#include "llm_build_qwen3next.h" #include // Implementation of depthwise 1D convolution using F32 to avoid F16 limitations static ggml_tensor* ggml_conv_1d_dw_f32( ggml_context * ctx, ggml_tensor * kernel, ggml_tensor * input, int stride, int padding, int dilation) { // Following the pattern from ggml_conv_1d_dw but using F32 // Reshape input from [length, channels, batch, dummy] to [length, 1, channels, batch] ggml_tensor* reshaped_input = ggml_reshape_4d(ctx, input, input->ne[0], 1, input->ne[1], input->ne[2]); // Apply im2col with F32 destination type to avoid F16 requirement ggml_tensor* im2col_result = ggml_im2col(ctx, kernel, reshaped_input, stride, 0, padding, 0, dilation, 0, false, GGML_TYPE_F32); // Now multiply: im2col_result * kernel (following the exact pattern from ggml_conv_1d_dw) // In ggml_conv_1d_dw: ggml_mul_mat(ctx, im2col, a) where a is the kernel ggml_tensor* mul_result = ggml_mul_mat(ctx, im2col_result, kernel); // Reshape the result following ggml_conv_1d_dw: [result->ne[0], result->ne[2], 1] ggml_tensor* output_3d = ggml_reshape_3d(ctx, mul_result, mul_result->ne[0], mul_result->ne[2], 1); return output_3d; } llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); cb(inpL, "model.embed_tokens", -1); auto * inp = build_inp_mem_hybrid(); ggml_tensor * inp_pos = build_inp_pos(); ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; cur = build_q3n_norm(inpL, model.layers[il].attn_norm, il); cb(cur, "attn_norm", il); // Determine layer type and build appropriate attention mechanism if (hparams.is_recurrent(il)) { // Linear attention layer (gated delta net) cur = build_qwen3next_linear_attn_layer(inp->get_recr(), cur, model, ubatch, il); } else { // Full attention layer cur = build_qwen3next_attention_layer(cur, inp_pos, inp->get_attn(), model, n_embd_head, il); } // Post-attention norm cur = build_q3n_norm(cur, model.layers[il].attn_post_norm, il); cb(cur, "attn_post_norm", il); if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } // Residual connection cur = ggml_add(ctx0, cur, inpSA); cb(cur, "attn_residual", il); // FFN layer (MoE or dense) cur = build_layer_ffn(cur, model, il); cb(cur, "post_moe", il); // Input for next layer inpL = cur; } cur = inpL; // Final norm cur = build_q3n_norm(cur, model.output_norm, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // LM head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); ggml_set_output(cur); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } struct ggml_tensor * llm_build_qwen3next::build_q3n_norm(struct ggml_tensor * input, struct ggml_tensor * weights, int layer) { ggml_tensor * input_norm = ggml_scale_bias(ctx0, weights, 1.0f, 1.0f); return build_norm(input, input_norm, nullptr, LLM_NORM_RMS, layer); } ggml_tensor * llm_build_qwen3next::build_qwen3next_attention_layer(ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv * inp_attn, const llama_model & model, const int64_t n_embd_head, const int il) { ggml_tensor * gate = build_lora_mm(model.layers[il].wq_gate, cur); // compute Q and K and RoPE them struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); // Apply Q/K normalization Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); cb(Kcur, "Qcur_normed", il); cb(Kcur, "Kcur_normed", il); // Apply RoPE Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); // Attention computation const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale; cur = build_attn(inp_attn, nullptr, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il); // Apply gating cur = ggml_cont(ctx0, ggml_mul(ctx0, cur, ggml_sigmoid(ctx0, gate))); cb(cur, "attn_gated", il); cur = build_lora_mm(model.layers[il].wo, cur); cb(cur, "attn_output", il); return cur; } ggml_tensor * llm_build_qwen3next::build_qwen3next_linear_attn_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il) { // Gated