layer : hparams.vision_feature_layer) {
-                if (feature_layer > deepest_feature_layer) {
-                    deepest_feature_layer = feature_layer;
+            ggml_tensor * Qcur = nullptr;
+            ggml_tensor * Kcur = nullptr;
+            ggml_tensor * Vcur = nullptr;
+            if (layer.qkv_w != nullptr) {
+                // fused qkv
+                cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
+                if (layer.qkv_b != nullptr) {
+                    cur = ggml_add(ctx0, cur, layer.qkv_b);
                 }
-            }
-            max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
-        }
 
-        ggml_tensor * inp = build_inp();
+                Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
+                    /* nb1    */ ggml_row_size(cur->type, d_head),
+                    /* nb2    */ cur->nb[1],
+                    /* offset */ 0);
 
-        // concat class_embeddings and patch_embeddings
-        if (model.class_embedding) {
-            inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
-        }
-
-        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
-        ggml_set_name(positions, "positions");
-        ggml_set_input(positions);
-
-        inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
-
-        ggml_tensor * inpL = inp;
-
-        // pre-layernorm
-        if (model.pre_ln_w) {
-            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
-            cb(inpL, "pre_ln", -1);
-        }
-
-        std::vector<ggml_tensor *> embedding_stack;
-        const auto & vision_feature_layer = hparams.vision_feature_layer;
+                Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
+                    /* nb1    */ ggml_row_size(cur->type, d_head),
+                    /* nb2    */ cur->nb[1],
+                    /* offset */ ggml_row_size(cur->type, n_embd));
 
-        // loop over layers
-        for (int il = 0; il < max_feature_layer; il++) {
-            auto & layer = model.layers[il];
-            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
-
-            // If this is an embedding feature layer, save the output.
-            // NOTE: 0 index here refers to the input to the encoder.
-            if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
-                embedding_stack.push_back(cur);
-            }
+                Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
+                    /* nb1    */ ggml_row_size(cur->type, d_head),
+                    /* nb2    */ cur->nb[1],
+                    /* offset */ ggml_row_size(cur->type, 2 * n_embd));
 
-            // layernorm1
-            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
-            cb(cur, "layer_inp_normed", il);
+                // TODO: q/k norm requires row size == n_embd, while here it's d_head
+                // we can add support in the future if needed
+                GGML_ASSERT(layer.q_norm == nullptr && layer.k_norm == nullptr);
 
-            // self-attention
-            {
-                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
+            } else {
+                // separate q, k, v
+                Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                 if (layer.q_b) {
                     Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                 }
 
-                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
+                Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                 if (layer.k_b) {
                     Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                 }
 
-                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
+                Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                 if (layer.v_b) {
                     Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                 }
 
-                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
-                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
-                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
-
-                cb(Qcur, "Qcur", il);
-                cb(Kcur, "Kcur", il);
-                cb(Vcur, "Vcur", il);
-
-                cur = build_attn(layer.o_w, layer.o_b,
-                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
-                cb(cur, "attn_out", il);
-            }
-
-            // re-add the layer input, e.g., residual
-            cur = ggml_add(ctx0, cur, inpL);
-
-            inpL = cur; // inpL = residual, cur = hidden_states
-
-            cb(cur, "ffn_inp", il);
-
-            // layernorm2
-            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
-            cb(cur, "ffn_inp_normed", il);
-
-            // ffn
-            cur = build_ffn(cur,
-                layer.ff_up_w, layer.ff_up_b,
-                layer.ff_gate_w, layer.ff_gate_b,
-                layer.ff_down_w, layer.ff_down_b,
-                hparams.ffn_op, il);
-
-            cb(cur, "ffn_out", il);
-
-            // residual 2
-            cur = ggml_add(ctx0, inpL, cur);
-            cb(cur, "layer_out", il);
-
-            inpL = cur;
-        }
-
-        // post-layernorm
-        if (model.post_ln_w) {
-            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
-        }
-
-        ggml_tensor * embeddings = inpL;
-
-        // process vision feature layers (used by granite)
-        {
-            // final layer is a vision feature layer
-            if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
-                embedding_stack.push_back(inpL);
-            }
-
-            // If feature layers are explicitly set, stack them (if we have multiple)
-            if (!embedding_stack.empty()) {
-                embeddings = embedding_stack[0];
-                for (size_t i = 1; i < embedding_stack.size(); i++) {
-                    embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
+                if (layer.q_norm) {
+                    Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
+                    cb(Qcur, "Qcur_norm", il);
                 }
-            }
-        }
-
-        // llava projector (also used by granite)
-        if (ctx->model.hparams.has_llava_projector) {
-            embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
-
-            ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
-            ggml_set_name(patches, "patches");
-            ggml_set_input(patches);
-
-            // shape [1, 576, 1024]
-            // ne is whcn, ne = [1024, 576, 1, 1]
-            embeddings = ggml_get_rows(ctx0, embeddings, patches);
 
-            // print_tensor_info(embeddings, "embeddings");
-
-            // llava projector
-            if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
-                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
-                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
-
-                embeddings = ggml_gelu(ctx0, embeddings);
-                if (model.mm_2_w) {
-                    embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
-                    embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+                if (layer.k_norm) {
+                    Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
+                    cb(Kcur, "Kcur_norm", il);
                 }
-            }
-            else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
-                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
-                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
-                // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
-                // First LayerNorm
-                embeddings = ggml_norm(ctx0, embeddings, eps);
-                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
-                                    model.mm_1_b);
-
-                // GELU activation
-                embeddings = ggml_gelu(ctx0, embeddings);
-
-                // Second linear layer
-                embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
-                embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
-
-                // Second LayerNorm
-                embeddings = ggml_norm(ctx0, embeddings, eps);
-                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
-                                    model.mm_4_b);
-            }
-            else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
-                // MobileVLM projector
-                int n_patch = 24;
-                ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
-                mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
-                mlp_1 = ggml_gelu(ctx0, mlp_1);
-                ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
-                mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
-                // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
-
-                // block 1
-                ggml_tensor * block_1 = nullptr;
-                {
-                    // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
-                    mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
-                    mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
-                    // stride = 1, padding = 1, bias is nullptr
-                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
-
-                    // layer norm
-                    // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
-                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
-                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
-                    block_1 = ggml_norm(ctx0, block_1, eps);
-                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
-                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
-
-                    // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
-                    // hardswish
-                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
-
-                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
-                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
-                    // pointwise conv
-                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
-                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
-                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
-                    block_1 = ggml_relu(ctx0, block_1);
-                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
-                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
-                    block_1 = ggml_hardsigmoid(ctx0, block_1);
-                    // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
-                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
-                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);
-
-                    int w = block_1->ne[0], h = block_1->ne[1];
-                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
-                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
-
-                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
-                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
-                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
-
-                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
-                    block_1 = ggml_norm(ctx0, block_1, eps);
-                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
-                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
-                    // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
-                    // residual
-                    block_1 = ggml_add(ctx0, mlp_3, block_1);
-                }
-
-                // block_2
-                {
-                    // stride = 2
-                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
-
-                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
-                    // layer norm
-                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
-                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
-                    block_1 = ggml_norm(ctx0, block_1, eps);
-                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
-                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
-                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
-                    // hardswish
-                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
-
-                    // not sure the parameters is right for globalAvgPooling
-                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
-                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
-                    // pointwise conv
-                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
-                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
-                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
-                    block_1 = ggml_relu(ctx0, block_1);
-                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
-                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
-                    block_1 = ggml_hardsigmoid(ctx0, block_1);
-
-                    // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
-                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
-                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);
-
-                    int w = block_1->ne[0], h = block_1->ne[1];
-                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
-                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
-                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
-                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
-                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
-
-
-                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
-                    block_1 = ggml_norm(ctx0, block_1, eps);
-                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
-                    block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
-                    // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
-                }
-                embeddings = block_1;
-            }
-            else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
-            {
-                int n_patch = 24;
-                ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
-                mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
-                mlp_0 = ggml_gelu(ctx0, mlp_0);
-                ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
-                mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
-                // mlp_2 ne = [2048, 576, 1, 1]
-                // // AVG Pool Layer 2*2, strides = 2
-                mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
-                // mlp_2 ne = [576, 2048, 1, 1]
-                mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
-                // mlp_2 ne [24, 24, 2048, 1]
-                mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
-                // weight ne = [3, 3, 2048, 1]
-                ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
-                peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
-                peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
-                mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
-                peg_0 = ggml_add(ctx0, peg_0, mlp_2);
-                peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
-                embeddings = peg_0;
-            }
-            else {
-                GGML_ABORT("fatal error");
-            }
-        }
 
-        // glm projector
-        else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
-            size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
-            embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
-            embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
-            embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
-            embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
-            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
-            embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
-            // GLU
-            {
-                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
-                embeddings = ggml_norm(ctx0, embeddings, eps);
-                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
-                embeddings = ggml_gelu_inplace(ctx0, embeddings);
-                ggml_tensor * x = embeddings;
-                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
-                x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
-                embeddings = ggml_swiglu_split(ctx0, embeddings, x);
-                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
-            }
-            // arrangement of BOI/EOI token embeddings
-            // note: these embeddings are not present in text model, hence we cannot process them as text tokens
-            // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
-            {
-                embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
-                embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
-            }
-        }
-
-        else {
-            GGML_ABORT("llava: unknown projector type");
-        }
-
-        // build the graph
-        ggml_build_forward_expand(gf, embeddings);
-
-        return gf;
-    }
-    // whisper encoder with custom projector
-    ggml_cgraph * build_whisper_enc() {
-        const int n_frames = img.nx;
-        const int n_pos    = n_frames / 2;
-        GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
-
-        ggml_tensor * inp = build_inp_raw(1);
-
-        // conv1d block
-        {
-            // convolution + gelu
-            ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
-            cur = ggml_add(ctx0, cur, model.conv1d_1_b);
-
-            cur = ggml_gelu_erf(ctx0, cur);
-
-            cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
-            cur = ggml_add(ctx0, cur, model.conv1d_2_b);
-
-            cur = ggml_gelu_erf(ctx0, cur);
-            // transpose
-            inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
-            cb(inp, "after_conv1d", -1);
-        }
-
-        // sanity check (only check one layer, but it should be the same for all)
-        GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
-        GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
-        GGML_ASSERT(model.layers[0].q_b);
-        GGML_ASSERT(model.layers[0].v_b);
-        GGML_ASSERT(!model.layers[0].k_b); // no bias for k
-        GGML_ASSERT(model.post_ln_w && model.post_ln_b);
-
-        ggml_tensor * pos_embd_selected = ggml_view_2d(
-            ctx0, model.position_embeddings,
-            model.position_embeddings->ne[0], n_pos,
-            model.position_embeddings->nb[1], 0
-        );
-        ggml_tensor * cur = build_vit(
-                                inp, n_pos,
-                                NORM_TYPE_NORMAL,
-                                hparams.ffn_op,
-                                pos_embd_selected,
-                                nullptr);
-
-        cb(cur, "after_transformer", -1);
-
-        if (model.audio_has_stack_frames()) {
-            // StackAudioFrames
-            // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
-            int64_t stride = n_embd * hparams.proj_stack_factor;
-            int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
-            int64_t pad = padded_len - ggml_nelements(cur);
-            if (pad > 0) {
-                cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
-                cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
+                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
+                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
             }
-            cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
-                                ggml_row_size(cur->type, stride), 0);
-            cb(cur, "after_stacked", -1);
-        }
-
-        if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
-            // UltravoxProjector
-            // pre-norm
-            cur = ggml_rms_norm(ctx0, cur, 1e-6);
-            cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
-
-            // ffn in
-            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
-
-            // swiglu
-            // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
-            cur = ggml_swiglu_swapped(ctx0, cur);
-
-            // mid-norm
-            cur = ggml_rms_norm(ctx0, cur, 1e-6);
-            cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
-
-            // ffn out
-            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
-
-        } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
-            // projector
-            cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
-            cur = ggml_add(ctx0, cur, model.mm_fc_b);
-
-        } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
-            // projector
-            cur = build_ffn(cur,
-                model.mm_1_w, model.mm_1_b,
-                nullptr, nullptr,
-                model.mm_2_w, model.mm_2_b,
-                FFN_GELU_ERF,
-                -1);
-
-        } else {
-            GGML_ABORT("%s: unknown projector type", __func__);
-        }
-
-        cb(cur, "projected", -1);
-
-        ggml_build_forward_expand(gf, cur);
-
-        return gf;
-    }
-
-    // cogvlm vision encoder
-    ggml_cgraph * build_cogvlm() {
-        GGML_ASSERT(model.class_embedding != nullptr);
-        GGML_ASSERT(model.position_embeddings != nullptr);
-
-        const int n_pos = n_patches + 1; // +1 for [CLS]
-
-        // build input and concatenate class embedding
-        ggml_tensor * inp = build_inp();
-        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
-
-        inp = ggml_add(ctx0, inp, model.position_embeddings);
-        cb(inp, "inp_pos", -1);
-
-        ggml_tensor * inpL = inp;
-
-        for (int il = 0; il < n_layer; il++) {
-            auto & layer = model.layers[il];
-            ggml_tensor * cur = inpL;
-
-            cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
-
-            cur = ggml_add(ctx0, cur, layer.qkv_b);
-
-            ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
-                cur->nb[1], 0);
-            ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
-                cur->nb[1], n_embd * sizeof(float));
-            ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
-                cur->nb[1], 2 * n_embd * sizeof(float));
 
