ggml.c 418 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  285. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  286. #endif
  287. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  288. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  289. // This is also true for POWER9.
  290. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  291. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  292. uint16_t s;
  293. memcpy(&s, &f, sizeof(uint16_t));
  294. return table_f32_f16[s];
  295. }
  296. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  297. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  298. #endif
  299. // note: do not use these inside ggml.c
  300. // these are meant to be used via the ggml.h API
  301. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  302. return (float) GGML_FP16_TO_FP32(x);
  303. }
  304. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  305. return GGML_FP32_TO_FP16(x);
  306. }
  307. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  308. for (size_t i = 0; i < n; i++) {
  309. y[i] = GGML_FP16_TO_FP32(x[i]);
  310. }
  311. }
  312. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  313. size_t i = 0;
  314. #if defined(__F16C__)
  315. for (; i + 7 < n; i += 8) {
  316. __m256 x_vec = _mm256_loadu_ps(x + i);
  317. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  318. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  319. }
  320. for(; i + 3 < n; i += 4) {
  321. __m128 x_vec = _mm_loadu_ps(x + i);
  322. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  323. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  324. }
  325. #endif
  326. for (; i < n; i++) {
  327. y[i] = GGML_FP32_TO_FP16(x[i]);
  328. }
  329. }
  330. //
  331. // timing
  332. //
  333. #if defined(_MSC_VER) || defined(__MINGW32__)
  334. static int64_t timer_freq;
  335. void ggml_time_init(void) {
  336. LARGE_INTEGER frequency;
  337. QueryPerformanceFrequency(&frequency);
  338. timer_freq = frequency.QuadPart;
  339. }
  340. int64_t ggml_time_ms(void) {
  341. LARGE_INTEGER t;
  342. QueryPerformanceCounter(&t);
  343. return (t.QuadPart * 1000) / timer_freq;
  344. }
  345. int64_t ggml_time_us(void) {
  346. LARGE_INTEGER t;
  347. QueryPerformanceCounter(&t);
  348. return (t.QuadPart * 1000000) / timer_freq;
  349. }
  350. #else
  351. void ggml_time_init(void) {}
  352. int64_t ggml_time_ms(void) {
  353. struct timespec ts;
  354. clock_gettime(CLOCK_MONOTONIC, &ts);
  355. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  356. }
  357. int64_t ggml_time_us(void) {
  358. struct timespec ts;
  359. clock_gettime(CLOCK_MONOTONIC, &ts);
  360. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  361. }
  362. #endif
  363. int64_t ggml_cycles(void) {
  364. return clock();
  365. }
  366. int64_t ggml_cycles_per_ms(void) {
  367. return CLOCKS_PER_SEC/1000;
  368. }
  369. #ifdef GGML_PERF
  370. #define ggml_perf_time_ms() ggml_time_ms()
  371. #define ggml_perf_time_us() ggml_time_us()
  372. #define ggml_perf_cycles() ggml_cycles()
  373. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  374. #else
  375. #define ggml_perf_time_ms() 0
  376. #define ggml_perf_time_us() 0
  377. #define ggml_perf_cycles() 0
  378. #define ggml_perf_cycles_per_ms() 0
  379. #endif
  380. //
  381. // cache line
  382. //
  383. #if defined(__cpp_lib_hardware_interference_size)
  384. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  385. #else
  386. #if defined(__POWER9_VECTOR__)
  387. #define CACHE_LINE_SIZE 128
  388. #else
  389. #define CACHE_LINE_SIZE 64
  390. #endif
  391. #endif
  392. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  393. //
  394. // quantization
  395. //
  396. #if __AVX__ || __AVX2__ || __AVX512F__
  397. // Unpack 16 4-bit fields into 16 bytes
  398. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  399. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  400. {
  401. // Load 8 bytes from memory
  402. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  403. // Expand bytes into uint16_t values
  404. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  405. // Unpack values into individual bytes
  406. const __m128i lowMask = _mm_set1_epi8( 0xF );
  407. __m128i high = _mm_andnot_si128( lowMask, bytes );
  408. __m128i low = _mm_and_si128( lowMask, bytes );
  409. high = _mm_slli_epi16( high, 4 );
  410. bytes = _mm_or_si128( low, high );
  411. return bytes;
  412. }
  413. // horizontally add 8 floats
  414. static inline float hsum_float_8(const __m256 x) {
  415. __m128 res = _mm256_extractf128_ps(x, 1);
  416. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  417. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  418. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  419. return _mm_cvtss_f32(res);
  420. }
  421. // horizontally add 8 int32_t
  422. static inline int hsum_i32_8(const __m256i a) {
  423. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  424. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  425. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  426. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  427. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  428. }
  429. // horizontally add 4 int32_t
  430. static inline int hsum_i32_4(const __m128i a) {
  431. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  432. const __m128i sum64 = _mm_add_epi32(hi64, a);
  433. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  434. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  435. }
  436. #if __AVX2__ || __AVX512F__
  437. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  438. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  439. uint32_t x32;
  440. memcpy(&x32, x, sizeof(uint32_t));
  441. const __m256i shuf_mask = _mm256_set_epi64x(
  442. 0x0303030303030303, 0x0202020202020202,
  443. 0x0101010101010101, 0x0000000000000000);
  444. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  445. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  446. bytes = _mm256_or_si256(bytes, bit_mask);
  447. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  448. }
  449. // Unpack 32 4-bit fields into 32 bytes
  450. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  451. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  452. {
  453. // Load 16 bytes from memory
  454. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  455. // Expand bytes into uint16_t values
  456. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  457. // Unpack values into individual bytes
  458. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  459. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  460. __m256i low = _mm256_and_si256( lowMask, bytes );
  461. high = _mm256_slli_epi16( high, 4 );
  462. bytes = _mm256_or_si256( low, high );
  463. return bytes;
  464. }
  465. // add int16_t pairwise and return as float vector
  466. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  467. const __m256i ones = _mm256_set1_epi16(1);
  468. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  469. return _mm256_cvtepi32_ps(summed_pairs);
  470. }
  471. // multiply int8_t, add results pairwise twice and return as float vector
  472. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  473. // Get absolute values of x vectors
  474. const __m256i ax = _mm256_sign_epi8(x, x);
  475. // Sign the values of the y vectors
  476. const __m256i sy = _mm256_sign_epi8(y, x);
  477. #if __AVXVNNI__
  478. const __m256i zero = _mm256_setzero_si256();
  479. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  480. return _mm256_cvtepi32_ps(summed_pairs);
  481. #else
  482. // Perform multiplication and create 16-bit values
  483. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  484. return sum_i16_pairs_float(dot);
  485. #endif
  486. }
  487. static inline __m128i packNibbles( __m256i bytes )
  488. {
  489. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  490. #if __AVX512F__
  491. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  492. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  493. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  494. #else
  495. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  496. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  497. __m256i low = _mm256_and_si256( lowByte, bytes );
  498. high = _mm256_srli_epi16( high, 4 );
  499. bytes = _mm256_or_si256( low, high );
  500. // Compress uint16_t lanes into bytes
  501. __m128i r0 = _mm256_castsi256_si128( bytes );
  502. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  503. return _mm_packus_epi16( r0, r1 );
  504. #endif
  505. }
  506. #else
  507. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  508. {
  509. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  510. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  511. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  512. __m128i low = _mm_and_si128( lowByte, bytes1 );
  513. high = _mm_srli_epi16( high, 4 );
  514. bytes1 = _mm_or_si128( low, high );
  515. high = _mm_andnot_si128( lowByte, bytes2 );
  516. low = _mm_and_si128( lowByte, bytes2 );
  517. high = _mm_srli_epi16( high, 4 );
  518. bytes2 = _mm_or_si128( low, high );
  519. return _mm_packus_epi16( bytes1, bytes2);
  520. }
  521. #endif
  522. #endif // __AVX__ || __AVX2__ || __AVX512F__
  523. #if __ARM_NEON
  524. #if !defined(__aarch64__)
  525. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  526. return
  527. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  528. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  529. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  530. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  531. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  532. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  533. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  534. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  535. }
  536. inline static int16_t vaddvq_s8(int8x16_t v) {
  537. return
  538. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  539. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  540. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  541. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  542. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  543. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  544. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  545. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  546. }
  547. inline static int32_t vaddvq_s16(int16x8_t v) {
  548. return
  549. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  550. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  551. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  552. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  553. }
  554. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  555. return
  556. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  557. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  558. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  559. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  560. }
  561. inline static int32_t vaddvq_s32(int32x4_t v) {
  562. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  563. }
  564. inline static float vaddvq_f32(float32x4_t v) {
  565. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  566. }
  567. float vminvq_f32(float32x4_t v) {
  568. return
  569. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  570. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  571. }
  572. float vmaxvq_f32(float32x4_t v) {
  573. return
  574. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  575. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  576. }
  577. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  578. int8x8_t res;
  579. res[0] = a[0]; res[1] = b[0];
  580. res[2] = a[1]; res[3] = b[1];
  581. res[4] = a[2]; res[5] = b[2];
  582. res[6] = a[3]; res[7] = b[3];
  583. return res;
  584. }
  585. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  586. int8x8_t res;
  587. res[0] = a[4]; res[1] = b[4];
  588. res[2] = a[5]; res[3] = b[5];
  589. res[4] = a[6]; res[5] = b[6];
  590. res[6] = a[7]; res[7] = b[7];
  591. return res;
  592. }
  593. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  594. uint8x8_t res;
  595. res[0] = a[0]; res[1] = b[0];
  596. res[2] = a[1]; res[3] = b[1];
  597. res[4] = a[2]; res[5] = b[2];
  598. res[6] = a[3]; res[7] = b[3];
  599. return res;
  600. }
  601. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  602. uint8x8_t res;
  603. res[0] = a[4]; res[1] = b[4];
  604. res[2] = a[5]; res[3] = b[5];
  605. res[4] = a[6]; res[5] = b[6];
  606. res[6] = a[7]; res[7] = b[7];
  607. return res;
  608. }
  609. int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) {
  610. int8x16_t res;
  611. res[0] = a[0]; res[1] = b[0]; res[2] = a[1]; res[3] = b[1];
  612. res[4] = a[2]; res[5] = b[2]; res[6] = a[3]; res[7] = b[3];
  613. res[8] = a[4]; res[9] = b[4]; res[10] = a[5]; res[11] = b[5];
  614. res[12] = a[6]; res[13] = b[6]; res[14] = a[7]; res[15] = b[7];
  615. return res;
  616. }
  617. int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) {
  618. int8x16_t res;
  619. res[0] = a[8]; res[1] = b[8]; res[2] = a[9]; res[3] = b[9];
  620. res[4] = a[10]; res[5] = b[10]; res[6] = a[11]; res[7] = b[11];
  621. res[8] = a[12]; res[9] = b[12]; res[10] = a[13]; res[11] = b[13];
  622. res[12] = a[14]; res[13] = b[14]; res[14] = a[15]; res[15] = b[15];
  623. return res;
  624. }
  625. uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) {
  626. uint8x16_t res;
  627. res[0] = a[0]; res[1] = b[0]; res[2] = a[1]; res[3] = b[1];
  628. res[4] = a[2]; res[5] = b[2]; res[6] = a[3]; res[7] = b[3];
  629. res[8] = a[4]; res[9] = b[4]; res[10] = a[5]; res[11] = b[5];
  630. res[12] = a[6]; res[13] = b[6]; res[14] = a[7]; res[15] = b[7];
  631. return res;
  632. }
  633. uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) {
  634. uint8x16_t res;
  635. res[0] = a[8]; res[1] = b[8]; res[2] = a[9]; res[3] = b[9];
  636. res[4] = a[10]; res[5] = b[10]; res[6] = a[11]; res[7] = b[11];
  637. res[8] = a[12]; res[9] = b[12]; res[10] = a[13]; res[11] = b[13];
  638. res[12] = a[14]; res[13] = b[14]; res[14] = a[15]; res[15] = b[15];
  639. return res;
  640. }
  641. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  642. int32x4_t res;
  643. res[0] = roundf(vgetq_lane_f32(v, 0));
  644. res[1] = roundf(vgetq_lane_f32(v, 1));
  645. res[2] = roundf(vgetq_lane_f32(v, 2));
  646. res[3] = roundf(vgetq_lane_f32(v, 3));
  647. return res;
  648. }
  649. #endif
  650. #endif
  651. #define QK4_0 32
  652. typedef struct {
  653. float d; // delta
  654. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  655. } block_q4_0;
  656. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  657. #define QK4_1 32
  658. typedef struct {
  659. float d; // delta
  660. float m; // min
  661. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  662. } block_q4_1;
  663. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  664. #define QK4_2 16
  665. typedef struct {
  666. ggml_fp16_t d; // delta
  667. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  668. } block_q4_2;
  669. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  670. #define QK5_0 32
  671. typedef struct {
  672. ggml_fp16_t d; // delta
  673. uint8_t qh[4]; // 5-th bit of quants
  674. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  675. } block_q5_0;
  676. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  677. #define QK5_1 32
  678. typedef struct {
  679. ggml_fp16_t d; // delta
  680. ggml_fp16_t m; // min
  681. uint8_t qh[4]; // 5-th bit of quants
  682. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  683. } block_q5_1;
  684. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  685. #define QK8_0 32
  686. typedef struct {
  687. float d; // delta
  688. int8_t qs[QK8_0]; // quants
  689. } block_q8_0;
  690. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  691. #define QK8_1 32
  692. typedef struct {
  693. float d; // delta
  694. float s0; // d * sum(qs[i]) low
  695. float s1; // d * sum(qs[i]) high
  696. int8_t qs[QK8_1]; // quants
  697. } block_q8_1;
  698. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  699. // reference implementation for deterministic creation of model files
  700. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  701. assert(k % QK4_0 == 0);
  702. const int nb = k / QK4_0;
  703. uint8_t pp[QK4_0/2];
  704. for (int i = 0; i < nb; i++) {
  705. float amax = 0.0f; // absolute max
  706. float max = 0.0f;
  707. for (int l = 0; l < QK4_0; l++) {
  708. const float v = x[i*QK4_0 + l];
  709. if (amax < fabsf(v)) {
  710. amax = fabsf(v);
  711. max = v;
  712. }
  713. }
  714. const float d = max / -8;
  715. const float id = d ? 1.0f/d : 0.0f;
  716. y[i].d = d;
  717. for (int l = 0; l < QK4_0; l += 2) {
  718. const float v0 = x[i*QK4_0 + l + 0]*id;
  719. const float v1 = x[i*QK4_0 + l + 1]*id;
  720. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  721. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  722. assert(vi0 < 16);
  723. assert(vi1 < 16);
  724. pp[l/2] = vi0 | (vi1 << 4);
  725. }
  726. memcpy(y[i].qs, pp, sizeof(pp));
  727. }
  728. }
  729. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  730. assert(k % QK4_0 == 0);
  731. const int nb = k / QK4_0;
  732. block_q4_0 * restrict y = vy;
  733. #if defined(__POWER9_VECTOR__)
  734. const vector float v85 = vec_splats(8.5f);
  735. const vector signed int v15 = vec_splats(15);
  736. for (int i = 0; i < nb; i++) {
  737. float max = 0.0f;
  738. float min = 0.0f;
  739. vector float asrcv [8];
  740. vector float srcv [8];
  741. vector float maxv[8];
  742. vector float minv[8];
  743. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  744. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  745. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  746. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  747. maxv[0] = vec_max(maxv[0], maxv[2]);
  748. maxv[4] = vec_max(maxv[4], maxv[6]);
  749. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  750. maxv[0] = vec_max(maxv[0], maxv[4]);
  751. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  752. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  753. minv[0] = vec_min(minv[0], minv[2]);
  754. minv[4] = vec_min(minv[4], minv[6]);
  755. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  756. minv[0] = vec_min(minv[0], minv[4]);
  757. max = MAX(
  758. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  759. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  760. min = MIN(
  761. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  762. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  763. const float magnitude = max >= fabsf(min) ? max : min;
  764. const float d = magnitude / -8;
  765. const float id = d ? 1.0/d : 0.0;
  766. y[i].d = d;
  767. const vector float vid = vec_splats(id);
  768. uint8_t * restrict pb = y[i].qs;
  769. for (int l = 0; l < 8; l++) {
  770. const vector float vf = vec_madd(srcv[l], vid, v85);
  771. const vector signed int vi = vec_signed(vf);
  772. const vector signed int vc = vec_min(vi, v15);
  773. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  774. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  775. }
  776. }
  777. #elif __ARM_NEON
  778. for (int i = 0; i < nb; i++) {
  779. float32x4_t srcv [8];
  780. float32x4_t maxv[8];
  781. float32x4_t minv[8];
  782. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  783. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  784. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  785. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  786. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  787. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  788. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  789. const float max = vmaxvq_f32(maxv[0]);
  790. const float min = vminvq_f32(minv[0]);
  791. const float magnitude = max >= fabsf(min) ? max : min;
  792. const float d = magnitude / -8;
  793. const float id = d ? 1.0f/d : 0.0f;
  794. y[i].d = d;
  795. for (int l = 0; l < 8; l++) {
  796. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  797. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  798. const int32x4_t vi = vcvtq_s32_f32(vf);
  799. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  800. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  801. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  802. }
  803. }
  804. #elif defined(__AVX2__)
  805. for (int i = 0; i < nb; i++) {
  806. // Load elements into 4 AVX vectors
  807. __m256 v0 = _mm256_loadu_ps( x );
  808. __m256 v1 = _mm256_loadu_ps( x + 8 );
  809. __m256 v2 = _mm256_loadu_ps( x + 16 );
  810. __m256 v3 = _mm256_loadu_ps( x + 24 );
  811. x += 32;
  812. // Compute max for the block
  813. __m256 max = _mm256_max_ps( v0, v1 );
  814. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  815. max = _mm256_max_ps( max, maxTmp );
  816. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  817. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  818. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  819. const float maxScalar = _mm_cvtss_f32( max4 );
  820. // Compute min for the block
  821. __m256 min = _mm256_min_ps( v0, v1 );
  822. __m256 minTmp = _mm256_min_ps( v2, v3 );
  823. min = _mm256_min_ps( min, minTmp );
  824. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  825. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  826. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  827. const float minScalar = _mm_cvtss_f32( min4 );
  828. // Quantize these floats
  829. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  830. const float d = magnitude / -8.0f;
  831. y[i].d = d;
  832. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  833. const __m256 mul = _mm256_set1_ps( id );
  834. // Apply the multiplier
  835. v0 = _mm256_mul_ps( v0, mul );
  836. v1 = _mm256_mul_ps( v1, mul );
  837. v2 = _mm256_mul_ps( v2, mul );
  838. v3 = _mm256_mul_ps( v3, mul );
  839. // Round to nearest integer
  840. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  841. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  842. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  843. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  844. // Convert floats to integers
  845. __m256i i0 = _mm256_cvtps_epi32( v0 );
  846. __m256i i1 = _mm256_cvtps_epi32( v1 );
  847. __m256i i2 = _mm256_cvtps_epi32( v2 );
  848. __m256i i3 = _mm256_cvtps_epi32( v3 );
  849. // Convert int32 to int16
  850. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  851. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  852. // Convert int16 to int8
  853. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  854. // We got our precious signed bytes, but the order is now wrong
  855. // These AVX2 pack instructions process 16-byte pieces independently
  856. // The following instruction is fixing the order
  857. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  858. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  859. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  860. const __m256i off = _mm256_set1_epi8( 8 );
  861. i0 = _mm256_add_epi8( i0, off );
  862. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  863. i0 = _mm256_min_epi8( i0, maxNibble );
  864. // Compress the vector into 4 bit/value, and store
  865. __m128i res = packNibbles( i0 );
  866. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  867. }
  868. #elif defined(__AVX__)
  869. for (int i = 0; i < nb; i++) {
  870. // Load elements into 4 AVX vectors
  871. __m256 v0 = _mm256_loadu_ps( x );
  872. __m256 v1 = _mm256_loadu_ps( x + 8 );
  873. __m256 v2 = _mm256_loadu_ps( x + 16 );
  874. __m256 v3 = _mm256_loadu_ps( x + 24 );
  875. x += 32;
  876. // Compute max for the block
  877. __m256 max = _mm256_max_ps( v0, v1 );
  878. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  879. max = _mm256_max_ps( max, maxTmp );
  880. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  881. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  882. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  883. const float maxScalar = _mm_cvtss_f32( max4 );
  884. // Compute min for the block
  885. __m256 min = _mm256_min_ps( v0, v1 );
  886. __m256 minTmp = _mm256_min_ps( v2, v3 );
  887. min = _mm256_min_ps( min, minTmp );
  888. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  889. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  890. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  891. const float minScalar = _mm_cvtss_f32( min4 );
  892. // Quantize these floats
  893. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  894. const float d = magnitude / -8.0f;
  895. y[i].d = d;
  896. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  897. const __m256 mul = _mm256_set1_ps( id );
  898. // Apply the multiplier
  899. v0 = _mm256_mul_ps( v0, mul );
  900. v1 = _mm256_mul_ps( v1, mul );
  901. v2 = _mm256_mul_ps( v2, mul );
  902. v3 = _mm256_mul_ps( v3, mul );
  903. // Round to nearest integer
  904. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  905. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  906. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  907. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  908. // Convert floats to integers
  909. __m256i i0 = _mm256_cvtps_epi32( v0 );
  910. __m256i i1 = _mm256_cvtps_epi32( v1 );
  911. __m256i i2 = _mm256_cvtps_epi32( v2 );
  912. __m256i i3 = _mm256_cvtps_epi32( v3 );
  913. // Since we don't have in AVX some necessary functions,
  914. // we split the registers in half and call AVX2 analogs from SSE
  915. __m128i ni0 = _mm256_castsi256_si128( i0 );
  916. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  917. __m128i ni2 = _mm256_castsi256_si128( i1 );
  918. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  919. __m128i ni4 = _mm256_castsi256_si128( i2 );
  920. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  921. __m128i ni6 = _mm256_castsi256_si128( i3 );
  922. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  923. // Convert int32 to int16
  924. ni0 = _mm_packs_epi32( ni0, ni1 );
  925. ni2 = _mm_packs_epi32( ni2, ni3 );
  926. ni4 = _mm_packs_epi32( ni4, ni5 );
  927. ni6 = _mm_packs_epi32( ni6, ni7 );
  928. // Convert int16 to int8
  929. ni0 = _mm_packs_epi16( ni0, ni2 );
  930. ni4 = _mm_packs_epi16( ni4, ni6 );
  931. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  932. const __m128i off = _mm_set1_epi8( 8 );
  933. ni0 = _mm_add_epi8( ni0, off );
  934. ni4 = _mm_add_epi8( ni4, off );
  935. const __m128i maxNibble = _mm_set1_epi8( 15 );
  936. ni0 = _mm_min_epi8( ni0, maxNibble );
  937. ni4 = _mm_min_epi8( ni4, maxNibble );
  938. // Compress the vector into 4 bit/value, and store
  939. __m128i res = packNibbles( ni0, ni4 );
  940. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  941. }
  942. #elif defined(__wasm_simd128__)
  943. for (int i = 0; i < nb; i++) {
  944. float max = 0.0f;
  945. float min = 0.0f;
  946. v128_t srcv [8];
  947. v128_t maxv[8];
  948. v128_t minv[8];
  949. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  950. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  951. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  952. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  953. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  954. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  955. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  956. max = MAX(
  957. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  958. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  959. min = MIN(
  960. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  961. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  962. const float magnitude = max >= fabsf(min) ? max : min;
  963. const float d = magnitude / -8;
  964. const float id = d ? 1.0/d : 0.0;
  965. y[i].d = d;
  966. for (int l = 0; l < 8; l++) {
  967. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  968. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  969. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  970. const v128_t vc = wasm_i32x4_min(vi, wasm_i32x4_splat(15));
  971. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  972. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  973. }
  974. }
  975. #else
  976. // scalar
  977. quantize_row_q4_0_reference(x, y, k);
  978. #endif
  979. }
  980. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  981. assert(k % QK4_1 == 0);
  982. const int nb = k / QK4_1;
  983. block_q4_1 * restrict y = vy;
  984. uint8_t pp[QK4_1/2];
  985. for (int i = 0; i < nb; i++) {
  986. float min = FLT_MAX;
  987. float max = -FLT_MAX;
  988. for (int l = 0; l < QK4_1; l++) {
  989. const float v = x[i*QK4_1 + l];
  990. if (v < min) min = v;
  991. if (v > max) max = v;
  992. }
  993. const float d = (max - min) / ((1 << 4) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].d = d;
  996. y[i].m = min;
  997. for (int l = 0; l < QK4_1; l += 2) {
  998. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  999. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  1000. const uint8_t vi0 = roundf(v0);
  1001. const uint8_t vi1 = roundf(v1);
  1002. assert(vi0 < 16);
  1003. assert(vi1 < 16);
  1004. pp[l/2] = vi0 | (vi1 << 4);
  1005. }
  1006. memcpy(y[i].qs, pp, sizeof(pp));
  1007. }
  1008. }
  1009. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  1010. assert(k % QK4_1 == 0);
  1011. const int nb = k / QK4_1;
  1012. block_q4_1 * restrict y = vy;
  1013. #if defined(__AVX2__)
  1014. for (int i = 0; i < nb; i++) {
  1015. // Load elements into 4 AVX vectors
  1016. __m256 v0 = _mm256_loadu_ps( x );
  1017. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1018. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1019. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1020. x += 32;
  1021. // Compute max for the block
  1022. __m256 vmax;
  1023. vmax = _mm256_max_ps( v0, v1 );
  1024. vmax = _mm256_max_ps( vmax, v2 );
  1025. vmax = _mm256_max_ps( vmax, v3 );
  1026. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  1027. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1028. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1029. const float maxScalar = _mm_cvtss_f32( max4 );
  1030. // Compute min for the block
  1031. __m256 vmin;
  1032. vmin = _mm256_min_ps( v0, v1 );
  1033. vmin = _mm256_min_ps( vmin, v2 );
  1034. vmin = _mm256_min_ps( vmin, v3 );
  1035. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  1036. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  1037. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  1038. const float minScalar = _mm_cvtss_f32( min4 );
  1039. // Quantize these floats
  1040. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  1041. const float id = d ? 1.0f/d : 0.0f;
  1042. y[i].m = minScalar;
  1043. y[i].d = d;
  1044. // x = (x-min)*id
  1045. const __m256 mul = _mm256_set1_ps( id );
  1046. const __m256 off = _mm256_set1_ps( minScalar );
  1047. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  1048. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  1049. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  1050. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  1051. // Round to nearest integer
  1052. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1053. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1054. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1055. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1056. // Convert floats to integers
  1057. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1058. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1059. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1060. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1061. // Convert int32 to int16
  1062. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1063. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1064. // Convert int16 to int8
  1065. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1066. // We got our precious signed bytes, but the order is now wrong
  1067. // These AVX2 pack instructions process 16-byte pieces independently
  1068. // The following instruction is fixing the order
  1069. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1070. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1071. // Compress the vector into 4 bit/value, and store
  1072. __m128i res = packNibbles( i0 );
  1073. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  1074. }
  1075. #elif __ARM_NEON
  1076. for (int i = 0; i < nb; i++) {
  1077. float32x4_t srcv[8];
  1078. float32x4_t minv[8];
  1079. float32x4_t maxv[8];
  1080. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1081. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1082. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1083. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1084. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1085. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1086. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1087. const float min = vminvq_f32(minv[0]);
  1088. const float max = vmaxvq_f32(maxv[0]);
  1089. const float d = (max - min) / ((1 << 4) - 1);
  1090. const float id = d ? 1.0f/d : 0.0f;
  1091. y[i].d = d;
  1092. y[i].m = min;
  1093. const float32x4_t minv0 = vdupq_n_f32(min);
  1094. for (int l = 0; l < 8; l++) {
  1095. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1096. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1097. const int32x4_t vi = vcvtq_s32_f32(vf);
  1098. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1099. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1100. }
  1101. }
  1102. #else
  1103. // scalar
  1104. quantize_row_q4_1_reference(x, vy, k);
  1105. #endif
  1106. }
  1107. // reference implementation for deterministic creation of model files
  1108. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1109. assert(k % QK4_2 == 0);
  1110. const int nb = k / QK4_2;
  1111. for (int i = 0; i < nb; i++) {
  1112. float amax = 0.0f; // absolute max
  1113. float max = 0.0f;
  1114. for (int l = 0; l < QK4_2; l++) {
  1115. const float v = x[i*QK4_2 + l];
  1116. if (amax < fabsf(v)) {
  1117. amax = fabsf(v);
  1118. max = v;
  1119. }
  1120. }
  1121. const float d = max / -8;
  1122. const float id = d ? 1.0f/d : 0.0f;
  1123. y[i].d = GGML_FP32_TO_FP16(d);
  1124. for (int l = 0; l < QK4_2; l += 2) {
  1125. const float v0 = x[i*QK4_2 + l + 0]*id;
  1126. const float v1 = x[i*QK4_2 + l + 1]*id;
  1127. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1128. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1129. assert(vi0 < 16);
  1130. assert(vi1 < 16);
  1131. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1132. }
  1133. }
  1134. }
  1135. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1136. assert(k % QK4_2 == 0);
  1137. block_q4_2 * restrict y = vy;
  1138. quantize_row_q4_2_reference(x, y, k);
  1139. }
  1140. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1141. assert(k % QK5_0 == 0);
  1142. const int nb = k / QK5_0;
  1143. for (int i = 0; i < nb; i++) {
  1144. float amax = 0.0f; // absolute max
  1145. float max = 0.0f;
  1146. for (int l = 0; l < QK5_0; l++) {
  1147. const float v = x[i*QK5_0 + l];
  1148. if (amax < fabsf(v)) {
  1149. amax = fabsf(v);
  1150. max = v;
  1151. }
  1152. }
  1153. const float d = max / -16;
  1154. const float id = d ? 1.0f/d : 0.0f;
  1155. y[i].d = GGML_FP32_TO_FP16(d);
  1156. uint32_t qh = 0;
  1157. for (int l = 0; l < QK5_0; l += 2) {
  1158. const float v0 = x[i*QK5_0 + l + 0]*id;
  1159. const float v1 = x[i*QK5_0 + l + 1]*id;
  1160. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1161. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1162. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1163. // get the 5-th bit and store it in qh at the right position
  1164. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1165. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1166. }
  1167. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1168. }
  1169. }
  1170. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1171. assert(k % QK5_0 == 0);
  1172. block_q5_0 * restrict y = vy;
  1173. quantize_row_q5_0_reference(x, y, k);
  1174. }
  1175. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1176. assert(k % QK5_1 == 0);
  1177. const int nb = k / QK5_1;
  1178. for (int i = 0; i < nb; i++) {
  1179. float min = FLT_MAX;
  1180. float max = -FLT_MAX;
  1181. for (int l = 0; l < QK5_1; l++) {
  1182. const float v = x[i*QK5_1 + l];
  1183. if (v < min) min = v;
  1184. if (v > max) max = v;
  1185. }
  1186. const float d = (max - min) / ((1 << 5) - 1);
  1187. const float id = d ? 1.0f/d : 0.0f;
  1188. y[i].d = GGML_FP32_TO_FP16(d);
  1189. y[i].m = GGML_FP32_TO_FP16(min);
  1190. uint32_t qh = 0;
  1191. for (int l = 0; l < QK5_1; l += 2) {
  1192. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1193. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1194. const uint32_t vi0 = (int) (v0 + 0.5f);
  1195. const uint32_t vi1 = (int) (v1 + 0.5f);
  1196. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1197. // get the 5-th bit and store it in qh at the right position
  1198. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1199. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1200. }
  1201. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1202. }
  1203. }
  1204. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1205. assert(k % QK5_1 == 0);
  1206. block_q5_1 * restrict y = vy;
  1207. quantize_row_q5_1_reference(x, y, k);
  1208. }
  1209. // reference implementation for deterministic creation of model files
  1210. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1211. assert(k % QK8_0 == 0);
  1212. const int nb = k / QK8_0;
  1213. for (int i = 0; i < nb; i++) {
  1214. float amax = 0.0f; // absolute max
  1215. for (int l = 0; l < QK8_0; l++) {
  1216. const float v = x[i*QK8_0 + l];
  1217. amax = MAX(amax, fabsf(v));
  1218. }
  1219. const float d = amax / ((1 << 7) - 1);
  1220. const float id = d ? 1.0f/d : 0.0f;
  1221. y[i].d = d;
  1222. for (int l = 0; l < QK8_0; ++l) {
  1223. const float v0 = x[i*QK8_0 + l]*id;
  1224. y[i].qs[l] = roundf(v0);
  1225. }
  1226. }
  1227. }
  1228. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1229. assert(QK8_0 == 32);
  1230. assert(k % QK8_0 == 0);
  1231. const int nb = k / QK8_0;
  1232. block_q8_0 * restrict y = vy;
  1233. #if defined(__ARM_NEON)
  1234. for (int i = 0; i < nb; i++) {
  1235. float32x4_t srcv [8];
  1236. float32x4_t asrcv[8];
  1237. float32x4_t amaxv[8];
  1238. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1239. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1240. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1241. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1242. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1243. const float amax = vmaxvq_f32(amaxv[0]);
  1244. const float d = amax / ((1 << 7) - 1);
  1245. const float id = d ? 1.0f/d : 0.0f;
  1246. y[i].d = d;
  1247. for (int l = 0; l < 8; l++) {
  1248. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1249. const int32x4_t vi = vcvtnq_s32_f32(v);
  1250. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1251. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1252. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1253. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1254. }
  1255. }
  1256. #elif defined(__AVX2__) || defined(__AVX__)
  1257. for (int i = 0; i < nb; i++) {
  1258. // Load elements into 4 AVX vectors
  1259. __m256 v0 = _mm256_loadu_ps( x );
  1260. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1261. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1262. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1263. x += 32;
  1264. // Compute max(abs(e)) for the block
  1265. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1266. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1267. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1268. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1269. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1270. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1271. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1272. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1273. const float maxScalar = _mm_cvtss_f32( max4 );
  1274. // Quantize these floats
  1275. const float d = maxScalar / 127.f;
  1276. y[i].d = d;
  1277. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1278. const __m256 mul = _mm256_set1_ps( id );
  1279. // Apply the multiplier
  1280. v0 = _mm256_mul_ps( v0, mul );
  1281. v1 = _mm256_mul_ps( v1, mul );
  1282. v2 = _mm256_mul_ps( v2, mul );
  1283. v3 = _mm256_mul_ps( v3, mul );
  1284. // Round to nearest integer
  1285. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1286. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1287. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1288. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1289. // Convert floats to integers
  1290. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1291. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1292. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1293. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1294. #if defined(__AVX2__)
  1295. // Convert int32 to int16
  1296. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1297. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1298. // Convert int16 to int8
  1299. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1300. // We got our precious signed bytes, but the order is now wrong
  1301. // These AVX2 pack instructions process 16-byte pieces independently
  1302. // The following instruction is fixing the order
  1303. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1304. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1305. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1306. #else
  1307. // Since we don't have in AVX some necessary functions,
  1308. // we split the registers in half and call AVX2 analogs from SSE
  1309. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1310. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1311. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1312. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1313. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1314. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1315. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1316. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1317. // Convert int32 to int16
  1318. ni0 = _mm_packs_epi32( ni0, ni1 );
  1319. ni2 = _mm_packs_epi32( ni2, ni3 );
  1320. ni4 = _mm_packs_epi32( ni4, ni5 );
  1321. ni6 = _mm_packs_epi32( ni6, ni7 );
  1322. // Convert int16 to int8
  1323. ni0 = _mm_packs_epi16( ni0, ni2 );
  1324. ni4 = _mm_packs_epi16( ni4, ni6 );
  1325. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1326. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1327. #endif
  1328. }
  1329. #else
  1330. // scalar
  1331. quantize_row_q8_0_reference(x, y, k);
  1332. #endif
  1333. }
  1334. // reference implementation for deterministic creation of model files
  1335. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1336. assert(QK8_1 == 32);
  1337. assert(k % QK8_1 == 0);
  1338. const int nb = k / QK8_1;
  1339. for (int i = 0; i < nb; i++) {
  1340. float amax = 0.0f; // absolute max
  1341. for (int l = 0; l < QK8_1; l++) {
  1342. const float v = x[i*QK8_1 + l];
  1343. amax = MAX(amax, fabsf(v));
  1344. }
  1345. const float d = amax / ((1 << 7) - 1);
  1346. const float id = d ? 1.0f/d : 0.0f;
  1347. y[i].d = d;
  1348. int sum0 = 0;
  1349. int sum1 = 0;
  1350. for (int l = 0; l < QK8_1/2; ++l) {
  1351. const float v0 = x[i*QK8_1 + l]*id;
  1352. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1353. y[i].qs[ l] = roundf(v0);
  1354. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1355. sum0 += y[i].qs[ l];
  1356. sum1 += y[i].qs[QK8_1/2 + l];
  1357. }
  1358. y[i].s0 = d * sum0;
  1359. y[i].s1 = d * sum1;
  1360. }
  1361. }
  1362. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1363. assert(k % QK8_1 == 0);
  1364. const int nb = k / QK8_1;
  1365. block_q8_1 * restrict y = vy;
  1366. #if defined(__ARM_NEON)
  1367. for (int i = 0; i < nb; i++) {
  1368. float32x4_t srcv [8];
  1369. float32x4_t asrcv[8];
  1370. float32x4_t amaxv[8];
  1371. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1372. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1373. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1374. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1375. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1376. const float amax = vmaxvq_f32(amaxv[0]);
  1377. const float d = amax / ((1 << 7) - 1);
  1378. const float id = d ? 1.0f/d : 0.0f;
  1379. y[i].d = d;
  1380. int32x4_t accv0 = vdupq_n_s32(0);
  1381. int32x4_t accv1 = vdupq_n_s32(0);
  1382. // low half
  1383. for (int l = 0; l < 4; l++) {
  1384. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1385. const int32x4_t vi = vcvtnq_s32_f32(v);
  1386. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1387. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1388. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1389. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1390. accv0 = vaddq_s32(accv0, vi);
  1391. }
  1392. // high half
  1393. for (int l = 4; l < 8; l++) {
  1394. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1395. const int32x4_t vi = vcvtnq_s32_f32(v);
  1396. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1397. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1398. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1399. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1400. accv1 = vaddq_s32(accv1, vi);
  1401. }
  1402. const int32_t sum0 = vaddvq_s32(accv0);
  1403. const int32_t sum1 = vaddvq_s32(accv1);
  1404. y[i].s0 = d * sum0;
  1405. y[i].s1 = d * sum1;
  1406. }
  1407. #elif defined(__AVX2__) || defined(__AVX__)
  1408. for (int i = 0; i < nb; i++) {
  1409. // Load elements into 4 AVX vectors
  1410. __m256 v0 = _mm256_loadu_ps( x );
  1411. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1412. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1413. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1414. x += 32;
  1415. // Compute max(abs(e)) for the block
  1416. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1417. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1418. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1419. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1420. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1421. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1422. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1423. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1424. const float maxScalar = _mm_cvtss_f32( max4 );
  1425. // Quantize these floats
  1426. const float d = maxScalar / 127.f;
  1427. y[i].d = d;
  1428. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1429. const __m256 mul = _mm256_set1_ps( id );
  1430. // Apply the multiplier
  1431. v0 = _mm256_mul_ps( v0, mul );
  1432. v1 = _mm256_mul_ps( v1, mul );
  1433. v2 = _mm256_mul_ps( v2, mul );
  1434. v3 = _mm256_mul_ps( v3, mul );
  1435. // Round to nearest integer
  1436. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1437. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1438. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1439. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1440. // Convert floats to integers
  1441. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1442. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1443. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1444. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1445. #if defined(__AVX2__)
  1446. // Compute the sum of the quants and set y[i].s
  1447. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1448. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1449. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1450. // Convert int32 to int16
  1451. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1452. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1453. // Convert int16 to int8
  1454. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1455. // We got our precious signed bytes, but the order is now wrong
  1456. // These AVX2 pack instructions process 16-byte pieces independently
  1457. // The following instruction is fixing the order
  1458. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1459. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1460. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1461. #else
  1462. // Since we don't have in AVX some necessary functions,
  1463. // we split the registers in half and call AVX2 analogs from SSE
  1464. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1465. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1466. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1467. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1468. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1469. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1470. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1471. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1472. // Compute the sum of the quants and set y[i].s
  1473. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1474. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1475. y[i].s0 = d * hsum_i32_4(s0);
  1476. y[i].s1 = d * hsum_i32_4(s1);
  1477. // Convert int32 to int16
  1478. ni0 = _mm_packs_epi32( ni0, ni1 );
  1479. ni2 = _mm_packs_epi32( ni2, ni3 );
  1480. ni4 = _mm_packs_epi32( ni4, ni5 );
  1481. ni6 = _mm_packs_epi32( ni6, ni7 );
  1482. // Convert int16 to int8
  1483. ni0 = _mm_packs_epi16( ni0, ni2 );
  1484. ni4 = _mm_packs_epi16( ni4, ni6 );
  1485. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1486. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1487. #endif
  1488. }
  1489. #else
  1490. // scalar
  1491. quantize_row_q8_1_reference(x, y, k);
  1492. #endif
  1493. }
  1494. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1495. assert(k % QK4_0 == 0);
  1496. const int nb = k / QK4_0;
  1497. const block_q4_0 * restrict x = vx;
  1498. #if defined(__AVX2__)
  1499. for (int i = 0; i < nb; i++) {
  1500. // scale factor
  1501. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1502. const uint8_t * restrict pp = x[i].qs;
  1503. for (int l = 0; l < QK4_0; l += 32) {
  1504. // Load 32x4-bit integers into 32x8-bit integers
  1505. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1506. // Subtract 8 from the integers
  1507. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1508. // Convert to 16-bit int
  1509. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1510. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1511. // Convert to 32-bit int -> float 32
  1512. const __m256 vf[4] = {
  1513. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1514. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1515. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1516. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1517. };
  1518. // Scale and store
  1519. for (int j = 0; j < 4; j++) {
  1520. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1521. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1522. }
  1523. }
  1524. }
  1525. #elif defined(__ARM_NEON)
  1526. for (int i = 0; i < nb; i++) {
  1527. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1528. const uint8_t * restrict pp = x[i].qs;
  1529. for (int l = 0; l < QK4_0; l += 16) {
  1530. // Load 16x4-bit integers into 8x8-bit integers
  1531. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1532. // Expand 4-bit qs to 8-bit bytes
  1533. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1534. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1535. // Convert to signed 8-bit integers
  1536. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1537. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1538. // Subtract 8 from each byte
  1539. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1540. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1541. // Interleave and combine
  1542. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1543. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1544. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1545. // convert to 2x int16x8_t
  1546. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1547. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1548. // convert to 4x float32x4_t
  1549. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1550. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1551. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1552. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1553. // Multiply by d
  1554. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1555. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1556. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1557. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1558. // Store
  1559. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1560. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1561. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1562. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1563. }
  1564. }
  1565. #else
  1566. // scalar
  1567. for (int i = 0; i < nb; i++) {
  1568. const float d = x[i].d;
  1569. const uint8_t * restrict pp = x[i].qs;
  1570. for (int l = 0; l < QK4_0; l += 2) {
  1571. const uint8_t vi = pp[l/2];
  1572. const int8_t vi0 = vi & 0x0F;
  1573. const int8_t vi1 = vi >> 4;
  1574. const float v0 = (vi0 - 8)*d;
  1575. const float v1 = (vi1 - 8)*d;
  1576. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1577. y[i*QK4_0 + l + 0] = v0;
  1578. y[i*QK4_0 + l + 1] = v1;
  1579. assert(!isnan(y[i*QK4_0 + l + 0]));
  1580. assert(!isnan(y[i*QK4_0 + l + 1]));
  1581. }
  1582. }
  1583. #endif
  1584. }
  1585. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1586. assert(k % QK4_1 == 0);
  1587. const int nb = k / QK4_1;
  1588. const block_q4_1 * restrict x = vx;
  1589. #if defined(__AVX2__)
  1590. for (int i = 0; i < nb; i++) {
  1591. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1592. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1593. const uint8_t * restrict pp = x[i].qs;
  1594. for (int l = 0; l < QK4_1; l += 32) {
  1595. // Load 32x4-bit integers into 32x8-bit integers
  1596. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1597. // Convert to 16-bit int
  1598. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1599. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1600. // Convert to 32-bit int -> float 32
  1601. const __m256 vf[4] = {
  1602. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1603. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1604. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1605. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1606. };
  1607. // Scale, add m and store
  1608. for (int j = 0; j < 4; j++) {
  1609. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1610. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1611. }
  1612. }
  1613. }
  1614. #elif defined(__ARM_NEON)
  1615. for (int i = 0; i < nb; i++) {
  1616. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1617. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1618. const uint8_t * restrict pp = x[i].qs;
  1619. for (int l = 0; l < QK4_1; l += 16) {
  1620. // Load 16x4-bit integers into 8x8-bit integers
  1621. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1622. // Expand 4-bit qs to 8-bit bytes
  1623. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1624. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1625. // Interleave and combine
  1626. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1627. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1628. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1629. // convert to 2x uint16x8_t
  1630. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1631. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1632. // convert to 4x float32x4_t
  1633. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1634. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1635. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1636. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1637. // multiply by d and add m
  1638. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1639. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1640. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1641. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1642. // Store
  1643. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1644. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1645. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1646. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1647. }
  1648. }
  1649. #else
  1650. for (int i = 0; i < nb; i++) {
  1651. const float d = x[i].d;
  1652. const float m = x[i].m;
  1653. const uint8_t * restrict pp = x[i].qs;
  1654. for (int l = 0; l < QK4_1; l += 2) {
  1655. const uint8_t vi = pp[l/2];
  1656. const int8_t vi0 = vi & 0x0F;
  1657. const int8_t vi1 = vi >> 4;
  1658. const float v0 = vi0*d + m;
  1659. const float v1 = vi1*d + m;
  1660. y[i*QK4_1 + l + 0] = v0;
  1661. y[i*QK4_1 + l + 1] = v1;
  1662. assert(!isnan(y[i*QK4_1 + l + 0]));
  1663. assert(!isnan(y[i*QK4_1 + l + 1]));
  1664. }
  1665. }
  1666. #endif
  1667. }
  1668. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1669. assert(k % QK4_2 == 0);
  1670. const int nb = k / QK4_2;
  1671. const block_q4_2 * restrict x = vx;
  1672. for (int i = 0; i < nb; i++) {
  1673. const float d = GGML_FP16_TO_FP32(x[i].d);
  1674. const uint8_t * restrict pp = x[i].qs;
  1675. for (int l = 0; l < QK4_2; l += 2) {
  1676. const uint8_t vi = pp[l/2];
  1677. const int8_t vi0 = vi & 0x0F;
  1678. const int8_t vi1 = vi >> 4;
  1679. const float v0 = (vi0 - 8)*d;
  1680. const float v1 = (vi1 - 8)*d;
  1681. y[i*QK4_2 + l + 0] = v0;
  1682. y[i*QK4_2 + l + 1] = v1;
  1683. assert(!isnan(y[i*QK4_2 + l + 0]));
  1684. assert(!isnan(y[i*QK4_2 + l + 1]));
  1685. }
  1686. }
  1687. }
  1688. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1689. assert(k % QK5_0 == 0);
  1690. const int nb = k / QK5_0;
  1691. const block_q5_0 * restrict x = vx;
  1692. for (int i = 0; i < nb; i++) {
  1693. const float d = GGML_FP16_TO_FP32(x[i].d);
  1694. const uint8_t * restrict pp = x[i].qs;
  1695. uint32_t qh;
  1696. memcpy(&qh, x[i].qh, sizeof(qh));
  1697. for (int l = 0; l < QK5_0; l += 2) {
  1698. const uint8_t vi = pp[l/2];
  1699. // extract the 5-th bit from qh
  1700. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1701. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1702. const int8_t vi0 = (vi & 0x0F) | vh0;
  1703. const int8_t vi1 = (vi >> 4) | vh1;
  1704. const float v0 = (vi0 - 16)*d;
  1705. const float v1 = (vi1 - 16)*d;
  1706. y[i*QK5_0 + l + 0] = v0;
  1707. y[i*QK5_0 + l + 1] = v1;
  1708. assert(!isnan(y[i*QK5_0 + l + 0]));
  1709. assert(!isnan(y[i*QK5_0 + l + 1]));
  1710. }
  1711. }
  1712. }
  1713. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1714. assert(k % QK5_1 == 0);
  1715. const int nb = k / QK5_1;
  1716. const block_q5_1 * restrict x = vx;
  1717. for (int i = 0; i < nb; i++) {
  1718. const float d = GGML_FP16_TO_FP32(x[i].d);
  1719. const float m = GGML_FP16_TO_FP32(x[i].m);
  1720. const uint8_t * restrict pp = x[i].qs;
  1721. uint32_t qh;
  1722. memcpy(&qh, x[i].qh, sizeof(qh));
  1723. for (int l = 0; l < QK5_1; l += 2) {
  1724. const uint8_t vi = pp[l/2];
  1725. // extract the 5-th bit from qh
  1726. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1727. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1728. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1729. const uint8_t vi1 = (vi >> 4) | vh1;
  1730. const float v0 = vi0*d + m;
  1731. const float v1 = vi1*d + m;
  1732. y[i*QK5_1 + l + 0] = v0;
  1733. y[i*QK5_1 + l + 1] = v1;
  1734. assert(!isnan(y[i*QK5_1 + l + 0]));
  1735. assert(!isnan(y[i*QK5_1 + l + 1]));
  1736. }
  1737. }
  1738. }
  1739. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1740. assert(k % QK8_0 == 0);
  1741. const int nb = k / QK8_0;
  1742. const block_q8_0 * restrict x = vx;
  1743. for (int i = 0; i < nb; i++) {
  1744. const float d = x[i].d;
  1745. const int8_t * restrict pp = x[i].qs;
  1746. for (int l = 0; l < QK8_0; ++l) {
  1747. y[i*QK8_0 + l] = pp[l]*d;
  1748. }
  1749. }
  1750. }
  1751. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1752. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1753. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1754. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1755. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1756. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1757. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1758. [GGML_TYPE_Q4_0] = {
  1759. .dequantize_row_q = dequantize_row_q4_0,
  1760. .quantize_row_q = quantize_row_q4_0,
  1761. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1762. .quantize_row_q_dot = quantize_row_q8_0,
  1763. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1764. .vec_dot_type = GGML_TYPE_Q8_0,
  1765. },
  1766. [GGML_TYPE_Q4_1] = {
  1767. .dequantize_row_q = dequantize_row_q4_1,
  1768. .quantize_row_q = quantize_row_q4_1,
  1769. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1770. .quantize_row_q_dot = quantize_row_q8_1,
  1771. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1772. .vec_dot_type = GGML_TYPE_Q8_1,
  1773. },
  1774. [GGML_TYPE_Q4_2] = {
  1775. .dequantize_row_q = dequantize_row_q4_2,
  1776. .quantize_row_q = quantize_row_q4_2,
  1777. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1778. .quantize_row_q_dot = quantize_row_q8_0,
  1779. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1780. .vec_dot_type = GGML_TYPE_Q8_0,
  1781. },
  1782. [GGML_TYPE_Q5_0] = {
  1783. .dequantize_row_q = dequantize_row_q5_0,
  1784. .quantize_row_q = quantize_row_q5_0,
  1785. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1786. .quantize_row_q_dot = quantize_row_q8_0,
  1787. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1788. .vec_dot_type = GGML_TYPE_Q8_0,
  1789. },
  1790. [GGML_TYPE_Q5_1] = {
  1791. .dequantize_row_q = dequantize_row_q5_1,
  1792. .quantize_row_q = quantize_row_q5_1,
  1793. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1794. .quantize_row_q_dot = quantize_row_q8_1,
  1795. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1796. .vec_dot_type = GGML_TYPE_Q8_1,
  1797. },
  1798. [GGML_TYPE_Q8_0] = {
  1799. .dequantize_row_q = dequantize_row_q8_0,
  1800. .quantize_row_q = quantize_row_q8_0,
  1801. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1802. .quantize_row_q_dot = quantize_row_q8_0,
  1803. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1804. .vec_dot_type = GGML_TYPE_Q8_0,
  1805. },
  1806. [GGML_TYPE_Q8_1] = {
  1807. .dequantize_row_q = NULL, // TODO
  1808. .quantize_row_q = quantize_row_q8_1,
  1809. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1810. .quantize_row_q_dot = quantize_row_q8_1,
  1811. .vec_dot_q = NULL, // TODO
  1812. .vec_dot_type = GGML_TYPE_Q8_1,
  1813. },
  1814. };
  1815. // For internal test use
  1816. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1817. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1818. return quantize_fns[i];
  1819. }
  1820. //
  1821. // simd mappings
  1822. //
  1823. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1824. // we then implement the fundamental computation operations below using only these macros
  1825. // adding support for new architectures requires to define the corresponding SIMD macros
  1826. //
  1827. // GGML_F32_STEP / GGML_F16_STEP
  1828. // number of elements to process in a single step
  1829. //
  1830. // GGML_F32_EPR / GGML_F16_EPR
  1831. // number of elements to fit in a single register
  1832. //
  1833. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1834. #define GGML_SIMD
  1835. // F32 NEON
  1836. #define GGML_F32_STEP 16
  1837. #define GGML_F32_EPR 4
  1838. #define GGML_F32x4 float32x4_t
  1839. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1840. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1841. #define GGML_F32x4_LOAD vld1q_f32
  1842. #define GGML_F32x4_STORE vst1q_f32
  1843. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1844. #define GGML_F32x4_ADD vaddq_f32
  1845. #define GGML_F32x4_MUL vmulq_f32
  1846. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1847. #define GGML_F32x4_REDUCE(res, x) \
  1848. { \
  1849. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1850. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1851. } \
  1852. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1853. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1854. } \
  1855. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1856. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1857. } \
  1858. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1859. }
  1860. #define GGML_F32_VEC GGML_F32x4
  1861. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1862. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1863. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1864. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1865. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1866. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1867. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1868. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1869. // F16 NEON
  1870. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1871. #define GGML_F16_STEP 32
  1872. #define GGML_F16_EPR 8
  1873. #define GGML_F16x8 float16x8_t
  1874. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1875. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1876. #define GGML_F16x8_LOAD vld1q_f16
  1877. #define GGML_F16x8_STORE vst1q_f16
  1878. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1879. #define GGML_F16x8_ADD vaddq_f16
  1880. #define GGML_F16x8_MUL vmulq_f16
  1881. #define GGML_F16x8_REDUCE(res, x) \
  1882. { \
  1883. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1884. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1885. } \
  1886. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1887. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1888. } \
  1889. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1890. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1891. } \
  1892. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1893. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1894. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1895. }
  1896. #define GGML_F16_VEC GGML_F16x8
  1897. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1898. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1899. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1900. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1901. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1902. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1903. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1904. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1905. #else
  1906. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1907. // and take advantage of the vcvt_ functions to convert to/from FP16
  1908. #define GGML_F16_STEP 16
  1909. #define GGML_F16_EPR 4
  1910. #define GGML_F32Cx4 float32x4_t
  1911. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1912. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1913. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1914. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1915. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1916. #define GGML_F32Cx4_ADD vaddq_f32
  1917. #define GGML_F32Cx4_MUL vmulq_f32
  1918. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1919. #define GGML_F16_VEC GGML_F32Cx4
  1920. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1921. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1922. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1923. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1924. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1925. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1926. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1927. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1928. #endif
  1929. #elif defined(__AVX__)
  1930. #define GGML_SIMD
  1931. // F32 AVX
  1932. #define GGML_F32_STEP 32
  1933. #define GGML_F32_EPR 8
  1934. #define GGML_F32x8 __m256
  1935. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1936. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1937. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1938. #define GGML_F32x8_STORE _mm256_storeu_ps
  1939. #if defined(__FMA__)
  1940. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1941. #else
  1942. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1943. #endif
  1944. #define GGML_F32x8_ADD _mm256_add_ps
  1945. #define GGML_F32x8_MUL _mm256_mul_ps
  1946. #define GGML_F32x8_REDUCE(res, x) \
  1947. { \
  1948. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1949. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1950. } \
  1951. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1952. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1953. } \
  1954. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1955. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1956. } \
  1957. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1958. _mm256_extractf128_ps(x[0], 1)); \
  1959. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1960. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1961. }
  1962. // TODO: is this optimal ?
