|
|
@@ -1,4 +1,4 @@
|
|
|
-#include "llama-kv-cache-recurrent.h"
|
|
|
+#include "llama-memory-recurrent.h"
|
|
|
|
|
|
#include "llama-impl.h"
|
|
|
#include "llama-io.h"
|
|
|
@@ -12,27 +12,28 @@
|
|
|
#include <stdexcept>
|
|
|
|
|
|
//
|
|
|
-// llama_kv_cache_recurrent
|
|
|
+// llama_memory_recurrent
|
|
|
//
|
|
|
|
|
|
-llama_kv_cache_recurrent::llama_kv_cache_recurrent(
|
|
|
- const llama_model & model,
|
|
|
- ggml_type type_k,
|
|
|
- ggml_type type_v,
|
|
|
- bool offload,
|
|
|
- uint32_t kv_size,
|
|
|
- uint32_t n_seq_max) : hparams(model.hparams), n_seq_max(n_seq_max) {
|
|
|
+llama_memory_recurrent::llama_memory_recurrent(
|
|
|
+ const llama_model & model,
|
|
|
+ layer_filter_cb && filter,
|
|
|
+ ggml_type type_r,
|
|
|
+ ggml_type type_s,
|
|
|
+ bool offload,
|
|
|
+ uint32_t mem_size,
|
|
|
+ uint32_t n_seq_max) : hparams(model.hparams), n_seq_max(n_seq_max) {
|
|
|
const int32_t n_layer = hparams.n_layer;
|
|
|
|
|
|
- LLAMA_LOG_INFO("%s: kv_size = %u, n_seq_max = %u, type_k = '%s', type_v = '%s', n_layer = %d\n",
|
|
|
- __func__, kv_size, n_seq_max, ggml_type_name(type_k), ggml_type_name(type_v), n_layer);
|
|
|
+ LLAMA_LOG_INFO("%s: mem_size = %u, n_seq_max = %u, type_r = '%s', type_s = '%s', n_layer = %d\n",
|
|
|
+ __func__, mem_size, n_seq_max, ggml_type_name(type_r), ggml_type_name(type_s), n_layer);
|
|
|
|
|
|
head = 0;
|
|
|
- size = kv_size;
|
|
|
+ size = mem_size;
|
|
|
used = 0;
|
|
|
|
|
|
cells.clear();
|
|
|
- cells.resize(kv_size);
|
|
|
+ cells.resize(mem_size);
|
|
|
|
|
|
// create a context for each buffer type
|
|
|
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
|
|
@@ -59,12 +60,14 @@ llama_kv_cache_recurrent::llama_kv_cache_recurrent(
|
|
|
return it->second;
|
|
|
};
|
|
|
|
|
|
- k_l.reserve(n_layer);
|
|
|
- v_l.reserve(n_layer);
|
|
|
+ r_l.resize(n_layer);
|
|
|
+ s_l.resize(n_layer);
|
|
|
|
|
|
for (int i = 0; i < n_layer; i++) {
|
|
|
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
|
|
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
|
|
+ if (filter && !filter(i)) {
|
|
|
+ LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, i);
|
|
|
+ continue;
|
|
|
+ }
|
|
|
|
|
|
const char * dev_name = "CPU";
|
|
|
|
|
|
@@ -84,12 +87,12 @@ llama_kv_cache_recurrent::llama_kv_cache_recurrent(
|
|
|
throw std::runtime_error("failed to create ggml context for kv cache");
|
|
|
}
|
|
|
|
|
|
- ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
|
|
- ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
|
|
- ggml_format_name(k, "cache_k_l%d", i);
|
|
|
- ggml_format_name(v, "cache_v_l%d", i);
|
|
|
- k_l.push_back(k);
|
|
|
- v_l.push_back(v);
|
|
|
+ ggml_tensor * r = ggml_new_tensor_1d(ctx, type_r, hparams.n_embd_r()*mem_size);
|
|
|
+ ggml_tensor * s = ggml_new_tensor_1d(ctx, type_s, hparams.n_embd_s()*mem_size);
|
|
|
+ ggml_format_name(r, "cache_r_l%d", i);
|
|
|
+ ggml_format_name(s, "cache_s_l%d", i);
|
|
|
+ r_l[i] = r;
|
|
|
+ s_l[i] = s;
|
|
|
}
|
|
|
|
|
|
// allocate tensors and initialize the buffers to avoid NaNs in the padding
|
|
|
@@ -107,17 +110,17 @@ llama_kv_cache_recurrent::llama_kv_cache_recurrent(
|
|
|
}
|
|
|
|
|
|
{
|
|
|
- const size_t memory_size_k = size_k_bytes();
|
|
|
- const size_t memory_size_v = size_v_bytes();
|
|
|
+ const size_t memory_size_r = size_r_bytes();
|
|
|
+ const size_t memory_size_s = size_s_bytes();
|
|
|
|
|
|
- LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
|
|
|
- (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
|
|
|
- ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
|
|
|
- ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
|
|
+ LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, R (%s): %7.2f MiB, S (%s): %7.2f MiB\n", __func__,
|
|
|
+ (float)(memory_size_r + memory_size_s) / (1024.0f * 1024.0f),
|
|
|
+ ggml_type_name(type_r), (float)memory_size_r / (1024.0f * 1024.0f),
|
|
|
+ ggml_type_name(type_s), (float)memory_size_s / (1024.0f * 1024.0f));
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void llama_kv_cache_recurrent::clear(bool data) {
|
|
|
+void llama_memory_recurrent::clear(bool data) {
|
|
|
for (int32_t i = 0; i < (int32_t) size; ++i) {
|
|
|
cells[i].pos = -1;
|
|
