Przeglądaj źródła

llama : ggml-backend integration (#4766)

* llama : ggml-backend integration

* ggml-backend : add names to buffers

* fix unmap after loading

* batched-bench : add tensor_split param

* llama : check for null tensor_split

* ggml-backend : increase GGML_MAX_BACKENDS

* improve graph splitting, partial fix for --no-kv-offload

* cuda : add ggml-backend split buffer support

* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)

* ggml : fix null backend dereference (#4807)

* ggml : fix null backend dereference

* ggml : also check ggml_backend_is_cpu

* test-backend-ops : check buffer allocation failures

* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)

* ggml : fix mul_mat_id work size

* llama : rewrite session kv load/set without graphs

* minor

* llama : only initialize used backends, free backends on context free

* llama : abort ctx if cuda backend init fails

* llama : rewrite lora with ggml-backend and compute on CPU

ggml-ci

* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer

* opencl : add ggml-backend buffer type

* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)

* llama : on Metal, by default offload the full model

ggml-ci

* metal : page align the data ptr (#4854)

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix split buffer free

* address review comments

* llama-bench : add split-mode parameter

* fix whitespace

* opencl : fix double initialization

* server : add --split-mode parameter

* use async copy and compute to improve multi-gpu performance

ggml-ci

* use async memcpys to copy the graph outputs to the CPU

* fix opencl

* use a host buffer for the cpu compute buffer for faster copies to the gpu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
slaren 2 lat temu
rodzic
commit
e7e4df031b
21 zmienionych plików z 2076 dodań i 1452 usunięć
  1. 39 26
      common/common.cpp
  2. 1 0
      common/common.h
  3. 3 0
      examples/batched-bench/batched-bench.cpp
  4. 78 68
      examples/llama-bench/llama-bench.cpp
  5. 35 5
      examples/server/server.cpp
  6. 28 6
      ggml-alloc.c
  7. 3 1
      ggml-alloc.h
  8. 19 19
      ggml-backend-impl.h
  9. 392 219
      ggml-backend.c
  10. 35 25
      ggml-backend.h
  11. 445 334
      ggml-cuda.cu
  12. 7 19
      ggml-cuda.h
  13. 2 0
      ggml-impl.h
  14. 37 18
      ggml-metal.m
  15. 321 14
      ggml-opencl.cpp
  16. 13 3
      ggml-opencl.h
  17. 26 4
      ggml.c
  18. 7 2
      ggml.h
  19. 549 681
      llama.cpp
  20. 16 2
      llama.h
  21. 20 6
      tests/test-backend-ops.cpp

+ 39 - 26
common/common.cpp

@@ -543,9 +543,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
                 invalid_param = true;
                 break;
             }
-#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
             params.n_gpu_layers = std::stoi(argv[i]);
-#else
+#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
             fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
             fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
 #endif
@@ -554,9 +553,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
                 invalid_param = true;
                 break;
             }
-#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
             params.n_gpu_layers_draft = std::stoi(argv[i]);
-#else
+#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
             fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
             fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
 #endif
@@ -565,25 +563,44 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
                 invalid_param = true;
                 break;
             }
-#ifdef GGML_USE_CUBLAS
             params.main_gpu = std::stoi(argv[i]);
-#else
-            fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
-#endif
+#ifndef GGML_USE_CUBLAS
+            fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the main GPU has no effect.\n");
+#endif // GGML_USE_CUBLAS
+        } else if (arg == "--split-mode" || arg == "-sm") {
+            if (++i >= argc) {
+                invalid_param = true;
+                break;
+            }
+            std::string arg_next = argv[i];
+            if (arg_next == "none") {
+                params.split_mode = LLAMA_SPLIT_NONE;
+            } else if (arg_next == "layer") {
+                params.split_mode = LLAMA_SPLIT_LAYER;
+            } else if (arg_next == "row") {
+                params.split_mode = LLAMA_SPLIT_ROW;
+            } else {
+                invalid_param = true;
+                break;
+            }
+#ifndef GGML_USE_CUBLAS
+            fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
+#endif // GGML_USE_CUBLAS
         } else if (arg == "--tensor-split" || arg == "-ts") {
             if (++i >= argc) {
                 invalid_param = true;
                 break;
             }
-#ifdef GGML_USE_CUBLAS
             std::string arg_next = argv[i];
 
             // split string by , and /
             const std::regex regex{R"([,/]+)"};
             std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
             std::vector<std::string> split_arg{it, {}};
-            GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
-
+            if (split_arg.size() >= LLAMA_MAX_DEVICES) {
+                invalid_param = true;
+                break;
+            }
             for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
                 if (i < split_arg.size()) {
                     params.tensor_split[i] = std::stof(split_arg[i]);
@@ -591,14 +608,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
                     params.tensor_split[i] = 0.0f;
                 }
             }
-#else
-            fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
-#endif // GGML_USE_CUBLAS
-        } else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
-#ifdef GGML_USE_CUBLAS
-            params.mul_mat_q = false;
-#else
-            fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
+#ifndef GGML_USE_CUBLAS
+            fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting a tensor split has no effect.\n");
 #endif // GGML_USE_CUBLAS
         } else if (arg == "--no-mmap") {
             params.use_mmap = false;
@@ -915,14 +926,15 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
     printf("                        number of layers to store in VRAM\n");
     printf("  -ngld N, --n-gpu-layers-draft N\n");
     printf("                        number of layers to store in VRAM for the draft model\n");
+    printf("  -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
+    printf("                        how to split the model across multiple GPUs, one of:\n");
+    printf("                          - none: use one GPU only\n");
+    printf("                          - layer (default): split layers and KV across GPUs\n");
+    printf("                          - row: split rows across GPUs\n");
     printf("  -ts SPLIT, --tensor-split SPLIT\n");
-    printf("                        how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
-    printf("  -mg i, --main-gpu i   the GPU to use for scratch and small tensors\n");
-#ifdef GGML_USE_CUBLAS
-    printf("  -nommq, --no-mul-mat-q\n");
-    printf("                        use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
-    printf("                        Not recommended since this is both slower and uses more VRAM.\n");
-#endif // GGML_USE_CUBLAS
+    printf("                        fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
+    printf("  -mg i, --main-gpu i   the GPU to use for the model (with split-mode = none),\n");
+    printf("                        or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
 #endif
     printf("  -gan N, --grp-attn-n N\n");
     printf("                        group-attention factor (default: %d)\n", params.grp_attn_n);
@@ -1041,6 +1053,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
         mparams.n_gpu_layers = params.n_gpu_layers;
     }
     mparams.main_gpu        = params.main_gpu;
+    mparams.split_mode      = params.split_mode;
     mparams.tensor_split    = params.tensor_split;
     mparams.use_mmap        = params.use_mmap;
     mparams.use_mlock       = params.use_mlock;

+ 1 - 0
common/common.h

@@ -59,6 +59,7 @@ struct gpt_params {
     float   p_split                         = 0.1f;  // speculative decoding split probability
     int32_t n_gpu_layers                    = -1;    // number of layers to store in VRAM (-1 - use default)
     int32_t n_gpu_layers_draft              = -1;    // number of layers to store in VRAM for the draft model (-1 - use default)
+    llama_split_mode split_mode             = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
     int32_t main_gpu                        = 0;     // the GPU that is used for scratch and small tensors
     float   tensor_split[LLAMA_MAX_DEVICES] = {0};   // how split tensors should be distributed across GPUs
     int32_t n_beams                         = 0;     // if non-zero then use beam search of given width.

