|
|
@@ -128,6 +128,89 @@ struct ring_buffer {
|
|
|
std::vector<T> data;
|
|
|
};
|
|
|
|
|
|
+// writes result in res, does not mutate cur
|
|
|
+static void llama_token_data_array_partial_sort(const llama_token_data_array & cur, int npartial, std::vector<llama_token_data> & res) {
|
|
|
+ static const auto comp = [](const llama_token_data & a, const llama_token_data & b) {
|
|
|
+ return a.logit > b.logit;
|
|
|
+ };
|
|
|
+
|
|
|
+ constexpr int nbuckets = 128;
|
|
|
+ constexpr float bucket_low = -10.0f;
|
|
|
+ constexpr float bucket_high = 10.0f;
|
|
|
+ constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
|
|
|
+ constexpr float bucket_inter = -bucket_low * bucket_scale;
|
|
|
+
|
|
|
+ std::vector<int> bucket_idx;
|
|
|
+ std::vector<int> histo(nbuckets, 0);
|
|
|
+
|
|
|
+ std::vector<llama_token_data*> bucket_ptrs;
|
|
|
+
|
|
|
+ bucket_idx.reserve(cur.size);
|
|
|
+
|
|
|
+ for (int i = 0; i < (int)cur.size; ++i) {
|
|
|
+ const float val = cur.data[i].logit;
|
|
|
+ int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
|
|
|
+ ib = std::max(0, std::min(nbuckets - 1, ib));
|
|
|
+ bucket_idx.push_back(ib);
|
|
|
+ ++histo[ib];
|
|
|
+ }
|
|
|
+ int nhave = 0;
|
|
|
+ int ib = nbuckets - 1;
|
|
|
+ for ( ; ib >= 0; --ib) {
|
|
|
+ nhave += histo[ib];
|
|
|
+ if (nhave >= npartial) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ res.resize(nhave);
|
|
|
+ auto * ptr = res.data();
|
|
|
+ bucket_ptrs.reserve(nbuckets - ib);
|
|
|
+ for (int j = nbuckets - 1; j >= ib; --j) {
|
|
|
+ bucket_ptrs.push_back(ptr);
|
|
|
+ ptr += histo[j];
|
|
|
+ }
|
|
|
+ for (int i = 0; i < (int)cur.size; ++i) {
|
|
|
+ int j = bucket_idx[i];
|
|
|
+ if (j >= ib) {
|
|
|
+ *bucket_ptrs[nbuckets - 1 - j]++ = cur.data[i];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ ptr = res.data();
|
|
|
+ int ndone = 0;
|
|
|
+ for (int j = nbuckets - 1; j > ib; --j) {
|
|
|
+ std::sort(ptr, ptr + histo[j], comp);
|
|
|
+ ptr += histo[j];
|
|
|
+ ndone += histo[j];
|
|
|
+ }
|
|
|
+ std::partial_sort(ptr, ptr + npartial - ndone, ptr + histo[ib], comp);
|
|
|
+}
|
|
|
+
|
|
|
+// reduces the size of cur_p to npartial, keeping only the top npartial elements
|
|
|
+static void llama_token_data_array_partial_sort_inplace(llama_token_data_array * cur_p, int npartial) {
|
|
|
+ static const auto comp = [](const llama_token_data & a, const llama_token_data & b) {
|
|
|
+ return a.logit > b.logit;
|
|
|
+ };
|
|
|
+
|
|
|
+ if (npartial <= 128) {
|
|
|
+ std::partial_sort(cur_p->data, cur_p->data + npartial, cur_p->data + cur_p->size, comp);
|
|
|
+
|
|
|
+ cur_p->size = npartial;
|
|
|
+ cur_p->sorted = true;
|
|
|
+
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<llama_token_data> tmp;
|
|
|
+
|
|
|
+ llama_token_data_array_partial_sort(*cur_p, npartial, tmp);
|
|
|
+
|
|
|
+ std::copy(tmp.data(), tmp.data() + npartial, cur_p->data);
|
|
|
+
|
|
|
+ cur_p->size = npartial;
|
|
|
+ cur_p->sorted = true;
|
|
|
+}
|
|
|
+
|
|
|
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
|
|
|
// iterator for the probabilities
|
|
|
#ifdef __GNUC__
|
|
|
@@ -200,18 +283,21 @@ static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) {
|
|
|
+static void llama_sampler_softmax_impl(llama_token_data_array * cur_p, bool do_sort) {
|
|
|
GGML_ASSERT(cur_p->size > 0);
|
|
|