|
cells[i].seq_id.clear();
|
|
|
@@ -135,7 +138,7 @@ void llama_kv_cache_recurrent::clear(bool data) {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
|
|
|
+bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
|
|
|
uint32_t new_head = size;
|
|
|
|
|
|
if (p0 < 0) {
|
|
|
@@ -154,7 +157,7 @@ bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_p
|
|
|
if (0 <= seq_id) {
|
|
|
int32_t & tail_id = cells[seq_id].tail;
|
|
|
if (tail_id >= 0) {
|
|
|
- const kv_cell & cell = cells[tail_id];
|
|
|
+ const auto & cell = cells[tail_id];
|
|
|
// partial intersection is invalid
|
|
|
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
|
|
|
return false;
|
|
|
@@ -202,7 +205,7 @@ bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_p
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
-void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
|
|
+void llama_memory_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
|
|
if (seq_id_src == seq_id_dst) {
|
|
|
return;
|
|
|
}
|
|
|
@@ -216,11 +219,11 @@ void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_
|
|
|
}
|
|
|
|
|
|
if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
|
|
|
- kv_cell & tail_src = cells[seq_id_src];
|
|
|
- kv_cell & tail_dst = cells[seq_id_dst];
|
|
|
+ auto & tail_src = cells[seq_id_src];
|
|
|
+ auto & tail_dst = cells[seq_id_dst];
|
|
|
if (tail_dst.tail >= 0) {
|
|
|
// clear destination seq_id if it wasn't empty
|
|
|
- kv_cell & cell_dst = cells[tail_dst.tail];
|
|
|
+ auto & cell_dst = cells[tail_dst.tail];
|
|
|
|
|
|
cell_dst.seq_id.erase(seq_id_dst);
|
|
|
tail_dst.tail = -1;
|
|
|
@@ -231,7 +234,7 @@ void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_
|
|
|
}
|
|
|
}
|
|
|
if (tail_src.tail >= 0) {
|
|
|
- kv_cell & cell_src = cells[tail_src.tail];
|
|
|
+ auto & cell_src = cells[tail_src.tail];
|
|
|
|
|
|
cell_src.seq_id.insert(seq_id_dst);
|
|
|
tail_dst.tail = tail_src.tail;
|
|
|
@@ -239,7 +242,7 @@ void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) {
|
|
|
+void llama_memory_recurrent::seq_keep(llama_seq_id seq_id) {
|
|
|
uint32_t new_head = size;
|
|
|
|
|
|
for (uint32_t i = 0; i < size; ++i) {
|
|
|
@@ -271,7 +274,7 @@ void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
|
|
|
+void llama_memory_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
|
|
|
if (shift == 0) {
|
|
|
return;
|
|
|
}
|
|
|
@@ -293,7 +296,7 @@ void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_
|
|
|
if (0 <= seq_id && seq_id < (int64_t) size) {
|
|
|
const int32_t tail_id = cells[seq_id].tail;
|
|
|
if (tail_id >= 0) {
|
|
|
- kv_cell & cell = cells[tail_id];
|
|
|
+ auto & cell = cells[tail_id];
|
|
|
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
|
|
cell.pos += shift;
|
|
|
}
|
|
|
@@ -301,7 +304,7 @@ void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
|
|
|
+void llama_memory_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
|
|
|
if (d == 1) {
|
|
|
return;
|
|
|
}
|
|
|
@@ -323,7 +326,7 @@ void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_
|
|
|
if (0 <= seq_id && seq_id < (int64_t) size) {
|
|
|
const int32_t tail_id = cells[seq_id].tail;
|
|
|
if (tail_id >= 0) {
|
|
|
- kv_cell & cell = cells[tail_id];
|
|
|
+ auto & cell = cells[tail_id];
|
|
|
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
|
|
cell.pos /= d;
|
|
|
}
|
|
|
@@ -331,7 +334,7 @@ void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-llama_pos llama_kv_cache_recurrent::seq_pos_min(llama_seq_id seq_id) const {
|
|
|
+llama_pos llama_memory_recurrent::seq_pos_min(llama_seq_id seq_id) const {
|
|
|
llama_pos result = std::numeric_limits<llama_pos>::max();
|
|
|
|
|
|
for (uint32_t i = 0; i < size; ++i) {
|
|
|
@@ -347,7 +350,7 @@ llama_pos llama_kv_cache_recurrent::seq_pos_min(llama_seq_id seq_id) const {
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
-llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const {
|
|
|
+llama_pos llama_memory_recurrent::seq_pos_max(llama_seq_id seq_id) const {
|
|
|
llama_pos result = -1;
|
|
|
|
|
|
for (uint32_t i = 0; i < size; ++i) {
|
|
|
@@ -359,7 +362,7 @@ llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const {
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