  1963. #define GGML_F32_VEC GGML_F32x8
  1964. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1965. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1966. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1967. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1968. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1969. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1970. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1971. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1972. // F16 AVX
  1973. #define GGML_F16_STEP 32
  1974. #define GGML_F16_EPR 8
  1975. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1976. #define GGML_F32Cx8 __m256
  1977. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1978. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1979. #if defined(__F16C__)
  1980. // the _mm256_cvt intrinsics require F16C
  1981. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1982. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1983. #else
  1984. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1985. float tmp[8];
  1986. for (int i = 0; i < 8; i++)
  1987. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1988. return _mm256_loadu_ps(tmp);
  1989. }
  1990. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1991. float arr[8];
  1992. _mm256_storeu_ps(arr, y);
  1993. for (int i = 0; i < 8; i++)
  1994. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1995. }
  1996. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1997. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1998. #endif
  1999. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  2000. #define GGML_F32Cx8_ADD _mm256_add_ps
  2001. #define GGML_F32Cx8_MUL _mm256_mul_ps
  2002. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  2003. #define GGML_F16_VEC GGML_F32Cx8
  2004. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  2005. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  2006. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  2007. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  2008. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  2009. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  2010. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  2011. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  2012. #elif defined(__POWER9_VECTOR__)
  2013. #define GGML_SIMD
  2014. // F32 POWER9
  2015. #define GGML_F32_STEP 32
  2016. #define GGML_F32_EPR 4
  2017. #define GGML_F32x4 vector float
  2018. #define GGML_F32x4_ZERO 0.0f
  2019. #define GGML_F32x4_SET1 vec_splats
  2020. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  2021. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  2022. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  2023. #define GGML_F32x4_ADD vec_add
  2024. #define GGML_F32x4_MUL vec_mul
  2025. #define GGML_F32x4_REDUCE(res, x) \
  2026. { \
  2027. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2028. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  2029. } \
  2030. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2031. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  2032. } \
  2033. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2034. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  2035. } \
  2036. res = vec_extract(x[0], 0) + \
  2037. vec_extract(x[0], 1) + \
  2038. vec_extract(x[0], 2) + \
  2039. vec_extract(x[0], 3); \
  2040. }
  2041. #define GGML_F32_VEC GGML_F32x4
  2042. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2043. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2044. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2045. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2046. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2047. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2048. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2049. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2050. // F16 POWER9
  2051. #define GGML_F16_STEP GGML_F32_STEP
  2052. #define GGML_F16_EPR GGML_F32_EPR
  2053. #define GGML_F16_VEC GGML_F32x4
  2054. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  2055. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  2056. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  2057. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  2058. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  2059. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  2060. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  2061. vec_extract_fp32_from_shortl(vec_xl(0, p))
  2062. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  2063. #define GGML_F16_VEC_STORE(p, r, i) \
  2064. if (i & 0x1) \
  2065. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  2066. r[i - GGML_ENDIAN_BYTE(0)]), \
  2067. 0, p - GGML_F16_EPR)
  2068. #elif defined(__wasm_simd128__)
  2069. #define GGML_SIMD
  2070. // F32 WASM
  2071. #define GGML_F32_STEP 16
  2072. #define GGML_F32_EPR 4
  2073. #define GGML_F32x4 v128_t
  2074. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  2075. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  2076. #define GGML_F32x4_LOAD wasm_v128_load
  2077. #define GGML_F32x4_STORE wasm_v128_store
  2078. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  2079. #define GGML_F32x4_ADD wasm_f32x4_add
  2080. #define GGML_F32x4_MUL wasm_f32x4_mul
  2081. #define GGML_F32x4_REDUCE(res, x) \
  2082. { \
  2083. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2084. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  2085. } \
  2086. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2087. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  2088. } \
  2089. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2090. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  2091. } \
  2092. res = wasm_f32x4_extract_lane(x[0], 0) + \
  2093. wasm_f32x4_extract_lane(x[0], 1) + \
  2094. wasm_f32x4_extract_lane(x[0], 2) + \
  2095. wasm_f32x4_extract_lane(x[0], 3); \
  2096. }
  2097. #define GGML_F32_VEC GGML_F32x4
  2098. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2099. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2100. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2101. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2102. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2103. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2104. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2105. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2106. // F16 WASM
  2107. #define GGML_F16_STEP 16
  2108. #define GGML_F16_EPR 4
  2109. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  2110. float tmp[4];
  2111. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  2112. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  2113. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  2114. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  2115. return wasm_v128_load(tmp);
  2116. }
  2117. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  2118. float tmp[4];
  2119. wasm_v128_store(tmp, x);
  2120. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  2121. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  2122. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  2123. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  2124. }
  2125. #define GGML_F16x4 v128_t
  2126. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  2127. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  2128. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  2129. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  2130. #define GGML_F16x4_FMA GGML_F32x4_FMA
  2131. #define GGML_F16x4_ADD wasm_f32x4_add
  2132. #define GGML_F16x4_MUL wasm_f32x4_mul
  2133. #define GGML_F16x4_REDUCE(res, x) \
  2134. { \
  2135. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  2136. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  2137. } \
  2138. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  2139. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  2140. } \
  2141. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  2142. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  2143. } \
  2144. res = wasm_f32x4_extract_lane(x[0], 0) + \
  2145. wasm_f32x4_extract_lane(x[0], 1) + \
  2146. wasm_f32x4_extract_lane(x[0], 2) + \
  2147. wasm_f32x4_extract_lane(x[0], 3); \
  2148. }
  2149. #define GGML_F16_VEC GGML_F16x4
  2150. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  2151. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  2152. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  2153. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  2154. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  2155. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  2156. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  2157. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  2158. #elif defined(__SSE3__)
  2159. #define GGML_SIMD
  2160. // F32 SSE
  2161. #define GGML_F32_STEP 32
  2162. #define GGML_F32_EPR 4
  2163. #define GGML_F32x4 __m128
  2164. #define GGML_F32x4_ZERO _mm_setzero_ps()
  2165. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2166. #define GGML_F32x4_LOAD _mm_loadu_ps
  2167. #define GGML_F32x4_STORE _mm_storeu_ps
  2168. #if defined(__FMA__)
  2169. // TODO: Does this work?
  2170. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2171. #else
  2172. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2173. #endif
  2174. #define GGML_F32x4_ADD _mm_add_ps
  2175. #define GGML_F32x4_MUL _mm_mul_ps
  2176. #define GGML_F32x4_REDUCE(res, x) \
  2177. { \
  2178. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2179. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2180. } \
  2181. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2182. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2183. } \
  2184. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2185. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2186. } \
  2187. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2188. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2189. }
  2190. // TODO: is this optimal ?
  2191. #define GGML_F32_VEC GGML_F32x4
  2192. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2193. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2194. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2195. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2196. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2197. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2198. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2199. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2200. // F16 SSE
  2201. #define GGML_F16_STEP 32
  2202. #define GGML_F16_EPR 4
  2203. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2204. float tmp[4];
  2205. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2206. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2207. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2208. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2209. return _mm_loadu_ps(tmp);
  2210. }
  2211. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2212. float arr[4];
  2213. _mm_storeu_ps(arr, y);
  2214. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2215. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2216. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2217. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2218. }
  2219. #define GGML_F32Cx4 __m128
  2220. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2221. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2222. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2223. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2224. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2225. #define GGML_F32Cx4_ADD _mm_add_ps
  2226. #define GGML_F32Cx4_MUL _mm_mul_ps
  2227. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2228. #define GGML_F16_VEC GGML_F32Cx4
  2229. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2230. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2231. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2232. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2233. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2234. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2235. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2236. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2237. #endif
  2238. // GGML_F32_ARR / GGML_F16_ARR
  2239. // number of registers to use per step
  2240. #ifdef GGML_SIMD
  2241. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2242. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2243. #endif
  2244. //
  2245. // fundamental operations
  2246. //
  2247. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2248. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2249. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2250. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2251. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2252. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2253. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2254. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2255. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2256. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2257. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2258. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2259. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2260. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2261. #ifdef GGML_SIMD
  2262. float sumf = 0.0f;
  2263. const int np = (n & ~(GGML_F32_STEP - 1));
  2264. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2265. GGML_F32_VEC ax[GGML_F32_ARR];
  2266. GGML_F32_VEC ay[GGML_F32_ARR];
  2267. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2268. for (int j = 0; j < GGML_F32_ARR; j++) {
  2269. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2270. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2271. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2272. }
  2273. }
  2274. // reduce sum0..sum3 to sum0
  2275. GGML_F32_VEC_REDUCE(sumf, sum);
  2276. // leftovers
  2277. for (int i = np; i < n; ++i) {
  2278. sumf += x[i]*y[i];
  2279. }
  2280. #else
  2281. // scalar
  2282. ggml_float sumf = 0.0;
  2283. for (int i = 0; i < n; ++i) {
  2284. sumf += (ggml_float)(x[i]*y[i]);
  2285. }
  2286. #endif
  2287. *s = sumf;
  2288. }
  2289. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2290. ggml_float sumf = 0.0;
  2291. #if defined(GGML_SIMD)
  2292. const int np = (n & ~(GGML_F16_STEP - 1));
  2293. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2294. GGML_F16_VEC ax[GGML_F16_ARR];
  2295. GGML_F16_VEC ay[GGML_F16_ARR];
  2296. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2297. for (int j = 0; j < GGML_F16_ARR; j++) {
  2298. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2299. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2300. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2301. }
  2302. }
  2303. // reduce sum0..sum3 to sum0
  2304. GGML_F16_VEC_REDUCE(sumf, sum);
  2305. // leftovers
  2306. for (int i = np; i < n; ++i) {
  2307. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2308. }
  2309. #else
  2310. for (int i = 0; i < n; ++i) {
  2311. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2312. }
  2313. #endif
  2314. *s = sumf;
  2315. }
  2316. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2317. const int nb = n / QK8_0;
  2318. assert(n % QK8_0 == 0);
  2319. assert(nb % 2 == 0);
  2320. const block_q4_0 * restrict x = vx;
  2321. const block_q8_0 * restrict y = vy;
  2322. #if defined(__ARM_NEON)
  2323. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2324. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2325. for (int i = 0; i < nb; i += 2) {
  2326. const block_q4_0 * restrict x0 = &x[i + 0];
  2327. const block_q4_0 * restrict x1 = &x[i + 1];
  2328. const block_q8_0 * restrict y0 = &y[i + 0];
  2329. const block_q8_0 * restrict y1 = &y[i + 1];
  2330. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2331. const int8x16_t s8b = vdupq_n_s8(0x8);
  2332. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2333. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2334. // 4-bit -> 8-bit
  2335. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2336. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2337. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2338. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2339. // sub 8
  2340. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2341. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2342. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2343. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2344. // interleave
  2345. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2346. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2347. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2348. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2349. // load y
  2350. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2351. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2352. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2353. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2354. #if defined(__ARM_FEATURE_DOTPROD)
  2355. // dot product into int32x4_t
  2356. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2357. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2358. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2359. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2360. #else
  2361. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2362. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2363. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2364. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2365. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2366. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2367. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2368. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2369. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2370. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2371. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2372. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2373. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2374. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2375. #endif
  2376. }
  2377. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2378. #elif defined(__AVX2__)
  2379. // Initialize accumulator with zeros
  2380. __m256 acc = _mm256_setzero_ps();
  2381. // Main loop
  2382. for (int i = 0; i < nb; ++i) {
  2383. /* Compute combined scale for the block */
  2384. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2385. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2386. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2387. const __m256i off = _mm256_set1_epi8( 8 );
  2388. bx = _mm256_sub_epi8( bx, off );
  2389. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2390. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2391. /* Multiply q with scale and accumulate */
  2392. acc = _mm256_fmadd_ps( d, q, acc );
  2393. }
  2394. *s = hsum_float_8(acc);
  2395. #elif defined(__AVX__)
  2396. // Initialize accumulator with zeros
  2397. __m256 acc = _mm256_setzero_ps();
  2398. // Main loop
  2399. for (int i = 0; i < nb; ++i) {
  2400. // Compute combined scale for the block
  2401. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2402. __m128i i32[2];
  2403. for (int j = 0; j < 2; ++j) {
  2404. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2405. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2406. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2407. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2408. const __m128i off = _mm_set1_epi8( 8 );
  2409. bx = _mm_sub_epi8( bx, off );
  2410. // Get absolute values of x vectors
  2411. const __m128i ax = _mm_sign_epi8(bx, bx);
  2412. // Sign the values of the y vectors
  2413. const __m128i sy = _mm_sign_epi8(by, bx);
  2414. // Perform multiplication and create 16-bit values
  2415. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2416. const __m128i ones = _mm_set1_epi16(1);
  2417. i32[j] = _mm_madd_epi16(ones, dot);
  2418. }
  2419. // Convert int32_t to float
  2420. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2421. // Apply the scale, and accumulate
  2422. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2423. }
  2424. *s = hsum_float_8(acc);
  2425. #else
  2426. // scalar
  2427. float sumf = 0.0;
  2428. for (int i = 0; i < nb; i++) {
  2429. const float d0 = x[i].d;
  2430. const float d1 = y[i].d;
  2431. const uint8_t * restrict p0 = x[i].qs;
  2432. const int8_t * restrict p1 = y[i].qs;
  2433. int sumi = 0;
  2434. for (int j = 0; j < QK8_0/2; j++) {
  2435. const uint8_t v0 = p0[j];
  2436. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2437. const int i1 = (int8_t) (v0 >> 4) - 8;
  2438. const int i2 = p1[2*j + 0];
  2439. const int i3 = p1[2*j + 1];
  2440. sumi += i0*i2 + i1*i3;
  2441. }
  2442. sumf += d0*d1*sumi;
  2443. }
  2444. *s = sumf;
  2445. #endif
  2446. }
  2447. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2448. const int nb = n / QK8_1;
  2449. assert(n % QK8_1 == 0);
  2450. assert(nb % 2 == 0);
  2451. const block_q4_1 * restrict x = vx;
  2452. const block_q8_1 * restrict y = vy;
  2453. // TODO: add AVX / WASM SIMD / etc
  2454. #if defined(__ARM_NEON)
  2455. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2456. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2457. float summs = 0;
  2458. for (int i = 0; i < nb; i += 2) {
  2459. const block_q4_1 * restrict x0 = &x[i + 0];
  2460. const block_q4_1 * restrict x1 = &x[i + 1];
  2461. const block_q8_1 * restrict y0 = &y[i + 0];
  2462. const block_q8_1 * restrict y1 = &y[i + 1];
  2463. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2464. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2465. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2466. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2467. // 4-bit -> 8-bit
  2468. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2469. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2470. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2471. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2472. // interleave
  2473. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2474. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2475. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2476. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2477. // load y
  2478. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2479. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2480. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2481. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2482. #if defined(__ARM_FEATURE_DOTPROD)
  2483. // dot product into int32x4_t
  2484. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2485. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2486. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2487. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2488. #else
  2489. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2490. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2491. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2492. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2493. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2494. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2495. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2496. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2497. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2498. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2499. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2500. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2501. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2502. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2503. #endif
  2504. }
  2505. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2506. #elif defined(__AVX2__)
  2507. // Initialize accumulator with zeros
  2508. __m256 acc = _mm256_setzero_ps();
  2509. float summs = 0;
  2510. // Main loop
  2511. for (int i = 0; i < nb; ++i) {
  2512. const float * d0 = &x[i].d;
  2513. const float * d1 = &y[i].d;
  2514. summs += x[i].m * (y[i].s0 + y[i].s1);
  2515. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2516. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2517. // Compute combined scales
  2518. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2519. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2520. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2521. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2522. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2523. // Accumulate d0*d1*x*y
  2524. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2525. }
  2526. *s = hsum_float_8(acc) + summs;
  2527. #else
  2528. // scalar
  2529. float sumf = 0.0;
  2530. for (int i = 0; i < nb; i++) {
  2531. const float d0 = x[i].d;
  2532. const float m0 = x[i].m;
  2533. const float d1 = y[i].d;
  2534. const uint8_t * restrict p0 = x[i].qs;
  2535. const int8_t * restrict p1 = y[i].qs;
  2536. // TODO: this is very slow ..
  2537. for (int j = 0; j < QK8_1/2; j++) {
  2538. const uint8_t v0 = p0[j];
  2539. const float f0 = d0*(v0 & 0x0F) + m0;
  2540. const float f1 = d0*(v0 >> 4) + m0;
  2541. const float f2 = d1*p1[2*j + 0];
  2542. const float f3 = d1*p1[2*j + 1];
  2543. sumf += f0*f2 + f1*f3;
  2544. }
  2545. }
  2546. *s = sumf;
  2547. #endif
  2548. }
  2549. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2550. const int nb = n / QK8_0;
  2551. assert(n % QK8_0 == 0);
  2552. assert(nb % 2 == 0);
  2553. assert(QK8_0 == 2*QK4_2);
  2554. const block_q4_2 * restrict x = vx;
  2555. const block_q8_0 * restrict y = vy;
  2556. #if defined(__ARM_NEON)
  2557. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2558. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2559. for (int i = 0; i < nb; i += 2) {
  2560. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2561. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2562. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2563. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2564. const block_q8_0 * restrict y0 = &y[i + 0];
  2565. const block_q8_0 * restrict y1 = &y[i + 1];
  2566. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2567. const int8x16_t s8b = vdupq_n_s8(0x8);
  2568. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2569. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2570. // 4-bit -> 8-bit
  2571. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2572. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2573. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2574. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2575. // sub 8
  2576. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2577. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2578. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2579. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2580. // interleave
  2581. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2582. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2583. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2584. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2585. // load y
  2586. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2587. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2588. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2589. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2590. #if defined(__ARM_FEATURE_DOTPROD)
  2591. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2592. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2593. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2594. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2595. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2596. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2597. #else
  2598. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2599. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2600. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2601. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2602. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2603. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2604. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2605. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2606. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2607. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2608. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2609. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2610. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2611. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2612. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2613. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2614. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2615. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2616. #endif
  2617. }
  2618. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2619. #elif defined(__AVX2__)
  2620. // Initialize accumulator with zeros
  2621. __m256 acc = _mm256_setzero_ps();
  2622. // Main loop
  2623. for (int i = 0; i < nb; i++) {
  2624. /* Compute combined scale for the block */
  2625. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2626. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2627. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2628. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2629. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2630. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2631. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2632. const __m256i off = _mm256_set1_epi8(8);
  2633. bx = _mm256_sub_epi8(bx, off);
  2634. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2635. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2636. /* Multiply q with scale and accumulate */
  2637. acc = _mm256_fmadd_ps(d, q, acc);
  2638. }
  2639. *s = hsum_float_8(acc);
  2640. #else
  2641. // scalar
  2642. float sumf = 0.0;
  2643. for (int i = 0; i < nb; i++) {
  2644. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2645. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2646. const int8_t * restrict y0 = y[i].qs;
  2647. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2648. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2649. int sumi_0 = 0;
  2650. int sumi_1 = 0;
  2651. for (int j = 0; j < QK8_0/4; j++) {
  2652. const uint8_t v0 = x0[j];
  2653. const uint8_t v1 = x1[j];
  2654. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2655. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2656. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2657. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2658. const int i2_0 = y0[2*j + 0];
  2659. const int i3_0 = y0[2*j + 1];
  2660. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2661. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2662. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2663. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2664. }
  2665. sumf += (d0 * y[i].d) * sumi_0;
  2666. sumf += (d1 * y[i].d) * sumi_1;
  2667. }
  2668. *s = sumf;
  2669. #endif
  2670. }
  2671. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2672. const int nb = n / QK8_0;
  2673. assert(n % QK8_0 == 0);
  2674. assert(nb % 2 == 0);
  2675. assert(QK8_0 == QK5_0);
  2676. const block_q5_0 * restrict x = vx;
  2677. const block_q8_0 * restrict y = vy;
  2678. #if defined(__ARM_NEON)
  2679. float32x4_t sumv = vdupq_n_f32(0.0f);
  2680. uint64_t tmp[4];
  2681. for (int i = 0; i < nb; ++i) {
  2682. const block_q5_0 * restrict x0 = &x[i];
  2683. const block_q8_0 * restrict y0 = &y[i];
  2684. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2685. const int8x16_t s16b = vdupq_n_s8(0x10);
  2686. // extract the 5th bit
  2687. uint32_t qh;
  2688. memcpy(&qh, x0->qh, sizeof(qh));
  2689. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2690. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2691. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2692. tmp[3] = table_b2b_u[(qh >> 24) ];
  2693. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2694. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2695. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2696. // 4-bit -> 8-bit
  2697. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2698. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2699. // interleave
  2700. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2701. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2702. // add high bit and sub 16
  2703. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2704. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2705. // load y
  2706. const int8x16_t v1l = vld1q_s8(y0->qs);
  2707. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2708. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2709. #if defined(__ARM_FEATURE_DOTPROD)
  2710. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2711. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2712. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2713. #else
  2714. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2715. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2716. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2717. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2718. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2719. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2720. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2721. #endif
  2722. }
  2723. *s = vaddvq_f32(sumv);
  2724. #elif defined(__wasm_simd128__)
  2725. v128_t sumv = wasm_f32x4_splat(0.0f);
  2726. uint64_t tmp[4];
  2727. for (int i = 0; i < nb; ++i) {
  2728. const block_q5_0 * restrict x0 = &x[i];
  2729. const block_q8_0 * restrict y0 = &y[i];
  2730. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2731. const v128_t s16b = wasm_i8x16_splat(0x10);
  2732. // extract the 5th bit
  2733. uint32_t qh;
  2734. memcpy(&qh, x0->qh, sizeof(qh));
  2735. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2736. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2737. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2738. tmp[3] = table_b2b_u[(qh >> 24) ];
  2739. const v128_t qhl = wasm_v128_load(tmp + 0);
  2740. const v128_t qhh = wasm_v128_load(tmp + 2);
  2741. const v128_t v0 = wasm_v128_load(x0->qs);
  2742. // 4-bit -> 8-bit
  2743. const v128_t v0l = wasm_v128_and (v0, m4b);
  2744. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2745. // interleave
  2746. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2747. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2748. // add high bit and sub 16
  2749. const v128_t v0lf = wasm_i8x16_sub(wasm_v128_or(v0lz, qhl), s16b);
  2750. const v128_t v0hf = wasm_i8x16_sub(wasm_v128_or(v0hz, qhh), s16b);
  2751. // load y
  2752. const v128_t v1l = wasm_v128_load(y0->qs);
  2753. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2754. // int8x16 -> int16x8
  2755. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2756. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2757. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2758. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2759. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2760. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2761. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2762. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2763. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2764. // dot product
  2765. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2766. wasm_i32x4_add(
  2767. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2768. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2769. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2770. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2771. }
  2772. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2773. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2774. #elif defined(__AVX2__)
  2775. // Initialize accumulator with zeros
  2776. __m256 acc = _mm256_setzero_ps();
  2777. // Main loop
  2778. for (int i = 0; i < nb; i++) {
  2779. /* Compute combined scale for the block */
  2780. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2781. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2782. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2783. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2784. bx = _mm256_or_si256(bx, bxhi);
  2785. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2786. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2787. /* Multiply q with scale and accumulate */
  2788. acc = _mm256_fmadd_ps(d, q, acc);
  2789. }
  2790. *s = hsum_float_8(acc);
  2791. #else
  2792. // scalar
  2793. float sumf = 0.0;
  2794. for (int i = 0; i < nb; i++) {
  2795. const uint8_t * restrict x0 = x[i].qs;
  2796. const int8_t * restrict y0 = y[i].qs;
  2797. uint32_t qh;
  2798. memcpy(&qh, x[i].qh, sizeof(qh));
  2799. const float d = GGML_FP16_TO_FP32(x[i].d);
  2800. int sxy = 0;
  2801. for (int j = 0; j < QK8_0/2; j++) {
  2802. const uint8_t v0 = x0[j];
  2803. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2804. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2805. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2806. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2807. const int y0_0 = y0[2*j + 0];
  2808. const int y1_0 = y0[2*j + 1];
  2809. sxy += x0_0*y0_0 + x1_0*y1_0;
  2810. }
  2811. sumf += (d*sxy)*y[i].d;
  2812. }
  2813. *s = sumf;
  2814. #endif
  2815. }
  2816. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2817. const int nb = n / QK8_1;
  2818. assert(n % QK8_1 == 0);
  2819. assert(nb % 2 == 0);
  2820. assert(QK8_1 == QK5_1);
  2821. const block_q5_1 * restrict x = vx;
  2822. const block_q8_1 * restrict y = vy;
  2823. #if defined(__ARM_NEON)
  2824. float32x4_t sumv = vdupq_n_f32(0.0f);
  2825. float summs = 0.0f;
  2826. uint64_t tmp[4];
  2827. for (int i = 0; i < nb; ++i) {
  2828. const block_q5_1 * restrict x0 = &x[i];
  2829. const block_q8_1 * restrict y0 = &y[i];
  2830. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2831. // extract the 5th bit
  2832. uint32_t qh;
  2833. memcpy(&qh, x0->qh, sizeof(qh));
  2834. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2835. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2836. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2837. tmp[3] = table_b2b_u[(qh >> 24) ];
  2838. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2839. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2840. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2841. // 4-bit -> 8-bit
  2842. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2843. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2844. // interleave
  2845. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2846. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2847. // add
  2848. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2849. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2850. // load y
  2851. const int8x16_t v1l = vld1q_s8(y0->qs);
  2852. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2853. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2854. #if defined(__ARM_FEATURE_DOTPROD)
  2855. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2856. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2857. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2858. #else
  2859. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2860. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2861. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2862. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2863. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2864. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2865. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2866. #endif
  2867. }
  2868. *s = vaddvq_f32(sumv) + summs;
  2869. #elif defined(__wasm_simd128__)
  2870. v128_t sumv = wasm_f32x4_splat(0.0f);
  2871. float summs = 0.0f;
  2872. uint64_t tmp[4];
  2873. for (int i = 0; i < nb; ++i) {
  2874. const block_q5_1 * restrict x0 = &x[i];
  2875. const block_q8_1 * restrict y0 = &y[i];
  2876. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2877. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2878. // extract the 5th bit
  2879. uint32_t qh;
  2880. memcpy(&qh, x0->qh, sizeof(qh));
  2881. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2882. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2883. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2884. tmp[3] = table_b2b_u[(qh >> 24) ];
  2885. const v128_t qhl = wasm_v128_load(tmp + 0);
  2886. const v128_t qhh = wasm_v128_load(tmp + 2);
  2887. const v128_t v0 = wasm_v128_load(x0->qs);
  2888. // 4-bit -> 8-bit
  2889. const v128_t v0l = wasm_v128_and (v0, m4b);
  2890. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2891. static bool x = true;
  2892. // interleave
  2893. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2894. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2895. // add high bit
  2896. const v128_t v0lf = wasm_v128_or(v0lz, qhl);
  2897. const v128_t v0hf = wasm_v128_or(v0hz, qhh);
  2898. // load y
  2899. const v128_t v1l = wasm_v128_load(y0->qs);
  2900. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2901. // int8x16 -> int16x8
  2902. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2903. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2904. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2905. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2906. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2907. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2908. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2909. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2910. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2911. // dot product
  2912. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2913. wasm_i32x4_add(
  2914. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2915. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2916. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2917. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2918. }
  2919. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2920. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2921. #elif defined(__AVX2__)
  2922. // Initialize accumulator with zeros
  2923. __m256 acc = _mm256_setzero_ps();
  2924. float summs = 0.0f;
  2925. // Main loop
  2926. for (int i = 0; i < nb; i++) {
  2927. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2928. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2929. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2930. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2931. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2932. bx = _mm256_or_si256(bx, bxhi);
  2933. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2934. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2935. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2936. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2937. }
  2938. *s = hsum_float_8(acc) + summs;
  2939. #else
  2940. float sumf = 0.0;
  2941. for (int i = 0; i < nb; i++) {
  2942. const uint8_t * restrict x0 = x[i].qs;
  2943. const int8_t * restrict y0 = y[i].qs;
  2944. uint32_t qh;
  2945. memcpy(&qh, x[i].qh, sizeof(qh));
  2946. const float d = GGML_FP16_TO_FP32(x[i].d);
  2947. const float m = GGML_FP16_TO_FP32(x[i].m);
  2948. int sxy = 0;
  2949. for (int j = 0; j < QK8_1/2; j++) {
  2950. const uint8_t v0 = x0[j];
  2951. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2952. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2953. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2954. const int x1_0 = (v0 >> 4) | x1_0h;
  2955. const int y0_0 = y0[2*j + 0];
  2956. const int y1_0 = y0[2*j + 1];
  2957. sxy += x0_0*y0_0 + x1_0*y1_0;
  2958. }
  2959. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2960. }
  2961. *s = sumf;
  2962. #endif
  2963. }
  2964. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2965. const int nb = n / QK8_0;
  2966. assert(n % QK8_0 == 0);
  2967. assert(nb % 2 == 0);
  2968. assert(QK8_0 == QK8_0);
  2969. const block_q8_0 * restrict x = vx;
  2970. const block_q8_0 * restrict y = vy;
  2971. #if defined(__ARM_NEON)
  2972. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2973. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2974. for (int i = 0; i < nb; i += 2) {
  2975. const block_q8_0 * restrict x0 = &x[i + 0];
  2976. const block_q8_0 * restrict x1 = &x[i + 1];
  2977. const block_q8_0 * restrict y0 = &y[i + 0];
  2978. const block_q8_0 * restrict y1 = &y[i + 1];
  2979. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2980. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2981. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2982. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2983. // load y
  2984. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2985. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2986. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2987. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2988. #if defined(__ARM_FEATURE_DOTPROD)
  2989. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2990. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2991. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2992. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2993. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2994. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2995. #else
  2996. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2997. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2998. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2999. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  3000. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  3001. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  3002. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  3003. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  3004. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  3005. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  3006. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  3007. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  3008. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  3009. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  3010. #endif
  3011. }
  3012. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3013. #elif defined(__AVX2__)
  3014. // Initialize accumulator with zeros
  3015. __m256 acc = _mm256_setzero_ps();
  3016. // Main loop
  3017. for (int i = 0; i < nb; ++i) {
  3018. // Compute combined scale for the block
  3019. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  3020. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  3021. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3022. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  3023. // Multiply q with scale and accumulate
  3024. acc = _mm256_fmadd_ps( d, q, acc );
  3025. }
  3026. *s = hsum_float_8(acc);
  3027. #else
  3028. // scalar
  3029. float sumf = 0.0;
  3030. for (int i = 0; i < nb; i++) {
  3031. const int8_t * restrict x0 = x[i].qs;
  3032. const int8_t * restrict y0 = y[i].qs;
  3033. int sumi = 0;
  3034. for (int j = 0; j < QK8_0; j++) {
  3035. const int v0 = x0[j];
  3036. const int v1 = y0[j];
  3037. sumi += v0*v1;
  3038. }
  3039. sumf += (x[i].d*y[i].d)*sumi;
  3040. }
  3041. *s = sumf;
  3042. #endif
  3043. }
  3044. // compute GGML_VEC_DOT_UNROLL dot products at once
  3045. // xs - x row stride in bytes
  3046. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  3047. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  3048. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  3049. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  3050. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  3051. }
  3052. #if defined(GGML_SIMD)
  3053. const int np = (n & ~(GGML_F16_STEP - 1));
  3054. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  3055. GGML_F16_VEC ax[GGML_F16_ARR];
  3056. GGML_F16_VEC ay[GGML_F16_ARR];
  3057. for (int i = 0; i < np; i += GGML_F16_STEP) {
  3058. for (int j = 0; j < GGML_F16_ARR; j++) {
  3059. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  3060. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  3061. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  3062. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  3063. }
  3064. }
  3065. }
  3066. // reduce sum0..sum3 to sum0
  3067. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  3068. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  3069. }
  3070. // leftovers
  3071. for (int i = np; i < n; ++i) {
  3072. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  3073. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  3074. }
  3075. }
  3076. #else
  3077. for (int i = 0; i < n; ++i) {
  3078. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  3079. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  3080. }
  3081. }
  3082. #endif
  3083. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  3084. s[i] = sumf[i];
  3085. }
  3086. }
  3087. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  3088. #if defined(GGML_SIMD)
  3089. const int np = (n & ~(GGML_F32_STEP - 1));
  3090. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  3091. GGML_F32_VEC ax[GGML_F32_ARR];
  3092. GGML_F32_VEC ay[GGML_F32_ARR];
  3093. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3094. for (int j = 0; j < GGML_F32_ARR; j++) {
  3095. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  3096. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3097. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  3098. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3099. }
  3100. }
  3101. // leftovers
  3102. for (int i = np; i < n; ++i) {
  3103. y[i] += x[i]*v;
  3104. }
  3105. #else
  3106. // scalar
  3107. for (int i = 0; i < n; ++i) {
  3108. y[i] += x[i]*v;
  3109. }
  3110. #endif
  3111. }
  3112. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  3113. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  3114. #if defined(GGML_SIMD)
  3115. const int np = (n & ~(GGML_F32_STEP - 1));
  3116. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  3117. GGML_F32_VEC ay[GGML_F32_ARR];
  3118. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3119. for (int j = 0; j < GGML_F32_ARR; j++) {
  3120. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3121. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  3122. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3123. }
  3124. }
  3125. // leftovers
  3126. for (int i = np; i < n; ++i) {
  3127. y[i] *= v;
  3128. }
  3129. #else
  3130. // scalar
  3131. for (int i = 0; i < n; ++i) {
  3132. y[i] *= v;
  3133. }
  3134. #endif
  3135. }
  3136. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3137. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3138. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3139. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3140. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3141. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3142. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3143. static const float GELU_COEF_A = 0.044715f;
  3144. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3145. inline static float ggml_gelu_f32(float x) {
  3146. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3147. }
  3148. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3149. const uint16_t * i16 = (const uint16_t *) x;
  3150. for (int i = 0; i < n; ++i) {
  3151. y[i] = table_gelu_f16[i16[i]];
  3152. }
  3153. }
  3154. #ifdef GGML_GELU_FP16
  3155. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3156. uint16_t t;
  3157. for (int i = 0; i < n; ++i) {
  3158. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3159. memcpy(&t, &fp16, sizeof(uint16_t));
  3160. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3161. }
  3162. }
  3163. #else
  3164. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3165. for (int i = 0; i < n; ++i) {
  3166. y[i] = ggml_gelu_f32(x[i]);
  3167. }
  3168. }
  3169. #endif
  3170. // Sigmoid Linear Unit (SiLU) function
  3171. inline static float ggml_silu_f32(float x) {
  3172. return x/(1.0f + expf(-x));
  3173. }
  3174. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3175. const uint16_t * i16 = (const uint16_t *) x;
  3176. for (int i = 0; i < n; ++i) {
  3177. y[i] = table_silu_f16[i16[i]];
  3178. }
  3179. }
  3180. #ifdef GGML_SILU_FP16
  3181. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3182. uint16_t t;
  3183. for (int i = 0; i < n; ++i) {
  3184. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3185. memcpy(&t, &fp16, sizeof(uint16_t));
  3186. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3187. }
  3188. }
  3189. #else
  3190. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3191. for (int i = 0; i < n; ++i) {
  3192. y[i] = ggml_silu_f32(x[i]);
  3193. }
  3194. }
  3195. #endif
  3196. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3197. #ifndef GGML_USE_ACCELERATE
  3198. ggml_float sum = 0.0;
  3199. for (int i = 0; i < n; ++i) {
  3200. sum += (ggml_float)x[i];
  3201. }
  3202. *s = sum;
  3203. #else
  3204. vDSP_sve(x, 1, s, n);
  3205. #endif
  3206. }
  3207. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3208. ggml_float sum = 0.0;
  3209. for (int i = 0; i < n; ++i) {
  3210. sum += (ggml_float)x[i];
  3211. }
  3212. *s = sum;
  3213. }
  3214. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3215. #ifndef GGML_USE_ACCELERATE
  3216. float max = -INFINITY;
  3217. for (int i = 0; i < n; ++i) {
  3218. max = MAX(max, x[i]);
  3219. }
  3220. *s = max;
  3221. #else
  3222. vDSP_maxv(x, 1, s, n);
  3223. #endif
  3224. }
  3225. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3226. ggml_vec_norm_f32(n, s, x);
  3227. *s = 1.f/(*s);
  3228. }
  3229. //
  3230. // logging
  3231. //
  3232. #if (GGML_DEBUG >= 1)
  3233. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3234. #else
  3235. #define GGML_PRINT_DEBUG(...)
