ggml-rpc.cpp 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173
  1. #include "ggml-rpc.h"
  2. #include "ggml.h"
  3. #include "ggml-backend-impl.h"
  4. #include <cinttypes>
  5. #include <string>
  6. #include <vector>
  7. #include <memory>
  8. #include <mutex>
  9. #include <unordered_map>
  10. #include <unordered_set>
  11. #ifdef _WIN32
  12. # define WIN32_LEAN_AND_MEAN
  13. # ifndef NOMINMAX
  14. # define NOMINMAX
  15. # endif
  16. # include <windows.h>
  17. # include <winsock2.h>
  18. #else
  19. # include <arpa/inet.h>
  20. # include <sys/socket.h>
  21. # include <sys/types.h>
  22. # include <netinet/in.h>
  23. # include <netinet/tcp.h>
  24. # include <netdb.h>
  25. # include <unistd.h>
  26. #endif
  27. #include <string.h>
  28. #define UNUSED GGML_UNUSED
  29. #define GGML_DEBUG 0
  30. #if (GGML_DEBUG >= 1)
  31. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  32. #else
  33. #define GGML_PRINT_DEBUG(...)
  34. #endif
  35. #ifdef _WIN32
  36. typedef SOCKET sockfd_t;
  37. using ssize_t = __int64;
  38. #else
  39. typedef int sockfd_t;
  40. #endif
  41. // cross-platform socket
  42. struct socket_t {
  43. sockfd_t fd;
  44. socket_t(sockfd_t fd) : fd(fd) {}
  45. ~socket_t() {
  46. GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd);
  47. #ifdef _WIN32
  48. closesocket(this->fd);
  49. #else
  50. close(this->fd);
  51. #endif
  52. }
  53. };
  54. // ggml_tensor is serialized into rpc_tensor
  55. #pragma pack(push, 1)
  56. struct rpc_tensor {
  57. uint64_t id;
  58. uint32_t type;
  59. uint64_t buffer;
  60. uint32_t ne[GGML_MAX_DIMS];
  61. uint32_t nb[GGML_MAX_DIMS];
  62. uint32_t op;
  63. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  64. int32_t flags;
  65. uint64_t src[GGML_MAX_SRC];
  66. uint64_t view_src;
  67. uint64_t view_offs;
  68. uint64_t data;
  69. char name[GGML_MAX_NAME];
  70. };
  71. #pragma pack(pop)
  72. // RPC commands
  73. enum rpc_cmd {
  74. ALLOC_BUFFER = 0,
  75. GET_ALIGNMENT,
  76. GET_MAX_SIZE,
  77. BUFFER_GET_BASE,
  78. FREE_BUFFER,
  79. BUFFER_CLEAR,
  80. SET_TENSOR,
  81. GET_TENSOR,
  82. COPY_TENSOR,
  83. GRAPH_COMPUTE,
  84. GET_DEVICE_MEMORY,
  85. };
  86. // RPC data structures
  87. static ggml_guid_t ggml_backend_rpc_guid() {
  88. static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
  89. return &guid;
  90. }
  91. struct ggml_backend_rpc_buffer_type_context {
  92. std::string endpoint;
  93. std::string name;
  94. size_t alignment;
  95. size_t max_size;
  96. };
  97. struct ggml_backend_rpc_context {
  98. std::string endpoint;
  99. std::string name;
  100. };
  101. struct ggml_backend_rpc_buffer_context {
  102. std::shared_ptr<socket_t> sock;
  103. std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
  104. uint64_t remote_ptr;
  105. std::string name;
  106. };
  107. // RPC helper functions
  108. static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
  109. #ifdef _WIN32
  110. if (fd == INVALID_SOCKET) {
  111. return nullptr;
  112. }
  113. #else
  114. if (fd < 0) {
  115. return nullptr;
  116. }
  117. #endif
  118. return std::make_shared<socket_t>(fd);
  119. }
  120. static bool set_no_delay(sockfd_t sockfd) {
  121. int flag = 1;
  122. // set TCP_NODELAY to disable Nagle's algorithm
  123. int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
  124. return ret == 0;
  125. }
  126. static bool set_reuse_addr(sockfd_t sockfd) {
  127. int flag = 1;
  128. int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
  129. return ret == 0;
  130. }
  131. static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
  132. struct sockaddr_in addr;
  133. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  134. auto sock_ptr = make_socket(sockfd);
  135. if (sock_ptr == nullptr) {
  136. return nullptr;
  137. }
  138. if (!set_no_delay(sockfd)) {
  139. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  140. return nullptr;
  141. }
  142. addr.sin_family = AF_INET;
  143. addr.sin_port = htons(port);
  144. struct hostent * server = gethostbyname(host);
  145. if (server == NULL) {
  146. fprintf(stderr, "Cannot resolve host '%s'\n", host);
  147. return nullptr;
  148. }
  149. memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
  150. if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
  151. return nullptr;
  152. }
  153. return sock_ptr;
  154. }
  155. static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
  156. auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
  157. auto client_socket = make_socket(client_socket_fd);
  158. if (client_socket == nullptr) {
  159. return nullptr;
  160. }
  161. if (!set_no_delay(client_socket_fd)) {
  162. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  163. return nullptr;
  164. }
  165. return client_socket;
  166. }
  167. static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
  168. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  169. auto sock = make_socket(sockfd);
  170. if (sock == nullptr) {
  171. return nullptr;
  172. }
  173. if (!set_reuse_addr(sockfd)) {
  174. fprintf(stderr, "Failed to set SO_REUSEADDR\n");