             cb(Qcur, "Qcur", il);
             cb(Kcur, "Kcur", il);
             cb(Vcur, "Vcur", il);
 
+            if (add_pos) {
+                Qcur = add_pos(Qcur, layer);
+                Kcur = add_pos(Kcur, layer);
+                cb(Qcur, "Qcur_pos", il);
+                cb(Kcur, "Kcur_pos", il);
+            }
+
             cur = build_attn(layer.o_w, layer.o_b,
                 Qcur, Kcur, Vcur, nullptr, kq_scale, il);
             cb(cur, "attn_out", il);
-
-            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
-            cb(cur, "attn_post_norm", il);
-
-            cur = ggml_add(ctx0, cur, inpL);
-            inpL = cur;
-
-            cur = build_ffn(cur,
-                layer.ff_up_w, layer.ff_up_b,
-                layer.ff_gate_w, layer.ff_gate_b,
-                layer.ff_down_w, layer.ff_down_b,
-                hparams.ffn_op, il);
-
-            cb(cur, "ffn_out", il);
-
-            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
-            cb(cur, "ffn_post_norm", il);
-
-            cur = ggml_add(ctx0, cur, inpL);
-            cb(cur, "layer_out", il);
-            inpL = cur;
-
         }
 
-        // remove CLS token (like build_llama4 does)
-        ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
-            n_embd, n_patches,
-            ggml_row_size(inpL->type, n_embd), 0);
+        if (layer.ls_1_w) {
+            cur = ggml_mul(ctx0, cur, layer.ls_1_w);
+            cb(cur, "attn_out_scaled", il);
+        }
 
-        // Multiply with mm_model_proj
-        cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
+        // re-add the layer input, e.g., residual
+        cur = ggml_add(ctx0, cur, inpL);
 
-        // Apply layernorm, weight, bias
-        cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
+        inpL = cur; // inpL = residual, cur = hidden_states
 
-        // Apply GELU
-        cur = ggml_gelu_inplace(ctx0, cur);
+        cb(cur, "ffn_inp", il);
 
-        // Branch 1: multiply with mm_h_to_4h_w
-        ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
+        // layernorm2
+        cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
+        cb(cur, "ffn_inp_normed", il);
 
-        // Branch 2: multiply with mm_gate_w
-        ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
+        // ffn
+        cur = build_ffn(cur,
+            layer.ff_up_w, layer.ff_up_b,
+            layer.ff_gate_w, layer.ff_gate_b,
+            layer.ff_down_w, layer.ff_down_b,
+            ffn_t, il);
 
-        // Apply silu
-        gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
+        cb(cur, "ffn_out", il);
 
-        // Apply mm_4h_to_h_w
-        cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
+        if (layer.ls_2_w) {
+            cur = ggml_mul(ctx0, cur, layer.ls_2_w);
+            cb(cur, "ffn_out_scaled", il);
+        }
 
-        // Concatenate with boi and eoi
-        cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
-        cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
+        // residual 2
+        cur = ggml_add(ctx0, inpL, cur);
+        cb(cur, "layer_out", il);
 
-        // build the graph
-        ggml_build_forward_expand(gf, cur);
-
-        return gf;
+        inpL = cur;
     }
 
-private:
-    //
-    // utility functions
-    //
-
-    void cb(ggml_tensor * cur0, const char * name, int il) const {
-        if (ctx->debug_graph) {
-            ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
-            std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
-            ggml_set_name(cur, cur_name.c_str());
-            ggml_set_output(cur);
-            ggml_build_forward_expand(gf, cur);
-            ctx->debug_print_tensors.push_back(cur);
-        }
+    if (model.audio_has_avgpool()) {
+        ggml_tensor * cur = inpL;
+        cur = ggml_transpose(ctx0, cur);
+        cur = ggml_cont(ctx0, cur);
+        cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
+        cur = ggml_transpose(ctx0, cur);
+        cur = ggml_cont(ctx0, cur);
+        inpL = cur;
     }
 
-    // siglip2 naflex
-    ggml_tensor * resize_position_embeddings() {
-        ggml_tensor * pos_embd = model.position_embeddings;
-        const int height       = img.ny / patch_size;
-        const int width        = img.nx / patch_size;
-        const uint32_t mode    = GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS;
-        const int n_per_side   = (int)std::sqrt(pos_embd->ne[1]);
-
-        GGML_ASSERT(pos_embd);
-
-        if (height == n_per_side && width == n_per_side) {
-            return pos_embd;
-        }
-
-        pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side);  // -> (n_embd, n_per_side, n_per_side)
-        pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3);                         // -> (n_per_side, n_per_side, n_embd)
-        pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
-        pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3);                         // -> (n_embd, width, height)
-        pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height);             // -> (n_embd, width * height)
-
-        return pos_embd;
+    // post-layernorm
+    if (model.post_ln_w) {
+        inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
     }
+    return inpL;
+}
 
-    // build vision transformer (ViT) cgraph
-    // this function should cover most of the models
-    // if your model has specific features, you should probably duplicate this function
-    ggml_tensor * build_vit(
-                ggml_tensor * inp,
-                int64_t n_pos,
-                norm_type norm_t,
-                ffn_op_type ffn_t,
-                ggml_tensor * learned_pos_embd,
-                std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
-            ) {
-        if (learned_pos_embd) {
-            inp = ggml_add(ctx0, inp, learned_pos_embd);
-            cb(inp, "pos_embed", -1);
-        }
-
-        ggml_tensor * inpL = inp;
-
-        // pre-layernorm
-        if (model.pre_ln_w) {
-            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
-            cb(inpL, "pre_ln", -1);
-        }
-
-        // loop over layers
-        for (int il = 0; il < n_layer; il++) {
-            auto & layer = model.layers[il];
-            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
-
-            // layernorm1
-            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
-            cb(cur, "layer_inp_normed", il);
-
-            // self-attention
-            {
-                ggml_tensor * Qcur = nullptr;
-                ggml_tensor * Kcur = nullptr;
-                ggml_tensor * Vcur = nullptr;
-                if (layer.qkv_w != nullptr) {
-                    // fused qkv
-                    cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
-                    if (layer.qkv_b != nullptr) {
-                        cur = ggml_add(ctx0, cur, layer.qkv_b);
-                    }
-
-                    Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
-                        /* nb1    */ ggml_row_size(cur->type, d_head),
-                        /* nb2    */ cur->nb[1],
-                        /* offset */ 0);
-
-                    Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
-                        /* nb1    */ ggml_row_size(cur->type, d_head),
-                        /* nb2    */ cur->nb[1],
-                        /* offset */ ggml_row_size(cur->type, n_embd));
-
-                    Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
-                        /* nb1    */ ggml_row_size(cur->type, d_head),
-                        /* nb2    */ cur->nb[1],
-                        /* offset */ ggml_row_size(cur->type, 2 * n_embd));
-
-                    // TODO: q/k norm requires row size == n_embd, while here it's d_head
-                    // we can add support in the future if needed
-                    GGML_ASSERT(layer.q_norm == nullptr && layer.k_norm == nullptr);
-
-                } else {
-                    // separate q, k, v
-                    Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
-                    if (layer.q_b) {
-                        Qcur = ggml_add(ctx0, Qcur, layer.q_b);
-                    }
-
-                    Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
-                    if (layer.k_b) {
-                        Kcur = ggml_add(ctx0, Kcur, layer.k_b);
-                    }
-
-                    Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
-                    if (layer.v_b) {
-                        Vcur = ggml_add(ctx0, Vcur, layer.v_b);
-                    }
-
-                    if (layer.q_norm) {
-                        Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
-                        cb(Qcur, "Qcur_norm", il);
-                    }
-
-                    if (layer.k_norm) {
-                        Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
-                        cb(Kcur, "Kcur_norm", il);
-                    }
-
-                    Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
-                    Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
-                    Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
-                }
-
-                cb(Qcur, "Qcur", il);
-                cb(Kcur, "Kcur", il);
-                cb(Vcur, "Vcur", il);
-
-                if (add_pos) {
-                    Qcur = add_pos(Qcur, layer);
-                    Kcur = add_pos(Kcur, layer);
-                    cb(Qcur, "Qcur_pos", il);
-                    cb(Kcur, "Kcur_pos", il);
-                }
-
-                cur = build_attn(layer.o_w, layer.o_b,
-                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
-                cb(cur, "attn_out", il);
-            }
-
-            if (layer.ls_1_w) {
-                cur = ggml_mul(ctx0, cur, layer.ls_1_w);
-                cb(cur, "attn_out_scaled", il);
-            }
-
-            // re-add the layer input, e.g., residual
-            cur = ggml_add(ctx0, cur, inpL);
-
-            inpL = cur; // inpL = residual, cur = hidden_states
-
-            cb(cur, "ffn_inp", il);
-
-            // layernorm2
-            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
-            cb(cur, "ffn_inp_normed", il);
-
-            // ffn
-            cur = build_ffn(cur,
-                layer.ff_up_w, layer.ff_up_b,
-                layer.ff_gate_w, layer.ff_gate_b,
-                layer.ff_down_w, layer.ff_down_b,
-                ffn_t, il);
-
-            cb(cur, "ffn_out", il);
+// build the input after conv2d (inp_raw --> patches)
+// returns tensor with shape [n_embd, n_patches]
+ggml_tensor * clip_graph::build_inp() {
+    ggml_tensor * inp_raw = build_inp_raw();
+    ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
+    inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
+    inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
+    if (model.patch_bias) {
+        inp = ggml_add(ctx0, inp, model.patch_bias);
+        cb(inp, "patch_bias", -1);
+    }
+    return inp;
+}
 
