|
@@ -103,7 +103,7 @@
|
|
|
#endif
|
|
#endif
|
|
|
|
|
|
|
|
#define LLAMA_MAX_NODES 8192
|
|
#define LLAMA_MAX_NODES 8192
|
|
|
-#define LLAMA_MAX_EXPERTS 60
|
|
|
|
|
|
|
+#define LLAMA_MAX_EXPERTS 128
|
|
|
|
|
|
|
|
//
|
|
//
|
|
|
// logging
|
|
// logging
|
|
@@ -221,6 +221,7 @@ enum llm_arch {
|
|
|
LLM_ARCH_COMMAND_R,
|
|
LLM_ARCH_COMMAND_R,
|
|
|
LLM_ARCH_DBRX,
|
|
LLM_ARCH_DBRX,
|
|
|
LLM_ARCH_OLMO,
|
|
LLM_ARCH_OLMO,
|
|
|
|
|
+ LLM_ARCH_ARCTIC,
|
|
|
LLM_ARCH_UNKNOWN,
|
|
LLM_ARCH_UNKNOWN,
|
|
|
};
|
|
};
|
|
|
|
|
|
|
@@ -257,6 +258,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
|
{ LLM_ARCH_COMMAND_R, "command-r" },
|
|
{ LLM_ARCH_COMMAND_R, "command-r" },
|
|
|
{ LLM_ARCH_DBRX, "dbrx" },
|
|
{ LLM_ARCH_DBRX, "dbrx" },
|
|
|
{ LLM_ARCH_OLMO, "olmo" },
|
|
{ LLM_ARCH_OLMO, "olmo" },
|
|
|
|
|
+ { LLM_ARCH_ARCTIC, "arctic" },
|
|
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
|
|
};
|
|
};
|
|
|
|
|
|
|
@@ -455,6 +457,7 @@ enum llm_tensor {
|
|
|
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
|
|
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
|
|
|
LLM_TENSOR_FFN_GATE_EXP,
|
|
LLM_TENSOR_FFN_GATE_EXP,
|
|
|
LLM_TENSOR_FFN_UP_EXP,
|
|
LLM_TENSOR_FFN_UP_EXP,
|
|
|
|
|
+ LLM_TENSOR_FFN_NORM_EXPS,
|
|
|
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
|
|
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
|
|
|
LLM_TENSOR_FFN_GATE_EXPS,
|
|
LLM_TENSOR_FFN_GATE_EXPS,
|
|
|
LLM_TENSOR_FFN_UP_EXPS,
|
|
LLM_TENSOR_FFN_UP_EXPS,
|
|
@@ -1032,6 +1035,28 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
|
},
|
|
},
|
|
|
},
|
|
},
|
|
|
|
|
+ {
|
|
|
|
|
+ LLM_ARCH_ARCTIC,
|
|
|
|
|
+ {
|
|
|
|
|
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
|
|
|
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
|
|
|
+ { LLM_TENSOR_OUTPUT, "output" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
|
|
|
|
+ },
|
|
|
|
|
+ },
|
|
|
{
|
|
{
|
|
|
LLM_ARCH_UNKNOWN,
|
|
LLM_ARCH_UNKNOWN,
|
|
|
{
|
|
{
|
|
@@ -1732,6 +1757,7 @@ enum e_model {
|
|
|
MODEL_8x7B,
|
|
MODEL_8x7B,
|
|
|
MODEL_8x22B,
|
|
MODEL_8x22B,
|
|
|
MODEL_16x12B,
|
|
MODEL_16x12B,
|
|
|
|
|
+ MODEL_10B_128x3_66B,
|
|
|
};
|
|
};
|
|
|
|
|
|
|
|
static const size_t kiB = 1024;
|
|
static const size_t kiB = 1024;
|
|
@@ -1907,6 +1933,7 @@ struct llama_layer {
|
|
|
struct ggml_tensor * ffn_norm_b;
|
|
struct ggml_tensor * ffn_norm_b;
|
|
|
struct ggml_tensor * layer_out_norm;
|
|
struct ggml_tensor * layer_out_norm;
|
|
|
struct ggml_tensor * layer_out_norm_b;
|
|
struct ggml_tensor * layer_out_norm_b;
|
|
|
|
|
+ struct ggml_tensor * ffn_norm_exps;
|
|
|
|
|
|
|
|
// ff
|
|
// ff
|
|
|
struct ggml_tensor * ffn_gate; // w1
|
|
struct ggml_tensor * ffn_gate; // w1
|
|
@@ -3781,47 +3808,48 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
|
|
|
|
|
|
|
|
static const char * llama_model_type_name(e_model type) {
|
|
static const char * llama_model_type_name(e_model type) {
|
|
|
switch (type) {
|
|
switch (type) {
|
|
|
- case MODEL_14M: return "14M";
|
|
|
|
|
- case MODEL_17M: return "17M";
|
|
|
|
|
- case MODEL_22M: return "22M";
|
|
|
|
|
- case MODEL_33M: return "33M";
|
|
|
|
|
- case MODEL_70M: return "70M";
|
|
|
|
|
- case MODEL_109M: return "109M";
|
|
|
|
|
- case MODEL_137M: return "137M";
|
|
|
|
|
- case MODEL_160M: return "160M";
|
|
|
|
|
- case MODEL_335M: return "335M";
|
|
|
|
|
- case MODEL_410M: return "410M";
|
|
|
|
|
- case MODEL_0_5B: return "0.5B";
|
|
|
|
|
- case MODEL_1B: return "1B";
|
|
|
|
|
- case MODEL_1_4B: return "1.4B";
|
|
|
|
|
- case MODEL_2B: return "2B";
|
|
|
|
|
- case MODEL_2_8B: return "2.8B";