-llama_memory_state_ptr llama_kv_cache_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_all) {
|
|
|
+llama_memory_state_ptr llama_memory_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_all) {
|
|
|
auto sbatch = llama_sbatch(batch, hparams.n_embd, false);
|
|
|
|
|
|
std::vector<llama_ubatch> ubatches;
|
|
|
@@ -378,24 +381,24 @@ llama_memory_state_ptr llama_kv_cache_recurrent::init_batch(const llama_batch &
|
|
|
}
|
|
|
|
|
|
if (!prepare(ubatches)) {
|
|
|
- return std::make_unique<llama_kv_cache_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
|
+ return std::make_unique<llama_memory_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
|
}
|
|
|
|
|
|
- return std::make_unique<llama_kv_cache_recurrent_state>(LLAMA_MEMORY_STATUS_SUCCESS, this, std::move(sbatch), std::move(ubatches));
|
|
|
+ return std::make_unique<llama_memory_recurrent_state>(this, std::move(sbatch), std::move(ubatches));
|
|
|
}
|
|
|
|
|
|
-llama_memory_state_ptr llama_kv_cache_recurrent::init_full() {
|
|
|
- return std::make_unique<llama_kv_cache_recurrent_state>(LLAMA_MEMORY_STATUS_SUCCESS, this);
|
|
|
+llama_memory_state_ptr llama_memory_recurrent::init_full() {
|
|
|
+ return std::make_unique<llama_memory_recurrent_state>(this);
|
|
|
}
|
|
|
|
|
|
-llama_memory_state_ptr llama_kv_cache_recurrent::init_update(llama_context * lctx, bool optimize) {
|
|
|
+llama_memory_state_ptr llama_memory_recurrent::init_update(llama_context * lctx, bool optimize) {
|
|
|
GGML_UNUSED(lctx);
|
|
|
GGML_UNUSED(optimize);
|
|
|
|
|
|
- return std::make_unique<llama_kv_cache_recurrent_state>(LLAMA_MEMORY_STATUS_NO_UPDATE);
|
|
|
+ return std::make_unique<llama_memory_recurrent_state>(LLAMA_MEMORY_STATUS_NO_UPDATE);
|
|
|
}
|
|
|
|
|
|
-bool llama_kv_cache_recurrent::prepare(const std::vector<llama_ubatch> & ubatches) {
|
|
|
+bool llama_memory_recurrent::prepare(const std::vector<llama_ubatch> & ubatches) {
|
|
|
// simply remember the full state because it is very small for this type of cache
|
|
|
// TODO: optimize
|
|
|
auto org_cells = cells;
|
|
|
@@ -419,7 +422,7 @@ bool llama_kv_cache_recurrent::prepare(const std::vector<llama_ubatch> & ubatche
|
|
|
return success;
|
|
|
}
|
|
|
|
|
|
-bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
|
|
|
+bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
|
|
|
const uint32_t n_seqs = ubatch.n_seqs;
|
|
|
|
|
|
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
|
|
|
@@ -453,9 +456,9 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
|
|
|
return false;
|
|
|
}
|
|
|
if (j > 0) {
|
|
|
- kv_cell & seq = cells[seq_id];
|
|
|
+ auto & seq = cells[seq_id];
|
|
|
if (seq.tail >= 0) {
|
|
|
- kv_cell & cell = cells[seq.tail];
|
|
|
+ auto & cell = cells[seq.tail];
|
|
|
// clear cells from seq_ids that become shared
|
|
|
// (should not normally happen, but let's handle it anyway)
|
|
|
cell.seq_id.erase(seq_id);
|
|
|
@@ -475,7 +478,7 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
|
|
|
std::vector<int32_t> tails_verif;
|
|
|
tails_verif.assign(size, -1);
|
|
|
for (uint32_t i = 0; i < size; ++i) {
|
|
|
- kv_cell & cell = cells[i];
|
|
|
+ auto & cell = cells[i];
|
|
|
for (llama_seq_id seq_id : cell.seq_id) {
|
|
|
if (tails_verif[seq_id] != -1) {
|
|
|
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
|
|
|
@@ -496,7 +499,7 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
|
|
|
|
|
|
for (uint32_t i = 0; i < size; ++i) {
|
|
|
if (next_empty_cell >= size) { next_empty_cell -= size; }
|
|
|
- kv_cell & cell = cells[next_empty_cell];
|
|
|
+ auto & cell = cells[next_empty_cell];
|
|
|
if (cell.is_empty()) { break; }
|
|
|
next_empty_cell += 1;
|
|
|
}
|
|
|
@@ -504,20 +507,20 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
|
|
|
// find usable cell range
|
|
|
for (uint32_t s = 0; s < n_seqs; ++s) {
|
|
|
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
|
|
- kv_cell & seq_meta = cells[seq_id];
|
|
|
+ auto & seq_meta = cells[seq_id];
|
|
|
bool has_cell = false;
|
|
|
if (seq_meta.tail >= 0) {
|
|
|
- kv_cell & cell = cells[seq_meta.tail];
|
|
|
+ auto & cell = cells[seq_meta.tail];
|
|
|
GGML_ASSERT(cell.has_seq_id(seq_id));
|
|
|
// does this seq_id "own" the cell?