  175. return nullptr;
  176. }
  177. struct sockaddr_in serv_addr;
  178. serv_addr.sin_family = AF_INET;
  179. serv_addr.sin_addr.s_addr = inet_addr(host);
  180. serv_addr.sin_port = htons(port);
  181. if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
  182. return nullptr;
  183. }
  184. if (listen(sockfd, 1) < 0) {
  185. return nullptr;
  186. }
  187. return sock;
  188. }
  189. static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
  190. size_t bytes_sent = 0;
  191. while (bytes_sent < size) {
  192. ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
  193. if (n < 0) {
  194. return false;
  195. }
  196. bytes_sent += n;
  197. }
  198. return true;
  199. }
  200. static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
  201. size_t bytes_recv = 0;
  202. while (bytes_recv < size) {
  203. ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
  204. if (n <= 0) {
  205. return false;
  206. }
  207. bytes_recv += n;
  208. }
  209. return true;
  210. }
  211. static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
  212. size_t pos = endpoint.find(':');
  213. if (pos == std::string::npos) {
  214. return false;
  215. }
  216. host = endpoint.substr(0, pos);
  217. port = std::stoi(endpoint.substr(pos + 1));
  218. return true;
  219. }
  220. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  221. // RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
  222. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  223. uint8_t cmd_byte = cmd;
  224. if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
  225. return false;
  226. }
  227. uint64_t input_size = input.size();
  228. if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
  229. return false;
  230. }
  231. if (!send_data(sock->fd, input.data(), input.size())) {
  232. return false;
  233. }
  234. uint64_t output_size;
  235. if (!recv_data(sock->fd, &output_size, sizeof(output_size))) {
  236. return false;
  237. }
  238. if (output_size == 0) {
  239. output.clear();
  240. return true;
  241. }
  242. output.resize(output_size);
  243. if (!recv_data(sock->fd, output.data(), output_size)) {
  244. return false;
  245. }
  246. return true;
  247. }
  248. // RPC client-side implementation
  249. static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
  250. static std::mutex mutex;
  251. std::lock_guard<std::mutex> lock(mutex);
  252. static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
  253. static bool initialized = false;
  254. auto it = sockets.find(endpoint);
  255. if (it != sockets.end()) {
  256. if (auto sock = it->second.lock()) {
  257. return sock;
  258. }
  259. }
  260. std::string host;
  261. int port;
  262. if (!parse_endpoint(endpoint, host, port)) {
  263. return nullptr;
  264. }
  265. #ifdef _WIN32
  266. if (!initialized) {
  267. WSADATA wsaData;
  268. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  269. if (res != 0) {
  270. return nullptr;
  271. }
  272. initialized = true;
  273. }
  274. #else
  275. UNUSED(initialized);
  276. #endif
  277. auto sock = socket_connect(host.c_str(), port);
  278. if (sock == nullptr) {
  279. return nullptr;
  280. }
  281. GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
  282. sockets[endpoint] = sock;
  283. return sock;
  284. }
  285. GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
  286. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  287. return ctx->name.c_str();
  288. }
  289. GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  290. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  291. // input serialization format: | remote_ptr (8 bytes) |
  292. std::vector<uint8_t> input(sizeof(uint64_t), 0);
  293. uint64_t remote_ptr = ctx->remote_ptr;
  294. memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
  295. std::vector<uint8_t> output;
  296. bool status = send_rpc_cmd(ctx->sock, FREE_BUFFER, input, output);
  297. GGML_ASSERT(status);
  298. GGML_ASSERT(output.empty());
  299. delete ctx;
  300. }
  301. GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
  302. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  303. if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
  304. return ctx->base_cache[buffer];
  305. }
  306. // input serialization format: | remote_ptr (8 bytes) |
  307. std::vector<uint8_t> input(sizeof(uint64_t), 0);
  308. uint64_t remote_ptr = ctx->remote_ptr;
  309. memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
  310. std::vector<uint8_t> output;
  311. bool status = send_rpc_cmd(ctx->sock, BUFFER_GET_BASE, input, output);
  312. GGML_ASSERT(status);
  313. GGML_ASSERT(output.size() == sizeof(uint64_t));
  314. // output serialization format: | base_ptr (8 bytes) |
  315. uint64_t base_ptr;
  316. memcpy(&base_ptr, output.data(), sizeof(base_ptr));
  317. void * base = reinterpret_cast<void *>(base_ptr);
  318. ctx->base_cache[buffer] = base;
  319. return base;
  320. }
  321. static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
  322. rpc_tensor result;
  323. result.id = reinterpret_cast<uint64_t>(tensor);
  324. result.type = tensor->type;
  325. if (tensor->buffer) {
