convert_hf_to_gguf.py 365 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  252. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  253. gguf.MODEL_TENSOR.TIME_MIX_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_W2,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  256. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  257. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  258. gguf.MODEL_TENSOR.POSNET_NORM1,
  259. gguf.MODEL_TENSOR.POSNET_NORM2,
  260. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  262. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  263. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  264. )
  265. )
  266. or not new_name.endswith(".weight")
  267. ):
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. if data_qtype is False and any(
  270. self.match_model_tensor_name(new_name, key, bid)
  271. for key in (
  272. gguf.MODEL_TENSOR.TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  276. gguf.MODEL_TENSOR.LAUREL_L,
  277. gguf.MODEL_TENSOR.LAUREL_R,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # If we are using HF model id, set the metadata name to the model id
  320. if self.remote_hf_model_id:
  321. self.metadata.name = self.remote_hf_model_id
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. self.set_type()
  329. logger.info("Set meta model")
  330. self.metadata.set_gguf_meta_model(self.gguf_writer)
  331. logger.info("Set model parameters")
  332. self.set_gguf_parameters()
  333. logger.info("Set model quantization version")
  334. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  335. def write_vocab(self):
  336. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  337. def write(self):
  338. self.prepare_tensors()
  339. self.prepare_metadata(vocab_only=False)
  340. self.gguf_writer.write_header_to_file(path=self.fname_out)
  341. self.gguf_writer.write_kv_data_to_file()
  342. self.gguf_writer.write_tensors_to_file(progress=True)
  343. self.gguf_writer.close()
  344. @staticmethod
  345. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  346. part_names: list[str] = []
  347. for filename in os.listdir(dir_model):
  348. if filename.startswith(prefix) and filename.endswith(suffix):
  349. part_names.append(filename)
  350. part_names.sort()
  351. return part_names
  352. @staticmethod
  353. def load_hparams(dir_model: Path):
  354. try:
  355. # for security reason, we don't allow loading remote code by default
  356. # if a model need remote code, we will fallback to config.json
  357. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  358. except Exception as e:
  359. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  360. logger.warning("Trying to load config.json instead")
  361. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  362. config = json.load(f)
  363. if "llm_config" in config:
  364. # rename for InternVL
  365. config["text_config"] = config["llm_config"]
  366. if "thinker_config" in config:
  367. # rename for Qwen2.5-Omni
  368. config["text_config"] = config["thinker_config"]["text_config"]
  369. return config
  370. @classmethod
  371. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  372. assert names
  373. def func(modelcls: AnyModel) -> AnyModel:
  374. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  375. for name in names:
  376. cls._model_classes[model_type][name] = modelcls
  377. return modelcls
  378. return func
  379. @classmethod
  380. def print_registered_models(cls):
  381. for model_type, model_classes in cls._model_classes.items():
  382. logger.error(f"{model_type.name} models:")
  383. for name in sorted(model_classes.keys()):
  384. logger.error(f" - {name}")
  385. @classmethod
  386. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  387. try:
  388. return cls._model_classes[model_type][arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. class TextModel(ModelBase):
  392. model_type = ModelType.TEXT
  393. hf_arch: str
  394. def __init__(self, *args, **kwargs):
  395. super().__init__(*args, **kwargs)
  396. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  397. if "text_config" in self.hparams:
  398. # move the text_config to the root level
  399. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  400. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  402. @classmethod
  403. def __init_subclass__(cls):
  404. # can't use an abstract property, because overriding it without type errors
  405. # would require using decorated functions instead of simply defining the property
  406. if "model_arch" not in cls.__dict__:
  407. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  408. def set_vocab(self):
  409. self._set_vocab_gpt2()
  410. def prepare_metadata(self, vocab_only: bool):
  411. super().prepare_metadata(vocab_only=vocab_only)
  412. total_params = self.gguf_writer.get_total_parameter_count()[0]
  413. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  414. output_type: str = self.ftype.name.partition("_")[2]
  415. # Filename Output
  416. if self.fname_out.is_dir():
  417. # Generate default filename based on model specification and available metadata
  418. if not vocab_only:
  419. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  420. else:
  421. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  422. # Use the default filename
  423. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  424. else:
  425. # Output path is a custom defined templated filename
  426. # Note: `not is_dir()` is used because `.is_file()` will not detect
  427. # file template strings as it doesn't actually exist as a file
  428. # Process templated file name with the output ftype, useful with the "auto" ftype
  429. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  430. logger.info("Set model tokenizer")
  431. self.set_vocab()
  432. def set_gguf_parameters(self):
  433. self.gguf_writer.add_block_count(self.block_count)
  434. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  435. self.gguf_writer.add_context_length(n_ctx)
  436. logger.info(f"gguf: context length = {n_ctx}")
  437. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  438. self.gguf_writer.add_embedding_length(n_embd)
  439. logger.info(f"gguf: embedding length = {n_embd}")
  440. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  441. self.gguf_writer.add_feed_forward_length(n_ff)
  442. logger.info(f"gguf: feed forward length = {n_ff}")
  443. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  444. self.gguf_writer.add_head_count(n_head)
  445. logger.info(f"gguf: head count = {n_head}")
  446. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  447. self.gguf_writer.add_head_count_kv(n_head_kv)
  448. logger.info(f"gguf: key-value head count = {n_head_kv}")
  449. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  450. self.gguf_writer.add_rope_freq_base(rope_theta)
  451. logger.info(f"gguf: rope theta = {rope_theta}")
  452. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  453. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  454. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  455. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  456. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  457. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  458. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  459. self.gguf_writer.add_expert_count(n_experts)
  460. logger.info(f"gguf: expert count = {n_experts}")
  461. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  462. self.gguf_writer.add_expert_used_count(n_experts_used)
  463. logger.info(f"gguf: experts used count = {n_experts_used}")
  464. if (head_dim := self.hparams.get("head_dim")) is not None:
  465. self.gguf_writer.add_key_length(head_dim)
  466. self.gguf_writer.add_value_length(head_dim)
  467. self.gguf_writer.add_file_type(self.ftype)
  468. logger.info(f"gguf: file type = {self.ftype}")
  469. def write_vocab(self):
  470. if len(self.gguf_writer.tensors) != 1:
  471. raise ValueError('Splitting the vocabulary is not supported')
  472. self.prepare_metadata(vocab_only=True)
  473. self.gguf_writer.write_header_to_file(path=self.fname_out)
  474. self.gguf_writer.write_kv_data_to_file()
  475. self.gguf_writer.close()
  476. def does_token_look_special(self, token: str | bytes) -> bool:
  477. if isinstance(token, (bytes, bytearray)):
  478. token_text = token.decode(encoding="utf-8")
  479. elif isinstance(token, memoryview):
  480. token_text = token.tobytes().decode(encoding="utf-8")
  481. else:
  482. token_text = token
  483. # Some models mark some added tokens which ought to be control tokens as not special.
  484. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  485. seems_special = token_text in (
  486. "<pad>", # deepseek-coder
  487. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  488. )
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  490. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  491. # TODO: should these be marked as UNUSED instead? (maybe not)
  492. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  493. return seems_special
  494. # used for GPT-2 BPE and WordPiece vocabs
  495. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  496. tokens: list[str] = []
  497. toktypes: list[int] = []
  498. from transformers import AutoTokenizer
  499. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  500. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  501. assert max(tokenizer.vocab.values()) < vocab_size
  502. tokpre = self.get_vocab_base_pre(tokenizer)
  503. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  504. added_vocab = tokenizer.get_added_vocab()
  505. added_tokens_decoder = tokenizer.added_tokens_decoder
  506. for i in range(vocab_size):
  507. if i not in reverse_vocab:
  508. tokens.append(f"[PAD{i}]")
  509. toktypes.append(gguf.TokenType.UNUSED)
  510. else:
  511. token: str = reverse_vocab[i]
  512. if token in added_vocab:
  513. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  514. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  515. if not added_tokens_decoder[i].normalized:
  516. previous_token = token
  517. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  518. if previous_token != token:
  519. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  520. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  521. toktypes.append(gguf.TokenType.CONTROL)
  522. else:
  523. # NOTE: this was added for Gemma.
  524. # Encoding and decoding the tokens above isn't sufficient for this case.
  525. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  526. toktypes.append(gguf.TokenType.USER_DEFINED)
  527. else:
  528. toktypes.append(gguf.TokenType.NORMAL)
  529. tokens.append(token)
  530. return tokens, toktypes, tokpre
  531. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  532. # do not modify it manually!
  533. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  534. # Marker: Start get_vocab_base_pre
  535. def get_vocab_base_pre(self, tokenizer) -> str:
  536. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  537. # is specific for the BPE pre-tokenizer used by the model
  538. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  539. # use in llama.cpp to implement the same pre-tokenizer
  540. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  541. chktok = tokenizer.encode(chktxt)
  542. chkhsh = sha256(str(chktok).encode()).hexdigest()
  543. logger.debug(f"chktok: {chktok}")
  544. logger.debug(f"chkhsh: {chkhsh}")
  545. res = None
  546. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  547. # or pull the latest version of the model from Huggingface
  548. # don't edit the hashes manually!
  549. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  550. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  551. res = "chatglm-bpe"
  552. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  553. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  554. res = "chatglm-bpe"
  555. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  556. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  557. res = "glm4"
  558. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  559. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  560. res = "minerva-7b"
  561. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  562. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  563. res = "hunyuan"
  564. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  565. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  566. res = "falcon-h1"
  567. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  568. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  569. res = "falcon-h1"
  570. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  571. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  572. res = "falcon-h1"
  573. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  574. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  575. res = "falcon-h1"
  576. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  577. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  578. res = "kimi-k2"
  579. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  580. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  581. res = "llama-bpe"
  582. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  583. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  584. res = "deepseek-llm"
  585. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  586. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  587. res = "deepseek-coder"
  588. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  589. # ref: https://huggingface.co/tiiuae/falcon-7b
  590. res = "falcon"
  591. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  592. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  593. res = "bert-bge"
  594. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  595. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  596. res = "falcon3"
  597. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  598. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  599. res = "bert-bge-large"
  600. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  601. # ref: https://huggingface.co/mosaicml/mpt-7b
  602. res = "mpt"
  603. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  604. # ref: https://huggingface.co/bigcode/starcoder2-3b
  605. res = "starcoder"
  606. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  607. # ref: https://huggingface.co/openai-community/gpt2
  608. res = "gpt-2"
  609. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  610. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  611. res = "stablelm2"
  612. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  613. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  614. res = "refact"
  615. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  616. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  617. res = "command-r"
  618. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  619. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  620. res = "qwen2"
  621. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  622. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  623. res = "olmo"
  624. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  625. # ref: https://huggingface.co/databricks/dbrx-base
  626. res = "dbrx"
  627. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  628. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  629. res = "jina-v1-en"
  630. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  631. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  632. res = "jina-v2-en"
  633. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  634. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  635. res = "jina-v2-es"
  636. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  637. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  638. res = "jina-v2-de"
  639. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  640. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  641. res = "smaug-bpe"
  642. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  643. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  644. res = "poro-chat"
  645. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  646. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  647. res = "jina-v2-code"
  648. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  649. # ref: https://huggingface.co/LumiOpen/Viking-7B
  650. res = "viking"
  651. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  652. # ref: https://huggingface.co/core42/jais-13b
  653. res = "jais"
  654. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  655. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  656. res = "codeshell"
  657. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  658. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  659. res = "tekken"
  660. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  661. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  662. res = "smollm"
  663. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  664. # ref: https://huggingface.co/bigscience/bloom
  665. res = "bloom"
  666. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  667. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  668. res = "gpt3-finnish"
  669. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  670. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  671. res = "exaone"
  672. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  673. # ref: https://huggingface.co/microsoft/phi-2
  674. res = "phi-2"
  675. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  676. # ref: https://huggingface.co/facebook/chameleon-7b
  677. res = "chameleon"
  678. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  679. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  680. res = "roberta-bpe"
  681. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  682. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  683. res = "gigachat"
  684. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  685. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  686. res = "megrez"
  687. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  688. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  689. res = "deepseek-v3"
  690. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  691. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  692. res = "deepseek-r1-qwen"
  693. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  694. # ref: https://huggingface.co/Xenova/gpt-4o
  695. res = "gpt-4o"
  696. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  697. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  698. res = "superbpe"
  699. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  700. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  701. res = "trillion"
  702. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  703. # ref: https://huggingface.co/inclusionAI/Ling-lite
  704. res = "bailingmoe"
  705. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  706. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  707. res = "llama4"
  708. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  709. # ref: https://huggingface.co/mistral-community/pixtral-12b
  710. res = "pixtral"
  711. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  712. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  713. res = "seed-coder"
  714. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  715. # ref: https://huggingface.co/skt/A.X-4.0
  716. res = "a.x-4.0"
  717. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  718. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  719. res = "midm-2.0"
  720. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  721. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  722. res = "lfm2"
  723. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  724. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  725. res = "exaone4"
  726. if res is None:
  727. logger.warning("\n")
  728. logger.warning("**************************************************************************************")
  729. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  730. logger.warning("** There are 2 possible reasons for this:")
  731. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  732. logger.warning("** - the pre-tokenization config has changed upstream")
  733. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  734. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  735. logger.warning("**")
  736. logger.warning(f"** chkhsh: {chkhsh}")
  737. logger.warning("**************************************************************************************")
  738. logger.warning("\n")
  739. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  740. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  741. logger.debug(f"chkhsh: {chkhsh}")
  742. return res
  743. # Marker: End get_vocab_base_pre
  744. def _set_vocab_none(self) -> None:
  745. self.gguf_writer.add_tokenizer_model("none")
  746. def _set_vocab_gpt2(self) -> None:
  747. tokens, toktypes, tokpre = self.get_vocab_base()
  748. self.gguf_writer.add_tokenizer_model("gpt2")
  749. self.gguf_writer.add_tokenizer_pre(tokpre)
  750. self.gguf_writer.add_token_list(tokens)
  751. self.gguf_writer.add_token_types(toktypes)
  752. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  753. special_vocab.add_to_gguf(self.gguf_writer)
  754. def _set_vocab_qwen(self):
  755. dir_model = self.dir_model
  756. hparams = self.hparams
  757. tokens: list[str] = []
  758. toktypes: list[int] = []
  759. from transformers import AutoTokenizer
  760. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  761. vocab_size = hparams["vocab_size"]
  762. assert max(tokenizer.get_vocab().values()) < vocab_size
  763. tokpre = self.get_vocab_base_pre(tokenizer)
  764. merges = []
  765. vocab = {}
  766. mergeable_ranks = tokenizer.mergeable_ranks