|
|
|
- // Sort the logits in descending order
|
|
|
- if (!cur_p->sorted) {
|
|
|
- std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
|
|
|
- return a.logit > b.logit;
|
|
|
- });
|
|
|
- cur_p->sorted = true;
|
|
|
+ // Sort the logits in descending order if requested
|
|
|
+ if (do_sort && !cur_p->sorted) {
|
|
|
+ llama_token_data_array_partial_sort_inplace(cur_p, cur_p->size);
|
|
|
}
|
|
|
|
|
|
float max_l = cur_p->data[0].logit;
|
|
|
+ if (!cur_p->sorted) {
|
|
|
+ for (size_t i = 1; i < cur_p->size; ++i) {
|
|
|
+ max_l = std::max(max_l, cur_p->data[i].logit);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
float cum_sum = 0.0f;
|
|
|
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) {
|
|
|
@@ -226,7 +312,6 @@ static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) {
|
|
|
}
|
|
|
|
|
|
static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) {
|
|
|
- // TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast
|
|
|
// if (k >= (int32_t)cur_p->size) {
|
|
|
// return;
|
|
|
// }
|
|
|
@@ -239,64 +324,7 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
|
|
|
|
|
|
// Sort scores in descending order
|
|
|
if (!cur_p->sorted) {
|
|
|
- auto comp = [](const llama_token_data & a, const llama_token_data & b) {
|
|
|
- return a.logit > b.logit;
|
|
|
- };
|
|
|
- if (k <= 128) {
|
|
|
- std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp);
|
|
|
- } else {
|
|
|
- constexpr int nbuckets = 128;
|
|
|
- constexpr float bucket_low = -10.0f;
|
|
|
- constexpr float bucket_high = 10.0f;
|
|
|
- constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
|
|
|
- constexpr float bucket_inter = -bucket_low * bucket_scale;
|
|
|
-
|
|
|
- std::vector<int> bucket_idx(cur_p->size);
|
|
|
- std::vector<int> histo(nbuckets, 0);
|
|
|
-
|
|
|
- for (int i = 0; i < (int)cur_p->size; ++i) {
|
|
|
- const float val = cur_p->data[i].logit;
|
|
|
- int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
|
|
|
- ib = std::max(0, std::min(nbuckets - 1, ib));
|
|
|
- bucket_idx[i] = ib;
|
|
|
- ++histo[ib];
|
|
|
- }
|
|
|
- int nhave = 0;
|
|
|
- int ib = nbuckets - 1;
|
|
|
- for ( ; ib >= 0; --ib) {
|
|
|
- nhave += histo[ib];
|
|
|
- if (nhave >= k) {
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- std::vector<llama_token_data> tmp_tokens(nhave);
|
|
|
- auto * ptr = tmp_tokens.data();
|
|
|
- std::vector<llama_token_data*> bucket_ptrs;
|
|
|
- bucket_ptrs.reserve(nbuckets - ib);
|
|
|
- for (int j = nbuckets - 1; j >= ib; --j) {
|
|
|
- bucket_ptrs.push_back(ptr);
|
|
|
- ptr += histo[j];
|
|
|
- }
|
|
|
- for (int i = 0; i < (int)cur_p->size; ++i) {
|
|
|
- int j = bucket_idx[i];
|
|
|
- if (j >= ib) {
|
|
|
- *bucket_ptrs[nbuckets - 1 - j]++ = cur_p->data[i];
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- ptr = tmp_tokens.data();
|
|
|
- int ndone = 0;
|
|
|
- for (int j = nbuckets - 1; j > ib; --j) {
|
|
|
- std::sort(ptr, ptr + histo[j], comp);
|
|
|
- ptr += histo[j];
|
|
|
- ndone += histo[j];
|
|
|
- }
|
|
|
- std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
|
|
|
-
|
|
|
- std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data));
|
|
|
-
|
|
|
- }
|
|
|
- cur_p->sorted = true;
|
|
|
+ llama_token_data_array_partial_sort_inplace(cur_p, k);
|
|
|
}
|
|
|
|
|
|
cur_p->size = k;
|
|
|