Delta Net implementation using the new ggml_delta_net function const auto * mctx_cur = inp->mctx; const int64_t d_inner = hparams.ssm_d_inner; const int64_t n_heads = hparams.ssm_dt_rank; const int64_t head_dim = d_inner / n_heads; const int64_t n_seqs = ubatch.n_seqs; const int64_t head_k_dim = hparams.ssm_d_state; const int64_t head_v_dim = hparams.ssm_d_state; const int64_t num_k_heads = hparams.ssm_n_group; const int64_t num_v_heads = hparams.ssm_dt_rank; const int64_t n_seq_tokens = ubatch.n_seq_tokens; const int64_t n_tokens = ubatch.n_tokens; GGML_ASSERT(n_seqs != 0); GGML_ASSERT(ubatch.equal_seqs()); GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs); // Input projections ggml_tensor * mixed_qkvz = build_lora_mm(model.layers[il].ssm_in, cur); cb(mixed_qkvz, "linear_attn_mixed_qkvz", il); ggml_tensor * mixed_ba = build_lora_mm(model.layers[il].ssm_beta_alpha, cur); cb(mixed_ba, "linear_attn_mixed_ba", il); int64_t qkvz_new_dim = 2 * head_k_dim + 2 * head_v_dim * num_v_heads / num_k_heads; ggml_tensor * mixed_qkvz_reshaped = ggml_cont_4d(ctx0, mixed_qkvz, qkvz_new_dim, num_k_heads, n_tokens, n_seqs); // Reshape mixed_ba: [batch, seq_len, hidden_size] -> [batch, seq_len, num_k_heads, 2*num_v_heads/num_k_heads] int64_t ba_new_dim = 2 * num_v_heads / num_k_heads; ggml_tensor * mixed_ba_reshaped = ggml_cont_4d(ctx0, mixed_ba, ba_new_dim, num_k_heads, n_tokens, n_seqs); // Split mixed_ba into b and a (beta and alpha parameters) int64_t split_sizes_ba[2] = { num_v_heads / num_k_heads, // beta size num_v_heads / num_k_heads // alpha size }; ggml_tensor * b = ggml_view_4d(ctx0, mixed_ba_reshaped, split_sizes_ba[0], num_k_heads, n_tokens, n_seqs, mixed_ba_reshaped->nb[1], mixed_ba_reshaped->nb[2], mixed_ba_reshaped->nb[3], 0); cb(b, "b", il); ggml_tensor * a = ggml_view_4d(ctx0, mixed_ba_reshaped, split_sizes_ba[1], num_k_heads, n_tokens, n_seqs, mixed_ba_reshaped->nb[1], mixed_ba_reshaped->nb[2], mixed_ba_reshaped->nb[3], split_sizes_ba[0] * ggml_element_size(mixed_ba_reshaped)); cb(a, "a", il); // Reshape b and a to merge head dimensions: [batch, seq_len, num_k_heads, num_v_heads/num_k_heads] -> [batch, seq_len, num_v_heads] ggml_tensor * beta = ggml_cont_3d(ctx0, b, num_v_heads, n_tokens, n_seqs); ggml_tensor * alpha = ggml_cont_3d(ctx0, a, num_v_heads, n_tokens, n_seqs); GGML_ASSERT(ggml_nelements(beta) + ggml_nelements(alpha) == ggml_nelements(mixed_ba)); ggml_tensor * alpha_softplus = softplus(alpha, model.layers[il].ssm_dt); cb(alpha_softplus, "a_softplus", il); ggml_tensor * gate = ggml_mul(ctx0, alpha_softplus, model.layers[il].ssm_a); // -A_log.exp() * softplus cb(gate, "gate", il); // Get convolution states from cache ggml_tensor * conv_states_all = mctx_cur->get_r_l(il); ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il); // Build the convolution states tensor ggml_tensor * conv_states = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs); cb(conv_states, "conv_states", il); // Split mixed_qkvz into query, key, value, z int64_t split_sizes_qkvz[4] = { head_k_dim, // query size head_k_dim, // key size head_v_dim * num_v_heads / num_k_heads, // value size head_v_dim * num_v_heads / num_k_heads // z size }; ggml_tensor * query = ggml_cont(ctx0, ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[0], num_k_heads, n_tokens, n_seqs, mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3], 0)); cb(query, "q", il); ggml_tensor * key = ggml_cont(ctx0, ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[1], num_k_heads, n_tokens, n_seqs, mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3], split_sizes_qkvz[0] * sizeof(float))); cb(key, "k", il); ggml_tensor * value = ggml_cont(ctx0, ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[2], num_k_heads, n_tokens, n_seqs, mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3], (split_sizes_qkvz[0] + split_sizes_qkvz[1]) * sizeof(float))); cb(value, "v", il); ggml_tensor * z = ggml_cont(ctx0, ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[3], num_k_heads, n_tokens, n_seqs, mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3], (split_sizes_qkvz[0] + split_sizes_qkvz[1] + split_sizes_qkvz[2]) * sizeof(float))); cb(z, "z", il); // Reshape value and z to merge head dimensions: [batch, seq_len, num_k_heads, head_v_dim*num_v_heads/num_k_heads] -> [batch, seq_len, num_v_heads, head_v_dim] ggml_tensor * value_reshaped = ggml_reshape_4d(ctx0, ggml_cont(ctx0, value), head_v_dim, num_v_heads, n_tokens, n_seqs); ggml_tensor * z_reshaped = ggml_reshape_4d(ctx0, ggml_cont(ctx0, z), head_v_dim, num_v_heads, n_tokens, n_seqs); GGML_ASSERT(ggml_nelements(query) + ggml_nelements(key) + ggml_nelements(value_reshaped) + ggml_nelements(z_reshaped) == ggml_nelements(mixed_qkvz)); // After creating query, key, and value_reshaped, reshape each to flatten the head dimensions // query: [head_k_dim, num_k_heads, n_tokens, n_seqs] -> [head_k_dim * num_k_heads, n_tokens, n_seqs] ggml_tensor * query_flat = ggml_reshape_3d(ctx0, query, head_k_dim * num_k_heads, n_tokens, n_seqs); cb(query_flat, "query_flat", il); // key: [head_k_dim, num_k_heads, n_tokens, n_seqs] -> [head_k_dim * num_k_heads, n_tokens, n_seqs] ggml_tensor * key_flat = ggml_reshape_3d(ctx0, key, head_k_dim * num_k_heads, n_tokens, n_seqs); cb(key_flat, "key_flat", il); // value_reshaped: [head_v_dim, num_v_heads, n_tokens, n_seqs] -> [head_v_dim * num_v_heads, n_tokens, n_seqs] ggml_tensor * value_flat = ggml_reshape_3d(ctx0, value_reshaped, head_v_dim * num_v_heads, n_tokens, n_seqs); cb(value_flat, "value_flat", il); // Now concatenate along the feature dimension (dim 0) to get [conv_dim, n_tokens, n_seqs] ggml_tensor * qkv_mixed = ggml_concat(ctx0, query_flat, key_flat, 0); qkv_mixed = ggml_concat(ctx0, qkv_mixed, value_flat, 0); qkv_mixed = ggml_permute(ctx0, qkv_mixed, 1, 0, 2, 3); cb(qkv_mixed, "qkv_mixed_concatenated", il); // Calculate the total conv dimension int64_t qkv_dim = head_k_dim * num_k_heads * 2 + head_v_dim * num_v_heads; // Calculate convolution kernel size ggml_tensor * conv_kernel = model.layers[il].ssm_conv1d; const int64_t conv_kernel_size = conv_kernel->ne[0]; conv_kernel = ggml_permute(ctx0, conv_kernel, 0, 2, 1, 3); conv_states = ggml_reshape_3d(ctx0, conv_states, conv_kernel_size - 1, d_inner + 2 * hparams.ssm_n_group * hparams.ssm_d_state, n_seqs); cb(conv_states, "conv_states_reshaped", il); ggml_tensor * conv_input = ggml_concat(ctx0, conv_states, qkv_mixed, 0); cb(conv_input, "conv_input", il); // Apply convolution ggml_tensor * conv_output = ggml_conv_1d_dw_f32(ctx0, conv_kernel, conv_input, 1, conv_kernel_size - 1, n_seqs); cb(conv_output, "conv_output_raw", il); // Remove the padding ggml_tensor * conv_output_no_padding = ggml_view_4d(ctx0, conv_output, conv_output->ne[0] - (conv_kernel_size - 1), conv_output->ne[1], conv_output->ne[2], conv_output->ne[3], conv_output->nb[1], conv_output->nb[2], conv_output->nb[3], (conv_kernel_size - 1) * ggml_element_size(conv_output)); cb(conv_output_no_padding, "conv_output_no_padding", il); // Take only the first (n_tokens * n_seqs) values ggml_tensor * conv_output_proper = ggml_view_4d(ctx0, conv_output_no_padding, n_tokens * n_seqs, conv_output_no_padding->ne[1], conv_output_no_padding->ne[2], conv_output_no_padding->ne[3], conv_output_no_padding->nb[1], conv_output_no_padding->nb[2], conv_output_no_padding->nb[3], 0); cb(conv_output_proper, "conv_output_proper", il); conv_output_proper = ggml_permute(ctx0, conv_output_proper, 0, 1, 3, 2); conv_output_proper = ggml_cont_4d(ctx0, conv_output_proper, qkv_dim, 1, n_tokens, n_seqs); ggml_tensor * conv_output_silu = ggml_silu(ctx0, conv_output_proper); cb(conv_output_silu, "conv_output_silu", il); // Update convolution state cache // Extract the last (conv_kernel_size - 1) states from conv_input ggml_tensor * last_conv_states = ggml_view_3d(ctx0, conv_input, conv_kernel_size - 1, qkv_dim, n_seqs, conv_input->nb[1], conv_input->nb[2], n_seq_tokens * conv_input->nb[0]); ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv_states, ggml_view_1d(ctx0, conv_states_all, (conv_kernel_size - 1) * qkv_dim * n_seqs, mctx_cur->get_head() * (conv_kernel_size - 1) * qkv_dim * ggml_element_size(conv_states_all)))); cb(conv_states_all, "conv_states_updated", il); conv_output_proper = ggml_reshape_2d(ctx0, conv_output_silu, n_tokens * n_seqs, qkv_dim); cb(conv_output_proper, "conv_output_final", il); ggml_tensor * conv_transposed = ggml_transpose(ctx0, conv_output_proper); cb(conv_transposed, "conv_transposed", il); ggml_tensor * conv_qkv_mix = ggml_cont_2d(ctx0, conv_transposed, qkv_dim, n_tokens * n_seqs); cb(conv_qkv_mix, "conv_qkv_mix", il); // Extract the convolved Q, K, V from conv_output ggml_tensor * q_conv = ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_tokens * n_seqs, conv_qkv_mix->nb[1], 0); cb(q_conv, "q_conv", il); ggml_tensor * k_conv = ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_tokens * n_seqs, conv_qkv_mix->nb[1], head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix)); cb(k_conv, "k_conv", il); ggml_tensor * v_conv = ggml_view_2d(ctx0, conv_qkv_mix, head_v_dim * num_v_heads, n_tokens * n_seqs, conv_qkv_mix->nb[1], 2 * head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix)); cb(v_conv, "v_conv", il); // Unsqueeze them q_conv = ggml_cont_4d(ctx0, q_conv, head_k_dim, num_k_heads, n_tokens, n_seqs); k_conv = ggml_cont_4d(ctx0, k_conv, head_k_dim, num_k_heads, n_tokens, n_seqs); v_conv = ggml_cont_4d(ctx0, v_conv, head_v_dim, num_v_heads, n_tokens, n_seqs); beta = ggml_cont_4d(ctx0, b, 1, num_v_heads, n_tokens, n_seqs); alpha = ggml_cont_4d(ctx0, a, 1, num_v_heads, n_tokens, n_seqs); ggml_tensor * state = ggml_reshape_4d(ctx0, ssm_states_all, head_dim, head_dim * n_heads, 1, 1); gate = ggml_reshape_4d(ctx0, gate, 1, n_heads, n_tokens, n_seqs); // if head keys and value keys are different, repeat to force tensors into matching shapes if (num_k_heads != num_v_heads) { GGML_ASSERT(num_v_heads % num_k_heads == 0); int64_t repeat_factor = num_v_heads / num_k_heads; q_conv = ggml_cont_4d(ctx0, q_conv, head_k_dim, n_tokens, num_k_heads, n_seqs); k_conv = ggml_cont_4d(ctx0, k_conv, head_k_dim, n_tokens, num_k_heads, n_seqs); q_conv = ggml_repeat_4d(ctx0, q_conv, head_k_dim, n_tokens * repeat_factor, num_k_heads, n_seqs); k_conv = ggml_repeat_4d(ctx0, k_conv, head_k_dim, n_tokens * repeat_factor, num_k_heads, n_seqs); // Fix dimension order: last two should be [tokens, batches] q_conv = ggml_reshape_4d(ctx0, q_conv, head_k_dim, num_v_heads, n_tokens, n_seqs); k_conv = ggml_reshape_4d(ctx0, k_conv, head_k_dim, num_v_heads, n_tokens, n_seqs); } // Call the new ggml_delta_net function with the corrected flow const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(num_k_heads)) : hparams.f_attention_scale; ggml_tensor * attn_out = ggml_delta_net(ctx0, q_conv, k_conv, v_conv, gate, beta, state, true, kq_scale, hparams.f_norm_rms_eps); cb(attn_out, "attn_out", il); // The tensors were concatenated 1d, so we need to extract them 1d as well const int64_t output_flat_size = head_dim * n_heads * n_tokens * n_seqs; ggml_tensor * attn_out_1d = ggml_view_1d(ctx0, attn_out, output_flat_size, 0); cb(attn_out_1d, "attn_out_1d", il); ggml_tensor * attn_out_final = ggml_cont_4d(ctx0, attn_out_1d, head_dim, n_heads, n_tokens, n_seqs); cb(attn_out_final, "attn_out_final", il); // Extract the state part (second part of the concatenated tensor) // State starts after n_tokens elements along dimension 1 const int64_t state_flat_size = head_dim * head_dim * n_heads * n_seqs; ggml_tensor * state_1d = ggml_view_1d(ctx0, attn_out, state_flat_size, output_flat_size * ggml_element_size(attn_out)); cb(state_1d, "state_1d", il); ggml_tensor * new_state = ggml_reshape_4d(ctx0, state_1d, head_dim, head_dim, n_heads, n_seqs); cb(new_state, "new_state", il); // Update the recurrent states - we use the new_state directly since it's already the last state ggml_build_forward_expand(gf, ggml_cpy(ctx0, new_state, ssm_states_all)); // Reshape both attn_out_final and z to 2D tensors for normalization // attn_out_final: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim] ggml_tensor * attn_out_2d_final = ggml_reshape_2d(ctx0, ggml_cont(ctx0, attn_out_final), head_dim, n_heads * n_tokens * n_seqs); // z: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim] ggml_tensor * z_2d = ggml_reshape_2d(ctx0, z_reshaped, head_dim, n_heads * n_tokens * n_seqs); // Apply gated normalization: self.norm(core_attn_out, z) // This is Qwen3NextRMSNormGated which applies: RMSNorm(x) * silu(gate) ggml_tensor * attn_out_norm = build_norm(attn_out_2d_final, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il); cb(attn_out_norm, "attn_out_norm", il); // Apply silu gate: attn_out_norm * silu(z_2d) ggml_tensor * z_silu = ggml_silu(ctx0, z_2d); cb(z_silu, "z_silu", il); ggml_tensor * gated_output = ggml_mul(ctx0, attn_out_norm, z_silu); cb(gated_output, "gated_output", il); // Reshape back to original dimensions: [n_heads * n_tokens * n_seqs, head_dim] -> [head_dim, n_heads, n_tokens, n_seqs] ggml_tensor * gated_output_4d = ggml_reshape_4d(ctx0, gated_output, head_dim, n_heads, n_tokens, n_seqs); // Final reshape: [head_dim, n_heads, n_tokens, n_seqs] -> [n_tokens, n_seqs, n_heads * head_dim] ggml_tensor * final_output = ggml_reshape_3d(ctx0, gated_output_4d, n_heads * head_dim, n_tokens, n_seqs); cb(final_output, "final_output", il); // Output projection cur = build_lora_mm(model.layers[il].ssm_out, final_output); cb(cur, "linear_attn_out", il); // Reshape back to original dimensions cur = ggml_cont(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens)); return cur; } ggml_tensor * llm_build_qwen3next::build_layer_ffn(ggml_tensor * cur, const llama_model & model, const int il) { // Check if this is an MoE layer if (model.layers[il].ffn_gate_inp != nullptr) { // MoE branch ggml_tensor * moe_out = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(moe_out, "ffn_moe_out", il); // Add shared experts if present if (model.layers[il].ffn_up_shexp != nullptr) { ggml_tensor * ffn_shexp = build_ffn(cur, model.layers[il].ffn_up_shexp, NULL, NULL, model.layers[il].ffn_gate_shexp, NULL, NULL, model.layers[il].ffn_down_shexp, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(ffn_shexp, "ffn_shexp", il); cur = ggml_add(ctx0, moe_out, ffn_shexp); cb(cur, "ffn_out", il); } else { cur = moe_out; } } else { // Dense FFN branch cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } // Residual connection cur = ggml_add(ctx0, cur, cur); // This should be the residual from before FFN cb(cur, "ffn_residual", il); return cur; }; ggml_tensor * llm_build_qwen3next::softplus(ggml_tensor * alpha, ggml_tensor * dt_bias) { ggml_tensor * alpha_biased = ggml_add(ctx0, alpha, dt_bias); // a + dt_bias ggml_tensor * alpha_exp = ggml_exp(ctx0, alpha_biased); // exp(a + dt_bias) ggml_tensor * one_plus_exp = ggml_scale_bias(ctx0, alpha_exp, 1.0f, 1.0f); // 1 + exp(a + dt_bias) ggml_tensor * alpha_softplus = ggml_log(ctx0, one_plus_exp); // log(1 + exp(...)) return alpha_softplus; }