  326. ggml_backend_buffer_t buffer = tensor->buffer;
  327. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  328. result.buffer = ctx->remote_ptr;
  329. } else {
  330. result.buffer = 0;
  331. }
  332. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  333. result.ne[i] = tensor->ne[i];
  334. result.nb[i] = tensor->nb[i];
  335. }
  336. result.op = tensor->op;
  337. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  338. result.op_params[i] = tensor->op_params[i];
  339. }
  340. result.flags = tensor->flags;
  341. for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
  342. result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
  343. }
  344. result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
  345. result.view_offs = tensor->view_offs;
  346. result.data = reinterpret_cast<uint64_t>(tensor->data);
  347. snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
  348. return result;
  349. }
  350. GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  351. UNUSED(buffer);
  352. if (ggml_is_quantized(tensor->type)) {
  353. // TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
  354. GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor");
  355. }
  356. }
  357. GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  358. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  359. // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  360. size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
  361. std::vector<uint8_t> input(input_size, 0);
  362. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  363. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  364. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  365. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
  366. std::vector<uint8_t> output;
  367. bool status = send_rpc_cmd(ctx->sock, SET_TENSOR, input, output);
  368. GGML_ASSERT(status);
  369. }
  370. GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  371. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  372. // input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
  373. int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t);
  374. std::vector<uint8_t> input(input_size, 0);
  375. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  376. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  377. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  378. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &size, sizeof(size));
  379. std::vector<uint8_t> output;
  380. bool status = send_rpc_cmd(ctx->sock, GET_TENSOR, input, output);
  381. GGML_ASSERT(status);
  382. GGML_ASSERT(output.size() == size);
  383. // output serialization format: | data (size bytes) |
  384. memcpy(data, output.data(), size);
  385. }
  386. GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  387. // check if src and dst are on the same server
  388. ggml_backend_buffer_t src_buffer = src->buffer;
  389. ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
  390. ggml_backend_buffer_t dst_buffer = dst->buffer;
  391. ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
  392. if (src_ctx->sock != dst_ctx->sock) {
  393. return false;
  394. }
  395. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  396. // input serialization format: | rpc_tensor src | rpc_tensor dst |
  397. int input_size = 2*sizeof(rpc_tensor);
  398. std::vector<uint8_t> input(input_size, 0);
  399. rpc_tensor rpc_src = serialize_tensor(src);
  400. rpc_tensor rpc_dst = serialize_tensor(dst);
  401. memcpy(input.data(), &rpc_src, sizeof(rpc_src));
  402. memcpy(input.data() + sizeof(rpc_src), &rpc_dst, sizeof(rpc_dst));
  403. std::vector<uint8_t> output;
  404. bool status = send_rpc_cmd(ctx->sock, COPY_TENSOR, input, output);
  405. GGML_ASSERT(status);
  406. // output serialization format: | result (1 byte) |
  407. GGML_ASSERT(output.size() == 1);
  408. return output[0];
  409. }
  410. GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  411. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  412. // serialization format: | bufptr (8 bytes) | value (1 byte) |
  413. int input_size = sizeof(uint64_t) + sizeof(uint8_t);
  414. std::vector<uint8_t> input(input_size, 0);
  415. memcpy(input.data(), &ctx->remote_ptr, sizeof(ctx->remote_ptr));
  416. memcpy(input.data() + sizeof(ctx->remote_ptr), &value, sizeof(value));
  417. std::vector<uint8_t> output;
  418. bool status = send_rpc_cmd(ctx->sock, BUFFER_CLEAR, input, output);
  419. GGML_ASSERT(status);
  420. }
  421. static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
  422. /* .get_name = */ ggml_backend_rpc_buffer_get_name,
  423. /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
  424. /* .get_base = */ ggml_backend_rpc_buffer_get_base,
  425. /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
  426. /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
  427. /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
  428. /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
  429. /* .clear = */ ggml_backend_rpc_buffer_clear,
  430. /* .reset = */ NULL,
  431. };
  432. GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