|
|
|
if (cell.seq_id.size() == 1) { has_cell = true; }
|
|
|
}
|
|
|
if (!has_cell) {
|
|
|
- kv_cell & empty_cell = cells[next_empty_cell];
|
|
|
+ auto & empty_cell = cells[next_empty_cell];
|
|
|
GGML_ASSERT(empty_cell.is_empty());
|
|
|
// copy old tail into the empty cell
|
|
|
if (seq_meta.tail >= 0) {
|
|
|
- kv_cell & orig_cell = cells[seq_meta.tail];
|
|
|
+ auto & orig_cell = cells[seq_meta.tail];
|
|
|
empty_cell.pos = orig_cell.pos;
|
|
|
empty_cell.src = orig_cell.src;
|
|
|
orig_cell.seq_id.erase(seq_id);
|
|
|
@@ -530,7 +533,7 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
|
|
|
for (uint32_t i = 0; i < size; ++i) {
|
|
|
next_empty_cell += 1;
|
|
|
if (next_empty_cell >= size) { next_empty_cell -= size; }
|
|
|
- kv_cell & cell = cells[next_empty_cell];
|
|
|
+ auto & cell = cells[next_empty_cell];
|
|
|
if (cell.is_empty()) { break; }
|
|
|
}
|
|
|
}
|
|
|
@@ -544,8 +547,8 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
|
|
|
const int32_t dst_id = s + min;
|
|
|
const int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
|
|
|
if (dst_id != src_id) {
|
|
|
- kv_cell & dst_cell = cells[dst_id];
|
|
|
- kv_cell & src_cell = cells[src_id];
|
|
|
+ auto & dst_cell = cells[dst_id];
|
|
|
+ auto & src_cell = cells[src_id];
|
|
|
|
|
|
std::swap(dst_cell.pos, src_cell.pos);
|
|
|
std::swap(dst_cell.src, src_cell.src);
|
|
|
@@ -567,7 +570,7 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
|
|
|
for (uint32_t s = 0; s < n_seqs; ++s) {
|
|
|
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
|
|
const int32_t cell_id = s + min;
|
|
|
- kv_cell & cell = cells[cell_id];
|
|
|
+ auto & cell = cells[cell_id];
|
|
|
|
|
|
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
|
|
|
// What should happen when the pos backtracks or skips a value?
|
|
|
@@ -620,18 +623,18 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
|
|
|
head = min;
|
|
|
n = max - min + 1;
|
|
|
used = std::count_if(cells.begin(), cells.end(),
|
|
|
- [](const kv_cell & cell){ return !cell.is_empty(); });
|
|
|
+ [](const mem_cell & cell){ return !cell.is_empty(); });
|
|
|
|
|
|
// sanity check
|
|
|
return n >= n_seqs;
|
|
|
}
|
|
|
|
|
|
-bool llama_kv_cache_recurrent::get_can_shift() const {
|
|
|
+bool llama_memory_recurrent::get_can_shift() const {
|
|
|
// shifting the pos is trivial for recurrent models
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
-size_t llama_kv_cache_recurrent::total_size() const {
|
|
|
+size_t llama_memory_recurrent::total_size() const {
|
|
|
size_t size = 0;
|
|
|
for (const auto & buf : bufs) {
|
|
|
size += ggml_backend_buffer_get_size(buf.get());
|
|
|
@@ -640,27 +643,31 @@ size_t llama_kv_cache_recurrent::total_size() const {
|
|
|
return size;
|
|
|
}
|
|
|
|
|
|
-size_t llama_kv_cache_recurrent::size_k_bytes() const {
|
|
|
- size_t size_k_bytes = 0;
|
|
|
+size_t llama_memory_recurrent::size_r_bytes() const {
|
|
|
+ size_t size_r_bytes = 0;
|
|
|
|
|
|
- for (const auto & k : k_l) {
|
|
|
- size_k_bytes += ggml_nbytes(k);
|
|
|
+ for (const auto & r : r_l) {
|
|
|
+ if (r != nullptr) {
|
|
|
+ size_r_bytes += ggml_nbytes(r);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- return size_k_bytes;
|
|
|
+ return size_r_bytes;
|
|
|
}
|
|
|
|
|
|
-size_t llama_kv_cache_recurrent::size_v_bytes() const {
|
|
|
- size_t size_v_bytes = 0;
|
|
|
+size_t llama_memory_recurrent::size_s_bytes() const {
|
|
|
+ size_t size_s_bytes = 0;
|
|
|
|
|
|
- for (const auto & v : v_l) {
|
|
|
- size_v_bytes += ggml_nbytes(v);
|
|
|
+ for (const auto & s : s_l) {
|
|
|
+ if (s != nullptr) {
|
|
|
+ size_s_bytes += ggml_nbytes(s);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- return size_v_bytes;
|
|
|
+ return size_s_bytes;
|
|
|
}
|
|
|
|
|
|
-void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
|
|
+void llama_memory_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
|
|
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
|
|
|
uint32_t cell_count = 0;
|
|
|
|
|
|
@@ -698,7 +705,7 @@ void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id s
|
|
|
state_write_data(io, cell_ranges);
|
|
|
}
|
|
|
|
|
|
-void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
|
|
|
+void llama_memory_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
|
|
|
uint32_t cell_count;
|
|