+ 3 - 0
examples/batched-bench/batched-bench.cpp

@@ -88,7 +88,10 @@ int main(int argc, char ** argv) {
 
     llama_model_params model_params = llama_model_default_params();
 
+    const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
+
     model_params.n_gpu_layers = n_gpu_layers;
+    model_params.tensor_split = t_split.data();
 
     llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
 

+ 78 - 68
examples/llama-bench/llama-bench.cpp

@@ -128,6 +128,25 @@ static std::string get_gpu_info() {
 // command line params
 enum output_formats {CSV, JSON, MARKDOWN, SQL};
 
+static const char * output_format_str(output_formats format) {
+    switch (format) {
+        case CSV:      return "csv";
+        case JSON:     return "json";
+        case MARKDOWN: return "md";
+        case SQL:      return "sql";
+        default: GGML_ASSERT(!"invalid output format");
+    }
+}
+
+static const char * split_mode_str(llama_split_mode mode) {
+    switch (mode) {
+        case LLAMA_SPLIT_NONE:  return "none";
+        case LLAMA_SPLIT_LAYER: return "layer";
+        case LLAMA_SPLIT_ROW:   return "row";
+        default: GGML_ASSERT(!"invalid split mode");
+    }
+}
+
 struct cmd_params {
     std::vector<std::string> model;
     std::vector<int> n_prompt;
@@ -137,6 +156,7 @@ struct cmd_params {
     std::vector<ggml_type> type_v;
     std::vector<int> n_threads;
     std::vector<int> n_gpu_layers;
+    std::vector<llama_split_mode> split_mode;
     std::vector<int> main_gpu;
     std::vector<bool> no_kv_offload;
     std::vector<bool> mul_mat_q;
@@ -155,6 +175,7 @@ static const cmd_params cmd_params_defaults = {
     /* type_v        */ {GGML_TYPE_F16},
     /* n_threads     */ {get_num_physical_cores()},
     /* n_gpu_layers  */ {99},
+    /* split_mode    */ {LLAMA_SPLIT_LAYER},
     /* main_gpu      */ {0},
     /* no_kv_offload */ {false},
     /* mul_mat_q     */ {true},
@@ -169,21 +190,22 @@ static void print_usage(int /* argc */, char ** argv) {
     printf("\n");
     printf("options:\n");
     printf("  -h, --help\n");
-    printf("  -m, --model <filename>            (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
-    printf("  -p, --n-prompt <n>                (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
-    printf("  -n, --n-gen <n>                   (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
-    printf("  -b, --batch-size <n>              (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
-    printf("  -ctk <t>, --cache-type-k <t>      (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
-    printf("  -ctv <t>, --cache-type-v <t>      (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
-    printf("  -t, --threads <n>                 (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
-    printf("  -ngl, --n-gpu-layers <n>          (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
-    printf("  -mg, --main-gpu <i>               (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
-    printf("  -nkvo, --no-kv-offload <0|1>      (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
-    printf("  -mmq, --mul-mat-q <0|1>           (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
-    printf("  -ts, --tensor_split <ts0/ts1/..>               \n");
-    printf("  -r, --repetitions <n>             (default: %d)\n", cmd_params_defaults.reps);
-    printf("  -o, --output <csv|json|md|sql>    (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
-    printf("  -v, --verbose                     (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
+    printf("  -m, --model <filename>              (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
+    printf("  -p, --n-prompt <n>                  (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
+    printf("  -n, --n-gen <n>                     (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
+    printf("  -b, --batch-size <n>                (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
+    printf("  -ctk <t>, --cache-type-k <t>        (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
+    printf("  -ctv <t>, --cache-type-v <t>        (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
+    printf("  -t, --threads <n>                   (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
+    printf("  -ngl, --n-gpu-layers <n>            (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
+    printf("  -sm, --split-mode <none|layer|row>  (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
+    printf("  -mg, --main-gpu <i>                 (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
+    printf("  -nkvo, --no-kv-offload <0|1>        (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
+    printf("  -mmq, --mul-mat-q <0|1>             (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
+    printf("  -ts, --tensor_split <ts0/ts1/..>    (default: 0)\n");
+    printf("  -r, --repetitions <n>               (default: %d)\n", cmd_params_defaults.reps);
+    printf("  -o, --output <csv|json|md|sql>      (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
+    printf("  -v, --verbose                       (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
     printf("\n");
     printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
 }
@@ -306,6 +328,28 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
             }
             auto p = split<int>(argv[i], split_delim);
             params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
+        } else if (arg == "-sm" || arg == "--split-mode") {
+            if (++i >= argc) {
+                invalid_param = true;
+                break;
+            }
+            auto p = split<std::string>(argv[i], split_delim);
+            std::vector<llama_split_mode> modes;
+            for (const auto & m : p) {
+                llama_split_mode mode;
+                if (m == "none") {
+                    mode = LLAMA_SPLIT_NONE;
+                } else if (m == "layer") {
+                    mode = LLAMA_SPLIT_LAYER;
+                } else if (m == "row") {
+                    mode = LLAMA_SPLIT_ROW;
+                } else {
+                    invalid_param = true;
+                    break;
+                }
+                modes.push_back(mode);
+            }
+            params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
         } else if (arg == "-mg" || arg == "--main-gpu") {
             if (++i >= argc) {
                 invalid_param = true;
@@ -392,6 +436,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
     if (params.type_k.empty())       { params.type_k = cmd_params_defaults.type_k; }
     if (params.type_v.empty())       { params.type_v = cmd_params_defaults.type_v; }
     if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
+    if (params.split_mode.empty())   { params.split_mode = cmd_params_defaults.split_mode; }
     if (params.main_gpu.empty())     { params.main_gpu = cmd_params_defaults.main_gpu; }
     if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
     if (params.mul_mat_q.empty())    { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
@@ -410,6 +455,7 @@ struct cmd_params_instance {
     ggml_type type_v;
     int n_threads;
     int n_gpu_layers;
+    llama_split_mode split_mode;
     int main_gpu;
     bool no_kv_offload;
     bool mul_mat_q;
@@ -419,6 +465,7 @@ struct cmd_params_instance {
         llama_model_params mparams = llama_model_default_params();
 
         mparams.n_gpu_layers = n_gpu_layers;
+        mparams.split_mode = split_mode;
         mparams.main_gpu = main_gpu;
         mparams.tensor_split = tensor_split.data();
 
@@ -428,6 +475,7 @@ struct cmd_params_instance {
     bool equal_mparams(const cmd_params_instance & other) const {
         return model == other.model &&
                n_gpu_layers == other.n_gpu_layers &&
+               split_mode == other.split_mode &&
                main_gpu == other.main_gpu &&
                tensor_split == other.tensor_split;
     }
@@ -446,45 +494,13 @@ struct cmd_params_instance {
     }
 };
 