  767. for token, rank in mergeable_ranks.items():
  768. vocab[QwenModel.token_bytes_to_string(token)] = rank
  769. if len(token) == 1:
  770. continue
  771. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  772. assert len(merged) == 2
  773. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  774. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  775. added_vocab = tokenizer.special_tokens
  776. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  777. for i in range(vocab_size):
  778. if i not in reverse_vocab:
  779. tokens.append(f"[PAD{i}]")
  780. toktypes.append(gguf.TokenType.UNUSED)
  781. elif reverse_vocab[i] in added_vocab:
  782. tokens.append(reverse_vocab[i])
  783. toktypes.append(gguf.TokenType.CONTROL)
  784. else:
  785. tokens.append(reverse_vocab[i])
  786. toktypes.append(gguf.TokenType.NORMAL)
  787. self.gguf_writer.add_tokenizer_model("gpt2")
  788. self.gguf_writer.add_tokenizer_pre(tokpre)
  789. self.gguf_writer.add_token_list(tokens)
  790. self.gguf_writer.add_token_types(toktypes)
  791. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  792. special_vocab.merges = merges
  793. # only add special tokens when they were not already loaded from config.json
  794. if len(special_vocab.special_token_ids) == 0:
  795. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  796. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  797. # this one is usually not in config.json anyway
  798. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  799. special_vocab.add_to_gguf(self.gguf_writer)
  800. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  801. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  802. self.gguf_writer.add_tokenizer_model("llama")
  803. self.gguf_writer.add_tokenizer_pre("default")
  804. self.gguf_writer.add_token_list(tokens)
  805. self.gguf_writer.add_token_scores(scores)
  806. self.gguf_writer.add_token_types(toktypes)
  807. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  808. special_vocab.add_to_gguf(self.gguf_writer)
  809. def _create_vocab_sentencepiece(self):
  810. from sentencepiece import SentencePieceProcessor
  811. tokenizer_path = self.dir_model / 'tokenizer.model'
  812. if not tokenizer_path.is_file():
  813. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  814. tokenizer = SentencePieceProcessor()
  815. tokenizer.LoadFromFile(str(tokenizer_path))
  816. vocab_size = self.find_hparam([
  817. "vocab_size_per_layer_input", # gemma3n
  818. "vocab_size",
  819. ], optional=True) or tokenizer.vocab_size()
  820. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  821. scores: list[float] = [-10000.0] * vocab_size
  822. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  823. for token_id in range(tokenizer.vocab_size()):
  824. if token_id >= vocab_size:
  825. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  826. break
  827. piece = tokenizer.IdToPiece(token_id)
  828. text = piece.encode("utf-8")
  829. score = tokenizer.GetScore(token_id)
  830. toktype = SentencePieceTokenTypes.NORMAL
  831. if tokenizer.IsUnknown(token_id):
  832. toktype = SentencePieceTokenTypes.UNKNOWN
  833. elif tokenizer.IsControl(token_id):
  834. toktype = SentencePieceTokenTypes.CONTROL
  835. elif tokenizer.IsUnused(token_id):
  836. toktype = SentencePieceTokenTypes.UNUSED
  837. elif tokenizer.IsByte(token_id):
  838. toktype = SentencePieceTokenTypes.BYTE
  839. tokens[token_id] = text
  840. scores[token_id] = score
  841. toktypes[token_id] = toktype
  842. added_tokens_file = self.dir_model / 'added_tokens.json'
  843. if added_tokens_file.is_file():
  844. with open(added_tokens_file, "r", encoding="utf-8") as f:
  845. added_tokens_json = json.load(f)
  846. for key in added_tokens_json:
  847. token_id = added_tokens_json[key]
  848. if token_id >= vocab_size:
  849. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  850. continue
  851. tokens[token_id] = key.encode("utf-8")
  852. scores[token_id] = -1000.0
  853. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  854. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  855. if tokenizer_config_file.is_file():
  856. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  857. tokenizer_config_json = json.load(f)
  858. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  859. for token_id, token_data in added_tokens_decoder.items():
  860. token_id = int(token_id)
  861. token: str = token_data["content"]
  862. if token_id >= vocab_size:
  863. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  864. continue
  865. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  866. if tokens[token_id] != token.encode("utf-8"):
  867. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  868. if token_data.get("special") or self.does_token_look_special(token):
  869. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  870. else:
  871. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  872. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  873. scores[token_id] = -1000.0
  874. tokens[token_id] = token.encode("utf-8")
  875. if vocab_size > len(tokens):
  876. pad_count = vocab_size - len(tokens)
  877. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  878. for i in range(1, pad_count + 1):
  879. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  880. scores.append(-1000.0)
  881. toktypes.append(SentencePieceTokenTypes.UNUSED)
  882. return tokens, scores, toktypes
  883. def _set_vocab_llama_hf(self):
  884. vocab = gguf.LlamaHfVocab(self.dir_model)
  885. tokens = []
  886. scores = []
  887. toktypes = []
  888. for text, score, toktype in vocab.all_tokens():
  889. tokens.append(text)
  890. scores.append(score)
  891. toktypes.append(toktype)
  892. assert len(tokens) == vocab.vocab_size
  893. self.gguf_writer.add_tokenizer_model("llama")
  894. self.gguf_writer.add_tokenizer_pre("default")
  895. self.gguf_writer.add_token_list(tokens)
  896. self.gguf_writer.add_token_scores(scores)
  897. self.gguf_writer.add_token_types(toktypes)
  898. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  899. special_vocab.add_to_gguf(self.gguf_writer)
  900. def _set_vocab_rwkv_world(self):
  901. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  902. vocab_size = self.hparams.get("vocab_size", 65536)
  903. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  904. toktypes: list[int] = [gguf.TokenType.CONTROL]
  905. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  906. lines = f.readlines()
  907. for line in lines:
  908. parts = line.split(' ')
  909. assert len(parts) >= 3
  910. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  911. token = token.encode("utf-8") if isinstance(token, str) else token
  912. assert isinstance(token, bytes)
  913. assert len(token) == token_len
  914. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  915. tokens.append(token_text.encode("utf-8"))
  916. toktypes.append(gguf.TokenType.NORMAL)
  917. remainder = vocab_size - len(tokens)
  918. assert remainder >= 0
  919. for i in range(len(tokens), vocab_size):
  920. tokens.append(f"[PAD{i}]".encode("utf-8"))
  921. toktypes.append(gguf.TokenType.UNUSED)
  922. self.gguf_writer.add_tokenizer_model("rwkv")
  923. self.gguf_writer.add_token_list(tokens)
  924. self.gguf_writer.add_token_types(toktypes)
  925. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  926. if special_vocab.chat_template is None:
  927. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  928. if template_path.is_file():
  929. with open(template_path, "r", encoding="utf-8") as f:
  930. template = f.read()
  931. else:
  932. template = "rwkv-world"
  933. special_vocab.chat_template = template
  934. # hack: Add '\n\n' as the EOT token to make it chat normally
  935. special_vocab._set_special_token("eot", 261)
  936. # hack: Override these as they have already been set (incorrectly)
  937. special_vocab.special_token_ids["bos"] = 0
  938. special_vocab.special_token_ids["eos"] = 0
  939. special_vocab.add_to_gguf(self.gguf_writer)
  940. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  941. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  942. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  943. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  944. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  945. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  946. assert field # tokenizer model
  947. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  948. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  949. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  950. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  951. assert field # token list
  952. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  953. if model_name == "llama-spm":
  954. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  955. assert field # token scores
  956. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  957. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  958. assert field # token types
  959. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  960. if model_name != "llama-spm":
  961. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  962. assert field # token merges
  963. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  964. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  965. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  966. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  967. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  968. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  969. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  970. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  971. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  972. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  973. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  974. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  975. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  976. def _try_set_pooling_type(self) -> None:
  977. # get pooling path
  978. pooling_path = None
  979. module_path = self.dir_model / "modules.json"
  980. if module_path.is_file():
  981. with open(module_path, encoding="utf-8") as f:
  982. modules = json.load(f)
  983. for mod in modules:
  984. if mod["type"] == "sentence_transformers.models.Pooling":
  985. pooling_path = mod["path"]
  986. break
  987. # get pooling type
  988. if pooling_path is not None:
  989. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  990. pooling = json.load(f)
  991. if pooling["pooling_mode_mean_tokens"]:
  992. pooling_type = gguf.PoolingType.MEAN
  993. elif pooling["pooling_mode_cls_token"]:
  994. pooling_type = gguf.PoolingType.CLS
  995. elif pooling["pooling_mode_lasttoken"]:
  996. pooling_type = gguf.PoolingType.LAST
  997. else:
  998. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  999. self.gguf_writer.add_pooling_type(pooling_type)
  1000. class MmprojModel(ModelBase):
  1001. model_type = ModelType.MMPROJ
  1002. model_arch = gguf.MODEL_ARCH.MMPROJ
  1003. preprocessor_config: dict[str, Any]
  1004. global_config: dict[str, Any]
  1005. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1006. has_vision_encoder: bool = True # by default
  1007. has_audio_encoder: bool = False
  1008. # for models having multiple encoders, we need to separate their hparams
  1009. hparams_vision: dict[str, Any] | None = None
  1010. hparams_audio: dict[str, Any] | None = None
  1011. def __init__(self, *args, **kwargs):
  1012. super().__init__(*args, **kwargs)
  1013. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1014. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1015. # get n_embd of the text model
  1016. if "text_config" not in self.hparams:
  1017. self.hparams["text_config"] = {}
  1018. if "audio_config" not in self.hparams:
  1019. self.hparams["audio_config"] = {}
  1020. text_config = {**self.hparams, **self.hparams["text_config"]}
  1021. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1022. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1023. # move vision config to the top level, while preserving the original hparams in global_config
  1024. import copy
  1025. self.global_config = copy.deepcopy(self.hparams)
  1026. self.hparams_vision = self.get_vision_config()
  1027. self.hparams_audio = self.get_audio_config()
  1028. if self.hparams_vision is None and self.hparams_audio is None:
  1029. raise ValueError("vision_config / audio_config not found in hparams")
  1030. # for compat with vision-only models
  1031. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1032. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1033. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1034. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1035. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1036. # load preprocessor config
  1037. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1038. self.preprocessor_config = json.load(f)
  1039. def get_vision_config(self) -> dict[str, Any] | None:
  1040. return self.global_config.get("vision_config")
  1041. def get_audio_config(self) -> dict[str, Any] | None:
  1042. return self.global_config.get("audio_config")
  1043. def set_type(self):
  1044. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1045. def set_gguf_parameters(self):
  1046. self.gguf_writer.add_file_type(self.ftype)
  1047. if self.has_vision_encoder:
  1048. self.gguf_writer.add_clip_has_vision_encoder(True)
  1049. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1050. # vision config
  1051. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1052. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1053. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1054. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1055. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1056. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1057. # preprocessor config
  1058. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1059. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1060. if self.has_audio_encoder:
  1061. self.gguf_writer.add_clip_has_audio_encoder(True)
  1062. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1063. # audio config
  1064. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1065. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1066. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1067. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1068. if not self.has_vision_encoder and not self.has_audio_encoder:
  1069. raise ValueError("MmprojModel must have either vision or audio encoder")
  1070. def write_vocab(self):
  1071. raise ValueError("MmprojModel does not support vocab writing")
  1072. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1073. assert self.hparams_vision is not None
  1074. return self._find_param(self.hparams_vision, keys, optional)
  1075. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1076. assert self.hparams_audio is not None
  1077. return self._find_param(self.hparams_audio, keys, optional)
  1078. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1079. key = next((k for k in keys if k in obj), None)
  1080. if key is not None:
  1081. return obj[key]
  1082. if optional:
  1083. return None
  1084. raise KeyError(f"could not find any of: {keys}")
  1085. @ModelBase.register("GPTNeoXForCausalLM")
  1086. class GPTNeoXModel(TextModel):
  1087. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1088. def set_gguf_parameters(self):
  1089. block_count = self.hparams["num_hidden_layers"]
  1090. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1091. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1092. self.gguf_writer.add_block_count(block_count)
  1093. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1094. self.gguf_writer.add_rope_dimension_count(
  1095. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1096. )
  1097. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1098. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1099. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1100. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1101. del bid # unused
  1102. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1103. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1104. tensors: list[tuple[str, Tensor]] = []
  1105. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1106. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1107. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1108. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1109. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1110. data_torch = torch.cat(
  1111. (
  1112. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1113. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1114. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1115. ),
  1116. dim=0,
  1117. )
  1118. logger.info("re-format attention.linear_qkv.weight")
  1119. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1120. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1121. data_torch = torch.cat(
  1122. (
  1123. qkv_bias[:, 0, :].reshape((n_embed,)),
  1124. qkv_bias[:, 1, :].reshape((n_embed,)),
  1125. qkv_bias[:, 2, :].reshape((n_embed,)),
  1126. ),
  1127. dim=0,
  1128. )
  1129. logger.info("re-format attention.linear_qkv.bias")
  1130. tensors.append((self.map_tensor_name(name), data_torch))
  1131. return tensors
  1132. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1133. class BloomModel(TextModel):
  1134. model_arch = gguf.MODEL_ARCH.BLOOM
  1135. def set_gguf_parameters(self):
  1136. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1137. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1138. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1139. self.gguf_writer.add_embedding_length(n_embed)
  1140. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1141. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1142. self.gguf_writer.add_head_count(n_head)
  1143. self.gguf_writer.add_head_count_kv(n_head)
  1144. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1145. self.gguf_writer.add_file_type(self.ftype)
  1146. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1147. del bid # unused
  1148. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1149. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1150. name = re.sub(r'transformer\.', '', name)
  1151. tensors: list[tuple[str, Tensor]] = []
  1152. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1153. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1154. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1155. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1156. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1157. data_torch = torch.cat(
  1158. (
  1159. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1160. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1161. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1162. ),
  1163. dim=0,
  1164. )
  1165. logger.info("re-format attention.linear_qkv.weight")
  1166. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1167. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1168. data_torch = torch.cat(
  1169. (
  1170. qkv_bias[:, 0, :].reshape((n_embed,)),
  1171. qkv_bias[:, 1, :].reshape((n_embed,)),
  1172. qkv_bias[:, 2, :].reshape((n_embed,)),
  1173. ),
  1174. dim=0,
  1175. )
  1176. logger.info("re-format attention.linear_qkv.bias")
  1177. tensors.append((self.map_tensor_name(name), data_torch))
  1178. return tensors
  1179. @ModelBase.register("MPTForCausalLM")
  1180. class MPTModel(TextModel):
  1181. model_arch = gguf.MODEL_ARCH.MPT
  1182. def set_vocab(self):
  1183. try:
  1184. self._set_vocab_gpt2()
  1185. except Exception:
  1186. # Fallback for SEA-LION model
  1187. self._set_vocab_sentencepiece()
  1188. self.gguf_writer.add_add_bos_token(False)
  1189. self.gguf_writer.add_pad_token_id(3)
  1190. self.gguf_writer.add_eos_token_id(1)
  1191. self.gguf_writer.add_unk_token_id(0)
  1192. def set_gguf_parameters(self):
  1193. block_count = self.hparams["n_layers"]
  1194. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1195. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1196. self.gguf_writer.add_block_count(block_count)
  1197. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1198. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1199. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1200. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1201. self.gguf_writer.add_layer_norm_eps(1e-5)
  1202. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1203. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1204. if self.hparams["attn_config"]["alibi"]:
  1205. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1206. else:
  1207. self.gguf_writer.add_max_alibi_bias(0.0)
  1208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1209. del bid # unused
  1210. if "scales" in name:
  1211. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1212. new_name = new_name.replace("scales", "act.scales")
  1213. else:
  1214. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1215. return [(new_name, data_torch)]
  1216. @ModelBase.register("OrionForCausalLM")
  1217. class OrionModel(TextModel):
  1218. model_arch = gguf.MODEL_ARCH.ORION
  1219. def set_vocab(self):
  1220. self._set_vocab_sentencepiece()
  1221. def set_gguf_parameters(self):
  1222. block_count = self.hparams["num_hidden_layers"]
  1223. head_count = self.hparams["num_attention_heads"]
  1224. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1225. ctx_length = 0
  1226. if "max_sequence_length" in self.hparams:
  1227. ctx_length = self.hparams["max_sequence_length"]
  1228. elif "max_position_embeddings" in self.hparams:
  1229. ctx_length = self.hparams["max_position_embeddings"]
  1230. elif "model_max_length" in self.hparams:
  1231. ctx_length = self.hparams["model_max_length"]
  1232. else:
  1233. raise ValueError("gguf: can not find ctx length parameter.")
