|
|
@@ -234,14 +234,21 @@ class Params:
|
|
|
|
|
|
|
|
|
class SentencePieceVocab:
|
|
|
- def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
|
|
|
- self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
|
|
+ def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path], vocabtype: Optional[str]) -> None:
|
|
|
+ self.vocabtype = vocabtype
|
|
|
+ if self.vocabtype == "bpe":
|
|
|
+ self.sentencepiece_tokenizer = json.loads(open(str(fname_tokenizer)).read())
|
|
|
+ else:
|
|
|
+ self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
|
|
added_tokens: Dict[str, int]
|
|
|
if fname_added_tokens is not None:
|
|
|
added_tokens = json.load(open(fname_added_tokens))
|
|
|
else:
|
|
|
added_tokens = {}
|
|
|
- vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
|
|
|
+ if self.vocabtype == "bpe":
|
|
|
+ vocab_size: int = len(self.sentencepiece_tokenizer)
|
|
|
+ else:
|
|
|
+ vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
|
|
|
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
|
|
actual_ids = sorted(added_tokens.values())
|
|
|
if expected_ids != actual_ids:
|
|
|
@@ -255,22 +262,32 @@ class SentencePieceVocab:
|
|
|
|
|
|
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
|
|
tokenizer = self.sentencepiece_tokenizer
|
|
|
- for i in range(tokenizer.vocab_size()):
|
|
|
+ if self.vocabtype == "bpe":
|
|
|
+ from transformers.models.gpt2 import tokenization_gpt2
|
|
|
+ byte_encoder = tokenization_gpt2.bytes_to_unicode()
|
|
|
+ byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
|
+ for i, item in enumerate(tokenizer):
|
|
|
text: bytes
|
|
|
- if tokenizer.is_unknown(i):
|
|
|
- text = " \u2047 ".encode("utf-8")
|
|
|
- elif tokenizer.is_control(i):
|
|
|
- text = b""
|
|
|
- elif tokenizer.is_byte(i):
|
|
|
- piece = tokenizer.id_to_piece(i)
|
|
|
- if len(piece) != 6:
|
|
|
- raise Exception(f"Invalid token: {piece}")
|
|
|
- byte_value = int(piece[3:-1], 16)
|
|
|
- text = struct.pack("B", byte_value)
|
|
|
- else:
|
|
|
- text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
|
|
- score: float = tokenizer.get_score(i)
|
|
|
+ text = b''.join([x.to_bytes(1, byteorder='big') for x in [byte_decoder[y] for y in item]])
|
|
|
+ score: float = -i
|
|
|
yield text, score
|
|
|
+ else:
|
|
|
+ for i in range(tokenizer.vocab_size()):
|
|
|
+ text: bytes
|
|
|
+ if tokenizer.is_unknown(i):
|
|
|
+ text = " \u2047 ".encode("utf-8")
|
|
|
+ elif tokenizer.is_control(i):
|
|
|
+ text = b""
|
|
|
+ elif tokenizer.is_byte(i):
|
|
|
+ piece = tokenizer.id_to_piece(i)
|
|
|
+ if len(piece) != 6:
|
|
|
+ raise Exception(f"Invalid token: {piece}")
|
|
|
+ byte_value = int(piece[3:-1], 16)
|
|
|
+ text = struct.pack("B", byte_value)
|
|
|
+ else:
|
|
|
+ text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
|
|
+ score: float = tokenizer.get_score(i)
|
|
|
+ yield text, score
|
|
|
|
|
|
def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
|
|
for text in self.added_tokens_list:
|
|
|
@@ -1196,14 +1213,18 @@ def filter_and_sort_tensors(model: LazyModel) -> LazyModel:
|
|
|
return {name: model[name] for name in TENSORS_LIST if name in model}
|
|
|
|
|
|
|
|
|
-def load_vocab(path: Path) -> SentencePieceVocab:
|
|
|
+def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab:
|
|
|
+ print(f"vocabtype: {vocabtype}")
|
|
|
# Be extra-friendly and accept either a file or a directory. Also, if it's
|
|
|
# a directory, it might be the model directory, and tokenizer.model might
|
|
|
# be in the parent of that.
|
|
|
if path.is_dir():
|
|
|
- path2 = path / "tokenizer.model"
|
|
|
+ vocab_file = "tokenizer.model"
|
|
|
+ if vocabtype == 'bpe':
|
|
|
+ vocab_file = "vocab.json"
|
|
|
+ path2 = path / vocab_file
|
|
|
# Use `.parent` instead of /.. to handle the symlink case better.
|
|
|
- path3 = path.parent / "tokenizer.model"
|
|
|
+ path3 = path.parent / vocab_file
|
|
|
if path2.exists():
|
|
|
path = path2
|
|
|
elif path3.exists():
|
|
|
@@ -1214,7 +1235,8 @@ def load_vocab(path: Path) -> SentencePieceVocab:
|
|
|
"if it's in another directory, pass the directory as --vocab-dir")
|
|
|
added_tokens_path = path.parent / "added_tokens.json"
|
|
|
print(f"Loading vocab file {path}")
|
|
|
- return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
|
|
|
+ return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None,
|
|
|
+ vocabtype)
|
|
|
|
|
|
|
|
|
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
|
|
|
@@ -1252,6 +1274,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
|
|
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
|
|
parser.add_argument("model", type=Path,
|
|
|
help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
|
|
+ parser.add_argument("--vocabtype", default='spm', choices=["spm", "bpe"], help="vocab format (default: spm)")
|
|
|
args = parser.parse_args(args_in)
|
|
|
|
|
|
vocab: Vocab
|
|
|
@@ -1259,7 +1282,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
|
|
|
model_plus = lazy_load_file(args.model)
|
|
|
do_dump_model(model_plus)
|
|
|
elif args.vocab_only:
|
|
|
- vocab = load_vocab(args.vocab_dir or args.model)
|
|
|
+ vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
|
|
|
assert args.outfile, "need --outfile if using --vocab-only"
|
|
|
outfile = args.outfile
|
|
|
OutputFile.write_vocab_only(outfile, vocab)
|
|
|
@@ -1273,7 +1296,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
|
|
|
vocab = model_plus.vocab
|
|
|
else:
|
|
|
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
|
|
|
- vocab = load_vocab(vocab_dir)
|
|
|
+ vocab = load_vocab(vocab_dir, args.vocabtype)
|
|
|
params = Params.load(model_plus)
|
|
|
model = model_plus.model
|
|
|
model = do_necessary_conversions(model, params)
|