-static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
-    std::vector<cmd_params_instance> instances;
-
-    for (const auto & m : params.model)
-    for (const auto & nl : params.n_gpu_layers)
-    for (const auto & mg : params.main_gpu)
-    for (const auto & ts : params.tensor_split)
-    for (const auto & nb : params.n_batch)
-    for (const auto & tk : params.type_k)
-    for (const auto & tv : params.type_v)
-    for (const auto & mmq : params.mul_mat_q)
-    for (const auto & nkvo : params.no_kv_offload)
-    for (const auto & nt : params.n_threads) {
-        cmd_params_instance instance = {
-            /* .model        = */ m,
-            /* .n_prompt     = */ n_prompt,
-            /* .n_gen        = */ n_gen,
-            /* .n_batch      = */ nb,
-            /* .type_k       = */ tk,
-            /* .type_v       = */ tv,
-            /* .n_threads    = */ nt,
-            /* .n_gpu_layers = */ nl,
-            /* .main_gpu     = */ mg,
-            /* .no_kv_offload= */ nkvo,
-            /* .mul_mat_q    = */ mmq,
-            /* .tensor_split = */ ts,
-        };
-        instances.push_back(instance);
-    }
-    return instances;
-}
-
 static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
     std::vector<cmd_params_instance> instances;
 
-#if 1
     // this ordering minimizes the number of times that each model needs to be reloaded
     for (const auto & m : params.model)
     for (const auto & nl : params.n_gpu_layers)
+    for (const auto & sm : params.split_mode)
     for (const auto & mg : params.main_gpu)
     for (const auto & ts : params.tensor_split)
     for (const auto & nb : params.n_batch)
@@ -506,6 +522,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
                 /* .type_v       = */ tv,
                 /* .n_threads    = */ nt,
                 /* .n_gpu_layers = */ nl,
+                /* .split_mode   = */ sm,
                 /* .main_gpu     = */ mg,
                 /* .no_kv_offload= */ nkvo,
                 /* .mul_mat_q    = */ mmq,
@@ -527,6 +544,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
                 /* .type_v       = */ tv,
                 /* .n_threads    = */ nt,
                 /* .n_gpu_layers = */ nl,
+                /* .split_mode   = */ sm,
                 /* .main_gpu     = */ mg,
                 /* .no_kv_offload= */ nkvo,
                 /* .mul_mat_q    = */ mmq,
@@ -535,24 +553,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
             instances.push_back(instance);
         }
     }
-#else
-    // this ordering separates the prompt and generation tests
-    for (const auto & n_prompt : params.n_prompt) {
-        if (n_prompt == 0) {
-            continue;
-        }
-        auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
-        instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
-    }
-
-    for (const auto & n_gen : params.n_gen) {
-        if (n_gen == 0) {
-            continue;
-        }
-        auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
-        instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
-    }
-#endif
 
     return instances;
 }
@@ -576,6 +576,7 @@ struct test {
     ggml_type type_k;
     ggml_type type_v;
     int n_gpu_layers;
+    llama_split_mode split_mode;
     int main_gpu;
     bool no_kv_offload;
     bool mul_mat_q;
@@ -597,6 +598,7 @@ struct test {
         type_k = inst.type_k;
         type_v = inst.type_v;
         n_gpu_layers = inst.n_gpu_layers;
+        split_mode = inst.split_mode;
         main_gpu = inst.main_gpu;
         no_kv_offload = inst.no_kv_offload;
         mul_mat_q = inst.mul_mat_q;
@@ -660,7 +662,8 @@ struct test {
             "cpu_info", "gpu_info",
             "model_filename", "model_type", "model_size", "model_n_params",
             "n_batch", "n_threads", "type_k", "type_v",
-            "n_gpu_layers", "main_gpu", "no_kv_offload",
+            "n_gpu_layers", "split_mode",
+            "main_gpu", "no_kv_offload",
             "mul_mat_q", "tensor_split",
             "n_prompt", "n_gen", "test_time",
             "avg_ns", "stddev_ns",
@@ -711,7 +714,8 @@ struct test {
             cpu_info, gpu_info,
             model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
             std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
-            std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(no_kv_offload),
+            std::to_string(n_gpu_layers), split_mode_str(split_mode),
+            std::to_string(main_gpu), std::to_string(no_kv_offload),
             std::to_string(mul_mat_q), tensor_split_str,
             std::to_string(n_prompt), std::to_string(n_gen), test_time,
             std::to_string(avg_ns()), std::to_string(stdev_ns()),
@@ -867,6 +871,9 @@ struct markdown_printer : public printer {
         if (field == "n_gpu_layers") {
             return "ngl";
         }
+        if (field == "split_mode") {
+            return "sm";
+        }
         if (field == "n_threads") {
             return "threads";
         }
@@ -907,6 +914,9 @@ struct markdown_printer : public printer {
         if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
             fields.push_back("main_gpu");
         }
+        if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
+            fields.push_back("split_mode");
+        }
         if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
             fields.push_back("mul_mat_q");
         }

+ 35 - 5
examples/server/server.cpp

@@ -2005,12 +2005,15 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
 #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
     printf("  -ngl N, --n-gpu-layers N\n");
     printf("                        number of layers to store in VRAM\n");
+    printf("  -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
+    printf("                        how to split the model across multiple GPUs, one of:\n");
+    printf("                          - none: use one GPU only\n");
+    printf("                          - layer (default): split layers and KV across GPUs\n");
+    printf("                          - row: split rows across GPUs\n");
     printf("  -ts SPLIT --tensor-split SPLIT\n");
-    printf("                        how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
-    printf("  -mg i, --main-gpu i   the GPU to use for scratch and small tensors\n");
-    printf("  -nommq, --no-mul-mat-q\n");
-    printf("                        use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
-    printf("                        Not recommended since this is both slower and uses more VRAM.\n");
+    printf("                        fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
+    printf("  -mg i, --main-gpu i   the GPU to use for the model (with split-mode = none),\n");
+    printf("                        or for intermediate results and KV (with split-mode = row)\n");
 #endif
     printf("  -m FNAME, --model FNAME\n");
     printf("                        model path (default: %s)\n", params.model.c_str());
@@ -2253,6 +2256,33 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
                         "See main README.md for information on enabling GPU BLAS support",
                         {{"n_gpu_layers", params.n_gpu_layers}});
 #endif
+        }
+        else if (arg == "--split-mode" || arg == "-sm")
+        {
+            if (++i >= argc) {
+                invalid_param = true;
+                break;
+            }
+            std::string arg_next = argv[i];
+            if (arg_next == "none")
+            {
+                params.split_mode = LLAMA_SPLIT_NONE;
+            }
+            else if (arg_next == "layer")
+            {
+                params.split_mode = LLAMA_SPLIT_LAYER;
+            }
+            else if (arg_next == "row")
+            {
+                params.split_mode = LLAMA_SPLIT_ROW;
+            }
+            else {
+                invalid_param = true;
+                break;
+            }
+#ifndef GGML_USE_CUBLAS
+            fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
+#endif // GGML_USE_CUBLAS
         }
         else if (arg == "--tensor-split" || arg == "-ts")
         {