  433. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  434. return buft_ctx->name.c_str();
  435. }
  436. GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  437. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  438. // input serialization format: | size (8 bytes) |
  439. int input_size = sizeof(uint64_t);
  440. std::vector<uint8_t> input(input_size, 0);
  441. memcpy(input.data(), &size, sizeof(size));
  442. std::vector<uint8_t> output;
  443. auto sock = get_socket(buft_ctx->endpoint);
  444. bool status = send_rpc_cmd(sock, ALLOC_BUFFER, input, output);
  445. GGML_ASSERT(status);
  446. GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
  447. // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
  448. uint64_t remote_ptr;
  449. memcpy(&remote_ptr, output.data(), sizeof(remote_ptr));
  450. size_t remote_size;
  451. memcpy(&remote_size, output.data() + sizeof(uint64_t), sizeof(remote_size));
  452. if (remote_ptr != 0) {
  453. ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
  454. ggml_backend_rpc_buffer_interface,
  455. new ggml_backend_rpc_buffer_context{sock, {}, remote_ptr, "RPC[" + std::string(buft_ctx->endpoint) + "]"},
  456. remote_size);
  457. return buffer;
  458. } else {
  459. return nullptr;
  460. }
  461. }
  462. static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
  463. // input serialization format: | 0 bytes |
  464. std::vector<uint8_t> input;
  465. std::vector<uint8_t> output;
  466. bool status = send_rpc_cmd(sock, GET_ALIGNMENT, input, output);
  467. GGML_ASSERT(status);
  468. GGML_ASSERT(output.size() == sizeof(uint64_t));
  469. // output serialization format: | alignment (8 bytes) |
  470. uint64_t alignment;
  471. memcpy(&alignment, output.data(), sizeof(alignment));
  472. return alignment;
  473. }
  474. GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  475. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  476. return buft_ctx->alignment;
  477. }
  478. static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
  479. // input serialization format: | 0 bytes |
  480. std::vector<uint8_t> input;
  481. std::vector<uint8_t> output;
  482. bool status = send_rpc_cmd(sock, GET_MAX_SIZE, input, output);
  483. GGML_ASSERT(status);
  484. GGML_ASSERT(output.size() == sizeof(uint64_t));
  485. // output serialization format: | max_size (8 bytes) |
  486. uint64_t max_size;
  487. memcpy(&max_size, output.data(), sizeof(max_size));
  488. return max_size;
  489. }
  490. GGML_CALL static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
  491. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  492. return buft_ctx->max_size;
  493. }
  494. GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  495. UNUSED(buft);
  496. return ggml_nbytes(tensor);
  497. }
  498. static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
  499. /* .get_name = */ ggml_backend_rpc_buffer_type_name,
  500. /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
  501. /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
  502. /* .get_max_size = */ ggml_backend_rpc_get_max_size,
  503. /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
  504. /* .is_host = */ NULL,
  505. };
  506. GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
  507. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  508. return rpc_ctx->name.c_str();
  509. }
  510. GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) {
  511. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  512. delete rpc_ctx;
  513. delete backend;
  514. }
  515. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
  516. ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
  517. return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
  518. }
  519. GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
  520. UNUSED(backend);
  521. // this is no-op because we don't have any async operations
  522. }
  523. static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
  524. if (tensor == nullptr) {
  525. return;
  526. }
  527. if (visited.find(tensor) != visited.end()) {
  528. return;
  529. }
  530. visited.insert(tensor);
  531. for (int i = 0; i < GGML_MAX_SRC; i++) {
  532. add_tensor(tensor->src[i], tensors, visited);
  533. }
  534. add_tensor(tensor->view_src, tensors, visited);
  535. tensors.push_back(serialize_tensor(tensor));
  536. }
  537. static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
  538. uint32_t n_nodes = cgraph->n_nodes;
  539. std::vector<rpc_tensor> tensors;
  540. std::unordered_set<ggml_tensor*> visited;
  541. for (uint32_t i = 0; i < n_nodes; i++) {
  542. add_tensor(cgraph->nodes[i], tensors, visited);
  543. }
  544. // serialization format:
  545. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  546. uint32_t n_tensors = tensors.size();
  547. int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
  548. output.resize(output_size, 0);
  549. memcpy(output.data(), &n_nodes, sizeof(n_nodes));
  550. uint64_t * out_nodes = (uint64_t *)(output.data() + sizeof(n_nodes));
  551. for (uint32_t i = 0; i < n_nodes; i++) {
  552. out_nodes[i] = reinterpret_cast<uint64_t>(cgraph->nodes[i]);
  553. }