@@ -576,7 +604,8 @@ static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*
|
|
|
static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
|
|
auto * ctx = (llama_sampler_dist *) smpl->ctx;
|
|
|
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
+ // sorting is not necessary here
|
|
|
+ llama_sampler_softmax_impl(cur_p, false);
|
|
|
|
|
|
cur_p->selected = llama_sample_dist(cur_p, ctx->rng);
|
|
|
}
|
|
|
@@ -626,32 +655,6 @@ struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
|
|
|
);
|
|
|
}
|
|
|
|
|
|
-// softmax
|
|
|
-
|
|
|
-static const char * llama_sampler_softmax_name(const struct llama_sampler * /*smpl*/) {
|
|
|
- return "softmax";
|
|
|
-}
|
|
|
-
|
|
|
-static void llama_sampler_softmax_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
-}
|
|
|
-
|
|
|
-static struct llama_sampler_i llama_sampler_softmax_i = {
|
|
|
- /* .name = */ llama_sampler_softmax_name,
|
|
|
- /* .accept = */ nullptr,
|
|
|
- /* .apply = */ llama_sampler_softmax_apply,
|
|
|
- /* .reset = */ nullptr,
|
|
|
- /* .clone = */ nullptr,
|
|
|
- /* .free = */ nullptr,
|
|
|
-};
|
|
|
-
|
|
|
-struct llama_sampler * llama_sampler_init_softmax() {
|
|
|
- return llama_sampler_init(
|
|
|
- /* .iface = */ &llama_sampler_softmax_i,
|
|
|
- /* .ctx = */ nullptr
|
|
|
- );
|
|
|
-}
|
|
|
-
|
|
|
// top-k
|
|
|
|
|
|
struct llama_sampler_top_k {
|
|
|
@@ -663,7 +666,7 @@ static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl
|
|
|
}
|
|
|
|
|
|
static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
|
|
- const auto * ctx = (llama_sampler_top_k *) smpl->ctx;
|
|
|
+ auto * ctx = (llama_sampler_top_k *) smpl->ctx;
|
|
|
llama_sampler_top_k_impl(cur_p, ctx->k);
|
|
|
}
|
|
|
|
|
|
@@ -699,6 +702,8 @@ struct llama_sampler * llama_sampler_init_top_k(int32_t k) {
|
|
|
struct llama_sampler_top_p {
|
|
|
const float p;
|
|
|
const size_t min_keep;
|
|
|
+
|
|
|
+ std::vector<llama_token_data> buf_sort;
|
|
|
};
|
|
|
|
|
|
static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) {
|
|
|
@@ -706,20 +711,35 @@ static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl
|
|
|
}
|
|
|
|
|
|
static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
|
|
- const auto * ctx = (llama_sampler_top_p *) smpl->ctx;
|
|
|
+ auto * ctx = (llama_sampler_top_p *) smpl->ctx;
|
|
|
|
|
|
if (ctx->p >= 1.0f) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
+ llama_sampler_softmax_impl(cur_p, false);
|
|
|
+
|
|
|
+ size_t k = cur_p->size;
|
|
|
+ auto * pdata = cur_p->data;
|
|
|
+
|
|
|
+ auto & buf_sort = ctx->buf_sort;
|
|
|
+
|
|
|
+ // if not sorted, try adaptive top-k sorting
|
|
|
+ if (!cur_p->sorted && cur_p->size > 1024) {
|
|
|
+ k = std::min<size_t>(256, cur_p->size);
|
|
|
+ llama_token_data_array_partial_sort(*cur_p, k, buf_sort);
|
|
|
+ pdata = buf_sort.data();
|
|
|
+ } else if (!cur_p->sorted) {
|
|
|
+ // small candidates -> sort inplace
|
|
|
+ llama_token_data_array_partial_sort_inplace(cur_p, k);
|
|
|
+ }
|
|
|
|
|
|
// Compute the cumulative probabilities
|
|
|
float cum_sum = 0.0f;
|
|
|
size_t last_idx = cur_p->size;
|
|
|
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) {
|
|
|
- cum_sum += cur_p->data[i].p;
|
|
|
+ cum_sum += pdata[i].p;
|
|
|
|
|
|
// Check if the running sum is at least p or if we have kept at least min_keep tokens
|
|
|