+ 28 - 6
ggml-alloc.c

@@ -102,8 +102,6 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
         }
     }
 
-    AT_PRINTF("block %d\n", best_fit_block);
-
     if (best_fit_block == -1) {
         // the last block is our last resort
         struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
@@ -117,6 +115,7 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
             return;
         }
     }
+
     struct free_block * block = &alloc->free_blocks[best_fit_block];
     void * addr = block->addr;
     block->addr = (char*)block->addr + size;
@@ -129,6 +128,8 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
         }
     }
 
+    AT_PRINTF("block %d, addr %p\n", best_fit_block, addr);
+
     tensor->data = addr;
     tensor->buffer = alloc->buffer;
     if (!alloc->measure) {
@@ -229,6 +230,7 @@ void ggml_tallocr_reset(ggml_tallocr_t alloc) {
         alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
     } else {
         alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
+        ggml_backend_buffer_reset(alloc->buffer);
     }
 }
 
@@ -263,9 +265,9 @@ ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) {
     return alloc;
 }
 
-ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
+ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft) {
     // create a backend buffer to get the correct tensor allocation sizes
-    ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, 1);
+    ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, 1);
 
     // TODO: move alloc initialization to a common ggml_tallocr_new_impl function
     ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
@@ -275,13 +277,22 @@ ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backe
     return alloc;
 }
 
-ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
-    ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, size);
+ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
+    return ggml_tallocr_new_measure_from_buft(ggml_backend_get_default_buffer_type(backend));
+}
+
+ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size) {
+    // create a backend buffer to get the correct tensor allocation sizes
+    ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
     ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
     alloc->buffer_owned = true;
     return alloc;
 }
 
+ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
+    return ggml_tallocr_new_from_buft(ggml_backend_get_default_buffer_type(backend), size);
+}
+
 ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
     ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
 
@@ -779,10 +790,21 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
 
     if (nbytes == 0) {
         // all the tensors in the context are already allocated
+#ifndef NDEBUG
+        fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
+#endif
         return NULL;
     }
 
     ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes);
+    if (buffer == NULL) {
+        // failed to allocate buffer
+#ifndef NDEBUG
+        fprintf(stderr, "%s: failed to allocate buffer\n", __func__);
+#endif
+        return NULL;
+    }
+
     ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
 
     for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {

+ 3 - 1
ggml-alloc.h

@@ -52,8 +52,10 @@ typedef struct ggml_tallocr * ggml_tallocr_t;
 
 GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment);
 GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment);
-GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer);
+GGML_API ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size);
 GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
+GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer);
+GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft);
 GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend);
 
 GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc);

+ 19 - 19
ggml-backend-impl.h

@@ -16,9 +16,10 @@ extern "C" {
     typedef void * ggml_backend_buffer_type_context_t;
 
     struct ggml_backend_buffer_type_i {
+        const char *          (*get_name)        (ggml_backend_buffer_type_t buft);
         ggml_backend_buffer_t (*alloc_buffer)    (ggml_backend_buffer_type_t buft, size_t size);
         size_t                (*get_alignment)   (ggml_backend_buffer_type_t buft); // tensor alignment
-        size_t                (*get_alloc_size)  (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
+        size_t                (*get_alloc_size)  (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
         bool                  (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
         // check if tensor data is in host memory
         // should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
@@ -34,16 +35,15 @@ extern "C" {
     typedef void * ggml_backend_buffer_context_t;
 
     struct ggml_backend_buffer_i {
-        void   (*free_buffer)    (ggml_backend_buffer_t buffer);
-        //void     (*reset)      (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
-        void * (*get_base)       (ggml_backend_buffer_t buffer);
-        void   (*init_tensor)    (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
-        void   (*set_tensor)     (ggml_backend_buffer_t buffer,       struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
-        void   (*get_tensor)     (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor,       void * data, size_t offset, size_t size);
-        // (optional) copy tensor between different buffer-type, allow for single-copy tranfers
-        void   (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
-        void   (*cpy_tensor_to)  (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
-        void   (*clear)          (ggml_backend_buffer_t buffer, uint8_t value);
+        const char * (*get_name)   (ggml_backend_buffer_t buffer);
+        void         (*free_buffer)(ggml_backend_buffer_t buffer);
+        void *       (*get_base)   (ggml_backend_buffer_t buffer);
+        void         (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+        void         (*set_tensor) (ggml_backend_buffer_t buffer,       struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+        void         (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor,       void * data, size_t offset, size_t size);
+        bool         (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
+        void         (*clear)      (ggml_backend_buffer_t buffer, uint8_t value);
+        void         (*reset)      (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
     };
 
     struct ggml_backend_buffer {
@@ -51,6 +51,7 @@ extern "C" {
         ggml_backend_buffer_type_t    buft;
         ggml_backend_buffer_context_t context;
         size_t size;
+        enum ggml_backend_buffer_usage usage;
     };
 
     ggml_backend_buffer_t ggml_backend_buffer_init(
@@ -59,6 +60,8 @@ extern "C" {
                    ggml_backend_buffer_context_t   context,
                    size_t                          size);
 
+    // do not use directly, use ggml_backend_tensor_copy instead
+    bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
 
     //
     // Backend
@@ -74,22 +77,20 @@ extern "C" {
         // buffer allocation
         ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
 
-        // (optional) asynchroneous tensor data access
+        // (optional) asynchronous tensor data access
         void (*set_tensor_async)(ggml_backend_t backend,       struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
         void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor,       void * data, size_t offset, size_t size);
+        bool (*cpy_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
 
-        // (optional) asynchroneous tensor copy
-        void (*cpy_tensor_from_async)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
-        void (*cpy_tensor_to_async)  (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
-
+        // (optional) complete all pending operations
         void (*synchronize)(ggml_backend_t backend);
 
         // compute graph with a plan
-        ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
+        ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
         void                      (*graph_plan_free)   (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
         void                      (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
 
-        // compute graph without a plan
+        // compute graph without a plan (async)
         bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
 
         // check if the backend supports an operation
@@ -102,7 +103,6 @@ extern "C" {
         ggml_backend_context_t context;
     };
 
-
     //
     // Backend registry
     //

Plik diff jest za duży
+ 392 - 219
ggml-backend.c


+ 35 - 25
ggml-backend.h

@@ -17,22 +17,31 @@ extern "C" {
     //
 
     // buffer type
-    GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
-    GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
-    GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
-    GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
-    GGML_API bool ggml_backend_buft_is_host         (ggml_backend_buffer_type_t buft);
+    GGML_API const char *          ggml_backend_buft_name            (ggml_backend_buffer_type_t buft);
+    GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer    (ggml_backend_buffer_type_t buft, size_t size);
+    GGML_API size_t                ggml_backend_buft_get_alignment   (ggml_backend_buffer_type_t buft);
+    GGML_API size_t                ggml_backend_buft_get_alloc_size  (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
+    GGML_API bool                  ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
+    GGML_API bool                  ggml_backend_buft_is_host         (ggml_backend_buffer_type_t buft);
 
