|
|
@@ -17,33 +17,6 @@ if "NO_LOCAL_GGUF" not in os.environ:
|
|
|
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
|
|
|
import gguf
|
|
|
|
|
|
-
|
|
|
-def bytes_to_unicode():
|
|
|
- # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
|
- """
|
|
|
- Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
|
- The reversible bpe codes work on unicode strings.
|
|
|
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
|
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
|
- This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
|
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
|
- And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
|
- """
|
|
|
- bs = (
|
|
|
- list(range(ord("!"), ord("~") + 1))
|
|
|
- + list(range(ord("¡"), ord("¬") + 1))
|
|
|
- + list(range(ord("®"), ord("ÿ") + 1))
|
|
|
- )
|
|
|
- cs = bs[:]
|
|
|
- n = 0
|
|
|
- for b in range(2**8):
|
|
|
- if b not in bs:
|
|
|
- bs.append(b)
|
|
|
- cs.append(2**8 + n)
|
|
|
- n += 1
|
|
|
- return dict(zip(bs, (chr(n) for n in cs)))
|
|
|
-
|
|
|
-
|
|
|
def count_model_parts(dir_model: Path) -> int:
|
|
|
num_parts = 0
|
|
|
for filename in os.listdir(dir_model):
|
|
|
@@ -153,53 +126,25 @@ tokens: list[bytearray] = []
|
|
|
scores: list[float] = []
|
|
|
toktypes: list[int] = []
|
|
|
|
|
|
-tokenizer_json_file = dir_model / "tokenizer.json"
|
|
|
-if not tokenizer_json_file.is_file():
|
|
|
- print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr)
|
|
|
- sys.exit(1)
|
|
|
-
|
|
|
# gpt2 tokenizer
|
|
|
gguf_writer.add_tokenizer_model("gpt2")
|
|
|
|
|
|
-with open(tokenizer_json_file, "r", encoding="utf-8") as f:
|
|
|
- tokenizer_json = json.load(f)
|
|
|
-
|
|
|
print("gguf: get gpt2 tokenizer vocab")
|
|
|
|
|
|
+# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
|
|
+tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
|
|
+
|
|
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
|
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
|
|
-vocab_size = (
|
|
|
- hparams["vocab_size"]
|
|
|
- if "vocab_size" in hparams
|
|
|
- else len(tokenizer_json["model"]["vocab"])
|
|
|
-)
|
|
|
-
|
|
|
-tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
|
|
+vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
|
|
+assert max(tokenizer.vocab.values()) < vocab_size
|
|
|
|
|
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
|
|
-byte_encoder = bytes_to_unicode()
|
|
|
-byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
|
|
|
|
for i in range(vocab_size):
|
|
|
- if i in reverse_vocab:
|
|
|
- text = reverse_vocab[i]
|
|
|
- try:
|
|
|
- text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
|
|
- except KeyError:
|
|
|
- text = bytearray()
|
|
|
- for c in reverse_vocab[i]:
|
|
|
- if ord(c) < 256: # single byte character
|
|
|
- text.append(byte_decoder[ord(c)])
|
|
|
- else: # multibyte special token character
|
|
|
- text.extend(c.encode("utf-8"))
|
|
|
- else:
|
|
|
- print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
|
|
- pad_token = f"[PAD{i}]".encode("utf8")
|
|
|
- text = bytearray(pad_token)
|
|
|
-
|
|
|
- tokens.append(text)
|
|
|
- scores.append(0.0) # dymmy
|
|
|
- toktypes.append(gguf.TokenType.NORMAL) # dummy
|
|
|
+ tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
|
|
+ scores.append(0.0) # dummy
|
|
|
+ toktypes.append(gguf.TokenType.NORMAL)
|
|
|
|
|
|
gguf_writer.add_token_list(tokens)
|
|
|
gguf_writer.add_token_scores(scores)
|