ggml-cuda.cu 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716
  1. #include <cstddef>
  2. #include <cstdint>
  3. #include <stdint.h>
  4. #include <stdio.h>
  5. #include <atomic>
  6. #include <cuda_runtime.h>
  7. #include <cublas_v2.h>
  8. #include <cuda_fp16.h>
  9. #include "ggml-cuda.h"
  10. #include "ggml.h"
  11. static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
  12. #define CUDA_CHECK(err) \
  13. do { \
  14. cudaError_t err_ = (err); \
  15. if (err_ != cudaSuccess) { \
  16. fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
  17. cudaGetErrorString(err_)); \
  18. exit(1); \
  19. } \
  20. } while (0)
  21. #define CUBLAS_CHECK(err) \
  22. do { \
  23. cublasStatus_t err_ = (err); \
  24. if (err_ != CUBLAS_STATUS_SUCCESS) { \
  25. fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
  26. exit(1); \
  27. } \
  28. } while (0)
  29. typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
  30. #define QK4_0 32
  31. typedef struct {
  32. float d; // delta
  33. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  34. } block_q4_0;
  35. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  36. #define QK4_1 32
  37. typedef struct {
  38. float d; // delta
  39. float m; // min
  40. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  41. } block_q4_1;
  42. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
  43. #define QK4_2 16
  44. typedef struct {
  45. half d; // delta
  46. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  47. } block_q4_2;
  48. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  49. #define QK5_0 32
  50. typedef struct {
  51. half d; // delta
  52. uint8_t qh[4]; // 5-th bit of quants
  53. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  54. } block_q5_0;
  55. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  56. #define QK5_1 32
  57. typedef struct {
  58. half d; // delta
  59. half m; // min
  60. uint8_t qh[4]; // 5-th bit of quants
  61. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  62. } block_q5_1;
  63. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  64. #define QK8_0 32
  65. typedef struct {
  66. float d; // delta
  67. int8_t qs[QK8_0]; // quants
  68. } block_q8_0;
  69. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  70. static __global__ void dequantize_block_q4_0(const void * vx, float * y) {
  71. const block_q4_0 * x = (const block_q4_0 *) vx;
  72. const int i = blockIdx.x;
  73. const float d = x[i].d;
  74. const uint8_t * pp = x[i].qs;
  75. for (int l = 0; l < QK4_0; l += 2) {
  76. const uint8_t vi = pp[l/2];
  77. const int8_t vi0 = vi & 0xf;
  78. const int8_t vi1 = vi >> 4;
  79. const float v0 = (vi0 - 8)*d;
  80. const float v1 = (vi1 - 8)*d;
  81. y[i*QK4_0 + l + 0] = v0;
  82. y[i*QK4_0 + l + 1] = v1;
  83. }
  84. }
  85. static __global__ void dequantize_block_q4_1(const void * vx, float * y) {
  86. const block_q4_1 * x = (const block_q4_1 *) vx;
  87. const int i = blockIdx.x;
  88. const float d = x[i].d;
  89. const float m = x[i].m;
  90. const uint8_t * pp = x[i].qs;
  91. for (int l = 0; l < QK4_1; l += 2) {
  92. const uint8_t vi = pp[l/2];
  93. const int8_t vi0 = vi & 0xf;
  94. const int8_t vi1 = vi >> 4;
  95. const float v0 = vi0*d + m;
  96. const float v1 = vi1*d + m;
  97. y[i*QK4_1 + l + 0] = v0;
  98. y[i*QK4_1 + l + 1] = v1;
  99. }
  100. }
  101. static __global__ void dequantize_block_q4_2(const void * vx, float * y) {
  102. const block_q4_2 * x = (const block_q4_2 *) vx;
  103. const int i = blockIdx.x;
  104. const float d = x[i].d;
  105. const uint8_t * pp = x[i].qs;
  106. for (int l = 0; l < QK4_2; l += 2) {
  107. const uint8_t vi = pp[l/2];
  108. const int8_t vi0 = vi & 0xf;
  109. const int8_t vi1 = vi >> 4;
  110. const float v0 = (vi0 - 8)*d;
  111. const float v1 = (vi1 - 8)*d;
  112. y[i*QK4_2 + l + 0] = v0;
  113. y[i*QK4_2 + l + 1] = v1;
  114. }
  115. }
  116. static __global__ void dequantize_block_q5_0(const void * vx, float * y) {
  117. const block_q5_0 * x = (const block_q5_0 *) vx;
  118. const int i = blockIdx.x;
  119. const float d = x[i].d;
  120. const uint8_t * pp = x[i].qs;
  121. uint32_t qh;
  122. memcpy(&qh, x[i].qh, sizeof(qh));
  123. for (int l = 0; l < QK5_0; l += 2) {
  124. const uint8_t vi = pp[l/2];