     // buffer
-    GGML_API void   ggml_backend_buffer_free          (ggml_backend_buffer_t buffer);
-    GGML_API void * ggml_backend_buffer_get_base      (ggml_backend_buffer_t buffer);
-    GGML_API size_t ggml_backend_buffer_get_size      (ggml_backend_buffer_t buffer);
-    GGML_API void   ggml_backend_buffer_init_tensor   (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
-    GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
-    GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
-    GGML_API void   ggml_backend_buffer_clear         (ggml_backend_buffer_t buffer, uint8_t value);
-    GGML_API bool   ggml_backend_buffer_is_host       (ggml_backend_buffer_t buffer);
-    GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer);
+    enum ggml_backend_buffer_usage {
+        GGML_BACKEND_BUFFER_USAGE_ANY = 0,
+        GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
+    };
+
+    GGML_API const char *               ggml_backend_buffer_name          (ggml_backend_buffer_t buffer);
+    GGML_API void                       ggml_backend_buffer_free          (ggml_backend_buffer_t buffer);
+    GGML_API void *                     ggml_backend_buffer_get_base      (ggml_backend_buffer_t buffer);
+    GGML_API size_t                     ggml_backend_buffer_get_size      (ggml_backend_buffer_t buffer);
+    GGML_API void                       ggml_backend_buffer_init_tensor   (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+    GGML_API size_t                     ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
+    GGML_API size_t                     ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+    GGML_API void                       ggml_backend_buffer_clear         (ggml_backend_buffer_t buffer, uint8_t value);
+    GGML_API bool                       ggml_backend_buffer_is_host       (ggml_backend_buffer_t buffer);
+    GGML_API void                       ggml_backend_buffer_set_usage     (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
+    GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type      (ggml_backend_buffer_t buffer);
+    GGML_API void                       ggml_backend_buffer_reset         (ggml_backend_buffer_t buffer);
 
     //
     // Backend
@@ -140,23 +149,24 @@ extern "C" {
     typedef struct ggml_backend_sched * ggml_backend_sched_t;
 
     // Initialize a backend scheduler
-    GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends);
-
-    GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
-
+    GGML_API ggml_backend_sched_t  ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
+    GGML_API void                  ggml_backend_sched_free(ggml_backend_sched_t sched);
     // Initialize backend buffers from a measure graph
-    GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
+    GGML_API void                  ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
+    // Get the number of splits of the last graph
+    GGML_API int                   ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
 
     GGML_API ggml_tallocr_t        ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
     GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
 
-    GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
+    GGML_API void                  ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
+    GGML_API ggml_backend_t        ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
 
-    // Allocate a graph on the backend scheduler
-    GGML_API void ggml_backend_sched_graph_compute(
-            ggml_backend_sched_t sched,
-            struct ggml_cgraph * graph);
+    // Allocate and compute graph on the backend scheduler
+    GGML_API void                  ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
 
+    // Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs
+    GGML_API void                  ggml_backend_sched_reset(ggml_backend_sched_t sched);
 
     //
     // Utils
@@ -176,7 +186,7 @@ extern "C" {
     typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
 
     // Compare the output of two backends
-    GGML_API void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
+    GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
 
     // Tensor initialization
     GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);

Plik diff jest za duży
+ 445 - 334
ggml-cuda.cu


+ 7 - 19
ggml-cuda.h

@@ -27,22 +27,6 @@ GGML_API void * ggml_cuda_host_malloc(size_t size);
 GGML_API void   ggml_cuda_host_free(void * ptr);
 
 GGML_API bool   ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
-GGML_API void   ggml_cuda_set_tensor_split(const float * tensor_split);
-GGML_API void   ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
-GGML_API void   ggml_cuda_free_data(struct ggml_tensor * tensor);
-
-GGML_API void   ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
-GGML_API void   ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
-GGML_API void   ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
-
-GGML_API void   ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
-GGML_API void   ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
-GGML_API void   ggml_cuda_copy_to_device(struct ggml_tensor * tensor);
-
-GGML_API void   ggml_cuda_set_main_device(int main_device);
-GGML_API void   ggml_cuda_set_mul_mat_q(bool mul_mat_q);
-GGML_API void   ggml_cuda_set_scratch_size(size_t scratch_size);
-GGML_API void   ggml_cuda_free_scratch(void);
 GGML_API bool   ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
 
 GGML_API int    ggml_cuda_get_device_count(void);
@@ -52,13 +36,17 @@ GGML_API void   ggml_cuda_get_device_description(int device, char * description,
 GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
 
 GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
-GGML_API int  ggml_backend_cuda_get_device(ggml_backend_t backend);
 
 GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
-
-// pinned host buffer for use with CPU backend for faster copies between CPU and GPU
+// split tensor buffer that splits matrices by rows across multiple devices
+GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
+// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
 GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
 
+GGML_API int  ggml_backend_cuda_get_device_count(void);
+GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
+GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
+
 #ifdef  __cplusplus
 }
 #endif

+ 2 - 0
ggml-impl.h

@@ -228,6 +228,8 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
 #define GGML_HASHTABLE_FULL ((size_t)-1)
 #define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
 
+struct ggml_hash_set ggml_hash_set_new(size_t size);
+
 bool   ggml_hash_contains      (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
 
 // returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted

+ 37 - 18
ggml-metal.m

@@ -2520,10 +2520,10 @@ static void ggml_backend_metal_free_device(void) {
     }
 }
 
-static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
-    struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
+static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
+    return "Metal";
 
-    return ctx->all_data;
+    UNUSED(buffer);
 }
 
 static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@@ -2541,6 +2541,12 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
     free(ctx);
 }
 
+static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
+    struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
+
+    return ctx->all_data;
+}
+
 static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
     memcpy((char *)tensor->data + offset, data, size);
 
@@ -2553,14 +2559,12 @@ static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, c
     UNUSED(buffer);
 }
 
-static void ggml_backend_metal_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
-    ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
-
-    UNUSED(buffer);
-}
-
-static void ggml_backend_metal_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
-    ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
+static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
+    if (ggml_backend_buffer_is_host(src->buffer)) {
+        memcpy(dst->data, src->data, ggml_nbytes(src));
+        return true;
+    }
+    return false;
 
     UNUSED(buffer);
 }
@@ -2572,18 +2576,25 @@ static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_
 }
 
 static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
+    /* .get_name        = */ ggml_backend_metal_buffer_get_name,
     /* .free_buffer     = */ ggml_backend_metal_buffer_free_buffer,
     /* .get_base        = */ ggml_backend_metal_buffer_get_base,
     /* .init_tensor     = */ NULL,
     /* .set_tensor      = */ ggml_backend_metal_buffer_set_tensor,
     /* .get_tensor      = */ ggml_backend_metal_buffer_get_tensor,
-    /* .cpy_tensor_from = */ ggml_backend_metal_buffer_cpy_tensor_from,
-    /* .cpy_tensor_to   = */ ggml_backend_metal_buffer_cpy_tensor_to,
+    /* .cpy_tensor      = */ ggml_backend_metal_buffer_cpy_tensor,
     /* .clear           = */ ggml_backend_metal_buffer_clear,
+    /* .reset           = */ NULL,
 };
 