  3236. #endif
  3237. #if (GGML_DEBUG >= 5)
  3238. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3239. #else
  3240. #define GGML_PRINT_DEBUG_5(...)
  3241. #endif
  3242. #if (GGML_DEBUG >= 10)
  3243. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3244. #else
  3245. #define GGML_PRINT_DEBUG_10(...)
  3246. #endif
  3247. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3248. //
  3249. // data types
  3250. //
  3251. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3252. [GGML_TYPE_F32] = 1,
  3253. [GGML_TYPE_F16] = 1,
  3254. [GGML_TYPE_Q4_0] = QK4_0,
  3255. [GGML_TYPE_Q4_1] = QK4_1,
  3256. [GGML_TYPE_Q4_2] = QK4_2,
  3257. [GGML_TYPE_Q5_0] = QK5_0,
  3258. [GGML_TYPE_Q5_1] = QK5_1,
  3259. [GGML_TYPE_Q8_0] = QK8_0,
  3260. [GGML_TYPE_Q8_1] = QK8_1,
  3261. [GGML_TYPE_I8] = 1,
  3262. [GGML_TYPE_I16] = 1,
  3263. [GGML_TYPE_I32] = 1,
  3264. };
  3265. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3266. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3267. [GGML_TYPE_F32] = sizeof(float),
  3268. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3269. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3270. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3271. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3272. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3273. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3274. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3275. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3276. [GGML_TYPE_I8] = sizeof(int8_t),
  3277. [GGML_TYPE_I16] = sizeof(int16_t),
  3278. [GGML_TYPE_I32] = sizeof(int32_t),
  3279. };
  3280. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3281. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3282. [GGML_TYPE_F32] = "f32",
  3283. [GGML_TYPE_F16] = "f16",
  3284. [GGML_TYPE_Q4_0] = "q4_0",
  3285. [GGML_TYPE_Q4_1] = "q4_1",
  3286. [GGML_TYPE_Q4_2] = "q4_2",
  3287. [GGML_TYPE_Q5_0] = "q5_0",
  3288. [GGML_TYPE_Q5_1] = "q5_1",
  3289. [GGML_TYPE_Q8_0] = "q8_0",
  3290. [GGML_TYPE_Q8_1] = "q8_1",
  3291. [GGML_TYPE_I8] = "i8",
  3292. [GGML_TYPE_I16] = "i16",
  3293. [GGML_TYPE_I32] = "i32",
  3294. };
  3295. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3296. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3297. [GGML_TYPE_F32] = false,
  3298. [GGML_TYPE_F16] = false,
  3299. [GGML_TYPE_Q4_0] = true,
  3300. [GGML_TYPE_Q4_1] = true,
  3301. [GGML_TYPE_Q4_2] = true,
  3302. [GGML_TYPE_Q5_0] = true,
  3303. [GGML_TYPE_Q5_1] = true,
  3304. [GGML_TYPE_Q8_0] = true,
  3305. [GGML_TYPE_Q8_1] = true,
  3306. [GGML_TYPE_I8] = false,
  3307. [GGML_TYPE_I16] = false,
  3308. [GGML_TYPE_I32] = false,
  3309. };
  3310. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3311. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3312. "NONE",
  3313. "DUP",
  3314. "ADD",
  3315. "SUB",
  3316. "MUL",
  3317. "DIV",
  3318. "SQR",
  3319. "SQRT",
  3320. "SUM",
  3321. "MEAN",
  3322. "REPEAT",
  3323. "ABS",
  3324. "SGN",
  3325. "NEG",
  3326. "STEP",
  3327. "RELU",
  3328. "GELU",
  3329. "SILU",
  3330. "NORM",
  3331. "RMS_NORM",
  3332. "MUL_MAT",
  3333. "SCALE",
  3334. "CPY",
  3335. "CONT",
  3336. "RESHAPE",
  3337. "VIEW",
  3338. "PERMUTE",
  3339. "TRANSPOSE",
  3340. "GET_ROWS",
  3341. "DIAG_MASK_INF",
  3342. "SOFT_MAX",
  3343. "ROPE",
  3344. "ALIBI",
  3345. "CONV_1D_1S",
  3346. "CONV_1D_2S",
  3347. "FLASH_ATTN",
  3348. "FLASH_FF",
  3349. "MAP_UNARY",
  3350. "MAP_BINARY",
  3351. };
  3352. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3353. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3354. "none",
  3355. "x",
  3356. "x+y",
  3357. "x-y",
  3358. "x*y",
  3359. "x/y",
  3360. "x^2",
  3361. "√x",
  3362. "Σx",
  3363. "Σx/n",
  3364. "repeat(x)",
  3365. "abs(x)",
  3366. "sgn(x)",
  3367. "-x",
  3368. "step(x)",
  3369. "relu(x)",
  3370. "gelu(x)",
  3371. "silu(x)",
  3372. "norm(x)",
  3373. "rms_norm(x)",
  3374. "X*Y",
  3375. "x*v",
  3376. "x-\\>y",
  3377. "cont(x)",
  3378. "reshape(x)",
  3379. "view(x)",
  3380. "permute(x)",
  3381. "transpose(x)",
  3382. "get_rows(x)",
  3383. "diag_mask_inf(x)",
  3384. "soft_max(x)",
  3385. "rope(x)",
  3386. "alibi(x)",
  3387. "conv_1d_1s(x)",
  3388. "conv_1d_2s(x)",
  3389. "flash_attn(x)",
  3390. "flash_ff(x)",
  3391. "f(x)",
  3392. "f(x,y)",
  3393. };
  3394. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3395. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3396. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3397. //
  3398. // ggml context
  3399. //
  3400. struct ggml_context {
  3401. size_t mem_size;
  3402. void * mem_buffer;
  3403. bool mem_buffer_owned;
  3404. bool no_alloc;
  3405. int n_objects;
  3406. struct ggml_object * objects_begin;
  3407. struct ggml_object * objects_end;
  3408. struct ggml_scratch scratch;
  3409. struct ggml_scratch scratch_save;
  3410. };
  3411. struct ggml_context_container {
  3412. bool used;
  3413. struct ggml_context context;
  3414. };
  3415. //
  3416. // compute types
  3417. //
  3418. enum ggml_task_type {
  3419. GGML_TASK_INIT = 0,
  3420. GGML_TASK_COMPUTE,
  3421. GGML_TASK_FINALIZE,
  3422. };
  3423. struct ggml_compute_params {
  3424. enum ggml_task_type type;
  3425. int ith, nth;
  3426. // work buffer for all threads
  3427. size_t wsize;
  3428. void * wdata;
  3429. };
  3430. //
  3431. // ggml state
  3432. //
  3433. struct ggml_state {
  3434. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3435. };
  3436. // global state
  3437. static struct ggml_state g_state;
  3438. static atomic_int g_state_barrier = 0;
  3439. // barrier via spin lock
  3440. inline static void ggml_critical_section_start(void) {
  3441. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3442. while (processing > 0) {
  3443. // wait for other threads to finish
  3444. atomic_fetch_sub(&g_state_barrier, 1);
  3445. sched_yield(); // TODO: reconsider this
  3446. processing = atomic_fetch_add(&g_state_barrier, 1);
  3447. }
  3448. }
  3449. // TODO: make this somehow automatically executed
  3450. // some sort of "sentry" mechanism
  3451. inline static void ggml_critical_section_end(void) {
  3452. atomic_fetch_sub(&g_state_barrier, 1);
  3453. }
  3454. ////////////////////////////////////////////////////////////////////////////////
  3455. void ggml_print_object(const struct ggml_object * obj) {
  3456. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3457. obj->offs, obj->size, (const void *) obj->next);
  3458. }
  3459. void ggml_print_objects(const struct ggml_context * ctx) {
  3460. struct ggml_object * obj = ctx->objects_begin;
  3461. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3462. while (obj != NULL) {
  3463. ggml_print_object(obj);
  3464. obj = obj->next;
  3465. }
  3466. GGML_PRINT("%s: --- end ---\n", __func__);
  3467. }
  3468. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3469. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3470. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3471. }
  3472. int ggml_nrows(const struct ggml_tensor * tensor) {
  3473. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3474. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3475. }
  3476. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3477. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3478. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3479. }
  3480. int ggml_blck_size(enum ggml_type type) {
  3481. return GGML_BLCK_SIZE[type];
  3482. }
  3483. size_t ggml_type_size(enum ggml_type type) {
  3484. return GGML_TYPE_SIZE[type];
  3485. }
  3486. float ggml_type_sizef(enum ggml_type type) {
  3487. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3488. }
  3489. const char * ggml_type_name(enum ggml_type type) {
  3490. return GGML_TYPE_NAME[type];
  3491. }
  3492. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3493. return GGML_TYPE_SIZE[tensor->type];
  3494. }
  3495. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3496. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3497. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3498. }
  3499. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3500. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3501. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3502. }
  3503. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3504. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3505. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3506. }
  3507. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3508. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3509. return
  3510. (t0->ne[0] == t1->ne[0]) &&
  3511. (t0->ne[2] == t1->ne[2]) &&
  3512. (t0->ne[3] == t1->ne[3]);
  3513. }
  3514. bool ggml_is_quantized(enum ggml_type type) {
  3515. return GGML_IS_QUANTIZED[type];
  3516. }
  3517. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3518. enum ggml_type wtype = GGML_TYPE_COUNT;
  3519. switch (ftype) {
  3520. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3521. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3522. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3523. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3524. case GGML_FTYPE_MOSTLY_Q4_2: wtype = GGML_TYPE_Q4_2; break;
  3525. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3526. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3527. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3528. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3529. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3530. }
  3531. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3532. return wtype;
  3533. }
  3534. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3535. return tensor->nb[0] > tensor->nb[1];
  3536. }
  3537. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3538. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3539. return
  3540. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3541. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3542. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3543. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3544. }
  3545. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3546. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3547. return
  3548. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3549. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3550. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3551. }
  3552. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3553. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3554. return
  3555. (t0->ne[0] == t1->ne[0] ) &&
  3556. (t0->ne[1] == t1->ne[1] ) &&
  3557. (t0->ne[2] == t1->ne[2] ) &&
  3558. (t0->ne[3] == t1->ne[3] );
  3559. }
  3560. // check if t1 can be represented as a repeatition of t0
  3561. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3562. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3563. return
  3564. (t1->ne[0]%t0->ne[0] == 0) &&
  3565. (t1->ne[1]%t0->ne[1] == 0) &&
  3566. (t1->ne[2]%t0->ne[2] == 0) &&
  3567. (t1->ne[3]%t0->ne[3] == 0);
  3568. }
  3569. static inline int ggml_up32(int n) {
  3570. return (n + 31) & ~31;
  3571. }
  3572. static inline int ggml_up64(int n) {
  3573. return (n + 63) & ~63;
  3574. }
  3575. static inline int ggml_up(int n, int m) {
  3576. // assert m is a power of 2
  3577. GGML_ASSERT((m & (m - 1)) == 0);
  3578. return (n + m - 1) & ~(m - 1);
  3579. }
  3580. // assert that pointer is aligned to GGML_MEM_ALIGN
  3581. #define ggml_assert_aligned(ptr) \
  3582. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3583. ////////////////////////////////////////////////////////////////////////////////
  3584. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3585. // make this function thread safe
  3586. ggml_critical_section_start();
  3587. static bool is_first_call = true;
  3588. if (is_first_call) {
  3589. // initialize time system (required on Windows)
  3590. ggml_time_init();
  3591. // initialize GELU, SILU and EXP F32 tables
  3592. {
  3593. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3594. ggml_fp16_t ii;
  3595. for (int i = 0; i < (1 << 16); ++i) {
  3596. uint16_t ui = i;
  3597. memcpy(&ii, &ui, sizeof(ii));
  3598. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3599. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3600. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3601. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3602. }
  3603. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3604. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3605. }
  3606. // initialize g_state
  3607. {
  3608. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3609. g_state = (struct ggml_state) {
  3610. /*.contexts =*/ { { 0 } },
  3611. };
  3612. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3613. g_state.contexts[i].used = false;
  3614. }
  3615. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3616. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3617. }
  3618. #if defined(GGML_USE_CUBLAS)
  3619. ggml_init_cublas();
  3620. #elif defined(GGML_USE_CLBLAST)
  3621. ggml_cl_init();
  3622. #endif
  3623. is_first_call = false;
  3624. }
  3625. // find non-used context in g_state
  3626. struct ggml_context * ctx = NULL;
  3627. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3628. if (!g_state.contexts[i].used) {
  3629. g_state.contexts[i].used = true;
  3630. ctx = &g_state.contexts[i].context;
  3631. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3632. break;
  3633. }
  3634. }
  3635. if (ctx == NULL) {
  3636. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3637. ggml_critical_section_end();
  3638. return NULL;
  3639. }
  3640. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3641. *ctx = (struct ggml_context) {
  3642. /*.mem_size =*/ mem_size,
  3643. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3644. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3645. /*.no_alloc =*/ params.no_alloc,
  3646. /*.n_objects =*/ 0,
  3647. /*.objects_begin =*/ NULL,
  3648. /*.objects_end =*/ NULL,
  3649. /*.scratch =*/ { 0, 0, NULL, },
  3650. /*.scratch_save =*/ { 0, 0, NULL, },
  3651. };
  3652. GGML_ASSERT(ctx->mem_buffer != NULL);
  3653. ggml_assert_aligned(ctx->mem_buffer);
  3654. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3655. ggml_critical_section_end();
  3656. return ctx;
  3657. }
  3658. void ggml_free(struct ggml_context * ctx) {
  3659. // make this function thread safe
  3660. ggml_critical_section_start();
  3661. bool found = false;
  3662. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3663. if (&g_state.contexts[i].context == ctx) {
  3664. g_state.contexts[i].used = false;
  3665. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3666. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3667. if (ctx->mem_buffer_owned) {
  3668. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3669. }
  3670. found = true;
  3671. break;
  3672. }
  3673. }
  3674. if (!found) {
  3675. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3676. }
  3677. ggml_critical_section_end();
  3678. }
  3679. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3680. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3681. }
  3682. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3683. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3684. ctx->scratch = scratch;
  3685. return result;
  3686. }
  3687. ////////////////////////////////////////////////////////////////////////////////
  3688. struct ggml_tensor * ggml_new_tensor_impl(
  3689. struct ggml_context * ctx,
  3690. enum ggml_type type,
  3691. int n_dims,
  3692. const int64_t* ne,
  3693. void* data) {
  3694. // always insert objects at the end of the context's memory pool
  3695. struct ggml_object * obj_cur = ctx->objects_end;
  3696. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3697. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3698. const size_t cur_end = cur_offs + cur_size;
  3699. size_t size_needed = 0;
  3700. if (data == NULL && !ctx->no_alloc) {
  3701. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3702. for (int i = 1; i < n_dims; i++) {
  3703. size_needed *= ne[i];
  3704. }
  3705. // align to GGML_MEM_ALIGN
  3706. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3707. }
  3708. char * const mem_buffer = ctx->mem_buffer;
  3709. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3710. if (ctx->scratch.data == NULL || data != NULL) {
  3711. size_needed += sizeof(struct ggml_tensor);
  3712. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3713. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3714. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3715. assert(false);
  3716. return NULL;
  3717. }
  3718. *obj_new = (struct ggml_object) {
  3719. .offs = cur_end + GGML_OBJECT_SIZE,
  3720. .size = size_needed,
  3721. .next = NULL,
  3722. };
  3723. } else {
  3724. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3725. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3726. assert(false);
  3727. return NULL;
  3728. }
  3729. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3730. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3731. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3732. assert(false);
  3733. return NULL;
  3734. }
  3735. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3736. *obj_new = (struct ggml_object) {
  3737. .offs = cur_end + GGML_OBJECT_SIZE,
  3738. .size = sizeof(struct ggml_tensor),
  3739. .next = NULL,
  3740. };
  3741. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3742. ctx->scratch.offs += size_needed;
  3743. }
  3744. if (obj_cur != NULL) {
  3745. obj_cur->next = obj_new;
  3746. } else {
  3747. // this is the first object in this context
  3748. ctx->objects_begin = obj_new;
  3749. }
  3750. ctx->objects_end = obj_new;
  3751. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3752. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3753. ggml_assert_aligned(result);
  3754. *result = (struct ggml_tensor) {
  3755. /*.type =*/ type,
  3756. /*.n_dims =*/ n_dims,
  3757. /*.ne =*/ { 1, 1, 1, 1 },
  3758. /*.nb =*/ { 0, 0, 0, 0 },
  3759. /*.op =*/ GGML_OP_NONE,
  3760. /*.is_param =*/ false,
  3761. /*.grad =*/ NULL,
  3762. /*.src0 =*/ NULL,
  3763. /*.src1 =*/ NULL,
  3764. /*.opt =*/ { NULL },
  3765. /*.n_tasks =*/ 0,
  3766. /*.perf_runs =*/ 0,
  3767. /*.perf_cycles =*/ 0,
  3768. /*.perf_time_us =*/ 0,
  3769. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3770. /*.name =*/ { 0 },
  3771. /*.pad =*/ { 0 },
  3772. };
  3773. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3774. //ggml_assert_aligned(result->data);
  3775. for (int i = 0; i < n_dims; i++) {
  3776. result->ne[i] = ne[i];
  3777. }
  3778. result->nb[0] = GGML_TYPE_SIZE[type];
  3779. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3780. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3781. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3782. }
  3783. ctx->n_objects++;
  3784. return result;
  3785. }
  3786. struct ggml_tensor * ggml_new_tensor(
  3787. struct ggml_context * ctx,
  3788. enum ggml_type type,
  3789. int n_dims,
  3790. const int64_t * ne) {
  3791. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3792. }
  3793. struct ggml_tensor * ggml_new_tensor_1d(
  3794. struct ggml_context * ctx,
  3795. enum ggml_type type,
  3796. int64_t ne0) {
  3797. return ggml_new_tensor(ctx, type, 1, &ne0);
  3798. }
  3799. struct ggml_tensor * ggml_new_tensor_2d(
  3800. struct ggml_context * ctx,
  3801. enum ggml_type type,
  3802. int64_t ne0,
  3803. int64_t ne1) {
  3804. const int64_t ne[2] = { ne0, ne1 };
  3805. return ggml_new_tensor(ctx, type, 2, ne);
  3806. }
  3807. struct ggml_tensor * ggml_new_tensor_3d(
  3808. struct ggml_context * ctx,
  3809. enum ggml_type type,
  3810. int64_t ne0,
  3811. int64_t ne1,
  3812. int64_t ne2) {
  3813. const int64_t ne[3] = { ne0, ne1, ne2 };
  3814. return ggml_new_tensor(ctx, type, 3, ne);
  3815. }
  3816. struct ggml_tensor * ggml_new_tensor_4d(
  3817. struct ggml_context * ctx,
  3818. enum ggml_type type,
  3819. int64_t ne0,
  3820. int64_t ne1,
  3821. int64_t ne2,
  3822. int64_t ne3) {
  3823. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3824. return ggml_new_tensor(ctx, type, 4, ne);
  3825. }
  3826. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3827. ctx->scratch_save = ctx->scratch;
  3828. ctx->scratch.data = NULL;
  3829. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3830. ctx->scratch = ctx->scratch_save;
  3831. ggml_set_i32(result, value);
  3832. return result;
  3833. }
  3834. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3835. ctx->scratch_save = ctx->scratch;
  3836. ctx->scratch.data = NULL;
  3837. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3838. ctx->scratch = ctx->scratch_save;
  3839. ggml_set_f32(result, value);
  3840. return result;
  3841. }
  3842. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3843. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3844. }
  3845. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3846. memset(tensor->data, 0, ggml_nbytes(tensor));
  3847. return tensor;
  3848. }
  3849. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3850. const int n = ggml_nrows(tensor);
  3851. const int nc = tensor->ne[0];
  3852. const size_t n1 = tensor->nb[1];
  3853. char * const data = tensor->data;
  3854. switch (tensor->type) {
  3855. case GGML_TYPE_I8:
  3856. {
  3857. assert(tensor->nb[0] == sizeof(int8_t));
  3858. for (int i = 0; i < n; i++) {
  3859. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3860. }
  3861. } break;
  3862. case GGML_TYPE_I16:
  3863. {
  3864. assert(tensor->nb[0] == sizeof(int16_t));
  3865. for (int i = 0; i < n; i++) {
  3866. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3867. }
  3868. } break;
  3869. case GGML_TYPE_I32:
  3870. {
  3871. assert(tensor->nb[0] == sizeof(int32_t));
  3872. for (int i = 0; i < n; i++) {
  3873. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3874. }
  3875. } break;
  3876. case GGML_TYPE_F16:
  3877. {
  3878. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3879. for (int i = 0; i < n; i++) {
  3880. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3881. }
  3882. } break;
  3883. case GGML_TYPE_F32:
  3884. {
  3885. assert(tensor->nb[0] == sizeof(float));
  3886. for (int i = 0; i < n; i++) {
  3887. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3888. }
  3889. } break;
  3890. default:
  3891. {
  3892. GGML_ASSERT(false);
  3893. } break;
  3894. }
  3895. return tensor;
  3896. }
  3897. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3898. const int n = ggml_nrows(tensor);
  3899. const int nc = tensor->ne[0];
  3900. const size_t n1 = tensor->nb[1];
  3901. char * const data = tensor->data;
  3902. switch (tensor->type) {
  3903. case GGML_TYPE_I8:
  3904. {
  3905. assert(tensor->nb[0] == sizeof(int8_t));
  3906. for (int i = 0; i < n; i++) {
  3907. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3908. }
  3909. } break;
  3910. case GGML_TYPE_I16:
  3911. {
  3912. assert(tensor->nb[0] == sizeof(int16_t));
  3913. for (int i = 0; i < n; i++) {
  3914. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3915. }
  3916. } break;
  3917. case GGML_TYPE_I32:
  3918. {
  3919. assert(tensor->nb[0] == sizeof(int32_t));
  3920. for (int i = 0; i < n; i++) {
  3921. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3922. }
  3923. } break;
  3924. case GGML_TYPE_F16:
  3925. {
  3926. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3927. for (int i = 0; i < n; i++) {
  3928. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3929. }
  3930. } break;
  3931. case GGML_TYPE_F32:
  3932. {
  3933. assert(tensor->nb[0] == sizeof(float));
  3934. for (int i = 0; i < n; i++) {
  3935. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3936. }
  3937. } break;
  3938. default:
  3939. {
  3940. GGML_ASSERT(false);
  3941. } break;
  3942. }
  3943. return tensor;
  3944. }
  3945. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3946. switch (tensor->type) {
  3947. case GGML_TYPE_I8:
  3948. {
  3949. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3950. return ((int8_t *)(tensor->data))[i];
  3951. } break;
  3952. case GGML_TYPE_I16:
  3953. {
  3954. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3955. return ((int16_t *)(tensor->data))[i];
  3956. } break;
  3957. case GGML_TYPE_I32:
  3958. {
  3959. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3960. return ((int32_t *)(tensor->data))[i];
  3961. } break;
  3962. case GGML_TYPE_F16:
  3963. {
  3964. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3965. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3966. } break;
  3967. case GGML_TYPE_F32:
  3968. {
  3969. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3970. return ((float *)(tensor->data))[i];
  3971. } break;
  3972. default:
  3973. {
  3974. GGML_ASSERT(false);
  3975. } break;
  3976. }
  3977. return 0.0f;
  3978. }
  3979. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3980. switch (tensor->type) {
  3981. case GGML_TYPE_I8:
  3982. {
  3983. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3984. ((int8_t *)(tensor->data))[i] = value;
  3985. } break;
  3986. case GGML_TYPE_I16:
  3987. {
  3988. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3989. ((int16_t *)(tensor->data))[i] = value;
  3990. } break;
  3991. case GGML_TYPE_I32:
  3992. {
  3993. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3994. ((int32_t *)(tensor->data))[i] = value;
  3995. } break;
  3996. case GGML_TYPE_F16:
  3997. {
  3998. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3999. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4000. } break;
  4001. case GGML_TYPE_F32:
  4002. {
  4003. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4004. ((float *)(tensor->data))[i] = value;
  4005. } break;
  4006. default:
  4007. {
  4008. GGML_ASSERT(false);
  4009. } break;
  4010. }
  4011. }
  4012. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4013. switch (tensor->type) {
  4014. case GGML_TYPE_I8:
  4015. {
  4016. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4017. return ((int8_t *)(tensor->data))[i];
  4018. } break;
  4019. case GGML_TYPE_I16:
  4020. {
  4021. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4022. return ((int16_t *)(tensor->data))[i];
  4023. } break;
  4024. case GGML_TYPE_I32:
  4025. {
  4026. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4027. return ((int32_t *)(tensor->data))[i];
  4028. } break;
  4029. case GGML_TYPE_F16:
  4030. {
  4031. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4032. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4033. } break;
  4034. case GGML_TYPE_F32:
  4035. {
  4036. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4037. return ((float *)(tensor->data))[i];
  4038. } break;
  4039. default:
  4040. {
  4041. GGML_ASSERT(false);
  4042. } break;
  4043. }
  4044. return 0.0f;
  4045. }
  4046. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4047. switch (tensor->type) {
  4048. case GGML_TYPE_I8:
  4049. {
  4050. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4051. ((int8_t *)(tensor->data))[i] = value;
  4052. } break;
  4053. case GGML_TYPE_I16:
  4054. {
  4055. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4056. ((int16_t *)(tensor->data))[i] = value;
  4057. } break;
  4058. case GGML_TYPE_I32:
  4059. {
  4060. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4061. ((int32_t *)(tensor->data))[i] = value;
  4062. } break;
  4063. case GGML_TYPE_F16:
  4064. {
  4065. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4066. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4067. } break;
  4068. case GGML_TYPE_F32:
  4069. {
  4070. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4071. ((float *)(tensor->data))[i] = value;
  4072. } break;
  4073. default:
  4074. {
  4075. GGML_ASSERT(false);
  4076. } break;
  4077. }
  4078. }
  4079. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4080. return tensor->data;
  4081. }
  4082. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4083. assert(tensor->type == GGML_TYPE_F32);
  4084. return (float *)(tensor->data);
  4085. }
  4086. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4087. return tensor->name;
  4088. }
  4089. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4090. strncpy(tensor->name, name, sizeof(tensor->name));
  4091. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4092. }
  4093. struct ggml_tensor * ggml_view_tensor(
  4094. struct ggml_context * ctx,
  4095. const struct ggml_tensor * src) {
  4096. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4097. result->nb[0] = src->nb[0];
  4098. result->nb[1] = src->nb[1];
  4099. result->nb[2] = src->nb[2];
  4100. result->nb[3] = src->nb[3];
  4101. return result;
  4102. }
  4103. ////////////////////////////////////////////////////////////////////////////////
  4104. // ggml_dup
  4105. struct ggml_tensor * ggml_dup_impl(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a,
  4108. bool inplace) {
  4109. bool is_node = false;
  4110. if (!inplace && (a->grad)) {
  4111. is_node = true;
  4112. }
  4113. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4114. result->op = GGML_OP_DUP;
  4115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4116. result->src0 = a;
  4117. result->src1 = NULL;
  4118. return result;
  4119. }
  4120. struct ggml_tensor * ggml_dup(
  4121. struct ggml_context * ctx,
  4122. struct ggml_tensor * a) {
  4123. return ggml_dup_impl(ctx, a, false);
  4124. }
  4125. struct ggml_tensor * ggml_dup_inplace(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a) {
  4128. return ggml_dup_impl(ctx, a, true);
  4129. }
  4130. // ggml_add
  4131. struct ggml_tensor * ggml_add_impl(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. struct ggml_tensor * b,
  4135. bool inplace) {
  4136. GGML_ASSERT(ggml_are_same_shape(a, b));
  4137. bool is_node = false;
  4138. if (!inplace && (a->grad || b->grad)) {
  4139. is_node = true;
  4140. }
  4141. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4142. result->op = GGML_OP_ADD;
  4143. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4144. result->src0 = a;
  4145. result->src1 = b;
  4146. return result;
  4147. }
  4148. struct ggml_tensor * ggml_add(
  4149. struct ggml_context * ctx,
  4150. struct ggml_tensor * a,
  4151. struct ggml_tensor * b) {
  4152. return ggml_add_impl(ctx, a, b, false);
  4153. }
  4154. struct ggml_tensor * ggml_add_inplace(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a,
  4157. struct ggml_tensor * b) {
  4158. return ggml_add_impl(ctx, a, b, true);
  4159. }
  4160. // ggml_sub
  4161. struct ggml_tensor * ggml_sub_impl(
  4162. struct ggml_context * ctx,
  4163. struct ggml_tensor * a,
  4164. struct ggml_tensor * b,
  4165. bool inplace) {
  4166. GGML_ASSERT(ggml_are_same_shape(a, b));
  4167. bool is_node = false;
  4168. if (!inplace && (a->grad || b->grad)) {
  4169. is_node = true;
  4170. }
  4171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4172. result->op = GGML_OP_SUB;
  4173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4174. result->src0 = a;
  4175. result->src1 = b;
  4176. return result;
  4177. }
  4178. struct ggml_tensor * ggml_sub(
  4179. struct ggml_context * ctx,
  4180. struct ggml_tensor * a,
  4181. struct ggml_tensor * b) {
  4182. return ggml_sub_impl(ctx, a, b, false);
  4183. }
  4184. struct ggml_tensor * ggml_sub_inplace(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a,
  4187. struct ggml_tensor * b) {
  4188. return ggml_sub_impl(ctx, a, b, true);
  4189. }
  4190. // ggml_mul
  4191. struct ggml_tensor * ggml_mul_impl(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a,
  4194. struct ggml_tensor * b,
  4195. bool inplace) {
  4196. GGML_ASSERT(ggml_are_same_shape(a, b));
  4197. bool is_node = false;
  4198. if (!inplace && (a->grad || b->grad)) {
  4199. is_node = true;
  4200. }
  4201. if (inplace) {
  4202. GGML_ASSERT(is_node == false);
  4203. }
  4204. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4205. result->op = GGML_OP_MUL;
  4206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4207. result->src0 = a;
  4208. result->src1 = b;
  4209. return result;
  4210. }
  4211. struct ggml_tensor * ggml_mul(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. struct ggml_tensor * b) {
  4215. return ggml_mul_impl(ctx, a, b, false);
  4216. }
  4217. struct ggml_tensor * ggml_mul_inplace(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a,
  4220. struct ggml_tensor * b) {
  4221. return ggml_mul_impl(ctx, a, b, true);
  4222. }
  4223. // ggml_div
  4224. struct ggml_tensor * ggml_div_impl(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. struct ggml_tensor * b,
  4228. bool inplace) {
  4229. GGML_ASSERT(ggml_are_same_shape(a, b));
  4230. bool is_node = false;
  4231. if (!inplace && (a->grad || b->grad)) {
  4232. is_node = true;
  4233. }
  4234. if (inplace) {
  4235. GGML_ASSERT(is_node == false);
  4236. }
  4237. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4238. result->op = GGML_OP_DIV;
  4239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4240. result->src0 = a;
  4241. result->src1 = b;
  4242. return result;
  4243. }
  4244. struct ggml_tensor * ggml_div(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a,
  4247. struct ggml_tensor * b) {
  4248. return ggml_div_impl(ctx, a, b, false);
  4249. }
  4250. struct ggml_tensor * ggml_div_inplace(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. struct ggml_tensor * b) {
  4254. return ggml_div_impl(ctx, a, b, true);
  4255. }
  4256. // ggml_sqr
  4257. struct ggml_tensor * ggml_sqr_impl(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a,
  4260. bool inplace) {
  4261. bool is_node = false;
  4262. if (!inplace && (a->grad)) {
  4263. is_node = true;
  4264. }
  4265. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4266. result->op = GGML_OP_SQR;
  4267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4268. result->src0 = a;
  4269. result->src1 = NULL;
  4270. return result;
  4271. }
  4272. struct ggml_tensor * ggml_sqr(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a) {
  4275. return ggml_sqr_impl(ctx, a, false);
  4276. }
  4277. struct ggml_tensor * ggml_sqr_inplace(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a) {
  4280. return ggml_sqr_impl(ctx, a, true);
  4281. }
  4282. // ggml_sqrt
  4283. struct ggml_tensor * ggml_sqrt_impl(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a,
  4286. bool inplace) {
  4287. bool is_node = false;
  4288. if (!inplace && (a->grad)) {
  4289. is_node = true;
  4290. }
  4291. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4292. result->op = GGML_OP_SQRT;
  4293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4294. result->src0 = a;
  4295. result->src1 = NULL;
  4296. return result;
  4297. }
  4298. struct ggml_tensor * ggml_sqrt(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a) {
  4301. return ggml_sqrt_impl(ctx, a, false);
  4302. }
  4303. struct ggml_tensor * ggml_sqrt_inplace(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a) {
  4306. return ggml_sqrt_impl(ctx, a, true);
  4307. }
  4308. // ggml_sum
  4309. struct ggml_tensor * ggml_sum(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a) {
  4312. bool is_node = false;
  4313. if (a->grad) {
  4314. is_node = true;
  4315. }
  4316. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4317. result->op = GGML_OP_SUM;
  4318. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4319. result->src0 = a;
  4320. result->src1 = NULL;
  4321. return result;
  4322. }
  4323. // ggml_mean
  4324. struct ggml_tensor * ggml_mean(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a) {
  4327. bool is_node = false;
  4328. if (a->grad) {
  4329. GGML_ASSERT(false); // TODO: implement
  4330. is_node = true;
  4331. }
  4332. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4333. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4334. result->op = GGML_OP_MEAN;
  4335. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4336. result->src0 = a;
  4337. result->src1 = NULL;
  4338. return result;
  4339. }
  4340. // ggml_repeat
  4341. struct ggml_tensor * ggml_repeat(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b) {
  4345. GGML_ASSERT(ggml_can_repeat(a, b));
  4346. bool is_node = false;
  4347. if (a->grad) {
  4348. is_node = true;
  4349. }
  4350. if (ggml_are_same_shape(a, b) && !is_node) {
  4351. return a;
  4352. }
  4353. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4354. result->op = GGML_OP_REPEAT;
  4355. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4356. result->src0 = a;
  4357. result->src1 = b;
  4358. return result;
  4359. }
  4360. // ggml_abs
  4361. struct ggml_tensor * ggml_abs_impl(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. bool inplace) {
  4365. bool is_node = false;
  4366. if (!inplace && (a->grad)) {
  4367. is_node = true;
  4368. }
  4369. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4370. result->op = GGML_OP_ABS;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src0 = a;
  4373. result->src1 = NULL;
  4374. return result;
  4375. }
  4376. struct ggml_tensor * ggml_abs(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a) {
  4379. return ggml_abs_impl(ctx, a, false);
  4380. }
  4381. struct ggml_tensor * ggml_abs_inplace(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a) {
  4384. return ggml_abs_impl(ctx, a, true);
  4385. }
  4386. // ggml_sgn
  4387. struct ggml_tensor * ggml_sgn_impl(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a,
  4390. bool inplace) {
  4391. bool is_node = false;
  4392. if (!inplace && (a->grad)) {
  4393. is_node = true;
  4394. }
  4395. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4396. result->op = GGML_OP_SGN;
  4397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4398. result->src0 = a;
  4399. result->src1 = NULL;
  4400. return result;
  4401. }
  4402. struct ggml_tensor * ggml_sgn(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a) {
  4405. return ggml_sgn_impl(ctx, a, false);
  4406. }
  4407. struct ggml_tensor * ggml_sgn_inplace(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a) {
  4410. return ggml_sgn_impl(ctx, a, true);
  4411. }
  4412. // ggml_neg
  4413. struct ggml_tensor * ggml_neg_impl(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. bool inplace) {
  4417. bool is_node = false;
  4418. if (!inplace && (a->grad)) {
  4419. is_node = true;
  4420. }
  4421. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4422. result->op = GGML_OP_NEG;
  4423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4424. result->src0 = a;
  4425. result->src1 = NULL;
  4426. return result;
  4427. }
  4428. struct ggml_tensor * ggml_neg(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a) {
  4431. return ggml_neg_impl(ctx, a, false);
  4432. }
  4433. struct ggml_tensor * ggml_neg_inplace(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a) {
  4436. return ggml_neg_impl(ctx, a, true);
  4437. }
  4438. // ggml_step
  4439. struct ggml_tensor * ggml_step_impl(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. bool inplace) {
  4443. bool is_node = false;
  4444. if (!inplace && (a->grad)) {
  4445. is_node = true;
  4446. }
  4447. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4448. result->op = GGML_OP_STEP;
  4449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4450. result->src0 = a;
  4451. result->src1 = NULL;
  4452. return result;
  4453. }
  4454. struct ggml_tensor * ggml_step(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * a) {
  4457. return ggml_step_impl(ctx, a, false);
  4458. }
  4459. struct ggml_tensor * ggml_step_inplace(
  4460. struct ggml_context * ctx,
  4461. struct ggml_tensor * a) {
  4462. return ggml_step_impl(ctx, a, true);
  4463. }
  4464. // ggml_relu
  4465. struct ggml_tensor * ggml_relu_impl(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a,
  4468. bool inplace) {
  4469. bool is_node = false;
  4470. if (!inplace && (a->grad)) {
  4471. is_node = true;
  4472. }
  4473. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4474. result->op = GGML_OP_RELU;
  4475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4476. result->src0 = a;
  4477. result->src1 = NULL;
  4478. return result;
  4479. }
  4480. struct ggml_tensor * ggml_relu(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a) {
  4483. return ggml_relu_impl(ctx, a, false);
  4484. }
  4485. struct ggml_tensor * ggml_relu_inplace(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a) {
  4488. return ggml_relu_impl(ctx, a, true);
  4489. }
  4490. // ggml_gelu
  4491. struct ggml_tensor * ggml_gelu_impl(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. bool inplace) {
  4495. bool is_node = false;
  4496. if (!inplace && (a->grad)) {
  4497. is_node = true;
  4498. }
  4499. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4500. result->op = GGML_OP_GELU;
  4501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4502. result->src0 = a;
  4503. result->src1 = NULL;
  4504. return result;
  4505. }
  4506. struct ggml_tensor * ggml_gelu(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * a) {
  4509. return ggml_gelu_impl(ctx, a, false);
  4510. }
  4511. struct ggml_tensor * ggml_gelu_inplace(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a) {
  4514. return ggml_gelu_impl(ctx, a, true);
  4515. }
  4516. // ggml_silu
  4517. struct ggml_tensor * ggml_silu_impl(
  4518. struct ggml_context * ctx,
  4519. struct ggml_tensor * a,
  4520. bool inplace) {
  4521. bool is_node = false;
  4522. if (!inplace && (a->grad)) {
  4523. is_node = true;
  4524. }
  4525. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4526. result->op = GGML_OP_SILU;
  4527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4528. result->src0 = a;
  4529. result->src1 = NULL;
  4530. return result;
  4531. }
  4532. struct ggml_tensor * ggml_silu(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a) {
  4535. return ggml_silu_impl(ctx, a, false);
  4536. }
  4537. struct ggml_tensor * ggml_silu_inplace(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a) {
  4540. return ggml_silu_impl(ctx, a, true);
  4541. }
  4542. // ggml_norm
  4543. struct ggml_tensor * ggml_norm_impl(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a,
  4546. bool inplace) {
  4547. bool is_node = false;
  4548. if (!inplace && (a->grad)) {
  4549. GGML_ASSERT(false); // TODO: implement backward
  4550. is_node = true;
  4551. }
  4552. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4553. result->op = GGML_OP_NORM;
  4554. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4555. result->src0 = a;
  4556. result->src1 = NULL; // TODO: maybe store epsilon here?