// we set the last index to i+1 to indicate that the current iterate should be included in the set
|
|
|
@@ -727,9 +747,21 @@ static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_d
|
|
|
last_idx = i + 1;
|
|
|
break;
|
|
|
}
|
|
|
+
|
|
|
+ // we exceeded the current top-k heuristic -> increase k and continue
|
|
|
+ if (!cur_p->sorted && i == k - 1) {
|
|
|
+ k = cur_p->size;
|
|
|
+ llama_token_data_array_partial_sort(*cur_p, k, buf_sort);
|
|
|
+ pdata = buf_sort.data();
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
// Resize the output vector to keep only the top-p tokens
|
|
|
+ if (!cur_p->sorted) {
|
|
|
+ std::copy(buf_sort.data(), buf_sort.data() + last_idx, cur_p->data);
|
|
|
+ cur_p->sorted = true;
|
|
|
+ }
|
|
|
+
|
|
|
cur_p->size = last_idx;
|
|
|
}
|
|
|
|
|
|
@@ -757,6 +789,7 @@ struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) {
|
|
|
/* .ctx = */ new llama_sampler_top_p {
|
|
|
/* .p = */ p,
|
|
|
/* .min_keep = */ min_keep,
|
|
|
+ /* .buf_sort = */ {},
|
|
|
}
|
|
|
);
|
|
|
}
|
|
|
@@ -773,7 +806,7 @@ static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl
|
|
|
}
|
|
|
|
|
|
static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
|
|
- const auto * ctx = (llama_sampler_min_p *) smpl->ctx;
|
|
|
+ auto * ctx = (llama_sampler_min_p *) smpl->ctx;
|
|
|
|
|
|
if (ctx->p <= 0.0f || !cur_p->size) {
|
|
|
return;
|
|
|
@@ -799,7 +832,7 @@ static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_d
|
|
|
|
|
|
// if we have enough values the operation was a success
|
|
|
if (!filtered_tokens.empty() && filtered_tokens.size() >= ctx->min_keep) {
|
|
|
- memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
|
|
|
+ std::copy(filtered_tokens.begin(), filtered_tokens.end(), cur_p->data);
|
|
|
cur_p->size = filtered_tokens.size();
|
|
|
min_p_applied = true;
|
|
|
}
|
|
|
@@ -809,10 +842,7 @@ static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_d
|
|
|
if (!min_p_applied) {
|
|
|
// Sort the logits in descending order
|
|
|
if (!cur_p->sorted) {
|
|
|
- std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
|
|
|
- return a.logit > b.logit;
|
|
|
- });
|
|
|
- cur_p->sorted = true;
|
|
|
+ llama_token_data_array_partial_sort_inplace(cur_p, cur_p->size);
|
|
|
}
|
|
|
|
|
|
const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max
|
|
|
@@ -869,7 +899,7 @@ static const char * llama_sampler_typical_name(const struct llama_sampler * /*sm
|
|
|
}
|
|
|
|
|
|
static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
|
|
- const auto * ctx = (llama_sampler_typical *) smpl->ctx;
|
|
|
+ auto * ctx = (llama_sampler_typical *) smpl->ctx;
|
|
|
|
|
|
// Reference implementation:
|
|
|
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
|
|
|
@@ -878,7 +908,7 @@ static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token
|
|
|
}
|
|
|
|
|
|
// Compute the softmax of logits and calculate entropy
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
+ llama_sampler_softmax_impl(cur_p, true);
|
|
|
|
|
|
float entropy = 0.0f;
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) {
|
|
|
@@ -1012,7 +1042,7 @@ static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*s
|
|
|
}
|
|
|
|
|
|
static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
|
|
- const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx;