 // default buffer type
 
+static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+    return "Metal";
+
+    UNUSED(buft);
+}
+
 static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
     struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
 
@@ -2656,6 +2667,7 @@ static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t bu
 ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
     static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
         /* .iface = */ {
+            /* .get_name         = */ ggml_backend_metal_buffer_type_get_name,
             /* .alloc_buffer     = */ ggml_backend_metal_buffer_type_alloc_buffer,
             /* .get_alignment    = */ ggml_backend_metal_buffer_type_get_alignment,
             /* .get_alloc_size   = */ NULL, // defaults to ggml_nbytes
@@ -2679,6 +2691,14 @@ ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t siz
     ctx->n_buffers = 0;
 
     const size_t size_page = sysconf(_SC_PAGESIZE);
+
+    // page-align the data ptr
+    {
+        const uintptr_t offs = (uintptr_t) data % size_page;
+        data  = (void *) ((char *) data - offs);
+        size += offs;
+    }
+
     size_t size_aligned = size;
     if ((size_aligned % size_page) != 0) {
         size_aligned += (size_page - (size_aligned % size_page));
@@ -2779,14 +2799,13 @@ static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct
     UNUSED(backend);
 }
 
-static struct ggml_backend_i metal_backend_i = {
+static struct ggml_backend_i ggml_backend_metal_i = {
     /* .get_name                = */ ggml_backend_metal_name,
     /* .free                    = */ ggml_backend_metal_free,
     /* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type,
     /* .set_tensor_async        = */ NULL,
     /* .get_tensor_async        = */ NULL,
-    /* .cpy_tensor_from_async   = */ NULL,
-    /* .cpy_tensor_to_async     = */ NULL,
+    /* .cpy_tensor_async        = */ NULL,
     /* .synchronize             = */ NULL,
     /* .graph_plan_create       = */ NULL,
     /* .graph_plan_free         = */ NULL,
@@ -2805,7 +2824,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
     ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
 
     *metal_backend = (struct ggml_backend) {
-        /* .interface = */ metal_backend_i,
+        /* .interface = */ ggml_backend_metal_i,
         /* .context   = */ ctx,
     };
 
@@ -2813,7 +2832,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
 }
 
 bool ggml_backend_is_metal(ggml_backend_t backend) {
-    return backend->iface.get_name == ggml_backend_metal_name;
+    return backend && backend->iface.get_name == ggml_backend_metal_name;
 }
 
 void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {

+ 321 - 14
ggml-opencl.cpp

@@ -1,5 +1,6 @@
 #include "ggml.h"
 #include "ggml-opencl.h"
+#include "ggml-backend-impl.h"
 
 #include <array>
 #include <atomic>
@@ -10,7 +11,7 @@
 #include <sstream>
 #include <vector>
 
-#define CL_TARGET_OPENCL_VERSION 110
+#define CL_TARGET_OPENCL_VERSION 120
 #include <clblast.h>
 
 #if defined(_MSC_VER)
@@ -929,6 +930,12 @@ static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, co
 }
 
 void ggml_cl_init(void) {
+    static bool initialized = false;
+    if (initialized) {
+        return;
+    }
+    initialized = true;
+
     cl_int err;
 
     struct cl_device;
@@ -1483,8 +1490,8 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
     } else {
         d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
     }
-    cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
-    cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
+    cl_mem d_Y = src1->backend == GGML_BACKEND_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
+    cl_mem d_D =  dst->backend == GGML_BACKEND_GPU ? (cl_mem)  dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
 
     size_t x_offset = 0;
 
@@ -1501,7 +1508,9 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
 
                 for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
                     // copy src1 to device
-                    CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
+                    if (src1->backend == GGML_BACKEND_CPU) {
+                        CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
+                    }
 
                     CL_CHECK(clFinish(queue));
 
@@ -1522,8 +1531,10 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
                     }
 
                     // copy dst to host
-                    float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
-                    CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
+                    if (dst->backend == GGML_BACKEND_CPU) {
+                        float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
+                        CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
+                    }
                 }
             }
         }
@@ -1532,8 +1543,12 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
     if (src0->backend != GGML_BACKEND_GPU) {
         ggml_cl_pool_free(d_X, x_size);
     }
-    ggml_cl_pool_free(d_Y, y_size);
-    ggml_cl_pool_free(d_D, d_size);
+    if (src1->backend != GGML_BACKEND_GPU) {
+        ggml_cl_pool_free(d_Y, y_size);
+    }
+    if (dst->backend != GGML_BACKEND_GPU) {
+        ggml_cl_pool_free(d_D, d_size);
+    }
 }
 
 static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
@@ -1598,6 +1613,8 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
                     CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
                 }
 
+                // FIXME: convert on device
+
                 for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
                     // convert src1 to fp16
                     // TODO: use multiple threads
@@ -1643,11 +1660,13 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
                     }
 
                     // copy dst to host, then convert to float
-                    CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
-
-                    float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
-
-                    ggml_fp16_to_fp32_row(tmp, d, d_ne);
+                    if (dst->backend == GGML_BACKEND_CPU) {
+                        CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
+                        float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
+                        ggml_fp16_to_fp32_row(tmp, d, d_ne);
+                    } else {
+                        // FIXME: convert dst to fp32 on device
+                    }
                 }
             }
         }
@@ -1801,7 +1820,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
 }
 
 
-bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
+bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst) {
     const int64_t ne10 = src1->ne[0];
 