  554. uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
  555. *out_ntensors = n_tensors;
  556. rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
  557. memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
  558. }
  559. GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  560. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  561. std::vector<uint8_t> input;
  562. serialize_graph(cgraph, input);
  563. std::vector<uint8_t> output;
  564. auto sock = get_socket(rpc_ctx->endpoint);
  565. bool status = send_rpc_cmd(sock, GRAPH_COMPUTE, input, output);
  566. GGML_ASSERT(status);
  567. GGML_ASSERT(output.size() == 1);
  568. return (enum ggml_status)output[0];
  569. }
  570. GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
  571. UNUSED(backend);
  572. UNUSED(op);
  573. //TODO: call the remote backend and cache the results
  574. return true;
  575. }
  576. GGML_CALL static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  577. if (buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
  578. return false;
  579. }
  580. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  581. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  582. return buft_ctx->endpoint == rpc_ctx->endpoint;
  583. }
  584. static ggml_backend_i ggml_backend_rpc_interface = {
  585. /* .get_name = */ ggml_backend_rpc_name,
  586. /* .free = */ ggml_backend_rpc_free,
  587. /* .get_default_buffer_type = */ ggml_backend_rpc_get_default_buffer_type,
  588. /* .set_tensor_async = */ NULL,
  589. /* .get_tensor_async = */ NULL,
  590. /* .cpy_tensor_async = */ NULL,
  591. /* .synchronize = */ ggml_backend_rpc_synchronize,
  592. /* .graph_plan_create = */ NULL,
  593. /* .graph_plan_free = */ NULL,
  594. /* .graph_plan_update = */ NULL,
  595. /* .graph_plan_compute = */ NULL,
  596. /* .graph_compute = */ ggml_backend_rpc_graph_compute,
  597. /* .supports_op = */ ggml_backend_rpc_supports_op,
  598. /* .supports_buft = */ ggml_backend_rpc_supports_buft,
  599. /* .offload_op = */ NULL,
  600. /* .event_new = */ NULL,
  601. /* .event_free = */ NULL,
  602. /* .event_record = */ NULL,
  603. /* .event_wait = */ NULL,
  604. /* .event_synchronize = */ NULL,
  605. };
  606. GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
  607. static std::mutex mutex;
  608. std::lock_guard<std::mutex> lock(mutex);
  609. // NOTE: buffer types are allocated and never freed; this is by design
  610. static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
  611. auto it = buft_map.find(endpoint);
  612. if (it != buft_map.end()) {
  613. return it->second;
  614. }
  615. auto sock = get_socket(endpoint);
  616. if (sock == nullptr) {
  617. return nullptr;
  618. }
  619. size_t alignment = get_alignment(sock);
  620. size_t max_size = get_max_size(sock);
  621. ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
  622. /* .endpoint = */ endpoint,
  623. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  624. /* .alignment = */ alignment,
  625. /* .max_size = */ max_size
  626. };
  627. ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
  628. /* .iface = */ ggml_backend_rpc_buffer_type_interface,
  629. /* .context = */ buft_ctx
  630. };
  631. buft_map[endpoint] = buft;
  632. return buft;
  633. }
  634. GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
  635. ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
  636. /* .endpoint = */ endpoint,
  637. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  638. };
  639. ggml_backend_t backend = new ggml_backend {
  640. /* .guid = */ ggml_backend_rpc_guid(),
  641. /* .interface = */ ggml_backend_rpc_interface,
  642. /* .context = */ ctx
  643. };
  644. return backend;
  645. }
  646. GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) {
  647. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
  648. }
  649. static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
  650. // input serialization format: | 0 bytes |
  651. std::vector<uint8_t> input;
  652. std::vector<uint8_t> output;
  653. bool status = send_rpc_cmd(sock, GET_DEVICE_MEMORY, input, output);
  654. GGML_ASSERT(status);
  655. GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
  656. // output serialization format: | free (8 bytes) | total (8 bytes) |
  657. uint64_t free_mem;
  658. memcpy(&free_mem, output.data(), sizeof(free_mem));
  659. uint64_t total_mem;
  660. memcpy(&total_mem, output.data() + sizeof(uint64_t), sizeof(total_mem));
  661. *free = free_mem;
  662. *total = total_mem;
  663. }
  664. GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
  665. auto sock = get_socket(endpoint);
  666. if (sock == nullptr) {
  667. *free = 0;
  668. *total = 0;
  669. return;
  670. }
  671. get_device_memory(sock, free, total);
  672. }
  673. // RPC server-side implementation
  674. class rpc_server {
  675. public:
  676. rpc_server(ggml_backend_t backend) : backend(backend) {}
  677. ~rpc_server();
  678. bool alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
  679. void get_alignment(std::vector<uint8_t> & output);
  680. void get_max_size(std::vector<uint8_t> & output);