-            if (layer.ls_2_w) {
-                cur = ggml_mul(ctx0, cur, layer.ls_2_w);
-                cb(cur, "ffn_out_scaled", il);
-            }
+ggml_tensor * clip_graph::build_inp_raw(int channels) {
+    ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
+    ggml_set_name(inp_raw, "inp_raw");
+    ggml_set_input(inp_raw);
+    return inp_raw;
+}
 
-            // residual 2
-            cur = ggml_add(ctx0, inpL, cur);
-            cb(cur, "layer_out", il);
+ggml_tensor * clip_graph::build_norm(
+        ggml_tensor * cur,
+        ggml_tensor * mw,
+        ggml_tensor * mb,
+        norm_type type,
+        float norm_eps,
+        int il) const {
 
-            inpL = cur;
-        }
+    cur = type == NORM_TYPE_RMS
+        ? ggml_rms_norm(ctx0, cur, norm_eps)
+        : ggml_norm(ctx0, cur, norm_eps);
 
-        if (ctx->model.audio_has_avgpool()) {
-            ggml_tensor * cur = inpL;
-            cur = ggml_transpose(ctx0, cur);
-            cur = ggml_cont(ctx0, cur);
-            cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
-            cur = ggml_transpose(ctx0, cur);
-            cur = ggml_cont(ctx0, cur);
-            inpL = cur;
-        }
-
-        // post-layernorm
-        if (model.post_ln_w) {
-            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
-        }
-        return inpL;
+    if (mw || mb) {
+        cb(cur, "norm", il);
     }
 
-    // build the input after conv2d (inp_raw --> patches)
-    // returns tensor with shape [n_embd, n_patches]
-    ggml_tensor * build_inp() {
-        ggml_tensor * inp_raw = build_inp_raw();
-        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
-        inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
-        inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
-        if (model.patch_bias) {
-            inp = ggml_add(ctx0, inp, model.patch_bias);
-            cb(inp, "patch_bias", -1);
+    if (mw) {
+        cur = ggml_mul(ctx0, cur, mw);
+        if (mb) {
+            cb(cur, "norm_w", il);
         }
-        return inp;
     }
 
-    ggml_tensor * build_inp_raw(int channels = 3) {
-        ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
-        ggml_set_name(inp_raw, "inp_raw");
-        ggml_set_input(inp_raw);
-        return inp_raw;
+    if (mb) {
+        cur = ggml_add(ctx0, cur, mb);
     }
 
-    ggml_tensor * build_norm(
-            ggml_tensor * cur,
-            ggml_tensor * mw,
-            ggml_tensor * mb,
-            norm_type type,
-            float norm_eps,
-            int il) const {
-
-        cur = type == NORM_TYPE_RMS
-            ? ggml_rms_norm(ctx0, cur, norm_eps)
-            : ggml_norm(ctx0, cur, norm_eps);
-
-        if (mw || mb) {
-            cb(cur, "norm", il);
-        }
+    return cur;
+}
 
-        if (mw) {
-            cur = ggml_mul(ctx0, cur, mw);
-            if (mb) {
-                cb(cur, "norm_w", il);
-            }
-        }
+ggml_tensor * clip_graph::build_ffn(
+        ggml_tensor * cur,
+        ggml_tensor * up,
+        ggml_tensor * up_b,
+        ggml_tensor * gate,
+        ggml_tensor * gate_b,
+        ggml_tensor * down,
+        ggml_tensor * down_b,
+        ffn_op_type type_op,
+        int il) const {
 
-        if (mb) {
-            cur = ggml_add(ctx0, cur, mb);
-        }
+    ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
+    cb(tmp, "ffn_up", il);
 
-        return cur;
+    if (up_b) {
+        tmp = ggml_add(ctx0, tmp, up_b);
+        cb(tmp, "ffn_up_b", il);
     }
 
-    ggml_tensor * build_ffn(
-            ggml_tensor * cur,
-            ggml_tensor * up,
-            ggml_tensor * up_b,
-            ggml_tensor * gate,
-            ggml_tensor * gate_b,
-            ggml_tensor * down,
-            ggml_tensor * down_b,
-            ffn_op_type type_op,
-            int il) const {
-
-        ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
-        cb(tmp, "ffn_up", il);
-
-        if (up_b) {
-            tmp = ggml_add(ctx0, tmp, up_b);
-            cb(tmp, "ffn_up_b", il);
-        }
-
-        if (gate) {
-            cur = ggml_mul_mat(ctx0, gate, cur);
-            cb(cur, "ffn_gate", il);
-
-            if (gate_b) {
-                cur = ggml_add(ctx0, cur, gate_b);
-                cb(cur, "ffn_gate_b", il);
-            }
-        } else {
-            cur = tmp;
-        }
-
-        // we only support parallel ffn for now
-        switch (type_op) {
-            case FFN_SILU:
-                if (gate) {
-                    cur = ggml_swiglu_split(ctx0, cur, tmp);
-                    cb(cur, "ffn_swiglu", il);
-                } else {
-                    cur = ggml_silu(ctx0, cur);
-                    cb(cur, "ffn_silu", il);
-                } break;
-            case FFN_GELU:
-                if (gate) {
-                    cur = ggml_geglu_split(ctx0, cur, tmp);
-                    cb(cur, "ffn_geglu", il);
-                } else {
-                    cur = ggml_gelu(ctx0, cur);
-                    cb(cur, "ffn_gelu", il);
-                } break;
-            case FFN_GELU_ERF:
-                if (gate) {
-                    cur = ggml_geglu_erf_split(ctx0, cur, tmp);
-                    cb(cur, "ffn_geglu_erf", il);
-                } else {
-                    cur = ggml_gelu_erf(ctx0, cur);
-                    cb(cur, "ffn_gelu_erf", il);
-                } break;
-            case FFN_GELU_QUICK:
-                if (gate) {
-                    cur = ggml_geglu_quick_split(ctx0, cur, tmp);
-                    cb(cur, "ffn_geglu_quick", il);
-                } else {
-                    cur = ggml_gelu_quick(ctx0, cur);
-                    cb(cur, "ffn_gelu_quick", il);
-                } break;
-        }
+    if (gate) {
+        cur = ggml_mul_mat(ctx0, gate, cur);
+        cb(cur, "ffn_gate", il);
 
-        if (down) {
-            cur = ggml_mul_mat(ctx0, down, cur);
+        if (gate_b) {
+            cur = ggml_add(ctx0, cur, gate_b);
+            cb(cur, "ffn_gate_b", il);
         }
+    } else {
+        cur = tmp;
+    }
 
-        if (down_b) {
-            cb(cur, "ffn_down", il);
-        }
+    // we only support parallel ffn for now
+    switch (type_op) {
+        case FFN_SILU:
+            if (gate) {
+                cur = ggml_swiglu_split(ctx0, cur, tmp);
+                cb(cur, "ffn_swiglu", il);
+            } else {
+                cur = ggml_silu(ctx0, cur);
+                cb(cur, "ffn_silu", il);
+            } break;
+        case FFN_GELU:
+            if (gate) {
+                cur = ggml_geglu_split(ctx0, cur, tmp);
+                cb(cur, "ffn_geglu", il);
+            } else {
+                cur = ggml_gelu(ctx0, cur);
+                cb(cur, "ffn_gelu", il);
+            } break;
+        case FFN_GELU_ERF:
+            if (gate) {
+                cur = ggml_geglu_erf_split(ctx0, cur, tmp);
+                cb(cur, "ffn_geglu_erf", il);
+            } else {
+                cur = ggml_gelu_erf(ctx0, cur);
+                cb(cur, "ffn_gelu_erf", il);
+            } break;
+        case FFN_GELU_QUICK:
+            if (gate) {
+                cur = ggml_geglu_quick_split(ctx0, cur, tmp);
+                cb(cur, "ffn_geglu_quick", il);
+            } else {
+                cur = ggml_gelu_quick(ctx0, cur);
+                cb(cur, "ffn_gelu_quick", il);
+            } break;
+    }
 
-        if (down_b) {
-            cur = ggml_add(ctx0, cur, down_b);
-        }
+    if (down) {
+        cur = ggml_mul_mat(ctx0, down, cur);
+    }
 
-        return cur;
+    if (down_b) {
+        cb(cur, "ffn_down", il);
     }
 
-    ggml_tensor * build_attn(
-            ggml_tensor * wo,
-            ggml_tensor * wo_b,
-            ggml_tensor * q_cur,
-            ggml_tensor * k_cur,
-            ggml_tensor * v_cur,
-            ggml_tensor * kq_mask,
-            float kq_scale,
-            int il) const {
-        // these nodes are added to the graph together so that they are not reordered
-        // by doing so, the number of splits in the graph is reduced
-        ggml_build_forward_expand(gf, q_cur);
-        ggml_build_forward_expand(gf, k_cur);
-        ggml_build_forward_expand(gf, v_cur);
+    if (down_b) {
+        cur = ggml_add(ctx0, cur, down_b);
+    }
 
-        ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
-        //cb(q, "q", il);
+    return cur;
+}
 
-        ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
-        //cb(k, "k", il);
+ggml_tensor * clip_graph::build_attn(
+        ggml_tensor * wo,
+        ggml_tensor * wo_b,
+        ggml_tensor * q_cur,
+        ggml_tensor * k_cur,
+        ggml_tensor * v_cur,
+        ggml_tensor * kq_mask,
+        float kq_scale,
+        int il) const {
+    // these nodes are added to the graph together so that they are not reordered
+    // by doing so, the number of splits in the graph is reduced
+    ggml_build_forward_expand(gf, q_cur);
+    ggml_build_forward_expand(gf, k_cur);
+    ggml_build_forward_expand(gf, v_cur);
 
-        ggml_tensor * cur;
+    ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
+    //cb(q, "q", il);
 
-        if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
-            ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
+    ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
+    //cb(k, "k", il);
 
-            k = ggml_cast(ctx0, k, GGML_TYPE_F16);
-            v = ggml_cast(ctx0, v, GGML_TYPE_F16);
+    ggml_tensor * cur;
 
-            cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f);
-            ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
+    if (flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
+        ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
 
-            cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
+        k = ggml_cast(ctx0, k, GGML_TYPE_F16);
+        v = ggml_cast(ctx0, v, GGML_TYPE_F16);
 
-        } else {
-            ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
-            v = ggml_cont(ctx0, v);
+        cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f);
+        ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
 
-            const auto n_tokens = q->ne[1];
-            const auto n_head   = q->ne[2];
+        cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
 
-            ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
-            // F32 may not needed for vision encoders?
-            // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
+    } else {
+        ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
+        v = ggml_cont(ctx0, v);
 
-            kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
+        const auto n_tokens = q->ne[1];
+        const auto n_head   = q->ne[2];
 