     const int64_t ne0 = dst->ne[0];
@@ -1895,3 +1914,291 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
     tensor->extra = dst;
     GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
 }
+
+// ggml-backend
+
+// buffer
+
+struct ggml_backend_opencl_buffer_context {
+    ~ggml_backend_opencl_buffer_context() {
+        if (buffer) {
+            clReleaseMemObject(buffer);
+        }
+        for (auto * sub_buffer : sub_buffers) {
+            clReleaseMemObject(sub_buffer);
+        }
+    }
+
+    cl_mem buffer;
+    std::vector<cl_mem> sub_buffers;
+};
+
+static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000;
+
+static const char * ggml_backend_opencl_buffer_get_name(ggml_backend_buffer_t buffer) {
+    return "OpenCL";
+
+    GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+    ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
+    delete ctx;
+}
+
+static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
+    return cl_ptr_base;
+
+    GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+    if (tensor->view_src != NULL && tensor->view_offs == 0) {
+        tensor->extra = tensor->view_src->extra;
+    } else {
+        ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
+        cl_buffer_region region = {(size_t)((char *)tensor->data - (char *)cl_ptr_base), ggml_nbytes(tensor)};
+        cl_int err;
+        cl_mem sub_buffer = clCreateSubBuffer(ctx->buffer, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
+        CL_CHECK(err);
+        ctx->sub_buffers.push_back(sub_buffer);
+        tensor->extra = sub_buffer;
+    }
+    tensor->backend = GGML_BACKEND_GPU;
+}
+
+static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+    cl_mem tensor_buffer = (cl_mem) tensor->extra;
+    CL_CHECK(clEnqueueWriteBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
+    CL_CHECK(clFinish(queue));
+
+    GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+    cl_mem tensor_buffer = (cl_mem) tensor->extra;
+    CL_CHECK(clEnqueueReadBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
+    CL_CHECK(clFinish(queue));
+
+    GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+    ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
+    CL_CHECK(clEnqueueFillBuffer(queue, ctx->buffer, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
+    CL_CHECK(clFinish(queue));
+}
+
+static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
+    ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
+    for (auto * sub_buffer : ctx->sub_buffers) {
+        clReleaseMemObject(sub_buffer);
+    }
+    ctx->sub_buffers.clear();
+}
+
+static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
+    /* .get_name        = */ ggml_backend_opencl_buffer_get_name,
+    /* .free_buffer     = */ ggml_backend_opencl_buffer_free_buffer,
+    /* .get_base        = */ ggml_backend_opencl_buffer_get_base,
+    /* .init_tensor     = */ ggml_backend_opencl_buffer_init_tensor,
+    /* .set_tensor      = */ ggml_backend_opencl_buffer_set_tensor,
+    /* .get_tensor      = */ ggml_backend_opencl_buffer_get_tensor,
+    /* .cpy_tensor      = */ NULL,
+    /* .clear           = */ ggml_backend_opencl_buffer_clear,
+    /* .reset           = */ ggml_backend_opencl_buffer_reset,
+};
+
+// buffer type
+
+static const char * ggml_backend_opencl_buffer_type_name(ggml_backend_buffer_type_t buffer_type) {
+    return "OpenCL";
+
+    GGML_UNUSED(buffer_type);
+}
+
+static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
+    ggml_cl_init();
+
+    cl_int err;
+    cl_mem mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err);
+    if (err != CL_SUCCESS) {
+        fprintf(stderr, "%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
+        return nullptr;
+    }
+
+    ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context{mem, {}};
+
+    return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
+}
+
+static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
+    // FIXME: not thread safe, device may not be initialized yet
+    static cl_uint alignment = -1;
+    if (alignment == (cl_uint)-1) {
+        ggml_cl_init();
+        clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &alignment, NULL);
+    }
+    return alignment;
+
+    GGML_UNUSED(buffer_type);
+}
+
+static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buffer_type, ggml_backend_t backend) {
+    //return ggml_backend_is_opencl(backend); // opencl must be used through the cpu backend
+    return ggml_backend_is_cpu(backend);
+
+    GGML_UNUSED(buffer_type);
+}
+
+static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
+    /* .get_name         = */ ggml_backend_opencl_buffer_type_name,
+    /* .alloc_buffer     = */ ggml_backend_opencl_buffer_type_alloc_buffer,
+    /* .get_alignment    = */ ggml_backend_opencl_buffer_type_get_alignment,
+    /* .get_alloc_size   = */ NULL,
+    /* .supports_backend = */ ggml_backend_opencl_buffer_type_supports_backend,
+    /* .is_host          = */ NULL,
+};
+
+
+ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
+    static ggml_backend_buffer_type buffer_type = {
+        /* .iface   = */ ggml_backend_opencl_buffer_type_interface,
+        /* .context = */ nullptr,
+    };
+
+    return &buffer_type;
+}
+
+#if 0
+// host buffer type
+
+static const char * ggml_backend_opencl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+    return "CL_Host";
+
+    GGML_UNUSED(buft);
+}
+
+static const char * ggml_backend_opencl_host_buffer_name(ggml_backend_buffer_t buffer) {
+    return "CL_Host";
+
+    GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_opencl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+    ggml_cl_host_free(buffer->context);
+}
+
+static ggml_backend_buffer_t ggml_backend_opencl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+    void * ptr = ggml_cl_host_malloc(size);
+
+    if (ptr == nullptr) {
+        // fallback to cpu buffer
+        return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
+    }
+
+    ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
+    buffer->buft = buft;
+    buffer->iface.get_name = ggml_backend_opencl_host_buffer_name;
+    buffer->iface.free_buffer = ggml_backend_opencl_host_buffer_free_buffer;
+
+    return buffer;
+}
+
+ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type() {
+    static struct ggml_backend_buffer_type ggml_backend_opencl_buffer_type_host = {
+        /* .iface    = */ {
+            /* .get_name         = */ ggml_backend_opencl_host_buffer_type_name,
+            /* .alloc_buffer     = */ ggml_backend_opencl_host_buffer_type_alloc_buffer,
+            /* .get_alignment    = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
+            /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
+            /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
+            /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
+        },
+        /* .context  = */ nullptr,
+    };
+
+    return &ggml_backend_opencl_buffer_type_host;
+}
+
+// backend
+
+static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
+    return "OpenCL";
+
+    GGML_UNUSED(backend);
+}
+
+static void ggml_backend_opencl_free(ggml_backend_t backend) {
+    GGML_UNUSED(backend);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_opencl_get_default_buffer_type(ggml_backend_t backend) {
+    return ggml_backend_opencl_buffer_type();
+
+    GGML_UNUSED(backend);
+}
+
+static bool ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
+    for (int i = 0; i < graph->n_nodes; ++i) {
+        ggml_tensor * node = graph->nodes[i];
+        switch (node->op) {
+            case GGML_OP_MUL_MAT:
+                ggml_cl_mul_mat(node->src[0], node->src[1], node, nullptr, 0);
+                break;
+            case GGML_OP_MUL:
+                ggml_cl_mul(node->src[0], node->src[1], node);
+                break;
+            default:
+                GGML_ASSERT(false);
+        }
+    }
+
+    return true;
+
+    GGML_UNUSED(backend);
+}
+
+static bool ggml_backend_opencl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
+    switch (op->op) {
+        case GGML_OP_MUL_MAT:
+            return ggml_cl_can_mul_mat(op->src[0], op->src[1], op);
+        case GGML_OP_MUL:
+            // return ggml_can_repeat_rows(op->src[1], op->src[0]);
+            return true;
+        default:
+            return false;
+    }
+
+    GGML_UNUSED(backend);
+}
+
+static ggml_backend_i opencl_backend_i = {
+    /* .get_name                = */ ggml_backend_opencl_name,
+    /* .free                    = */ ggml_backend_opencl_free,
+    /* .get_default_buffer_type = */ ggml_backend_opencl_get_default_buffer_type,
+    /* .set_tensor_async        = */ NULL,
+    /* .get_tensor_async        = */ NULL,
+    /* .cpy_tensor_from_async   = */ NULL,
+    /* .cpy_tensor_to_async     = */ NULL,
+    /* .synchronize             = */ NULL,
+    /* .graph_plan_create       = */ NULL,
+    /* .graph_plan_free         = */ NULL,
+    /* .graph_plan_compute      = */ NULL,
+    /* .graph_compute           = */ ggml_backend_opencl_graph_compute,
+    /* .supports_op             = */ ggml_backend_opencl_supports_op,
+};
+
+ggml_backend_t ggml_backend_opencl_init() {
+    ggml_backend_t backend = new ggml_backend {
+        /* .interface = */ opencl_backend_i,
+        /* .context   = */ nullptr
+    };
+
+    return backend;
+}
+
+bool ggml_backend_is_opencl(ggml_backend_t backend) {
+    return backend && backend->iface.get_name == ggml_backend_opencl_name;
+}
+#endif