  4557. return result;
  4558. }
  4559. struct ggml_tensor * ggml_norm(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a) {
  4562. return ggml_norm_impl(ctx, a, false);
  4563. }
  4564. struct ggml_tensor * ggml_norm_inplace(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a) {
  4567. return ggml_norm_impl(ctx, a, true);
  4568. }
  4569. struct ggml_tensor * ggml_rms_norm_impl(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. bool inplace) {
  4573. bool is_node = false;
  4574. if (!inplace && (a->grad)) {
  4575. GGML_ASSERT(false); // TODO: implement backward
  4576. is_node = true;
  4577. }
  4578. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4579. result->op = GGML_OP_RMS_NORM;
  4580. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4581. result->src0 = a;
  4582. result->src1 = NULL; // TODO: maybe store epsilon here?
  4583. return result;
  4584. }
  4585. struct ggml_tensor * ggml_rms_norm(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a) {
  4588. return ggml_rms_norm_impl(ctx, a, false);
  4589. }
  4590. struct ggml_tensor * ggml_rms_norm_inplace(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a) {
  4593. return ggml_rms_norm_impl(ctx, a, true);
  4594. }
  4595. // ggml_mul_mat
  4596. struct ggml_tensor * ggml_mul_mat(
  4597. struct ggml_context * ctx,
  4598. struct ggml_tensor * a,
  4599. struct ggml_tensor * b) {
  4600. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4601. GGML_ASSERT(!ggml_is_transposed(a));
  4602. bool is_node = false;
  4603. if (a->grad || b->grad) {
  4604. is_node = true;
  4605. }
  4606. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4607. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4608. result->op = GGML_OP_MUL_MAT;
  4609. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4610. result->src0 = a;
  4611. result->src1 = b;
  4612. return result;
  4613. }
  4614. // ggml_scale
  4615. struct ggml_tensor * ggml_scale_impl(
  4616. struct ggml_context * ctx,
  4617. struct ggml_tensor * a,
  4618. struct ggml_tensor * b,
  4619. bool inplace) {
  4620. GGML_ASSERT(ggml_is_scalar(b));
  4621. GGML_ASSERT(ggml_is_padded_1d(a));
  4622. bool is_node = false;
  4623. if (!inplace && (a->grad || b->grad)) {
  4624. GGML_ASSERT(false); // TODO: implement backward
  4625. is_node = true;
  4626. }
  4627. // TODO: when implement backward, fix this:
  4628. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4629. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4630. result->op = GGML_OP_SCALE;
  4631. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4632. result->src0 = a;
  4633. result->src1 = b;
  4634. return result;
  4635. }
  4636. struct ggml_tensor * ggml_scale(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a,
  4639. struct ggml_tensor * b) {
  4640. return ggml_scale_impl(ctx, a, b, false);
  4641. }
  4642. struct ggml_tensor * ggml_scale_inplace(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. struct ggml_tensor * b) {
  4646. return ggml_scale_impl(ctx, a, b, true);
  4647. }
  4648. // ggml_cpy
  4649. struct ggml_tensor * ggml_cpy_impl(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a,
  4652. struct ggml_tensor * b,
  4653. bool inplace) {
  4654. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4655. bool is_node = false;
  4656. if (!inplace && (a->grad || b->grad)) {
  4657. GGML_ASSERT(false); // TODO: implement backward
  4658. is_node = true;
  4659. }
  4660. // make a view of the destination
  4661. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4662. result->op = GGML_OP_CPY;
  4663. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4664. result->src0 = a;
  4665. result->src1 = b;
  4666. return result;
  4667. }
  4668. struct ggml_tensor * ggml_cpy(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a,
  4671. struct ggml_tensor * b) {
  4672. return ggml_cpy_impl(ctx, a, b, false);
  4673. }
  4674. struct ggml_tensor * ggml_cpy_inplace(
  4675. struct ggml_context * ctx,
  4676. struct ggml_tensor * a,
  4677. struct ggml_tensor * b) {
  4678. return ggml_cpy_impl(ctx, a, b, true);
  4679. }
  4680. // ggml_cont
  4681. struct ggml_tensor * ggml_cont_impl(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. bool inplace) {
  4685. bool is_node = false;
  4686. if (!inplace && a->grad) {
  4687. GGML_ASSERT(false); // TODO: implement backward
  4688. is_node = true;
  4689. }
  4690. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4691. result->op = GGML_OP_CONT;
  4692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4693. result->src0 = a;
  4694. result->src1 = NULL;
  4695. return result;
  4696. }
  4697. struct ggml_tensor * ggml_cont(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a) {
  4700. return ggml_cont_impl(ctx, a, false);
  4701. }
  4702. struct ggml_tensor * ggml_cont_inplace(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a) {
  4705. return ggml_cont_impl(ctx, a, true);
  4706. }
  4707. // ggml_reshape
  4708. struct ggml_tensor * ggml_reshape(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. struct ggml_tensor * b) {
  4712. GGML_ASSERT(ggml_is_contiguous(a));
  4713. GGML_ASSERT(ggml_is_contiguous(b));
  4714. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4715. bool is_node = false;
  4716. if (a->grad || b->grad) {
  4717. GGML_ASSERT(false); // TODO: implement backward
  4718. is_node = true;
  4719. }
  4720. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4721. result->op = GGML_OP_RESHAPE;
  4722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4723. result->src0 = a;
  4724. result->src1 = NULL;
  4725. return result;
  4726. }
  4727. struct ggml_tensor * ggml_reshape_2d(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a,
  4730. int64_t ne0,
  4731. int64_t ne1) {
  4732. GGML_ASSERT(ggml_is_contiguous(a));
  4733. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4734. bool is_node = false;
  4735. if (a->grad) {
  4736. GGML_ASSERT(false); // TODO: implement backward
  4737. is_node = true;
  4738. }
  4739. const int64_t ne[2] = { ne0, ne1 };
  4740. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4741. result->op = GGML_OP_RESHAPE;
  4742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4743. result->src0 = a;
  4744. result->src1 = NULL;
  4745. return result;
  4746. }
  4747. struct ggml_tensor * ggml_reshape_3d(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a,
  4750. int64_t ne0,
  4751. int64_t ne1,
  4752. int64_t ne2) {
  4753. GGML_ASSERT(ggml_is_contiguous(a));
  4754. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4755. bool is_node = false;
  4756. if (a->grad) {
  4757. GGML_ASSERT(false); // TODO: implement backward
  4758. is_node = true;
  4759. }
  4760. const int64_t ne[3] = { ne0, ne1, ne2 };
  4761. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4762. result->op = GGML_OP_RESHAPE;
  4763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4764. result->src0 = a;
  4765. result->src1 = NULL;
  4766. return result;
  4767. }
  4768. // ggml_view_1d
  4769. struct ggml_tensor * ggml_view_1d(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a,
  4772. int64_t ne0,
  4773. size_t offset) {
  4774. if (a->grad) {
  4775. GGML_ASSERT(false); // gradient propagation is not supported
  4776. }
  4777. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4778. result->op = GGML_OP_VIEW;
  4779. result->grad = NULL;
  4780. result->src0 = a;
  4781. result->src1 = NULL; // TODO: maybe store the offset here?
  4782. return result;
  4783. }
  4784. // ggml_view_2d
  4785. struct ggml_tensor * ggml_view_2d(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. int64_t ne0,
  4789. int64_t ne1,
  4790. size_t nb1,
  4791. size_t offset) {
  4792. if (a->grad) {
  4793. GGML_ASSERT(false); // gradient propagation is not supported
  4794. }
  4795. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4796. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4797. result->nb[1] = nb1;
  4798. result->nb[2] = result->nb[1]*ne1;
  4799. result->nb[3] = result->nb[2];
  4800. result->op = GGML_OP_VIEW;
  4801. result->grad = NULL;
  4802. result->src0 = a;
  4803. result->src1 = NULL; // TODO: maybe store the offset here?
  4804. return result;
  4805. }
  4806. // ggml_view_3d
  4807. struct ggml_tensor * ggml_view_3d(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a,
  4810. int64_t ne0,
  4811. int64_t ne1,
  4812. int64_t ne2,
  4813. size_t nb1,
  4814. size_t nb2,
  4815. size_t offset) {
  4816. if (a->grad) {
  4817. GGML_ASSERT(false); // gradient propagation is not supported
  4818. }
  4819. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4820. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4821. result->nb[1] = nb1;
  4822. result->nb[2] = nb2;
  4823. result->nb[3] = result->nb[2]*ne2;
  4824. result->op = GGML_OP_VIEW;
  4825. result->grad = NULL;
  4826. result->src0 = a;
  4827. result->src1 = NULL; // TODO: maybe store the offset here?
  4828. return result;
  4829. }
  4830. // ggml_permute
  4831. struct ggml_tensor * ggml_permute(
  4832. struct ggml_context * ctx,
  4833. struct ggml_tensor * a,
  4834. int axis0,
  4835. int axis1,
  4836. int axis2,
  4837. int axis3) {
  4838. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4839. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4840. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4841. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4842. GGML_ASSERT(axis0 != axis1);
  4843. GGML_ASSERT(axis0 != axis2);
  4844. GGML_ASSERT(axis0 != axis3);
  4845. GGML_ASSERT(axis1 != axis2);
  4846. GGML_ASSERT(axis1 != axis3);
  4847. GGML_ASSERT(axis2 != axis3);
  4848. bool is_node = false;
  4849. if (a->grad) {
  4850. GGML_ASSERT(false); // TODO: implement backward
  4851. is_node = true;
  4852. }
  4853. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4854. int ne[GGML_MAX_DIMS];
  4855. int nb[GGML_MAX_DIMS];
  4856. ne[axis0] = a->ne[0];
  4857. ne[axis1] = a->ne[1];
  4858. ne[axis2] = a->ne[2];
  4859. ne[axis3] = a->ne[3];
  4860. nb[axis0] = a->nb[0];
  4861. nb[axis1] = a->nb[1];
  4862. nb[axis2] = a->nb[2];
  4863. nb[axis3] = a->nb[3];
  4864. result->ne[0] = ne[0];
  4865. result->ne[1] = ne[1];
  4866. result->ne[2] = ne[2];
  4867. result->ne[3] = ne[3];
  4868. result->nb[0] = nb[0];
  4869. result->nb[1] = nb[1];
  4870. result->nb[2] = nb[2];
  4871. result->nb[3] = nb[3];
  4872. result->op = GGML_OP_PERMUTE;
  4873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4874. result->src0 = a;
  4875. result->src1 = NULL; // TODO: maybe store the permutation here?
  4876. return result;
  4877. }
  4878. // ggml_transpose
  4879. struct ggml_tensor * ggml_transpose(
  4880. struct ggml_context * ctx,
  4881. struct ggml_tensor * a) {
  4882. bool is_node = false;
  4883. if (a->grad) {
  4884. GGML_ASSERT(false); // TODO: implement backward
  4885. is_node = true;
  4886. }
  4887. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4888. result->ne[0] = a->ne[1];
  4889. result->ne[1] = a->ne[0];
  4890. result->nb[0] = a->nb[1];
  4891. result->nb[1] = a->nb[0];
  4892. result->op = GGML_OP_TRANSPOSE;
  4893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4894. result->src0 = a;
  4895. result->src1 = NULL;
  4896. return result;
  4897. }
  4898. // ggml_get_rows
  4899. struct ggml_tensor * ggml_get_rows(
  4900. struct ggml_context * ctx,
  4901. struct ggml_tensor * a,
  4902. struct ggml_tensor * b) {
  4903. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4904. bool is_node = false;
  4905. if (a->grad || b->grad) {
  4906. GGML_ASSERT(false); // TODO: implement backward
  4907. is_node = true;
  4908. }
  4909. // TODO: implement non F32 return
  4910. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4911. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4912. result->op = GGML_OP_GET_ROWS;
  4913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4914. result->src0 = a;
  4915. result->src1 = b;
  4916. return result;
  4917. }
  4918. // ggml_diag_mask_inf
  4919. struct ggml_tensor * ggml_diag_mask_inf(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. int n_past) {
  4923. bool is_node = false;
  4924. if (a->grad) {
  4925. GGML_ASSERT(false); // TODO: implement backward
  4926. is_node = true;
  4927. }
  4928. // TODO: when implement backward, fix this:
  4929. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4930. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4931. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4932. ggml_set_name(b, "n_past");
  4933. result->op = GGML_OP_DIAG_MASK_INF;
  4934. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4935. result->src0 = a;
  4936. result->src1 = b;
  4937. return result;
  4938. }
  4939. // ggml_soft_max
  4940. struct ggml_tensor * ggml_soft_max(
  4941. struct ggml_context * ctx,
  4942. struct ggml_tensor * a) {
  4943. bool is_node = false;
  4944. if (a->grad) {
  4945. GGML_ASSERT(false); // TODO: implement backward
  4946. is_node = true;
  4947. }
  4948. // TODO: when implement backward, fix this:
  4949. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4950. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4951. result->op = GGML_OP_SOFT_MAX;
  4952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4953. result->src0 = a;
  4954. result->src1 = NULL;
  4955. return result;
  4956. }
  4957. // ggml_rope
  4958. struct ggml_tensor * ggml_rope(
  4959. struct ggml_context * ctx,
  4960. struct ggml_tensor * a,
  4961. int n_past,
  4962. int n_dims,
  4963. int mode) {
  4964. GGML_ASSERT(n_past >= 0);
  4965. bool is_node = false;
  4966. if (a->grad) {
  4967. GGML_ASSERT(false); // TODO: implement backward
  4968. is_node = true;
  4969. }
  4970. // TODO: when implement backward, fix this:
  4971. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4972. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4973. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4974. ((int32_t *) b->data)[0] = n_past;
  4975. ((int32_t *) b->data)[1] = n_dims;
  4976. ((int32_t *) b->data)[2] = mode;
  4977. ggml_set_name(b, "n_past, n_dims, mode");
  4978. result->op = GGML_OP_ROPE;
  4979. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4980. result->src0 = a;
  4981. result->src1 = b;
  4982. return result;
  4983. }
  4984. // ggml_alibi
  4985. struct ggml_tensor * ggml_alibi(
  4986. struct ggml_context * ctx,
  4987. struct ggml_tensor * a,
  4988. int n_past,
  4989. int n_head) {
  4990. GGML_ASSERT(n_past >= 0);
  4991. bool is_node = false;
  4992. if (a->grad) {
  4993. GGML_ASSERT(false); // TODO: implement backward
  4994. is_node = true;
  4995. }
  4996. // TODO: when implement backward, fix this:
  4997. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4998. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4999. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5000. ((int32_t *) b->data)[0] = n_past;
  5001. ((int32_t *) b->data)[1] = n_head;
  5002. result->op = GGML_OP_ALIBI;
  5003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5004. result->src0 = a;
  5005. result->src1 = b;
  5006. return result;
  5007. }
  5008. // ggml_conv_1d_1s
  5009. struct ggml_tensor * ggml_conv_1d_1s(
  5010. struct ggml_context * ctx,
  5011. struct ggml_tensor * a,
  5012. struct ggml_tensor * b) {
  5013. GGML_ASSERT(ggml_is_matrix(b));
  5014. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5015. GGML_ASSERT(a->ne[3] == 1);
  5016. bool is_node = false;
  5017. if (a->grad || b->grad) {
  5018. GGML_ASSERT(false); // TODO: implement backward
  5019. is_node = true;
  5020. }
  5021. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5022. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5023. result->op = GGML_OP_CONV_1D_1S;
  5024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5025. result->src0 = a;
  5026. result->src1 = b;
  5027. return result;
  5028. }
  5029. // ggml_conv_1d_2s
  5030. struct ggml_tensor * ggml_conv_1d_2s(
  5031. struct ggml_context * ctx,
  5032. struct ggml_tensor * a,
  5033. struct ggml_tensor * b) {
  5034. GGML_ASSERT(ggml_is_matrix(b));
  5035. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5036. GGML_ASSERT(a->ne[3] == 1);
  5037. bool is_node = false;
  5038. if (a->grad || b->grad) {
  5039. GGML_ASSERT(false); // TODO: implement backward
  5040. is_node = true;
  5041. }
  5042. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5043. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5044. result->op = GGML_OP_CONV_1D_2S;
  5045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5046. result->src0 = a;
  5047. result->src1 = b;
  5048. return result;
  5049. }
  5050. // ggml_flash_attn
  5051. struct ggml_tensor * ggml_flash_attn(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * q,
  5054. struct ggml_tensor * k,
  5055. struct ggml_tensor * v,
  5056. bool masked) {
  5057. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5058. // TODO: check if vT can be multiplied by (k*qT)
  5059. bool is_node = false;
  5060. if (q->grad || k->grad || v->grad) {
  5061. GGML_ASSERT(false); // TODO: implement backward
  5062. is_node = true;
  5063. }
  5064. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5065. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5066. result->op = GGML_OP_FLASH_ATTN;
  5067. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5068. result->src0 = q;
  5069. result->src1 = k;
  5070. result->opt[0] = v;
  5071. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5072. return result;
  5073. }
  5074. // ggml_flash_ff
  5075. struct ggml_tensor * ggml_flash_ff(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. struct ggml_tensor * b0,
  5079. struct ggml_tensor * b1,
  5080. struct ggml_tensor * c0,
  5081. struct ggml_tensor * c1) {
  5082. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5083. // TODO: more checks
  5084. bool is_node = false;
  5085. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5086. GGML_ASSERT(false); // TODO: implement backward
  5087. is_node = true;
  5088. }
  5089. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5090. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5091. result->op = GGML_OP_FLASH_FF;
  5092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5093. result->src0 = a;
  5094. result->src1 = b0;
  5095. result->opt[0] = b1;
  5096. result->opt[1] = c0;
  5097. result->opt[2] = c1;
  5098. return result;
  5099. }
  5100. // ggml_map_unary
  5101. struct ggml_tensor * ggml_map_unary_impl_f32(
  5102. struct ggml_context * ctx,
  5103. struct ggml_tensor * a,
  5104. const ggml_unary_op_f32_t fun,
  5105. bool inplace) {
  5106. bool is_node = false;
  5107. if (!inplace && a->grad) {
  5108. is_node = true;
  5109. }
  5110. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5111. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5112. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5113. result->op = GGML_OP_MAP_UNARY;
  5114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5115. result->src0 = a;
  5116. result->opt[0] = addr_tensor;
  5117. return result;
  5118. }
  5119. struct ggml_tensor * ggml_map_unary_f32(
  5120. struct ggml_context * ctx,
  5121. struct ggml_tensor * a,
  5122. const ggml_unary_op_f32_t fun) {
  5123. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5124. }
  5125. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. const ggml_unary_op_f32_t fun) {
  5129. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5130. }
  5131. // ggml_map_binary
  5132. struct ggml_tensor * ggml_map_binary_impl_f32(
  5133. struct ggml_context * ctx,
  5134. struct ggml_tensor * a,
  5135. struct ggml_tensor * b,
  5136. const ggml_binary_op_f32_t fun,
  5137. bool inplace) {
  5138. GGML_ASSERT(ggml_are_same_shape(a, b));
  5139. bool is_node = false;
  5140. if (!inplace && (a->grad || b->grad)) {
  5141. is_node = true;
  5142. }
  5143. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5144. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5145. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5146. result->op = GGML_OP_MAP_BINARY;
  5147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5148. result->src0 = a;
  5149. result->src1 = b;
  5150. result->opt[0] = addr_tensor;
  5151. return result;
  5152. }
  5153. struct ggml_tensor * ggml_map_binary_f32(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. struct ggml_tensor * b,
  5157. const ggml_binary_op_f32_t fun) {
  5158. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5159. }
  5160. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5161. struct ggml_context * ctx,
  5162. struct ggml_tensor * a,
  5163. struct ggml_tensor * b,
  5164. const ggml_binary_op_f32_t fun) {
  5165. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5166. }
  5167. ////////////////////////////////////////////////////////////////////////////////
  5168. void ggml_set_param(
  5169. struct ggml_context * ctx,
  5170. struct ggml_tensor * tensor) {
  5171. tensor->is_param = true;
  5172. GGML_ASSERT(tensor->grad == NULL);
  5173. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5174. }
  5175. // ggml_compute_forward_dup
  5176. static void ggml_compute_forward_dup_f16(
  5177. const struct ggml_compute_params * params,
  5178. const struct ggml_tensor * src0,
  5179. struct ggml_tensor * dst) {
  5180. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5182. return;
  5183. }
  5184. const int64_t ne00 = src0->ne[0];
  5185. const int64_t ne01 = src0->ne[1];
  5186. const int64_t ne02 = src0->ne[2];
  5187. const int64_t ne03 = src0->ne[3];
  5188. const int64_t ne0 = dst->ne[0];
  5189. const int64_t ne1 = dst->ne[1];
  5190. const int64_t ne2 = dst->ne[2];
  5191. const int64_t ne3 = dst->ne[3];
  5192. const size_t nb00 = src0->nb[0];
  5193. const size_t nb01 = src0->nb[1];
  5194. const size_t nb02 = src0->nb[2];
  5195. const size_t nb03 = src0->nb[3];
  5196. const size_t nb0 = dst->nb[0];
  5197. const size_t nb1 = dst->nb[1];
  5198. const size_t nb2 = dst->nb[2];
  5199. const size_t nb3 = dst->nb[3];
  5200. const int ith = params->ith; // thread index
  5201. const int nth = params->nth; // number of threads
  5202. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5203. // parallelize by elements
  5204. const int ne = ggml_nelements(dst);
  5205. const int dr = (ne + nth - 1) / nth;
  5206. const int ie0 = dr * ith;
  5207. const int ie1 = MIN(ie0 + dr, ne);
  5208. memcpy(
  5209. ((char *) dst->data + ie0*nb0),
  5210. ((char *) src0->data + ie0*nb00),
  5211. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5212. return;
  5213. }
  5214. // parallelize by rows
  5215. const int nr = ne01;
  5216. // number of rows per thread
  5217. const int dr = (nr + nth - 1) / nth;
  5218. // row range for this thread
  5219. const int ir0 = dr * ith;
  5220. const int ir1 = MIN(ir0 + dr, nr);
  5221. if (src0->type == dst->type &&
  5222. ne00 == ne0 &&
  5223. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5224. // copy by rows
  5225. const size_t rs = ne00*nb00;
  5226. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5227. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5228. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5229. memcpy(
  5230. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5231. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5232. rs);
  5233. }
  5234. }
  5235. }
  5236. return;
  5237. }
  5238. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5239. if (ggml_is_contiguous(dst)) {
  5240. if (nb00 == sizeof(ggml_fp16_t)) {
  5241. if (dst->type == GGML_TYPE_F16) {
  5242. size_t id = 0;
  5243. const size_t rs = ne00 * nb00;
  5244. char * dst_ptr = (char *) dst->data;
  5245. for (int i03 = 0; i03 < ne03; i03++) {
  5246. for (int i02 = 0; i02 < ne02; i02++) {
  5247. id += rs * ir0;
  5248. for (int i01 = ir0; i01 < ir1; i01++) {
  5249. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5250. memcpy(dst_ptr + id, src0_ptr, rs);
  5251. id += rs;
  5252. }
  5253. id += rs * (ne01 - ir1);
  5254. }
  5255. }
  5256. } else if (dst->type == GGML_TYPE_F32) {
  5257. size_t id = 0;
  5258. float * dst_ptr = (float *) dst->data;
  5259. for (int i03 = 0; i03 < ne03; i03++) {
  5260. for (int i02 = 0; i02 < ne02; i02++) {
  5261. id += ne00 * ir0;
  5262. for (int i01 = ir0; i01 < ir1; i01++) {
  5263. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5264. for (int i00 = 0; i00 < ne00; i00++) {
  5265. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5266. id++;
  5267. }
  5268. }
  5269. id += ne00 * (ne01 - ir1);
  5270. }
  5271. }
  5272. } else if (ggml_is_quantized(dst->type)) {
  5273. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5274. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5275. size_t id = 0;
  5276. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5277. char * dst_ptr = (char *) dst->data;
  5278. for (int i03 = 0; i03 < ne03; i03++) {
  5279. for (int i02 = 0; i02 < ne02; i02++) {
  5280. id += rs * ir0;
  5281. for (int i01 = ir0; i01 < ir1; i01++) {
  5282. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5283. for (int i00 = 0; i00 < ne00; i00++) {
  5284. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5285. }
  5286. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5287. id += rs;
  5288. }
  5289. id += rs * (ne01 - ir1);
  5290. }
  5291. }
  5292. } else {
  5293. GGML_ASSERT(false); // TODO: implement
  5294. }
  5295. } else {
  5296. //printf("%s: this is not optimal - fix me\n", __func__);
  5297. if (dst->type == GGML_TYPE_F32) {
  5298. size_t id = 0;
  5299. float * dst_ptr = (float *) dst->data;
  5300. for (int i03 = 0; i03 < ne03; i03++) {
  5301. for (int i02 = 0; i02 < ne02; i02++) {
  5302. id += ne00 * ir0;
  5303. for (int i01 = ir0; i01 < ir1; i01++) {
  5304. for (int i00 = 0; i00 < ne00; i00++) {
  5305. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5306. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5307. id++;
  5308. }
  5309. }
  5310. id += ne00 * (ne01 - ir1);
  5311. }
  5312. }
  5313. } else if (dst->type == GGML_TYPE_F16) {
  5314. size_t id = 0;
  5315. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5316. for (int i03 = 0; i03 < ne03; i03++) {
  5317. for (int i02 = 0; i02 < ne02; i02++) {
  5318. id += ne00 * ir0;
  5319. for (int i01 = ir0; i01 < ir1; i01++) {
  5320. for (int i00 = 0; i00 < ne00; i00++) {
  5321. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5322. dst_ptr[id] = *src0_ptr;
  5323. id++;
  5324. }
  5325. }
  5326. id += ne00 * (ne01 - ir1);
  5327. }
  5328. }
  5329. } else {
  5330. GGML_ASSERT(false); // TODO: implement
  5331. }
  5332. }
  5333. return;
  5334. }
  5335. // dst counters
  5336. int64_t i10 = 0;
  5337. int64_t i11 = 0;
  5338. int64_t i12 = 0;
  5339. int64_t i13 = 0;
  5340. if (dst->type == GGML_TYPE_F16) {
  5341. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5342. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5343. i10 += ne00 * ir0;
  5344. while (i10 >= ne0) {
  5345. i10 -= ne0;
  5346. if (++i11 == ne1) {
  5347. i11 = 0;
  5348. if (++i12 == ne2) {
  5349. i12 = 0;
  5350. if (++i13 == ne3) {
  5351. i13 = 0;
  5352. }
  5353. }
  5354. }
  5355. }
  5356. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5357. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5358. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5359. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5360. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5361. if (++i10 == ne00) {
  5362. i10 = 0;
  5363. if (++i11 == ne01) {
  5364. i11 = 0;
  5365. if (++i12 == ne02) {
  5366. i12 = 0;
  5367. if (++i13 == ne03) {
  5368. i13 = 0;
  5369. }
  5370. }
  5371. }
  5372. }
  5373. }
  5374. }
  5375. i10 += ne00 * (ne01 - ir1);
  5376. while (i10 >= ne0) {
  5377. i10 -= ne0;
  5378. if (++i11 == ne1) {
  5379. i11 = 0;
  5380. if (++i12 == ne2) {
  5381. i12 = 0;
  5382. if (++i13 == ne3) {
  5383. i13 = 0;
  5384. }
  5385. }
  5386. }
  5387. }
  5388. }
  5389. }
  5390. } else if (dst->type == GGML_TYPE_F32) {
  5391. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5392. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5393. i10 += ne00 * ir0;
  5394. while (i10 >= ne0) {
  5395. i10 -= ne0;
  5396. if (++i11 == ne1) {
  5397. i11 = 0;
  5398. if (++i12 == ne2) {
  5399. i12 = 0;
  5400. if (++i13 == ne3) {
  5401. i13 = 0;
  5402. }
  5403. }
  5404. }
  5405. }
  5406. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5407. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5408. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5409. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5410. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5411. if (++i10 == ne0) {
  5412. i10 = 0;
  5413. if (++i11 == ne1) {
  5414. i11 = 0;
  5415. if (++i12 == ne2) {
  5416. i12 = 0;
  5417. if (++i13 == ne3) {
  5418. i13 = 0;
  5419. }
  5420. }
  5421. }
  5422. }
  5423. }
  5424. }
  5425. i10 += ne00 * (ne01 - ir1);
  5426. while (i10 >= ne0) {
  5427. i10 -= ne0;
  5428. if (++i11 == ne1) {
  5429. i11 = 0;
  5430. if (++i12 == ne2) {
  5431. i12 = 0;
  5432. if (++i13 == ne3) {
  5433. i13 = 0;
  5434. }
  5435. }
  5436. }
  5437. }
  5438. }
  5439. }
  5440. } else {
  5441. GGML_ASSERT(false); // TODO: implement
  5442. }
  5443. }
  5444. static void ggml_compute_forward_dup_f32(
  5445. const struct ggml_compute_params * params,
  5446. const struct ggml_tensor * src0,
  5447. struct ggml_tensor * dst) {
  5448. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5449. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5450. return;
  5451. }
  5452. const int64_t ne00 = src0->ne[0];
  5453. const int64_t ne01 = src0->ne[1];
  5454. const int64_t ne02 = src0->ne[2];
  5455. const int64_t ne03 = src0->ne[3];
  5456. const int64_t ne0 = dst->ne[0];
  5457. const int64_t ne1 = dst->ne[1];
  5458. const int64_t ne2 = dst->ne[2];
  5459. const int64_t ne3 = dst->ne[3];
  5460. const size_t nb00 = src0->nb[0];
  5461. const size_t nb01 = src0->nb[1];
  5462. const size_t nb02 = src0->nb[2];
  5463. const size_t nb03 = src0->nb[3];
  5464. const size_t nb0 = dst->nb[0];
  5465. const size_t nb1 = dst->nb[1];
  5466. const size_t nb2 = dst->nb[2];
  5467. const size_t nb3 = dst->nb[3];
  5468. const int ith = params->ith; // thread index
  5469. const int nth = params->nth; // number of threads
  5470. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5471. // parallelize by elements
  5472. const int ne = ggml_nelements(dst);
  5473. const int dr = (ne + nth - 1) / nth;
  5474. const int ie0 = dr * ith;
  5475. const int ie1 = MIN(ie0 + dr, ne);
  5476. memcpy(
  5477. ((char *) dst->data + ie0*nb0),
  5478. ((char *) src0->data + ie0*nb00),
  5479. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5480. return;
  5481. }
  5482. // parallelize by rows
  5483. const int nr = ne01;
  5484. // number of rows per thread
  5485. const int dr = (nr + nth - 1) / nth;
  5486. // row range for this thread
  5487. const int ir0 = dr * ith;
  5488. const int ir1 = MIN(ir0 + dr, nr);
  5489. if (src0->type == dst->type &&
  5490. ne00 == ne0 &&
  5491. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5492. // copy by rows
  5493. const size_t rs = ne00*nb00;
  5494. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5495. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5496. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5497. memcpy(
  5498. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5499. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5500. rs);
  5501. }
  5502. }
  5503. }
  5504. return;
  5505. }
  5506. if (ggml_is_contiguous(dst)) {
  5507. // TODO: simplify
  5508. if (nb00 == sizeof(float)) {
  5509. if (dst->type == GGML_TYPE_F32) {
  5510. size_t id = 0;
  5511. const size_t rs = ne00 * nb00;
  5512. char * dst_ptr = (char *) dst->data;
  5513. for (int i03 = 0; i03 < ne03; i03++) {
  5514. for (int i02 = 0; i02 < ne02; i02++) {
  5515. id += rs * ir0;
  5516. for (int i01 = ir0; i01 < ir1; i01++) {
  5517. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5518. memcpy(dst_ptr + id, src0_ptr, rs);
  5519. id += rs;
  5520. }
  5521. id += rs * (ne01 - ir1);
  5522. }
  5523. }
  5524. } else if (dst->type == GGML_TYPE_F16) {
  5525. size_t id = 0;
  5526. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5527. for (int i03 = 0; i03 < ne03; i03++) {
  5528. for (int i02 = 0; i02 < ne02; i02++) {
  5529. id += ne00 * ir0;
  5530. for (int i01 = ir0; i01 < ir1; i01++) {
  5531. for (int i00 = 0; i00 < ne00; i00++) {
  5532. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5533. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5534. id++;
  5535. }
  5536. }
  5537. id += ne00 * (ne01 - ir1);
  5538. }
  5539. }
  5540. } else if (ggml_is_quantized(dst->type)) {
  5541. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5542. size_t id = 0;
  5543. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5544. char * dst_ptr = (char *) dst->data;
  5545. for (int i03 = 0; i03 < ne03; i03++) {
  5546. for (int i02 = 0; i02 < ne02; i02++) {
  5547. id += rs * ir0;
  5548. for (int i01 = ir0; i01 < ir1; i01++) {
  5549. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5550. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5551. id += rs;
  5552. }
  5553. id += rs * (ne01 - ir1);
  5554. }
  5555. }
  5556. } else {
  5557. GGML_ASSERT(false); // TODO: implement
  5558. }
  5559. } else {
  5560. //printf("%s: this is not optimal - fix me\n", __func__);
  5561. if (dst->type == GGML_TYPE_F32) {
  5562. size_t id = 0;
  5563. float * dst_ptr = (float *) dst->data;
  5564. for (int i03 = 0; i03 < ne03; i03++) {
  5565. for (int i02 = 0; i02 < ne02; i02++) {
  5566. id += ne00 * ir0;
  5567. for (int i01 = ir0; i01 < ir1; i01++) {
  5568. for (int i00 = 0; i00 < ne00; i00++) {
  5569. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5570. dst_ptr[id] = *src0_ptr;
  5571. id++;
  5572. }
  5573. }
  5574. id += ne00 * (ne01 - ir1);
  5575. }
  5576. }
  5577. } else if (dst->type == GGML_TYPE_F16) {
  5578. size_t id = 0;
  5579. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5580. for (int i03 = 0; i03 < ne03; i03++) {
  5581. for (int i02 = 0; i02 < ne02; i02++) {
  5582. id += ne00 * ir0;
  5583. for (int i01 = ir0; i01 < ir1; i01++) {
  5584. for (int i00 = 0; i00 < ne00; i00++) {
  5585. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5586. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5587. id++;
  5588. }
  5589. }
  5590. id += ne00 * (ne01 - ir1);
  5591. }
  5592. }
  5593. } else {
  5594. GGML_ASSERT(false); // TODO: implement
  5595. }
  5596. }
  5597. return;
  5598. }
  5599. // dst counters
  5600. int64_t i10 = 0;
  5601. int64_t i11 = 0;
  5602. int64_t i12 = 0;
  5603. int64_t i13 = 0;
  5604. if (dst->type == GGML_TYPE_F32) {
  5605. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5606. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5607. i10 += ne00 * ir0;
  5608. while (i10 >= ne0) {
  5609. i10 -= ne0;
  5610. if (++i11 == ne1) {
  5611. i11 = 0;
  5612. if (++i12 == ne2) {
  5613. i12 = 0;
  5614. if (++i13 == ne3) {
  5615. i13 = 0;
  5616. }
  5617. }
  5618. }
  5619. }
  5620. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5621. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5622. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5623. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5624. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5625. if (++i10 == ne0) {
  5626. i10 = 0;
  5627. if (++i11 == ne1) {
  5628. i11 = 0;
  5629. if (++i12 == ne2) {
  5630. i12 = 0;
  5631. if (++i13 == ne3) {
  5632. i13 = 0;
  5633. }
  5634. }
  5635. }
  5636. }
  5637. }
  5638. }
  5639. i10 += ne00 * (ne01 - ir1);
  5640. while (i10 >= ne0) {
  5641. i10 -= ne0;
  5642. if (++i11 == ne1) {
  5643. i11 = 0;
  5644. if (++i12 == ne2) {
  5645. i12 = 0;
  5646. if (++i13 == ne3) {
  5647. i13 = 0;
  5648. }
  5649. }
  5650. }
  5651. }
  5652. }
  5653. }
  5654. } else if (dst->type == GGML_TYPE_F16) {
  5655. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5656. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5657. i10 += ne00 * ir0;
  5658. while (i10 >= ne0) {
  5659. i10 -= ne0;
  5660. if (++i11 == ne1) {
  5661. i11 = 0;
  5662. if (++i12 == ne2) {
  5663. i12 = 0;
  5664. if (++i13 == ne3) {
  5665. i13 = 0;
  5666. }
  5667. }
  5668. }
  5669. }
  5670. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5671. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5672. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5673. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5674. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5675. if (++i10 == ne0) {
  5676. i10 = 0;
  5677. if (++i11 == ne1) {
  5678. i11 = 0;
  5679. if (++i12 == ne2) {
  5680. i12 = 0;
  5681. if (++i13 == ne3) {
  5682. i13 = 0;
  5683. }
  5684. }
  5685. }
  5686. }
  5687. }
  5688. }
  5689. i10 += ne00 * (ne01 - ir1);
  5690. while (i10 >= ne0) {
  5691. i10 -= ne0;
  5692. if (++i11 == ne1) {
  5693. i11 = 0;
  5694. if (++i12 == ne2) {
  5695. i12 = 0;
  5696. if (++i13 == ne3) {
  5697. i13 = 0;
  5698. }
  5699. }
  5700. }
  5701. }
  5702. }
  5703. }
  5704. } else {
  5705. GGML_ASSERT(false); // TODO: implement
  5706. }
  5707. }
  5708. static void ggml_compute_forward_dup(
  5709. const struct ggml_compute_params * params,
  5710. const struct ggml_tensor * src0,
  5711. struct ggml_tensor * dst) {
  5712. switch (src0->type) {
  5713. case GGML_TYPE_F16:
  5714. {
  5715. ggml_compute_forward_dup_f16(params, src0, dst);
  5716. } break;
  5717. case GGML_TYPE_F32:
  5718. {
  5719. ggml_compute_forward_dup_f32(params, src0, dst);
  5720. } break;
  5721. default:
  5722. {
  5723. GGML_ASSERT(false);
  5724. } break;
  5725. }
  5726. }
  5727. // ggml_compute_forward_add
  5728. static void ggml_compute_forward_add_f32(
  5729. const struct ggml_compute_params * params,
  5730. const struct ggml_tensor * src0,
  5731. const struct ggml_tensor * src1,
  5732. struct ggml_tensor * dst) {
  5733. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5734. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5735. return;
  5736. }
  5737. const int ith = params->ith;
  5738. const int nth = params->nth;
  5739. const int n = ggml_nrows(src0);
  5740. const int nc = src0->ne[0];
  5741. const size_t nb00 = src0->nb[0];
  5742. const size_t nb01 = src0->nb[1];
  5743. const size_t nb10 = src1->nb[0];
  5744. const size_t nb11 = src1->nb[1];
  5745. const size_t nb0 = dst->nb[0];
  5746. const size_t nb1 = dst->nb[1];
  5747. GGML_ASSERT( nb0 == sizeof(float));
  5748. GGML_ASSERT(nb00 == sizeof(float));
  5749. if (nb10 == sizeof(float)) {
  5750. for (int j = ith; j < n; j += nth) {
  5751. #ifdef GGML_USE_ACCELERATE
  5752. vDSP_vadd(
  5753. (float *) ((char *) src0->data + j*nb01), 1,
  5754. (float *) ((char *) src1->data + j*nb11), 1,
  5755. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5756. #else
  5757. ggml_vec_add_f32(nc,
  5758. (float *) ((char *) dst->data + j*nb1),
  5759. (float *) ((char *) src0->data + j*nb01),
  5760. (float *) ((char *) src1->data + j*nb11));
  5761. #endif
  5762. }
  5763. } else {
  5764. // src1 is not contiguous
  5765. for (int j = ith; j < n; j += nth) {
  5766. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5767. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5768. for (int i = 0; i < nc; i++) {
  5769. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5770. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5771. }
  5772. }
  5773. }
  5774. }
  5775. static void ggml_compute_forward_add_f16_f32(
  5776. const struct ggml_compute_params * params,
  5777. const struct ggml_tensor * src0,
  5778. const struct ggml_tensor * src1,
  5779. struct ggml_tensor * dst) {
  5780. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5782. return;
  5783. }
  5784. const int ith = params->ith;
  5785. const int nth = params->nth;
  5786. const int n = ggml_nrows(src0);
  5787. const int nc = src0->ne[0];
  5788. const size_t nb00 = src0->nb[0];
  5789. const size_t nb01 = src0->nb[1];
  5790. const size_t nb10 = src1->nb[0];
  5791. const size_t nb11 = src1->nb[1];
  5792. const size_t nb0 = dst->nb[0];
  5793. const size_t nb1 = dst->nb[1];
  5794. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5795. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5796. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5797. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5798. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5799. if (nb10 == sizeof(float)) {
  5800. for (int j = ith; j < n; j += nth) {
  5801. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5802. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5803. for (int i = 0; i < nc; i++) {
  5804. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5805. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5806. }
  5807. }
  5808. }
  5809. else {
  5810. // src1 is not contiguous
  5811. GGML_ASSERT(false);
  5812. }
  5813. }
  5814. static void ggml_compute_forward_add_f16_f16(
  5815. const struct ggml_compute_params * params,
  5816. const struct ggml_tensor * src0,
  5817. const struct ggml_tensor * src1,
  5818. struct ggml_tensor * dst) {
  5819. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5820. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5821. return;
  5822. }
  5823. const int ith = params->ith;
  5824. const int nth = params->nth;
  5825. const int n = ggml_nrows(src0);
  5826. const int nc = src0->ne[0];
  5827. const size_t nb00 = src0->nb[0];
  5828. const size_t nb01 = src0->nb[1];
  5829. const size_t nb10 = src1->nb[0];
  5830. const size_t nb11 = src1->nb[1];
  5831. const size_t nb0 = dst->nb[0];
  5832. const size_t nb1 = dst->nb[1];
  5833. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5834. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5835. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5836. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5837. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5838. if (nb10 == sizeof(ggml_fp16_t)) {
  5839. for (int j = ith; j < n; j += nth) {
  5840. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5841. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5842. for (int i = 0; i < nc; i++) {
  5843. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5844. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5845. }
  5846. }
  5847. }
  5848. else {
  5849. // src1 is not contiguous
  5850. GGML_ASSERT(false);
  5851. }
  5852. }
  5853. static void ggml_compute_forward_add_q_f32(
  5854. const struct ggml_compute_params * params,
  5855. const struct ggml_tensor * src0,
  5856. const struct ggml_tensor * src1,
  5857. struct ggml_tensor * dst) {
  5858. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5859. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5860. return;