-            ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
-            cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
-            cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
-        }
+        ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+        // F32 may not needed for vision encoders?
+        // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
 
-        cb(cur, "kqv_out", il);
+        kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
 
-        if (wo) {
-            cur = ggml_mul_mat(ctx0, wo, cur);
-        }
+        ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
+        cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+        cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
+    }
 
-        if (wo_b) {
-            cur = ggml_add(ctx0, cur, wo_b);
-        }
+    cb(cur, "kqv_out", il);
 
-        return cur;
+    if (wo) {
+        cur = ggml_mul_mat(ctx0, wo, cur);
     }
 
-    // implementation of the 2D RoPE without adding a new op in ggml
-    // this is not efficient (use double the memory), but works on all backends
-    // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
-    static ggml_tensor * build_rope_2d(
-        ggml_context * ctx0,
-        ggml_tensor * cur,
-        ggml_tensor * pos_a, // first half
-        ggml_tensor * pos_b, // second half
-        const float freq_base,
-        const bool interleave_freq
-    ) {
-        const int64_t n_dim  = cur->ne[0];
-        const int64_t n_head = cur->ne[1];
-        const int64_t n_pos  = cur->ne[2];
-
-        // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
-        // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
-        // first half of cur will use 1e-0, 1e-2 (even)
-        // second half of cur will use 1e-1, 1e-3 (odd)
-        // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
-        //  ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
-        // then for the second half, we use freq_scale to shift the inv_freq
-        //  ^ why? replace (2i) with (2i+1) in the above equation
-        const float freq_scale_odd = interleave_freq
-                                    ? std::pow(freq_base, (float)-2/n_dim)
-                                    : 1.0;
-
-        // first half
-        ggml_tensor * first;
-        {
-            first = ggml_view_3d(ctx0, cur,
-                n_dim/2, n_head, n_pos,
-                ggml_row_size(cur->type, n_dim),
-                ggml_row_size(cur->type, n_dim*n_head),
-                0);
-            first = ggml_rope_ext(
-                ctx0,
-                first,
-                pos_a,      // positions
-                nullptr,    // freq factors
-                n_dim/2,    // n_dims
-                0, 0, freq_base,
-                1.0f, 0.0f, 1.0f, 0.0f, 0.0f
-            );
-        }
+    if (wo_b) {
+        cur = ggml_add(ctx0, cur, wo_b);
+    }
 
-        // second half
-        ggml_tensor * second;
-        {
-            second = ggml_view_3d(ctx0, cur,
-                n_dim/2, n_head, n_pos,
-                ggml_row_size(cur->type, n_dim),
-                ggml_row_size(cur->type, n_dim*n_head),
-                n_dim/2 * ggml_element_size(cur));
-            second = ggml_rope_ext(
-                ctx0,
-                second,
-                pos_b,      // positions
-                nullptr,    // freq factors
-                n_dim/2,    // n_dims
-                0, 0, freq_base,
-                freq_scale_odd,
-                0.0f, 1.0f, 0.0f, 0.0f
-            );
-        }
+    return cur;
+}
 
-        cur = ggml_concat(ctx0, first, second, 0);
-        return cur;
+// implementation of the 2D RoPE without adding a new op in ggml
+// this is not efficient (use double the memory), but works on all backends
+// TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
+ggml_tensor * clip_graph::build_rope_2d(
+    ggml_context * ctx0,
+    ggml_tensor * cur,
+    ggml_tensor * pos_a, // first half
+    ggml_tensor * pos_b, // second half
+    const float freq_base,
+    const bool interleave_freq
+) {
+    const int64_t n_dim  = cur->ne[0];
+    const int64_t n_head = cur->ne[1];
+    const int64_t n_pos  = cur->ne[2];
+
+    // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
+    // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
+    // first half of cur will use 1e-0, 1e-2 (even)
+    // second half of cur will use 1e-1, 1e-3 (odd)
+    // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
+    //  ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
+    // then for the second half, we use freq_scale to shift the inv_freq
+    //  ^ why? replace (2i) with (2i+1) in the above equation
+    const float freq_scale_odd = interleave_freq
+                                ? std::pow(freq_base, (float)-2/n_dim)
+                                : 1.0;
+
+    // first half
+    ggml_tensor * first;
+    {
+        first = ggml_view_3d(ctx0, cur,
+            n_dim/2, n_head, n_pos,
+            ggml_row_size(cur->type, n_dim),
+            ggml_row_size(cur->type, n_dim*n_head),
+            0);
+        first = ggml_rope_ext(
+            ctx0,
+            first,
+            pos_a,      // positions
+            nullptr,    // freq factors
+            n_dim/2,    // n_dims
+            0, 0, freq_base,
+            1.0f, 0.0f, 1.0f, 0.0f, 0.0f
+        );
     }
 
-    // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
-    // support dynamic resolution
-    ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
-        GGML_ASSERT(scale_factor > 1);
-
-        const int n_embd = cur->ne[0];
-        int width  = img.nx / patch_size;
-        int height = img.ny / patch_size;
-
-        // pad width and height to factor
-        const int64_t pad_width  = CLIP_ALIGN(width,  scale_factor) - width;
-        const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
-        cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
-        if (pad_width || pad_height) {
-            cur     = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
-            width  += pad_width;
-            height += pad_height;
-        }
+    // second half
+    ggml_tensor * second;
+    {
+        second = ggml_view_3d(ctx0, cur,
+            n_dim/2, n_head, n_pos,
+            ggml_row_size(cur->type, n_dim),
+            ggml_row_size(cur->type, n_dim*n_head),
+            n_dim/2 * ggml_element_size(cur));
+        second = ggml_rope_ext(
+            ctx0,
+            second,
+            pos_b,      // positions
+            nullptr,    // freq factors
+            n_dim/2,    // n_dims
+            0, 0, freq_base,
+            freq_scale_odd,
+            0.0f, 1.0f, 0.0f, 0.0f
+        );
+    }
 
-        // unshuffle h
-        cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
-        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+    cur = ggml_concat(ctx0, first, second, 0);
+    return cur;
+}
 
-        // unshuffle w
-        cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
-        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+// aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
+// support dynamic resolution
+ggml_tensor * clip_graph::build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
+    GGML_ASSERT(scale_factor > 1);
 
-        cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
-        cb(cur, "pixel_shuffle", -1);
+    const int n_embd = cur->ne[0];
+    int width  = img.nx / patch_size;
+    int height = img.ny / patch_size;
 
-        return cur;
+    // pad width and height to factor
+    const int64_t pad_width  = CLIP_ALIGN(width,  scale_factor) - width;
+    const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
+    cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
+    if (pad_width || pad_height) {
+        cur     = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
+        width  += pad_width;
+        height += pad_height;
     }
 
-};
+    // unshuffle h
+    cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
+    cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+
+    // unshuffle w
+    cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
+    cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+
+    cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
+    cb(cur, "pixel_shuffle", -1);
+
+    return cur;
+}
 
 static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
     GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
-    clip_graph graph(ctx, *imgs.entries[0]);
 
-    ggml_cgraph * res;
+    const clip_image_f32 & img = *imgs.entries[0];
+    std::unique_ptr<clip_graph> builder;
 
     switch (ctx->proj_type()) {
         case PROJECTOR_TYPE_GEMMA3:
         case PROJECTOR_TYPE_IDEFICS3:
         case PROJECTOR_TYPE_LFM2:
+        case PROJECTOR_TYPE_JANUS_PRO:
             {
-                res = graph.build_siglip();
+                builder = std::make_unique<clip_graph_siglip>(ctx, img);
             } break;
         case PROJECTOR_TYPE_PIXTRAL:
         case PROJECTOR_TYPE_LIGHTONOCR:
             {
-                res = graph.build_pixtral();
+                builder = std::make_unique<clip_graph_pixtral>(ctx, img);
             } break;
         case PROJECTOR_TYPE_QWEN2VL:
         case PROJECTOR_TYPE_QWEN25VL:
             {
-                res = graph.build_qwen2vl();
+                builder = std::make_unique<clip_graph_qwen2vl>(ctx, img);
             } break;
         case PROJECTOR_TYPE_QWEN3VL:
             {
-                res = graph.build_qwen3vl();
+                builder = std::make_unique<clip_graph_qwen3vl>(ctx, img);
             } break;
         case PROJECTOR_TYPE_MINICPMV:
             {
-                res = graph.build_minicpmv();
+                builder = std::make_unique<clip_graph_minicpmv>(ctx, img);
             } break;
         case PROJECTOR_TYPE_INTERNVL:
             {
-                res = graph.build_internvl();
+                builder = std::make_unique<clip_graph_internvl>(ctx, img);
             } break;
         case PROJECTOR_TYPE_LLAMA4:
             {
-                res = graph.build_llama4();
+                builder = std::make_unique<clip_graph_llama4>(ctx, img);
             } break;
         case PROJECTOR_TYPE_ULTRAVOX:
         case PROJECTOR_TYPE_VOXTRAL:
         case PROJECTOR_TYPE_QWEN2A:
             {
-                res = graph.build_whisper_enc();
+                builder = std::make_unique<clip_graph_whisper_enc>(ctx, img);
             } break;
         case PROJECTOR_TYPE_KIMIVL:
             {
-                res = graph.build_kimivl();
-            } break;
-        case PROJECTOR_TYPE_JANUS_PRO:
-            {
-                res = graph.build_siglip();
+                builder = std::make_unique<clip_graph_kimivl>(ctx, img);
             } break;
         case PROJECTOR_TYPE_COGVLM:
             {
-                res = graph.build_cogvlm();
+                builder = std::make_unique<clip_graph_cogvlm>(ctx, img);
             } break;
-        default:
+        case PROJECTOR_TYPE_MLP:
+        case PROJECTOR_TYPE_MLP_NORM:
+        case PROJECTOR_TYPE_LDP:
+        case PROJECTOR_TYPE_LDPV2:
+        case PROJECTOR_TYPE_GLM_EDGE:
             {
-                res = graph.build_llava();
+                builder = std::make_unique<clip_graph_llava>(ctx, img);
             } break;
+        default:
+            GGML_ABORT("missing cgraph builder");
     }
-    return res;
+
+    return builder->build();
 }
 
+//
+// clip_model_loader
+//
+
 struct clip_model_loader {
     ggml_context_ptr ctx_meta;
     gguf_context_ptr ctx_gguf;