  1234. self.gguf_writer.add_file_type(self.ftype)
  1235. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1236. self.gguf_writer.add_context_length(ctx_length)
  1237. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1238. self.gguf_writer.add_block_count(block_count)
  1239. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1240. self.gguf_writer.add_head_count(head_count)
  1241. self.gguf_writer.add_head_count_kv(head_count_kv)
  1242. # note: config provides rms norm but it is actually layer norm
  1243. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1244. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1245. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1246. class BaichuanModel(TextModel):
  1247. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1248. def set_vocab(self):
  1249. self._set_vocab_sentencepiece()
  1250. def set_gguf_parameters(self):
  1251. block_count = self.hparams["num_hidden_layers"]
  1252. head_count = self.hparams["num_attention_heads"]
  1253. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1254. ctx_length = 0
  1255. if "max_sequence_length" in self.hparams:
  1256. ctx_length = self.hparams["max_sequence_length"]
  1257. elif "max_position_embeddings" in self.hparams:
  1258. ctx_length = self.hparams["max_position_embeddings"]
  1259. elif "model_max_length" in self.hparams:
  1260. ctx_length = self.hparams["model_max_length"]
  1261. else:
  1262. raise ValueError("gguf: can not find ctx length parameter.")
  1263. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1264. self.gguf_writer.add_context_length(ctx_length)
  1265. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1266. self.gguf_writer.add_block_count(block_count)
  1267. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1268. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1269. self.gguf_writer.add_head_count(head_count)
  1270. self.gguf_writer.add_head_count_kv(head_count_kv)
  1271. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1272. self.gguf_writer.add_file_type(self.ftype)
  1273. rope_scaling = self.hparams.get("rope_scaling") or {}
  1274. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1275. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1276. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1277. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1278. head_count = self.hparams["num_attention_heads"]
  1279. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1280. tensors: list[tuple[str, Tensor]] = []
  1281. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1282. logger.info(f"Unpacking and permuting layer {bid}")
  1283. tensors = [
  1284. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1285. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1286. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1287. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1288. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1289. self._reverse_hf_part(data_torch, 2)),
  1290. ]
  1291. else:
  1292. tensors = [(self.map_tensor_name(name), data_torch)]
  1293. return tensors
  1294. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1295. if n_kv_head is not None and n_head != n_kv_head:
  1296. n_head //= n_kv_head
  1297. return (
  1298. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1299. .swapaxes(1, 2)
  1300. .reshape(weights.shape)
  1301. )
  1302. def _reverse_hf_permute_part(
  1303. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1304. ) -> Tensor:
  1305. r = weights.shape[0] // 3
  1306. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1307. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1308. r = weights.shape[0] // 3
  1309. return weights[r * n_part:r * n_part + r, ...]
  1310. @ModelBase.register("XverseForCausalLM")
  1311. class XverseModel(TextModel):
  1312. model_arch = gguf.MODEL_ARCH.XVERSE
  1313. def set_vocab(self):
  1314. assert (self.dir_model / "tokenizer.json").is_file()
  1315. dir_model = self.dir_model
  1316. hparams = self.hparams
  1317. tokens: list[bytes] = []
  1318. toktypes: list[int] = []
  1319. from transformers import AutoTokenizer
  1320. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1321. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1322. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1323. # because vocab_size is the count of items, and indexes start at 0.
  1324. max_vocab_index = max(tokenizer.get_vocab().values())
  1325. if max_vocab_index >= vocab_size:
  1326. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1327. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1328. added_vocab = tokenizer.get_added_vocab()
  1329. for token_id in range(vocab_size):
  1330. token_text = reverse_vocab[token_id].encode('utf-8')
  1331. # replace "\x00" to string with length > 0
  1332. if token_text == b"\x00":
  1333. toktype = gguf.TokenType.BYTE # special
  1334. token_text = f"<{token_text}>".encode('utf-8')
  1335. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1336. toktype = gguf.TokenType.BYTE # special
  1337. elif reverse_vocab[token_id] in added_vocab:
  1338. if tokenizer.added_tokens_decoder[token_id].special:
  1339. toktype = gguf.TokenType.CONTROL
  1340. else:
  1341. toktype = gguf.TokenType.USER_DEFINED
  1342. else:
  1343. toktype = gguf.TokenType.NORMAL
  1344. tokens.append(token_text)
  1345. toktypes.append(toktype)
  1346. self.gguf_writer.add_tokenizer_model("llama")
  1347. self.gguf_writer.add_tokenizer_pre("default")
  1348. self.gguf_writer.add_token_list(tokens)
  1349. self.gguf_writer.add_token_types(toktypes)
  1350. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1351. special_vocab.add_to_gguf(self.gguf_writer)
  1352. def set_gguf_parameters(self):
  1353. block_count = self.hparams["num_hidden_layers"]
  1354. head_count = self.hparams["num_attention_heads"]
  1355. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1356. ctx_length = 0
  1357. if "max_sequence_length" in self.hparams:
  1358. ctx_length = self.hparams["max_sequence_length"]
  1359. elif "max_position_embeddings" in self.hparams:
  1360. ctx_length = self.hparams["max_position_embeddings"]
  1361. elif "model_max_length" in self.hparams:
  1362. ctx_length = self.hparams["model_max_length"]
  1363. else:
  1364. raise ValueError("gguf: can not find ctx length parameter.")
  1365. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1366. self.gguf_writer.add_context_length(ctx_length)
  1367. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1368. self.gguf_writer.add_block_count(block_count)
  1369. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1370. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1371. self.gguf_writer.add_head_count(head_count)
  1372. self.gguf_writer.add_head_count_kv(head_count_kv)
  1373. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1374. self.gguf_writer.add_file_type(self.ftype)
  1375. rope_scaling = self.hparams.get("rope_scaling") or {}
  1376. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1377. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1378. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1380. del bid # unused
  1381. head_count = self.hparams["num_attention_heads"]
  1382. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1383. # HF models permute some of the tensors, so we need to undo that
  1384. if name.endswith("q_proj.weight"):
  1385. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1386. if name.endswith("k_proj.weight"):
  1387. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1388. return [(self.map_tensor_name(name), data_torch)]
  1389. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1390. if n_kv_head is not None and n_head != n_kv_head:
  1391. n_head //= n_kv_head
  1392. return (
  1393. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1394. .swapaxes(1, 2)
  1395. .reshape(weights.shape)
  1396. )
  1397. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1398. class FalconModel(TextModel):
  1399. model_arch = gguf.MODEL_ARCH.FALCON
  1400. def set_gguf_parameters(self):
  1401. block_count = self.hparams.get("num_hidden_layers")
  1402. if block_count is None:
  1403. block_count = self.hparams["n_layer"] # old name
  1404. n_head = self.hparams.get("num_attention_heads")
  1405. if n_head is None:
  1406. n_head = self.hparams["n_head"] # old name
  1407. n_head_kv = self.hparams.get("num_kv_heads")
  1408. if n_head_kv is None:
  1409. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1410. self.gguf_writer.add_context_length(2048) # not in config.json
  1411. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1412. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1413. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1414. self.gguf_writer.add_block_count(block_count)
  1415. self.gguf_writer.add_head_count(n_head)
  1416. self.gguf_writer.add_head_count_kv(n_head_kv)
  1417. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1418. self.gguf_writer.add_file_type(self.ftype)
  1419. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1420. del bid # unused
  1421. # QKV tensor transform
  1422. # The original query_key_value tensor contains n_head_kv "kv groups",
  1423. # each consisting of n_head/n_head_kv query weights followed by one key
  1424. # and one value weight (shared by all query heads in the kv group).
  1425. # This layout makes it a big pain to work with in GGML.
  1426. # So we rearrange them here,, so that we have n_head query weights
  1427. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1428. # in contiguous fashion.
  1429. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1430. if "query_key_value" in name:
  1431. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1432. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1433. head_dim = self.hparams["hidden_size"] // n_head
  1434. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1435. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1436. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1437. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1438. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1439. return [(self.map_tensor_name(name), data_torch)]
  1440. @ModelBase.register("GPTBigCodeForCausalLM")
  1441. class StarCoderModel(TextModel):
  1442. model_arch = gguf.MODEL_ARCH.STARCODER
  1443. def set_gguf_parameters(self):
  1444. block_count = self.hparams["n_layer"]
  1445. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1446. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1447. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1448. self.gguf_writer.add_block_count(block_count)
  1449. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1450. self.gguf_writer.add_head_count_kv(1)
  1451. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1452. self.gguf_writer.add_file_type(self.ftype)
  1453. @ModelBase.register("GPTRefactForCausalLM")
  1454. class RefactModel(TextModel):
  1455. model_arch = gguf.MODEL_ARCH.REFACT
  1456. def set_vocab(self):
  1457. super().set_vocab()
  1458. # TODO: how to determine special FIM tokens automatically?
  1459. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1460. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1461. special_vocab._set_special_token("prefix", 1)
  1462. special_vocab._set_special_token("suffix", 3)
  1463. special_vocab._set_special_token("middle", 2)
  1464. special_vocab.chat_template = None # do not add it twice
  1465. special_vocab.add_to_gguf(self.gguf_writer)
  1466. def set_gguf_parameters(self):
  1467. hidden_dim = self.hparams["n_embd"]
  1468. inner_dim = 4 * hidden_dim
  1469. hidden_dim = int(2 * inner_dim / 3)
  1470. multiple_of = 256
  1471. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1472. block_count = self.hparams["n_layer"]
  1473. # refact uses Alibi. So this is from config.json which might be used by training.
  1474. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1475. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1476. self.gguf_writer.add_feed_forward_length(ff_dim)
  1477. self.gguf_writer.add_block_count(block_count)
  1478. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1479. self.gguf_writer.add_head_count_kv(1)
  1480. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1481. self.gguf_writer.add_file_type(self.ftype)
  1482. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1483. hidden_dim = self.hparams["n_embd"]
  1484. inner_dim = 4 * hidden_dim
  1485. hidden_dim = int(2 * inner_dim / 3)
  1486. multiple_of = 256
  1487. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1488. n_head = self.hparams["n_head"]
  1489. n_head_kv = 1
  1490. head_dim = self.hparams["n_embd"] // n_head
  1491. tensors: list[tuple[str, Tensor]] = []
  1492. if bid is not None:
  1493. if name == f"transformer.h.{bid}.attn.kv.weight":
  1494. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1495. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1496. elif name == f"transformer.h.{bid}.attn.q.weight":
  1497. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1498. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1499. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1500. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1501. if len(tensors) == 0:
  1502. tensors.append((self.map_tensor_name(name), data_torch))
  1503. return tensors
  1504. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1505. class StableLMModel(TextModel):
  1506. model_arch = gguf.MODEL_ARCH.STABLELM
  1507. def set_vocab(self):
  1508. if (self.dir_model / "tokenizer.json").is_file():
  1509. self._set_vocab_gpt2()
  1510. else:
  1511. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1512. self._set_vocab_qwen()
  1513. def set_gguf_parameters(self):
  1514. hparams = self.hparams
  1515. block_count = hparams["num_hidden_layers"]
  1516. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1517. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1518. self.gguf_writer.add_block_count(block_count)
  1519. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1520. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1521. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1522. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1523. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1524. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1525. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1526. self.gguf_writer.add_file_type(self.ftype)
  1527. _q_norms: list[dict[str, Tensor]] | None = None
  1528. _k_norms: list[dict[str, Tensor]] | None = None
  1529. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1530. n_head = self.hparams["num_attention_heads"]
  1531. n_kv_head = self.hparams["num_key_value_heads"]
  1532. if name.find("q_layernorm.norms") != -1:
  1533. assert bid is not None
  1534. if self._q_norms is None:
  1535. self._q_norms = [{} for _ in range(self.block_count)]
  1536. self._q_norms[bid][name] = data_torch
  1537. if len(self._q_norms[bid]) >= n_head:
  1538. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1539. else:
  1540. return []
  1541. if name.find("k_layernorm.norms") != -1:
  1542. assert bid is not None
  1543. if self._k_norms is None:
  1544. self._k_norms = [{} for _ in range(self.block_count)]
  1545. self._k_norms[bid][name] = data_torch
  1546. if len(self._k_norms[bid]) >= n_kv_head:
  1547. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1548. else:
  1549. return []
  1550. return [(self.map_tensor_name(name), data_torch)]
  1551. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1552. datas: list[Tensor] = []
  1553. # extract the norms in order
  1554. for xid in range(n_head):
  1555. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1556. datas.append(norms[ename])
  1557. del norms[ename]
  1558. data_torch = torch.stack(datas, dim=0)
  1559. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1560. new_name = self.map_tensor_name(merged_name)
  1561. return [(new_name, data_torch)]
  1562. def prepare_tensors(self):
  1563. super().prepare_tensors()
  1564. if self._q_norms is not None or self._k_norms is not None:
  1565. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1566. norms = (
  1567. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1568. ) + (
  1569. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1570. )
  1571. if len(norms) > 0:
  1572. raise ValueError(f"Unprocessed norms: {norms}")
  1573. @ModelBase.register(
  1574. "LLaMAForCausalLM",
  1575. "LlamaForCausalLM",
  1576. "MistralForCausalLM",
  1577. "MixtralForCausalLM",
  1578. "VLlama3ForCausalLM",
  1579. "LlavaForConditionalGeneration",
  1580. "VoxtralForConditionalGeneration",
  1581. "LlamaModel")
  1582. class LlamaModel(TextModel):
  1583. model_arch = gguf.MODEL_ARCH.LLAMA
  1584. undo_permute = True
  1585. def __init__(self, *args, **kwargs):
  1586. super().__init__(*args, **kwargs)
  1587. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1588. if self.hf_arch == "VLlama3ForCausalLM":
  1589. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1590. def set_vocab(self):
  1591. path_tekken_json = self.dir_model / "tekken.json"
  1592. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1593. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1594. return self.set_vocab_tekken()
  1595. try:
  1596. self._set_vocab_sentencepiece()
  1597. except FileNotFoundError:
  1598. try:
  1599. self._set_vocab_llama_hf()
  1600. except (FileNotFoundError, TypeError):
  1601. # Llama 3
  1602. self._set_vocab_gpt2()
  1603. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1604. if self.hparams.get("vocab_size", 32000) == 32016:
  1605. special_vocab = gguf.SpecialVocab(
  1606. self.dir_model, load_merges=False,
  1607. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1608. )
  1609. special_vocab._set_special_token("prefix", 32007)
  1610. special_vocab._set_special_token("suffix", 32008)
  1611. special_vocab._set_special_token("middle", 32009)
  1612. special_vocab._set_special_token("eot", 32010)
  1613. special_vocab.add_to_gguf(self.gguf_writer)
  1614. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1615. if tokenizer_config_file.is_file():
  1616. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1617. tokenizer_config_json = json.load(f)
  1618. if "add_prefix_space" in tokenizer_config_json:
  1619. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1620. # Apply to granite small models only
  1621. if self.hparams.get("vocab_size", 32000) == 49152:
  1622. self.gguf_writer.add_add_bos_token(False)
  1623. def set_vocab_tekken(self):
  1624. vocab = gguf.vocab.MistralVocab(self.dir_model)
  1625. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1626. tokens = []
  1627. scores = []
  1628. toktypes = []
  1629. for text, score, toktype in vocab.all_tokens():
  1630. tokens.append(text)
  1631. scores.append(score)
  1632. toktypes.append(toktype)
  1633. assert len(tokens) == vocab.vocab_size, (
  1634. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1635. )
  1636. if vocab.tokenizer_type == gguf.vocab.MistralTokenizerType.tekken:
  1637. self.gguf_writer.add_tokenizer_pre("tekken")
  1638. self.gguf_writer.add_token_merges(
  1639. vocab.extract_vocab_merges_from_model()
  1640. )
  1641. logger.info(
  1642. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1643. )
  1644. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1645. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1646. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1647. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1648. self.gguf_writer.add_token_list(tokens)
  1649. self.gguf_writer.add_token_scores(scores)
  1650. self.gguf_writer.add_token_types(toktypes)
  1651. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1652. self.gguf_writer.add_add_bos_token(True)
  1653. self.gguf_writer.add_add_eos_token(False)
  1654. script_dir = Path(__file__).parent
  1655. template_path = script_dir / "models/templates/unsloth-mistral-Devstral-Small-2507.jinja"
  1656. with open(template_path, "r", encoding="utf-8") as f:
  1657. template = f.read()
  1658. self.gguf_writer.add_chat_template(template)
  1659. def set_gguf_parameters(self):
  1660. super().set_gguf_parameters()
  1661. hparams = self.hparams
  1662. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1663. if (rope_dim := hparams.get("head_dim")) is None:
  1664. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1665. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1666. rope_scaling = self.hparams.get("rope_scaling") or {}
  1667. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1668. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1669. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1670. @staticmethod
  1671. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1672. if n_head_kv is not None and n_head != n_head_kv:
  1673. n_head = n_head_kv
  1674. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1675. .swapaxes(1, 2)
  1676. .reshape(weights.shape))
  1677. _experts: list[dict[str, Tensor]] | None = None
  1678. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1679. n_head = self.hparams["num_attention_heads"]
  1680. n_kv_head = self.hparams.get("num_key_value_heads")
  1681. is_multimodal_tensor = "vision_tower" in name \
  1682. or "vision_model" in name \
  1683. or "audio_tower" in name \
  1684. or "model.connector" in name \
  1685. or "multi_modal_projector" in name
  1686. if is_multimodal_tensor:
  1687. return [] # skip vision tensors
  1688. elif self.hf_arch == "LlamaModel":
  1689. name = "model." + name
  1690. elif name.startswith("model.text_model"):
  1691. name = name.replace("text_model.", "") # for SmolVLM
  1692. elif name.startswith("language_model."):
  1693. name = name.replace("language_model.", "") # for the rest
  1694. if self.undo_permute:
  1695. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1696. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1697. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1698. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1699. # process the experts separately
  1700. if name.find("block_sparse_moe.experts") != -1:
  1701. n_experts = self.hparams["num_local_experts"]
  1702. assert bid is not None
  1703. if self._experts is None:
  1704. self._experts = [{} for _ in range(self.block_count)]
  1705. self._experts[bid][name] = data_torch
  1706. if len(self._experts[bid]) >= n_experts * 3:
  1707. tensors: list[tuple[str, Tensor]] = []
  1708. # merge the experts into a single 3d tensor
  1709. for wid in ["w1", "w2", "w3"]:
  1710. datas: list[Tensor] = []
  1711. for xid in range(n_experts):
  1712. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1713. datas.append(self._experts[bid][ename])
  1714. del self._experts[bid][ename]
  1715. data_torch = torch.stack(datas, dim=0)
  1716. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1717. new_name = self.map_tensor_name(merged_name)
  1718. tensors.append((new_name, data_torch))
  1719. return tensors
  1720. else:
  1721. return []
  1722. return [(self.map_tensor_name(name), data_torch)]
  1723. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1724. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1725. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1726. base = self.hparams.get("rope_theta", 10000.0)
  1727. if (dim := self.hparams.get("head_dim")) is None:
  1728. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1729. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1730. factor = rope_scaling.get("factor", 8.0)
  1731. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1732. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1733. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1734. low_freq_wavelen = old_context_len / low_freq_factor
  1735. high_freq_wavelen = old_context_len / high_freq_factor
  1736. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1737. rope_factors = []
  1738. for freq in freqs:
  1739. wavelen = 2 * math.pi / freq
  1740. if wavelen < high_freq_wavelen:
  1741. rope_factors.append(1)
  1742. elif wavelen > low_freq_wavelen:
  1743. rope_factors.append(factor)
  1744. else:
  1745. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1746. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1747. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1748. def prepare_tensors(self):
  1749. super().prepare_tensors()
  1750. if self._experts is not None:
  1751. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1752. experts = [k for d in self._experts for k in d.keys()]
  1753. if len(experts) > 0:
  1754. raise ValueError(f"Unprocessed experts: {experts}")
  1755. @ModelBase.register("ArceeForCausalLM")
  1756. class ArceeModel(LlamaModel):
  1757. model_arch = gguf.MODEL_ARCH.ARCEE
  1758. def set_gguf_parameters(self):
  1759. super().set_gguf_parameters()
  1760. self._try_set_pooling_type()
  1761. rope_scaling = self.hparams.get("rope_scaling") or {}
  1762. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1763. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1764. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1765. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1766. @ModelBase.register(
  1767. "LlavaForConditionalGeneration", # pixtral
  1768. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1769. )
  1770. class LlavaVisionModel(MmprojModel):
  1771. img_break_tok_id = -1
  1772. def __init__(self, *args, **kwargs):
  1773. super().__init__(*args, **kwargs)
  1774. if self.hparams["model_type"] == "pixtral":
  1775. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1776. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1777. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1778. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1779. else:
  1780. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1781. def get_token_id(self, token: str) -> int:
  1782. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1783. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1784. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1785. for id_, token_data in added_tokens_decoder.items():
  1786. if token_data["content"] == token:
  1787. return int(id_)
  1788. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1789. def set_gguf_parameters(self):
  1790. super().set_gguf_parameters()
  1791. hparams = self.hparams
  1792. if hparams["model_type"] == "pixtral":
  1793. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1794. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1795. # hidden_act
  1796. if hparams["hidden_act"] == "silu":
  1797. self.gguf_writer.add_vision_use_silu(True)
  1798. elif hparams["hidden_act"] == "gelu":
  1799. self.gguf_writer.add_vision_use_gelu(True)
  1800. else:
  1801. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1802. # spatial_merge_size
  1803. if "spatial_merge_size" in self.global_config:
  1804. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1805. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1806. del bid # unused
  1807. n_head = self.hparams["num_attention_heads"]
  1808. n_kv_head = n_head
  1809. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1810. # process vision tensors
  1811. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1812. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1813. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1814. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1815. return [(self.map_tensor_name(name), data_torch)]
  1816. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1817. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1818. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1819. img_break_embd = data_torch[self.img_break_tok_id]
  1820. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1821. return [(self.map_tensor_name(name), img_break_embd)]
  1822. return [] # skip other tensors
  1823. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1824. class SmolVLMModel(MmprojModel):
  1825. def __init__(self, *args, **kwargs):
  1826. super().__init__(*args, **kwargs)
  1827. if self.hparams["model_type"] == "smolvlm_vision":
  1828. # fix for SmolVLM2, missing some keys in config.json
  1829. # default values are taken from transformers code
  1830. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1831. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1832. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1833. def set_gguf_parameters(self):
  1834. super().set_gguf_parameters()
  1835. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1836. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1837. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1838. self.gguf_writer.add_vision_use_gelu(True)
  1839. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1840. del bid, new_name, n_dims # unused
  1841. if ".embeddings." in name:
  1842. return gguf.GGMLQuantizationType.F32
  1843. return False
  1844. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1845. del bid # unused
  1846. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1847. if is_vision_tensor:
  1848. return [(self.map_tensor_name(name), data_torch)]
  1849. return [] # skip other tensors
  1850. @ModelBase.register("Llama4ForConditionalGeneration")
  1851. class Llama4Model(LlamaModel):
  1852. model_arch = gguf.MODEL_ARCH.LLAMA4
  1853. undo_permute = False
  1854. def __init__(self, *args, **kwargs):
  1855. super().__init__(*args, **kwargs)
  1856. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1857. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1858. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1859. def set_vocab(self):
  1860. self._set_vocab_gpt2()
  1861. def set_gguf_parameters(self):
  1862. super().set_gguf_parameters()
  1863. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1864. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1865. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1866. if name.startswith("language_model."):
  1867. name = name.replace("language_model.", "")
  1868. # split the gate_up into gate and up
  1869. if "gate_up_proj" in name:
  1870. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1871. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1872. dim_half = data_torch.shape[-1] // 2
  1873. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1874. return [
  1875. (self.map_tensor_name(name_gate), gate_proj_weight),
  1876. (self.map_tensor_name(name_up), up_proj_weight)
  1877. ]
  1878. if name.endswith("down_proj"):
  1879. name += ".weight"
  1880. data_torch = data_torch.transpose(-1, -2)
  1881. if "multi_modal_projector" in name or "vision_model" in name:
  1882. return []
  1883. return super().modify_tensors(data_torch, name, bid)
  1884. @ModelBase.register("Llama4ForConditionalGeneration")
  1885. class Llama4VisionModel(MmprojModel):
  1886. def set_gguf_parameters(self):
  1887. super().set_gguf_parameters()
  1888. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1889. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1890. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1891. assert self.hparams["hidden_act"] == "gelu"
  1892. self.gguf_writer.add_vision_use_gelu(True)
  1893. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1894. del bid # unused
  1895. if "multi_modal_projector" in name or "vision_model" in name:
  1896. # process vision tensors
  1897. if "positional_embedding_vlm" in name and ".weight" not in name:
  1898. name += ".weight"
  1899. if "multi_modal_projector.linear_1" in name:
  1900. # despite the name with number postfix, this is a single fully connected layer
  1901. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1902. return [(self.map_tensor_name(name), data_torch)]
  1903. return []
  1904. @ModelBase.register("Mistral3ForConditionalGeneration")
  1905. class Mistral3Model(LlamaModel):
  1906. model_arch = gguf.MODEL_ARCH.LLAMA
  1907. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1908. name = name.replace("language_model.", "")
  1909. if "multi_modal_projector" in name or "vision_tower" in name:
  1910. return []
  1911. return super().modify_tensors(data_torch, name, bid)
  1912. @ModelBase.register("DeciLMForCausalLM")
  1913. class DeciModel(TextModel):
  1914. model_arch = gguf.MODEL_ARCH.DECI
  1915. @staticmethod
  1916. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1917. # DeciLM-specific code
  1918. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1919. return DeciModel._find_multiple(intermediate_size, 256)
  1920. @staticmethod
  1921. def _find_multiple(n: int, k: int) -> int:
  1922. # DeciLM-specific code
  1923. if n % k == 0:
  1924. return n
  1925. return n + k - (n % k)
  1926. def __init__(self, *args, **kwargs):
  1927. super().__init__(*args, **kwargs)
  1928. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1929. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1930. assert self.block_count == len(_block_configs)
  1931. self._num_kv_heads = list()
  1932. self._num_heads = list()
  1933. _ffn_multipliers = list()
  1934. # ***linear attention layer***
  1935. # if n_heads_in_group is None and replace_with_linear is True
  1936. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1937. # ***attention-free layer***
  1938. # if n_heads_in_group is None and replace_with_linear is False
  1939. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1940. # ***normal attention-layer***
  1941. # if n_heads_in_group is not None, then
  1942. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1943. # _num_heads[il] is num_attention_head
  1944. # ***dummy layer*** for nemotron 253B
  1945. # if n_heads_in_group is None and ffn_mult is None
  1946. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1947. for il in range(len(_block_configs)):
  1948. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1949. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1950. self._num_kv_heads.append(0)
  1951. self._num_heads.append(self.hparams["num_attention_heads"])
  1952. else:
  1953. self._num_kv_heads.append(0)
  1954. self._num_heads.append(0)
  1955. else:
  1956. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1957. self._num_heads.append(self.hparams["num_attention_heads"])
  1958. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1959. _ffn_multipliers.append(0.0)
  1960. else:
  1961. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1962. assert self.block_count == len(self._num_kv_heads)
  1963. assert self.block_count == len(self._num_heads)
  1964. assert self.block_count == len(_ffn_multipliers)
  1965. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1966. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1967. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1968. self._ffn_dims: list[int] = [
  1969. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1970. for multiplier in _ffn_multipliers
  1971. ]
  1972. def set_vocab(self):
  1973. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1974. # eos_token from '|eot_id|' to '|end_of_text|'
  1975. if self.hparams.get("vocab_size", 128256) == 128256:
  1976. tokens, toktypes, tokpre = self.get_vocab_base()
  1977. self.gguf_writer.add_tokenizer_model("gpt2")
  1978. self.gguf_writer.add_tokenizer_pre(tokpre)
  1979. self.gguf_writer.add_token_list(tokens)
  1980. self.gguf_writer.add_token_types(toktypes)
  1981. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1982. special_vocab.add_to_gguf(self.gguf_writer)
  1983. else:
  1984. # DeciLM-7B
  1985. self._set_vocab_llama_hf()
  1986. def set_gguf_parameters(self):
  1987. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1988. assert self.block_count == len(self._num_kv_heads)
  1989. assert self.block_count == len(self._num_heads)
  1990. assert self.block_count == len(self._ffn_dims)
  1991. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1992. self.gguf_writer.add_rope_freq_base(rope_theta)
  1993. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1994. self.gguf_writer.add_head_count(self._num_heads)
  1995. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1996. self.gguf_writer.add_block_count(self.block_count)
  1997. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1998. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1999. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2000. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2001. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2002. self.gguf_writer.add_file_type(self.ftype)
  2003. else: # DeciLM-7B
  2004. super().set_gguf_parameters()
  2005. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2006. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2007. assert self.block_count == len(self._num_kv_heads)
  2008. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2009. hparams = self.hparams
  2010. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2011. if (rope_dim := hparams.get("head_dim")) is None:
  2012. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2013. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2014. rope_scaling = self.hparams.get("rope_scaling") or {}
  2015. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2016. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2017. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2018. @staticmethod
  2019. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2020. if n_head_kv is not None and n_head != n_head_kv:
  2021. n_head = n_head_kv
  2022. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2023. .swapaxes(1, 2)
  2024. .reshape(weights.shape))
  2025. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2026. n_head = self.hparams["num_attention_heads"]
  2027. if bid is not None:
  2028. if "num_key_value_heads_per_layer" in self.hparams:
  2029. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2030. elif "block_configs" in self.hparams:
  2031. n_kv_head = self._num_kv_heads[bid]
  2032. n_head = self._num_heads[bid]
  2033. else:
  2034. n_kv_head = self.hparams.get("num_key_value_heads")
  2035. else:
  2036. n_kv_head = self.hparams.get("num_key_value_heads")
  2037. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2038. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2039. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2040. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2041. return [(self.map_tensor_name(name), data_torch)]
  2042. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2043. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2044. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2045. base = self.hparams.get("rope_theta", 10000.0)
  2046. if (dim := self.hparams.get("head_dim")) is None:
  2047. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2048. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2049. factor = rope_scaling.get("factor", 8.0)
  2050. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2051. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2052. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2053. low_freq_wavelen = old_context_len / low_freq_factor
  2054. high_freq_wavelen = old_context_len / high_freq_factor
  2055. assert low_freq_wavelen != high_freq_wavelen
  2056. rope_factors = []
  2057. for freq in freqs:
  2058. wavelen = 2 * math.pi / freq
  2059. if wavelen < high_freq_wavelen:
  2060. rope_factors.append(1)
  2061. elif wavelen > low_freq_wavelen:
  2062. rope_factors.append(factor)
  2063. else:
  2064. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2065. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2066. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2067. def prepare_tensors(self):
  2068. super().prepare_tensors()
  2069. @ModelBase.register("BitnetForCausalLM")
  2070. class BitnetModel(TextModel):
  2071. model_arch = gguf.MODEL_ARCH.BITNET
  2072. def set_vocab(self):
  2073. self._set_vocab_sentencepiece()
  2074. def set_gguf_parameters(self):
  2075. super().set_gguf_parameters()
  2076. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2077. self.gguf_writer.add_rope_scaling_factor(1.0)
  2078. def weight_quant(self, weight: Tensor) -> Tensor:
  2079. dtype = weight.dtype
  2080. weight = weight.float()
  2081. scale = weight.abs().mean().clamp(min=1e-5)
  2082. iscale = 1 / scale
  2083. # TODO: multiply by the scale directly instead of inverting it twice
  2084. # (this is also unnecessarily doubly inverted upstream)
  2085. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2086. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2087. return result.type(dtype)
  2088. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2089. new_name = self.map_tensor_name(name)
  2090. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2091. gguf.MODEL_TENSOR.ATTN_Q,
  2092. gguf.MODEL_TENSOR.ATTN_K,
  2093. gguf.MODEL_TENSOR.ATTN_V,
  2094. gguf.MODEL_TENSOR.ATTN_OUT,
  2095. gguf.MODEL_TENSOR.FFN_UP,
  2096. gguf.MODEL_TENSOR.FFN_DOWN,
  2097. gguf.MODEL_TENSOR.FFN_GATE,
  2098. ]):
  2099. # transform weight into 1/0/-1 (in fp32)
  2100. data_torch = self.weight_quant(data_torch)
  2101. yield (new_name, data_torch)
  2102. @ModelBase.register("GrokForCausalLM")
  2103. class GrokModel(TextModel):
  2104. model_arch = gguf.MODEL_ARCH.GROK
  2105. def set_vocab(self):
  2106. self._set_vocab_sentencepiece()
  2107. def __init__(self, *args, **kwargs):
  2108. super().__init__(*args, **kwargs)
  2109. def set_gguf_parameters(self):
  2110. super().set_gguf_parameters()
  2111. _experts: list[dict[str, Tensor]] | None = None
  2112. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2113. # process the experts separately
  2114. if name.find(".moe.") != -1:
  2115. n_experts = self.hparams["num_local_experts"]
  2116. assert bid is not None
  2117. if self._experts is None:
  2118. self._experts = [{} for _ in range(self.block_count)]
  2119. self._experts[bid][name] = data_torch
  2120. if len(self._experts[bid]) >= n_experts * 3:
  2121. tensors: list[tuple[str, Tensor]] = []
  2122. # merge the experts into a single 3d tensor
  2123. for wid in ["linear", "linear_1", "linear_v"]:
  2124. datas: list[Tensor] = []
  2125. for xid in range(n_experts):
  2126. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2127. datas.append(self._experts[bid][ename])
  2128. del self._experts[bid][ename]
  2129. data_torch = torch.stack(datas, dim=0)
  2130. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2131. new_name = self.map_tensor_name(merged_name)
  2132. tensors.append((new_name, data_torch))
  2133. return tensors
  2134. else:
  2135. return []
  2136. return [(self.map_tensor_name(name), data_torch)]
  2137. @ModelBase.register("DbrxForCausalLM")
  2138. class DbrxModel(TextModel):
  2139. model_arch = gguf.MODEL_ARCH.DBRX
  2140. def set_gguf_parameters(self):
  2141. ffn_config = self.hparams["ffn_config"]
  2142. attn_config = self.hparams["attn_config"]
  2143. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2144. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2145. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2146. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2147. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2148. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2149. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2150. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2151. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2152. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2153. self.gguf_writer.add_layer_norm_eps(1e-5)
  2154. self.gguf_writer.add_file_type(self.ftype)
  2155. logger.info(f"gguf: file type = {self.ftype}")
  2156. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2157. del bid # unused
  2158. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2159. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2160. n_embd = self.hparams["d_model"]
  2161. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2162. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2163. # But llama.cpp moe graph works differently
  2164. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2165. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2166. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2167. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2168. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2169. experts = False
  2170. for exp_tensor_name in exp_tensor_names.keys():
  2171. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2172. experts = True
  2173. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2174. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2175. data_torch = data_torch.permute(*permute_tensor)
  2176. break
  2177. # map tensor names
  2178. # In MoE models the ffn tensors are typically most of the model weights,
  2179. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2180. # Every other model has the weight names ending in .weight,
  2181. # let's assume that is the convention which is not the case for dbrx:
  2182. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2183. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2184. return [(new_name, data_torch)]
  2185. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2186. del name, new_name, bid # unused
  2187. return n_dims > 1
  2188. @ModelBase.register("MiniCPMForCausalLM")
  2189. class MiniCPMModel(TextModel):
  2190. model_arch = gguf.MODEL_ARCH.MINICPM
  2191. def set_gguf_parameters(self):
  2192. super().set_gguf_parameters()
  2193. embedding_scale = float(self.hparams["scale_emb"])
  2194. self.gguf_writer.add_embedding_scale(embedding_scale)
  2195. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2196. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2197. self.gguf_writer.add_residual_scale(residual_scale)
  2198. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2199. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2200. self.gguf_writer.add_logit_scale(logit_scale)
  2201. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2202. rope_scaling = self.hparams.get("rope_scaling") or {}
  2203. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2204. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2205. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2206. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2207. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2208. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2209. if rope_scaling is not None:
  2210. long_factors = rope_scaling.get('long_factor', None)
  2211. short_factors = rope_scaling.get('short_factor', None)
  2212. if long_factors is None or short_factors is None:
  2213. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2214. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2215. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2216. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2217. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2218. def set_vocab(self):
  2219. self._set_vocab_sentencepiece()
  2220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2221. del bid # unused
  2222. n_head = self.hparams["num_attention_heads"]
  2223. n_kv_head = self.hparams.get("num_key_value_heads")
  2224. # HF models permute some of the tensors, so we need to undo that
  2225. if name.endswith(("q_proj.weight")):
  2226. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2227. if name.endswith(("k_proj.weight")):
  2228. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2229. return [(self.map_tensor_name(name), data_torch)]
  2230. @ModelBase.register("MiniCPM3ForCausalLM")
  2231. class MiniCPM3Model(TextModel):
  2232. model_arch = gguf.MODEL_ARCH.MINICPM3
  2233. def set_gguf_parameters(self):
  2234. hparams = self.hparams
  2235. self.gguf_writer.add_file_type(self.ftype)
  2236. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2237. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2238. self.gguf_writer.add_block_count(self.block_count)
  2239. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2240. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2241. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2242. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2243. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2244. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2245. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2246. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2247. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2248. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2249. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2250. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2251. if rope_scaling is not None:
  2252. rope_dims = self.hparams["qk_rope_head_dim"]
  2253. long_factors = rope_scaling.get('long_factor', None)
  2254. short_factors = rope_scaling.get('short_factor', None)
  2255. if long_factors is None or short_factors is None:
  2256. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2257. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2258. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2259. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2260. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2261. def set_vocab(self):
  2262. self._set_vocab_sentencepiece()
  2263. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2264. if n_kv_head is not None and n_head != n_kv_head:
  2265. n_head //= n_kv_head
  2266. return (
  2267. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2268. .swapaxes(1, 2)
  2269. .reshape(weights.shape)
  2270. )
  2271. @ModelBase.register("QWenLMHeadModel")
  2272. class QwenModel(TextModel):
  2273. model_arch = gguf.MODEL_ARCH.QWEN
  2274. @staticmethod
  2275. def token_bytes_to_string(b):
  2276. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2277. byte_encoder = bytes_to_unicode()
  2278. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2279. @staticmethod
  2280. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2281. parts = [bytes([b]) for b in token]
  2282. while True:
  2283. min_idx = None
  2284. min_rank = None
  2285. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2286. rank = mergeable_ranks.get(pair[0] + pair[1])
  2287. if rank is not None and (min_rank is None or rank < min_rank):
  2288. min_idx = i
  2289. min_rank = rank
  2290. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2291. break
  2292. assert min_idx is not None
  2293. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2294. return parts
  2295. def set_vocab(self):
  2296. self._set_vocab_qwen()
  2297. def set_gguf_parameters(self):
  2298. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2299. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2300. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2301. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2302. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2303. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2304. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2305. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2306. self.gguf_writer.add_file_type(self.ftype)
  2307. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2308. class Qwen2Model(TextModel):
  2309. model_arch = gguf.MODEL_ARCH.QWEN2
  2310. def set_vocab(self):
  2311. try:
  2312. self._set_vocab_sentencepiece()
  2313. except FileNotFoundError:
  2314. self._set_vocab_gpt2()
  2315. def set_gguf_parameters(self):
  2316. super().set_gguf_parameters()
  2317. self._try_set_pooling_type()
  2318. rope_scaling = self.hparams.get("rope_scaling") or {}
  2319. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2320. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2321. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2322. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2324. if self.hf_arch == "Qwen2Model":
  2325. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2326. if "language_model." in name:
  2327. name = name.replace("language_model.", "") # for InternVL
  2328. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2329. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2330. # skip vision and audio tensors
  2331. return []
  2332. yield from super().modify_tensors(data_torch, name, bid)
  2333. @ModelBase.register("DreamModel")
  2334. class DreamModel(TextModel):
  2335. model_arch = gguf.MODEL_ARCH.DREAM
  2336. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2337. tokens: list[str] = []
  2338. toktypes: list[int] = []
  2339. from transformers import AutoTokenizer
  2340. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2341. vocab_dict = tokenizer.get_vocab()
  2342. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2343. assert max(vocab_dict.values()) < vocab_size
  2344. tokpre = self.get_vocab_base_pre(tokenizer)
  2345. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2346. added_vocab = tokenizer.get_added_vocab()
  2347. for i in range(vocab_size):
  2348. if i not in reverse_vocab:
  2349. tokens.append(f"[PAD{i}]")
  2350. toktypes.append(gguf.TokenType.UNUSED)
  2351. elif reverse_vocab[i] in added_vocab:
  2352. tokens.append(reverse_vocab[i])
  2353. # Check if it's a special token - treat special tokens as CONTROL tokens
  2354. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2355. if tokenizer.added_tokens_decoder[i].special:
  2356. toktypes.append(gguf.TokenType.CONTROL)
  2357. else:
  2358. toktypes.append(gguf.TokenType.USER_DEFINED)
  2359. else:
  2360. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2361. toktypes.append(gguf.TokenType.CONTROL)
  2362. else:
  2363. tokens.append(reverse_vocab[i])
  2364. toktypes.append(gguf.TokenType.NORMAL)
  2365. return tokens, toktypes, tokpre
  2366. def set_vocab(self):
  2367. try:
  2368. self._set_vocab_sentencepiece()
  2369. except FileNotFoundError:
  2370. self._set_vocab_gpt2()
  2371. def set_gguf_parameters(self):
  2372. super().set_gguf_parameters()
  2373. self._try_set_pooling_type()
  2374. # Dream models use non-causal attention for diffusion
  2375. self.gguf_writer.add_causal_attention(False)
  2376. # Handle RoPE scaling similar to Qwen2
  2377. rope_scaling = self.hparams.get("rope_scaling") or {}
  2378. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2379. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2380. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2381. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2382. # Add Dream-specific parameters
  2383. mask_token_id = self.hparams.get("mask_token_id")
  2384. if mask_token_id is not None:
  2385. self.gguf_writer.add_mask_token_id(mask_token_id)
  2386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2387. # Dream model tensors should be mapped directly since it's the base model
  2388. yield from super().modify_tensors(data_torch, name, bid)
  2389. @ModelBase.register("Ernie4_5_ForCausalLM")
  2390. class Ernie4_5Model(TextModel):
  2391. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2392. def set_vocab(self):
  2393. self._set_vocab_sentencepiece()
  2394. def set_gguf_parameters(self):
  2395. super().set_gguf_parameters()
  2396. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2397. num_heads = self.hparams["num_attention_heads"]
  2398. num_kv_heads = self.hparams["num_key_value_heads"]
  2399. if (head_dim := self.hparams.get("head_dim")) is None:
  2400. head_dim = self.hparams["hidden_size"] // num_heads
  2401. if "ernie." in name:
  2402. name = name.replace("ernie.", "model.")