|
io.read_to(&cell_count, sizeof(cell_count));
|
|
|
|
|
|
@@ -717,7 +724,7 @@ void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
|
|
|
+void llama_memory_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
|
|
|
for (const auto & range : cell_ranges) {
|
|
|
for (uint32_t i = range.first; i < range.second; ++i) {
|
|
|
const auto & cell = cells[i];
|
|
|
@@ -736,87 +743,85 @@ void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
|
|
|
- const uint32_t v_trans = 0;
|
|
|
+void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
|
|
|
+ const uint32_t s_trans = 0;
|
|
|
const uint32_t n_layer = hparams.n_layer;
|
|
|
|
|
|
- io.write(&v_trans, sizeof(v_trans));
|
|
|
- io.write(&n_layer, sizeof(n_layer));
|
|
|
+ io.write(&s_trans, sizeof(s_trans));
|
|
|
+ io.write(&n_layer, sizeof(n_layer));
|
|
|
|
|
|
std::vector<uint8_t> tmp_buf;
|
|
|
|
|
|
// Iterate and write all the keys first, each row is a cell
|
|
|
// Get whole range at a time
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
|
|
|
|
|
|
// Write key type
|
|
|
- const int32_t k_type_i = (int32_t)k_l[il]->type;
|
|
|
- io.write(&k_type_i, sizeof(k_type_i));
|
|
|
+ const int32_t r_type_i = (int32_t)r_l[il]->type;
|
|
|
+ io.write(&r_type_i, sizeof(r_type_i));
|
|
|
|
|
|
// Write row size of key
|
|
|
- const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
|
|
- io.write(&k_size_row, sizeof(k_size_row));
|
|
|
+ const uint64_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r());
|
|
|
+ io.write(&r_size_row, sizeof(r_size_row));
|
|
|
|
|
|
// Read each range of cells of k_size length each into tmp_buf and write out
|
|
|
for (const auto & range : cell_ranges) {
|
|
|
const size_t range_size = range.second - range.first;
|
|
|
- const size_t buf_size = range_size * k_size_row;
|
|
|
- io.write_tensor(k_l[il], range.first * k_size_row, buf_size);
|
|
|
+ const size_t buf_size = range_size * r_size_row;
|
|
|
+ io.write_tensor(r_l[il], range.first * r_size_row, buf_size);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- if (!v_trans) {
|
|
|
+ if (!s_trans) {
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
|
|
|
|
|
// Write value type
|
|
|
- const int32_t v_type_i = (int32_t)v_l[il]->type;
|
|
|
- io.write(&v_type_i, sizeof(v_type_i));
|
|
|
+ const int32_t s_type_i = (int32_t)s_l[il]->type;
|
|
|
+ io.write(&s_type_i, sizeof(s_type_i));
|
|
|
|
|
|
// Write row size of value
|
|
|
- const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
|
|
|
- io.write(&v_size_row, sizeof(v_size_row));
|
|
|
+ const uint64_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s());
|
|
|
+ io.write(&s_size_row, sizeof(s_size_row));
|
|
|
|
|
|
- // Read each range of cells of v_size length each into tmp_buf and write out
|
|
|
+ // Read each range of cells of s_size length each into tmp_buf and write out
|
|
|
for (const auto & range : cell_ranges) {
|
|
|
const size_t range_size = range.second - range.first;
|
|
|
- const size_t buf_size = range_size * v_size_row;
|
|
|
- io.write_tensor(v_l[il], range.first * v_size_row, buf_size);
|
|
|
+ const size_t buf_size = range_size * s_size_row;
|
|
|
+ io.write_tensor(s_l[il], range.first * s_size_row, buf_size);
|
|
|
}
|
|
|
}
|
|
|
} else {
|
|
|
// When v is transposed, we also need the element size and get the element ranges from each row
|
|
|
- const uint32_t kv_size = size;
|
|
|
+ const uint32_t mem_size = size;
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
|
|
+ const uint32_t n_embd_s = hparams.n_embd_s();
|
|
|
|
|
|
// Write value type
|
|
|
- const int32_t v_type_i = (int32_t)v_l[il]->type;
|
|
|
- io.write(&v_type_i, sizeof(v_type_i));
|
|
|
+ const int32_t s_type_i = (int32_t)s_l[il]->type;
|
|
|
+ io.write(&s_type_i, sizeof(s_type_i));
|
|
|
|
|
|
// Write element size
|
|
|
- const uint32_t v_size_el = ggml_type_size(v_l[il]->type);
|
|
|
- io.write(&v_size_el, sizeof(v_size_el));
|
|
|
+ const uint32_t s_size_el = ggml_type_size(s_l[il]->type);
|
|
|
+ io.write(&s_size_el, sizeof(s_size_el));
|
|
|
|
|
|
// Write GQA embedding size
|
|
|
- io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
|
|
|
+ io.write(&n_embd_s, sizeof(n_embd_s));
|
|
|
|
|
|
// For each row, we get the element values of each cell
|
|
|
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