+ 98 - 0
tools/mtmd/models/cogvlm.cpp

@@ -0,0 +1,98 @@
+#include "models.h"
+
+ggml_cgraph * clip_graph_cogvlm::build() {
+    GGML_ASSERT(model.class_embedding != nullptr);
+    GGML_ASSERT(model.position_embeddings != nullptr);
+
+    const int n_pos = n_patches + 1; // +1 for [CLS]
+
+    // build input and concatenate class embedding
+    ggml_tensor * inp = build_inp();
+    inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
+
+    inp = ggml_add(ctx0, inp, model.position_embeddings);
+    cb(inp, "inp_pos", -1);
+
+    ggml_tensor * inpL = inp;
+
+    for (int il = 0; il < n_layer; il++) {
+        auto & layer = model.layers[il];
+        ggml_tensor * cur = inpL;
+
+        cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
+
+        cur = ggml_add(ctx0, cur, layer.qkv_b);
+
+        ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
+            cur->nb[1], 0);
+        ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
+            cur->nb[1], n_embd * sizeof(float));
+        ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
+            cur->nb[1], 2 * n_embd * sizeof(float));
+
+        cb(Qcur, "Qcur", il);
+        cb(Kcur, "Kcur", il);
+        cb(Vcur, "Vcur", il);
+
+        cur = build_attn(layer.o_w, layer.o_b,
+            Qcur, Kcur, Vcur, nullptr, kq_scale, il);
+        cb(cur, "attn_out", il);
+
+        cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
+        cb(cur, "attn_post_norm", il);
+
+        cur = ggml_add(ctx0, cur, inpL);
+        inpL = cur;
+
+        cur = build_ffn(cur,
+            layer.ff_up_w, layer.ff_up_b,
+            layer.ff_gate_w, layer.ff_gate_b,
+            layer.ff_down_w, layer.ff_down_b,
+            hparams.ffn_op, il);
+
+        cb(cur, "ffn_out", il);
+
+        cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
+        cb(cur, "ffn_post_norm", il);
+
+        cur = ggml_add(ctx0, cur, inpL);
+        cb(cur, "layer_out", il);
+        inpL = cur;
+
+    }
+
+    // remove CLS token (like build_llama4 does)
+    ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
+        n_embd, n_patches,
+        ggml_row_size(inpL->type, n_embd), 0);
+
+    // Multiply with mm_model_proj
+    cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
+
+    // Apply layernorm, weight, bias
+    cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
+
+    // Apply GELU
+    cur = ggml_gelu_inplace(ctx0, cur);
+
+    // Branch 1: multiply with mm_h_to_4h_w
+    ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
+
+    // Branch 2: multiply with mm_gate_w
+    ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
+
+    // Apply silu
+    gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
+
+    // Apply mm_4h_to_h_w
+    cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
+
+    // Concatenate with boi and eoi
+    cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
+    cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
+
+    // build the graph
+    ggml_build_forward_expand(gf, cur);
+
+    return gf;
+}

+ 69 - 0
tools/mtmd/models/internvl.cpp

@@ -0,0 +1,69 @@
+#include "models.h"
+
+ggml_cgraph * clip_graph_internvl::build() {
+    GGML_ASSERT(model.class_embedding != nullptr);
+    GGML_ASSERT(model.position_embeddings != nullptr);
+
+    const int n_pos = n_patches + 1;
+    ggml_tensor * inp = build_inp();
+
+    // add CLS token
+    inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
+
+    // The larger models use a different ViT, which uses RMS norm instead of layer norm
+    // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
+    norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
+        ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
+        : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
+
+    ggml_tensor * cur = build_vit(
+                            inp, n_pos,
+                            norm_t,
+                            hparams.ffn_op,
+                            model.position_embeddings,
+                            nullptr);
+
+    // remove CLS token
+    cur = ggml_view_2d(ctx0, cur,
+        n_embd, n_patches,
+        ggml_row_size(cur->type, n_embd), 0);
+
+    // pixel shuffle
+    {
+        const int scale_factor = model.hparams.n_merge;
+        const int bsz    = 1; // batch size, always 1 for now since we don't support batching
+        const int height = n_patches_y;
+        const int width  = n_patches_x;
+        GGML_ASSERT(scale_factor > 0);
+        cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
+        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+        cur = ggml_cont_4d(ctx0, cur,
+            n_embd * scale_factor * scale_factor,
+            height / scale_factor,
+            width / scale_factor,
+            bsz);
+        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+        // flatten to 2D
+        cur = ggml_cont_2d(ctx0, cur,
+            n_embd * scale_factor * scale_factor,
+            cur->ne[1] * cur->ne[2]);
+    }
+
+    // projector (always using GELU activation)
+    {
+        // projector LayerNorm uses pytorch's default eps = 1e-5
+        // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
+        cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
+        cur = build_ffn(cur,
+            model.mm_1_w, model.mm_1_b,
+            nullptr, nullptr,
+            model.mm_3_w, model.mm_3_b,
+            FFN_GELU,
+            -1);
+    }
+
+    // build the graph
+    ggml_build_forward_expand(gf, cur);
+
+    return gf;
+}

+ 63 - 0
tools/mtmd/models/kimivl.cpp

@@ -0,0 +1,63 @@
+#include "models.h"
+
+ggml_cgraph * clip_graph_kimivl::build() {
+    // 2D input positions
+    ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
+    ggml_set_name(pos_h, "pos_h");
+    ggml_set_input(pos_h);
+
+    ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
+    ggml_set_name(pos_w, "pos_w");
+    ggml_set_input(pos_w);
+
+    ggml_tensor * learned_pos_embd = resize_position_embeddings();
+
+    // build ViT with 2D position embeddings
+    auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
+        // first half is X axis and second half is Y axis
+        return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
+    };
+
+    ggml_tensor * inp = build_inp();
+    ggml_tensor * cur = build_vit(
+                            inp, n_patches,
+                            NORM_TYPE_NORMAL,
+                            hparams.ffn_op,
+                            learned_pos_embd,
+                            add_pos);
+
+    cb(cur, "vit_out", -1);
+
+    {
+        // patch_merger
+        const int scale_factor = model.hparams.n_merge;
+        cur = build_patch_merge_permute(cur, scale_factor);
+
+        // projection norm
+        int proj_inp_dim = cur->ne[0];
+        cur = ggml_view_2d(ctx0, cur,
+            n_embd, cur->ne[1] * scale_factor * scale_factor,
+            ggml_row_size(cur->type, n_embd), 0);
+        cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
+        cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
+        cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
+        cur = ggml_view_2d(ctx0, cur,
+            proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
+            ggml_row_size(cur->type, proj_inp_dim), 0);
+        cb(cur, "proj_inp_normed", -1);
+
+        // projection mlp
+        cur = build_ffn(cur,
+            model.mm_1_w, model.mm_1_b,
+            nullptr, nullptr,
+            model.mm_2_w, model.mm_2_b,
+            FFN_GELU,
+            -1);
+        cb(cur, "proj_out", -1);
+    }
+
+    // build the graph
+    ggml_build_forward_expand(gf, cur);
+
+    return gf;
+}

+ 96 - 0
tools/mtmd/models/llama4.cpp

@@ -0,0 +1,96 @@
+#include "models.h"
+
+ggml_cgraph * clip_graph_llama4::build() {
+    GGML_ASSERT(model.class_embedding != nullptr);
+    GGML_ASSERT(model.position_embeddings != nullptr);
+
+    const int n_pos = n_patches + 1; // +1 for [CLS]
+
+    // 2D input positions
+    ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
+    ggml_set_name(pos_h, "pos_h");
+    ggml_set_input(pos_h);
+
+    ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
+    ggml_set_name(pos_w, "pos_w");
+    ggml_set_input(pos_w);
+
+    ggml_tensor * inp = build_inp_raw();
+
+    // Llama4UnfoldConvolution
+    {
+        ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
+                                                patch_size, patch_size, 3, n_embd);
+        inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
+        inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
+        inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
+        cb(inp, "patch_conv", -1);
+    }
+
+    // add CLS token
+    inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
+
+    // build ViT with 2D position embeddings
+    auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
+        // first half is X axis and second half is Y axis
+        // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
+        // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
+        return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
+    };
+    ggml_tensor * cur = build_vit(
+                            inp, n_pos,
+                            NORM_TYPE_NORMAL,
+                            hparams.ffn_op,
+                            model.position_embeddings,
+                            add_pos);
+
+    // remove CLS token
+    cur = ggml_view_2d(ctx0, cur,
+        n_embd, n_patches,
+        ggml_row_size(cur->type, n_embd), 0);
+
+    // pixel shuffle
+    // based on Llama4VisionPixelShuffleMLP
+    // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
+    {
+        const int scale_factor = model.hparams.n_merge;
+        const int bsz = 1; // batch size, always 1 for now since we don't support batching
+        GGML_ASSERT(scale_factor > 0);
+        GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
+        cur = ggml_reshape_4d(ctx0, cur,
+            n_embd * scale_factor,
+            n_patches_x / scale_factor,
+            n_patches_y,
+            bsz);
+        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+        cur = ggml_cont_4d(ctx0, cur,
+            n_embd * scale_factor * scale_factor,
+            n_patches_x / scale_factor,
+            n_patches_y / scale_factor,
+            bsz);
+        //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+        // flatten to 2D
+        cur = ggml_cont_2d(ctx0, cur,
+            n_embd * scale_factor * scale_factor,
+            n_patches / scale_factor / scale_factor);
+        cb(cur, "pixel_shuffle", -1);
+    }
+
+    // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
+    {
+        cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
+        cur = ggml_gelu(ctx0, cur);
+        cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
+        cur = ggml_gelu(ctx0, cur);
+        cb(cur, "adapter_mlp", -1);
+    }
+
+    // Llama4MultiModalProjector
+    cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
+    cb(cur, "projected", -1);
+
+    // build the graph
+    ggml_build_forward_expand(gf, cur);
+
+    return gf;
+}