  2403. # split the qkv weights
  2404. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2405. if "qkv_proj" in name:
  2406. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2407. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2408. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2409. total_q_dim = num_heads * head_dim
  2410. total_k_dim = num_kv_heads * head_dim
  2411. total_v_dim = num_kv_heads * head_dim
  2412. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2413. return [
  2414. (self.map_tensor_name(name_q), q_proj_weight),
  2415. (self.map_tensor_name(name_k), k_proj_weight),
  2416. (self.map_tensor_name(name_v), v_proj_weight)
  2417. ]
  2418. # split the up_gate_proj into gate and up
  2419. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2420. if "up_gate_proj" in name:
  2421. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2422. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2423. dim_half = data_torch.shape[0] // 2
  2424. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2425. return [
  2426. (self.map_tensor_name(name_gate), gate_proj_weight),
  2427. (self.map_tensor_name(name_up), up_proj_weight)
  2428. ]
  2429. return [(self.map_tensor_name(name), data_torch)]
  2430. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2431. class Ernie4_5MoeModel(Ernie4_5Model):
  2432. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2433. _experts: list[dict[str, Tensor]] | None = None
  2434. def __init__(self, *args, **kwargs):
  2435. super().__init__(*args, **kwargs)
  2436. self._experts = [{} for _ in range(self.block_count)]
  2437. def set_gguf_parameters(self):
  2438. super().set_gguf_parameters()
  2439. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2440. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2441. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2442. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2443. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2444. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2445. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2446. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2447. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2448. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2449. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2450. # Modify correction bias name as in DeepseekV2
  2451. if name.endswith("e_score_correction_bias"):
  2452. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2453. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2454. match = re.match(r"model.mtp_block.(\d+)", name)
  2455. if match:
  2456. return []
  2457. # skip all other MTP tensors for now
  2458. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2459. if match:
  2460. return []
  2461. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2462. if match:
  2463. return []
  2464. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2465. if match:
  2466. return []
  2467. # process the experts separately
  2468. if name.find("mlp.experts") != -1:
  2469. n_experts = self.hparams["moe_num_experts"]
  2470. assert bid is not None
  2471. if self._experts is None:
  2472. self._experts = [{} for _ in range(self.block_count)]
  2473. self._experts[bid][name] = data_torch
  2474. if len(self._experts[bid]) >= n_experts * 3:
  2475. tensors: list[tuple[str, Tensor]] = []
  2476. # merge the experts into a single 3d tensor
  2477. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2478. datas: list[Tensor] = []
  2479. for xid in range(n_experts):
  2480. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2481. datas.append(self._experts[bid][ename_to_retrieve])
  2482. del self._experts[bid][ename_to_retrieve]
  2483. data_torch = torch.stack(datas, dim=0)
  2484. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2485. new_name = self.map_tensor_name(merged_name)
  2486. tensors.append((new_name, data_torch))
  2487. return tensors
  2488. else:
  2489. return []
  2490. return [(self.map_tensor_name(name), data_torch)]
  2491. def prepare_tensors(self):
  2492. super().prepare_tensors()
  2493. if self._experts is not None:
  2494. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2495. experts = [k for d in self._experts for k in d.keys()]
  2496. if len(experts) > 0:
  2497. raise ValueError(f"Unprocessed experts: {experts}")
  2498. @ModelBase.register(
  2499. "Qwen2VLModel",
  2500. "Qwen2VLForConditionalGeneration",
  2501. "Qwen2_5_VLForConditionalGeneration",
  2502. "Qwen2_5OmniModel",
  2503. )
  2504. class Qwen2VLModel(TextModel):
  2505. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2506. def set_gguf_parameters(self):
  2507. super().set_gguf_parameters()
  2508. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2509. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2510. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2511. def set_vocab(self):
  2512. try:
  2513. self._set_vocab_sentencepiece()
  2514. except FileNotFoundError:
  2515. self._set_vocab_gpt2()
  2516. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2517. del bid # unused
  2518. if name.startswith("thinker."):
  2519. name = name.replace("thinker.", "")
  2520. if name.startswith("visual") or name.startswith("audio") or \
  2521. name.startswith("talker") or name.startswith("token2wav"):
  2522. # skip multimodal tensors
  2523. return []
  2524. return [(self.map_tensor_name(name), data_torch)]
  2525. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2526. class Qwen2VLVisionModel(MmprojModel):
  2527. def __init__(self, *args, **kwargs):
  2528. super().__init__(*args, **kwargs)
  2529. assert self.hparams_vision is not None
  2530. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2531. # rename config.json values
  2532. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2533. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2534. if "embed_dim" in self.hparams_vision: # qwen2vl
  2535. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2536. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2537. def set_gguf_parameters(self):
  2538. super().set_gguf_parameters()
  2539. assert self.hparams_vision is not None
  2540. hparams = self.hparams_vision
  2541. model_type = self.global_config['model_type']
  2542. if model_type == 'qwen2_vl':
  2543. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2544. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2545. if model_type == 'qwen2_5_omni':
  2546. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2547. else:
  2548. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2549. self.gguf_writer.add_vision_use_silu(True)
  2550. # find n_wa_pattern (window attention pattern)
  2551. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2552. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2553. n_wa_pattern = fullatt_block_indexes[0] + 1
  2554. # validate n_wa_pattern
  2555. for i in range(1, len(fullatt_block_indexes)):
  2556. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2557. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2558. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2559. else:
  2560. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2561. # default values below are taken from HF tranformers code
  2562. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2563. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2564. del bid, name, n_dims # unused
  2565. if ".patch_embd." in new_name:
  2566. return gguf.GGMLQuantizationType.F16
  2567. if ".position_embd." in new_name:
  2568. return gguf.GGMLQuantizationType.F32
  2569. return False
  2570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2571. del bid # unused
  2572. if name.startswith("visual."):
  2573. # process visual tensors
  2574. # split QKV tensors if needed
  2575. if ".qkv." in name:
  2576. if data_torch.ndim == 2: # weight
  2577. c3, _ = data_torch.shape
  2578. else: # bias
  2579. c3 = data_torch.shape[0]
  2580. assert c3 % 3 == 0
  2581. c = c3 // 3
  2582. wq = data_torch[:c]
  2583. wk = data_torch[c: c * 2]
  2584. wv = data_torch[c * 2:]
  2585. return [
  2586. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2587. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2588. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2589. ]
  2590. elif 'patch_embed.proj.weight' in name:
  2591. # split Conv3D into Conv2Ds
  2592. c1, c2, kt, kh, kw = data_torch.shape
  2593. del c1, c2, kh, kw # unused
  2594. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2595. return [
  2596. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2597. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2598. ]
  2599. else:
  2600. return [(self.map_tensor_name(name), data_torch)]
  2601. return [] # skip other tensors
  2602. @ModelBase.register("Qwen2_5OmniModel")
  2603. class Qwen25OmniModel(Qwen2VLVisionModel):
  2604. has_vision_encoder = True
  2605. has_audio_encoder = True
  2606. def __init__(self, *args, **kwargs):
  2607. super().__init__(*args, **kwargs)
  2608. assert self.hparams_audio is not None
  2609. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2610. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2611. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2612. def set_gguf_parameters(self):
  2613. super().set_gguf_parameters()
  2614. assert self.hparams_audio is not None
  2615. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2616. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2617. def get_vision_config(self) -> dict[str, Any] | None:
  2618. return self.global_config["thinker_config"].get("vision_config")
  2619. def get_audio_config(self) -> dict[str, Any] | None:
  2620. return self.global_config["thinker_config"].get("audio_config")
  2621. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2622. # SinusoidsPositionEmbedding
  2623. assert self.hparams_audio is not None
  2624. max_timescale = 10000
  2625. length = 1500
  2626. channels = self.hparams_audio["hidden_size"]
  2627. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2628. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2629. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2630. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2631. yield ("audio_tower.embed_positions.weight", pos_embd)
  2632. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2633. del bid, new_name, n_dims # unused
  2634. if ".conv" in name and ".weight" in name:
  2635. return gguf.GGMLQuantizationType.F16
  2636. return False
  2637. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2638. if name.startswith("thinker."):
  2639. name = name.replace("thinker.", "")
  2640. if name.startswith("audio_tower"):
  2641. # process audio tensors
  2642. if "conv1.bias" in name or "conv2.bias" in name:
  2643. # transpose conv1 and conv2 bias
  2644. data_torch = data_torch.unsqueeze(-1)
  2645. if "audio_bos_eos_token" in name:
  2646. # this tensor is left unused in transformers code
  2647. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2648. return []
  2649. return [(self.map_tensor_name(name), data_torch)]
  2650. return super().modify_tensors(data_torch, name, bid)
  2651. @ModelBase.register("InternVisionModel")
  2652. class InternVisionModel(MmprojModel):
  2653. def set_gguf_parameters(self):
  2654. super().set_gguf_parameters()
  2655. hparams = self.hparams
  2656. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2657. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2658. # hidden_act
  2659. if hparams["hidden_act"] == "silu":
  2660. self.gguf_writer.add_vision_use_silu(True)
  2661. elif hparams["hidden_act"] == "gelu":
  2662. self.gguf_writer.add_vision_use_gelu(True)
  2663. else:
  2664. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2665. # downsample_ratio
  2666. downsample_ratio = self.global_config.get("downsample_ratio")
  2667. assert downsample_ratio is not None
  2668. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2669. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2670. del bid, name, n_dims # unused
  2671. if ".patch_embd." in new_name:
  2672. return gguf.GGMLQuantizationType.F16
  2673. if ".position_embd." in new_name:
  2674. return gguf.GGMLQuantizationType.F32
  2675. return False
  2676. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2677. del bid # unused
  2678. if name.startswith("vision_model") or name.startswith("mlp"):
  2679. # process visual tensors
  2680. # correct name
  2681. if name.startswith("vision_model"):
  2682. name = "vision_tower." + name
  2683. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2684. name += ".weight"
  2685. # split QKV tensors if needed
  2686. if ".qkv." in name:
  2687. if data_torch.ndim == 2: # weight
  2688. c3, _ = data_torch.shape
  2689. else: # bias
  2690. c3 = data_torch.shape[0]
  2691. assert c3 % 3 == 0
  2692. c = c3 // 3
  2693. wq = data_torch[:c]
  2694. wk = data_torch[c: c * 2]
  2695. wv = data_torch[c * 2:]
  2696. return [
  2697. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2698. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2699. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2700. ]
  2701. return [(self.map_tensor_name(name), data_torch)]
  2702. return [] # skip other tensors
  2703. @ModelBase.register("WavTokenizerDec")
  2704. class WavTokenizerDecModel(TextModel):
  2705. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2706. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2707. del bid # unused
  2708. if \
  2709. name.endswith("codebook.cluster_size") or \
  2710. name.endswith("codebook.embed_avg") or \
  2711. name.endswith("codebook.inited"):
  2712. logger.debug(f"Skipping {name!r}")
  2713. return []
  2714. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2715. return [(self.map_tensor_name(name), data_torch)]
  2716. def set_vocab(self):
  2717. self._set_vocab_none()
  2718. def set_gguf_parameters(self):
  2719. super().set_gguf_parameters()
  2720. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2721. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2722. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2723. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2724. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2725. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2726. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2727. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2728. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2729. self.gguf_writer.add_causal_attention(False)
  2730. @ModelBase.register("Qwen2MoeForCausalLM")
  2731. class Qwen2MoeModel(TextModel):
  2732. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2733. def set_gguf_parameters(self):
  2734. super().set_gguf_parameters()
  2735. if (n_experts := self.hparams.get("num_experts")) is not None:
  2736. self.gguf_writer.add_expert_count(n_experts)
  2737. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2738. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2739. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2740. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2741. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2742. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2743. # YaRN is not enabled by default
  2744. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2745. rope_scaling = self.hparams.get("rope_scaling") or {}
  2746. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2747. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2748. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2749. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2750. _experts: list[dict[str, Tensor]] | None = None
  2751. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2752. # process the experts separately
  2753. if name.find("experts") != -1:
  2754. n_experts = self.hparams["num_experts"]
  2755. assert bid is not None
  2756. if self._experts is None:
  2757. self._experts = [{} for _ in range(self.block_count)]
  2758. self._experts[bid][name] = data_torch
  2759. if len(self._experts[bid]) >= n_experts * 3:
  2760. tensors: list[tuple[str, Tensor]] = []
  2761. # merge the experts into a single 3d tensor
  2762. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2763. datas: list[Tensor] = []
  2764. for xid in range(n_experts):
  2765. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2766. datas.append(self._experts[bid][ename])
  2767. del self._experts[bid][ename]
  2768. data_torch = torch.stack(datas, dim=0)
  2769. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2770. new_name = self.map_tensor_name(merged_name)
  2771. tensors.append((new_name, data_torch))
  2772. return tensors
  2773. else:
  2774. return []
  2775. return [(self.map_tensor_name(name), data_torch)]
  2776. def prepare_tensors(self):
  2777. super().prepare_tensors()
  2778. if self._experts is not None:
  2779. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2780. experts = [k for d in self._experts for k in d.keys()]
  2781. if len(experts) > 0:
  2782. raise ValueError(f"Unprocessed experts: {experts}")
  2783. @ModelBase.register("Qwen3ForCausalLM")
  2784. class Qwen3Model(Qwen2Model):
  2785. model_arch = gguf.MODEL_ARCH.QWEN3
  2786. @ModelBase.register("Qwen3MoeForCausalLM")
  2787. class Qwen3MoeModel(Qwen2MoeModel):
  2788. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2789. @ModelBase.register("GPT2LMHeadModel")
  2790. class GPT2Model(TextModel):
  2791. model_arch = gguf.MODEL_ARCH.GPT2
  2792. def set_gguf_parameters(self):
  2793. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2794. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2795. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2796. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2797. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2798. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2799. self.gguf_writer.add_file_type(self.ftype)
  2800. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2801. del bid # unused
  2802. tensors: list[tuple[str, Tensor]] = []
  2803. # we don't need these
  2804. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2805. return tensors
  2806. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2807. data_torch = data_torch.transpose(1, 0)
  2808. new_name = self.map_tensor_name(name)
  2809. tensors.append((new_name, data_torch))
  2810. return tensors
  2811. @ModelBase.register("PhiForCausalLM")
  2812. class Phi2Model(TextModel):
  2813. model_arch = gguf.MODEL_ARCH.PHI2
  2814. def set_gguf_parameters(self):
  2815. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2816. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2817. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2818. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2819. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2820. self.gguf_writer.add_embedding_length(n_embd)
  2821. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2822. self.gguf_writer.add_block_count(block_count)
  2823. self.gguf_writer.add_head_count(n_head)
  2824. self.gguf_writer.add_head_count_kv(n_head)
  2825. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2826. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2827. self.gguf_writer.add_file_type(self.ftype)
  2828. self.gguf_writer.add_add_bos_token(False)
  2829. @ModelBase.register("Phi3ForCausalLM")
  2830. class Phi3MiniModel(TextModel):
  2831. model_arch = gguf.MODEL_ARCH.PHI3
  2832. def set_vocab(self):
  2833. # Phi-4 model uses GPT2Tokenizer
  2834. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2835. if tokenizer_config_file.is_file():
  2836. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2837. tokenizer_config_json = json.load(f)
  2838. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2839. if tokenizer_class == 'GPT2Tokenizer':
  2840. return self._set_vocab_gpt2()
  2841. from sentencepiece import SentencePieceProcessor
  2842. tokenizer_path = self.dir_model / 'tokenizer.model'
  2843. if not tokenizer_path.is_file():
  2844. raise ValueError(f'Error: Missing {tokenizer_path}')
  2845. tokenizer = SentencePieceProcessor()
  2846. tokenizer.LoadFromFile(str(tokenizer_path))
  2847. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2848. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2849. scores: list[float] = [-10000.0] * vocab_size
  2850. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2851. for token_id in range(tokenizer.vocab_size()):
  2852. piece = tokenizer.IdToPiece(token_id)
  2853. text = piece.encode("utf-8")
  2854. score = tokenizer.GetScore(token_id)
  2855. toktype = SentencePieceTokenTypes.NORMAL
  2856. if tokenizer.IsUnknown(token_id):
  2857. toktype = SentencePieceTokenTypes.UNKNOWN
  2858. elif tokenizer.IsControl(token_id):
  2859. toktype = SentencePieceTokenTypes.CONTROL
  2860. elif tokenizer.IsUnused(token_id):
  2861. toktype = SentencePieceTokenTypes.UNUSED
  2862. elif tokenizer.IsByte(token_id):
  2863. toktype = SentencePieceTokenTypes.BYTE
  2864. tokens[token_id] = text
  2865. scores[token_id] = score
  2866. toktypes[token_id] = toktype
  2867. added_tokens_file = self.dir_model / 'added_tokens.json'
  2868. if added_tokens_file.is_file():
  2869. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2870. added_tokens_json = json.load(f)
  2871. for key in added_tokens_json:
  2872. token_id = added_tokens_json[key]
  2873. if token_id >= vocab_size:
  2874. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2875. continue
  2876. tokens[token_id] = key.encode("utf-8")
  2877. scores[token_id] = -1000.0