|
|
|
+ auto * ctx = (llama_sampler_temp_ext *) smpl->ctx;
|
|
|
if (ctx->delta > 0) {
|
|
|
const float min_temp = std::max(0.0f, ctx->temp - ctx->delta);
|
|
|
const float max_temp = ctx->temp + ctx->delta;
|
|
|
@@ -1027,7 +1057,7 @@ static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_toke
|
|
|
// Calculate maximum possible entropy
|
|
|
float max_entropy = -logf(1.0f / cur_p->size);
|
|
|
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
+ llama_sampler_softmax_impl(cur_p, true);
|
|
|
|
|
|
// Calculate entropy of the softmax probabilities
|
|
|
float entropy = 0.0f;
|
|
|
@@ -1121,7 +1151,7 @@ struct llama_sampler_xtc {
|
|
|
const uint32_t seed;
|
|
|
uint32_t seed_cur;
|
|
|
|
|
|
- std::mt19937 rng;
|
|
|
+ std::mt19937 rng;
|
|
|
};
|
|
|
|
|
|
static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) {
|
|
|
@@ -1139,17 +1169,20 @@ static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data
|
|
|
|
|
|
std::uniform_real_distribution<float> distribution(0.0f, 1.0f);
|
|
|
float chance = distribution(ctx->rng);
|
|
|
- if (chance > ctx->probability) return;
|
|
|
+ if (chance > ctx->probability) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
|
|
|
- // in case it's not sorted/recalculated yet
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
+ llama_sampler_softmax_impl(cur_p, true);
|
|
|
|
|
|
int pos_last = 0;
|
|
|
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) {
|
|
|
if (cur_p->data[i].p >= ctx->threshold) {
|
|
|
pos_last = i;
|
|
|
- } else break;
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) {
|
|
|
@@ -1221,7 +1254,7 @@ struct llama_sampler_mirostat {
|
|
|
|
|
|
float mu;
|
|
|
|
|
|
- std::mt19937 rng;
|
|
|
+ std::mt19937 rng;
|
|
|
};
|
|
|
|
|
|
static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) {
|
|
|
@@ -1231,7 +1264,7 @@ static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*s
|
|
|
static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
|
|
auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
|
|
|
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
+ llama_sampler_softmax_impl(cur_p, true);
|
|
|
|
|
|
// Estimate s_hat using the most probable m tokens
|
|
|
float s_hat = 0.0;
|
|
|
@@ -1250,7 +1283,8 @@ static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_toke
|
|
|
float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat);
|
|
|
|
|
|
llama_sampler_top_k_impl(cur_p, std::max(int(k), 1));
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
+
|
|
|
+ llama_sampler_softmax_impl(cur_p, true);
|
|
|
|
|
|
const int idx = llama_sample_dist(cur_p, ctx->rng);
|
|
|
|
|
|
@@ -1336,7 +1370,7 @@ static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler *
|
|
|
static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
|
|
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
|
|
|
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
+ llama_sampler_softmax_impl(cur_p, true);
|
|
|
|
|
|
// Truncate the words with surprise values greater than mu
|
|
|
cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) {
|
|
|
@@ -1348,7 +1382,7 @@ static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_t
|
|
|
}
|
|
|
|
|
|
// Normalize the probabilities of the remaining words
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