+ 374 - 0
tools/mtmd/models/llava.cpp

@@ -0,0 +1,374 @@
+#include "models.h"
+
+// this graph is used by llava, granite and glm
+// due to having embedding_stack (used by granite), we cannot reuse build_vit
+ggml_cgraph * clip_graph_llava::build() {
+    const int batch_size = 1;
+    const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
+
+    GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
+
+    // Calculate the deepest feature layer based on hparams and projector type
+    int max_feature_layer = n_layer;
+    {
+        // Get the index of the second to last layer; this is the default for models that have a llava projector
+        int il_last = hparams.n_layer - 1;
+        int deepest_feature_layer = -1;
+
+        if (proj_type == PROJECTOR_TYPE_MINICPMV || proj_type == PROJECTOR_TYPE_GLM_EDGE) {
+            il_last += 1;
+        }
+
+        // If we set explicit vision feature layers, only go up to the deepest one
+        // NOTE: only used by granite-vision models for now
+        for (const auto & feature_layer : hparams.vision_feature_layer) {
+            if (feature_layer > deepest_feature_layer) {
+                deepest_feature_layer = feature_layer;
+            }
+        }
+        max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
+    }
+
+    ggml_tensor * inp = build_inp();
+
+    // concat class_embeddings and patch_embeddings
+    if (model.class_embedding) {
+        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
+    }
+
+    ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
+    ggml_set_name(positions, "positions");
+    ggml_set_input(positions);
+
+    inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
+
+    ggml_tensor * inpL = inp;
+
+    // pre-layernorm
+    if (model.pre_ln_w) {
+        inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
+        cb(inpL, "pre_ln", -1);
+    }
+
+    std::vector<ggml_tensor *> embedding_stack;
+    const auto & vision_feature_layer = hparams.vision_feature_layer;
+
+    // loop over layers
+    for (int il = 0; il < max_feature_layer; il++) {
+        auto & layer = model.layers[il];
+        ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
+
+        // If this is an embedding feature layer, save the output.
+        // NOTE: 0 index here refers to the input to the encoder.
+        if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
+            embedding_stack.push_back(cur);
+        }
+
+        // layernorm1
+        cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
+        cb(cur, "layer_inp_normed", il);
+
+        // self-attention
+        {
+            ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
+            if (layer.q_b) {
+                Qcur = ggml_add(ctx0, Qcur, layer.q_b);
+            }
+
+            ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
+            if (layer.k_b) {
+                Kcur = ggml_add(ctx0, Kcur, layer.k_b);
+            }
+
+            ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
+            if (layer.v_b) {
+                Vcur = ggml_add(ctx0, Vcur, layer.v_b);
+            }
+
+            Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
+            Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
+            Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
+
+            cb(Qcur, "Qcur", il);
+            cb(Kcur, "Kcur", il);
+            cb(Vcur, "Vcur", il);
+
+            cur = build_attn(layer.o_w, layer.o_b,
+                Qcur, Kcur, Vcur, nullptr, kq_scale, il);
+            cb(cur, "attn_out", il);
+        }
+
+        // re-add the layer input, e.g., residual
+        cur = ggml_add(ctx0, cur, inpL);
+
+        inpL = cur; // inpL = residual, cur = hidden_states
+
+        cb(cur, "ffn_inp", il);
+
+        // layernorm2
+        cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
+        cb(cur, "ffn_inp_normed", il);
+
+        // ffn
+        cur = build_ffn(cur,
+            layer.ff_up_w, layer.ff_up_b,
+            layer.ff_gate_w, layer.ff_gate_b,
+            layer.ff_down_w, layer.ff_down_b,
+            hparams.ffn_op, il);
+
+        cb(cur, "ffn_out", il);
+
+        // residual 2
+        cur = ggml_add(ctx0, inpL, cur);
+        cb(cur, "layer_out", il);
+
+        inpL = cur;
+    }
+
+    // post-layernorm
+    if (model.post_ln_w) {
+        inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
+    }
+
+    ggml_tensor * embeddings = inpL;
+
+    // process vision feature layers (used by granite)
+    {
+        // final layer is a vision feature layer
+        if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
+            embedding_stack.push_back(inpL);
+        }
+
+        // If feature layers are explicitly set, stack them (if we have multiple)
+        if (!embedding_stack.empty()) {
+            embeddings = embedding_stack[0];
+            for (size_t i = 1; i < embedding_stack.size(); i++) {
+                embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
+            }
+        }
+    }
+
+    // llava projector (also used by granite)
+    if (hparams.has_llava_projector) {
+        embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
+
+        ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
+        ggml_set_name(patches, "patches");
+        ggml_set_input(patches);
+
+        // shape [1, 576, 1024]
+        // ne is whcn, ne = [1024, 576, 1, 1]
+        embeddings = ggml_get_rows(ctx0, embeddings, patches);
+
+        // print_tensor_info(embeddings, "embeddings");
+
+        // llava projector
+        if (proj_type == PROJECTOR_TYPE_MLP) {
+            embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
+            embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
+
+            embeddings = ggml_gelu(ctx0, embeddings);
+            if (model.mm_2_w) {
+                embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
+                embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+            }
+        }
+        else if (proj_type == PROJECTOR_TYPE_MLP_NORM) {
+            embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
+            embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
+            // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
+            // First LayerNorm
+            embeddings = ggml_norm(ctx0, embeddings, eps);
+            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
+                                model.mm_1_b);
+
+            // GELU activation
+            embeddings = ggml_gelu(ctx0, embeddings);
+
+            // Second linear layer
+            embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
+            embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
+
+            // Second LayerNorm
+            embeddings = ggml_norm(ctx0, embeddings, eps);
+            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
+                                model.mm_4_b);
+        }
+        else if (proj_type == PROJECTOR_TYPE_LDP) {
+            // MobileVLM projector
+            int n_patch = 24;
+            ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
+            mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
+            mlp_1 = ggml_gelu(ctx0, mlp_1);
+            ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
+            mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
+            // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
+
+            // block 1
+            ggml_tensor * block_1 = nullptr;
+            {
+                // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
+                mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
+                mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
+                // stride = 1, padding = 1, bias is nullptr
+                block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
+
+                // layer norm
+                // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
+                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
+                // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
+                block_1 = ggml_norm(ctx0, block_1, eps);
+                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
+                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
+
+                // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
+                // hardswish
+                ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
+
+                block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
+                // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
+                // pointwise conv
+                block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
+                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
+                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
+                block_1 = ggml_relu(ctx0, block_1);
+                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
+                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
+                block_1 = ggml_hardsigmoid(ctx0, block_1);
+                // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
+                block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
+                block_1 = ggml_mul(ctx0, block_1_hw, block_1);
+
+                int w = block_1->ne[0], h = block_1->ne[1];
+                block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
+                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
+
+                // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
+                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
+                block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
+
+                // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
+                block_1 = ggml_norm(ctx0, block_1, eps);
+                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
+                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
+                // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
+                // residual
+                block_1 = ggml_add(ctx0, mlp_3, block_1);
+            }
+
+            // block_2
+            {
+                // stride = 2
+                block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
+
+                // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
+                // layer norm
+                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
+                // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
+                block_1 = ggml_norm(ctx0, block_1, eps);
+                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
+                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
+                // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
+                // hardswish
+                ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
+
+                // not sure the parameters is right for globalAvgPooling
+                block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
+                // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
+                // pointwise conv
+                block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
+                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
+                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
+                block_1 = ggml_relu(ctx0, block_1);
+                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
+                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
+                block_1 = ggml_hardsigmoid(ctx0, block_1);
+
+                // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
+                block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
+                block_1 = ggml_mul(ctx0, block_1_hw, block_1);
+
+                int w = block_1->ne[0], h = block_1->ne[1];
+                block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
+                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
+                // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
+                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
+                block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
+
+
+                // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
+                block_1 = ggml_norm(ctx0, block_1, eps);
+                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
+                block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
+                // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
+            }
+            embeddings = block_1;
+        }
+        else if (proj_type == PROJECTOR_TYPE_LDPV2)
+        {
+            int n_patch = 24;
+            ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
+            mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
+            mlp_0 = ggml_gelu(ctx0, mlp_0);
+            ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
+            mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
+            // mlp_2 ne = [2048, 576, 1, 1]
+            // // AVG Pool Layer 2*2, strides = 2
+            mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
+            // mlp_2 ne = [576, 2048, 1, 1]
+            mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
+            // mlp_2 ne [24, 24, 2048, 1]
+            mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
+            // weight ne = [3, 3, 2048, 1]
+            ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
+            peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
+            peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
+            mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
+            peg_0 = ggml_add(ctx0, peg_0, mlp_2);
+            peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
+            embeddings = peg_0;
+        }
+        else {
+            GGML_ABORT("fatal error");
+        }
+    }
+
+    // glm projector
+    else if (proj_type == PROJECTOR_TYPE_GLM_EDGE) {
+        size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
+        embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
+        embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
+        embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
+        embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
+        embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
+        embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
+        // GLU
+        {
+            embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
+            embeddings = ggml_norm(ctx0, embeddings, eps);
+            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
+            embeddings = ggml_gelu_inplace(ctx0, embeddings);
+            ggml_tensor * x = embeddings;
+            embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
+            x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
+            embeddings = ggml_swiglu_split(ctx0, embeddings, x);
+            embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
+        }
+        // arrangement of BOI/EOI token embeddings
+        // note: these embeddings are not present in text model, hence we cannot process them as text tokens
+        // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
+        {
+            embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
+            embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
+        }
+    }
+
+    else {
+        GGML_ABORT("llava: unknown projector type");
+    }
+
+    // build the graph
+    ggml_build_forward_expand(gf, embeddings);
+
+    return gf;
+}

+ 114 - 0
tools/mtmd/models/minicpmv.cpp

@@ -0,0 +1,114 @@
+#include "models.h"
+
+ggml_cgraph * clip_graph_minicpmv::build() {
+    GGML_ASSERT(model.class_embedding == nullptr);
+    const int n_pos       = n_patches;
+    const int n_embd_proj = n_mmproj_embd;
+
+    // position embeddings for the projector (not for ViT)
+    // see: https://huggingface.co/openbmb/MiniCPM-o-2_6/blob/main/resampler.py#L70
+    // base frequency omega
+    ggml_tensor * omega = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_embd_proj / 4);
+    ggml_set_name(omega, "omega");
+    ggml_set_input(omega);
+
+    // 2D input positions (using float for sinusoidal embeddings)
+    ggml_tensor * pos_h = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
+    ggml_set_name(pos_h, "pos_h");
+    ggml_set_input(pos_h);
+    ggml_tensor * pos_w = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
+    ggml_set_name(pos_w, "pos_w");
+    ggml_set_input(pos_w);
+
+    // for selecting learned pos embd, used by ViT
+    struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
+    ggml_set_name(positions, "positions");
+    ggml_set_input(positions);
+
+    ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
+
+    ggml_tensor * inp = build_inp();
+    ggml_tensor * embeddings = build_vit(
+                            inp, n_pos,
+                            NORM_TYPE_NORMAL,
+                            hparams.ffn_op,
+                            learned_pos_embd,
+                            nullptr);
+
+    // resampler projector (it is just another transformer)
+
+    ggml_tensor * q = model.mm_model_query;
+    ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
+
+    // norm
+    q = build_norm(q, model.mm_model_ln_q_w,  model.mm_model_ln_q_b,  NORM_TYPE_NORMAL, eps, -1);
+    v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
+
+    // calculate sinusoidal pos embd
+    ggml_tensor * pos_embed = nullptr;
+    {
+        // outer product
+        ggml_tensor * omega_b = ggml_repeat_4d(ctx0, omega, omega->ne[0], n_pos, 1, 1); // n_pos rows
+        ggml_tensor * theta_x = ggml_mul(ctx0, omega_b, pos_w);
+        ggml_tensor * theta_y = ggml_mul(ctx0, omega_b, pos_h);
+        // sin and cos
+        ggml_tensor * pos_embd_x = ggml_concat(
+            ctx0,
+            ggml_sin(ctx0, theta_x),
+            ggml_cos(ctx0, theta_x),
+            0 // concat on first dim
+        );
+        ggml_tensor * pos_embd_y = ggml_concat(
+            ctx0,
+            ggml_sin(ctx0, theta_y),
+            ggml_cos(ctx0, theta_y),
+            0 // concat on first dim
+        );
+        pos_embed = ggml_concat(ctx0, pos_embd_x, pos_embd_y, 0);
+    }
+
+    // k = v + pos_embed
+    ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
+
+    // attention
+    {
+        const int d_head = 128;
+        int n_head = n_embd_proj/d_head;
+        // Use actual config value if available, otherwise fall back to hardcoded values
+        int num_query = hparams.minicpmv_query_num;
+        ggml_tensor * Q = ggml_add(ctx0,
+            ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
+            model.mm_model_attn_q_b);
+        ggml_tensor * K = ggml_add(ctx0,
+            ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
+            model.mm_model_attn_k_b);
+        ggml_tensor * V = ggml_add(ctx0,
+            ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
+            model.mm_model_attn_v_b);
+
+        Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
+        K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
+        V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
+
+        cb(Q, "resampler_Q", -1);
+        cb(K, "resampler_K", -1);
+        cb(V, "resampler_V", -1);
+
+        float resampler_kq_scale = 1.0f/ sqrtf(float(d_head));
+        embeddings = build_attn(
+            model.mm_model_attn_o_w,
+            model.mm_model_attn_o_b,
+            Q, K, V, nullptr, resampler_kq_scale, -1);
+        cb(embeddings, "resampler_attn_out", -1);
+    }
+    // layernorm
+    embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
+
+    // projection
+    embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
+
+    // build the graph
+    ggml_build_forward_expand(gf, embeddings);
+
+    return gf;
+}