  2878. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2879. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2880. if tokenizer_config_file.is_file():
  2881. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2882. tokenizer_config_json = json.load(f)
  2883. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2884. for token_id, foken_data in added_tokens_decoder.items():
  2885. token_id = int(token_id)
  2886. token = foken_data["content"].encode("utf-8")
  2887. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2888. if tokens[token_id] != token:
  2889. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2890. tokens[token_id] = token
  2891. scores[token_id] = -1000.0
  2892. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2893. if foken_data.get("special"):
  2894. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2895. tokenizer_file = self.dir_model / 'tokenizer.json'
  2896. if tokenizer_file.is_file():
  2897. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2898. tokenizer_json = json.load(f)
  2899. added_tokens = tokenizer_json.get("added_tokens", [])
  2900. for foken_data in added_tokens:
  2901. token_id = int(foken_data["id"])
  2902. token = foken_data["content"].encode("utf-8")
  2903. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2904. if tokens[token_id] != token:
  2905. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2906. tokens[token_id] = token
  2907. scores[token_id] = -1000.0
  2908. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2909. if foken_data.get("special"):
  2910. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2911. self.gguf_writer.add_tokenizer_model("llama")
  2912. self.gguf_writer.add_tokenizer_pre("default")
  2913. self.gguf_writer.add_token_list(tokens)
  2914. self.gguf_writer.add_token_scores(scores)
  2915. self.gguf_writer.add_token_types(toktypes)
  2916. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2917. special_vocab.add_to_gguf(self.gguf_writer)
  2918. def set_gguf_parameters(self):
  2919. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2920. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2921. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2922. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2923. rms_eps = self.find_hparam(["rms_norm_eps"])
  2924. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2925. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2926. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2927. rope_dims = int(rot_pct * n_embd) // n_head
  2928. self.gguf_writer.add_context_length(max_pos_embds)
  2929. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2930. self.gguf_writer.add_embedding_length(n_embd)
  2931. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2932. self.gguf_writer.add_block_count(block_count)
  2933. self.gguf_writer.add_head_count(n_head)
  2934. self.gguf_writer.add_head_count_kv(n_head_kv)
  2935. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2936. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2937. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2938. self.gguf_writer.add_file_type(self.ftype)
  2939. sliding_window = self.hparams.get("sliding_window")
  2940. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2941. if sliding_window is None:
  2942. sliding_window = 0
  2943. self.gguf_writer.add_sliding_window(sliding_window)
  2944. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2945. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2946. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2947. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2948. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2949. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2950. rope_dims = int(rot_pct * n_embd) // n_head
  2951. # write rope scaling for long context (128k) model
  2952. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2953. if rope_scaling is None:
  2954. return
  2955. scale = max_pos_embds / orig_max_pos_embds
  2956. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2957. if len(rope_scaling_type) == 0:
  2958. raise KeyError('Missing the required key rope_scaling.type')
  2959. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2960. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2961. elif rope_scaling_type == 'yarn':
  2962. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2963. else:
  2964. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2965. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2966. long_factors = rope_scaling.get('long_factor', None)
  2967. short_factors = rope_scaling.get('short_factor', None)
  2968. if long_factors is None or short_factors is None:
  2969. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2970. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2971. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2972. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2973. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2974. @ModelBase.register("PhiMoEForCausalLM")
  2975. class PhiMoeModel(Phi3MiniModel):
  2976. model_arch = gguf.MODEL_ARCH.PHIMOE
  2977. _experts: list[dict[str, Tensor]] | None = None
  2978. def set_gguf_parameters(self):
  2979. super().set_gguf_parameters()
  2980. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2981. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2982. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2983. # process the experts separately
  2984. if name.find("block_sparse_moe.experts") != -1:
  2985. n_experts = self.hparams["num_local_experts"]
  2986. assert bid is not None
  2987. if self._experts is None:
  2988. self._experts = [{} for _ in range(self.block_count)]
  2989. self._experts[bid][name] = data_torch
  2990. if len(self._experts[bid]) >= n_experts * 3:
  2991. tensors: list[tuple[str, Tensor]] = []
  2992. # merge the experts into a single 3d tensor
  2993. for w_name in ["w1", "w2", "w3"]:
  2994. datas: list[Tensor] = []
  2995. for xid in range(n_experts):
  2996. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2997. datas.append(self._experts[bid][ename])
  2998. del self._experts[bid][ename]
  2999. data_torch = torch.stack(datas, dim=0)
  3000. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3001. new_name = self.map_tensor_name(merged_name)
  3002. tensors.append((new_name, data_torch))
  3003. return tensors
  3004. else:
  3005. return []
  3006. return [(self.map_tensor_name(name), data_torch)]
  3007. def prepare_tensors(self):
  3008. super().prepare_tensors()
  3009. if self._experts is not None:
  3010. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3011. experts = [k for d in self._experts for k in d.keys()]
  3012. if len(experts) > 0:
  3013. raise ValueError(f"Unprocessed experts: {experts}")
  3014. @ModelBase.register("PlamoForCausalLM")
  3015. class PlamoModel(TextModel):
  3016. model_arch = gguf.MODEL_ARCH.PLAMO
  3017. def set_vocab(self):
  3018. self._set_vocab_sentencepiece()
  3019. def set_gguf_parameters(self):
  3020. hparams = self.hparams
  3021. block_count = hparams["num_hidden_layers"]
  3022. self.gguf_writer.add_context_length(4096) # not in config.json
  3023. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3024. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3025. self.gguf_writer.add_block_count(block_count)
  3026. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3027. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3028. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3029. self.gguf_writer.add_file_type(self.ftype)
  3030. def shuffle_attn_q_weight(self, data_torch):
  3031. assert data_torch.size() == (5120, 5120)
  3032. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3033. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3034. data_torch = torch.reshape(data_torch, (5120, 5120))
  3035. return data_torch
  3036. def shuffle_attn_output_weight(self, data_torch):
  3037. assert data_torch.size() == (5120, 5120)
  3038. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3039. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3040. data_torch = torch.reshape(data_torch, (5120, 5120))
  3041. return data_torch
  3042. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3043. del bid # unused
  3044. new_name = self.map_tensor_name(name)
  3045. # shuffle for broadcasting of gqa in ggml_mul_mat
  3046. if new_name.endswith("attn_q.weight"):
  3047. data_torch = self.shuffle_attn_q_weight(data_torch)
  3048. elif new_name.endswith("attn_output.weight"):
  3049. data_torch = self.shuffle_attn_output_weight(data_torch)
  3050. return [(new_name, data_torch)]
  3051. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3052. class Plamo2Model(TextModel):
  3053. model_arch = gguf.MODEL_ARCH.PLAMO2
  3054. def set_vocab(self):
  3055. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3056. # We need to handle this specially
  3057. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3058. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3059. if not tokenizer_jsonl_path.is_file():
  3060. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3061. # Load tokenizer config
  3062. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3063. tokenizer_config = json.load(f)
  3064. # Load tokens from JSONL file (actually a list format)
  3065. tokens = []
  3066. scores = []
  3067. toktypes = []
  3068. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3069. for line_num, line in enumerate(f):
  3070. if line.strip():
  3071. token_data = json.loads(line)
  3072. # Format: [token, score, type, ?, ?, ?, ?]
  3073. token = token_data[0].encode("utf-8")
  3074. score = float(token_data[1])
  3075. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3076. tokens.append(token)
  3077. scores.append(score)
  3078. # Map token type strings to GGUF token types
  3079. if token_type_str == "UNKNOWN":
  3080. toktypes.append(gguf.TokenType.UNKNOWN)
  3081. elif token_type_str == "CONTROL":
  3082. toktypes.append(gguf.TokenType.CONTROL)
  3083. elif token_type_str == "BYTE":
  3084. toktypes.append(gguf.TokenType.BYTE)
  3085. else:
  3086. # Check for PLaMo-2 special tokens
  3087. token_str = token_data[0]
  3088. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3089. toktypes.append(gguf.TokenType.CONTROL)
  3090. else:
  3091. toktypes.append(gguf.TokenType.NORMAL)
  3092. vocab_size = self.hparams["vocab_size"]
  3093. if vocab_size > len(tokens):
  3094. pad_count = vocab_size - len(tokens)
  3095. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3096. for i in range(1, pad_count + 1):
  3097. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3098. scores.append(-1000.0)
  3099. toktypes.append(gguf.TokenType.UNUSED)
  3100. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3101. self.gguf_writer.add_tokenizer_model("plamo2")
  3102. self.gguf_writer.add_tokenizer_pre("default")
  3103. self.gguf_writer.add_token_list(tokens)
  3104. self.gguf_writer.add_token_scores(scores)
  3105. self.gguf_writer.add_token_types(toktypes)
  3106. # Add special tokens from config
  3107. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3108. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3109. self.gguf_writer.add_bos_token_id(token_id)
  3110. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3111. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3112. self.gguf_writer.add_eos_token_id(token_id)
  3113. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3114. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3115. self.gguf_writer.add_pad_token_id(token_id)
  3116. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3117. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3118. self.gguf_writer.add_sep_token_id(token_id)
  3119. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3120. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3121. self.gguf_writer.add_unk_token_id(token_id)
  3122. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3123. self.gguf_writer.add_eot_token_id(4)
  3124. self.gguf_writer.add_add_space_prefix(False)
  3125. def set_gguf_parameters(self):
  3126. hparams = self.hparams
  3127. block_count = hparams["num_hidden_layers"]
  3128. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3129. # Which layers are Mamba layers
  3130. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3131. # This logic matches modeling_plamo.py's is_mamba function
  3132. mamba_step = hparams.get("mamba_step", 2)
  3133. mamba_enabled = hparams.get("mamba_enabled", True)
  3134. mamba_layers = []
  3135. if mamba_enabled:
  3136. for i in range(block_count):
  3137. if block_count <= (mamba_step // 2):
  3138. # use attention in last layer
  3139. is_mamba = (i != block_count - 1)
  3140. else:
  3141. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3142. if is_mamba:
  3143. mamba_layers.append(0)
  3144. else:
  3145. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3146. if mamba_layers:
  3147. self.gguf_writer.add_head_count_kv(mamba_layers)
  3148. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3149. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3150. self.gguf_writer.add_block_count(block_count)
  3151. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3152. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3153. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3154. # Mamba parameters
  3155. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3156. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3157. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3158. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3159. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3160. self.gguf_writer.add_ssm_group_count(0)
  3161. # MLP feed forward parameters (for attention layers)
  3162. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3163. self.gguf_writer.add_file_type(self.ftype)
  3164. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3165. del bid # unused
  3166. if name.endswith(".A_log"):
  3167. data_torch = -torch.exp(data_torch)
  3168. elif name.endswith(".dt_bias"):
  3169. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3170. elif name.endswith(".dt_norm_weight"):
  3171. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3172. elif name.endswith(".B_norm_weight"):
  3173. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3174. elif name.endswith(".C_norm_weight"):
  3175. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3176. elif name.endswith(".k_weight"):
  3177. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3178. elif name.endswith(".q_weight"):
  3179. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3180. elif name.endswith(".conv1d.weight"):
  3181. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3182. assert data_torch.ndim == 2
  3183. elif name.endswith(".pre_mixer_norm.weight"):
  3184. data_torch += 1.0
  3185. elif name.endswith(".post_mixer_norm.weight"):
  3186. data_torch += 1.0 / 5
  3187. elif name.endswith(".pre_mlp_norm.weight"):
  3188. data_torch += 1.0
  3189. elif name.endswith(".post_mlp_norm.weight"):
  3190. data_torch += 1.0 / (5**1.5)
  3191. elif name.endswith(".norm.weight"):
  3192. data_torch += 1.0
  3193. new_name = self.map_tensor_name(name)
  3194. return [(new_name, data_torch)]
  3195. @ModelBase.register("CodeShellForCausalLM")
  3196. class CodeShellModel(TextModel):
  3197. model_arch = gguf.MODEL_ARCH.CODESHELL
  3198. def set_gguf_parameters(self):
  3199. block_count = self.hparams["n_layer"]
  3200. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3201. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3202. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3203. self.gguf_writer.add_block_count(block_count)
  3204. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3205. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3206. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3207. self.gguf_writer.add_file_type(self.ftype)
  3208. self.gguf_writer.add_rope_freq_base(10000.0)
  3209. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3210. self.gguf_writer.add_rope_scaling_factor(1.0)
  3211. _has_tok_embd = False
  3212. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3213. del bid # unused
  3214. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3215. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3216. new_name = self.map_tensor_name(name)
  3217. # assuming token_embd.weight is seen before output.weight
  3218. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3219. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3220. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3221. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3222. self.tensor_names.remove("transformer.wte.weight")
  3223. elif new_name == tok_embd_name:
  3224. self._has_tok_embd = True
  3225. return [(new_name, data_torch)]
  3226. @ModelBase.register("InternLM2ForCausalLM")
  3227. class InternLM2Model(TextModel):
  3228. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3229. def set_vocab(self):
  3230. # (TODO): Is there a better way?
  3231. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3232. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3233. # recognized as an empty string in C++.
  3234. from sentencepiece import SentencePieceProcessor
  3235. from sentencepiece import sentencepiece_model_pb2 as model
  3236. tokenizer_path = self.dir_model / 'tokenizer.model'
  3237. tokens: list[bytes] = []
  3238. scores: list[float] = []
  3239. toktypes: list[int] = []
  3240. if not tokenizer_path.is_file():
  3241. logger.error(f'Error: Missing {tokenizer_path}')
  3242. sys.exit(1)
  3243. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3244. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3245. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3246. tokenizer = SentencePieceProcessor()
  3247. tokenizer.LoadFromFile(str(tokenizer_path))
  3248. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3249. for token_id in range(vocab_size):
  3250. piece = tokenizer.IdToPiece(token_id)
  3251. text = piece.encode("utf-8")
  3252. score = tokenizer.GetScore(token_id)
  3253. if text == b"\x00":
  3254. # (TODO): fixme
  3255. # Hack here and replace the \x00 characters.
  3256. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3257. text = "🐉".encode("utf-8")
  3258. toktype = SentencePieceTokenTypes.NORMAL
  3259. if tokenizer.IsUnknown(token_id):
  3260. toktype = SentencePieceTokenTypes.UNKNOWN
  3261. elif tokenizer.IsControl(token_id):
  3262. toktype = SentencePieceTokenTypes.CONTROL
  3263. elif tokenizer.IsUnused(token_id):
  3264. toktype = SentencePieceTokenTypes.UNUSED
  3265. elif tokenizer.IsByte(token_id):
  3266. toktype = SentencePieceTokenTypes.BYTE
  3267. # take care of ununsed raw token
  3268. if piece.startswith('[UNUSED'):
  3269. toktype = SentencePieceTokenTypes.UNUSED
  3270. tokens.append(text)
  3271. scores.append(score)
  3272. toktypes.append(toktype)
  3273. added_tokens_file = self.dir_model / 'added_tokens.json'
  3274. if added_tokens_file.is_file():
  3275. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3276. added_tokens_json = json.load(f)
  3277. for key in added_tokens_json:
  3278. tokens.append(key.encode("utf-8"))
  3279. scores.append(-1000.0)
  3280. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3281. chat_eos_token = '<|im_end|>'
  3282. chat_eos_token_id = None
  3283. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3284. if tokenizer_config_file.is_file():
  3285. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3286. tokenizer_config_json = json.load(f)
  3287. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3288. for token_id, foken_data in added_tokens_decoder.items():
  3289. token_id = int(token_id)
  3290. token = foken_data["content"]
  3291. if token == chat_eos_token:
  3292. chat_eos_token_id = token_id
  3293. token = token.encode("utf-8")
  3294. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3295. if tokens[token_id] != token:
  3296. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3297. tokens[token_id] = token
  3298. scores[token_id] = -1000.0
  3299. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3300. if foken_data.get("special"):
  3301. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3302. tokenizer_file = self.dir_model / 'tokenizer.json'
  3303. if tokenizer_file.is_file():
  3304. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3305. tokenizer_json = json.load(f)
  3306. added_tokens = tokenizer_json.get("added_tokens", [])
  3307. for foken_data in added_tokens:
  3308. token_id = int(foken_data["id"])
  3309. token = foken_data["content"]
  3310. if token == chat_eos_token:
  3311. chat_eos_token_id = token_id
  3312. token = token.encode("utf-8")
  3313. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3314. if tokens[token_id] != token:
  3315. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3316. tokens[token_id] = token
  3317. scores[token_id] = -1000.0
  3318. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3319. if foken_data.get("special"):
  3320. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3321. self.gguf_writer.add_tokenizer_model("llama")
  3322. self.gguf_writer.add_tokenizer_pre("default")
  3323. self.gguf_writer.add_token_list(tokens)
  3324. self.gguf_writer.add_token_scores(scores)
  3325. self.gguf_writer.add_token_types(toktypes)
  3326. self.gguf_writer.add_add_space_prefix(add_prefix)
  3327. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3328. old_eos = special_vocab.special_token_ids["eos"]
  3329. if chat_eos_token_id is not None:
  3330. # For the chat model, we replace the eos with '<|im_end|>'.