  5861. }
  5862. const int64_t ne00 = src0->ne[0];
  5863. const int64_t ne01 = src0->ne[1];
  5864. const int64_t ne02 = src0->ne[2];
  5865. const int64_t ne03 = src0->ne[3];
  5866. //const int64_t ne10 = src1->ne[0];
  5867. //const int64_t ne11 = src1->ne[1];
  5868. const int64_t ne12 = src1->ne[2];
  5869. const int64_t ne13 = src1->ne[3];
  5870. //const int64_t ne0 = dst->ne[0];
  5871. //const int64_t ne1 = dst->ne[1];
  5872. const int64_t ne2 = dst->ne[2];
  5873. const int64_t ne3 = dst->ne[3];
  5874. const int nb00 = src0->nb[0];
  5875. const int nb01 = src0->nb[1];
  5876. const int nb02 = src0->nb[2];
  5877. const int nb03 = src0->nb[3];
  5878. const int nb10 = src1->nb[0];
  5879. const int nb11 = src1->nb[1];
  5880. const int nb12 = src1->nb[2];
  5881. const int nb13 = src1->nb[3];
  5882. const int nb0 = dst->nb[0];
  5883. const int nb1 = dst->nb[1];
  5884. const int nb2 = dst->nb[2];
  5885. const int nb3 = dst->nb[3];
  5886. const int ith = params->ith;
  5887. const int nth = params->nth;
  5888. GGML_ASSERT(ne02 == ne12);
  5889. GGML_ASSERT(ne03 == ne13);
  5890. GGML_ASSERT(ne2 == ne12);
  5891. GGML_ASSERT(ne3 == ne13);
  5892. const enum ggml_type type = src0->type;
  5893. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5894. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5895. // we don't support permuted src0 or src1
  5896. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5897. GGML_ASSERT(nb10 == sizeof(float));
  5898. // dst cannot be transposed or permuted
  5899. GGML_ASSERT(nb0 <= nb1);
  5900. GGML_ASSERT(nb1 <= nb2);
  5901. GGML_ASSERT(nb2 <= nb3);
  5902. GGML_ASSERT(ggml_is_quantized(src0->type));
  5903. GGML_ASSERT(dst->type == src0->type);
  5904. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5905. // total rows in src0
  5906. const int nr = ne01*ne02*ne03;
  5907. // rows per thread
  5908. const int dr = (nr + nth - 1)/nth;
  5909. // row range for this thread
  5910. const int ir0 = dr*ith;
  5911. const int ir1 = MIN(ir0 + dr, nr);
  5912. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5913. for (int ir = ir0; ir < ir1; ++ir) {
  5914. // src0 indices
  5915. const int i03 = ir/(ne02*ne01);
  5916. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5917. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5918. // src1 and dst are same shape as src0 => same indices
  5919. const int i13 = i03;
  5920. const int i12 = i02;
  5921. const int i11 = i01;
  5922. const int i3 = i03;
  5923. const int i2 = i02;
  5924. const int i1 = i01;
  5925. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5926. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5927. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5928. assert(ne00 % 32 == 0);
  5929. // unquantize row from src0 to temp buffer
  5930. dequantize_row_q(src0_row, wdata, ne00);
  5931. // add src1
  5932. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5933. // quantize row to dst
  5934. quantize_row_q(wdata, dst_row, ne00);
  5935. }
  5936. }
  5937. static void ggml_compute_forward_add(
  5938. const struct ggml_compute_params * params,
  5939. const struct ggml_tensor * src0,
  5940. const struct ggml_tensor * src1,
  5941. struct ggml_tensor * dst) {
  5942. switch (src0->type) {
  5943. case GGML_TYPE_F32:
  5944. {
  5945. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5946. } break;
  5947. case GGML_TYPE_F16:
  5948. {
  5949. if (src1->type == GGML_TYPE_F16) {
  5950. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5951. }
  5952. else if (src1->type == GGML_TYPE_F32) {
  5953. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5954. }
  5955. else {
  5956. GGML_ASSERT(false);
  5957. }
  5958. } break;
  5959. case GGML_TYPE_Q4_0:
  5960. case GGML_TYPE_Q4_1:
  5961. case GGML_TYPE_Q4_2:
  5962. case GGML_TYPE_Q5_0:
  5963. case GGML_TYPE_Q5_1:
  5964. case GGML_TYPE_Q8_0:
  5965. {
  5966. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5967. } break;
  5968. default:
  5969. {
  5970. GGML_ASSERT(false);
  5971. } break;
  5972. }
  5973. }
  5974. // ggml_compute_forward_sub
  5975. static void ggml_compute_forward_sub_f32(
  5976. const struct ggml_compute_params * params,
  5977. const struct ggml_tensor * src0,
  5978. const struct ggml_tensor * src1,
  5979. struct ggml_tensor * dst) {
  5980. assert(params->ith == 0);
  5981. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5982. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5983. return;
  5984. }
  5985. const int n = ggml_nrows(src0);
  5986. const int nc = src0->ne[0];
  5987. assert( dst->nb[0] == sizeof(float));
  5988. assert(src0->nb[0] == sizeof(float));
  5989. assert(src1->nb[0] == sizeof(float));
  5990. for (int i = 0; i < n; i++) {
  5991. ggml_vec_sub_f32(nc,
  5992. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5993. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5994. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5995. }
  5996. }
  5997. static void ggml_compute_forward_sub(
  5998. const struct ggml_compute_params * params,
  5999. const struct ggml_tensor * src0,
  6000. const struct ggml_tensor * src1,
  6001. struct ggml_tensor * dst) {
  6002. switch (src0->type) {
  6003. case GGML_TYPE_F32:
  6004. {
  6005. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6006. } break;
  6007. default:
  6008. {
  6009. GGML_ASSERT(false);
  6010. } break;
  6011. }
  6012. }
  6013. // ggml_compute_forward_mul
  6014. static void ggml_compute_forward_mul_f32(
  6015. const struct ggml_compute_params * params,
  6016. const struct ggml_tensor * src0,
  6017. const struct ggml_tensor * src1,
  6018. struct ggml_tensor * dst) {
  6019. assert(params->ith == 0);
  6020. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6021. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6022. return;
  6023. }
  6024. const int n = ggml_nrows(src0);
  6025. const int nc = src0->ne[0];
  6026. assert( dst->nb[0] == sizeof(float));
  6027. assert(src0->nb[0] == sizeof(float));
  6028. assert(src1->nb[0] == sizeof(float));
  6029. for (int i = 0; i < n; i++) {
  6030. ggml_vec_mul_f32(nc,
  6031. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6032. (float *) ((char *) src0->data + i*(src0->nb[1])),
  6033. (float *) ((char *) src1->data + i*(src1->nb[1])));
  6034. }
  6035. }
  6036. static void ggml_compute_forward_mul(
  6037. const struct ggml_compute_params * params,
  6038. const struct ggml_tensor * src0,
  6039. const struct ggml_tensor * src1,
  6040. struct ggml_tensor * dst) {
  6041. switch (src0->type) {
  6042. case GGML_TYPE_F32:
  6043. {
  6044. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6045. } break;
  6046. default:
  6047. {
  6048. GGML_ASSERT(false);
  6049. } break;
  6050. }
  6051. }
  6052. // ggml_compute_forward_div
  6053. static void ggml_compute_forward_div_f32(
  6054. const struct ggml_compute_params * params,
  6055. const struct ggml_tensor * src0,
  6056. const struct ggml_tensor * src1,
  6057. struct ggml_tensor * dst) {
  6058. assert(params->ith == 0);
  6059. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6061. return;
  6062. }
  6063. const int n = ggml_nrows(src0);
  6064. const int nc = src0->ne[0];
  6065. assert( dst->nb[0] == sizeof(float));
  6066. assert(src0->nb[0] == sizeof(float));
  6067. assert(src1->nb[0] == sizeof(float));
  6068. for (int i = 0; i < n; i++) {
  6069. ggml_vec_div_f32(nc,
  6070. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6071. (float *) ((char *) src0->data + i*(src0->nb[1])),
  6072. (float *) ((char *) src1->data + i*(src1->nb[1])));
  6073. }
  6074. }
  6075. static void ggml_compute_forward_div(
  6076. const struct ggml_compute_params * params,
  6077. const struct ggml_tensor * src0,
  6078. const struct ggml_tensor * src1,
  6079. struct ggml_tensor * dst) {
  6080. switch (src0->type) {
  6081. case GGML_TYPE_F32:
  6082. {
  6083. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6084. } break;
  6085. default:
  6086. {
  6087. GGML_ASSERT(false);
  6088. } break;
  6089. }
  6090. }
  6091. // ggml_compute_forward_sqr
  6092. static void ggml_compute_forward_sqr_f32(
  6093. const struct ggml_compute_params * params,
  6094. const struct ggml_tensor * src0,
  6095. struct ggml_tensor * dst) {
  6096. assert(params->ith == 0);
  6097. assert(ggml_are_same_shape(src0, dst));
  6098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6099. return;
  6100. }
  6101. const int n = ggml_nrows(src0);
  6102. const int nc = src0->ne[0];
  6103. assert( dst->nb[0] == sizeof(float));
  6104. assert(src0->nb[0] == sizeof(float));
  6105. for (int i = 0; i < n; i++) {
  6106. ggml_vec_sqr_f32(nc,
  6107. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6108. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6109. }
  6110. }
  6111. static void ggml_compute_forward_sqr(
  6112. const struct ggml_compute_params * params,
  6113. const struct ggml_tensor * src0,
  6114. struct ggml_tensor * dst) {
  6115. switch (src0->type) {
  6116. case GGML_TYPE_F32:
  6117. {
  6118. ggml_compute_forward_sqr_f32(params, src0, dst);
  6119. } break;
  6120. default:
  6121. {
  6122. GGML_ASSERT(false);
  6123. } break;
  6124. }
  6125. }
  6126. // ggml_compute_forward_sqrt
  6127. static void ggml_compute_forward_sqrt_f32(
  6128. const struct ggml_compute_params * params,
  6129. const struct ggml_tensor * src0,
  6130. struct ggml_tensor * dst) {
  6131. assert(params->ith == 0);
  6132. assert(ggml_are_same_shape(src0, dst));
  6133. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6134. return;
  6135. }
  6136. const int n = ggml_nrows(src0);
  6137. const int nc = src0->ne[0];
  6138. assert( dst->nb[0] == sizeof(float));
  6139. assert(src0->nb[0] == sizeof(float));
  6140. for (int i = 0; i < n; i++) {
  6141. ggml_vec_sqrt_f32(nc,
  6142. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6143. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6144. }
  6145. }
  6146. static void ggml_compute_forward_sqrt(
  6147. const struct ggml_compute_params * params,
  6148. const struct ggml_tensor * src0,
  6149. struct ggml_tensor * dst) {
  6150. switch (src0->type) {
  6151. case GGML_TYPE_F32:
  6152. {
  6153. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6154. } break;
  6155. default:
  6156. {
  6157. GGML_ASSERT(false);
  6158. } break;
  6159. }
  6160. }
  6161. // ggml_compute_forward_sum
  6162. static void ggml_compute_forward_sum_f32(
  6163. const struct ggml_compute_params * params,
  6164. const struct ggml_tensor * src0,
  6165. struct ggml_tensor * dst) {
  6166. assert(params->ith == 0);
  6167. assert(ggml_is_scalar(dst));
  6168. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6169. return;
  6170. }
  6171. assert(ggml_is_scalar(dst));
  6172. assert(src0->nb[0] == sizeof(float));
  6173. const int64_t ne00 = src0->ne[0];
  6174. const int64_t ne01 = src0->ne[1];
  6175. const int64_t ne02 = src0->ne[2];
  6176. const int64_t ne03 = src0->ne[3];
  6177. const size_t nb01 = src0->nb[1];
  6178. const size_t nb02 = src0->nb[2];
  6179. const size_t nb03 = src0->nb[3];
  6180. ggml_float sum = 0;
  6181. ggml_float row_sum = 0;
  6182. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6183. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6184. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6185. ggml_vec_sum_ggf(ne00,
  6186. &row_sum,
  6187. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6188. sum += row_sum;
  6189. }
  6190. }
  6191. }
  6192. ((float *) dst->data)[0] = sum;
  6193. }
  6194. static void ggml_compute_forward_sum(
  6195. const struct ggml_compute_params * params,
  6196. const struct ggml_tensor * src0,
  6197. struct ggml_tensor * dst) {
  6198. switch (src0->type) {
  6199. case GGML_TYPE_F32:
  6200. {
  6201. ggml_compute_forward_sum_f32(params, src0, dst);
  6202. } break;
  6203. default:
  6204. {
  6205. GGML_ASSERT(false);
  6206. } break;
  6207. }
  6208. }
  6209. // ggml_compute_forward_mean
  6210. static void ggml_compute_forward_mean_f32(
  6211. const struct ggml_compute_params * params,
  6212. const struct ggml_tensor * src0,
  6213. struct ggml_tensor * dst) {
  6214. assert(params->ith == 0);
  6215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6216. return;
  6217. }
  6218. assert(src0->nb[0] == sizeof(float));
  6219. const int64_t ne00 = src0->ne[0];
  6220. const int64_t ne01 = src0->ne[1];
  6221. const int64_t ne02 = src0->ne[2];
  6222. const int64_t ne03 = src0->ne[3];
  6223. const size_t nb01 = src0->nb[1];
  6224. const size_t nb02 = src0->nb[2];
  6225. const size_t nb03 = src0->nb[3];
  6226. const int64_t ne0 = dst->ne[0];
  6227. const int64_t ne1 = dst->ne[1];
  6228. const int64_t ne2 = dst->ne[2];
  6229. const int64_t ne3 = dst->ne[3];
  6230. assert(ne0 == 1);
  6231. assert(ne1 == ne01);
  6232. assert(ne2 == ne02);
  6233. assert(ne3 == ne03);
  6234. UNUSED(ne0);
  6235. UNUSED(ne1);
  6236. UNUSED(ne2);
  6237. UNUSED(ne3);
  6238. const size_t nb1 = dst->nb[1];
  6239. const size_t nb2 = dst->nb[2];
  6240. const size_t nb3 = dst->nb[3];
  6241. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6242. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6243. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6244. ggml_vec_sum_f32(ne00,
  6245. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6246. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6247. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6248. }
  6249. }
  6250. }
  6251. }
  6252. static void ggml_compute_forward_mean(
  6253. const struct ggml_compute_params * params,
  6254. const struct ggml_tensor * src0,
  6255. struct ggml_tensor * dst) {
  6256. switch (src0->type) {
  6257. case GGML_TYPE_F32:
  6258. {
  6259. ggml_compute_forward_mean_f32(params, src0, dst);
  6260. } break;
  6261. default:
  6262. {
  6263. GGML_ASSERT(false);
  6264. } break;
  6265. }
  6266. }
  6267. // ggml_compute_forward_repeat
  6268. static void ggml_compute_forward_repeat_f32(
  6269. const struct ggml_compute_params * params,
  6270. const struct ggml_tensor * src0,
  6271. struct ggml_tensor * dst) {
  6272. assert(params->ith == 0);
  6273. assert(ggml_can_repeat(src0, dst));
  6274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6275. return;
  6276. }
  6277. // TODO: implement support for rank > 2 tensors
  6278. assert(src0->ne[2] == 1);
  6279. assert(src0->ne[3] == 1);
  6280. assert( dst->ne[2] == 1);
  6281. assert( dst->ne[3] == 1);
  6282. const int nc = dst->ne[0];
  6283. const int nr = dst->ne[1];
  6284. const int nc0 = src0->ne[0];
  6285. const int nr0 = src0->ne[1];
  6286. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6287. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6288. // TODO: support for transposed / permuted tensors
  6289. assert( dst->nb[0] == sizeof(float));
  6290. assert(src0->nb[0] == sizeof(float));
  6291. // TODO: maybe this is not optimal?
  6292. for (int i = 0; i < nrr; i++) {
  6293. for (int j = 0; j < ncr; j++) {
  6294. for (int k = 0; k < nr0; k++) {
  6295. ggml_vec_cpy_f32(nc0,
  6296. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6297. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6298. }
  6299. }
  6300. }
  6301. }
  6302. static void ggml_compute_forward_repeat(
  6303. const struct ggml_compute_params * params,
  6304. const struct ggml_tensor * src0,
  6305. struct ggml_tensor * dst) {
  6306. switch (src0->type) {
  6307. case GGML_TYPE_F32:
  6308. {
  6309. ggml_compute_forward_repeat_f32(params, src0, dst);
  6310. } break;
  6311. default:
  6312. {
  6313. GGML_ASSERT(false);
  6314. } break;
  6315. }
  6316. }
  6317. // ggml_compute_forward_abs
  6318. static void ggml_compute_forward_abs_f32(
  6319. const struct ggml_compute_params * params,
  6320. const struct ggml_tensor * src0,
  6321. struct ggml_tensor * dst) {
  6322. assert(params->ith == 0);
  6323. assert(ggml_are_same_shape(src0, dst));
  6324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6325. return;
  6326. }
  6327. const int n = ggml_nrows(src0);
  6328. const int nc = src0->ne[0];
  6329. assert(dst->nb[0] == sizeof(float));
  6330. assert(src0->nb[0] == sizeof(float));
  6331. for (int i = 0; i < n; i++) {
  6332. ggml_vec_abs_f32(nc,
  6333. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6334. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6335. }
  6336. }
  6337. static void ggml_compute_forward_abs(
  6338. const struct ggml_compute_params * params,
  6339. const struct ggml_tensor * src0,
  6340. struct ggml_tensor * dst) {
  6341. switch (src0->type) {
  6342. case GGML_TYPE_F32:
  6343. {
  6344. ggml_compute_forward_abs_f32(params, src0, dst);
  6345. } break;
  6346. default:
  6347. {
  6348. GGML_ASSERT(false);
  6349. } break;
  6350. }
  6351. }
  6352. // ggml_compute_forward_sgn
  6353. static void ggml_compute_forward_sgn_f32(
  6354. const struct ggml_compute_params * params,
  6355. const struct ggml_tensor * src0,
  6356. struct ggml_tensor * dst) {
  6357. assert(params->ith == 0);
  6358. assert(ggml_are_same_shape(src0, dst));
  6359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6360. return;
  6361. }
  6362. const int n = ggml_nrows(src0);
  6363. const int nc = src0->ne[0];
  6364. assert(dst->nb[0] == sizeof(float));
  6365. assert(src0->nb[0] == sizeof(float));
  6366. for (int i = 0; i < n; i++) {
  6367. ggml_vec_sgn_f32(nc,
  6368. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6369. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6370. }
  6371. }
  6372. static void ggml_compute_forward_sgn(
  6373. const struct ggml_compute_params * params,
  6374. const struct ggml_tensor * src0,
  6375. struct ggml_tensor * dst) {
  6376. switch (src0->type) {
  6377. case GGML_TYPE_F32:
  6378. {
  6379. ggml_compute_forward_sgn_f32(params, src0, dst);
  6380. } break;
  6381. default:
  6382. {
  6383. GGML_ASSERT(false);
  6384. } break;
  6385. }
  6386. }
  6387. // ggml_compute_forward_neg
  6388. static void ggml_compute_forward_neg_f32(
  6389. const struct ggml_compute_params * params,
  6390. const struct ggml_tensor * src0,
  6391. struct ggml_tensor * dst) {
  6392. assert(params->ith == 0);
  6393. assert(ggml_are_same_shape(src0, dst));
  6394. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6395. return;
  6396. }
  6397. const int n = ggml_nrows(src0);
  6398. const int nc = src0->ne[0];
  6399. assert(dst->nb[0] == sizeof(float));
  6400. assert(src0->nb[0] == sizeof(float));
  6401. for (int i = 0; i < n; i++) {
  6402. ggml_vec_neg_f32(nc,
  6403. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6404. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6405. }
  6406. }
  6407. static void ggml_compute_forward_neg(
  6408. const struct ggml_compute_params * params,
  6409. const struct ggml_tensor * src0,
  6410. struct ggml_tensor * dst) {
  6411. switch (src0->type) {
  6412. case GGML_TYPE_F32:
  6413. {
  6414. ggml_compute_forward_neg_f32(params, src0, dst);
  6415. } break;
  6416. default:
  6417. {
  6418. GGML_ASSERT(false);
  6419. } break;
  6420. }
  6421. }
  6422. // ggml_compute_forward_step
  6423. static void ggml_compute_forward_step_f32(
  6424. const struct ggml_compute_params * params,
  6425. const struct ggml_tensor * src0,
  6426. struct ggml_tensor * dst) {
  6427. assert(params->ith == 0);
  6428. assert(ggml_are_same_shape(src0, dst));
  6429. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6430. return;
  6431. }
  6432. const int n = ggml_nrows(src0);
  6433. const int nc = src0->ne[0];
  6434. assert(dst->nb[0] == sizeof(float));
  6435. assert(src0->nb[0] == sizeof(float));
  6436. for (int i = 0; i < n; i++) {
  6437. ggml_vec_step_f32(nc,
  6438. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6439. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6440. }
  6441. }
  6442. static void ggml_compute_forward_step(
  6443. const struct ggml_compute_params * params,
  6444. const struct ggml_tensor * src0,
  6445. struct ggml_tensor * dst) {
  6446. switch (src0->type) {
  6447. case GGML_TYPE_F32:
  6448. {
  6449. ggml_compute_forward_step_f32(params, src0, dst);
  6450. } break;
  6451. default:
  6452. {
  6453. GGML_ASSERT(false);
  6454. } break;
  6455. }
  6456. }
  6457. // ggml_compute_forward_relu
  6458. static void ggml_compute_forward_relu_f32(
  6459. const struct ggml_compute_params * params,
  6460. const struct ggml_tensor * src0,
  6461. struct ggml_tensor * dst) {
  6462. assert(params->ith == 0);
  6463. assert(ggml_are_same_shape(src0, dst));
  6464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6465. return;
  6466. }
  6467. const int n = ggml_nrows(src0);
  6468. const int nc = src0->ne[0];
  6469. assert(dst->nb[0] == sizeof(float));
  6470. assert(src0->nb[0] == sizeof(float));
  6471. for (int i = 0; i < n; i++) {
  6472. ggml_vec_relu_f32(nc,
  6473. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6474. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6475. }
  6476. }
  6477. static void ggml_compute_forward_relu(
  6478. const struct ggml_compute_params * params,
  6479. const struct ggml_tensor * src0,
  6480. struct ggml_tensor * dst) {
  6481. switch (src0->type) {
  6482. case GGML_TYPE_F32:
  6483. {
  6484. ggml_compute_forward_relu_f32(params, src0, dst);
  6485. } break;
  6486. default:
  6487. {
  6488. GGML_ASSERT(false);
  6489. } break;
  6490. }
  6491. }
  6492. // ggml_compute_forward_gelu
  6493. static void ggml_compute_forward_gelu_f32(
  6494. const struct ggml_compute_params * params,
  6495. const struct ggml_tensor * src0,
  6496. struct ggml_tensor * dst) {
  6497. GGML_ASSERT(ggml_is_contiguous(src0));
  6498. GGML_ASSERT(ggml_is_contiguous(dst));
  6499. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6500. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6501. return;
  6502. }
  6503. const int ith = params->ith;
  6504. const int nth = params->nth;
  6505. const int nc = src0->ne[0];
  6506. const int nr = ggml_nrows(src0);
  6507. // rows per thread
  6508. const int dr = (nr + nth - 1)/nth;
  6509. // row range for this thread
  6510. const int ir0 = dr*ith;
  6511. const int ir1 = MIN(ir0 + dr, nr);
  6512. for (int i1 = ir0; i1 < ir1; i1++) {
  6513. ggml_vec_gelu_f32(nc,
  6514. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6515. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6516. #ifndef NDEBUG
  6517. for (int k = 0; k < nc; k++) {
  6518. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6519. UNUSED(x);
  6520. assert(!isnan(x));
  6521. assert(!isinf(x));
  6522. }
  6523. #endif
  6524. }
  6525. }
  6526. static void ggml_compute_forward_gelu(
  6527. const struct ggml_compute_params * params,
  6528. const struct ggml_tensor * src0,
  6529. struct ggml_tensor * dst) {
  6530. switch (src0->type) {
  6531. case GGML_TYPE_F32:
  6532. {
  6533. ggml_compute_forward_gelu_f32(params, src0, dst);
  6534. } break;
  6535. default:
  6536. {
  6537. GGML_ASSERT(false);
  6538. } break;
  6539. }
  6540. //printf("XXXXXXXX gelu\n");
  6541. }
  6542. // ggml_compute_forward_silu
  6543. static void ggml_compute_forward_silu_f32(
  6544. const struct ggml_compute_params * params,
  6545. const struct ggml_tensor * src0,
  6546. struct ggml_tensor * dst) {
  6547. GGML_ASSERT(ggml_is_contiguous(src0));
  6548. GGML_ASSERT(ggml_is_contiguous(dst));
  6549. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6550. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6551. return;
  6552. }
  6553. const int ith = params->ith;
  6554. const int nth = params->nth;
  6555. const int nc = src0->ne[0];
  6556. const int nr = ggml_nrows(src0);
  6557. // rows per thread
  6558. const int dr = (nr + nth - 1)/nth;
  6559. // row range for this thread
  6560. const int ir0 = dr*ith;
  6561. const int ir1 = MIN(ir0 + dr, nr);
  6562. for (int i1 = ir0; i1 < ir1; i1++) {
  6563. ggml_vec_silu_f32(nc,
  6564. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6565. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6566. #ifndef NDEBUG
  6567. for (int k = 0; k < nc; k++) {
  6568. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6569. UNUSED(x);
  6570. assert(!isnan(x));
  6571. assert(!isinf(x));
  6572. }
  6573. #endif
  6574. }
  6575. }
  6576. static void ggml_compute_forward_silu(
  6577. const struct ggml_compute_params * params,
  6578. const struct ggml_tensor * src0,
  6579. struct ggml_tensor * dst) {
  6580. switch (src0->type) {
  6581. case GGML_TYPE_F32:
  6582. {
  6583. ggml_compute_forward_silu_f32(params, src0, dst);
  6584. } break;
  6585. default:
  6586. {
  6587. GGML_ASSERT(false);
  6588. } break;
  6589. }
  6590. }
  6591. // ggml_compute_forward_norm
  6592. static void ggml_compute_forward_norm_f32(
  6593. const struct ggml_compute_params * params,
  6594. const struct ggml_tensor * src0,
  6595. struct ggml_tensor * dst) {
  6596. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6597. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6598. return;
  6599. }
  6600. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6601. const int ith = params->ith;
  6602. const int nth = params->nth;
  6603. const int64_t ne00 = src0->ne[0];
  6604. const int64_t ne01 = src0->ne[1];
  6605. const int64_t ne02 = src0->ne[2];
  6606. const int64_t ne03 = src0->ne[3];
  6607. const size_t nb01 = src0->nb[1];
  6608. const size_t nb02 = src0->nb[2];
  6609. const size_t nb03 = src0->nb[3];
  6610. const size_t nb1 = dst->nb[1];
  6611. const size_t nb2 = dst->nb[2];
  6612. const size_t nb3 = dst->nb[3];
  6613. const float eps = 1e-5f; // TODO: make this a parameter
  6614. // TODO: optimize
  6615. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6616. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6617. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6618. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6619. ggml_float sum = 0.0;
  6620. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6621. sum += (ggml_float)x[i00];
  6622. }
  6623. float mean = sum/ne00;
  6624. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6625. ggml_float sum2 = 0.0;
  6626. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6627. float v = x[i00] - mean;
  6628. y[i00] = v;
  6629. sum2 += (ggml_float)(v*v);
  6630. }
  6631. float variance = sum2/ne00;
  6632. const float scale = 1.0f/sqrtf(variance + eps);
  6633. ggml_vec_scale_f32(ne00, y, scale);
  6634. }
  6635. }
  6636. }
  6637. }
  6638. static void ggml_compute_forward_norm(
  6639. const struct ggml_compute_params * params,
  6640. const struct ggml_tensor * src0,
  6641. struct ggml_tensor * dst) {
  6642. switch (src0->type) {
  6643. case GGML_TYPE_F32:
  6644. {
  6645. ggml_compute_forward_norm_f32(params, src0, dst);
  6646. } break;
  6647. default:
  6648. {
  6649. GGML_ASSERT(false);
  6650. } break;
  6651. }
  6652. }
  6653. static void ggml_compute_forward_rms_norm_f32(
  6654. const struct ggml_compute_params * params,
  6655. const struct ggml_tensor * src0,
  6656. struct ggml_tensor * dst) {
  6657. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6658. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6659. return;
  6660. }
  6661. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6662. const int ith = params->ith;
  6663. const int nth = params->nth;
  6664. const int64_t ne00 = src0->ne[0];
  6665. const int64_t ne01 = src0->ne[1];
  6666. const int64_t ne02 = src0->ne[2];
  6667. const int64_t ne03 = src0->ne[3];
  6668. const size_t nb01 = src0->nb[1];
  6669. const size_t nb02 = src0->nb[2];
  6670. const size_t nb03 = src0->nb[3];
  6671. const size_t nb1 = dst->nb[1];
  6672. const size_t nb2 = dst->nb[2];
  6673. const size_t nb3 = dst->nb[3];
  6674. const float eps = 1e-6f; // TODO: make this a parameter
  6675. // TODO: optimize
  6676. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6677. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6678. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6679. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6680. ggml_float sum = 0.0;
  6681. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6682. sum += (ggml_float)(x[i00] * x[i00]);
  6683. }
  6684. float mean = sum/ne00;
  6685. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6686. memcpy(y, x, ne00 * sizeof(float));
  6687. // for (int i00 = 0; i00 < ne00; i00++) {
  6688. // y[i00] = x[i00];
  6689. // }
  6690. const float scale = 1.0f/sqrtf(mean + eps);
  6691. ggml_vec_scale_f32(ne00, y, scale);
  6692. }
  6693. }
  6694. }
  6695. }
  6696. static void ggml_compute_forward_rms_norm(
  6697. const struct ggml_compute_params * params,
  6698. const struct ggml_tensor * src0,
  6699. struct ggml_tensor * dst) {
  6700. switch (src0->type) {
  6701. case GGML_TYPE_F32:
  6702. {
  6703. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6704. } break;
  6705. default:
  6706. {
  6707. GGML_ASSERT(false);
  6708. } break;
  6709. }
  6710. }
  6711. // ggml_compute_forward_mul_mat
  6712. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6713. // helper function to determine if it is better to use BLAS or not
  6714. // for large matrices, BLAS is faster
  6715. static bool ggml_compute_forward_mul_mat_use_blas(
  6716. const struct ggml_tensor * src0,
  6717. const struct ggml_tensor * src1,
  6718. struct ggml_tensor * dst) {
  6719. //const int64_t ne00 = src0->ne[0];
  6720. //const int64_t ne01 = src0->ne[1];
  6721. const int64_t ne10 = src1->ne[0];
  6722. const int64_t ne0 = dst->ne[0];
  6723. const int64_t ne1 = dst->ne[1];
  6724. // TODO: find the optimal values for these
  6725. if (ggml_is_contiguous(src0) &&
  6726. ggml_is_contiguous(src1) &&
  6727. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  6728. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6729. return true;
  6730. }
  6731. return false;
  6732. }
  6733. #endif
  6734. static void ggml_compute_forward_mul_mat_f32(
  6735. const struct ggml_compute_params * params,
  6736. const struct ggml_tensor * src0,
  6737. const struct ggml_tensor * src1,
  6738. struct ggml_tensor * dst) {
  6739. int64_t t0 = ggml_perf_time_us();
  6740. UNUSED(t0);
  6741. const int64_t ne00 = src0->ne[0];
  6742. const int64_t ne01 = src0->ne[1];
  6743. const int64_t ne02 = src0->ne[2];
  6744. const int64_t ne03 = src0->ne[3];
  6745. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6746. const int64_t ne10 = src1->ne[0];
  6747. #endif
  6748. const int64_t ne11 = src1->ne[1];
  6749. #ifndef NDEBUG
  6750. const int64_t ne12 = src1->ne[2];
  6751. const int64_t ne13 = src1->ne[3];
  6752. const int64_t ne0 = dst->ne[0];
  6753. const int64_t ne1 = dst->ne[1];
  6754. const int64_t ne2 = dst->ne[2];
  6755. const int64_t ne3 = dst->ne[3];
  6756. const int nb00 = src0->nb[0];
  6757. #endif
  6758. const int nb01 = src0->nb[1];
  6759. const int nb02 = src0->nb[2];
  6760. const int nb03 = src0->nb[3];
  6761. #ifndef NDEBUG
  6762. const int nb10 = src1->nb[0];
  6763. #endif
  6764. const int nb11 = src1->nb[1];
  6765. const int nb12 = src1->nb[2];
  6766. const int nb13 = src1->nb[3];
  6767. const int nb0 = dst->nb[0];
  6768. const int nb1 = dst->nb[1];
  6769. const int nb2 = dst->nb[2];
  6770. const int nb3 = dst->nb[3];
  6771. const int ith = params->ith;
  6772. const int nth = params->nth;
  6773. assert(ne02 == ne12);
  6774. assert(ne03 == ne13);
  6775. assert(ne2 == ne12);
  6776. assert(ne3 == ne13);
  6777. // we don't support permuted src0 or src1
  6778. assert(nb00 == sizeof(float));
  6779. assert(nb10 == sizeof(float));
  6780. // dst cannot be transposed or permuted
  6781. assert(nb0 == sizeof(float));
  6782. assert(nb0 <= nb1);
  6783. assert(nb1 <= nb2);
  6784. assert(nb2 <= nb3);
  6785. assert(ne0 == ne01);
  6786. assert(ne1 == ne11);
  6787. assert(ne2 == ne02);
  6788. assert(ne3 == ne03);
  6789. // nb01 >= nb00 - src0 is not transposed
  6790. // compute by src0 rows
  6791. #if defined(GGML_USE_CUBLAS)
  6792. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6793. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6794. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6795. }
  6796. return;
  6797. }
  6798. #endif
  6799. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6800. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6801. if (params->ith != 0) {
  6802. return;
  6803. }
  6804. if (params->type == GGML_TASK_INIT) {
  6805. return;
  6806. }
  6807. if (params->type == GGML_TASK_FINALIZE) {
  6808. return;
  6809. }
  6810. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6811. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6812. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6813. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6814. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6815. #if defined(GGML_USE_CLBLAST)
  6816. // zT = y * xT
  6817. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6818. ne11, ne01, ne10,
  6819. 1.0f, y, ne10,
  6820. x, ne10,
  6821. 0.0f, d, ne01,
  6822. GGML_TYPE_F32);
  6823. #else
  6824. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6825. ne11, ne01, ne10,
  6826. 1.0f, y, ne10,
  6827. x, ne00,
  6828. 0.0f, d, ne01);
  6829. #endif
  6830. }
  6831. }
  6832. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6833. return;
  6834. }
  6835. #endif
  6836. if (params->type == GGML_TASK_INIT) {
  6837. return;
  6838. }
  6839. if (params->type == GGML_TASK_FINALIZE) {
  6840. return;
  6841. }
  6842. // parallelize by src0 rows using ggml_vec_dot_f32
  6843. // total rows in src0
  6844. const int nr = ne01*ne02*ne03;
  6845. // rows per thread
  6846. const int dr = (nr + nth - 1)/nth;
  6847. // row range for this thread
  6848. const int ir0 = dr*ith;
  6849. const int ir1 = MIN(ir0 + dr, nr);
  6850. for (int ir = ir0; ir < ir1; ++ir) {
  6851. // src0 indices
  6852. const int i03 = ir/(ne02*ne01);
  6853. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6854. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6855. for (int64_t ic = 0; ic < ne11; ++ic) {
  6856. // src1 indices
  6857. const int i13 = i03;
  6858. const int i12 = i02;
  6859. const int i11 = ic;
  6860. // dst indices
  6861. const int i0 = i01;
  6862. const int i1 = i11;
  6863. const int i2 = i02;
  6864. const int i3 = i03;
  6865. ggml_vec_dot_f32(ne00,
  6866. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6867. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6868. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6869. }
  6870. }
  6871. //int64_t t1 = ggml_perf_time_us();
  6872. //static int64_t acc = 0;
  6873. //acc += t1 - t0;
  6874. //if (t1 - t0 > 10) {
  6875. // printf("\n");
  6876. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6877. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6878. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6879. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6880. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6881. //}
  6882. }
  6883. static void ggml_compute_forward_mul_mat_f16_f32(
  6884. const struct ggml_compute_params * params,
  6885. const struct ggml_tensor * src0,
  6886. const struct ggml_tensor * src1,
  6887. struct ggml_tensor * dst) {
  6888. int64_t t0 = ggml_perf_time_us();
  6889. UNUSED(t0);
  6890. const int64_t ne00 = src0->ne[0];
  6891. const int64_t ne01 = src0->ne[1];
  6892. const int64_t ne02 = src0->ne[2];
  6893. const int64_t ne03 = src0->ne[3];
  6894. const int64_t ne10 = src1->ne[0];
  6895. const int64_t ne11 = src1->ne[1];
  6896. const int64_t ne12 = src1->ne[2];
  6897. const int64_t ne13 = src1->ne[3];
  6898. const int64_t ne0 = dst->ne[0];
  6899. const int64_t ne1 = dst->ne[1];
  6900. const int64_t ne2 = dst->ne[2];
  6901. const int64_t ne3 = dst->ne[3];
  6902. //const int64_t ne = ne0*ne1*ne2*ne3;
  6903. const int nb00 = src0->nb[0];
  6904. const int nb01 = src0->nb[1];
  6905. const int nb02 = src0->nb[2];
  6906. const int nb03 = src0->nb[3];
  6907. const int nb10 = src1->nb[0];
  6908. const int nb11 = src1->nb[1];
  6909. const int nb12 = src1->nb[2];
  6910. const int nb13 = src1->nb[3];
  6911. const int nb0 = dst->nb[0];
  6912. const int nb1 = dst->nb[1];
  6913. const int nb2 = dst->nb[2];
  6914. const int nb3 = dst->nb[3];
  6915. const int ith = params->ith;
  6916. const int nth = params->nth;
  6917. GGML_ASSERT(ne02 == ne12);
  6918. GGML_ASSERT(ne03 == ne13);
  6919. GGML_ASSERT(ne2 == ne12);
  6920. GGML_ASSERT(ne3 == ne13);
  6921. // TODO: we don't support permuted src0
  6922. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6923. // dst cannot be transposed or permuted
  6924. GGML_ASSERT(nb0 == sizeof(float));
  6925. GGML_ASSERT(nb0 <= nb1);
  6926. GGML_ASSERT(nb1 <= nb2);
  6927. GGML_ASSERT(nb2 <= nb3);
  6928. GGML_ASSERT(ne0 == ne01);
  6929. GGML_ASSERT(ne1 == ne11);
  6930. GGML_ASSERT(ne2 == ne02);
  6931. GGML_ASSERT(ne3 == ne03);
  6932. // nb01 >= nb00 - src0 is not transposed
  6933. // compute by src0 rows
  6934. #if defined(GGML_USE_CUBLAS)
  6935. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6936. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6937. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6938. }
  6939. return;
  6940. }
  6941. #endif
  6942. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6943. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6944. GGML_ASSERT(nb10 == sizeof(float));
  6945. if (params->ith != 0) {
  6946. return;
  6947. }
  6948. if (params->type == GGML_TASK_INIT) {
  6949. return;
  6950. }
  6951. if (params->type == GGML_TASK_FINALIZE) {
  6952. return;
  6953. }
  6954. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6955. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6956. float * const wdata = params->wdata;
  6957. {
  6958. size_t id = 0;
  6959. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6960. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6961. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6962. }
  6963. }
  6964. assert(id*sizeof(float) <= params->wsize);
  6965. }
  6966. #if defined(GGML_USE_CLBLAST)
  6967. const float * x = wdata;
  6968. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6969. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6970. // zT = y * xT
  6971. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6972. ne11, ne01, ne10,
  6973. 1.0f, y, ne10,
  6974. x, ne10,
  6975. 0.0f, d, ne01,
  6976. GGML_TYPE_F32);
  6977. #else
  6978. const float * x = wdata;
  6979. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6980. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6981. // zT = y * xT
  6982. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6983. ne11, ne01, ne10,
  6984. 1.0f, y, ne10,
  6985. x, ne00,
  6986. 0.0f, d, ne01);
  6987. #endif
  6988. }
  6989. }
  6990. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6991. return;
  6992. }
  6993. #endif
  6994. if (params->type == GGML_TASK_INIT) {
  6995. ggml_fp16_t * const wdata = params->wdata;
  6996. size_t id = 0;
  6997. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6998. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6999. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7000. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7001. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7002. }
  7003. }
  7004. }
  7005. }
  7006. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7007. return;
  7008. }
  7009. if (params->type == GGML_TASK_FINALIZE) {
  7010. return;
  7011. }
  7012. // fp16 -> half the size, so divide by 2
  7013. // TODO: do not support transposed src1
  7014. assert(nb10/2 == sizeof(ggml_fp16_t));
  7015. // parallelize by src0 rows using ggml_vec_dot_f16
  7016. // total rows in src0
  7017. const int nr = ne01*ne02*ne03;
  7018. // rows per thread
  7019. const int dr = (nr + nth - 1)/nth;
  7020. // row range for this thread
  7021. const int ir0 = dr*ith;
  7022. const int ir1 = MIN(ir0 + dr, nr);
  7023. ggml_fp16_t * wdata = params->wdata;
  7024. for (int ir = ir0; ir < ir1; ++ir) {
  7025. // src0 indices
  7026. const int i03 = ir/(ne02*ne01);
  7027. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7028. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7029. const int i13 = i03;
  7030. const int i12 = i02;
  7031. const int i0 = i01;
  7032. const int i2 = i02;
  7033. const int i3 = i03;
  7034. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7035. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7036. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7037. for (int64_t ic = 0; ic < ne11; ++ic) {
  7038. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7039. }
  7040. }
  7041. //int64_t t1 = ggml_time_us();
  7042. //static int64_t acc = 0;
  7043. //acc += t1 - t0;
  7044. //if (t1 - t0 > 10) {
  7045. // printf("\n");
  7046. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7047. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7048. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7049. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7050. //}
  7051. }
  7052. static void ggml_compute_forward_mul_mat_q_f32(
  7053. const struct ggml_compute_params * params,
  7054. const struct ggml_tensor * src0,
  7055. const struct ggml_tensor * src1,
  7056. struct ggml_tensor * dst) {
  7057. int64_t t0 = ggml_perf_time_us();
  7058. UNUSED(t0);
  7059. const int64_t ne00 = src0->ne[0];
  7060. const int64_t ne01 = src0->ne[1];
  7061. const int64_t ne02 = src0->ne[2];
  7062. const int64_t ne03 = src0->ne[3];
  7063. const int64_t ne10 = src1->ne[0];
  7064. const int64_t ne11 = src1->ne[1];
  7065. const int64_t ne12 = src1->ne[2];
  7066. const int64_t ne13 = src1->ne[3];
  7067. const int64_t ne0 = dst->ne[0];
  7068. const int64_t ne1 = dst->ne[1];
  7069. const int64_t ne2 = dst->ne[2];
  7070. const int64_t ne3 = dst->ne[3];
  7071. const int nb00 = src0->nb[0];
  7072. const int nb01 = src0->nb[1];
  7073. const int nb02 = src0->nb[2];
  7074. const int nb03 = src0->nb[3];
  7075. const int nb10 = src1->nb[0];
  7076. const int nb11 = src1->nb[1];
  7077. const int nb12 = src1->nb[2];
  7078. const int nb13 = src1->nb[3];
  7079. const int nb0 = dst->nb[0];
  7080. const int nb1 = dst->nb[1];
  7081. const int nb2 = dst->nb[2];
  7082. const int nb3 = dst->nb[3];
  7083. const int ith = params->ith;
  7084. const int nth = params->nth;
  7085. GGML_ASSERT(ne02 == ne12);
  7086. GGML_ASSERT(ne03 == ne13);
  7087. GGML_ASSERT(ne2 == ne12);
  7088. GGML_ASSERT(ne3 == ne13);
  7089. const enum ggml_type type = src0->type;
  7090. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  7091. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  7092. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  7093. // we don't support permuted src0 or src1