+ 58 - 0
tools/mtmd/models/models.h

@@ -0,0 +1,58 @@
+#pragma once
+
+#include "../clip-graph.h"
+
+struct clip_graph_siglip : clip_graph {
+    clip_graph_siglip(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
+    ggml_cgraph * build() override;
+};
+
+struct clip_graph_pixtral : clip_graph {
+    clip_graph_pixtral(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
+    ggml_cgraph * build() override;
+};
+
+struct clip_graph_qwen2vl : clip_graph {
+    clip_graph_qwen2vl(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
+    ggml_cgraph * build() override;
+};
+
+struct clip_graph_qwen3vl : clip_graph {
+    clip_graph_qwen3vl(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
+    ggml_cgraph * build() override;
+};
+
+struct clip_graph_minicpmv : clip_graph {
+    clip_graph_minicpmv(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
+    ggml_cgraph * build() override;
+};
+
+struct clip_graph_internvl : clip_graph {
+    clip_graph_internvl(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
+    ggml_cgraph * build() override;
+};
+
+struct clip_graph_llama4 : clip_graph {
+    clip_graph_llama4(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
+    ggml_cgraph * build() override;
+};
+
+struct clip_graph_kimivl : clip_graph {
+    clip_graph_kimivl(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
+    ggml_cgraph * build() override;
+};
+
+struct clip_graph_cogvlm : clip_graph {
+    clip_graph_cogvlm(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
+    ggml_cgraph * build() override;
+};
+
+struct clip_graph_llava : clip_graph {
+    clip_graph_llava(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
+    ggml_cgraph * build() override;
+};
+
+struct clip_graph_whisper_enc : clip_graph {
+    clip_graph_whisper_enc(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
+    ggml_cgraph * build() override;
+};

+ 86 - 0
tools/mtmd/models/pixtral.cpp

@@ -0,0 +1,86 @@
+#include "models.h"
+
+ggml_cgraph * clip_graph_pixtral::build() {
+    const int n_merge = hparams.n_merge;
+
+    // 2D input positions
+    ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
+    ggml_set_name(pos_h, "pos_h");
+    ggml_set_input(pos_h);
+
+    ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
+    ggml_set_name(pos_w, "pos_w");
+    ggml_set_input(pos_w);
+
+    auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
+        return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
+    };
+
+    ggml_tensor * inp = build_inp();
+    ggml_tensor * cur = build_vit(
+                            inp, n_patches,
+                            NORM_TYPE_RMS,
+                            hparams.ffn_op,
+                            nullptr, // no learned pos embd
+                            add_pos);
+
+    // mistral small 3.1 patch merger
+    // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
+    if (model.mm_patch_merger_w) {
+        GGML_ASSERT(hparams.n_merge > 0);
+
+        cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
+
+        // reshape image tokens to 2D grid
+        cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
+        cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
+        cur = ggml_cont(ctx0, cur);
+
+        // torch.nn.functional.unfold is just an im2col under the hood
+        // we just need a dummy kernel to make it work
+        ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
+        cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
+
+        // project to n_embd
+        cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
+        cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
+    }
+
+    // LlavaMultiModalProjector (always using GELU activation)
+    {
+        cur = build_ffn(cur,
+            model.mm_1_w, model.mm_1_b,
+            nullptr, nullptr,
+            model.mm_2_w, model.mm_2_b,
+            FFN_GELU,
+            -1);
+    }
+
+    // arrangement of the [IMG_BREAK] token
+    if (model.token_embd_img_break) {
+        // not efficient, but works
+        // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
+        // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
+        // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
+
+        const int p_y             = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
+        const int p_x             = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
+        const int p_total         = p_x * p_y;
+        const int n_embd_text     = cur->ne[0];
+        const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
+
+        ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
+        ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
+        tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
+        tok = ggml_add(ctx0, tok, model.token_embd_img_break);
+        tmp = ggml_concat(ctx0, tmp, tok, 1);
+        cur = ggml_view_2d(ctx0, tmp,
+            n_embd_text, n_tokens_output,
+            ggml_row_size(tmp->type, n_embd_text), 0);
+    }
+
+    // build the graph
+    ggml_build_forward_expand(gf, cur);
+
+    return gf;
+}

+ 183 - 0
tools/mtmd/models/qwen2vl.cpp

@@ -0,0 +1,183 @@
+#include "models.h"
+
+ggml_cgraph * clip_graph_qwen2vl::build() {
+    GGML_ASSERT(model.patch_bias == nullptr);
+    GGML_ASSERT(model.class_embedding == nullptr);
+
+    const int batch_size       = 1;
+    const bool use_window_attn = hparams.n_wa_pattern > 0;
+    const int n_wa_pattern     = hparams.n_wa_pattern;
+    const int n_pos            = n_patches;
+    const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
+
+    norm_type norm_t = proj_type == PROJECTOR_TYPE_QWEN25VL
+        ? NORM_TYPE_RMS // qwen 2.5 vl
+        : NORM_TYPE_NORMAL; // qwen 2 vl
+
+    int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
+
+    ggml_tensor * inp_raw = build_inp_raw();
+    ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
+
+    GGML_ASSERT(img.nx % (patch_size * 2) == 0);
+    GGML_ASSERT(img.ny % (patch_size * 2) == 0);
+
+    // second conv dimension
+    {
+        auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
+        inp = ggml_add(ctx0, inp, inp_1);
+
+        inp = ggml_permute(ctx0, inp, 1, 2, 0, 3);  // [w, h, c, b] -> [c, w, h, b]
+        inp = ggml_cont_4d(
+            ctx0, inp,
+            n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
+        inp = ggml_reshape_4d(
+            ctx0, inp,
+            n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
+        inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
+        inp = ggml_cont_3d(
+            ctx0, inp,
+            n_embd, n_patches_x * n_patches_y, batch_size);
+    }
+
+    ggml_tensor * inpL           = inp;
+    ggml_tensor * window_mask    = nullptr;
+    ggml_tensor * window_idx     = nullptr;
+    ggml_tensor * inv_window_idx = nullptr;
+
+    ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
+    ggml_set_name(positions, "positions");
+    ggml_set_input(positions);
+
+    // pre-layernorm
+    if (model.pre_ln_w) {
+        inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
+    }
+
+    if (use_window_attn) {
+        // handle window attention inputs
+        inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
+        ggml_set_name(inv_window_idx, "inv_window_idx");
+        ggml_set_input(inv_window_idx);
+        // mask for window attention
+        window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
+        ggml_set_name(window_mask, "window_mask");
+        ggml_set_input(window_mask);
+
+        // if flash attn is used, we need to pad the mask and cast to f16
+        if (flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
+            window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
+        }
+
+        // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
+        GGML_ASSERT(batch_size == 1);
+        inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
+        inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
+        inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
+    }
+
+    // loop over layers
+    for (int il = 0; il < n_layer; il++) {
+        const auto & layer = model.layers[il];
+        const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
+
+        ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
+
+        // layernorm1
+        cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
+        cb(cur, "ln1", il);
+
+        // self-attention
+        {
+            ggml_tensor * Qcur = ggml_add(ctx0,
+                ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
+            ggml_tensor * Kcur = ggml_add(ctx0,
+                ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
+            ggml_tensor * Vcur = ggml_add(ctx0,
+                ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
+
+            Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
+            Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
+            Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
+
+            cb(Qcur, "Qcur", il);
+            cb(Kcur, "Kcur", il);
+            cb(Vcur, "Vcur", il);
+
+            // apply M-RoPE
+            Qcur = ggml_rope_multi(
+                ctx0, Qcur, positions, nullptr,
+                d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
+            Kcur = ggml_rope_multi(
+                ctx0, Kcur, positions, nullptr,
+                d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
+
+            cb(Qcur, "Qcur_rope", il);
+            cb(Kcur, "Kcur_rope", il);
+
+            ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
+
+            cur = build_attn(layer.o_w, layer.o_b,
+                Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
+            cb(cur, "attn_out", il);
+        }
+
+        // re-add the layer input, e.g., residual
+        cur = ggml_add(ctx0, cur, inpL);
+
+        inpL = cur; // inpL = residual, cur = hidden_states
+
+        cb(cur, "ffn_inp", il);
+
+        // layernorm2
+        cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
+        cb(cur, "ffn_inp_normed", il);
+
+        // ffn
+        cur = build_ffn(cur,
+            layer.ff_up_w, layer.ff_up_b,
+            layer.ff_gate_w, layer.ff_gate_b,
+            layer.ff_down_w, layer.ff_down_b,
+            hparams.ffn_op, il);
+
+        cb(cur, "ffn_out", il);
+
+        // residual 2
+        cur = ggml_add(ctx0, inpL, cur);
+        cb(cur, "layer_out", il);
+
+        inpL = cur;
+    }
+
+    // post-layernorm
+    if (model.post_ln_w) {
+        inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
+    }
+
+    // multimodal projection
+    ggml_tensor * embeddings = inpL;
+    embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
+    embeddings = build_ffn(embeddings,
+                        model.mm_0_w, model.mm_0_b,
+                        nullptr, nullptr,
+                        model.mm_1_w, model.mm_1_b,
+                        FFN_GELU,
+                        -1);
+
+    if (use_window_attn) {
+        window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
+        ggml_set_name(window_idx, "window_idx");
+        ggml_set_input(window_idx);
+
+        // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
+        GGML_ASSERT(batch_size == 1);
+        embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
+        embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
+        embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
+    }
+
+    // build the graph
+    ggml_build_forward_expand(gf, embeddings);
+
+    return gf;
+}