|
|
|
|
|
- case MODEL_3B: return "3B";
|
|
|
|
|
- case MODEL_4B: return "4B";
|
|
|
|
|
- case MODEL_6_9B: return "6.9B";
|
|
|
|
|
- case MODEL_7B: return "7B";
|
|
|
|
|
- case MODEL_8B: return "8B";
|
|
|
|
|
- case MODEL_12B: return "12B";
|
|
|
|
|
- case MODEL_13B: return "13B";
|
|
|
|
|
- case MODEL_14B: return "14B";
|
|
|
|
|
- case MODEL_15B: return "15B";
|
|
|
|
|
- case MODEL_20B: return "20B";
|
|
|
|
|
- case MODEL_30B: return "30B";
|
|
|
|
|
- case MODEL_34B: return "34B";
|
|
|
|
|
- case MODEL_35B: return "35B";
|
|
|
|
|
- case MODEL_40B: return "40B";
|
|
|
|
|
- case MODEL_65B: return "65B";
|
|
|
|
|
- case MODEL_70B: return "70B";
|
|
|
|
|
- case MODEL_314B: return "314B";
|
|
|
|
|
- case MODEL_SMALL: return "0.1B";
|
|
|
|
|
- case MODEL_MEDIUM: return "0.4B";
|
|
|
|
|
- case MODEL_LARGE: return "0.8B";
|
|
|
|
|
- case MODEL_XL: return "1.5B";
|
|
|
|
|
- case MODEL_A2_7B: return "A2.7B";
|
|
|
|
|
- case MODEL_8x7B: return "8x7B";
|
|
|
|
|
- case MODEL_8x22B: return "8x22B";
|
|
|
|
|
- case MODEL_16x12B: return "16x12B";
|
|
|
|
|
- default: return "?B";
|
|
|
|
|
|
|
+ case MODEL_14M: return "14M";
|
|
|
|
|
+ case MODEL_17M: return "17M";
|
|
|
|
|
+ case MODEL_22M: return "22M";
|
|
|
|
|
+ case MODEL_33M: return "33M";
|
|
|
|
|
+ case MODEL_70M: return "70M";
|
|
|
|
|
+ case MODEL_109M: return "109M";
|
|
|
|
|
+ case MODEL_137M: return "137M";
|
|
|
|
|
+ case MODEL_160M: return "160M";
|
|
|
|
|
+ case MODEL_335M: return "335M";
|
|
|
|
|
+ case MODEL_410M: return "410M";
|
|
|
|
|
+ case MODEL_0_5B: return "0.5B";
|
|
|
|
|
+ case MODEL_1B: return "1B";
|
|
|
|
|
+ case MODEL_1_4B: return "1.4B";
|
|
|
|
|
+ case MODEL_2B: return "2B";
|
|
|
|
|
+ case MODEL_2_8B: return "2.8B";
|
|
|
|
|
+ case MODEL_3B: return "3B";
|
|
|
|
|
+ case MODEL_4B: return "4B";
|
|
|
|
|
+ case MODEL_6_9B: return "6.9B";
|
|
|
|
|
+ case MODEL_7B: return "7B";
|
|
|
|
|
+ case MODEL_8B: return "8B";
|
|
|
|
|
+ case MODEL_12B: return "12B";
|
|
|
|
|
+ case MODEL_13B: return "13B";
|
|
|
|
|
+ case MODEL_14B: return "14B";
|
|
|
|
|
+ case MODEL_15B: return "15B";
|
|
|
|
|
+ case MODEL_20B: return "20B";
|
|
|
|
|
+ case MODEL_30B: return "30B";
|
|
|
|
|
+ case MODEL_34B: return "34B";
|
|
|
|
|
+ case MODEL_35B: return "35B";
|
|
|
|
|
+ case MODEL_40B: return "40B";
|
|
|
|
|
+ case MODEL_65B: return "65B";
|
|
|
|
|
+ case MODEL_70B: return "70B";
|
|
|
|
|
+ case MODEL_314B: return "314B";
|
|
|
|
|
+ case MODEL_SMALL: return "0.1B";
|
|
|
|
|
+ case MODEL_MEDIUM: return "0.4B";
|
|
|
|
|
+ case MODEL_LARGE: return "0.8B";
|
|
|
|
|
+ case MODEL_XL: return "1.5B";
|
|
|
|
|
+ case MODEL_A2_7B: return "A2.7B";
|
|
|
|
|
+ case MODEL_8x7B: return "8x7B";
|
|
|
|
|
+ case MODEL_8x22B: return "8x22B";
|
|
|
|
|
+ case MODEL_16x12B: return "16x12B";
|
|
|
|
|
+ case MODEL_10B_128x3_66B: return "10B+128x3.66B";
|
|
|
|
|
+ default: return "?B";
|
|
|
}
|
|
}
|
|
|
}
|
|
}
|
|
|
|
|
|
|
@@ -4343,6 +4371,19 @@ static void llm_load_hparams(
|
|
|
default: model.type = e_model::MODEL_UNKNOWN;
|
|
default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
}
|
|
}
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_ARCTIC:
|
|
|
|
|
+ {
|
|
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
|
|
+
|
|
|
|
|
+ if (hparams.n_expert == 128) {
|
|
|
|
|
+ switch (hparams.n_layer) {
|
|
|
|
|
+ case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
|
|
|
|
|
+ default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
|
|
+ }
|
|
|
|
|
+ } else {
|
|
|
|
|
+ model.type = e_model::MODEL_UNKNOWN;
|
|
|
|
|