+ 13 - 3
ggml-opencl.h

@@ -1,6 +1,7 @@
 #pragma once
 
 #include "ggml.h"
+#include "ggml-backend.h"
 
 #ifdef  __cplusplus
 extern "C" {
@@ -9,17 +10,26 @@ extern "C" {
 GGML_API void ggml_cl_init(void);
 
 GGML_API void   ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
-GGML_API bool   ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
+GGML_API bool   ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst);
 GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
 GGML_API void   ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
 
-GGML_API void * ggml_cl_host_malloc(size_t size);
-GGML_API void   ggml_cl_host_free(void * ptr);
+// GGML_API void * ggml_cl_host_malloc(size_t size);
+// GGML_API void   ggml_cl_host_free(void * ptr);
 
 GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor);
 
 GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
 
+// backend API
+
+// GGML_API ggml_backend_t ggml_backend_opencl_init(void);
+
+// GGML_API bool ggml_backend_is_opencl(ggml_backend_t backend);
+
+GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type(void);
+// GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type(void);
+
 #ifdef  __cplusplus
 }
 #endif

+ 26 - 4
ggml.c

@@ -2354,6 +2354,10 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
 }
 
 void ggml_free(struct ggml_context * ctx) {
+    if (ctx == NULL) {
+        return;
+    }
+
     // make this function thread safe
     ggml_critical_section_start();
 
@@ -4362,6 +4366,23 @@ struct ggml_tensor * ggml_cpy(
     return ggml_cpy_impl(ctx, a, b);
 }
 
+struct ggml_tensor * ggml_cast(
+        struct ggml_context * ctx,
+        struct ggml_tensor  * a,
+        enum   ggml_type      type) {
+    bool is_node = false;
+
+    struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
+    ggml_format_name(result, "%s (copy)", a->name);
+
+    result->op   = GGML_OP_CPY;
+    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+    result->src[0] = a;
+    result->src[1] = result;
+
+    return result;
+}
+
 // ggml_cont
 
 static struct ggml_tensor * ggml_cont_impl(
@@ -14871,7 +14892,7 @@ size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tenso
     return i;
 }
 
-static struct ggml_hash_set ggml_hash_set_new(size_t size) {
+struct ggml_hash_set ggml_hash_set_new(size_t size) {
     size = ggml_hash_size(size);
     struct ggml_hash_set result;
     result.size = size;
@@ -16620,7 +16641,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
     return GGML_EXIT_SUCCESS;
 }
 
-struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
+struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
     if (n_threads <= 0) {
         n_threads = GGML_DEFAULT_N_THREADS;
     }
@@ -16682,14 +16703,15 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
                 } break;
             case GGML_OP_MUL_MAT_ID:
                 {
+                    cur = 0;
                     const struct ggml_tensor * src0 = node->src[2];
                     const struct ggml_tensor * src1 = node->src[1];
                     const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
                     if (src1->type != vec_dot_type) {
-                        cur = ggml_row_size(vec_dot_type, ggml_nelements(src1));
+                        cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
                     }
                     const int n_as = ggml_get_op_params_i32(node, 1);
-                    cur = GGML_PAD(cur, sizeof(int64_t));        // align
+                    cur += GGML_PAD(cur, sizeof(int64_t));       // align
                     cur += n_as * sizeof(int64_t);               // matrix_row_counts
                     cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
                 } break;

+ 7 - 2
ggml.h

@@ -1165,6 +1165,11 @@ extern "C" {
             struct ggml_tensor  * a,
             struct ggml_tensor  * b);
 
+    GGML_API struct ggml_tensor * ggml_cast(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            enum   ggml_type      type);
+
     // make contiguous
     GGML_API struct ggml_tensor * ggml_cont(
             struct ggml_context * ctx,
@@ -1842,8 +1847,8 @@ extern "C" {
 
     // ggml_graph_plan() has to be called before ggml_graph_compute()
     // when plan.work_size > 0, caller must allocate memory for plan.work_data
-    GGML_API struct ggml_cplan ggml_graph_plan   (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
-    GGML_API int               ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
+    GGML_API struct ggml_cplan ggml_graph_plan   (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
+    GGML_API int               ggml_graph_compute(      struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
 
     // same as ggml_graph_compute() but the work data is allocated as a part of the context
     // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data

Plik diff jest za duży
+ 549 - 681
llama.cpp


+ 16 - 2
llama.h

@@ -118,6 +118,12 @@ extern "C" {
         LLAMA_ROPE_SCALING_MAX_VALUE   = LLAMA_ROPE_SCALING_YARN,
     };
 
+    enum llama_split_mode {
+        LLAMA_SPLIT_NONE    = 0, // single GPU
+        LLAMA_SPLIT_LAYER   = 1, // split layers and KV across GPUs
+        LLAMA_SPLIT_ROW     = 2, // split rows across GPUs
+    };
+
     typedef struct llama_token_data {
         llama_token id; // token id
         float logit;    // log-odds of the token
@@ -180,8 +186,16 @@ extern "C" {
 
     struct llama_model_params {
         int32_t n_gpu_layers; // number of layers to store in VRAM
-        int32_t main_gpu;     // the GPU that is used for scratch and small tensors
-        const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
+        enum llama_split_mode split_mode; // how to split the model across multiple GPUs
+
+        // main_gpu interpretation depends on split_mode:
+        // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
+        // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
+        // LLAMA_SPLIT_LAYER: ignored
+        int32_t main_gpu;
+
+        // proportion of the model (layers or rows) to offload to each GPU, size: LLAMA_MAX_DEVICES
+        const float * tensor_split;
 
         // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
         // If the provided progress_callback returns true, model loading continues.

+ 20 - 6
tests/test-backend-ops.cpp

@@ -376,6 +376,11 @@ struct test_case {
 
         // allocate
         ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
+        if (buf == NULL) {
+            printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
+            ggml_free(ctx);
+            return false;
+        }
 
         // build graph
         ggml_build_forward_expand(gf, out);
@@ -463,19 +468,23 @@ struct test_case {
             GGML_UNUSED(index);
         };
 
-        ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
+        const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
 
-        if (ud.ok) {
-            printf("\033[1;32mOK\033[0m\n");
-        } else {
-            printf("\033[1;31mFAIL\033[0m\n");
+        if (!cmp_ok) {
+            printf("compare failed ");
         }
 
         ggml_backend_buffer_free(buf);
 
         ggml_free(ctx);
 
-        return ud.ok;
+        if (ud.ok && cmp_ok) {
+            printf("\033[1;32mOK\033[0m\n");
+            return true;
+        }
+
+        printf("\033[1;31mFAIL\033[0m\n");
+        return false;
     }
 
     bool eval_perf(ggml_backend_t backend, const char * op_name) {
@@ -519,6 +528,11 @@ struct test_case {
 
         // allocate
         ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
+        if (buf == NULL) {
+            printf("failed to allocate tensors\n");
+            ggml_free(ctx);
+            return false;
+        }
 
         // randomize tensors
         initialize_tensors(ctx);

Niektóre pliki nie zostały wyświetlone z powodu dużej ilości zmienionych plików