|
|
+ for (uint32_t j = 0; j < n_embd_s; ++j) {
|
|
|
// Read each range of cells of v_size_el length each into tmp_buf and write out
|
|
|
for (const auto & range : cell_ranges) {
|
|
|
const size_t range_size = range.second - range.first;
|
|
|
- const size_t src_offset = (range.first + j * kv_size) * v_size_el;
|
|
|
- const size_t buf_size = range_size * v_size_el;
|
|
|
- io.write_tensor(v_l[il], src_offset, buf_size);
|
|
|
+ const size_t src_offset = (range.first + j * mem_size) * s_size_el;
|
|
|
+ const size_t buf_size = range_size * s_size_el;
|
|
|
+ io.write_tensor(s_l[il], src_offset, buf_size);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
|
|
|
+bool llama_memory_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
|
|
|
if (dest_seq_id != -1) {
|
|
|
// single sequence
|
|
|
|
|
|
@@ -869,7 +874,7 @@ bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t ce
|
|
|
clear(true);
|
|
|
|
|
|
for (uint32_t i = 0; i < cell_count; ++i) {
|
|
|
- kv_cell & cell = cells[i];
|
|
|
+ auto & cell = cells[i];
|
|
|
|
|
|
llama_pos pos;
|
|
|
uint32_t n_seq_id;
|
|
|
@@ -883,7 +888,7 @@ bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t ce
|
|
|
llama_seq_id seq_id;
|
|
|
io.read_to(&seq_id, sizeof(seq_id));
|
|
|
|
|
|
- // TODO: llama_kv_cache_recurrent should have a notion of max sequences
|
|
|
+ // TODO: llama_memory_recurrent should have a notion of max sequences
|
|
|
//if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
|
|
|
if (seq_id < 0) {
|
|
|
//LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
|
|
|
@@ -915,10 +920,10 @@ bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t ce
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
-bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
|
|
|
- uint32_t v_trans;
|
|
|
+bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
|
|
|
+ uint32_t s_trans;
|
|
|
uint32_t n_layer;
|
|
|
- io.read_to(&v_trans, sizeof(v_trans));
|
|
|
+ io.read_to(&s_trans, sizeof(s_trans));
|
|
|
io.read_to(&n_layer, sizeof(n_layer));
|
|
|
|
|
|
if (n_layer != hparams.n_layer) {
|
|
|
@@ -929,102 +934,100 @@ bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t ce
|
|
|
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
|
|
|
return false;
|
|
|
}
|
|
|
- if (false != (bool) v_trans) {
|
|
|
- LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
|
|
|
+ if (false != (bool) s_trans) {
|
|
|
+ LLAMA_LOG_ERROR("%s: incompatible s transposition\n", __func__);
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
|
|
|
|
|
|
// Read type of key
|
|
|
- int32_t k_type_i_ref;
|
|
|
- io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
|
|
|
- const int32_t k_type_i = (int32_t) k_l[il]->type;
|
|
|
- if (k_type_i != k_type_i_ref) {
|
|
|
- LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
|
|
|
+ int32_t r_type_i_ref;
|
|
|
+ io.read_to(&r_type_i_ref, sizeof(r_type_i_ref));
|
|
|
+ const int32_t r_type_i = (int32_t) r_l[il]->type;
|
|
|
+ if (r_type_i != r_type_i_ref) {
|
|
|
+ LLAMA_LOG_ERROR("%s: mismatched r type (%d != %d, layer %d)\n", __func__, r_type_i, r_type_i_ref, il);
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
// Read row size of key
|
|
|
- uint64_t k_size_row_ref;
|
|
|
- io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
|
|
|
- const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
|
|
- if (k_size_row != k_size_row_ref) {
|
|
|
- LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
|
|
|
+ uint64_t r_size_row_ref;
|
|
|
+ io.read_to(&r_size_row_ref, sizeof(r_size_row_ref));
|
|
|
+ const size_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r());
|
|
|
+ if (r_size_row != r_size_row_ref) {
|
|
|
+ LLAMA_LOG_ERROR("%s: mismatched r row size (%zu != %zu, layer %d)\n", __func__, r_size_row, (size_t) r_size_row_ref, il);
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
if (cell_count) {
|
|
|
// Read and set the keys for the whole cell range
|
|
|
- ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
|
|
|
+ ggml_backend_tensor_set(r_l[il], io.read(cell_count * r_size_row), head * r_size_row, cell_count * r_size_row);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- if (!v_trans) {
|
|
|
+ if (!s_trans) {
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
|
|
|
|
|
// Read type of value
|
|
|