+ }
|
|
|
|
|
+ } break;
|
|
|
default: (void)0;
|
|
default: (void)0;
|
|
|
}
|
|
}
|
|
|
|
|
|
|
@@ -6129,6 +6170,46 @@ static bool llm_load_tensors(
|
|
|
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
|
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
|
|
}
|
|
}
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_ARCTIC:
|
|
|
|
|
+ {
|
|
|
|
|
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
|
|
|
|
+
|
|
|
|
|
+ // output
|
|
|
|
|
+ {
|
|
|
|
|
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
|
|
|
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
|
|
+ // if output is NULL, init from the input tok embed
|
|
|
|
|
+ if (model.output == NULL) {
|
|
|
|
|
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
|
|
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
|
|
|
|
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
|
|
|
|
+
|
|
|
|
|
+ auto & layer = model.layers[i];
|
|
|
|
|
+
|
|
|
|
|
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
|
|
|
|
+
|
|
|
|
|
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
|
|
|
|
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
|
|
|
|
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
|
|
|
|
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
|
|
|
|
+
|
|
|
|
|
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
|
|
|
|
+
|
|
|
|
|
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
|
|
|
|
|
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
|
|
|
|
|
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
|
|
|
|
|
+
|
|
|
|
|
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
|
|
|
|
+ layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
|
|
|
|
|
+ layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
|
|
|
|
|
+ layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
|
|
|
|
|
+ layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
|
|
|
|
+ }
|
|
|
|
|
+ } break;
|
|
|
default:
|
|
default:
|
|
|
throw std::runtime_error("unknown architecture");
|
|
throw std::runtime_error("unknown architecture");
|
|
|
}
|
|
}
|
|
@@ -10790,6 +10871,140 @@ struct llm_build_context {
|
|
|
|
|
|
|
|
return gf;
|
|
return gf;
|
|
|
}
|
|
}
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_cgraph * build_arctic() {
|
|
|
|
|
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
|
|
|
|
+
|
|
|
|
|
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
|
|
|
|
|
+ int32_t n_tokens = this->n_tokens;
|
|
|
|
|
+
|
|
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * cur;
|
|
|
|
|
+ struct ggml_tensor * inpL;
|
|
|
|
|
+
|
|
|
|
|
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
|
|
|
|
+
|
|
|
|
|
+ // inp_pos - contains the positions
|
|
|
|
|
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
|
|
|
|
+
|
|
|
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
|
|
|
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
|
|
|
|
+
|
|
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
|
|
|
+
|
|
|
|
|
+ // norm
|
|
|
|
|
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
|
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
|
|
+
|
|
|
|
|
+ // self-attention
|
|
|
|
|
+ {
|
|
|
|
|
+ // compute Q and K and RoPE them
|
|
|
|
|
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
|
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
|
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
|
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ Qcur = ggml_rope_ext(
|
|
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
|
|
|
|
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
|
+ );
|
|
