|
|
@@ -93,9 +93,23 @@ enum rpc_cmd {
|
|
|
RPC_CMD_COPY_TENSOR,
|
|
|
RPC_CMD_GRAPH_COMPUTE,
|
|
|
RPC_CMD_GET_DEVICE_MEMORY,
|
|
|
+ RPC_CMD_INIT_TENSOR,
|
|
|
+ RPC_CMD_GET_ALLOC_SIZE,
|
|
|
RPC_CMD_COUNT,
|
|
|
};
|
|
|
|
|
|
+struct rpc_msg_get_alloc_size_req {
|
|
|
+ rpc_tensor tensor;
|
|
|
+};
|
|
|
+
|
|
|
+struct rpc_msg_get_alloc_size_rsp {
|
|
|
+ uint64_t alloc_size;
|
|
|
+};
|
|
|
+
|
|
|
+struct rpc_msg_init_tensor_req {
|
|
|
+ rpc_tensor tensor;
|
|
|
+};
|
|
|
+
|
|
|
struct rpc_msg_alloc_buffer_req {
|
|
|
uint64_t size;
|
|
|
};
|
|
|
@@ -461,10 +475,18 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
|
|
|
}
|
|
|
|
|
|
static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
|
|
- UNUSED(buffer);
|
|
|
- if (ggml_is_quantized(tensor->type)) {
|
|
|
- // TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
|
|
|
- GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor");
|
|
|
+ ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
|
|
|
+
|
|
|
+ // CUDA backend on the server pads everything to 512 due to CUDA limitations.
|
|
|
+ // Due to bandwidth constraints, we only call the server init tensor functions if necessary.
|
|
|
+ // In particular, only quantized tensors need padding
|
|
|
+ if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
|
|
|
+ rpc_msg_init_tensor_req request;
|
|
|
+
|
|
|
+ request.tensor = serialize_tensor(tensor);
|
|
|
+
|
|
|
+ bool status = send_rpc_cmd(ctx->sock, RPC_CMD_INIT_TENSOR, &request, sizeof(request), nullptr, 0);
|
|
|
+ GGML_ASSERT(status);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
@@ -577,8 +599,23 @@ static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
|
|
|
}
|
|
|
|
|
|
static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
|
|
- UNUSED(buft);
|
|
|
- return ggml_nbytes(tensor);
|
|
|
+ // See comments in init_tensor.
|
|
|
+ if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
|
|
|
+ ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
|
|
|
+ auto sock = get_socket(buft_ctx->endpoint);
|
|
|
+
|
|
|
+ rpc_msg_get_alloc_size_req request;
|
|
|
+
|
|
|
+ request.tensor = serialize_tensor(tensor);
|
|
|
+
|
|
|
+ rpc_msg_get_alloc_size_rsp response;
|
|
|
+ bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALLOC_SIZE, &request, sizeof(request), &response, sizeof(response));
|
|
|
+ GGML_ASSERT(status);
|
|
|
+
|
|
|
+ return response.alloc_size;
|
|
|
+ } else {
|
|
|
+ return ggml_nbytes(tensor);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
|
|
|
@@ -757,6 +794,8 @@ public:
|
|
|
bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
|
|
|
bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
|
|
|
bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
|
|
|
+ bool init_tensor(const rpc_msg_init_tensor_req & request);
|
|
|
+ bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response);
|
|
|
|
|
|
private:
|
|
|
ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
|
|
|
@@ -770,6 +809,36 @@ private:
|
|
|
std::unordered_set<ggml_backend_buffer_t> buffers;
|
|
|
};
|
|
|
|
|
|
+bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response) {
|
|
|
+ ggml_backend_buffer_type_t buft;
|
|
|
+ struct ggml_init_params params {
|
|
|
+ /*.mem_size =*/ ggml_tensor_overhead(),
|
|
|
+ /*.mem_buffer =*/ NULL,
|
|
|
+ /*.no_alloc =*/ true,
|
|
|
+ };
|
|
|
+
|
|
|
+ struct ggml_context * ctx = ggml_init(params);
|
|
|
+ ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
|
|
|
+
|
|
|
+ if (tensor == nullptr) {
|
|
|
+ GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n");
|
|
|
+ ggml_free(ctx);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (tensor->buffer == nullptr) {
|
|
|
+ //No buffer allocated.
