|
@@ -25,46 +25,68 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|
|
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
|
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
|
|
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
|
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
|
|
// Output: `perplexity: 13.5106 [114/114]`
|
|
// Output: `perplexity: 13.5106 [114/114]`
|
|
|
|
|
+ // BOS tokens will be added for each chunk before eval
|
|
|
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
|
|
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
|
|
|
|
|
|
|
|
- int count = 0;
|
|
|
|
|
- int seq_count = tokens.size() / params.n_ctx;
|
|
|
|
|
- int n_vocab = llama_n_vocab(ctx);
|
|
|
|
|
|
|
+ int count = 0;
|
|
|
|
|
+
|
|
|
|
|
+ const int n_chunk = tokens.size() / params.n_ctx;
|
|
|
|
|
+ const int n_vocab = llama_n_vocab(ctx);
|
|
|
|
|
+ const int n_batch = params.n_batch;
|
|
|
|
|
|
|
|
double nll = 0.0;
|
|
double nll = 0.0;
|
|
|
- fprintf(stderr, "%s : calculating perplexity over %d chunks, batch_size=%d\n", __func__, seq_count, params.n_batch);
|
|
|
|
|
|
|
+ fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < n_chunk; ++i) {
|
|
|
|
|
+ const int start = i * params.n_ctx;
|
|
|
|
|
+ const int end = start + params.n_ctx;
|
|
|
|
|
|
|
|
- for (int i = 0; i < seq_count; ++i) {
|
|
|
|
|
- int start = i * params.n_ctx;
|
|
|
|
|
- int end = start + params.n_ctx;
|
|
|
|
|
|
|
+ const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
|
|
|
|
|
|
|
|
std::vector<float> logits;
|
|
std::vector<float> logits;
|
|
|
- int num_batches = (params.n_ctx + params.n_batch - 1) / params.n_batch;
|
|
|
|
|
- auto start_t = std::chrono::high_resolution_clock::now();
|
|
|
|
|
|
|
+
|
|
|
|
|
+ const auto t_start = std::chrono::high_resolution_clock::now();
|
|
|
|
|
+
|
|
|
for (int j = 0; j < num_batches; ++j) {
|
|
for (int j = 0; j < num_batches; ++j) {
|
|
|
- int batch_start = start + j * params.n_batch;
|
|
|
|
|
- int batch_size = std::min(end - batch_start, params.n_batch);
|
|
|
|
|
- if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * params.n_batch, params.n_threads)) {
|
|
|
|
|
|
|
+ const int batch_start = start + j * n_batch;
|
|
|
|
|
+ const int batch_size = std::min(end - batch_start, n_batch);
|
|
|
|
|
+
|
|
|
|
|
+ // save original token and restore it after eval
|
|
|
|
|
+ const auto token_org = tokens[batch_start];
|
|
|
|
|
+
|
|
|
|
|
+ // add BOS token for the first batch of each chunk
|
|
|
|
|
+ if (j == 0) {
|
|
|
|
|
+ tokens[batch_start] = llama_token_bos();
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
|
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
|
return;
|
|
return;
|
|
|
}
|
|
}
|
|
|
- auto batch_logits = llama_get_logits(ctx);
|
|
|
|
|
|
|
+
|
|
|
|
|
+ // restore the original token in case it was set to BOS
|
|
|
|
|
+ tokens[batch_start] = token_org;
|
|
|
|
|
+
|
|
|
|
|
+ const auto batch_logits = llama_get_logits(ctx);
|
|
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
|
|
}
|
|
}
|
|
|
- auto end_t = std::chrono::high_resolution_clock::now();
|
|
|
|
|
|
|
+
|
|
|
|
|
+ const auto t_end = std::chrono::high_resolution_clock::now();
|
|
|
|
|
+
|
|
|
if (i == 0) {
|
|
if (i == 0) {
|
|
|
- const float seconds = std::chrono::duration<float>(end_t - start_t).count();
|
|
|
|
|
- printf("%.2f seconds per pass - ETA ", seconds);
|
|
|
|
|
- int total_seconds = (int)(seconds * seq_count);
|
|
|
|
|
|
|
+ const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
|
|
|
|
+ fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
|
|
|
|
+ int total_seconds = (int)(t_total * n_chunk);
|
|
|
if (total_seconds >= 60*60) {
|
|
if (total_seconds >= 60*60) {
|
|
|
- printf("%d hours ", total_seconds / (60*60));
|
|
|
|
|
|
|
+ fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
|
|
total_seconds = total_seconds % (60*60);
|
|
total_seconds = total_seconds % (60*60);
|
|
|
}
|
|
}
|
|
|
- printf("%d minutes\n", total_seconds / 60);
|
|
|
|
|
|
|
+ fprintf(stderr, "%d minutes\n", total_seconds / 60);
|
|
|
}
|
|
}
|
|
|
|
|
+
|
|
|
// We get the logits for all the tokens in the context window (params.n_ctx)
|
|
// We get the logits for all the tokens in the context window (params.n_ctx)
|
|
|
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
|
|
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
|
|
|
- // calculate the perplexity over the last half the window (so the model always has
|
|
|
|
|
|
|
+ // calculate the perplexity over the last half of the window (so the model always has
|
|
|
// some context to predict the token).
|
|
// some context to predict the token).
|
|
|
//
|
|
//
|
|
|
// We rely on the fact that attention in the forward pass only looks at previous
|
|
// We rely on the fact that attention in the forward pass only looks at previous
|
|
@@ -76,10 +98,12 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|
|
// process the entire prompt.
|
|
// process the entire prompt.
|
|
|
for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
|
|
for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
|
|
|
// Calculate probability of next token, given the previous ones.
|
|
// Calculate probability of next token, given the previous ones.
|
|
|
- std::vector<float> tok_logits(
|
|
|
|
|
- logits.begin() + j * n_vocab,
|
|
|
|
|
|
|
+ const std::vector<float> tok_logits(
|
|
|
|
|
+ logits.begin() + (j + 0) * n_vocab,
|
|
|
logits.begin() + (j + 1) * n_vocab);
|
|
logits.begin() + (j + 1) * n_vocab);
|
|
|
- float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
|
|
|
|
|
|
+
|
|
|
|
|
+ const float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
|
|
|
|
+
|
|
|
nll += -std::log(prob);
|
|
nll += -std::log(prob);
|
|
|
++count;
|
|
++count;
|
|
|
}
|
|
}
|