  681. bool buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
  682. bool free_buffer(const std::vector<uint8_t> & input);
  683. bool buffer_clear(const std::vector<uint8_t> & input);
  684. bool set_tensor(const std::vector<uint8_t> & input);
  685. bool get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
  686. bool copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
  687. bool graph_compute(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
  688. private:
  689. ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
  690. ggml_tensor * create_node(uint64_t id,
  691. struct ggml_context * ctx,
  692. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  693. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
  694. ggml_backend_t backend;
  695. std::unordered_set<ggml_backend_buffer_t> buffers;
  696. };
  697. bool rpc_server::alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  698. // input serialization format: | size (8 bytes) |
  699. if (input.size() != sizeof(uint64_t)) {
  700. return false;
  701. }
  702. uint64_t size;
  703. memcpy(&size, input.data(), sizeof(size));
  704. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  705. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
  706. uint64_t remote_ptr = 0;
  707. uint64_t remote_size = 0;
  708. if (buffer != nullptr) {
  709. remote_ptr = reinterpret_cast<uint64_t>(buffer);
  710. remote_size = buffer->size;
  711. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, size, remote_ptr, remote_size);
  712. buffers.insert(buffer);
  713. } else {
  714. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> failed\n", __func__, size);
  715. }
  716. // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
  717. output.resize(2*sizeof(uint64_t), 0);
  718. memcpy(output.data(), &remote_ptr, sizeof(remote_ptr));
  719. memcpy(output.data() + sizeof(uint64_t), &remote_size, sizeof(remote_size));
  720. return true;
  721. }
  722. void rpc_server::get_alignment(std::vector<uint8_t> & output) {
  723. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  724. size_t alignment = ggml_backend_buft_get_alignment(buft);
  725. GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
  726. // output serialization format: | alignment (8 bytes) |
  727. output.resize(sizeof(uint64_t), 0);
  728. memcpy(output.data(), &alignment, sizeof(alignment));
  729. }
  730. void rpc_server::get_max_size(std::vector<uint8_t> & output) {
  731. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  732. size_t max_size = ggml_backend_buft_get_max_size(buft);
  733. GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
  734. // output serialization format: | max_size (8 bytes) |
  735. output.resize(sizeof(uint64_t), 0);
  736. memcpy(output.data(), &max_size, sizeof(max_size));
  737. }
  738. bool rpc_server::buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  739. // input serialization format: | remote_ptr (8 bytes) |
  740. if (input.size() != sizeof(uint64_t)) {
  741. return false;
  742. }
  743. uint64_t remote_ptr;
  744. memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
  745. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
  746. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
  747. if (buffers.find(buffer) == buffers.end()) {
  748. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  749. return false;
  750. }
  751. void * base = ggml_backend_buffer_get_base(buffer);
  752. // output serialization format: | base_ptr (8 bytes) |
  753. uint64_t base_ptr = reinterpret_cast<uint64_t>(base);
  754. output.resize(sizeof(uint64_t), 0);
  755. memcpy(output.data(), &base_ptr, sizeof(base_ptr));
  756. return true;
  757. }
  758. bool rpc_server::free_buffer(const std::vector<uint8_t> & input) {
  759. // input serialization format: | remote_ptr (8 bytes) |
  760. if (input.size() != sizeof(uint64_t)) {
  761. return false;
  762. }
  763. uint64_t remote_ptr;
  764. memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
  765. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
  766. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
  767. if (buffers.find(buffer) == buffers.end()) {
  768. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  769. return false;
  770. }
  771. ggml_backend_buffer_free(buffer);
  772. buffers.erase(buffer);
  773. return true;
  774. }
  775. bool rpc_server::buffer_clear(const std::vector<uint8_t> & input) {
  776. // input serialization format: | remote_ptr (8 bytes) | value (1 byte) |
  777. if (input.size() != sizeof(uint64_t) + sizeof(uint8_t)) {
  778. return false;
  779. }
  780. uint64_t remote_ptr;
  781. memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
  782. uint8_t value;
  783. memcpy(&value, input.data() + sizeof(uint64_t), sizeof(value));
  784. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, remote_ptr, value);
  785. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
  786. if (buffers.find(buffer) == buffers.end()) {
  787. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  788. return false;
  789. }
  790. ggml_backend_buffer_clear(buffer, value);
  791. return true;
  792. }