  125. const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  126. const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  127. const int8_t vi0 = ((vi & 0xf) | vh0);
  128. const int8_t vi1 = ((vi >> 4) | vh1);
  129. const float v0 = (vi0 - 16)*d;
  130. const float v1 = (vi1 - 16)*d;
  131. y[i*QK5_0 + l + 0] = v0;
  132. y[i*QK5_0 + l + 1] = v1;
  133. }
  134. }
  135. static __global__ void dequantize_block_q5_1(const void * vx, float * y) {
  136. const block_q5_1 * x = (const block_q5_1 *) vx;
  137. const int i = blockIdx.x;
  138. const float d = x[i].d;
  139. const float m = x[i].m;
  140. const uint8_t * pp = x[i].qs;
  141. uint32_t qh;
  142. memcpy(&qh, x[i].qh, sizeof(qh));
  143. for (int l = 0; l < QK5_1; l += 2) {
  144. const uint8_t vi = pp[l/2];
  145. const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  146. const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  147. const int8_t vi0 = (vi & 0xf) | vh0;
  148. const int8_t vi1 = (vi >> 4) | vh1;
  149. const float v0 = vi0*d + m;
  150. const float v1 = vi1*d + m;
  151. y[i*QK5_1 + l + 0] = v0;
  152. y[i*QK5_1 + l + 1] = v1;
  153. }
  154. }
  155. static __global__ void dequantize_block_q8_0(const void * vx, float * y) {
  156. const block_q8_0 * x = (const block_q8_0 *) vx;
  157. const int i = blockIdx.x;
  158. const float d = x[i].d;
  159. const int8_t * pp = x[i].qs;
  160. for (int l = 0; l < QK8_0; l++) {
  161. const int8_t vi = pp[l];
  162. y[i*QK8_0 + l] = vi*d;
  163. }
  164. }
  165. static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
  166. const int nb = k / QK4_0;
  167. dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
  168. }
  169. static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
  170. const int nb = k / QK4_1;
  171. dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
  172. }
  173. static void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
  174. const int nb = k / QK4_2;
  175. dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
  176. }
  177. static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
  178. const int nb = k / QK5_0;
  179. dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
  180. }
  181. static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
  182. const int nb = k / QK5_1;
  183. dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
  184. }
  185. static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
  186. const int nb = k / QK8_0;
  187. dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
  188. }
  189. // TODO: optimize
  190. static __global__ void convert_fp16_to_fp32(const void * vx, float * y) {
  191. const half * x = (const half *) vx;
  192. const int i = blockIdx.x;
  193. y[i] = __half2float(x[i]);
  194. }
  195. static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) {
  196. convert_fp16_to_fp32<<<k, 1, 0, stream>>>(x, y);
  197. }
  198. static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
  199. switch (type) {
  200. case GGML_TYPE_Q4_0:
  201. return dequantize_row_q4_0_cuda;
  202. case GGML_TYPE_Q4_1:
  203. return dequantize_row_q4_1_cuda;
  204. case GGML_TYPE_Q4_2:
  205. return dequantize_row_q4_2_cuda;
  206. case GGML_TYPE_Q5_0:
  207. return dequantize_row_q5_0_cuda;
  208. case GGML_TYPE_Q5_1:
  209. return dequantize_row_q5_1_cuda;
  210. case GGML_TYPE_Q8_0:
  211. return dequantize_row_q8_0_cuda;
  212. case GGML_TYPE_F16:
  213. return convert_fp16_to_fp32_cuda;
  214. default:
  215. return nullptr;
  216. }
  217. }
  218. // buffer pool for cuda
  219. #define MAX_CUDA_BUFFERS 16
  220. struct scoped_spin_lock {
  221. std::atomic_flag& lock;
  222. scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
  223. while (lock.test_and_set(std::memory_order_acquire)) {
  224. ; // spin
  225. }
  226. }
  227. ~scoped_spin_lock() {
  228. lock.clear(std::memory_order_release);
  229. }
  230. scoped_spin_lock(const scoped_spin_lock&) = delete;
  231. scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
  232. };
  233. struct cuda_buffer {
  234. void * ptr = nullptr;
  235. size_t size = 0;
  236. };
  237. static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
  238. static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
  239. static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
  240. scoped_spin_lock lock(g_cuda_pool_lock);
  241. for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