+ llama_sampler_softmax_impl(cur_p, true);
|
|
|
|
|
|
const int idx = llama_sample_dist(cur_p, ctx->rng);
|
|
|
|
|
|
@@ -1540,7 +1574,7 @@ static struct llama_sampler * llama_sampler_init_grammar_impl(
|
|
|
trigger_pattern += std::regex_replace(trigger_words[i], special_chars, "\\$0");
|
|
|
}
|
|
|
trigger_pattern += ")[\\s\\S]*";
|
|
|
- auto trigger_pattern_c = trigger_pattern.c_str();
|
|
|
+ const auto * trigger_pattern_c = trigger_pattern.c_str();
|
|
|
trigger_patterns = &trigger_pattern_c;
|
|
|
num_trigger_patterns = 1;
|
|
|
}
|
|
|
@@ -1748,7 +1782,7 @@ static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler *
|
|
|
}
|
|
|
|
|
|
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
|
|
- const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
|
|
|
+ auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
|
|
|
|
|
|
if (ctx->n <= 0.0f || cur_p->size <= 1) {
|
|
|
return;
|
|
|
@@ -1780,13 +1814,14 @@ static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_t
|
|
|
}
|
|
|
float std = valid_count > 0 ? sqrt(acc/valid_count) : 0;
|
|
|
|
|
|
- //apply mask
|
|
|
+ // apply mask
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) {
|
|
|
if (cur_p->data[i].logit < max - (ctx->n * std)) {
|
|
|
cur_p->data[i].logit = -INFINITY;
|
|
|
}
|
|
|
}
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
+
|
|
|
+ llama_sampler_softmax_impl(cur_p, true);
|
|
|
}
|
|
|
|
|
|
static struct llama_sampler * llama_sampler_top_n_sigma_clone(const struct llama_sampler * smpl) {
|
|
|
@@ -1991,7 +2026,9 @@ static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_dat
|
|
|
|
|
|
{
|
|
|
const int last = last_n_repeat - 1;
|
|
|
- int rt = 0, lt = 0;
|
|
|
+
|
|
|
+ int rt = 0;
|
|
|
+ int lt = 0;
|
|
|
|
|
|
for (int k = 1; k < last_n_repeat; ++k) {
|
|
|
if (k > rt) {
|
|
|
@@ -2135,8 +2172,8 @@ static struct llama_sampler_i llama_sampler_dry_i = {
|
|
|
/* .free = */ llama_sampler_dry_free,
|
|
|
};
|
|
|
|
|
|
-struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
|
|
|
- int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0);
|
|
|
+struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t n_ctx_train, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
|
|
|
+ int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? n_ctx_train : std::max(dry_penalty_last_n, 0);
|
|
|
std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers;
|
|
|
const int MAX_CHAR_LEN = 40;
|
|
|
const int MAX_SEQ_LEN = 20;
|
|
|
@@ -2169,7 +2206,7 @@ struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab,
|
|
|
return llama_sampler_init(
|
|
|
/* .iface = */ &llama_sampler_dry_i,
|
|
|
/* .ctx = */ new llama_sampler_dry {
|
|
|
- /* .total_context_size = */ context_size,
|
|
|
+ /* .total_context_size = */ n_ctx_train,
|
|
|
/* .dry_multiplier = */ dry_multiplier,
|
|
|
/* .dry_base = */ dry_base,
|
|
|
/* .dry_allowed_length = */ dry_allowed_length,
|
|
|
@@ -2308,7 +2345,7 @@ static const char * llama_sampler_infill_name(const struct llama_sampler * /*smp
|
|
|
static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
|
|
auto * ctx = (llama_sampler_infill *) smpl->ctx;
|
|
|
|
|
|
- llama_sampler_softmax_impl(cur_p);
|
|
|
+ llama_sampler_softmax_impl(cur_p, true);
|
|
|
|
|
|
#if defined(GGML_DEBUG_SAMPLER_INFILL)
|
|
|
#define LOG_DBG_CUR LLAMA_LOG_DEBUG
|