+ 191 - 0
tools/mtmd/models/qwen3vl.cpp

@@ -0,0 +1,191 @@
+#include "models.h"
+
+ggml_cgraph * clip_graph_qwen3vl::build() {
+    GGML_ASSERT(model.patch_bias != nullptr);
+    GGML_ASSERT(model.position_embeddings != nullptr);
+    GGML_ASSERT(model.class_embedding == nullptr);
+
+    const int batch_size       = 1;
+    const int n_pos            = n_patches;
+    const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
+
+    norm_type norm_t = NORM_TYPE_NORMAL;
+
+    int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
+
+    ggml_tensor * inp_raw = build_inp_raw();
+    ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
+
+    GGML_ASSERT(img.nx % (patch_size * 2) == 0);
+    GGML_ASSERT(img.ny % (patch_size * 2) == 0);
+
+    // second conv dimension
+    {
+        auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
+        inp = ggml_add(ctx0, inp, inp_1);
+
+        inp = ggml_permute(ctx0, inp, 1, 2, 0, 3);  // [w, h, c, b] -> [c, w, h, b]
+        inp = ggml_cont_4d(
+            ctx0, inp,
+            n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
+        inp = ggml_reshape_4d(
+            ctx0, inp,
+            n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
+        inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
+        inp = ggml_cont_3d(
+            ctx0, inp,
+            n_embd, n_patches_x * n_patches_y, batch_size);
+    }
+
+    // add patch bias
+    if (model.patch_bias != nullptr) {
+        inp = ggml_add(ctx0, inp, model.patch_bias);
+        cb(inp, "patch_bias", -1);
+    }
+
+    // calculate absolute position embedding and apply
+    ggml_tensor * learned_pos_embd = resize_position_embeddings();
+    learned_pos_embd = ggml_cont_4d(
+        ctx0, learned_pos_embd,
+        n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
+    learned_pos_embd = ggml_reshape_4d(
+        ctx0, learned_pos_embd,
+        n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
+    learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
+    learned_pos_embd = ggml_cont_3d(
+        ctx0, learned_pos_embd,
+        n_embd, n_patches_x * n_patches_y, batch_size);
+    inp = ggml_add(ctx0, inp, learned_pos_embd);
+    cb(inp, "inp_pos_emb", -1);
+
+    ggml_tensor * inpL = inp;
+
+    ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
+    ggml_set_name(positions, "positions");
+    ggml_set_input(positions);
+
+    // pre-layernorm
+    if (model.pre_ln_w) {
+        inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
+    }
+
+    // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
+    ggml_tensor * deepstack_features = nullptr;
+    const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl
+
+    // loop over layers
+    for (int il = 0; il < n_layer; il++) {
+        auto & layer = model.layers[il];
+
+        ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
+
+        // layernorm1
+        cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
+        cb(cur, "ln1", il);
+
+        // self-attention
+        {
+            cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
+            cur = ggml_add(ctx0, cur, layer.qkv_b);
+
+            ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
+                    /* nb1    */ ggml_row_size(cur->type, d_head),
+                    /* nb2    */ cur->nb[1],
+                    /* offset */ 0);
+
+            ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
+                    /* nb1    */ ggml_row_size(cur->type, d_head),
+                    /* nb2    */ cur->nb[1],
+                    /* offset */ ggml_row_size(cur->type, n_embd));
+
+            ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
+                    /* nb1    */ ggml_row_size(cur->type, d_head),
+                    /* nb2    */ cur->nb[1],
+                    /* offset */ ggml_row_size(cur->type, 2 * n_embd));
+
+            cb(Qcur, "Qcur", il);
+            cb(Kcur, "Kcur", il);
+            cb(Vcur, "Vcur", il);
+
+            // apply M-RoPE
+            Qcur = ggml_rope_multi(
+                ctx0, Qcur, positions, nullptr,
+                d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
+            Kcur = ggml_rope_multi(
+                ctx0, Kcur, positions, nullptr,
+                d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
+
+            cb(Qcur, "Qcur_rope", il);
+            cb(Kcur, "Kcur_rope", il);
+
+            cur = build_attn(layer.o_w, layer.o_b,
+                Qcur, Kcur, Vcur, nullptr, kq_scale, il);
+            cb(cur, "attn_out", il);
+        }
+
+        // re-add the layer input, e.g., residual
+        cur = ggml_add(ctx0, cur, inpL);
+
+        inpL = cur; // inpL = residual, cur = hidden_states
+
+        cb(cur, "ffn_inp", il);
+
+        // layernorm2
+        cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
+        cb(cur, "ffn_inp_normed", il);
+
+        // ffn
+        cur = build_ffn(cur,
+            layer.ff_up_w, layer.ff_up_b,
+            layer.ff_gate_w, layer.ff_gate_b,
+            layer.ff_down_w, layer.ff_down_b,
+            hparams.ffn_op, il);
+
+        cb(cur, "ffn_out", il);
+
+        // residual 2
+        cur = ggml_add(ctx0, inpL, cur);
+        cb(cur, "layer_out", il);
+
+        if (layer.has_deepstack()) {
+            ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
+            feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
+            feat = build_ffn(feat,
+                layer.deepstack_fc1_w, layer.deepstack_fc1_b,
+                nullptr, nullptr,
+                layer.deepstack_fc2_w, layer.deepstack_fc2_b,
+                ffn_op_type::FFN_GELU, il);
+
+            if(!deepstack_features) {
+                deepstack_features = feat;
+            } else {
+                // concat along the feature dimension
+                deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
+            }
+        }
+
+        inpL = cur;
+    }
+
+    // post-layernorm
+    if (model.post_ln_w) {
+        inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
+    }
+
+    // multimodal projection
+    ggml_tensor * embeddings = inpL;
+    embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
+
+    embeddings = build_ffn(embeddings,
+        model.mm_0_w, model.mm_0_b,
+        nullptr, nullptr,
+        model.mm_1_w, model.mm_1_b,
+        ffn_op_type::FFN_GELU, -1);
+
+    embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
+
+    // build the graph
+    ggml_build_forward_expand(gf, embeddings);
+
+    return gf;
+}

+ 81 - 0
tools/mtmd/models/siglip.cpp

@@ -0,0 +1,81 @@
+#include "models.h"
+
+ggml_cgraph * clip_graph_siglip::build() {
+    ggml_tensor * inp = build_inp();
+
+    ggml_tensor * learned_pos_embd = model.position_embeddings;
+    if (proj_type == PROJECTOR_TYPE_LFM2) {
+        learned_pos_embd = resize_position_embeddings();
+    }
+
+    ggml_tensor * cur = build_vit(
+                            inp, n_patches,
+                            NORM_TYPE_NORMAL,
+                            hparams.ffn_op,
+                            learned_pos_embd,
+                            nullptr);
+
+    if (proj_type == PROJECTOR_TYPE_GEMMA3) {
+        const int batch_size = 1;
+        GGML_ASSERT(n_patches_x == n_patches_y);
+        const int patches_per_image = n_patches_x;
+        const int kernel_size = hparams.n_merge;
+
+        cur = ggml_transpose(ctx0, cur);
+        cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
+
+        // doing a pool2d to reduce the number of output tokens
+        cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
+        cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
+        cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
+
+        // apply norm before projection
+        cur = ggml_rms_norm(ctx0, cur, eps);
+        cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
+
+        // apply projection
+        cur = ggml_mul_mat(ctx0,
+            ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
+            cur);
+
+    } else if (proj_type == PROJECTOR_TYPE_IDEFICS3) {
+        // pixel_shuffle
+        // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
+        const int scale_factor = model.hparams.n_merge;
+        cur = build_patch_merge_permute(cur, scale_factor);
+        cur = ggml_mul_mat(ctx0, model.projection, cur);
+
+    } else if (proj_type == PROJECTOR_TYPE_LFM2) {
+        // pixel unshuffle block
+        const int scale_factor = model.hparams.n_merge;
+        cur = build_patch_merge_permute(cur, scale_factor);
+
+        // projection
+        cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
+        cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
+        cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
+
+        cur = build_ffn(cur,
+            model.mm_1_w, model.mm_1_b,
+            nullptr, nullptr,
+            model.mm_2_w, model.mm_2_b,
+            FFN_GELU,
+            -1);
+
+    } else if (proj_type == PROJECTOR_TYPE_JANUS_PRO) {
+        cur = build_ffn(cur,
+            model.mm_0_w, model.mm_0_b,
+            nullptr, nullptr,
+            model.mm_1_w, model.mm_1_b,
+            hparams.ffn_op,
+            -1);
+
+    } else {
+        GGML_ABORT("SigLIP: Unsupported projector type");
+    }
+
+    // build the graph
+    ggml_build_forward_expand(gf, cur);
+
+    return gf;
+}

+ 107 - 0
tools/mtmd/models/whisper-enc.cpp

@@ -0,0 +1,107 @@
+#include "models.h"
+
+ggml_cgraph * clip_graph_whisper_enc::build() {
+    const int n_frames = img.nx;
+    const int n_pos    = n_frames / 2;
+    GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
+
+    ggml_tensor * inp = build_inp_raw(1);
+
+    // conv1d block
+    {
+        // convolution + gelu
+        ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
+        cur = ggml_add(ctx0, cur, model.conv1d_1_b);
+
+        cur = ggml_gelu_erf(ctx0, cur);
+
+        cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
+        cur = ggml_add(ctx0, cur, model.conv1d_2_b);
+
+        cur = ggml_gelu_erf(ctx0, cur);
+        // transpose
+        inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
+        cb(inp, "after_conv1d", -1);
+    }
+
+    // sanity check (only check one layer, but it should be the same for all)
+    GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
+    GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
+    GGML_ASSERT(model.layers[0].q_b);
+    GGML_ASSERT(model.layers[0].v_b);
+    GGML_ASSERT(!model.layers[0].k_b); // no bias for k
+    GGML_ASSERT(model.post_ln_w && model.post_ln_b);
+
+    ggml_tensor * pos_embd_selected = ggml_view_2d(
+        ctx0, model.position_embeddings,
+        model.position_embeddings->ne[0], n_pos,
+        model.position_embeddings->nb[1], 0
+    );
+    ggml_tensor * cur = build_vit(
+                            inp, n_pos,
+                            NORM_TYPE_NORMAL,
+                            hparams.ffn_op,
+                            pos_embd_selected,
+                            nullptr);
+
+    cb(cur, "after_transformer", -1);
+
+    if (model.audio_has_stack_frames()) {
+        // StackAudioFrames
+        // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
+        int64_t stride = n_embd * hparams.proj_stack_factor;
+        int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
+        int64_t pad = padded_len - ggml_nelements(cur);
+        if (pad > 0) {
+            cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
+            cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
+        }
+        cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
+                            ggml_row_size(cur->type, stride), 0);
+        cb(cur, "after_stacked", -1);
+    }
+
+    if (proj_type == PROJECTOR_TYPE_ULTRAVOX) {
+        // UltravoxProjector
+        // pre-norm
+        cur = ggml_rms_norm(ctx0, cur, 1e-6);
+        cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
+
+        // ffn in
+        cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
+
+        // swiglu
+        // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
+        cur = ggml_swiglu_swapped(ctx0, cur);
+
+        // mid-norm
+        cur = ggml_rms_norm(ctx0, cur, 1e-6);
+        cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
+
+        // ffn out
+        cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
+
+    } else if (proj_type == PROJECTOR_TYPE_QWEN2A) {
+        // projector
+        cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
+        cur = ggml_add(ctx0, cur, model.mm_fc_b);
+
+    } else if (proj_type == PROJECTOR_TYPE_VOXTRAL) {
+        // projector
+        cur = build_ffn(cur,
+            model.mm_1_w, model.mm_1_b,
+            nullptr, nullptr,
+            model.mm_2_w, model.mm_2_b,
+            FFN_GELU_ERF,
+            -1);
+
+    } else {
+        GGML_ABORT("%s: unknown projector type", __func__);
+    }
+
+    cb(cur, "projected", -1);
+
+    ggml_build_forward_expand(gf, cur);
+
+    return gf;
+}

+ 5 - 0
tools/mtmd/mtmd.h

@@ -22,6 +22,11 @@
  *          Issues related to API usage may receive lower priority support.
  *
  * For the usage, see an example in mtmd-cli.cpp
+ *
+ * For contributors:
+ * - Make sure the C API is aligned with the libllama C API (as in llama.h)
+ * - Do not include model name (e.g., qwen, gemma) in the API, use generic terms instead
+ * - Keep the API minimal, do not expose internal details unless necessary
  */
 
 #ifdef LLAMA_SHARED