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ Kcur = ggml_rope_ext(
|
|
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
|
|
|
|
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
|
+ );
|
|
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
|
|
|
|
|
+ model.layers[il].wo, NULL,
|
|
|
|
|
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (il == n_layer - 1) {
|
|
|
|
|
+ // skip computing output for unused tokens
|
|
|
|
|
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
|
|
+ n_tokens = n_outputs;
|
|
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
|
|
+
|
|
|
|
|
+ // feed-forward network
|
|
|
|
|
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
|
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
|
|
+
|
|
|
|
|
+ cur = llm_build_ffn(ctx0, cur,
|
|
|
|
|
+ model.layers[il].ffn_up, NULL,
|
|
|
|
|
+ model.layers[il].ffn_gate, NULL,
|
|
|
|
|
+ model.layers[il].ffn_down, NULL,
|
|
|
|
|
+ NULL,
|
|
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
|
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
|
|
|
|
|
+ cb(ffn_out, "ffn_out", il);
|
|
|
|
|
+
|
|
|
|
|
+ // MoE
|
|
|
|
|
+ cur = llm_build_norm(ctx0, inpSA, hparams,
|
|
|
|
|
+ model.layers[il].ffn_norm_exps, NULL,
|
|
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
|
|
+ cb(cur, "ffn_norm_exps", il);
|
|
|
|
|
+
|
|
|
|
|
+ cur = llm_build_moe_ffn(ctx0, cur,
|
|
|
|
|
+ model.layers[il].ffn_gate_inp,
|
|
|
|
|
+ model.layers[il].ffn_up_exps,
|
|
|
|
|
+ model.layers[il].ffn_gate_exps,
|
|
|
|
|
+ model.layers[il].ffn_down_exps,
|
|
|
|
|
+ n_expert, n_expert_used,
|
|
|
|
|
+ LLM_FFN_SILU, true,
|
|
|
|
|
+ cb, il);
|
|
|
|
|
+ cb(cur, "ffn_moe_out", il);
|
|
|
|
|
+
|
|
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_out);
|
|
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
|
|
+
|
|
|
|
|
+ ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
|
|
|
|
|
+ if (layer_dir != nullptr) {
|
|
|
|
|
+ cur = ggml_add(ctx0, cur, layer_dir);
|
|
|
|
|
+ }
|
|
|
|
|
+ cb(cur, "l_out", il);
|
|
|
|
|
+
|
|
|
|
|
+ // input for next layer
|
|
|
|
|
+ inpL = cur;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ cur = inpL;
|
|
|
|
|
+
|
|
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
|
|
+ model.output_norm, NULL,
|
|
|
|
|
+ LLM_NORM_RMS, cb, -1);
|
|
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
|
|
+
|
|
|
|
|
+ // lm_head
|
|
|
|
|
+ cur = ggml_mul_mat(ctx0, model.output, cur);
|
|
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
|
|
+
|
|
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
|
|
+
|
|
|
|
|
+ return gf;
|
|
|
|
|
+ }
|
|
|
};
|
|
};
|
|
|
|
|
|
|
|
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
|
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
|
@@ -11004,6 +11219,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
|
{
|
|
{
|
|
|
result = llm.build_gptneox();
|
|
result = llm.build_gptneox();
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_ARCTIC:
|
|
|
|
|
+ {
|
|
|
|
|
+ result = llm.build_arctic();
|
|
|
|
|
+ } break;
|
|
|
default:
|
|
default:
|
|
|
GGML_ASSERT(false);
|
|
GGML_ASSERT(false);
|
|
|
}
|
|
}
|
|
@@ -16015,6 +16234,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
|
case LLM_ARCH_XVERSE:
|
|
case LLM_ARCH_XVERSE:
|
|
|
case LLM_ARCH_COMMAND_R:
|
|
case LLM_ARCH_COMMAND_R:
|
|
|
case LLM_ARCH_OLMO:
|
|
case LLM_ARCH_OLMO:
|
|
|
|
|
+ case LLM_ARCH_ARCTIC:
|
|
|
return LLAMA_ROPE_TYPE_NORM;
|
|
return LLAMA_ROPE_TYPE_NORM;
|
|
|
|
|
|
|
|
// the pairs of head values are offset by n_rot/2
|
|
// the pairs of head values are offset by n_rot/2
|