  242. cuda_buffer& b = g_cuda_buffer_pool[i];
  243. if (b.size >= size && b.ptr != nullptr) {
  244. void * ptr = b.ptr;
  245. *actual_size = b.size;
  246. b.ptr = nullptr;
  247. b.size = 0;
  248. return ptr;
  249. }
  250. }
  251. void * ptr;
  252. CUDA_CHECK(cudaMalloc((void **) &ptr, size));
  253. *actual_size = size;
  254. return ptr;
  255. }
  256. static void ggml_cuda_pool_free(void * ptr, size_t size) {
  257. scoped_spin_lock lock(g_cuda_pool_lock);
  258. for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
  259. cuda_buffer& b = g_cuda_buffer_pool[i];
  260. if (b.ptr == nullptr) {
  261. b.ptr = ptr;
  262. b.size = size;
  263. return;
  264. }
  265. }
  266. fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
  267. CUDA_CHECK(cudaFree(ptr));
  268. }
  269. #define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication.
  270. #define GGML_CUDA_MAX_EVENTS 64
  271. static cublasHandle_t g_cublasH = nullptr;
  272. static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
  273. static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
  274. static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
  275. void ggml_init_cublas() {
  276. if (g_cublasH == nullptr) {
  277. // create streams
  278. for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
  279. CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
  280. CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
  281. }
  282. // create events
  283. for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
  284. CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
  285. }
  286. // create cublas handle
  287. CUBLAS_CHECK(cublasCreate(&g_cublasH));
  288. CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
  289. // configure logging to stdout
  290. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
  291. }
  292. }
  293. void * ggml_cuda_host_malloc(size_t size) {
  294. if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
  295. return nullptr;
  296. }
  297. void * ptr = nullptr;
  298. cudaError_t err = cudaMallocHost((void **) &ptr, size);
  299. if (err != cudaSuccess) {
  300. fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
  301. size/1024.0/1024.0, cudaGetErrorString(err));
  302. return nullptr;
  303. }
  304. return ptr;
  305. }
  306. void ggml_cuda_host_free(void * ptr) {
  307. CUDA_CHECK(cudaFreeHost(ptr));
  308. }
  309. static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
  310. const uint64_t ne0 = src->ne[0];
  311. const uint64_t ne1 = src->ne[1];
  312. const uint64_t nb0 = src->nb[0];
  313. const uint64_t nb1 = src->nb[1];
  314. const uint64_t nb2 = src->nb[2];
  315. const uint64_t nb3 = src->nb[3];
  316. const enum ggml_type type = src->type;
  317. const size_t ts = ggml_type_size(type);
  318. const size_t bs = ggml_blck_size(type);
  319. const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
  320. if (nb0 == ts && nb1 == ts*ne0/bs) {
  321. return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
  322. } else if (nb0 == ts) {
  323. return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
  324. } else {
  325. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  326. const void * rx = (const void *) ((const char *) x + i1*nb1);
  327. void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
  328. // pretend the row is a matrix with cols=1
  329. cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
  330. if (r != cudaSuccess) return r;
  331. }
  332. return cudaSuccess;
  333. }
  334. }
  335. static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  336. const int64_t ne00 = src0->ne[0];
  337. const int64_t ne01 = src0->ne[1];
  338. const int64_t ne02 = src0->ne[2];
  339. const int64_t ne03 = src0->ne[3];
  340. const int64_t ne10 = src1->ne[0];
  341. const int64_t ne11 = src1->ne[1];
  342. const int nb2 = dst->nb[2];
  343. const int nb3 = dst->nb[3];
  344. const float alpha = 1.0f;
  345. const float beta = 0.0f;
  346. const int x_ne = ne01 * ne00;
  347. const int y_ne = ne11 * ne10;
  348. const int d_ne = ne11 * ne01;
  349. const int n_mm = ne03 * ne02;
  350. size_t x_size, y_size, d_size;
  351. float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
  352. float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
  353. float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