|
|
|
+ buft = ggml_backend_get_default_buffer_type(backend);
|
|
|
+ } else {
|
|
|
+ buft = tensor->buffer->buft;
|
|
|
+ }
|
|
|
+
|
|
|
+ response.alloc_size = ggml_backend_buft_get_alloc_size(buft,tensor);
|
|
|
+
|
|
|
+ ggml_free(ctx);
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
void rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
|
|
|
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
|
|
|
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size);
|
|
|
@@ -905,6 +974,40 @@ bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
+bool rpc_server::init_tensor(const rpc_msg_init_tensor_req & request) {
|
|
|
+ struct ggml_init_params params {
|
|
|
+ /*.mem_size =*/ ggml_tensor_overhead(),
|
|
|
+ /*.mem_buffer =*/ NULL,
|
|
|
+ /*.no_alloc =*/ true,
|
|
|
+ };
|
|
|
+ struct ggml_context * ctx = ggml_init(params);
|
|
|
+ ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
|
|
|
+ if (tensor == nullptr) {
|
|
|
+ GGML_LOG_ERROR("Null tensor pointer passed to server init_tensor function.\n");
|
|
|
+ ggml_free(ctx);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Call the backend's buffer_init_tensor function
|
|
|
+ ggml_backend_buffer_t buffer = tensor->buffer;
|
|
|
+ if (buffer && buffer->iface.init_tensor) {
|
|
|
+ buffer->iface.init_tensor(buffer, tensor);
|
|
|
+ } else {
|
|
|
+ GGML_LOG_ERROR("Null buffer for tensor passed to init_tensor function\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ if (tensor->extra != nullptr) {
|
|
|
+ // This pointer can either be passed around client/server, or probably better stored server-side and kept track of.
|
|
|
+ // Currently unimplemented.
|
|
|
+ GGML_LOG_ERROR("tensor->extra populated by the backend, this is currently unsupported.\n");
|
|
|
+ ggml_free(ctx);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_free(ctx);
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response) {
|
|
|
struct ggml_init_params params {
|
|
|
/*.mem_size =*/ ggml_tensor_overhead(),
|
|
|
@@ -1058,6 +1161,18 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre
|
|
|
}
|
|
|
break;
|
|
|
}
|
|
|
+ case RPC_CMD_GET_ALLOC_SIZE: {
|
|
|
+ rpc_msg_get_alloc_size_req request;
|
|
|
+ if (!recv_msg(sockfd, &request, sizeof(request))) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ rpc_msg_get_alloc_size_rsp response;
|
|
|
+ server.get_alloc_size(request, response);
|
|
|
+ if (!send_msg(sockfd, &response, sizeof(response))) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
case RPC_CMD_GET_ALIGNMENT: {
|
|
|
if (!recv_msg(sockfd, nullptr, 0)) {
|
|
|
return;
|
|
|
@@ -1133,6 +1248,19 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre
|
|
|
}
|
|
|
break;
|
|
|
}
|
|
|
+ case RPC_CMD_INIT_TENSOR: {
|
|
|
+ rpc_msg_init_tensor_req request;
|
|
|
+ if (!recv_msg(sockfd, &request,sizeof(request))) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (!server.init_tensor(request)) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (!send_msg(sockfd, nullptr, 0)) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
case RPC_CMD_GET_TENSOR: {
|
|
|
rpc_msg_get_tensor_req request;
|
|
|
if (!recv_msg(sockfd, &request, sizeof(request))) {
|