- int32_t v_type_i_ref;
|
|
|
- io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
|
|
|
- const int32_t v_type_i = (int32_t)v_l[il]->type;
|
|
|
- if (v_type_i != v_type_i_ref) {
|
|
|
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
|
|
|
+ int32_t s_type_i_ref;
|
|
|
+ io.read_to(&s_type_i_ref, sizeof(s_type_i_ref));
|
|
|
+ const int32_t s_type_i = (int32_t)s_l[il]->type;
|
|
|
+ if (s_type_i != s_type_i_ref) {
|
|
|
+ LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il);
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
// Read row size of value
|
|
|
- uint64_t v_size_row_ref;
|
|
|
- io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
|
|
|
- const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
|
|
|
- if (v_size_row != v_size_row_ref) {
|
|
|
- LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
|
|
|
+ uint64_t s_size_row_ref;
|
|
|
+ io.read_to(&s_size_row_ref, sizeof(s_size_row_ref));
|
|
|
+ const size_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s());
|
|
|
+ if (s_size_row != s_size_row_ref) {
|
|
|
+ LLAMA_LOG_ERROR("%s: mismatched s row size (%zu != %zu, layer %d)\n", __func__, s_size_row, (size_t) s_size_row_ref, il);
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
if (cell_count) {
|
|
|
// Read and set the values for the whole cell range
|
|
|
- ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
|
|
|
+ ggml_backend_tensor_set(s_l[il], io.read(cell_count * s_size_row), head * s_size_row, cell_count * s_size_row);
|
|
|
}
|
|
|
}
|
|
|
} else {
|
|
|
// For each layer, read the values for each cell (transposed)
|
|
|
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
|
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
|
|
+ const uint32_t n_embd_s = hparams.n_embd_s();
|
|
|
|
|
|
// Read type of value
|
|
|
- int32_t v_type_i_ref;
|
|
|
- io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
|
|
|
- const int32_t v_type_i = (int32_t)v_l[il]->type;
|
|
|
- if (v_type_i != v_type_i_ref) {
|
|
|
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
|
|
|
+ int32_t s_type_i_ref;
|
|
|
+ io.read_to(&s_type_i_ref, sizeof(s_type_i_ref));
|
|
|
+ const int32_t s_type_i = (int32_t)s_l[il]->type;
|
|
|
+ if (s_type_i != s_type_i_ref) {
|
|
|
+ LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il);
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
// Read element size of value
|
|
|
- uint32_t v_size_el_ref;
|
|
|
- io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
|
|
|
- const size_t v_size_el = ggml_type_size(v_l[il]->type);
|
|
|
- if (v_size_el != v_size_el_ref) {
|
|
|
- LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
|
|
|
+ uint32_t s_size_el_ref;
|
|
|
+ io.read_to(&s_size_el_ref, sizeof(s_size_el_ref));
|
|
|
+ const size_t s_size_el = ggml_type_size(s_l[il]->type);
|
|
|
+ if (s_size_el != s_size_el_ref) {
|
|
|
+ LLAMA_LOG_ERROR("%s: mismatched s element size (%zu != %zu, layer %d)\n", __func__, s_size_el, (size_t) s_size_el_ref, il);
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
- // Read GQA embedding size
|
|
|
- uint32_t n_embd_v_gqa_ref;
|
|
|
- io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
|
|
|
- if (n_embd_v_gqa != n_embd_v_gqa_ref) {
|
|
|
- LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
|
|
|
+ // Read state embedding size
|
|
|
+ uint32_t n_embd_s_ref;
|
|
|
+ io.read_to(&n_embd_s_ref, sizeof(n_embd_s_ref));
|
|
|
+ if (n_embd_s != n_embd_s_ref) {
|
|
|
+ LLAMA_LOG_ERROR("%s: mismatched s embedding size (%u != %u, layer %d)\n", __func__, n_embd_s, n_embd_s_ref, il);
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
if (cell_count) {
|
|
|
// For each row in the transposed matrix, read the values for the whole cell range
|
|
|
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
|
|
- const size_t dst_offset = (head + j * size) * v_size_el;
|
|
|
- ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
|
|
|
+ for (uint32_t j = 0; j < n_embd_s; ++j) {
|
|
|
+ const size_t dst_offset = (head + j * size) * s_size_el;
|
|
|
+ ggml_backend_tensor_set(s_l[il], io.read(cell_count * s_size_el), dst_offset, cell_count * s_size_el);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
@@ -1034,25 +1037,23 @@ bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t ce
|
|
|
}
|
|
|
|
|
|
//
|
|
|