  354. for (int64_t i03 = 0; i03 < ne03; i03++) {
  355. for (int64_t i02 = 0; i02 < ne02; i02++) {
  356. int i = i03*ne02 + i02;
  357. cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
  358. float * c_X = d_X + i * x_ne;
  359. float * c_Y = d_Y + i * y_ne;
  360. float * c_D = d_D + i * d_ne;
  361. // copy data to device
  362. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
  363. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
  364. // compute
  365. CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
  366. CUBLAS_CHECK(
  367. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  368. ne01, ne11, ne10,
  369. &alpha, c_X, ne00,
  370. c_Y, ne10,
  371. &beta, c_D, ne01));
  372. // copy dst to host
  373. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  374. CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  375. }
  376. }
  377. CUDA_CHECK(cudaDeviceSynchronize());
  378. ggml_cuda_pool_free(d_X, x_size);
  379. ggml_cuda_pool_free(d_Y, y_size);
  380. ggml_cuda_pool_free(d_D, d_size);
  381. }
  382. static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
  383. const int64_t ne00 = src0->ne[0];
  384. const int64_t ne01 = src0->ne[1];
  385. const int64_t ne02 = src0->ne[2];
  386. const int64_t ne03 = src0->ne[3];
  387. const int64_t ne10 = src1->ne[0];
  388. const int64_t ne11 = src1->ne[1];
  389. const int nb10 = src1->nb[0];
  390. const int nb11 = src1->nb[1];
  391. const int nb12 = src1->nb[2];
  392. const int nb13 = src1->nb[3];
  393. const int nb2 = dst->nb[2];
  394. const int nb3 = dst->nb[3];
  395. const float alpha = 1.0f;
  396. const float beta = 0.0f;
  397. const int x_ne = ne01 * ne00;
  398. const int y_ne = ne11 * ne10;
  399. const int d_ne = ne11 * ne01;
  400. const int n_mm = ne03 * ne02;
  401. size_t x_size, y_size, d_size;
  402. half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
  403. half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
  404. float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
  405. bool src1_cont_rows = nb10 == sizeof(float);
  406. bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
  407. for (int64_t i03 = 0; i03 < ne03; i03++) {
  408. for (int64_t i02 = 0; i02 < ne02; i02++) {
  409. int i = i03*ne02 + i02;
  410. cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
  411. half * c_X = d_X + i * x_ne;
  412. half * c_Y = d_Y + i * y_ne;
  413. float * c_D = d_D + i * d_ne;
  414. // copy src0 to device
  415. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
  416. // convert src1 to fp16
  417. // TODO: use multiple threads
  418. ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
  419. char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
  420. if (src1_cont_rows) {
  421. if (src1_cont_cols) {
  422. ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
  423. }
  424. else {
  425. for (int64_t i01 = 0; i01 < ne11; i01++) {
  426. ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
  427. }
  428. }
  429. }
  430. else {
  431. for (int64_t i01 = 0; i01 < ne11; i01++) {
  432. for (int64_t i00 = 0; i00 < ne10; i00++) {
  433. // very slow due to no inlining
  434. tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
  435. }
  436. }
  437. }
  438. // copy src1 to device
  439. CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  440. // compute
  441. CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
  442. CUBLAS_CHECK(
  443. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  444. ne01, ne11, ne10,
  445. &alpha, c_X, CUDA_R_16F, ne00,
  446. c_Y, CUDA_R_16F, ne10,
  447. &beta, c_D, CUDA_R_32F, ne01,
  448. CUBLAS_COMPUTE_32F_FAST_16F,
  449. CUBLAS_GEMM_DEFAULT));
  450. // copy dst to host
  451. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  452. CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  453. }
  454. }
  455. CUDA_CHECK(cudaDeviceSynchronize());
  456. ggml_cuda_pool_free(d_X, x_size);
  457. ggml_cuda_pool_free(d_Y, y_size);
  458. ggml_cuda_pool_free(d_D, d_size);
  459. }
  460. static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  461. const int64_t ne00 = src0->ne[0];
  462. const int64_t ne01 = src0->ne[1];
  463. const int64_t ne02 = src0->ne[2];
  464. const int64_t ne03 = src0->ne[3];
  465. const int64_t ne10 = src1->ne[0];
  466. const int64_t ne11 = src1->ne[1];
