|
|
@@ -1570,6 +1570,27 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_NEMOTRON_H:
|
|
|
+ {
|
|
|
+ ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
|
|
+ ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
|
|
+ ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
|
|
|
+ ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
|
|
|
+ ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
|
|
|
+
|
|
|
+ // A layer is recurrent IFF the n_head_kv value is set to 0 and
|
|
|
+ // the n_ff value is set to 0
|
|
|
+ for (uint32_t i = 0; i < hparams.n_layer; ++i) {
|
|
|
+ hparams.recurrent_layer_arr[i] = (hparams.n_head_kv(i) == 0 && hparams.n_ff(i) == 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+
|
|
|
+ switch (hparams.n_layer) {
|
|
|
+ case 56: type = LLM_TYPE_9B; break;
|
|
|
+ default: type = LLM_TYPE_UNKNOWN;
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_EXAONE:
|
|
|
{
|
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
@@ -4688,6 +4709,75 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_NEMOTRON_H:
|
|
|
+ {
|
|
|
+ // mamba2 Mixer SSM params
|
|
|
+ // NOTE: int64_t for tensor dimensions
|
|
|
+ const int64_t d_conv = hparams.ssm_d_conv;
|
|
|
+ const int64_t d_inner = hparams.ssm_d_inner;
|
|
|
+ const int64_t d_state = hparams.ssm_d_state;
|
|
|
+ const int64_t n_ssm_head = hparams.ssm_dt_rank;
|
|
|
+ const int64_t n_group = hparams.ssm_n_group;
|
|
|
+ const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
|
|
|
+
|
|
|
+ // embeddings
|
|
|
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ // output
|
|
|
+ {
|
|
|
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
|
|
+ // if output is NULL, init from the input tok embed, duplicated to allow offloading
|
|
|
+ if (output == NULL) {
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
+ auto & layer = layers[i];
|
|
|
+
|
|
|
+ // all blocks use the attn norm
|
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ if (hparams.is_recurrent(i)) {
|
|
|
+ // ssm layers
|
|
|
+ layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
|
|
|
+
|
|
|
+ layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
|
|
|
+ layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
|
|
|
+
|
|
|
+ layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
|
|
|
+
|
|
|
+ // no "weight" suffix for these
|
|
|
+ layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
|
|
|
+ layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
|
|
|
+
|
|
|
+ layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
|
|
|
+
|
|
|
+ // out_proj
|
|
|
+ layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
|
|
|
+ } else if (hparams.n_ff(i) == 0) {
|
|
|
+ // attention layers (with optional bias)
|
|
|
+ const int64_t n_head_i = hparams.n_head(i);
|
|
|
+ const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
|
|
|
+ const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
|
|
|
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
|
|
|
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
|
|
|
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
|
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
|
|
|
+ layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
|
|
+ layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
|
|
|
+ layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
|
|
|
+ layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
|
|
+ } else {
|
|
|
+ // mlp layers
|
|
|
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
|
|
|
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
|
|
|
+ layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
|
|
+ layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_EXAONE:
|
|
|
{
|
|
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
@@ -5862,7 +5952,8 @@ void llama_model::print_info() const {
|
|
|
arch == LLM_ARCH_JAMBA ||
|
|
|
arch == LLM_ARCH_FALCON_H1 ||
|
|
|
arch == LLM_ARCH_PLAMO2 ||
|
|
|
- arch == LLM_ARCH_GRANITE_HYBRID) {
|
|
|
+ arch == LLM_ARCH_GRANITE_HYBRID ||
|
|
|
+ arch == LLM_ARCH_NEMOTRON_H) {
|
|
|
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
|
|
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
|
|
|
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
|
|
|
@@ -14129,6 +14220,138 @@ struct llm_build_nemotron : public llm_graph_context {
|
|
|
}
|
|
|
};
|
|
|
|
|
|
+struct llm_build_nemotron_h : public llm_graph_context_mamba {
|
|
|
+ llm_build_nemotron_h(
|
|
|
+ const llama_model & model,
|
|
|
+ const llm_graph_params & params) :
|
|
|
+ llm_graph_context_mamba(params) {
|
|
|
+
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
+
|
|
|
+ ggml_tensor * cur;
|
|
|
+ ggml_tensor * inpL;
|
|
|
+
|
|
|
+ inpL = build_inp_embd(model.tok_embd);
|
|
|
+
|
|
|
+ auto * inp = build_inp_mem_hybrid();
|
|
|
+
|
|
|
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
+
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
|
+
|
|
|
+ // norm
|
|
|
+ cur = build_norm(inpL,
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
+
|
|
|
+ if (hparams.is_recurrent(il)) {
|
|