  7094. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  7095. GGML_ASSERT(nb10 == sizeof(float));
  7096. // dst cannot be transposed or permuted
  7097. GGML_ASSERT(nb0 == sizeof(float));
  7098. GGML_ASSERT(nb0 <= nb1);
  7099. GGML_ASSERT(nb1 <= nb2);
  7100. GGML_ASSERT(nb2 <= nb3);
  7101. GGML_ASSERT(ne0 == ne01);
  7102. GGML_ASSERT(ne1 == ne11);
  7103. GGML_ASSERT(ne2 == ne02);
  7104. GGML_ASSERT(ne3 == ne03);
  7105. // nb01 >= nb00 - src0 is not transposed
  7106. // compute by src0 rows
  7107. #if defined(GGML_USE_CUBLAS)
  7108. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7109. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7110. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7111. }
  7112. return;
  7113. }
  7114. #endif
  7115. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7116. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7117. if (params->ith != 0) {
  7118. return;
  7119. }
  7120. if (params->type == GGML_TASK_INIT) {
  7121. return;
  7122. }
  7123. if (params->type == GGML_TASK_FINALIZE) {
  7124. return;
  7125. }
  7126. float * const wdata = params->wdata;
  7127. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7128. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7129. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7130. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7131. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7132. #if defined(GGML_USE_CLBLAST)
  7133. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7134. #else
  7135. {
  7136. size_t id = 0;
  7137. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7138. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7139. id += ne00;
  7140. }
  7141. assert(id*sizeof(float) <= params->wsize);
  7142. }
  7143. const float * x = wdata;
  7144. #endif
  7145. #if defined(GGML_USE_CLBLAST)
  7146. // zT = y * xT
  7147. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7148. ne11, ne01, ne10,
  7149. 1.0f, y, ne10,
  7150. x, ne10,
  7151. 0.0f, d, ne01,
  7152. type);
  7153. #else
  7154. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7155. ne11, ne01, ne10,
  7156. 1.0f, y, ne10,
  7157. x, ne00,
  7158. 0.0f, d, ne01);
  7159. #endif
  7160. }
  7161. }
  7162. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7163. return;
  7164. }
  7165. #endif
  7166. if (params->type == GGML_TASK_INIT) {
  7167. char * wdata = params->wdata;
  7168. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7169. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7170. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7171. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7172. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7173. wdata += row_size;
  7174. }
  7175. }
  7176. }
  7177. return;
  7178. }
  7179. if (params->type == GGML_TASK_FINALIZE) {
  7180. return;
  7181. }
  7182. // parallelize by src0 rows using ggml_vec_dot_q
  7183. // total rows in src0
  7184. const int nr = ne01*ne02*ne03;
  7185. // rows per thread
  7186. const int dr = (nr + nth - 1)/nth;
  7187. // row range for this thread
  7188. const int ir0 = dr*ith;
  7189. const int ir1 = MIN(ir0 + dr, nr);
  7190. void * wdata = params->wdata;
  7191. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7192. for (int ir = ir0; ir < ir1; ++ir) {
  7193. // src0 indices
  7194. const int i03 = ir/(ne02*ne01);
  7195. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7196. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7197. const int i13 = i03;
  7198. const int i12 = i02;
  7199. const int i0 = i01;
  7200. const int i2 = i02;
  7201. const int i3 = i03;
  7202. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7203. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7204. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7205. assert(ne00 % 32 == 0);
  7206. for (int64_t ic = 0; ic < ne11; ++ic) {
  7207. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7208. }
  7209. }
  7210. //int64_t t1 = ggml_time_us();
  7211. //static int64_t acc = 0;
  7212. //acc += t1 - t0;
  7213. //if (t1 - t0 > 10) {
  7214. // printf("\n");
  7215. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7216. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7217. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7218. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7219. //}
  7220. }
  7221. static void ggml_compute_forward_mul_mat(
  7222. const struct ggml_compute_params * params,
  7223. const struct ggml_tensor * src0,
  7224. const struct ggml_tensor * src1,
  7225. struct ggml_tensor * dst) {
  7226. switch (src0->type) {
  7227. case GGML_TYPE_Q4_0:
  7228. case GGML_TYPE_Q4_1:
  7229. case GGML_TYPE_Q4_2:
  7230. case GGML_TYPE_Q5_0:
  7231. case GGML_TYPE_Q5_1:
  7232. case GGML_TYPE_Q8_0:
  7233. case GGML_TYPE_Q8_1:
  7234. {
  7235. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7236. } break;
  7237. case GGML_TYPE_F16:
  7238. {
  7239. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7240. } break;
  7241. case GGML_TYPE_F32:
  7242. {
  7243. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7244. } break;
  7245. default:
  7246. {
  7247. GGML_ASSERT(false);
  7248. } break;
  7249. }
  7250. }
  7251. // ggml_compute_forward_scale
  7252. static void ggml_compute_forward_scale_f32(
  7253. const struct ggml_compute_params * params,
  7254. const struct ggml_tensor * src0,
  7255. const struct ggml_tensor * src1,
  7256. struct ggml_tensor * dst) {
  7257. GGML_ASSERT(ggml_is_contiguous(src0));
  7258. GGML_ASSERT(ggml_is_contiguous(dst));
  7259. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7260. GGML_ASSERT(ggml_is_scalar(src1));
  7261. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7262. return;
  7263. }
  7264. // scale factor
  7265. const float v = *(float *) src1->data;
  7266. const int ith = params->ith;
  7267. const int nth = params->nth;
  7268. const int nc = src0->ne[0];
  7269. const int nr = ggml_nrows(src0);
  7270. // rows per thread
  7271. const int dr = (nr + nth - 1)/nth;
  7272. // row range for this thread
  7273. const int ir0 = dr*ith;
  7274. const int ir1 = MIN(ir0 + dr, nr);
  7275. for (int i1 = ir0; i1 < ir1; i1++) {
  7276. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7277. }
  7278. }
  7279. static void ggml_compute_forward_scale(
  7280. const struct ggml_compute_params * params,
  7281. const struct ggml_tensor * src0,
  7282. const struct ggml_tensor * src1,
  7283. struct ggml_tensor * dst) {
  7284. switch (src0->type) {
  7285. case GGML_TYPE_F32:
  7286. {
  7287. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7288. } break;
  7289. default:
  7290. {
  7291. GGML_ASSERT(false);
  7292. } break;
  7293. }
  7294. }
  7295. // ggml_compute_forward_cpy
  7296. static void ggml_compute_forward_cpy(
  7297. const struct ggml_compute_params * params,
  7298. const struct ggml_tensor * src0,
  7299. struct ggml_tensor * dst) {
  7300. ggml_compute_forward_dup(params, src0, dst);
  7301. }
  7302. // ggml_compute_forward_cont
  7303. static void ggml_compute_forward_cont(
  7304. const struct ggml_compute_params * params,
  7305. const struct ggml_tensor * src0,
  7306. struct ggml_tensor * dst) {
  7307. ggml_compute_forward_dup(params, src0, dst);
  7308. }
  7309. // ggml_compute_forward_reshape
  7310. static void ggml_compute_forward_reshape(
  7311. const struct ggml_compute_params * params,
  7312. const struct ggml_tensor * src0,
  7313. struct ggml_tensor * dst) {
  7314. // NOP
  7315. UNUSED(params);
  7316. UNUSED(src0);
  7317. UNUSED(dst);
  7318. }
  7319. // ggml_compute_forward_view
  7320. static void ggml_compute_forward_view(
  7321. const struct ggml_compute_params * params,
  7322. const struct ggml_tensor * src0) {
  7323. // NOP
  7324. UNUSED(params);
  7325. UNUSED(src0);
  7326. }
  7327. // ggml_compute_forward_permute
  7328. static void ggml_compute_forward_permute(
  7329. const struct ggml_compute_params * params,
  7330. const struct ggml_tensor * src0) {
  7331. // NOP
  7332. UNUSED(params);
  7333. UNUSED(src0);
  7334. }
  7335. // ggml_compute_forward_transpose
  7336. static void ggml_compute_forward_transpose(
  7337. const struct ggml_compute_params * params,
  7338. const struct ggml_tensor * src0) {
  7339. // NOP
  7340. UNUSED(params);
  7341. UNUSED(src0);
  7342. }
  7343. // ggml_compute_forward_get_rows
  7344. static void ggml_compute_forward_get_rows_q(
  7345. const struct ggml_compute_params * params,
  7346. const struct ggml_tensor * src0,
  7347. const struct ggml_tensor * src1,
  7348. struct ggml_tensor * dst) {
  7349. assert(params->ith == 0);
  7350. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7351. return;
  7352. }
  7353. const int nc = src0->ne[0];
  7354. const int nr = ggml_nelements(src1);
  7355. const enum ggml_type type = src0->type;
  7356. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7357. assert( dst->ne[0] == nc);
  7358. assert( dst->ne[1] == nr);
  7359. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7360. for (int i = 0; i < nr; ++i) {
  7361. const int r = ((int32_t *) src1->data)[i];
  7362. dequantize_row_q(
  7363. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7364. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7365. }
  7366. }
  7367. static void ggml_compute_forward_get_rows_f16(
  7368. const struct ggml_compute_params * params,
  7369. const struct ggml_tensor * src0,
  7370. const struct ggml_tensor * src1,
  7371. struct ggml_tensor * dst) {
  7372. assert(params->ith == 0);
  7373. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7374. return;
  7375. }
  7376. const int nc = src0->ne[0];
  7377. const int nr = ggml_nelements(src1);
  7378. assert( dst->ne[0] == nc);
  7379. assert( dst->ne[1] == nr);
  7380. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7381. for (int i = 0; i < nr; ++i) {
  7382. const int r = ((int32_t *) src1->data)[i];
  7383. for (int j = 0; j < nc; ++j) {
  7384. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7385. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7386. }
  7387. }
  7388. }
  7389. static void ggml_compute_forward_get_rows_f32(
  7390. const struct ggml_compute_params * params,
  7391. const struct ggml_tensor * src0,
  7392. const struct ggml_tensor * src1,
  7393. struct ggml_tensor * dst) {
  7394. assert(params->ith == 0);
  7395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7396. return;
  7397. }
  7398. const int nc = src0->ne[0];
  7399. const int nr = ggml_nelements(src1);
  7400. assert( dst->ne[0] == nc);
  7401. assert( dst->ne[1] == nr);
  7402. assert(src0->nb[0] == sizeof(float));
  7403. for (int i = 0; i < nr; ++i) {
  7404. const int r = ((int32_t *) src1->data)[i];
  7405. ggml_vec_cpy_f32(nc,
  7406. (float *) ((char *) dst->data + i*dst->nb[1]),
  7407. (float *) ((char *) src0->data + r*src0->nb[1]));
  7408. }
  7409. }
  7410. static void ggml_compute_forward_get_rows(
  7411. const struct ggml_compute_params * params,
  7412. const struct ggml_tensor * src0,
  7413. const struct ggml_tensor * src1,
  7414. struct ggml_tensor * dst) {
  7415. switch (src0->type) {
  7416. case GGML_TYPE_Q4_0:
  7417. case GGML_TYPE_Q4_1:
  7418. case GGML_TYPE_Q4_2:
  7419. case GGML_TYPE_Q5_0:
  7420. case GGML_TYPE_Q5_1:
  7421. case GGML_TYPE_Q8_0:
  7422. case GGML_TYPE_Q8_1:
  7423. {
  7424. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7425. } break;
  7426. case GGML_TYPE_F16:
  7427. {
  7428. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7429. } break;
  7430. case GGML_TYPE_F32:
  7431. {
  7432. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7433. } break;
  7434. default:
  7435. {
  7436. GGML_ASSERT(false);
  7437. } break;
  7438. }
  7439. //static bool first = true;
  7440. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7441. //if (first) {
  7442. // first = false;
  7443. //} else {
  7444. // for (int k = 0; k < dst->ne[1]; ++k) {
  7445. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7446. // for (int i = 0; i < 16; ++i) {
  7447. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7448. // }
  7449. // printf("\n");
  7450. // }
  7451. // printf("\n");
  7452. // }
  7453. // printf("\n");
  7454. // exit(0);
  7455. //}
  7456. }
  7457. // ggml_compute_forward_diag_mask_inf
  7458. static void ggml_compute_forward_diag_mask_inf_f32(
  7459. const struct ggml_compute_params * params,
  7460. const struct ggml_tensor * src0,
  7461. const struct ggml_tensor * src1,
  7462. struct ggml_tensor * dst) {
  7463. assert(params->ith == 0);
  7464. assert(src1->type == GGML_TYPE_I32);
  7465. assert(ggml_nelements(src1) == 1);
  7466. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7467. return;
  7468. }
  7469. const int n_past = ((int32_t *) src1->data)[0];
  7470. // TODO: handle transposed/permuted matrices
  7471. const int n = ggml_nrows(src0);
  7472. const int nc = src0->ne[0];
  7473. const int nr = src0->ne[1];
  7474. const int nz = n/nr;
  7475. assert( dst->nb[0] == sizeof(float));
  7476. assert(src0->nb[0] == sizeof(float));
  7477. for (int k = 0; k < nz; k++) {
  7478. for (int j = 0; j < nr; j++) {
  7479. for (int i = n_past; i < nc; i++) {
  7480. if (i > n_past + j) {
  7481. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7482. }
  7483. }
  7484. }
  7485. }
  7486. }
  7487. static void ggml_compute_forward_diag_mask_inf(
  7488. const struct ggml_compute_params * params,
  7489. const struct ggml_tensor * src0,
  7490. const struct ggml_tensor * src1,
  7491. struct ggml_tensor * dst) {
  7492. switch (src0->type) {
  7493. case GGML_TYPE_F32:
  7494. {
  7495. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7496. } break;
  7497. default:
  7498. {
  7499. GGML_ASSERT(false);
  7500. } break;
  7501. }
  7502. }
  7503. // ggml_compute_forward_soft_max
  7504. static void ggml_compute_forward_soft_max_f32(
  7505. const struct ggml_compute_params * params,
  7506. const struct ggml_tensor * src0,
  7507. struct ggml_tensor * dst) {
  7508. GGML_ASSERT(ggml_is_contiguous(src0));
  7509. GGML_ASSERT(ggml_is_contiguous(dst));
  7510. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7511. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7512. return;
  7513. }
  7514. // TODO: handle transposed/permuted matrices
  7515. const int ith = params->ith;
  7516. const int nth = params->nth;
  7517. const int nc = src0->ne[0];
  7518. const int nr = ggml_nrows(src0);
  7519. // rows per thread
  7520. const int dr = (nr + nth - 1)/nth;
  7521. // row range for this thread
  7522. const int ir0 = dr*ith;
  7523. const int ir1 = MIN(ir0 + dr, nr);
  7524. for (int i1 = ir0; i1 < ir1; i1++) {
  7525. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7526. #ifndef NDEBUG
  7527. for (int i = 0; i < nc; ++i) {
  7528. //printf("p[%d] = %f\n", i, p[i]);
  7529. assert(!isnan(p[i]));
  7530. }
  7531. #endif
  7532. float max = -INFINITY;
  7533. ggml_vec_max_f32(nc, &max, p);
  7534. ggml_float sum = 0.0;
  7535. uint16_t scvt;
  7536. for (int i = 0; i < nc; i++) {
  7537. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7538. if (p[i] == -INFINITY) {
  7539. p[i] = 0.0f;
  7540. } else {
  7541. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7542. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7543. memcpy(&scvt, &s, sizeof(scvt));
  7544. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7545. sum += (ggml_float)val;
  7546. p[i] = val;
  7547. }
  7548. }
  7549. assert(sum > 0.0);
  7550. sum = 1.0/sum;
  7551. ggml_vec_scale_f32(nc, p, sum);
  7552. #ifndef NDEBUG
  7553. for (int i = 0; i < nc; ++i) {
  7554. assert(!isnan(p[i]));
  7555. assert(!isinf(p[i]));
  7556. }
  7557. #endif
  7558. }
  7559. }
  7560. static void ggml_compute_forward_soft_max(
  7561. const struct ggml_compute_params * params,
  7562. const struct ggml_tensor * src0,
  7563. struct ggml_tensor * dst) {
  7564. switch (src0->type) {
  7565. case GGML_TYPE_F32:
  7566. {
  7567. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7568. } break;
  7569. default:
  7570. {
  7571. GGML_ASSERT(false);
  7572. } break;
  7573. }
  7574. }
  7575. // ggml_compute_forward_alibi
  7576. static void ggml_compute_forward_alibi_f32(
  7577. const struct ggml_compute_params * params,
  7578. const struct ggml_tensor * src0,
  7579. const struct ggml_tensor * src1,
  7580. struct ggml_tensor * dst) {
  7581. assert(params->ith == 0);
  7582. assert(src1->type == GGML_TYPE_I32);
  7583. assert(ggml_nelements(src1) == 2);
  7584. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7585. return;
  7586. }
  7587. const int n_past = ((int32_t *) src1->data)[0];
  7588. const int n_head = ((int32_t *) src1->data)[1];
  7589. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7590. const int ne1 = src0->ne[1]; // seq_len_without_past
  7591. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7592. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7593. const int n = ggml_nrows(src0);
  7594. const int ne2_ne3 = n/ne1; // ne2*ne3
  7595. const int nb0 = src0->nb[0];
  7596. const int nb1 = src0->nb[1];
  7597. const int nb2 = src0->nb[2];
  7598. //const int nb3 = src0->nb[3];
  7599. assert(nb0 == sizeof(float));
  7600. assert(ne1 + n_past == ne0); (void) n_past;
  7601. // add alibi to src0 (KQ_scaled)
  7602. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7603. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7604. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7605. for (int i = 0; i < ne0; i++) {
  7606. for (int j = 0; j < ne1; j++) {
  7607. for (int k = 0; k < ne2_ne3; k++) {
  7608. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7609. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7610. // TODO: k*nb2 or k*nb3
  7611. float m_k;
  7612. if (k < n_heads_log2_floor) {
  7613. m_k = powf(m0, k + 1);
  7614. } else {
  7615. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7616. }
  7617. pdst[0] = (j+1) * m_k + src[0];
  7618. }
  7619. }
  7620. }
  7621. }
  7622. static void ggml_compute_forward_alibi_f16(
  7623. const struct ggml_compute_params * params,
  7624. const struct ggml_tensor * src0,
  7625. const struct ggml_tensor * src1,
  7626. struct ggml_tensor * dst) {
  7627. assert(params->ith == 0);
  7628. assert(src1->type == GGML_TYPE_I32);
  7629. assert(ggml_nelements(src1) == 2);
  7630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7631. return;
  7632. }
  7633. const int n_past = ((int32_t *) src1->data)[0];
  7634. const int n_head = ((int32_t *) src1->data)[1];
  7635. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7636. const int ne1 = src0->ne[1]; // seq_len_without_past
  7637. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7638. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7639. const int n = ggml_nrows(src0);
  7640. const int ne2_ne3 = n/ne1; // ne2*ne3
  7641. const int nb0 = src0->nb[0];
  7642. const int nb1 = src0->nb[1];
  7643. const int nb2 = src0->nb[2];
  7644. //const int nb3 = src0->nb[3];
  7645. assert(nb0 == sizeof(ggml_fp16_t));
  7646. assert(ne1 + n_past == ne0); (void) n_past;
  7647. // add alibi to src0 (KQ_scaled)
  7648. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7649. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7650. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7651. for (int i = 0; i < ne0; i++) {
  7652. for (int j = 0; j < ne1; j++) {
  7653. for (int k = 0; k < ne2_ne3; k++) {
  7654. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7655. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7656. // TODO: k*nb2 or k*nb3
  7657. float m_k;
  7658. if (k < n_heads_log2_floor) {
  7659. m_k = powf(m0, k + 1);
  7660. } else {
  7661. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7662. }
  7663. // we return F32
  7664. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7665. }
  7666. }
  7667. }
  7668. }
  7669. static void ggml_compute_forward_alibi(
  7670. const struct ggml_compute_params * params,
  7671. const struct ggml_tensor * src0,
  7672. const struct ggml_tensor * src1,
  7673. struct ggml_tensor * dst) {
  7674. switch (src0->type) {
  7675. case GGML_TYPE_F16:
  7676. {
  7677. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7678. } break;
  7679. case GGML_TYPE_F32:
  7680. {
  7681. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7682. } break;
  7683. case GGML_TYPE_Q4_0:
  7684. case GGML_TYPE_Q4_1:
  7685. case GGML_TYPE_Q4_2:
  7686. case GGML_TYPE_Q5_0:
  7687. case GGML_TYPE_Q5_1:
  7688. case GGML_TYPE_Q8_0:
  7689. case GGML_TYPE_Q8_1:
  7690. case GGML_TYPE_I8:
  7691. case GGML_TYPE_I16:
  7692. case GGML_TYPE_I32:
  7693. case GGML_TYPE_COUNT:
  7694. {
  7695. GGML_ASSERT(false);
  7696. } break;
  7697. }
  7698. }
  7699. // ggml_compute_forward_rope
  7700. static void ggml_compute_forward_rope_f32(
  7701. const struct ggml_compute_params * params,
  7702. const struct ggml_tensor * src0,
  7703. const struct ggml_tensor * src1,
  7704. struct ggml_tensor * dst) {
  7705. assert(src1->type == GGML_TYPE_I32);
  7706. assert(ggml_nelements(src1) == 3);
  7707. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7708. return;
  7709. }
  7710. const int n_past = ((int32_t *) src1->data)[0];
  7711. const int n_dims = ((int32_t *) src1->data)[1];
  7712. const int mode = ((int32_t *) src1->data)[2];
  7713. //const int64_t ne0 = src0->ne[0];
  7714. const int64_t ne1 = src0->ne[1];
  7715. const int64_t ne2 = src0->ne[2];
  7716. const int64_t ne3 = src0->ne[3];
  7717. const int nb0 = src0->nb[0];
  7718. const int nb1 = src0->nb[1];
  7719. const int nb2 = src0->nb[2];
  7720. const int nb3 = src0->nb[3];
  7721. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7722. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7723. assert(nb0 == sizeof(float));
  7724. const int ith = params->ith;
  7725. const int nth = params->nth;
  7726. const int nr = ggml_nrows(src0);
  7727. // rows per thread
  7728. const int dr = (nr + nth - 1)/nth;
  7729. // row range for this thread
  7730. const int ir0 = dr*ith;
  7731. const int ir1 = MIN(ir0 + dr, nr);
  7732. // row index used to determine which thread to use
  7733. int ir = 0;
  7734. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7735. const bool is_neox = mode & 2;
  7736. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7737. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7738. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7739. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7740. if (ir++ < ir0) continue;
  7741. if (ir > ir1) break;
  7742. float theta = (float)p;
  7743. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7744. const float cos_theta = cosf(theta);
  7745. const float sin_theta = sinf(theta);
  7746. theta *= theta_scale;
  7747. if (!is_neox) {
  7748. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7749. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7750. const float x0 = src[0];
  7751. const float x1 = src[1];
  7752. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7753. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7754. } else {
  7755. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7756. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7757. const float x0 = src[0];
  7758. const float x1 = src[n_dims/2];
  7759. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7760. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7761. }
  7762. }
  7763. }
  7764. }
  7765. }
  7766. }
  7767. static void ggml_compute_forward_rope_f16(
  7768. const struct ggml_compute_params * params,
  7769. const struct ggml_tensor * src0,
  7770. const struct ggml_tensor * src1,
  7771. struct ggml_tensor * dst) {
  7772. assert(src1->type == GGML_TYPE_I32);
  7773. assert(ggml_nelements(src1) == 3);
  7774. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7775. return;
  7776. }
  7777. const int n_past = ((int32_t *) src1->data)[0];
  7778. const int n_dims = ((int32_t *) src1->data)[1];
  7779. const int mode = ((int32_t *) src1->data)[2];
  7780. //const int64_t ne0 = src0->ne[0];
  7781. const int64_t ne1 = src0->ne[1];
  7782. const int64_t ne2 = src0->ne[2];
  7783. const int64_t ne3 = src0->ne[3];
  7784. const int nb0 = src0->nb[0];
  7785. const int nb1 = src0->nb[1];
  7786. const int nb2 = src0->nb[2];
  7787. const int nb3 = src0->nb[3];
  7788. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7789. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7790. assert(nb0 == sizeof(ggml_fp16_t));
  7791. const int ith = params->ith;
  7792. const int nth = params->nth;
  7793. const int nr = ggml_nrows(src0);
  7794. // rows per thread
  7795. const int dr = (nr + nth - 1)/nth;
  7796. // row range for this thread
  7797. const int ir0 = dr*ith;
  7798. const int ir1 = MIN(ir0 + dr, nr);
  7799. // row index used to determine which thread to use
  7800. int ir = 0;
  7801. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7802. const bool is_neox = mode & 2;
  7803. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7804. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7805. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7806. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7807. if (ir++ < ir0) continue;
  7808. if (ir > ir1) break;
  7809. float theta = (float)p;
  7810. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7811. const float cos_theta = cosf(theta);
  7812. const float sin_theta = sinf(theta);
  7813. theta *= theta_scale;
  7814. if (!is_neox) {
  7815. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7816. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7817. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7818. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7819. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7820. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7821. } else {
  7822. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7823. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7824. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7825. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7826. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7827. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7828. }
  7829. }
  7830. }
  7831. }
  7832. }
  7833. }
  7834. static void ggml_compute_forward_rope(
  7835. const struct ggml_compute_params * params,
  7836. const struct ggml_tensor * src0,
  7837. const struct ggml_tensor * src1,
  7838. struct ggml_tensor * dst) {
  7839. switch (src0->type) {
  7840. case GGML_TYPE_F16:
  7841. {
  7842. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7843. } break;
  7844. case GGML_TYPE_F32:
  7845. {
  7846. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7847. } break;
  7848. default:
  7849. {
  7850. GGML_ASSERT(false);
  7851. } break;
  7852. }
  7853. }
  7854. // ggml_compute_forward_conv_1d_1s
  7855. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7856. const struct ggml_compute_params * params,
  7857. const struct ggml_tensor * src0,
  7858. const struct ggml_tensor * src1,
  7859. struct ggml_tensor * dst) {
  7860. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7861. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7862. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7863. int64_t t0 = ggml_perf_time_us();
  7864. UNUSED(t0);
  7865. const int64_t ne00 = src0->ne[0];
  7866. const int64_t ne01 = src0->ne[1];
  7867. const int64_t ne02 = src0->ne[2];
  7868. //const int64_t ne03 = src0->ne[3];
  7869. const int64_t ne10 = src1->ne[0];
  7870. const int64_t ne11 = src1->ne[1];
  7871. //const int64_t ne12 = src1->ne[2];
  7872. //const int64_t ne13 = src1->ne[3];
  7873. //const int64_t ne0 = dst->ne[0];
  7874. //const int64_t ne1 = dst->ne[1];
  7875. //const int64_t ne2 = dst->ne[2];
  7876. //const int64_t ne3 = dst->ne[3];
  7877. //const int64_t ne = ne0*ne1*ne2*ne3;
  7878. const int nb00 = src0->nb[0];
  7879. const int nb01 = src0->nb[1];
  7880. const int nb02 = src0->nb[2];
  7881. //const int nb03 = src0->nb[3];
  7882. const int nb10 = src1->nb[0];
  7883. const int nb11 = src1->nb[1];
  7884. //const int nb12 = src1->nb[2];
  7885. //const int nb13 = src1->nb[3];
  7886. //const int nb0 = dst->nb[0];
  7887. const int nb1 = dst->nb[1];
  7888. //const int nb2 = dst->nb[2];
  7889. //const int nb3 = dst->nb[3];
  7890. const int ith = params->ith;
  7891. const int nth = params->nth;
  7892. const int nk = ne00;
  7893. const int nh = nk/2;
  7894. const int ew0 = ggml_up32(ne01);
  7895. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7896. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7897. GGML_ASSERT(nb10 == sizeof(float));
  7898. if (params->type == GGML_TASK_INIT) {
  7899. // TODO: fix this memset (wsize is overestimated)
  7900. memset(params->wdata, 0, params->wsize);
  7901. // prepare kernel data (src0)
  7902. {
  7903. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7904. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7905. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7906. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7907. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7908. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7909. dst_data[i00*ew0 + i01] = src[i00];
  7910. }
  7911. }
  7912. }
  7913. }
  7914. // prepare source data (src1)
  7915. {
  7916. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7917. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7918. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7919. ggml_fp16_t * dst_data = wdata;
  7920. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7921. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7922. }
  7923. }
  7924. }
  7925. return;
  7926. }
  7927. if (params->type == GGML_TASK_FINALIZE) {
  7928. return;
  7929. }
  7930. // total rows in dst
  7931. const int nr = ne02;
  7932. // rows per thread
  7933. const int dr = (nr + nth - 1)/nth;
  7934. // row range for this thread
  7935. const int ir0 = dr*ith;
  7936. const int ir1 = MIN(ir0 + dr, nr);
  7937. for (int i1 = ir0; i1 < ir1; i1++) {
  7938. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7939. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7940. dst_data[i0] = 0;
  7941. for (int k = -nh; k <= nh; k++) {
  7942. float v = 0.0f;
  7943. ggml_vec_dot_f16(ew0, &v,
  7944. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7945. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7946. dst_data[i0] += v;
  7947. }
  7948. }
  7949. }
  7950. }
  7951. static void ggml_compute_forward_conv_1d_1s_f32(
  7952. const struct ggml_compute_params * params,
  7953. const struct ggml_tensor * src0,
  7954. const struct ggml_tensor * src1,
  7955. struct ggml_tensor * dst) {
  7956. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7957. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7958. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7959. int64_t t0 = ggml_perf_time_us();
  7960. UNUSED(t0);
  7961. const int64_t ne00 = src0->ne[0];
  7962. const int64_t ne01 = src0->ne[1];
  7963. const int64_t ne02 = src0->ne[2];
  7964. //const int64_t ne03 = src0->ne[3];
  7965. const int64_t ne10 = src1->ne[0];
  7966. const int64_t ne11 = src1->ne[1];
  7967. //const int64_t ne12 = src1->ne[2];
  7968. //const int64_t ne13 = src1->ne[3];
  7969. //const int64_t ne0 = dst->ne[0];
  7970. //const int64_t ne1 = dst->ne[1];
  7971. //const int64_t ne2 = dst->ne[2];
  7972. //const int64_t ne3 = dst->ne[3];
  7973. //const int64_t ne = ne0*ne1*ne2*ne3;
  7974. const int nb00 = src0->nb[0];
  7975. const int nb01 = src0->nb[1];
  7976. const int nb02 = src0->nb[2];
  7977. //const int nb03 = src0->nb[3];
  7978. const int nb10 = src1->nb[0];
  7979. const int nb11 = src1->nb[1];
  7980. //const int nb12 = src1->nb[2];
  7981. //const int nb13 = src1->nb[3];
  7982. //const int nb0 = dst->nb[0];
  7983. const int nb1 = dst->nb[1];
  7984. //const int nb2 = dst->nb[2];
  7985. //const int nb3 = dst->nb[3];
  7986. const int ith = params->ith;
  7987. const int nth = params->nth;
  7988. const int nk = ne00;
  7989. const int nh = nk/2;
  7990. const int ew0 = ggml_up32(ne01);
  7991. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7992. GGML_ASSERT(nb00 == sizeof(float));
  7993. GGML_ASSERT(nb10 == sizeof(float));
  7994. if (params->type == GGML_TASK_INIT) {
  7995. // TODO: fix this memset (wsize is overestimated)
  7996. memset(params->wdata, 0, params->wsize);
  7997. // prepare kernel data (src0)
  7998. {
  7999. float * const wdata = (float *) params->wdata + 0;
  8000. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8001. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8002. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8003. float * dst_data = wdata + i02*ew0*ne00;
  8004. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8005. dst_data[i00*ew0 + i01] = src[i00];
  8006. }
  8007. }
  8008. }
  8009. }
  8010. // prepare source data (src1)
  8011. {
  8012. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8013. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8014. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8015. float * dst_data = wdata;
  8016. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8017. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8018. }
  8019. }
  8020. }
  8021. return;
  8022. }
  8023. if (params->type == GGML_TASK_FINALIZE) {
  8024. return;
  8025. }
  8026. // total rows in dst
  8027. const int nr = ne02;
  8028. // rows per thread
  8029. const int dr = (nr + nth - 1)/nth;
  8030. // row range for this thread
  8031. const int ir0 = dr*ith;
  8032. const int ir1 = MIN(ir0 + dr, nr);
  8033. for (int i1 = ir0; i1 < ir1; i1++) {
  8034. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8035. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  8036. dst_data[i0] = 0;
  8037. for (int k = -nh; k <= nh; k++) {
  8038. float v = 0.0f;
  8039. ggml_vec_dot_f32(ew0, &v,
  8040. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8041. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8042. dst_data[i0] += v;
  8043. }
  8044. }
  8045. }
  8046. }
  8047. static void ggml_compute_forward_conv_1d_1s(
  8048. const struct ggml_compute_params * params,
  8049. const struct ggml_tensor * src0,
  8050. const struct ggml_tensor * src1,
  8051. struct ggml_tensor * dst) {
  8052. switch (src0->type) {
  8053. case GGML_TYPE_F16:
  8054. {
  8055. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  8056. } break;
  8057. case GGML_TYPE_F32:
  8058. {
  8059. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  8060. } break;
  8061. default:
  8062. {
  8063. GGML_ASSERT(false);
  8064. } break;
  8065. }
  8066. }
  8067. // ggml_compute_forward_conv_1d_2s
  8068. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  8069. const struct ggml_compute_params * params,
  8070. const struct ggml_tensor * src0,
  8071. const struct ggml_tensor * src1,
  8072. struct ggml_tensor * dst) {
  8073. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8074. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8075. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8076. int64_t t0 = ggml_perf_time_us();
  8077. UNUSED(t0);
  8078. const int64_t ne00 = src0->ne[0];
  8079. const int64_t ne01 = src0->ne[1];
  8080. const int64_t ne02 = src0->ne[2];
  8081. //const int64_t ne03 = src0->ne[3];
  8082. const int64_t ne10 = src1->ne[0];
  8083. const int64_t ne11 = src1->ne[1];
  8084. //const int64_t ne12 = src1->ne[2];
  8085. //const int64_t ne13 = src1->ne[3];
  8086. //const int64_t ne0 = dst->ne[0];
  8087. //const int64_t ne1 = dst->ne[1];
  8088. //const int64_t ne2 = dst->ne[2];
  8089. //const int64_t ne3 = dst->ne[3];
  8090. //const int64_t ne = ne0*ne1*ne2*ne3;
  8091. const int nb00 = src0->nb[0];
  8092. const int nb01 = src0->nb[1];
  8093. const int nb02 = src0->nb[2];
  8094. //const int nb03 = src0->nb[3];
  8095. const int nb10 = src1->nb[0];
  8096. const int nb11 = src1->nb[1];
  8097. //const int nb12 = src1->nb[2];
  8098. //const int nb13 = src1->nb[3];
  8099. //const int nb0 = dst->nb[0];
  8100. const int nb1 = dst->nb[1];
  8101. //const int nb2 = dst->nb[2];
  8102. //const int nb3 = dst->nb[3];
  8103. const int ith = params->ith;
  8104. const int nth = params->nth;
  8105. const int nk = ne00;
  8106. const int nh = nk/2;
  8107. const int ew0 = ggml_up32(ne01);
  8108. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8109. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8110. GGML_ASSERT(nb10 == sizeof(float));
  8111. if (params->type == GGML_TASK_INIT) {
  8112. // TODO: fix this memset (wsize is overestimated)
  8113. memset(params->wdata, 0, params->wsize);
  8114. // prepare kernel data (src0)
  8115. {
  8116. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  8117. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8118. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8119. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  8120. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  8121. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8122. dst_data[i00*ew0 + i01] = src[i00];
  8123. }
  8124. }
  8125. }
  8126. }
  8127. // prepare source data (src1)
  8128. {
  8129. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  8130. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8131. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8132. ggml_fp16_t * dst_data = wdata;
  8133. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8134. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  8135. }
  8136. }
  8137. }
  8138. return;
  8139. }
  8140. if (params->type == GGML_TASK_FINALIZE) {
  8141. return;
  8142. }
  8143. // total rows in dst
  8144. const int nr = ne02;
  8145. // rows per thread
  8146. const int dr = (nr + nth - 1)/nth;
  8147. // row range for this thread
  8148. const int ir0 = dr*ith;
  8149. const int ir1 = MIN(ir0 + dr, nr);
  8150. for (int i1 = ir0; i1 < ir1; i1++) {
  8151. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8152. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8153. dst_data[i0/2] = 0;
  8154. for (int k = -nh; k <= nh; k++) {
  8155. float v = 0.0f;
  8156. ggml_vec_dot_f16(ew0, &v,
  8157. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8158. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8159. dst_data[i0/2] += v;
  8160. }
  8161. }
  8162. }
  8163. }
  8164. static void ggml_compute_forward_conv_1d_2s_f32(
  8165. const struct ggml_compute_params * params,
  8166. const struct ggml_tensor * src0,
  8167. const struct ggml_tensor * src1,
  8168. struct ggml_tensor * dst) {
  8169. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8170. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8171. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8172. int64_t t0 = ggml_perf_time_us();
  8173. UNUSED(t0);
  8174. const int64_t ne00 = src0->ne[0];
  8175. const int64_t ne01 = src0->ne[1];
  8176. const int64_t ne02 = src0->ne[2];
  8177. //const int64_t ne03 = src0->ne[3];
  8178. const int64_t ne10 = src1->ne[0];
  8179. const int64_t ne11 = src1->ne[1];
  8180. //const int64_t ne12 = src1->ne[2];
  8181. //const int64_t ne13 = src1->ne[3];
  8182. //const int64_t ne0 = dst->ne[0];
  8183. //const int64_t ne1 = dst->ne[1];
  8184. //const int64_t ne2 = dst->ne[2];
  8185. //const int64_t ne3 = dst->ne[3];
  8186. //const int64_t ne = ne0*ne1*ne2*ne3;
  8187. const int nb00 = src0->nb[0];
  8188. const int nb01 = src0->nb[1];
  8189. const int nb02 = src0->nb[2];
  8190. //const int nb03 = src0->nb[3];
  8191. const int nb10 = src1->nb[0];
  8192. const int nb11 = src1->nb[1];
  8193. //const int nb12 = src1->nb[2];
  8194. //const int nb13 = src1->nb[3];
  8195. //const int nb0 = dst->nb[0];
  8196. const int nb1 = dst->nb[1];
  8197. //const int nb2 = dst->nb[2];
  8198. //const int nb3 = dst->nb[3];
  8199. const int ith = params->ith;
  8200. const int nth = params->nth;
  8201. const int nk = ne00;
  8202. const int nh = nk/2;
  8203. const int ew0 = ggml_up32(ne01);
  8204. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8205. GGML_ASSERT(nb00 == sizeof(float));
  8206. GGML_ASSERT(nb10 == sizeof(float));
  8207. if (params->type == GGML_TASK_INIT) {
  8208. // TODO: fix this memset (wsize is overestimated)
  8209. memset(params->wdata, 0, params->wsize);
  8210. // prepare kernel data (src0)
  8211. {
  8212. float * const wdata = (float *) params->wdata + 0;
  8213. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8214. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8215. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8216. float * dst_data = wdata + i02*ew0*ne00;
  8217. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8218. dst_data[i00*ew0 + i01] = src[i00];
  8219. }
  8220. }
  8221. }
  8222. }
  8223. // prepare source data (src1)
  8224. {
  8225. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8226. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8227. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8228. float * dst_data = wdata;
  8229. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8230. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8231. }
  8232. }
  8233. }
  8234. return;
  8235. }
  8236. if (params->type == GGML_TASK_FINALIZE) {
  8237. return;
  8238. }
  8239. // total rows in dst
  8240. const int nr = ne02;
  8241. // rows per thread
  8242. const int dr = (nr + nth - 1)/nth;
  8243. // row range for this thread
  8244. const int ir0 = dr*ith;
  8245. const int ir1 = MIN(ir0 + dr, nr);
  8246. for (int i1 = ir0; i1 < ir1; i1++) {
  8247. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8248. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8249. dst_data[i0/2] = 0;
  8250. for (int k = -nh; k <= nh; k++) {
  8251. float v = 0.0f;
  8252. ggml_vec_dot_f32(ew0, &v,
  8253. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8254. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8255. dst_data[i0/2] += v;
  8256. }
  8257. }
  8258. }
  8259. }
  8260. static void ggml_compute_forward_conv_1d_2s(
  8261. const struct ggml_compute_params * params,
  8262. const struct ggml_tensor * src0,
  8263. const struct ggml_tensor * src1,
  8264. struct ggml_tensor * dst) {
  8265. switch (src0->type) {
  8266. case GGML_TYPE_F16:
  8267. {
  8268. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8269. } break;
  8270. case GGML_TYPE_F32:
  8271. {
  8272. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8273. } break;
  8274. default:
  8275. {
  8276. GGML_ASSERT(false);
  8277. } break;
  8278. }
  8279. }
  8280. // ggml_compute_forward_flash_attn
  8281. static void ggml_compute_forward_flash_attn_f32(
  8282. const struct ggml_compute_params * params,
  8283. const struct ggml_tensor * q,
  8284. const struct ggml_tensor * k,
  8285. const struct ggml_tensor * v,
  8286. const bool masked,
  8287. struct ggml_tensor * dst) {