  467. const int nb2 = dst->nb[2];
  468. const int nb3 = dst->nb[3];
  469. const ggml_type type = src0->type;
  470. const float alpha = 1.0f;
  471. const float beta = 0.0f;
  472. const int x_ne = ne01 * ne00;
  473. const int y_ne = ne11 * ne10;
  474. const int d_ne = ne11 * ne01;
  475. const int n_mm = ne03 * ne02;
  476. const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
  477. size_t x_size, y_size, d_size, q_size;
  478. float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
  479. float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
  480. float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
  481. char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
  482. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
  483. GGML_ASSERT(to_fp32_cuda != nullptr);
  484. for (int64_t i03 = 0; i03 < ne03; i03++) {
  485. for (int64_t i02 = 0; i02 < ne02; i02++) {
  486. int i = i03*ne02 + i02;
  487. cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
  488. cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
  489. cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
  490. float * c_X = d_X + i * x_ne;
  491. float * c_Y = d_Y + i * y_ne;
  492. float * c_D = d_D + i * d_ne;
  493. char * c_Q = d_Q + i * q_sz;
  494. // copy src0 and convert to fp32 on device
  495. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
  496. to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
  497. CUDA_CHECK(cudaGetLastError());
  498. CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
  499. // copy src1 to device
  500. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
  501. // wait for conversion
  502. CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
  503. // compute
  504. CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
  505. CUBLAS_CHECK(
  506. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  507. ne01, ne11, ne10,
  508. &alpha, c_X, ne00,
  509. c_Y, ne10,
  510. &beta, c_D, ne01));
  511. // copy dst to host
  512. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  513. CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  514. }
  515. }
  516. CUDA_CHECK(cudaDeviceSynchronize());
  517. ggml_cuda_pool_free(d_X, x_size);
  518. ggml_cuda_pool_free(d_Y, y_size);
  519. ggml_cuda_pool_free(d_D, d_size);
  520. ggml_cuda_pool_free(d_Q, q_size);
  521. }
  522. bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  523. const int64_t ne10 = src1->ne[0];
  524. const int64_t ne0 = dst->ne[0];
  525. const int64_t ne1 = dst->ne[1];
  526. // TODO: find the optimal values for these
  527. if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  528. src1->type == GGML_TYPE_F32 &&
  529. dst->type == GGML_TYPE_F32 &&
  530. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  531. return true;
  532. }
  533. return false;
  534. }
  535. bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
  536. size_t src0_sz = ggml_nbytes(src0);
  537. size_t src1_sz = ggml_nbytes(src1);
  538. // mul_mat_q: src0 is converted to fp32 on device
  539. size_t mul_mat_q_transfer = src0_sz + src1_sz;
  540. // mul_mat_f16: src1 is converted to fp16 on cpu
  541. size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
  542. // choose the smaller one to transfer to the device
  543. // TODO: this is not always the best choice due to the overhead of converting to fp16
  544. return mul_mat_f16_transfer < mul_mat_q_transfer;
  545. }
  546. void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
  547. GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
  548. if (src0->type == GGML_TYPE_F32) {
  549. ggml_cuda_mul_mat_f32(src0, src1, dst);
  550. }
  551. else if (src0->type == GGML_TYPE_F16) {
  552. if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
  553. ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
  554. }
  555. else {
  556. ggml_cuda_mul_mat_q_f32(src0, src1, dst);
  557. }
  558. }
  559. else if (ggml_is_quantized(src0->type)) {
  560. ggml_cuda_mul_mat_q_f32(src0, src1, dst);
  561. }
  562. else {
  563. GGML_ASSERT(false);
  564. }
  565. }
  566. size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  567. if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
  568. return ggml_nelements(src1) * sizeof(ggml_fp16_t);
  569. }
  570. else {
  571. return 0;
  572. }
  573. }