|
+ // ssm layer //
|
|
|
+ cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
|
|
|
+ } else if (hparams.n_ff(il) == 0) {
|
|
|
+ // attention layer //
|
|
|
+ cur = build_attention_layer(cur, inp->get_attn(), model, n_embd_head, il);
|
|
|
+ } else {
|
|
|
+ cur = build_ffn_layer(cur, model, il);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (il == n_layer - 1 && inp_out_ids) {
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
+ }
|
|
|
+
|
|
|
+ // add residual
|
|
|
+ cur = ggml_add(ctx0, cur, inpSA);
|
|
|
+ cb(cur, "block_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ cur = build_norm(cur,
|
|
|
+ model.output_norm, NULL,
|
|
|
+ LLM_NORM_RMS, -1);
|
|
|
+
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+ res->t_embd = cur;
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = build_lora_mm(model.output, cur);
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+ res->t_logits = cur;
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor * build_attention_layer(
|
|
|
+ ggml_tensor * cur,
|
|
|
+ llm_graph_input_attn_kv * inp_attn,
|
|
|
+ const llama_model & model,
|
|
|
+ const int64_t n_embd_head,
|
|
|
+ const int il) {
|
|
|
+
|
|
|
+ // compute Q and K and (optionally) RoPE them
|
|
|
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ if (model.layers[il].bq) {
|
|
|
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ if (model.layers[il].bk) {
|
|
|
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+ if (model.layers[il].bv) {
|
|
|
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
|
|
|
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
|
|
|
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
|
|
|
+
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+
|
|
|
+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
|
|
+ cur = build_attn(inp_attn,
|
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
|
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
|
|
|
+ cb(cur, "attn_out", il);
|
|
|
+ return cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor * build_ffn_layer(
|
|
|
+ ggml_tensor * cur,
|
|
|
+ const llama_model & model,
|
|
|
+ const int il) {
|
|
|
+
|
|
|
+ cur = build_ffn(cur,
|
|
|
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
|
|
+ NULL, NULL, NULL,
|
|
|
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
|
|
+ NULL,
|
|
|
+ LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+
|
|
|
+ cur = build_cvec(cur, il);
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ return cur;
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
struct llm_build_exaone : public llm_graph_context {
|
|
|
llm_build_exaone(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
@@ -18277,6 +18500,23 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
|
|
cparams.n_seq_max,
|
|
|
nullptr);
|
|
|
} else if (llm_arch_is_hybrid(arch)) {
|
|
|
+
|
|
|
+ // The main difference between hybrid architectures is the
|
|
|
+ // layer filters, so pick the right one here
|
|
|
+ llama_memory_hybrid::layer_filter_cb filter_attn = nullptr;
|
|
|
+ llama_memory_hybrid::layer_filter_cb filter_recr = nullptr;
|
|
|
+ if (arch == LLM_ARCH_FALCON_H1) {
|
|
|
+ filter_attn = [&](int32_t) { return true; };
|
|
|
+ filter_recr = [&](int32_t) { return true; };
|
|
|
+ } else if (arch == LLM_ARCH_NEMOTRON_H) {
|
|
|
+ filter_attn = [&](int32_t il) {
|
|
|
+ return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
|
|
|
+ };
|
|
|
+ filter_recr = [&](int32_t il) {
|
|
|
+ return hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
|
|
|
+ };
|
|
|
+ }
|
|
|
+
|
|
|
const auto padding = llama_kv_cache::get_padding(cparams);
|
|
|
|
|
|
cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
|
|
|
@@ -18296,8 +18536,8 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
|
|
/* n_seq_max */ cparams.n_seq_max,
|
|
|
/* offload */ cparams.offload_kqv,
|
|
|
/* unified */ cparams.kv_unified,
|
|
|
- /* filter_attn */ (arch == LLM_ARCH_FALCON_H1) ? [&](int32_t) { return true; } : (llama_memory_hybrid::layer_filter_cb)nullptr,
|
|
|
- /* filter_recr */ (arch == LLM_ARCH_FALCON_H1) ? [&](int32_t) { return true; } : (llama_memory_hybrid::layer_filter_cb)nullptr);
|
|
|
+ /* filter_attn */ std::move(filter_attn),
|
|
|
+ /* filter_recr */ std::move(filter_recr));
|
|
|
} else {
|
|
|
const auto padding = llama_kv_cache::get_padding(cparams);
|
|
|
|
|
|
@@ -18625,6 +18865,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_nemotron>(*this, params);
|
|
|
} break;
|
|
|
+ case LLM_ARCH_NEMOTRON_H:
|
|
|
+ {
|
|
|
+ llm = std::make_unique<llm_build_nemotron_h>(*this, params);
|
|
|
+ } break;
|
|
|
case LLM_ARCH_EXAONE:
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_exaone>(*this, params);
|
|
|
@@ -18860,6 +19104,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
|
case LLM_ARCH_RWKV7:
|
|
|
case LLM_ARCH_ARWKV7:
|
|
|
case LLM_ARCH_WAVTOKENIZER_DEC:
|
|
|
+ case LLM_ARCH_NEMOTRON_H:
|
|
|
return LLAMA_ROPE_TYPE_NONE;
|
|
|
|
|
|
// use what we call a normal RoPE, operating on pairs of consecutive head values
|