-// llama_kv_cache_recurrent_state
|
|
|
+// llama_memory_recurrent_state
|
|
|
//
|
|
|
|
|
|
-llama_kv_cache_recurrent_state::llama_kv_cache_recurrent_state(llama_memory_status status) : status(status) {}
|
|
|
+llama_memory_recurrent_state::llama_memory_recurrent_state(llama_memory_status status) : status(status) {}
|
|
|
|
|
|
-llama_kv_cache_recurrent_state::llama_kv_cache_recurrent_state(
|
|
|
- llama_memory_status status,
|
|
|
- llama_kv_cache_recurrent * kv) : status(status), kv(kv), is_full(true) {
|
|
|
+llama_memory_recurrent_state::llama_memory_recurrent_state(
|
|
|
+ llama_memory_recurrent * mem) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), is_full(true) {
|
|
|
}
|
|
|
|
|
|
-llama_kv_cache_recurrent_state::llama_kv_cache_recurrent_state(
|
|
|
- llama_memory_status status,
|
|
|
- llama_kv_cache_recurrent * kv,
|
|
|
+llama_memory_recurrent_state::llama_memory_recurrent_state(
|
|
|
+ llama_memory_recurrent * mem,
|
|
|
llama_sbatch sbatch,
|
|
|
- std::vector<llama_ubatch> ubatches) : status(status), kv(kv), sbatch(std::move(sbatch)), ubatches(std::move(ubatches)) {}
|
|
|
+ std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), sbatch(std::move(sbatch)), ubatches(std::move(ubatches)) {}
|
|
|
|
|
|
-llama_kv_cache_recurrent_state::~llama_kv_cache_recurrent_state() = default;
|
|
|
+llama_memory_recurrent_state::~llama_memory_recurrent_state() = default;
|
|
|
|
|
|
-bool llama_kv_cache_recurrent_state::next() {
|
|
|
+bool llama_memory_recurrent_state::next() {
|
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
|
|
if (++i_next >= ubatches.size()) {
|
|
|
@@ -1062,54 +1063,54 @@ bool llama_kv_cache_recurrent_state::next() {
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
-bool llama_kv_cache_recurrent_state::apply() {
|
|
|
+bool llama_memory_recurrent_state::apply() {
|
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
|
|
- kv->find_slot(ubatches[i_next]);
|
|
|
+ mem->find_slot(ubatches[i_next]);
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
-std::vector<int64_t> & llama_kv_cache_recurrent_state::out_ids() {
|
|
|
+std::vector<int64_t> & llama_memory_recurrent_state::out_ids() {
|
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
|
|
return sbatch.out_ids;
|
|
|
}
|
|
|
|
|
|
-llama_memory_status llama_kv_cache_recurrent_state::get_status() const {
|
|
|
+llama_memory_status llama_memory_recurrent_state::get_status() const {
|
|
|
return status;
|
|
|
}
|
|
|
|
|
|
-const llama_ubatch & llama_kv_cache_recurrent_state::get_ubatch() const {
|
|
|
+const llama_ubatch & llama_memory_recurrent_state::get_ubatch() const {
|
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
|
|
return ubatches[i_next];
|
|
|
}
|
|
|
|
|
|
-uint32_t llama_kv_cache_recurrent_state::get_n_kv() const {
|
|
|
- return is_full ? kv->size : kv->n;
|
|
|
+uint32_t llama_memory_recurrent_state::get_n_rs() const {
|
|
|
+ return is_full ? mem->size : mem->n;
|
|
|
}
|
|
|
|
|
|
-uint32_t llama_kv_cache_recurrent_state::get_head() const {
|
|
|
- return is_full ? 0 : kv->head;
|
|
|
+uint32_t llama_memory_recurrent_state::get_head() const {
|
|
|
+ return is_full ? 0 : mem->head;
|
|
|
}
|
|
|
|
|
|
-int32_t llama_kv_cache_recurrent_state::get_rs_z() const {
|
|
|
- return is_full ? 0 : kv->rs_z;
|
|
|
+int32_t llama_memory_recurrent_state::get_rs_z() const {
|
|
|
+ return is_full ? 0 : mem->rs_z;
|
|
|
}
|
|
|
|
|
|
-uint32_t llama_kv_cache_recurrent_state::get_size() const {
|
|
|
- return kv->size;
|
|
|
+uint32_t llama_memory_recurrent_state::get_size() const {
|
|
|
+ return mem->size;
|
|
|
}
|
|
|
|
|
|
-ggml_tensor * llama_kv_cache_recurrent_state::get_k_l(int32_t il) const {
|
|
|
- return kv->k_l[il];
|
|
|
+ggml_tensor * llama_memory_recurrent_state::get_r_l(int32_t il) const {
|
|
|
+ return mem->r_l[il];
|
|
|
}
|
|
|
|
|
|
-ggml_tensor * llama_kv_cache_recurrent_state::get_v_l(int32_t il) const {
|
|
|
- return kv->v_l[il];
|
|
|
+ggml_tensor * llama_memory_recurrent_state::get_s_l(int32_t il) const {
|
|
|
+ return mem->s_l[il];
|
|
|
}
|
|
|
|
|
|
-int32_t llama_kv_cache_recurrent_state::s_copy(int i) const {
|
|
|
- return kv->cells[i + kv->head].src0;
|
|
|
+int32_t llama_memory_recurrent_state::s_copy(int i) const {
|
|
|
+ return mem->cells[i + mem->head].src0;
|
|
|
}
|