  793. ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
  794. ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
  795. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  796. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  797. result->nb[i] = tensor->nb[i];
  798. }
  799. result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
  800. if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
  801. return nullptr;
  802. }
  803. result->op = (ggml_op) tensor->op;
  804. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  805. result->op_params[i] = tensor->op_params[i];
  806. }
  807. result->flags = tensor->flags;
  808. result->data = reinterpret_cast<void *>(tensor->data);
  809. ggml_set_name(result, tensor->name);
  810. return result;
  811. }
  812. bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
  813. // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  814. if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
  815. return false;
  816. }
  817. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  818. uint64_t offset;
  819. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  820. size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
  821. struct ggml_init_params params {
  822. /*.mem_size =*/ ggml_tensor_overhead(),
  823. /*.mem_buffer =*/ NULL,
  824. /*.no_alloc =*/ true,
  825. };
  826. struct ggml_context * ctx = ggml_init(params);
  827. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  828. if (tensor == nullptr) {
  829. GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
  830. ggml_free(ctx);
  831. return false;
  832. }
  833. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  834. const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
  835. ggml_backend_tensor_set(tensor, data, offset, size);
  836. ggml_free(ctx);
  837. return true;
  838. }
  839. bool rpc_server::get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  840. // serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
  841. if (input.size() != sizeof(rpc_tensor) + 2*sizeof(uint64_t)) {
  842. return false;
  843. }
  844. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  845. uint64_t offset;
  846. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  847. uint64_t size;
  848. memcpy(&size, input.data() + sizeof(rpc_tensor) + sizeof(offset), sizeof(size));
  849. struct ggml_init_params params {
  850. /*.mem_size =*/ ggml_tensor_overhead(),
  851. /*.mem_buffer =*/ NULL,
  852. /*.no_alloc =*/ true,
  853. };
  854. struct ggml_context * ctx = ggml_init(params);
  855. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  856. if (tensor == nullptr) {
  857. GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
  858. ggml_free(ctx);
  859. return false;
  860. }
  861. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  862. // output serialization format: | data (size bytes) |
  863. output.resize(size, 0);
  864. ggml_backend_tensor_get(tensor, output.data(), offset, size);
  865. ggml_free(ctx);
  866. return true;
  867. }
  868. bool rpc_server::copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  869. // serialization format: | rpc_tensor src | rpc_tensor dst |
  870. if (input.size() != 2*sizeof(rpc_tensor)) {
  871. return false;
  872. }
  873. const rpc_tensor * rpc_src = (const rpc_tensor *)input.data();
  874. const rpc_tensor * rpc_dst = (const rpc_tensor *)(input.data() + sizeof(rpc_src));
  875. struct ggml_init_params params {
  876. /*.mem_size =*/ 2*ggml_tensor_overhead(),
  877. /*.mem_buffer =*/ NULL,
  878. /*.no_alloc =*/ true,
  879. };
  880. struct ggml_context * ctx = ggml_init(params);
  881. ggml_tensor * src = deserialize_tensor(ctx, rpc_src);
  882. ggml_tensor * dst = deserialize_tensor(ctx, rpc_dst);
  883. if (src == nullptr || dst == nullptr) {
  884. GGML_PRINT_DEBUG("[%s] error deserializing tensors\n", __func__);
  885. ggml_free(ctx);
  886. return false;
  887. }
  888. GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer);
  889. bool result = ggml_backend_buffer_copy_tensor(src, dst);
  890. // output serialization format: | result (1 byte) |
  891. output.resize(1, 0);
  892. output[0] = result;
  893. ggml_free(ctx);
  894. return true;
  895. }
  896. ggml_tensor * rpc_server::create_node(uint64_t id,
  897. struct ggml_context * ctx,
  898. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  899. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
  900. if (id == 0) {
  901. return nullptr;
  902. }
  903. if (tensor_map.find(id) != tensor_map.end()) {
  904. return tensor_map[id];
  905. }
  906. const rpc_tensor * tensor = tensor_ptrs.at(id);
  907. struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
  908. if (result == nullptr) {
  909. return nullptr;
  910. }
  911. tensor_map[id] = result;
  912. for (int i = 0; i < GGML_MAX_SRC; i++) {
  913. result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
  914. }
  915. result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
  916. result->view_offs = tensor->view_offs;
  917. return result;
  918. }
  919. bool rpc_server::graph_compute(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  920. // serialization format:
  921. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  922. if (input.size() < sizeof(uint32_t)) {
  923. return false;
  924. }
  925. uint32_t n_nodes;
  926. memcpy(&n_nodes, input.data(), sizeof(n_nodes));
  927. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
  928. return false;
  929. }
  930. const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
  931. uint32_t n_tensors;
  932. memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
  933. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
  934. return false;
  935. }
  936. const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
  937. GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
  938. static size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
  939. struct ggml_init_params params = {
  940. /*.mem_size =*/ buf_size,
  941. /*.mem_buffer =*/ NULL,
  942. /*.no_alloc =*/ true,
  943. };
  944. struct ggml_context * ctx = ggml_init(params);
  945. struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
  946. graph->n_nodes = n_nodes;
  947. std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
  948. for (uint32_t i = 0; i < n_tensors; i++) {
  949. tensor_ptrs[tensors[i].id] = &tensors[i];
  950. }
  951. std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
  952. for (uint32_t i = 0; i < n_nodes; i++) {
  953. graph->nodes[i] = create_node(nodes[i], ctx, tensor_ptrs, tensor_map);
  954. }
  955. ggml_status status = ggml_backend_graph_compute(backend, graph);
  956. // output serialization format: | status (1 byte) |
  957. output.resize(1, 0);
  958. output[0] = status;
  959. ggml_free(ctx);
  960. return true;
  961. }
  962. rpc_server::~rpc_server() {
  963. for (auto buffer : buffers) {
  964. ggml_backend_buffer_free(buffer);
  965. }
  966. }
  967. static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
  968. rpc_server server(backend);
  969. while (true) {
  970. uint8_t cmd;
  971. if (!recv_data(sockfd, &cmd, 1)) {
  972. break;
  973. }
  974. std::vector<uint8_t> input;
  975. std::vector<uint8_t> output;
  976. uint64_t input_size;
  977. if (!recv_data(sockfd, &input_size, sizeof(input_size))) {
  978. break;
  979. }
  980. input.resize(input_size);
  981. if (!recv_data(sockfd, input.data(), input_size)) {
  982. break;
  983. }
  984. bool ok = true;
  985. switch (cmd) {
  986. case ALLOC_BUFFER: {
  987. ok = server.alloc_buffer(input, output);
  988. break;
  989. }
  990. case GET_ALIGNMENT: {
  991. server.get_alignment(output);
  992. break;
  993. }
  994. case GET_MAX_SIZE: {
  995. server.get_max_size(output);
  996. break;
  997. }
  998. case BUFFER_GET_BASE: {
  999. ok = server.buffer_get_base(input, output);
  1000. break;
  1001. }
  1002. case FREE_BUFFER: {
  1003. ok = server.free_buffer(input);
  1004. break;
  1005. }
  1006. case BUFFER_CLEAR: {
  1007. ok = server.buffer_clear(input);
  1008. break;
  1009. }
  1010. case SET_TENSOR: {
  1011. ok = server.set_tensor(input);
  1012. break;
  1013. }
  1014. case GET_TENSOR: {
  1015. ok = server.get_tensor(input, output);
  1016. break;
  1017. }
  1018. case COPY_TENSOR: {
  1019. ok = server.copy_tensor(input, output);
  1020. break;
  1021. }
  1022. case GRAPH_COMPUTE: {
  1023. ok = server.graph_compute(input, output);
  1024. break;
  1025. }
  1026. case GET_DEVICE_MEMORY: {
  1027. // output serialization format: | free (8 bytes) | total (8 bytes) |
  1028. output.resize(2*sizeof(uint64_t), 0);
  1029. memcpy(output.data(), &free_mem, sizeof(free_mem));
  1030. memcpy(output.data() + sizeof(uint64_t), &total_mem, sizeof(total_mem));
  1031. break;
  1032. }
  1033. default: {
  1034. fprintf(stderr, "Unknown command: %d\n", cmd);
  1035. ok = false;
  1036. }
  1037. }
  1038. if (!ok) {
  1039. break;
  1040. }
  1041. uint64_t output_size = output.size();
  1042. if (!send_data(sockfd, &output_size, sizeof(output_size))) {
  1043. break;
  1044. }
  1045. if (!send_data(sockfd, output.data(), output_size)) {
  1046. break;
  1047. }
  1048. }
  1049. }
  1050. void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
  1051. std::string host;
  1052. int port;
  1053. if (!parse_endpoint(endpoint, host, port)) {
  1054. return;
  1055. }
  1056. #ifdef _WIN32
  1057. {
  1058. WSADATA wsaData;
  1059. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  1060. if (res != 0) {
  1061. fprintf(stderr, "WSAStartup failed: %d\n", res);
  1062. return;
  1063. }
  1064. }
  1065. #endif
  1066. auto server_socket = create_server_socket(host.c_str(), port);
  1067. if (server_socket == nullptr) {
  1068. fprintf(stderr, "Failed to create server socket\n");
  1069. return;
  1070. }
  1071. while (true) {
  1072. auto client_socket = socket_accept(server_socket->fd);
  1073. if (client_socket == nullptr) {
  1074. fprintf(stderr, "Failed to accept client connection\n");
  1075. return;
  1076. }
  1077. printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
  1078. rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
  1079. printf("Client connection closed\n");
  1080. }
  1081. #ifdef _WIN32
  1082. WSACleanup();
  1083. #endif
  1084. }