  8288. int64_t t0 = ggml_perf_time_us();
  8289. UNUSED(t0);
  8290. const int64_t neq0 = q->ne[0];
  8291. const int64_t neq1 = q->ne[1];
  8292. const int64_t neq2 = q->ne[2];
  8293. const int64_t neq3 = q->ne[3];
  8294. const int64_t nek0 = k->ne[0];
  8295. const int64_t nek1 = k->ne[1];
  8296. //const int64_t nek2 = k->ne[2];
  8297. //const int64_t nek3 = k->ne[3];
  8298. //const int64_t nev0 = v->ne[0];
  8299. const int64_t nev1 = v->ne[1];
  8300. //const int64_t nev2 = v->ne[2];
  8301. //const int64_t nev3 = v->ne[3];
  8302. const int64_t ne0 = dst->ne[0];
  8303. const int64_t ne1 = dst->ne[1];
  8304. //const int64_t ne2 = dst->ne[2];
  8305. //const int64_t ne3 = dst->ne[3];
  8306. const int nbk0 = k->nb[0];
  8307. const int nbk1 = k->nb[1];
  8308. const int nbk2 = k->nb[2];
  8309. const int nbk3 = k->nb[3];
  8310. const int nbq0 = q->nb[0];
  8311. const int nbq1 = q->nb[1];
  8312. const int nbq2 = q->nb[2];
  8313. const int nbq3 = q->nb[3];
  8314. const int nbv0 = v->nb[0];
  8315. const int nbv1 = v->nb[1];
  8316. const int nbv2 = v->nb[2];
  8317. const int nbv3 = v->nb[3];
  8318. const int nb0 = dst->nb[0];
  8319. const int nb1 = dst->nb[1];
  8320. const int nb2 = dst->nb[2];
  8321. const int nb3 = dst->nb[3];
  8322. const int ith = params->ith;
  8323. const int nth = params->nth;
  8324. const int64_t D = neq0;
  8325. const int64_t N = neq1;
  8326. const int64_t P = nek1 - N;
  8327. const int64_t M = P + N;
  8328. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8329. GGML_ASSERT(ne0 == D);
  8330. GGML_ASSERT(ne1 == N);
  8331. GGML_ASSERT(P >= 0);
  8332. GGML_ASSERT(nbq0 == sizeof(float));
  8333. GGML_ASSERT(nbk0 == sizeof(float));
  8334. GGML_ASSERT(nbv0 == sizeof(float));
  8335. GGML_ASSERT(neq0 == D);
  8336. GGML_ASSERT(nek0 == D);
  8337. GGML_ASSERT(nev1 == D);
  8338. GGML_ASSERT(neq1 == N);
  8339. GGML_ASSERT(nek1 == N + P);
  8340. GGML_ASSERT(nev1 == D);
  8341. // dst cannot be transposed or permuted
  8342. GGML_ASSERT(nb0 == sizeof(float));
  8343. GGML_ASSERT(nb0 <= nb1);
  8344. GGML_ASSERT(nb1 <= nb2);
  8345. GGML_ASSERT(nb2 <= nb3);
  8346. if (params->type == GGML_TASK_INIT) {
  8347. return;
  8348. }
  8349. if (params->type == GGML_TASK_FINALIZE) {
  8350. return;
  8351. }
  8352. // parallelize by q rows using ggml_vec_dot_f32
  8353. // total rows in q
  8354. const int nr = neq1*neq2*neq3;
  8355. // rows per thread
  8356. const int dr = (nr + nth - 1)/nth;
  8357. // row range for this thread
  8358. const int ir0 = dr*ith;
  8359. const int ir1 = MIN(ir0 + dr, nr);
  8360. const float scale = 1.0f/sqrtf(D);
  8361. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8362. for (int ir = ir0; ir < ir1; ++ir) {
  8363. // q indices
  8364. const int iq3 = ir/(neq2*neq1);
  8365. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8366. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8367. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8368. for (int i = M; i < Mup; ++i) {
  8369. S[i] = -INFINITY;
  8370. }
  8371. for (int64_t ic = 0; ic < nek1; ++ic) {
  8372. // k indices
  8373. const int ik3 = iq3;
  8374. const int ik2 = iq2;
  8375. const int ik1 = ic;
  8376. // S indices
  8377. const int i1 = ik1;
  8378. ggml_vec_dot_f32(neq0,
  8379. S + i1,
  8380. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8381. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8382. }
  8383. // scale
  8384. ggml_vec_scale_f32(nek1, S, scale);
  8385. if (masked) {
  8386. for (int64_t i = P; i < M; i++) {
  8387. if (i > P + iq1) {
  8388. S[i] = -INFINITY;
  8389. }
  8390. }
  8391. }
  8392. // softmax
  8393. {
  8394. float max = -INFINITY;
  8395. ggml_vec_max_f32(M, &max, S);
  8396. ggml_float sum = 0.0;
  8397. {
  8398. #ifdef GGML_SOFT_MAX_ACCELERATE
  8399. max = -max;
  8400. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8401. vvexpf(S, S, &Mup);
  8402. ggml_vec_sum_f32(Mup, &sum, S);
  8403. #else
  8404. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8405. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8406. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8407. float * SS = S + i;
  8408. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8409. if (SS[j] == -INFINITY) {
  8410. SS[j] = 0.0f;
  8411. } else {
  8412. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8413. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8414. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8415. sump[j] += (ggml_float)val;
  8416. SS[j] = val;
  8417. }
  8418. }
  8419. }
  8420. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8421. sum += sump[i];
  8422. }
  8423. #endif
  8424. }
  8425. assert(sum > 0.0);
  8426. sum = 1.0/sum;
  8427. ggml_vec_scale_f32(M, S, sum);
  8428. #ifndef NDEBUG
  8429. for (int i = 0; i < M; ++i) {
  8430. assert(!isnan(S[i]));
  8431. assert(!isinf(S[i]));
  8432. }
  8433. #endif
  8434. }
  8435. for (int64_t ic = 0; ic < nev1; ++ic) {
  8436. // dst indices
  8437. const int i1 = iq1;
  8438. const int i2 = iq2;
  8439. const int i3 = iq3;
  8440. ggml_vec_dot_f32(nek1,
  8441. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8442. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8443. S);
  8444. }
  8445. }
  8446. }
  8447. static void ggml_compute_forward_flash_attn_f16(
  8448. const struct ggml_compute_params * params,
  8449. const struct ggml_tensor * q,
  8450. const struct ggml_tensor * k,
  8451. const struct ggml_tensor * v,
  8452. const bool masked,
  8453. struct ggml_tensor * dst) {
  8454. int64_t t0 = ggml_perf_time_us();
  8455. UNUSED(t0);
  8456. const int64_t neq0 = q->ne[0];
  8457. const int64_t neq1 = q->ne[1];
  8458. const int64_t neq2 = q->ne[2];
  8459. const int64_t neq3 = q->ne[3];
  8460. const int64_t nek0 = k->ne[0];
  8461. const int64_t nek1 = k->ne[1];
  8462. //const int64_t nek2 = k->ne[2];
  8463. //const int64_t nek3 = k->ne[3];
  8464. //const int64_t nev0 = v->ne[0];
  8465. const int64_t nev1 = v->ne[1];
  8466. //const int64_t nev2 = v->ne[2];
  8467. //const int64_t nev3 = v->ne[3];
  8468. const int64_t ne0 = dst->ne[0];
  8469. const int64_t ne1 = dst->ne[1];
  8470. //const int64_t ne2 = dst->ne[2];
  8471. //const int64_t ne3 = dst->ne[3];
  8472. const int nbk0 = k->nb[0];
  8473. const int nbk1 = k->nb[1];
  8474. const int nbk2 = k->nb[2];
  8475. const int nbk3 = k->nb[3];
  8476. const int nbq0 = q->nb[0];
  8477. const int nbq1 = q->nb[1];
  8478. const int nbq2 = q->nb[2];
  8479. const int nbq3 = q->nb[3];
  8480. const int nbv0 = v->nb[0];
  8481. const int nbv1 = v->nb[1];
  8482. const int nbv2 = v->nb[2];
  8483. const int nbv3 = v->nb[3];
  8484. const int nb0 = dst->nb[0];
  8485. const int nb1 = dst->nb[1];
  8486. const int nb2 = dst->nb[2];
  8487. const int nb3 = dst->nb[3];
  8488. const int ith = params->ith;
  8489. const int nth = params->nth;
  8490. const int64_t D = neq0;
  8491. const int64_t N = neq1;
  8492. const int64_t P = nek1 - N;
  8493. const int64_t M = P + N;
  8494. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8495. GGML_ASSERT(ne0 == D);
  8496. GGML_ASSERT(ne1 == N);
  8497. GGML_ASSERT(P >= 0);
  8498. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8499. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8500. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8501. GGML_ASSERT(neq0 == D);
  8502. GGML_ASSERT(nek0 == D);
  8503. GGML_ASSERT(nev1 == D);
  8504. GGML_ASSERT(neq1 == N);
  8505. GGML_ASSERT(nek1 == N + P);
  8506. GGML_ASSERT(nev1 == D);
  8507. // dst cannot be transposed or permuted
  8508. GGML_ASSERT(nb0 == sizeof(float));
  8509. GGML_ASSERT(nb0 <= nb1);
  8510. GGML_ASSERT(nb1 <= nb2);
  8511. GGML_ASSERT(nb2 <= nb3);
  8512. if (params->type == GGML_TASK_INIT) {
  8513. return;
  8514. }
  8515. if (params->type == GGML_TASK_FINALIZE) {
  8516. return;
  8517. }
  8518. // parallelize by q rows using ggml_vec_dot_f32
  8519. // total rows in q
  8520. const int nr = neq1*neq2*neq3;
  8521. // rows per thread
  8522. const int dr = (nr + nth - 1)/nth;
  8523. // row range for this thread
  8524. const int ir0 = dr*ith;
  8525. const int ir1 = MIN(ir0 + dr, nr);
  8526. const float scale = 1.0f/sqrtf(D);
  8527. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8528. for (int ir = ir0; ir < ir1; ++ir) {
  8529. // q indices
  8530. const int iq3 = ir/(neq2*neq1);
  8531. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8532. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8533. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8534. for (int i = M; i < Mup; ++i) {
  8535. S[i] = -INFINITY;
  8536. }
  8537. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8538. for (int64_t ic = 0; ic < nek1; ++ic) {
  8539. // k indices
  8540. const int ik3 = iq3;
  8541. const int ik2 = iq2;
  8542. const int ik1 = ic;
  8543. // S indices
  8544. const int i1 = ik1;
  8545. ggml_vec_dot_f16(neq0,
  8546. S + i1,
  8547. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8548. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8549. }
  8550. } else {
  8551. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8552. // k indices
  8553. const int ik3 = iq3;
  8554. const int ik2 = iq2;
  8555. const int ik1 = ic;
  8556. // S indices
  8557. const int i1 = ik1;
  8558. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8559. S + i1,
  8560. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8561. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8562. }
  8563. }
  8564. // scale
  8565. ggml_vec_scale_f32(nek1, S, scale);
  8566. if (masked) {
  8567. for (int64_t i = P; i < M; i++) {
  8568. if (i > P + iq1) {
  8569. S[i] = -INFINITY;
  8570. }
  8571. }
  8572. }
  8573. // softmax
  8574. {
  8575. float max = -INFINITY;
  8576. ggml_vec_max_f32(M, &max, S);
  8577. ggml_float sum = 0.0;
  8578. {
  8579. #ifdef GGML_SOFT_MAX_ACCELERATE
  8580. max = -max;
  8581. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8582. vvexpf(S, S, &Mup);
  8583. ggml_vec_sum_f32(Mup, &sum, S);
  8584. #else
  8585. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8586. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8587. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8588. float * SS = S + i;
  8589. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8590. if (SS[j] == -INFINITY) {
  8591. SS[j] = 0.0f;
  8592. } else {
  8593. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8594. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8595. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8596. sump[j] += (ggml_float)val;
  8597. SS[j] = val;
  8598. }
  8599. }
  8600. }
  8601. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8602. sum += sump[i];
  8603. }
  8604. #endif
  8605. }
  8606. assert(sum > 0.0);
  8607. sum = 1.0/sum;
  8608. ggml_vec_scale_f32(M, S, sum);
  8609. #ifndef NDEBUG
  8610. for (int i = 0; i < M; ++i) {
  8611. assert(!isnan(S[i]));
  8612. assert(!isinf(S[i]));
  8613. }
  8614. #endif
  8615. }
  8616. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8617. for (int64_t i = 0; i < M; i++) {
  8618. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8619. }
  8620. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8621. for (int64_t ic = 0; ic < nev1; ++ic) {
  8622. // dst indices
  8623. const int i1 = iq1;
  8624. const int i2 = iq2;
  8625. const int i3 = iq3;
  8626. ggml_vec_dot_f16(nek1,
  8627. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8628. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8629. S16);
  8630. }
  8631. } else {
  8632. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8633. // dst indices
  8634. const int i1 = iq1;
  8635. const int i2 = iq2;
  8636. const int i3 = iq3;
  8637. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8638. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8639. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8640. S16);
  8641. }
  8642. }
  8643. }
  8644. }
  8645. static void ggml_compute_forward_flash_attn(
  8646. const struct ggml_compute_params * params,
  8647. const struct ggml_tensor * q,
  8648. const struct ggml_tensor * k,
  8649. const struct ggml_tensor * v,
  8650. const bool masked,
  8651. struct ggml_tensor * dst) {
  8652. switch (q->type) {
  8653. case GGML_TYPE_F16:
  8654. {
  8655. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8656. } break;
  8657. case GGML_TYPE_F32:
  8658. {
  8659. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8660. } break;
  8661. default:
  8662. {
  8663. GGML_ASSERT(false);
  8664. } break;
  8665. }
  8666. }
  8667. // ggml_compute_forward_flash_ff
  8668. static void ggml_compute_forward_flash_ff_f16(
  8669. const struct ggml_compute_params * params,
  8670. const struct ggml_tensor * a, // F16
  8671. const struct ggml_tensor * b0, // F16 fc_w
  8672. const struct ggml_tensor * b1, // F32 fc_b
  8673. const struct ggml_tensor * c0, // F16 proj_w
  8674. const struct ggml_tensor * c1, // F32 proj_b
  8675. struct ggml_tensor * dst) {
  8676. int64_t t0 = ggml_perf_time_us();
  8677. UNUSED(t0);
  8678. const int64_t nea0 = a->ne[0];
  8679. const int64_t nea1 = a->ne[1];
  8680. const int64_t nea2 = a->ne[2];
  8681. const int64_t nea3 = a->ne[3];
  8682. const int64_t neb00 = b0->ne[0];
  8683. const int64_t neb01 = b0->ne[1];
  8684. //const int64_t neb02 = b0->ne[2];
  8685. //const int64_t neb03 = b0->ne[3];
  8686. const int64_t neb10 = b1->ne[0];
  8687. const int64_t neb11 = b1->ne[1];
  8688. //const int64_t neb12 = b1->ne[2];
  8689. //const int64_t neb13 = b1->ne[3];
  8690. const int64_t nec00 = c0->ne[0];
  8691. const int64_t nec01 = c0->ne[1];
  8692. //const int64_t nec02 = c0->ne[2];
  8693. //const int64_t nec03 = c0->ne[3];
  8694. const int64_t nec10 = c1->ne[0];
  8695. const int64_t nec11 = c1->ne[1];
  8696. //const int64_t nec12 = c1->ne[2];
  8697. //const int64_t nec13 = c1->ne[3];
  8698. const int64_t ne0 = dst->ne[0];
  8699. const int64_t ne1 = dst->ne[1];
  8700. const int64_t ne2 = dst->ne[2];
  8701. //const int64_t ne3 = dst->ne[3];
  8702. const int nba0 = a->nb[0];
  8703. const int nba1 = a->nb[1];
  8704. const int nba2 = a->nb[2];
  8705. const int nba3 = a->nb[3];
  8706. const int nbb00 = b0->nb[0];
  8707. const int nbb01 = b0->nb[1];
  8708. const int nbb02 = b0->nb[2];
  8709. const int nbb03 = b0->nb[3];
  8710. const int nbb10 = b1->nb[0];
  8711. //const int nbb11 = b1->nb[1];
  8712. //const int nbb12 = b1->nb[2];
  8713. //const int nbb13 = b1->nb[3];
  8714. const int nbc00 = c0->nb[0];
  8715. const int nbc01 = c0->nb[1];
  8716. const int nbc02 = c0->nb[2];
  8717. const int nbc03 = c0->nb[3];
  8718. const int nbc10 = c1->nb[0];
  8719. //const int nbc11 = c1->nb[1];
  8720. //const int nbc12 = c1->nb[2];
  8721. //const int nbc13 = c1->nb[3];
  8722. const int nb0 = dst->nb[0];
  8723. const int nb1 = dst->nb[1];
  8724. const int nb2 = dst->nb[2];
  8725. const int nb3 = dst->nb[3];
  8726. const int ith = params->ith;
  8727. const int nth = params->nth;
  8728. const int64_t D = nea0;
  8729. //const int64_t N = nea1;
  8730. const int64_t M = neb01;
  8731. GGML_ASSERT(ne0 == nea0);
  8732. GGML_ASSERT(ne1 == nea1);
  8733. GGML_ASSERT(ne2 == nea2);
  8734. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8735. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8736. GGML_ASSERT(nbb10 == sizeof(float));
  8737. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8738. GGML_ASSERT(nbc10 == sizeof(float));
  8739. GGML_ASSERT(neb00 == D);
  8740. GGML_ASSERT(neb01 == M);
  8741. GGML_ASSERT(neb10 == M);
  8742. GGML_ASSERT(neb11 == 1);
  8743. GGML_ASSERT(nec00 == M);
  8744. GGML_ASSERT(nec01 == D);
  8745. GGML_ASSERT(nec10 == D);
  8746. GGML_ASSERT(nec11 == 1);
  8747. // dst cannot be transposed or permuted
  8748. GGML_ASSERT(nb0 == sizeof(float));
  8749. GGML_ASSERT(nb0 <= nb1);
  8750. GGML_ASSERT(nb1 <= nb2);
  8751. GGML_ASSERT(nb2 <= nb3);
  8752. if (params->type == GGML_TASK_INIT) {
  8753. return;
  8754. }
  8755. if (params->type == GGML_TASK_FINALIZE) {
  8756. return;
  8757. }
  8758. // parallelize by a rows using ggml_vec_dot_f32
  8759. // total rows in a
  8760. const int nr = nea1*nea2*nea3;
  8761. // rows per thread
  8762. const int dr = (nr + nth - 1)/nth;
  8763. // row range for this thread
  8764. const int ir0 = dr*ith;
  8765. const int ir1 = MIN(ir0 + dr, nr);
  8766. for (int ir = ir0; ir < ir1; ++ir) {
  8767. // a indices
  8768. const int ia3 = ir/(nea2*nea1);
  8769. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8770. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8771. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8772. for (int64_t ic = 0; ic < neb01; ++ic) {
  8773. // b0 indices
  8774. const int ib03 = ia3;
  8775. const int ib02 = ia2;
  8776. const int ib01 = ic;
  8777. // S indices
  8778. const int i1 = ib01;
  8779. ggml_vec_dot_f16(nea0,
  8780. S + i1,
  8781. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8782. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8783. }
  8784. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8785. //ggml_vec_gelu_f32(neb01, S, S);
  8786. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8787. for (int64_t i = 0; i < M; i++) {
  8788. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8789. }
  8790. ggml_vec_gelu_f16(neb01, S16, S16);
  8791. {
  8792. // dst indices
  8793. const int i1 = ia1;
  8794. const int i2 = ia2;
  8795. const int i3 = ia3;
  8796. for (int64_t ic = 0; ic < nec01; ++ic) {
  8797. ggml_vec_dot_f16(neb01,
  8798. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8799. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8800. S16);
  8801. }
  8802. ggml_vec_add_f32(nec01,
  8803. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8804. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8805. (float *) c1->data);
  8806. }
  8807. }
  8808. }
  8809. static void ggml_compute_forward_flash_ff(
  8810. const struct ggml_compute_params * params,
  8811. const struct ggml_tensor * a,
  8812. const struct ggml_tensor * b0,
  8813. const struct ggml_tensor * b1,
  8814. const struct ggml_tensor * c0,
  8815. const struct ggml_tensor * c1,
  8816. struct ggml_tensor * dst) {
  8817. switch (b0->type) {
  8818. case GGML_TYPE_F16:
  8819. {
  8820. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8821. } break;
  8822. case GGML_TYPE_F32:
  8823. {
  8824. GGML_ASSERT(false); // TODO
  8825. } break;
  8826. default:
  8827. {
  8828. GGML_ASSERT(false);
  8829. } break;
  8830. }
  8831. }
  8832. // ggml_compute_forward_map_unary
  8833. static void ggml_compute_forward_map_unary_f32(
  8834. const struct ggml_compute_params * params,
  8835. const struct ggml_tensor * src0,
  8836. struct ggml_tensor * dst,
  8837. const ggml_unary_op_f32_t fun) {
  8838. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8840. return;
  8841. }
  8842. const int n = ggml_nrows(src0);
  8843. const int nc = src0->ne[0];
  8844. assert( dst->nb[0] == sizeof(float));
  8845. assert(src0->nb[0] == sizeof(float));
  8846. for (int i = 0; i < n; i++) {
  8847. fun(nc,
  8848. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8849. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8850. }
  8851. }
  8852. static void ggml_compute_forward_map_unary(
  8853. const struct ggml_compute_params * params,
  8854. const struct ggml_tensor * src0,
  8855. struct ggml_tensor * dst,
  8856. const ggml_unary_op_f32_t fun) {
  8857. switch (src0->type) {
  8858. case GGML_TYPE_F32:
  8859. {
  8860. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8861. } break;
  8862. default:
  8863. {
  8864. GGML_ASSERT(false);
  8865. } break;
  8866. }
  8867. }
  8868. // ggml_compute_forward_map_binary
  8869. static void ggml_compute_forward_map_binary_f32(
  8870. const struct ggml_compute_params * params,
  8871. const struct ggml_tensor * src0,
  8872. const struct ggml_tensor * src1,
  8873. struct ggml_tensor * dst,
  8874. const ggml_binary_op_f32_t fun) {
  8875. assert(params->ith == 0);
  8876. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8877. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8878. return;
  8879. }
  8880. const int n = ggml_nrows(src0);
  8881. const int nc = src0->ne[0];
  8882. assert( dst->nb[0] == sizeof(float));
  8883. assert(src0->nb[0] == sizeof(float));
  8884. assert(src1->nb[0] == sizeof(float));
  8885. for (int i = 0; i < n; i++) {
  8886. fun(nc,
  8887. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8888. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8889. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8890. }
  8891. }
  8892. static void ggml_compute_forward_map_binary(
  8893. const struct ggml_compute_params * params,
  8894. const struct ggml_tensor * src0,
  8895. const struct ggml_tensor * src1,
  8896. struct ggml_tensor * dst,
  8897. const ggml_binary_op_f32_t fun) {
  8898. switch (src0->type) {
  8899. case GGML_TYPE_F32:
  8900. {
  8901. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8902. } break;
  8903. default:
  8904. {
  8905. GGML_ASSERT(false);
  8906. } break;
  8907. }
  8908. }
  8909. /////////////////////////////////
  8910. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8911. GGML_ASSERT(params);
  8912. switch (tensor->op) {
  8913. case GGML_OP_DUP:
  8914. {
  8915. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8916. } break;
  8917. case GGML_OP_ADD:
  8918. {
  8919. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8920. } break;
  8921. case GGML_OP_SUB:
  8922. {
  8923. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8924. } break;
  8925. case GGML_OP_MUL:
  8926. {
  8927. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8928. } break;
  8929. case GGML_OP_DIV:
  8930. {
  8931. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8932. } break;
  8933. case GGML_OP_SQR:
  8934. {
  8935. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8936. } break;
  8937. case GGML_OP_SQRT:
  8938. {
  8939. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8940. } break;
  8941. case GGML_OP_SUM:
  8942. {
  8943. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8944. } break;
  8945. case GGML_OP_MEAN:
  8946. {
  8947. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8948. } break;
  8949. case GGML_OP_REPEAT:
  8950. {
  8951. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8952. } break;
  8953. case GGML_OP_ABS:
  8954. {
  8955. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8956. } break;
  8957. case GGML_OP_SGN:
  8958. {
  8959. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8960. } break;
  8961. case GGML_OP_NEG:
  8962. {
  8963. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8964. } break;
  8965. case GGML_OP_STEP:
  8966. {
  8967. ggml_compute_forward_step(params, tensor->src0, tensor);
  8968. } break;
  8969. case GGML_OP_RELU:
  8970. {
  8971. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8972. } break;
  8973. case GGML_OP_GELU:
  8974. {
  8975. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8976. } break;
  8977. case GGML_OP_SILU:
  8978. {
  8979. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8980. } break;
  8981. case GGML_OP_NORM:
  8982. {
  8983. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8984. } break;
  8985. case GGML_OP_RMS_NORM:
  8986. {
  8987. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8988. } break;
  8989. case GGML_OP_MUL_MAT:
  8990. {
  8991. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8992. } break;
  8993. case GGML_OP_SCALE:
  8994. {
  8995. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8996. } break;
  8997. case GGML_OP_CPY:
  8998. {
  8999. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  9000. } break;
  9001. case GGML_OP_CONT:
  9002. {
  9003. ggml_compute_forward_cont(params, tensor->src0, tensor);
  9004. } break;
  9005. case GGML_OP_RESHAPE:
  9006. {
  9007. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  9008. } break;
  9009. case GGML_OP_VIEW:
  9010. {
  9011. ggml_compute_forward_view(params, tensor->src0);
  9012. } break;
  9013. case GGML_OP_PERMUTE:
  9014. {
  9015. ggml_compute_forward_permute(params, tensor->src0);
  9016. } break;
  9017. case GGML_OP_TRANSPOSE:
  9018. {
  9019. ggml_compute_forward_transpose(params, tensor->src0);
  9020. } break;
  9021. case GGML_OP_GET_ROWS:
  9022. {
  9023. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  9024. } break;
  9025. case GGML_OP_DIAG_MASK_INF:
  9026. {
  9027. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  9028. } break;
  9029. case GGML_OP_SOFT_MAX:
  9030. {
  9031. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  9032. } break;
  9033. case GGML_OP_ROPE:
  9034. {
  9035. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  9036. } break;
  9037. case GGML_OP_ALIBI:
  9038. {
  9039. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  9040. } break;
  9041. case GGML_OP_CONV_1D_1S:
  9042. {
  9043. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  9044. } break;
  9045. case GGML_OP_CONV_1D_2S:
  9046. {
  9047. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  9048. } break;
  9049. case GGML_OP_FLASH_ATTN:
  9050. {
  9051. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  9052. GGML_ASSERT(t == 0 || t == 1);
  9053. bool masked = t != 0;
  9054. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  9055. } break;
  9056. case GGML_OP_FLASH_FF:
  9057. {
  9058. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  9059. } break;
  9060. case GGML_OP_MAP_UNARY:
  9061. {
  9062. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  9063. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  9064. }
  9065. break;
  9066. case GGML_OP_MAP_BINARY:
  9067. {
  9068. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  9069. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  9070. }
  9071. break;
  9072. case GGML_OP_NONE:
  9073. {
  9074. // nop
  9075. } break;
  9076. case GGML_OP_COUNT:
  9077. {
  9078. GGML_ASSERT(false);
  9079. } break;
  9080. }
  9081. }
  9082. ////////////////////////////////////////////////////////////////////////////////
  9083. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  9084. struct ggml_tensor * src0 = tensor->src0;
  9085. struct ggml_tensor * src1 = tensor->src1;
  9086. switch (tensor->op) {
  9087. case GGML_OP_DUP:
  9088. {
  9089. if (src0->grad) {
  9090. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9091. }
  9092. } break;
  9093. case GGML_OP_ADD:
  9094. {
  9095. if (src0->grad) {
  9096. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9097. }
  9098. if (src1->grad) {
  9099. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  9100. }
  9101. } break;
  9102. case GGML_OP_SUB:
  9103. {
  9104. if (src0->grad) {
  9105. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9106. }
  9107. if (src1->grad) {
  9108. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  9109. }
  9110. } break;
  9111. case GGML_OP_MUL:
  9112. {
  9113. if (src0->grad) {
  9114. src0->grad =
  9115. ggml_add_impl(ctx,
  9116. src0->grad,
  9117. ggml_mul(ctx, src1, tensor->grad),
  9118. inplace);
  9119. }
  9120. if (src1->grad) {
  9121. src1->grad =
  9122. ggml_add_impl(ctx,
  9123. src1->grad,
  9124. ggml_mul(ctx, src0, tensor->grad),
  9125. inplace);
  9126. }
  9127. } break;
  9128. case GGML_OP_DIV:
  9129. {
  9130. if (src0->grad) {
  9131. src0->grad =
  9132. ggml_add_impl(ctx,
  9133. src0->grad,
  9134. ggml_div(ctx, tensor->grad, src1),
  9135. inplace);
  9136. }
  9137. if (src1->grad) {
  9138. src1->grad =
  9139. ggml_sub_impl(ctx,
  9140. src1->grad,
  9141. ggml_mul(ctx,
  9142. tensor->grad,
  9143. ggml_div(ctx, tensor, src1)),
  9144. inplace);
  9145. }
  9146. } break;
  9147. case GGML_OP_SQR:
  9148. {
  9149. if (src0->grad) {
  9150. src0->grad =
  9151. ggml_add_impl(ctx,
  9152. src0->grad,
  9153. ggml_mul(ctx,
  9154. ggml_mul(ctx, src0, tensor->grad),
  9155. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  9156. inplace);
  9157. }
  9158. } break;
  9159. case GGML_OP_SQRT:
  9160. {
  9161. if (src0->grad) {
  9162. src0->grad =
  9163. ggml_add_impl(ctx,
  9164. src0->grad,
  9165. ggml_div(ctx,
  9166. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  9167. tensor),
  9168. inplace);
  9169. }
  9170. } break;
  9171. case GGML_OP_SUM:
  9172. {
  9173. if (src0->grad) {
  9174. src0->grad =
  9175. ggml_add_impl(ctx,
  9176. src0->grad,
  9177. ggml_repeat(ctx, tensor->grad, src0->grad),
  9178. inplace);
  9179. }
  9180. } break;
  9181. case GGML_OP_MEAN:
  9182. {
  9183. GGML_ASSERT(false); // TODO: implement
  9184. } break;
  9185. case GGML_OP_REPEAT:
  9186. {
  9187. if (src0->grad) {
  9188. src0->grad =
  9189. ggml_add_impl(ctx,
  9190. src0->grad,
  9191. ggml_sum(ctx, tensor->grad),
  9192. inplace);
  9193. }
  9194. } break;
  9195. case GGML_OP_ABS:
  9196. {
  9197. if (src0->grad) {
  9198. src0->grad =
  9199. ggml_add_impl(ctx,
  9200. src0->grad,
  9201. ggml_mul(ctx,
  9202. ggml_sgn(ctx, src0),
  9203. tensor->grad),
  9204. inplace);
  9205. }
  9206. } break;
  9207. case GGML_OP_SGN:
  9208. {
  9209. if (src0->grad) {
  9210. // noop
  9211. }
  9212. } break;
  9213. case GGML_OP_NEG:
  9214. {
  9215. if (src0->grad) {
  9216. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9217. }
  9218. } break;
  9219. case GGML_OP_STEP:
  9220. {
  9221. if (src0->grad) {
  9222. // noop
  9223. }
  9224. } break;
  9225. case GGML_OP_RELU:
  9226. {
  9227. if (src0->grad) {
  9228. src0->grad = ggml_sub_impl(ctx,
  9229. src0->grad,
  9230. ggml_mul(ctx,
  9231. ggml_step(ctx, src0),
  9232. tensor->grad),
  9233. inplace);
  9234. }
  9235. } break;
  9236. case GGML_OP_GELU:
  9237. {
  9238. GGML_ASSERT(false); // TODO: not implemented
  9239. } break;
  9240. case GGML_OP_ALIBI:
  9241. {
  9242. GGML_ASSERT(false); // TODO: not implemented
  9243. } break;
  9244. case GGML_OP_SILU:
  9245. {
  9246. GGML_ASSERT(false); // TODO: not implemented
  9247. } break;
  9248. case GGML_OP_NORM:
  9249. {
  9250. GGML_ASSERT(false); // TODO: not implemented
  9251. } break;
  9252. case GGML_OP_RMS_NORM:
  9253. {
  9254. GGML_ASSERT(false); // TODO: not implemented
  9255. } break;
  9256. case GGML_OP_MUL_MAT:
  9257. {
  9258. if (src0->grad) {
  9259. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9260. GGML_ASSERT(false);
  9261. }
  9262. if (src1->grad) {
  9263. src1->grad =
  9264. ggml_add_impl(ctx,
  9265. src1->grad,
  9266. ggml_mul_mat(ctx,
  9267. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9268. tensor->grad),
  9269. inplace);
  9270. }
  9271. } break;
  9272. case GGML_OP_SCALE:
  9273. {
  9274. GGML_ASSERT(false); // TODO: not implemented
  9275. } break;
  9276. case GGML_OP_CPY:
  9277. {
  9278. GGML_ASSERT(false); // TODO: not implemented
  9279. } break;
  9280. case GGML_OP_CONT:
  9281. {
  9282. GGML_ASSERT(false); // TODO: not implemented
  9283. } break;
  9284. case GGML_OP_RESHAPE:
  9285. {
  9286. GGML_ASSERT(false); // TODO: not implemented
  9287. } break;
  9288. case GGML_OP_VIEW:
  9289. {
  9290. GGML_ASSERT(false); // not supported
  9291. } break;
  9292. case GGML_OP_PERMUTE:
  9293. {
  9294. GGML_ASSERT(false); // TODO: not implemented
  9295. } break;
  9296. case GGML_OP_TRANSPOSE:
  9297. {
  9298. GGML_ASSERT(false); // TODO: not implemented
  9299. } break;
  9300. case GGML_OP_GET_ROWS:
  9301. {
  9302. GGML_ASSERT(false); // TODO: not implemented
  9303. } break;
  9304. case GGML_OP_DIAG_MASK_INF:
  9305. {
  9306. GGML_ASSERT(false); // TODO: not implemented
  9307. } break;
  9308. case GGML_OP_SOFT_MAX:
  9309. {
  9310. GGML_ASSERT(false); // TODO: not implemented
  9311. } break;
  9312. case GGML_OP_ROPE:
  9313. {
  9314. GGML_ASSERT(false); // TODO: not implemented
  9315. } break;
  9316. case GGML_OP_CONV_1D_1S:
  9317. {
  9318. GGML_ASSERT(false); // TODO: not implemented
  9319. } break;
  9320. case GGML_OP_CONV_1D_2S:
  9321. {
  9322. GGML_ASSERT(false); // TODO: not implemented
  9323. } break;
  9324. case GGML_OP_FLASH_ATTN:
  9325. {
  9326. GGML_ASSERT(false); // not supported
  9327. } break;
  9328. case GGML_OP_FLASH_FF:
  9329. {
  9330. GGML_ASSERT(false); // not supported
  9331. } break;
  9332. case GGML_OP_MAP_UNARY:
  9333. case GGML_OP_MAP_BINARY:
  9334. {
  9335. GGML_ASSERT(false); // not supported
  9336. } break;
  9337. case GGML_OP_NONE:
  9338. {
  9339. // nop
  9340. } break;
  9341. case GGML_OP_COUNT:
  9342. {
  9343. GGML_ASSERT(false);
  9344. } break;
  9345. }
  9346. }
  9347. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9348. if (node->grad == NULL) {
  9349. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9350. // it can also happen during forward pass, if the user performs computations with constants
  9351. if (node->op != GGML_OP_NONE) {
  9352. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9353. }
  9354. }
  9355. // check if already visited
  9356. for (int i = 0; i < cgraph->n_nodes; i++) {
  9357. if (cgraph->nodes[i] == node) {
  9358. return;
  9359. }
  9360. }
  9361. for (int i = 0; i < cgraph->n_leafs; i++) {
  9362. if (cgraph->leafs[i] == node) {
  9363. return;
  9364. }
  9365. }
  9366. if (node->src0) {
  9367. ggml_visit_parents(cgraph, node->src0);
  9368. }
  9369. if (node->src1) {
  9370. ggml_visit_parents(cgraph, node->src1);
  9371. }
  9372. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9373. if (node->opt[i]) {
  9374. ggml_visit_parents(cgraph, node->opt[i]);
  9375. }
  9376. }
  9377. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9378. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9379. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9380. cgraph->leafs[cgraph->n_leafs] = node;
  9381. cgraph->n_leafs++;
  9382. } else {
  9383. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9384. cgraph->nodes[cgraph->n_nodes] = node;
  9385. cgraph->grads[cgraph->n_nodes] = node->grad;
  9386. cgraph->n_nodes++;
  9387. }
  9388. }
  9389. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9390. if (!expand) {
  9391. cgraph->n_nodes = 0;
  9392. cgraph->n_leafs = 0;
  9393. }
  9394. const int n0 = cgraph->n_nodes;
  9395. UNUSED(n0);
  9396. ggml_visit_parents(cgraph, tensor);
  9397. const int n_new = cgraph->n_nodes - n0;
  9398. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9399. if (n_new > 0) {
  9400. // the last added node should always be starting point
  9401. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9402. }
  9403. }
  9404. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9405. ggml_build_forward_impl(cgraph, tensor, true);
  9406. }
  9407. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9408. struct ggml_cgraph result = {
  9409. /*.n_nodes =*/ 0,
  9410. /*.n_leafs =*/ 0,
  9411. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9412. /*.work_size =*/ 0,
  9413. /*.work =*/ NULL,
  9414. /*.nodes =*/ { NULL },
  9415. /*.grads =*/ { NULL },
  9416. /*.leafs =*/ { NULL },
  9417. /*.perf_runs =*/ 0,
  9418. /*.perf_cycles =*/ 0,
  9419. /*.perf_time_us =*/ 0,
  9420. };
  9421. ggml_build_forward_impl(&result, tensor, false);
  9422. return result;
  9423. }
  9424. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9425. struct ggml_cgraph result = *gf;
  9426. GGML_ASSERT(gf->n_nodes > 0);
  9427. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9428. if (keep) {
  9429. for (int i = 0; i < gf->n_nodes; i++) {
  9430. struct ggml_tensor * node = gf->nodes[i];
  9431. if (node->grad) {
  9432. node->grad = ggml_dup_tensor(ctx, node);
  9433. gf->grads[i] = node->grad;
  9434. }
  9435. }
  9436. }
  9437. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9438. struct ggml_tensor * node = gf->nodes[i];
  9439. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9440. if (node->grad) {
  9441. ggml_compute_backward(ctx, node, keep);
  9442. }
  9443. }
  9444. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9445. struct ggml_tensor * node = gf->nodes[i];
  9446. if (node->is_param) {
  9447. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9448. ggml_build_forward_impl(&result, node->grad, true);
  9449. }
  9450. }
  9451. return result;
  9452. }
  9453. //
  9454. // thread data
  9455. //
  9456. // synchronization is done via busy loops
  9457. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9458. //
  9459. #ifdef __APPLE__
  9460. //#include <os/lock.h>
  9461. //
  9462. //typedef os_unfair_lock ggml_lock_t;
  9463. //
  9464. //#define ggml_lock_init(x) UNUSED(x)
  9465. //#define ggml_lock_destroy(x) UNUSED(x)
  9466. //#define ggml_lock_lock os_unfair_lock_lock
  9467. //#define ggml_lock_unlock os_unfair_lock_unlock
  9468. //
  9469. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9470. typedef int ggml_lock_t;
  9471. #define ggml_lock_init(x) UNUSED(x)
  9472. #define ggml_lock_destroy(x) UNUSED(x)
  9473. #define ggml_lock_lock(x) UNUSED(x)
  9474. #define ggml_lock_unlock(x) UNUSED(x)
  9475. #define GGML_LOCK_INITIALIZER 0
  9476. typedef pthread_t ggml_thread_t;
  9477. #define ggml_thread_create pthread_create
  9478. #define ggml_thread_join pthread_join
  9479. #else
  9480. //typedef pthread_spinlock_t ggml_lock_t;
  9481. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9482. //#define ggml_lock_destroy pthread_spin_destroy
  9483. //#define ggml_lock_lock pthread_spin_lock
  9484. //#define ggml_lock_unlock pthread_spin_unlock
  9485. typedef int ggml_lock_t;
  9486. #define ggml_lock_init(x) UNUSED(x)
  9487. #define ggml_lock_destroy(x) UNUSED(x)
  9488. #define ggml_lock_lock(x) UNUSED(x)
  9489. #define ggml_lock_unlock(x) UNUSED(x)
  9490. #define GGML_LOCK_INITIALIZER 0
  9491. typedef pthread_t ggml_thread_t;
  9492. #define ggml_thread_create pthread_create
  9493. #define ggml_thread_join pthread_join
  9494. #endif
  9495. struct ggml_compute_state_shared {
  9496. ggml_lock_t spin;
  9497. int n_threads;
  9498. // synchronization primitives
  9499. atomic_int n_ready;
  9500. atomic_bool has_work;
  9501. atomic_bool stop; // stop all threads
  9502. };
  9503. struct ggml_compute_state {
  9504. ggml_thread_t thrd;
  9505. struct ggml_compute_params params;
  9506. struct ggml_tensor * node;
  9507. struct ggml_compute_state_shared * shared;
  9508. };
  9509. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9510. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9511. const int n_threads = state->shared->n_threads;
  9512. while (true) {
  9513. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9514. atomic_store(&state->shared->has_work, false);
  9515. } else {
  9516. while (atomic_load(&state->shared->has_work)) {
  9517. if (atomic_load(&state->shared->stop)) {
  9518. return 0;
  9519. }
  9520. ggml_lock_lock (&state->shared->spin);
  9521. ggml_lock_unlock(&state->shared->spin);
  9522. }
  9523. }
  9524. atomic_fetch_sub(&state->shared->n_ready, 1);
  9525. // wait for work
  9526. while (!atomic_load(&state->shared->has_work)) {
  9527. if (atomic_load(&state->shared->stop)) {
  9528. return 0;
  9529. }
  9530. ggml_lock_lock (&state->shared->spin);
  9531. ggml_lock_unlock(&state->shared->spin);
  9532. }
  9533. // check if we should stop
  9534. if (atomic_load(&state->shared->stop)) {
  9535. break;
  9536. }
  9537. if (state->node) {
  9538. if (state->params.ith < state->params.nth) {
  9539. ggml_compute_forward(&state->params, state->node);
  9540. }
  9541. state->node = NULL;
  9542. } else {
  9543. break;
  9544. }
  9545. }
  9546. return 0;
  9547. }
  9548. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9549. const int n_threads = cgraph->n_threads;
  9550. struct ggml_compute_state_shared state_shared = {
  9551. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9552. /*.n_threads =*/ n_threads,
  9553. /*.n_ready =*/ 0,
  9554. /*.has_work =*/ false,
  9555. /*.stop =*/ false,
  9556. };
  9557. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9558. // create thread pool
  9559. if (n_threads > 1) {
  9560. ggml_lock_init(&state_shared.spin);
  9561. atomic_store(&state_shared.has_work, true);
  9562. for (int j = 0; j < n_threads - 1; j++) {
  9563. workers[j] = (struct ggml_compute_state) {
  9564. .thrd = 0,
  9565. .params = {
  9566. .type = GGML_TASK_COMPUTE,
  9567. .ith = j + 1,
  9568. .nth = n_threads,
  9569. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9570. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9571. },
  9572. .node = NULL,
  9573. .shared = &state_shared,
  9574. };
  9575. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9576. GGML_ASSERT(rc == 0);
  9577. UNUSED(rc);
  9578. }
  9579. }
  9580. // initialize tasks + work buffer
  9581. {
  9582. size_t work_size = 0;
  9583. // thread scheduling for the different operations
  9584. for (int i = 0; i < cgraph->n_nodes; i++) {
  9585. struct ggml_tensor * node = cgraph->nodes[i];
  9586. switch (node->op) {
  9587. case GGML_OP_CPY:
  9588. case GGML_OP_DUP:
  9589. {
  9590. node->n_tasks = n_threads;
  9591. size_t cur = 0;
  9592. if (ggml_is_quantized(node->type)) {
  9593. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9594. }
  9595. work_size = MAX(work_size, cur);
  9596. } break;
  9597. case GGML_OP_ADD:
  9598. {
  9599. node->n_tasks = n_threads;
  9600. size_t cur = 0;
  9601. if (ggml_is_quantized(node->src0->type)) {
  9602. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9603. }
  9604. work_size = MAX(work_size, cur);
  9605. } break;
  9606. case GGML_OP_SUB:
  9607. case GGML_OP_MUL:
  9608. case GGML_OP_DIV:
  9609. case GGML_OP_SQR:
  9610. case GGML_OP_SQRT:
  9611. case GGML_OP_SUM:
  9612. case GGML_OP_MEAN:
  9613. case GGML_OP_REPEAT:
  9614. case GGML_OP_ABS:
  9615. case GGML_OP_SGN:
  9616. case GGML_OP_NEG:
  9617. case GGML_OP_STEP:
  9618. case GGML_OP_RELU:
  9619. {
  9620. node->n_tasks = 1;
  9621. } break;
  9622. case GGML_OP_GELU:
  9623. {
  9624. node->n_tasks = n_threads;
  9625. } break;
  9626. case GGML_OP_SILU:
  9627. {
  9628. node->n_tasks = n_threads;
  9629. } break;
  9630. case GGML_OP_NORM:
  9631. case GGML_OP_RMS_NORM:
  9632. {
  9633. node->n_tasks = n_threads;
  9634. } break;
  9635. case GGML_OP_MUL_MAT:
  9636. {
  9637. node->n_tasks = n_threads;
  9638. // TODO: use different scheduling for different matrix sizes
  9639. //const int nr0 = ggml_nrows(node->src0);
  9640. //const int nr1 = ggml_nrows(node->src1);
  9641. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9642. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9643. size_t cur = 0;
  9644. #if defined(GGML_USE_CUBLAS)
  9645. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  9646. node->n_tasks = 1; // TODO: this actually is doing nothing
  9647. // the threads are still spinning
  9648. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  9649. }
  9650. else
  9651. #endif
  9652. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9653. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9654. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9655. node->n_tasks = 1; // TODO: this actually is doing nothing
  9656. // the threads are still spinning
  9657. // here we need memory just for single 2D matrix from src0
  9658. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9659. } else {
  9660. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9661. }
  9662. #else
  9663. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9664. #endif
  9665. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9666. cur = 0;
  9667. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9668. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9669. node->n_tasks = 1;
  9670. }
  9671. #endif
  9672. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9673. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9674. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9675. node->n_tasks = 1;
  9676. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9677. } else
  9678. #endif
  9679. {
  9680. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9681. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9682. }
  9683. } else {
  9684. GGML_ASSERT(false);
  9685. }
  9686. work_size = MAX(work_size, cur);
  9687. } break;
  9688. case GGML_OP_SCALE:
  9689. {
  9690. node->n_tasks = n_threads;
  9691. } break;
  9692. case GGML_OP_CONT:
  9693. case GGML_OP_RESHAPE:
  9694. case GGML_OP_VIEW:
  9695. case GGML_OP_PERMUTE:
  9696. case GGML_OP_TRANSPOSE:
  9697. case GGML_OP_GET_ROWS:
  9698. case GGML_OP_DIAG_MASK_INF:
  9699. {
  9700. node->n_tasks = 1;
  9701. } break;
  9702. case GGML_OP_SOFT_MAX:
  9703. {
  9704. node->n_tasks = n_threads;
  9705. } break;
  9706. case GGML_OP_ROPE:
  9707. {
  9708. node->n_tasks = n_threads;
  9709. } break;
  9710. case GGML_OP_ALIBI:
  9711. {
  9712. node->n_tasks = 1; //TODO
  9713. } break;
  9714. case GGML_OP_CONV_1D_1S:
  9715. case GGML_OP_CONV_1D_2S:
  9716. {
  9717. node->n_tasks = n_threads;
  9718. GGML_ASSERT(node->src0->ne[3] == 1);
  9719. GGML_ASSERT(node->src1->ne[2] == 1);
  9720. GGML_ASSERT(node->src1->ne[3] == 1);
  9721. size_t cur = 0;
  9722. const int nk = node->src0->ne[0];
  9723. if (node->src0->type == GGML_TYPE_F16 &&
  9724. node->src1->type == GGML_TYPE_F32) {
  9725. cur = sizeof(ggml_fp16_t)*(
  9726. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9727. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9728. );
  9729. } else if (node->src0->type == GGML_TYPE_F32 &&
  9730. node->src1->type == GGML_TYPE_F32) {
  9731. cur = sizeof(float)*(
  9732. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9733. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9734. );
  9735. } else {
  9736. GGML_ASSERT(false);
  9737. }
  9738. work_size = MAX(work_size, cur);
  9739. } break;
  9740. case GGML_OP_FLASH_ATTN:
  9741. {
  9742. node->n_tasks = n_threads;
  9743. size_t cur = 0;
  9744. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9745. if (node->src1->type == GGML_TYPE_F32) {
  9746. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9747. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9748. }
  9749. if (node->src1->type == GGML_TYPE_F16) {
  9750. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9751. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9752. }
  9753. work_size = MAX(work_size, cur);
  9754. } break;
  9755. case GGML_OP_FLASH_FF:
  9756. {
  9757. node->n_tasks = n_threads;
  9758. size_t cur = 0;
  9759. if (node->src1->type == GGML_TYPE_F32) {
  9760. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9761. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9762. }
  9763. if (node->src1->type == GGML_TYPE_F16) {
  9764. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9765. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9766. }
  9767. work_size = MAX(work_size, cur);
  9768. } break;
  9769. case GGML_OP_MAP_UNARY:
  9770. case GGML_OP_MAP_BINARY:
  9771. {
  9772. node->n_tasks = 1;
  9773. } break;
  9774. case GGML_OP_NONE:
  9775. {
  9776. node->n_tasks = 1;
  9777. } break;
  9778. case GGML_OP_COUNT:
  9779. {
  9780. GGML_ASSERT(false);
  9781. } break;
  9782. }
  9783. }
  9784. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9785. GGML_ASSERT(false); // TODO: better handling
  9786. }
  9787. if (work_size > 0 && cgraph->work == NULL) {
  9788. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9789. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9790. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9791. }
  9792. }
  9793. const int64_t perf_start_cycles = ggml_perf_cycles();
  9794. const int64_t perf_start_time_us = ggml_perf_time_us();
  9795. for (int i = 0; i < cgraph->n_nodes; i++) {
  9796. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9797. struct ggml_tensor * node = cgraph->nodes[i];
  9798. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9799. //if (node->grad == NULL && node->perf_runs > 0) {
  9800. // continue;
  9801. //}
  9802. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9803. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9804. // INIT
  9805. struct ggml_compute_params params = {
  9806. /*.type =*/ GGML_TASK_INIT,
  9807. /*.ith =*/ 0,
  9808. /*.nth =*/ node->n_tasks,
  9809. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9810. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9811. };
  9812. ggml_compute_forward(&params, node);
  9813. // COMPUTE
  9814. if (node->n_tasks > 1) {
  9815. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9816. atomic_store(&state_shared.has_work, false);
  9817. }
  9818. while (atomic_load(&state_shared.has_work)) {
  9819. ggml_lock_lock (&state_shared.spin);
  9820. ggml_lock_unlock(&state_shared.spin);
  9821. }
  9822. // launch thread pool
  9823. for (int j = 0; j < n_threads - 1; j++) {
  9824. workers[j].params = (struct ggml_compute_params) {
  9825. .type = GGML_TASK_COMPUTE,
  9826. .ith = j + 1,
  9827. .nth = node->n_tasks,
  9828. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9829. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9830. };
  9831. workers[j].node = node;
  9832. }
  9833. atomic_fetch_sub(&state_shared.n_ready, 1);
  9834. while (atomic_load(&state_shared.n_ready) > 0) {
  9835. ggml_lock_lock (&state_shared.spin);
  9836. ggml_lock_unlock(&state_shared.spin);
  9837. }
  9838. atomic_store(&state_shared.has_work, true);
  9839. }
  9840. params.type = GGML_TASK_COMPUTE;
  9841. ggml_compute_forward(&params, node);
  9842. // wait for thread pool
  9843. if (node->n_tasks > 1) {
  9844. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9845. atomic_store(&state_shared.has_work, false);
  9846. }
  9847. while (atomic_load(&state_shared.has_work)) {
  9848. ggml_lock_lock (&state_shared.spin);
  9849. ggml_lock_unlock(&state_shared.spin);
  9850. }
  9851. atomic_fetch_sub(&state_shared.n_ready, 1);
  9852. while (atomic_load(&state_shared.n_ready) != 0) {
  9853. ggml_lock_lock (&state_shared.spin);
  9854. ggml_lock_unlock(&state_shared.spin);
  9855. }
  9856. }
  9857. // FINALIZE
  9858. if (node->n_tasks > 1) {
  9859. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9860. atomic_store(&state_shared.has_work, false);
  9861. }
  9862. while (atomic_load(&state_shared.has_work)) {
  9863. ggml_lock_lock (&state_shared.spin);
  9864. ggml_lock_unlock(&state_shared.spin);
  9865. }
  9866. // launch thread pool
  9867. for (int j = 0; j < n_threads - 1; j++) {
  9868. workers[j].params = (struct ggml_compute_params) {
  9869. .type = GGML_TASK_FINALIZE,
  9870. .ith = j + 1,
  9871. .nth = node->n_tasks,
  9872. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9873. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9874. };
  9875. workers[j].node = node;
  9876. }
  9877. atomic_fetch_sub(&state_shared.n_ready, 1);
  9878. while (atomic_load(&state_shared.n_ready) > 0) {
  9879. ggml_lock_lock (&state_shared.spin);
  9880. ggml_lock_unlock(&state_shared.spin);
  9881. }
  9882. atomic_store(&state_shared.has_work, true);
  9883. }
  9884. params.type = GGML_TASK_FINALIZE;
  9885. ggml_compute_forward(&params, node);
  9886. // wait for thread pool
  9887. if (node->n_tasks > 1) {
  9888. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9889. atomic_store(&state_shared.has_work, false);
  9890. }
  9891. while (atomic_load(&state_shared.has_work)) {
  9892. ggml_lock_lock (&state_shared.spin);
  9893. ggml_lock_unlock(&state_shared.spin);
  9894. }
  9895. atomic_fetch_sub(&state_shared.n_ready, 1);
  9896. while (atomic_load(&state_shared.n_ready) != 0) {
  9897. ggml_lock_lock (&state_shared.spin);
  9898. ggml_lock_unlock(&state_shared.spin);
  9899. }
  9900. }
  9901. // performance stats (node)
  9902. {
  9903. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9904. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9905. node->perf_runs++;
  9906. node->perf_cycles += perf_cycles_cur;
  9907. node->perf_time_us += perf_time_us_cur;
  9908. }
  9909. }
  9910. // join thread pool
  9911. if (n_threads > 1) {
  9912. atomic_store(&state_shared.stop, true);
  9913. atomic_store(&state_shared.has_work, true);
  9914. for (int j = 0; j < n_threads - 1; j++) {
  9915. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9916. GGML_ASSERT(rc == 0);
  9917. UNUSED(rc);
  9918. }
  9919. ggml_lock_destroy(&state_shared.spin);
  9920. }
  9921. // performance stats (graph)
  9922. {
  9923. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9924. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9925. cgraph->perf_runs++;
  9926. cgraph->perf_cycles += perf_cycles_cur;
  9927. cgraph->perf_time_us += perf_time_us_cur;
  9928. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9929. __func__, cgraph->perf_runs,
  9930. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9931. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9932. (double) perf_time_us_cur / 1000.0,
  9933. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9934. }
  9935. }
  9936. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9937. for (int i = 0; i < cgraph->n_nodes; i++) {
  9938. struct ggml_tensor * grad = cgraph->grads[i];
  9939. if (grad) {
  9940. ggml_set_zero(grad);
  9941. }
  9942. }
  9943. }
  9944. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9945. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9946. GGML_PRINT("=== GRAPH ===\n");
  9947. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9948. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9949. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9950. for (int i = 0; i < cgraph->n_nodes; i++) {
  9951. struct ggml_tensor * node = cgraph->nodes[i];
  9952. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9953. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9954. i,
  9955. node->ne[0], node->ne[1], node->ne[2],
  9956. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9957. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9958. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9959. (double) node->perf_time_us / 1000.0,
  9960. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9961. }
  9962. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9963. for (int i = 0; i < cgraph->n_leafs; i++) {
  9964. struct ggml_tensor * node = cgraph->leafs[i];
  9965. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9966. i,
  9967. node->ne[0], node->ne[1],
  9968. GGML_OP_LABEL[node->op]);
  9969. }
  9970. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9971. if (perf_total_per_op_us[i] == 0) {
  9972. continue;
  9973. }
  9974. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9975. }
  9976. GGML_PRINT("========================================\n");
  9977. }
  9978. // check if node is part of the graph
  9979. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9980. if (cgraph == NULL) {
  9981. return true;
  9982. }
  9983. for (int i = 0; i < cgraph->n_nodes; i++) {
  9984. if (cgraph->nodes[i] == node) {
  9985. return true;
  9986. }
  9987. }
  9988. return false;
  9989. }
  9990. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9991. for (int i = 0; i < cgraph->n_nodes; i++) {
  9992. struct ggml_tensor * parent = cgraph->nodes[i];
  9993. if (parent->grad == node) {
  9994. return parent;
  9995. }
  9996. }
  9997. return NULL;
  9998. }
  9999. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  10000. char color[16];
  10001. FILE * fp = fopen(filename, "w");
  10002. GGML_ASSERT(fp);
  10003. fprintf(fp, "digraph G {\n");
  10004. fprintf(fp, " newrank = true;\n");
  10005. fprintf(fp, " rankdir = LR;\n");
  10006. for (int i = 0; i < gb->n_nodes; i++) {
  10007. struct ggml_tensor * node = gb->nodes[i];
  10008. if (ggml_graph_get_parent(gb, node) != NULL) {
  10009. continue;
  10010. }
  10011. if (node->is_param) {
  10012. snprintf(color, sizeof(color), "yellow");
  10013. } else if (node->grad) {
  10014. if (ggml_graph_find(gf, node)) {
  10015. snprintf(color, sizeof(color), "green");
  10016. } else {
  10017. snprintf(color, sizeof(color), "lightblue");
  10018. }
  10019. } else {
  10020. snprintf(color, sizeof(color), "white");
  10021. }
  10022. fprintf(fp, " \"%p\" [ "
  10023. "style = filled; fillcolor = %s; shape = record; "
  10024. "label=\"",
  10025. (void *) node, color);
  10026. if (strlen(node->name) > 0) {
  10027. fprintf(fp, "%s |", node->name);
  10028. }
  10029. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  10030. i, node->ne[0], node->ne[1],
  10031. GGML_OP_SYMBOL[node->op]);
  10032. if (node->grad) {
  10033. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  10034. } else {
  10035. fprintf(fp, "\"; ]\n");
  10036. }
  10037. }
  10038. for (int i = 0; i < gb->n_leafs; i++) {
  10039. struct ggml_tensor * node = gb->leafs[i];
  10040. snprintf(color, sizeof(color), "pink");
  10041. fprintf(fp, " \"%p\" [ "
  10042. "style = filled; fillcolor = %s; shape = record; "
  10043. "label=\"<x>",
  10044. (void *) node, color);
  10045. if (strlen(node->name) > 0) {
  10046. fprintf(fp, "%s | ", node->name);
  10047. }
  10048. if (ggml_nelements(node) == 1) {
  10049. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  10050. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  10051. }
  10052. else {
  10053. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  10054. }
  10055. }
  10056. else {
  10057. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  10058. }
  10059. fprintf(fp, "\"; ]\n");
  10060. }
  10061. for (int i = 0; i < gb->n_nodes; i++) {
  10062. struct ggml_tensor * node = gb->nodes[i];
  10063. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  10064. if (node->src0) {
  10065. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  10066. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  10067. parent0 ? (void *) parent0 : (void *) node->src0,
  10068. parent0 ? "g" : "x",
  10069. parent ? (void *) parent : (void *) node,
  10070. parent ? "g" : "x",
  10071. parent ? "empty" : "vee",
  10072. parent ? "dashed" : "solid");
  10073. }
  10074. if (node->src1) {
  10075. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  10076. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  10077. parent1 ? (void *) parent1 : (void *) node->src1,
  10078. parent1 ? "g" : "x",
  10079. parent ? (void *) parent : (void *) node,
  10080. parent ? "g" : "x",
  10081. parent ? "empty" : "vee",
  10082. parent ? "dashed" : "solid");
  10083. }
  10084. }
  10085. for (int i = 0; i < gb->n_leafs; i++) {
  10086. struct ggml_tensor * node = gb->leafs[i];
  10087. if (node->src0) {
  10088. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  10089. (void *) node->src0, "x",
  10090. (void *) node, "x");
  10091. }
  10092. if (node->src1) {
  10093. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  10094. (void *) node->src1, "x",
  10095. (void *) node, "x");
  10096. }
  10097. }
  10098. fprintf(fp, "}\n");
  10099. fclose(fp);
  10100. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  10101. }
  10102. ////////////////////////////////////////////////////////////////////////////////
  10103. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  10104. int i = 0;
  10105. for (int p = 0; p < np; ++p) {
  10106. const int64_t ne = ggml_nelements(ps[p]) ;
  10107. // TODO: add function to set tensor from array
  10108. for (int64_t j = 0; j < ne; ++j) {
  10109. ggml_set_f32_1d(ps[p], j, x[i++]);
  10110. }
  10111. }
  10112. }
  10113. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  10114. int i = 0;
  10115. for (int p = 0; p < np; ++p) {
  10116. const int64_t ne = ggml_nelements(ps[p]) ;
  10117. // TODO: add function to get all elements at once
  10118. for (int64_t j = 0; j < ne; ++j) {
  10119. x[i++] = ggml_get_f32_1d(ps[p], j);
  10120. }
  10121. }
  10122. }
  10123. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  10124. int i = 0;
  10125. for (int p = 0; p < np; ++p) {
  10126. const int64_t ne = ggml_nelements(ps[p]) ;
  10127. // TODO: add function to get all elements at once
  10128. for (int64_t j = 0; j < ne; ++j) {
  10129. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  10130. }
  10131. }
  10132. }
  10133. //
  10134. // ADAM
  10135. //
  10136. // ref: https://arxiv.org/pdf/1412.6980.pdf
  10137. //
  10138. static enum ggml_opt_result ggml_opt_adam(
  10139. struct ggml_context * ctx,
  10140. struct ggml_opt_params params,
  10141. struct ggml_tensor * f,
  10142. struct ggml_cgraph * gf,
  10143. struct ggml_cgraph * gb) {
  10144. GGML_ASSERT(ggml_is_scalar(f));
  10145. gf->n_threads = params.n_threads;
  10146. gb->n_threads = params.n_threads;
  10147. // these will store the parameters we want to optimize
  10148. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10149. int np = 0;
  10150. int nx = 0;
  10151. for (int i = 0; i < gf->n_nodes; ++i) {
  10152. if (gf->nodes[i]->is_param) {
  10153. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10154. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10155. ps[np++] = gf->nodes[i];
  10156. nx += ggml_nelements(gf->nodes[i]);
  10157. }
  10158. }
  10159. // constants
  10160. const float alpha = params.adam.alpha;
  10161. const float beta1 = params.adam.beta1;
  10162. const float beta2 = params.adam.beta2;
  10163. const float eps = params.adam.eps;
  10164. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  10165. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  10166. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  10167. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  10168. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  10169. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  10170. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  10171. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10172. // initialize
  10173. ggml_vec_set_f32(nx, m, 0.0f);
  10174. ggml_vec_set_f32(nx, v, 0.0f);
  10175. // update view
  10176. ggml_opt_get_params(np, ps, x);
  10177. // compute the function value
  10178. ggml_graph_reset (gf);
  10179. ggml_set_f32 (f->grad, 1.0f);
  10180. ggml_graph_compute(ctx, gb);
  10181. float fx_prev = ggml_get_f32_1d(f, 0);
  10182. if (pf) {
  10183. pf[0] = fx_prev;
  10184. }
  10185. int n_no_improvement = 0;
  10186. float fx_best = fx_prev;
  10187. // run the optimizer
  10188. for (int t = 0; t < params.adam.n_iter; ++t) {
  10189. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  10190. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10191. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  10192. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  10193. for (int i = 0; i < np; ++i) {
  10194. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  10195. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  10196. }
  10197. const int64_t t_start_wall = ggml_time_us();
  10198. const int64_t t_start_cpu = ggml_cycles();
  10199. UNUSED(t_start_wall);
  10200. UNUSED(t_start_cpu);
  10201. {
  10202. // update the gradient
  10203. ggml_opt_get_grad(np, ps, g1);
  10204. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  10205. ggml_vec_scale_f32(nx, m, beta1);
  10206. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  10207. // g2 = g1^2
  10208. ggml_vec_sqr_f32 (nx, g2, g1);
  10209. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  10210. ggml_vec_scale_f32(nx, v, beta2);
  10211. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  10212. // m^hat = m_t / (1 - beta1^t)
  10213. // v^hat = v_t / (1 - beta2^t)
  10214. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  10215. ggml_vec_cpy_f32 (nx, mh, m);
  10216. ggml_vec_cpy_f32 (nx, vh, v);
  10217. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  10218. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  10219. ggml_vec_sqrt_f32 (nx, vh, vh);
  10220. ggml_vec_acc1_f32 (nx, vh, eps);
  10221. ggml_vec_div_f32 (nx, mh, mh, vh);
  10222. ggml_vec_sub_f32 (nx, x, x, mh);
  10223. // update the parameters
  10224. ggml_opt_set_params(np, ps, x);
  10225. }
  10226. ggml_graph_reset (gf);
  10227. ggml_set_f32 (f->grad, 1.0f);
  10228. ggml_graph_compute(ctx, gb);
  10229. const float fx = ggml_get_f32_1d(f, 0);
  10230. // check convergence
  10231. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10232. GGML_PRINT_DEBUG("converged\n");
  10233. return GGML_OPT_OK;
  10234. }
  10235. // delta-based convergence test
  10236. if (pf != NULL) {
  10237. // need at least params.past iterations to start checking for convergence
  10238. if (params.past <= t) {
  10239. const float rate = (pf[t%params.past] - fx)/fx;
  10240. if (fabsf(rate) < params.delta) {
  10241. return GGML_OPT_OK;
  10242. }
  10243. }
  10244. pf[t%params.past] = fx;
  10245. }
  10246. // check for improvement
  10247. if (params.max_no_improvement > 0) {
  10248. if (fx_best > fx) {
  10249. fx_best = fx;
  10250. n_no_improvement = 0;
  10251. } else {
  10252. ++n_no_improvement;
  10253. if (n_no_improvement >= params.max_no_improvement) {
  10254. return GGML_OPT_OK;
  10255. }
  10256. }
  10257. }
  10258. fx_prev = fx;
  10259. {
  10260. const int64_t t_end_cpu = ggml_cycles();
  10261. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10262. UNUSED(t_end_cpu);
  10263. const int64_t t_end_wall = ggml_time_us();
  10264. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10265. UNUSED(t_end_wall);
  10266. }
  10267. }
  10268. return GGML_OPT_DID_NOT_CONVERGE;
  10269. }
  10270. //
  10271. // L-BFGS
  10272. //
  10273. // the L-BFGS implementation below is based on the following implementation:
  10274. //
  10275. // https://github.com/chokkan/liblbfgs
  10276. //
  10277. struct ggml_lbfgs_iteration_data {
  10278. float alpha;
  10279. float ys;
  10280. float * s;
  10281. float * y;
  10282. };
  10283. static enum ggml_opt_result linesearch_backtracking(
  10284. struct ggml_context * ctx,
  10285. const struct ggml_opt_params * params,
  10286. int nx,
  10287. float * x,
  10288. float * fx,
  10289. float * g,
  10290. float * d,
  10291. float * step,
  10292. const float * xp,
  10293. struct ggml_tensor * f,
  10294. struct ggml_cgraph * gf,
  10295. struct ggml_cgraph * gb,
  10296. const int np,
  10297. struct ggml_tensor * ps[]) {
  10298. int count = 0;
  10299. float width = 0.0f;
  10300. float dg = 0.0f;
  10301. float finit = 0.0f;
  10302. float dginit = 0.0f;
  10303. float dgtest = 0.0f;
  10304. const float dec = 0.5f;
  10305. const float inc = 2.1f;
  10306. if (*step <= 0.f) {
  10307. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10308. }
  10309. // compute the initial gradient in the search direction
  10310. ggml_vec_dot_f32(nx, &dginit, g, d);
  10311. // make sure that d points to a descent direction
  10312. if (0 < dginit) {
  10313. return GGML_LINESEARCH_FAIL;
  10314. }
  10315. // initialize local variables
  10316. finit = *fx;
  10317. dgtest = params->lbfgs.ftol*dginit;
  10318. while (true) {
  10319. ggml_vec_cpy_f32(nx, x, xp);
  10320. ggml_vec_mad_f32(nx, x, d, *step);
  10321. // evaluate the function and gradient values
  10322. {
  10323. ggml_opt_set_params(np, ps, x);
  10324. ggml_graph_reset (gf);
  10325. ggml_set_f32 (f->grad, 1.0f);
  10326. ggml_graph_compute(ctx, gb);
  10327. ggml_opt_get_grad(np, ps, g);
  10328. *fx = ggml_get_f32_1d(f, 0);
  10329. }
  10330. ++count;
  10331. if (*fx > finit + (*step)*dgtest) {
  10332. width = dec;
  10333. } else {
  10334. // Armijo condition is satisfied
  10335. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10336. return count;
  10337. }
  10338. ggml_vec_dot_f32(nx, &dg, g, d);
  10339. // check the Wolfe condition
  10340. if (dg < params->lbfgs.wolfe * dginit) {
  10341. width = inc;
  10342. } else {
  10343. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10344. // regular Wolfe conditions
  10345. return count;
  10346. }
  10347. if(dg > -params->lbfgs.wolfe*dginit) {
  10348. width = dec;
  10349. } else {
  10350. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10351. return count;
  10352. }
  10353. return count;
  10354. }
  10355. }
  10356. if (*step < params->lbfgs.min_step) {
  10357. return GGML_LINESEARCH_MINIMUM_STEP;
  10358. }
  10359. if (*step > params->lbfgs.max_step) {
  10360. return GGML_LINESEARCH_MAXIMUM_STEP;
  10361. }
  10362. if (params->lbfgs.max_linesearch <= count) {
  10363. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10364. }
  10365. (*step) *= width;
  10366. }
  10367. return GGML_LINESEARCH_FAIL;
  10368. }
  10369. static enum ggml_opt_result ggml_opt_lbfgs(
  10370. struct ggml_context * ctx,
  10371. struct ggml_opt_params params,
  10372. struct ggml_tensor * f,
  10373. struct ggml_cgraph * gf,
  10374. struct ggml_cgraph * gb) {
  10375. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10376. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10377. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10378. return GGML_OPT_INVALID_WOLFE;
  10379. }
  10380. }
  10381. gf->n_threads = params.n_threads;
  10382. gb->n_threads = params.n_threads;
  10383. const int m = params.lbfgs.m;
  10384. // these will store the parameters we want to optimize
  10385. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10386. int np = 0;
  10387. int nx = 0;
  10388. for (int i = 0; i < gf->n_nodes; ++i) {
  10389. if (gf->nodes[i]->is_param) {
  10390. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10391. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10392. ps[np++] = gf->nodes[i];
  10393. nx += ggml_nelements(gf->nodes[i]);
  10394. }
  10395. }
  10396. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10397. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10398. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10399. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10400. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10401. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10402. float fx = 0.0f; // cost function value
  10403. float xnorm = 0.0f; // ||x||
  10404. float gnorm = 0.0f; // ||g||
  10405. float step = 0.0f;
  10406. // initialize x from the graph nodes
  10407. ggml_opt_get_params(np, ps, x);
  10408. // the L-BFGS memory
  10409. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10410. for (int i = 0; i < m; ++i) {
  10411. lm[i].alpha = 0.0f;
  10412. lm[i].ys = 0.0f;
  10413. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10414. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10415. }
  10416. // evaluate the function value and its gradient
  10417. {
  10418. ggml_opt_set_params(np, ps, x);
  10419. ggml_graph_reset (gf);
  10420. ggml_set_f32 (f->grad, 1.0f);
  10421. ggml_graph_compute(ctx, gb);
  10422. ggml_opt_get_grad(np, ps, g);
  10423. fx = ggml_get_f32_1d(f, 0);
  10424. }
  10425. if (pf) {
  10426. pf[0] = fx;
  10427. }
  10428. float fx_best = fx;
  10429. // search direction = -gradient
  10430. ggml_vec_neg_f32(nx, d, g);
  10431. // ||x||, ||g||
  10432. ggml_vec_norm_f32(nx, &xnorm, x);
  10433. ggml_vec_norm_f32(nx, &gnorm, g);
  10434. if (xnorm < 1.0f) {
  10435. xnorm = 1.0f;
  10436. }
  10437. // already optimized
  10438. if (gnorm/xnorm <= params.lbfgs.eps) {
  10439. return GGML_OPT_OK;
  10440. }
  10441. // initial step
  10442. ggml_vec_norm_inv_f32(nx, &step, d);
  10443. int j = 0;
  10444. int k = 1;
  10445. int ls = 0;
  10446. int end = 0;
  10447. int bound = 0;
  10448. int n_no_improvement = 0;
  10449. float ys = 0.0f;
  10450. float yy = 0.0f;
  10451. float beta = 0.0f;
  10452. while (true) {
  10453. // store the current position and gradient vectors
  10454. ggml_vec_cpy_f32(nx, xp, x);
  10455. ggml_vec_cpy_f32(nx, gp, g);
  10456. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10457. if (ls < 0) {
  10458. // linesearch failed - go back to the previous point and return
  10459. ggml_vec_cpy_f32(nx, x, xp);
  10460. ggml_vec_cpy_f32(nx, g, gp);
  10461. return ls;
  10462. }
  10463. ggml_vec_norm_f32(nx, &xnorm, x);
  10464. ggml_vec_norm_f32(nx, &gnorm, g);
  10465. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10466. if (xnorm < 1.0f) {
  10467. xnorm = 1.0f;
  10468. }
  10469. if (gnorm/xnorm <= params.lbfgs.eps) {
  10470. // converged
  10471. return GGML_OPT_OK;
  10472. }
  10473. // delta-based convergence test
  10474. if (pf != NULL) {
  10475. // need at least params.past iterations to start checking for convergence
  10476. if (params.past <= k) {
  10477. const float rate = (pf[k%params.past] - fx)/fx;
  10478. if (fabsf(rate) < params.delta) {
  10479. return GGML_OPT_OK;
  10480. }
  10481. }
  10482. pf[k%params.past] = fx;
  10483. }
  10484. // check for improvement
  10485. if (params.max_no_improvement > 0) {
  10486. if (fx < fx_best) {
  10487. fx_best = fx;
  10488. n_no_improvement = 0;
  10489. } else {
  10490. n_no_improvement++;
  10491. if (n_no_improvement >= params.max_no_improvement) {
  10492. return GGML_OPT_OK;
  10493. }
  10494. }
  10495. }
  10496. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10497. // reached the maximum number of iterations
  10498. return GGML_OPT_DID_NOT_CONVERGE;
  10499. }
  10500. // update vectors s and y:
  10501. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10502. // y_{k+1} = g_{k+1} - g_{k}.
  10503. //
  10504. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10505. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10506. // compute scalars ys and yy:
  10507. // ys = y^t \cdot s -> 1 / \rho.
  10508. // yy = y^t \cdot y.
  10509. //
  10510. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10511. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10512. lm[end].ys = ys;
  10513. // find new search direction
  10514. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10515. bound = (m <= k) ? m : k;
  10516. k++;
  10517. end = (end + 1)%m;
  10518. // initialize search direction with -g
  10519. ggml_vec_neg_f32(nx, d, g);
  10520. j = end;
  10521. for (int i = 0; i < bound; ++i) {
  10522. j = (j + m - 1) % m;
  10523. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10524. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10525. lm[j].alpha /= lm[j].ys;
  10526. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10527. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10528. }
  10529. ggml_vec_scale_f32(nx, d, ys/yy);
  10530. for (int i = 0; i < bound; ++i) {
  10531. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10532. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10533. beta /= lm[j].ys;
  10534. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10535. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10536. j = (j + 1)%m;
  10537. }
  10538. step = 1.0;
  10539. }
  10540. return GGML_OPT_DID_NOT_CONVERGE;
  10541. }
  10542. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10543. struct ggml_opt_params result;
  10544. switch (type) {
  10545. case GGML_OPT_ADAM:
  10546. {
  10547. result = (struct ggml_opt_params) {
  10548. .type = GGML_OPT_ADAM,
  10549. .n_threads = 1,
  10550. .past = 0,
  10551. .delta = 1e-5f,
  10552. .max_no_improvement = 100,
  10553. .print_forward_graph = true,
  10554. .print_backward_graph = true,
  10555. .adam = {
  10556. .n_iter = 10000,
  10557. .alpha = 0.001f,
  10558. .beta1 = 0.9f,
  10559. .beta2 = 0.999f,
  10560. .eps = 1e-8f,
  10561. .eps_f = 1e-5f,
  10562. .eps_g = 1e-3f,
  10563. },
  10564. };
  10565. } break;
  10566. case GGML_OPT_LBFGS:
  10567. {
  10568. result = (struct ggml_opt_params) {
  10569. .type = GGML_OPT_LBFGS,
  10570. .n_threads = 1,
  10571. .past = 0,
  10572. .delta = 1e-5f,
  10573. .max_no_improvement = 0,
  10574. .print_forward_graph = true,
  10575. .print_backward_graph = true,
  10576. .lbfgs = {
  10577. .m = 6,
  10578. .n_iter = 100,
  10579. .max_linesearch = 20,
  10580. .eps = 1e-5f,
  10581. .ftol = 1e-4f,
  10582. .wolfe = 0.9f,
  10583. .min_step = 1e-20f,
  10584. .max_step = 1e+20f,
  10585. .linesearch = GGML_LINESEARCH_DEFAULT,
  10586. },
  10587. };
  10588. } break;
  10589. }
  10590. return result;
  10591. }
  10592. enum ggml_opt_result ggml_opt(
  10593. struct ggml_context * ctx,
  10594. struct ggml_opt_params params,
  10595. struct ggml_tensor * f) {
  10596. bool free_ctx = false;
  10597. if (ctx == NULL) {
  10598. struct ggml_init_params params_ctx = {
  10599. .mem_size = 16*1024*1024,
  10600. .mem_buffer = NULL,
  10601. .no_alloc = false,
  10602. };
  10603. ctx = ggml_init(params_ctx);
  10604. if (ctx == NULL) {
  10605. return GGML_OPT_NO_CONTEXT;
  10606. }
  10607. free_ctx = true;
  10608. }
  10609. enum ggml_opt_result result = GGML_OPT_OK;
  10610. // build forward + backward compute graphs
  10611. struct ggml_cgraph gf = ggml_build_forward (f);
  10612. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10613. switch (params.type) {
  10614. case GGML_OPT_ADAM:
  10615. {
  10616. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10617. } break;
  10618. case GGML_OPT_LBFGS:
  10619. {
  10620. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10621. } break;
  10622. }
  10623. if (params.print_forward_graph) {
  10624. ggml_graph_print (&gf);
  10625. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10626. }
  10627. if (params.print_backward_graph) {
  10628. ggml_graph_print (&gb);
  10629. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10630. }
  10631. if (free_ctx) {
  10632. ggml_free(ctx);
  10633. }
  10634. return result;
  10635. }
  10636. ////////////////////////////////////////////////////////////////////////////////
  10637. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10638. assert(k % QK4_0 == 0);
  10639. const int nb = k / QK4_0;
  10640. for (int j = 0; j < n; j += k) {
  10641. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10642. quantize_row_q4_0_reference(src + j, y, k);
  10643. for (int i = 0; i < nb; i++) {
  10644. for (int l = 0; l < QK4_0; l += 2) {
  10645. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10646. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10647. hist[vi0]++;
  10648. hist[vi1]++;
  10649. }
  10650. }
  10651. }
  10652. return (n/QK4_0*sizeof(block_q4_0));
  10653. }
  10654. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10655. assert(k % QK4_1 == 0);
  10656. const int nb = k / QK4_1;
  10657. for (int j = 0; j < n; j += k) {
  10658. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10659. quantize_row_q4_1_reference(src + j, y, k);
  10660. for (int i = 0; i < nb; i++) {
  10661. for (int l = 0; l < QK4_1; l += 2) {
  10662. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10663. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10664. hist[vi0]++;
  10665. hist[vi1]++;
  10666. }
  10667. }
  10668. }
  10669. return (n/QK4_1*sizeof(block_q4_1));
  10670. }
  10671. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10672. assert(k % QK4_2 == 0);
  10673. const int nb = k / QK4_2;
  10674. for (int j = 0; j < n; j += k) {
  10675. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10676. quantize_row_q4_2_reference(src + j, y, k);
  10677. for (int i = 0; i < nb; i++) {
  10678. for (int l = 0; l < QK4_2; l += 2) {
  10679. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10680. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10681. hist[vi0]++;
  10682. hist[vi1]++;
  10683. }
  10684. }
  10685. }
  10686. return (n/QK4_2*sizeof(block_q4_2));
  10687. }
  10688. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10689. assert(k % QK5_0 == 0);
  10690. const int nb = k / QK5_0;
  10691. for (int j = 0; j < n; j += k) {
  10692. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10693. quantize_row_q5_0_reference(src + j, y, k);
  10694. for (int i = 0; i < nb; i++) {
  10695. uint32_t qh;
  10696. memcpy(&qh, &y[i].qh, sizeof(qh));
  10697. for (int l = 0; l < QK5_0; l += 2) {
  10698. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10699. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10700. // cast to 16 bins
  10701. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10702. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10703. hist[vi0]++;
  10704. hist[vi1]++;
  10705. }
  10706. }
  10707. }
  10708. return (n/QK5_0*sizeof(block_q5_0));
  10709. }
  10710. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10711. assert(k % QK5_1 == 0);
  10712. const int nb = k / QK5_1;
  10713. for (int j = 0; j < n; j += k) {
  10714. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10715. quantize_row_q5_1_reference(src + j, y, k);
  10716. for (int i = 0; i < nb; i++) {
  10717. uint32_t qh;
  10718. memcpy(&qh, &y[i].qh, sizeof(qh));
  10719. for (int l = 0; l < QK5_1; l += 2) {
  10720. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10721. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10722. // cast to 16 bins
  10723. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10724. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10725. hist[vi0]++;
  10726. hist[vi1]++;
  10727. }
  10728. }
  10729. }
  10730. return (n/QK5_1*sizeof(block_q5_1));
  10731. }
  10732. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10733. assert(k % QK8_0 == 0);
  10734. const int nb = k / QK8_0;
  10735. for (int j = 0; j < n; j += k) {
  10736. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10737. quantize_row_q8_0_reference(src + j, y, k);
  10738. for (int i = 0; i < nb; i++) {
  10739. for (int l = 0; l < QK8_0; ++l) {
  10740. const int8_t vi = y[i].qs[l];
  10741. hist[vi/16 + 8]++;
  10742. }
  10743. }
  10744. }
  10745. return (n/QK8_0*sizeof(block_q8_0));
  10746. }
  10747. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10748. size_t result = 0;
  10749. switch (type) {
  10750. case GGML_TYPE_Q4_0:
  10751. {
  10752. GGML_ASSERT(start % QK4_0 == 0);
  10753. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10754. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10755. } break;
  10756. case GGML_TYPE_Q4_1:
  10757. {
  10758. GGML_ASSERT(start % QK4_1 == 0);
  10759. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10760. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10761. } break;
  10762. case GGML_TYPE_Q4_2:
  10763. {
  10764. GGML_ASSERT(start % QK4_2 == 0);
  10765. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10766. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10767. } break;
  10768. case GGML_TYPE_Q5_0:
  10769. {
  10770. GGML_ASSERT(start % QK5_0 == 0);
  10771. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10772. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10773. } break;
  10774. case GGML_TYPE_Q5_1:
  10775. {
  10776. GGML_ASSERT(start % QK5_1 == 0);
  10777. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10778. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10779. } break;
  10780. case GGML_TYPE_Q8_0:
  10781. {
  10782. GGML_ASSERT(start % QK8_0 == 0);
  10783. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10784. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10785. } break;
  10786. default:
  10787. assert(false);
  10788. }
  10789. return result;
  10790. }
  10791. ////////////////////////////////////////////////////////////////////////////////
  10792. int ggml_cpu_has_avx(void) {
  10793. #if defined(__AVX__)
  10794. return 1;
  10795. #else
  10796. return 0;
  10797. #endif
  10798. }
  10799. int ggml_cpu_has_avx2(void) {
  10800. #if defined(__AVX2__)
  10801. return 1;
  10802. #else
  10803. return 0;
  10804. #endif
  10805. }
  10806. int ggml_cpu_has_avx512(void) {
  10807. #if defined(__AVX512F__)
  10808. return 1;
  10809. #else
  10810. return 0;
  10811. #endif
  10812. }
  10813. int ggml_cpu_has_avx512_vbmi(void) {
  10814. #if defined(__AVX512VBMI__)
  10815. return 1;
  10816. #else
  10817. return 0;
  10818. #endif
  10819. }
  10820. int ggml_cpu_has_avx512_vnni(void) {
  10821. #if defined(__AVX512VNNI__)
  10822. return 1;
  10823. #else
  10824. return 0;
  10825. #endif
  10826. }
  10827. int ggml_cpu_has_fma(void) {
  10828. #if defined(__FMA__)
  10829. return 1;
  10830. #else
  10831. return 0;
  10832. #endif
  10833. }
  10834. int ggml_cpu_has_neon(void) {
  10835. #if defined(__ARM_NEON)
  10836. return 1;
  10837. #else
  10838. return 0;
  10839. #endif
  10840. }
  10841. int ggml_cpu_has_arm_fma(void) {
  10842. #if defined(__ARM_FEATURE_FMA)
  10843. return 1;
  10844. #else
  10845. return 0;
  10846. #endif
  10847. }
  10848. int ggml_cpu_has_f16c(void) {
  10849. #if defined(__F16C__)
  10850. return 1;
  10851. #else
  10852. return 0;
  10853. #endif
  10854. }
  10855. int ggml_cpu_has_fp16_va(void) {
  10856. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10857. return 1;
  10858. #else
  10859. return 0;
  10860. #endif
  10861. }
  10862. int ggml_cpu_has_wasm_simd(void) {
  10863. #if defined(__wasm_simd128__)
  10864. return 1;
  10865. #else
  10866. return 0;
  10867. #endif
  10868. }
  10869. int ggml_cpu_has_blas(void) {
  10870. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10871. return 1;
  10872. #else
  10873. return 0;
  10874. #endif
  10875. }
  10876. int ggml_cpu_has_cublas(void) {
  10877. #if defined(GGML_USE_CUBLAS)
  10878. return 1;
  10879. #else
  10880. return 0;
  10881. #endif
  10882. }
  10883. int ggml_cpu_has_clblast(void) {
  10884. #if defined(GGML_USE_CLBLAST)
  10885. return 1;
  10886. #else
  10887. return 0;
  10888. #endif
  10889. }
  10890. int ggml_cpu_has_gpublas(void) {
  10891. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10892. }
  10893. int ggml_cpu_has_sse3(void) {
  10894. #if defined(__SSE3__)
  10895. return 1;
  10896. #else
  10897. return 0;
  10898. #endif
  10899. }
  10900. int ggml_cpu_has_vsx(void) {
  10901. #if defined(__POWER9_VECTOR__)
  10902. return 1;
  10903. #else
  10904. return 0;
  10905. #endif
  10906. }
  10907. ////////////////////////////////////////////////////////////////////////////////