  3331. # TODO: this is a hack, should be fixed
  3332. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3333. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3334. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3335. " in chat mode so that the conversation can end normally.")
  3336. special_vocab.add_to_gguf(self.gguf_writer)
  3337. def set_gguf_parameters(self):
  3338. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3339. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3340. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3341. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3342. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3343. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3344. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3345. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3346. self.gguf_writer.add_file_type(self.ftype)
  3347. rope_scaling = self.hparams.get("rope_scaling") or {}
  3348. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3349. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3350. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3351. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3352. num_heads = self.hparams["num_attention_heads"]
  3353. num_kv_heads = self.hparams["num_key_value_heads"]
  3354. n_embd = self.hparams["hidden_size"]
  3355. q_per_kv = num_heads // num_kv_heads
  3356. head_dim = n_embd // num_heads
  3357. num_groups = num_heads // q_per_kv
  3358. name = name.replace("language_model.", "") # InternVL
  3359. if name.startswith("mlp") or name.startswith("vision_model"):
  3360. # skip visual tensors
  3361. return []
  3362. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3363. qkv = data_torch
  3364. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3365. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3366. # The model weights of q and k equire additional reshape.
  3367. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3368. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3369. v = v.reshape((-1, v.shape[-1]))
  3370. return [
  3371. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3372. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3373. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3374. ]
  3375. else:
  3376. return [(self.map_tensor_name(name), data_torch)]
  3377. @ModelBase.register("InternLM3ForCausalLM")
  3378. class InternLM3Model(TextModel):
  3379. model_arch = gguf.MODEL_ARCH.LLAMA
  3380. def set_vocab(self):
  3381. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3382. self.gguf_writer.add_tokenizer_model("llama")
  3383. self.gguf_writer.add_tokenizer_pre("default")
  3384. self.gguf_writer.add_token_list(tokens)
  3385. self.gguf_writer.add_token_scores(scores)
  3386. self.gguf_writer.add_token_types(toktypes)
  3387. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3388. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3389. if tokenizer_config_file.is_file():
  3390. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3391. tokenizer_config_json = json.load(f)
  3392. if "add_prefix_space" in tokenizer_config_json:
  3393. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3394. if "added_tokens_decoder" in tokenizer_config_json:
  3395. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3396. if token_data.get("special"):
  3397. token_id = int(token_id)
  3398. token = token_data["content"]
  3399. special_vocab._set_special_token(token, token_id)
  3400. # update eos token
  3401. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3402. special_vocab.special_token_ids["eos"] = token_id
  3403. special_vocab.add_to_gguf(self.gguf_writer)
  3404. def set_gguf_parameters(self):
  3405. super().set_gguf_parameters()
  3406. hparams = self.hparams
  3407. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3408. if (rope_dim := hparams.get("head_dim")) is None:
  3409. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3410. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3411. rope_scaling = self.hparams.get("rope_scaling") or {}
  3412. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3413. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3414. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3415. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3416. n_head = self.hparams["num_attention_heads"]
  3417. n_kv_head = self.hparams.get("num_key_value_heads")
  3418. name = name.replace("language_model.", "") # InternVL
  3419. if name.startswith("mlp") or name.startswith("vision_model"):
  3420. # skip visual tensors
  3421. return []
  3422. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3423. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3424. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3425. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3426. return [(self.map_tensor_name(name), data_torch)]
  3427. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3428. class BertModel(TextModel):
  3429. model_arch = gguf.MODEL_ARCH.BERT
  3430. def __init__(self, *args, **kwargs):
  3431. super().__init__(*args, **kwargs)
  3432. self.vocab_size = None
  3433. if cls_out_labels := self.hparams.get("id2label"):
  3434. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3435. # Remove dummy labels added by AutoConfig
  3436. cls_out_labels = None
  3437. self.cls_out_labels = cls_out_labels
  3438. def set_gguf_parameters(self):
  3439. super().set_gguf_parameters()
  3440. self.gguf_writer.add_causal_attention(False)
  3441. self._try_set_pooling_type()
  3442. if self.cls_out_labels:
  3443. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3444. def set_vocab(self):
  3445. tokens, toktypes, tokpre = self.get_vocab_base()
  3446. self.vocab_size = len(tokens)
  3447. # we need this to validate the size of the token_type embeddings
  3448. # though currently we are passing all zeros to the token_type embeddings
  3449. # "Sequence A" or "Sequence B"
  3450. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3451. # convert to phantom space vocab
  3452. def phantom(tok):
  3453. if tok.startswith("[") and tok.endswith("]"):
  3454. return tok
  3455. if tok.startswith("##"):
  3456. return tok[2:]
  3457. return "\u2581" + tok
  3458. tokens = list(map(phantom, tokens))
  3459. # add vocab to gguf
  3460. self.gguf_writer.add_tokenizer_model("bert")
  3461. self.gguf_writer.add_tokenizer_pre(tokpre)
  3462. self.gguf_writer.add_token_list(tokens)
  3463. self.gguf_writer.add_token_types(toktypes)
  3464. # handle special tokens
  3465. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3466. special_vocab.add_to_gguf(self.gguf_writer)
  3467. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3468. del bid # unused
  3469. if name.startswith("bert."):
  3470. name = name[5:]
  3471. if name.endswith(".gamma"):
  3472. name = name[:-6] + ".weight"
  3473. if name.endswith(".beta"):
  3474. name = name[:-5] + ".bias"
  3475. # we are only using BERT for embeddings so we don't need the pooling layer
  3476. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3477. return [] # we don't need these
  3478. if name.startswith("cls.predictions"):
  3479. return []
  3480. if name.startswith("cls.seq_relationship"):
  3481. return []
  3482. if self.cls_out_labels:
  3483. # For BertForSequenceClassification (direct projection layer)
  3484. if name == "classifier.weight":
  3485. name = "classifier.out_proj.weight"
  3486. if name == "classifier.bias":
  3487. name = "classifier.out_proj.bias"
  3488. return [(self.map_tensor_name(name), data_torch)]
  3489. def _xlmroberta_tokenizer_init(self) -> None:
  3490. # we need the pad_token_id to know how to chop down position_embd matrix
  3491. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3492. self._position_offset = 1 + pad_token_id
  3493. if "max_position_embeddings" in self.hparams:
  3494. self.hparams["max_position_embeddings"] -= self._position_offset
  3495. else:
  3496. self._position_offset = None
  3497. def _xlmroberta_set_vocab(self) -> None:
  3498. # to avoid TypeError: Descriptors cannot be created directly
  3499. # exception when importing sentencepiece_model_pb2
  3500. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3501. from sentencepiece import SentencePieceProcessor
  3502. from sentencepiece import sentencepiece_model_pb2 as model
  3503. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3504. tokenizer_json = {}
  3505. tokenizer_config_json = {}
  3506. if not tokenizer_path.is_file():
  3507. tokenizer_path = self.dir_model / 'tokenizer.json'
  3508. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3509. if not tokenizer_path.is_file():
  3510. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3511. from base64 import b64decode
  3512. from transformers import AutoTokenizer
  3513. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3514. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3515. tokenizer_json = json.load(fp)
  3516. if tokenizer_config_path.is_file():
  3517. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3518. tokenizer_config_json = json.load(fp)
  3519. add_prefix = tokenizer.add_prefix_space
  3520. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3521. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3522. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3523. else:
  3524. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3525. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3526. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3527. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3528. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3529. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3530. tokenizer = SentencePieceProcessor()
  3531. tokenizer.LoadFromFile(str(tokenizer_path))
  3532. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3533. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3534. scores: list[float] = [-10000.0] * vocab_size
  3535. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3536. if isinstance(tokenizer, SentencePieceProcessor):
  3537. for token_id in range(tokenizer.vocab_size()):
  3538. piece = tokenizer.IdToPiece(token_id)
  3539. text = piece.encode("utf-8")
  3540. score = tokenizer.GetScore(token_id)
  3541. toktype = SentencePieceTokenTypes.NORMAL
  3542. if tokenizer.IsUnknown(token_id):
  3543. toktype = SentencePieceTokenTypes.UNKNOWN
  3544. elif tokenizer.IsControl(token_id):
  3545. toktype = SentencePieceTokenTypes.CONTROL
  3546. elif tokenizer.IsUnused(token_id):
  3547. toktype = SentencePieceTokenTypes.UNUSED
  3548. elif tokenizer.IsByte(token_id):
  3549. toktype = SentencePieceTokenTypes.BYTE
  3550. tokens[token_id] = text
  3551. scores[token_id] = score
  3552. toktypes[token_id] = toktype
  3553. else:
  3554. added_vocab = tokenizer.get_added_vocab()
  3555. unk_token = tokenizer_config_json.get("unk_token")
  3556. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3557. for token_id in range(tokenizer.vocab_size):
  3558. piece = tokenizer._convert_id_to_token(token_id)
  3559. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3560. text = piece.encode("utf-8")
  3561. score = tokenizer_json["model"]["vocab"][token_id][1]
  3562. toktype = SentencePieceTokenTypes.NORMAL
  3563. if token_id == unk_token_id:
  3564. toktype = SentencePieceTokenTypes.UNKNOWN
  3565. elif token_id in tokenizer.all_special_ids:
  3566. toktype = SentencePieceTokenTypes.CONTROL
  3567. elif token_id in added_vocab.values():
  3568. toktype = SentencePieceTokenTypes.USER_DEFINED
  3569. # No reliable way to detect this, but jina doesn't have any
  3570. # elif tokenizer.IsByte(token_id):
  3571. # toktype = SentencePieceTokenTypes.BYTE
  3572. tokens[token_id] = text
  3573. scores[token_id] = score
  3574. toktypes[token_id] = toktype
  3575. if isinstance(tokenizer, SentencePieceProcessor):
  3576. # realign tokens (see HF tokenizer code)
  3577. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3578. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3579. toktypes = [
  3580. SentencePieceTokenTypes.CONTROL,
  3581. SentencePieceTokenTypes.CONTROL,
  3582. SentencePieceTokenTypes.CONTROL,
  3583. SentencePieceTokenTypes.UNKNOWN,
  3584. ] + toktypes[3:-1]
  3585. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3586. # Add mask token missing from sentencepiece.bpe.model
  3587. tokens[250001] = b'<mask>'
  3588. scores[250001] = 0.0
  3589. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3590. self.gguf_writer.add_tokenizer_model("t5")
  3591. self.gguf_writer.add_tokenizer_pre("default")
  3592. self.gguf_writer.add_token_list(tokens)
  3593. self.gguf_writer.add_token_scores(scores)
  3594. self.gguf_writer.add_token_types(toktypes)
  3595. self.gguf_writer.add_add_space_prefix(add_prefix)
  3596. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3597. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3598. if precompiled_charsmap:
  3599. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3600. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3601. special_vocab.add_to_gguf(self.gguf_writer)
  3602. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3603. class DistilBertModel(BertModel):
  3604. model_arch = gguf.MODEL_ARCH.BERT
  3605. def set_gguf_parameters(self):
  3606. self.gguf_writer.add_layer_norm_eps(1e-12)
  3607. logger.info("gguf: layer norm epsilon = 1e-12")
  3608. super().set_gguf_parameters()
  3609. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3610. if name.startswith("distilbert."):
  3611. name = name[11:]
  3612. # These layers act as MLM head, so we don't need them
  3613. if name.startswith("vocab_"):
  3614. return []
  3615. return super().modify_tensors(data_torch, name, bid)
  3616. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3617. class RobertaModel(BertModel):
  3618. model_arch = gguf.MODEL_ARCH.BERT
  3619. def __init__(self, *args, **kwargs):
  3620. super().__init__(*args, **kwargs)
  3621. # we need the pad_token_id to know how to chop down position_embd matrix
  3622. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3623. self._position_offset = 1 + pad_token_id
  3624. if "max_position_embeddings" in self.hparams:
  3625. self.hparams["max_position_embeddings"] -= self._position_offset
  3626. else:
  3627. self._position_offset = None
  3628. def set_vocab(self):
  3629. """Support BPE tokenizers for roberta models"""
  3630. bpe_tok_path = self.dir_model / "tokenizer.json"
  3631. if bpe_tok_path.exists():
  3632. self._set_vocab_gpt2()
  3633. # we need this to validate the size of the token_type embeddings
  3634. # though currently we are passing all zeros to the token_type embeddings
  3635. # "Sequence A" or "Sequence B"
  3636. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3637. else:
  3638. return super().set_vocab()
  3639. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3640. # if name starts with "roberta.", remove the prefix
  3641. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3642. if name.startswith("roberta."):
  3643. name = name[8:]
  3644. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3645. if name == "embeddings.position_embeddings.weight":
  3646. if self._position_offset is not None:
  3647. data_torch = data_torch[self._position_offset:,:]
  3648. return super().modify_tensors(data_torch, name, bid)
  3649. @ModelBase.register("NomicBertModel")
  3650. class NomicBertModel(BertModel):
  3651. model_arch = gguf.MODEL_ARCH.BERT
  3652. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3653. hparams = kwargs.pop("hparams", None)
  3654. if hparams is None:
  3655. hparams = ModelBase.load_hparams(dir_model)
  3656. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3657. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3658. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3659. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3660. if self._tokenizer_is_xlmroberta:
  3661. self._xlmroberta_tokenizer_init()
  3662. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3663. if npos == 8192 and mtp == 2048:
  3664. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3665. elif npos == 2048 and mtp == 2048:
  3666. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3667. else:
  3668. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3669. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3670. # this doesn't do anything in the HF version
  3671. assert self.hparams["causal"] is False
  3672. # no bias tensors unless MoE
  3673. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3674. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3675. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3676. # norm at end of layer
  3677. assert self.hparams["prenorm"] is False
  3678. # standard RoPE
  3679. assert self.hparams["rotary_emb_fraction"] == 1.0
  3680. assert self.hparams["rotary_emb_interleaved"] is False
  3681. assert self.hparams["rotary_emb_scale_base"] is None
  3682. def set_vocab(self) -> None:
  3683. if self._tokenizer_is_xlmroberta:
  3684. return self._xlmroberta_set_vocab()
  3685. return super().set_vocab()
  3686. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3687. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3688. if "mlp.experts.bias" in name:
  3689. return [] # Explicitly return an empty list.
  3690. if "mlp.experts.mlp.w1" in name:
  3691. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3692. name += ".weight"
  3693. if "mlp.experts.mlp.w2" in name:
  3694. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3695. data_torch = data_torch.transpose(1, 2)
  3696. name += ".weight"
  3697. return [(self.map_tensor_name(name), data_torch)]
  3698. def set_gguf_parameters(self):
  3699. super().set_gguf_parameters()
  3700. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3701. if self.is_moe:
  3702. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3703. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3704. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3705. def _is_tokenizer_xlmroberta(self) -> bool:
  3706. with open(self.dir_model / "tokenizer.json") as f:
  3707. tokenizer_json = json.load(f)
  3708. toktyp = tokenizer_json["model"]["type"]
  3709. if toktyp == "Unigram":
  3710. return True
  3711. if toktyp == "WordPiece":
  3712. return False
  3713. raise ValueError(f"unknown tokenizer: {toktyp}")
  3714. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3715. class NeoBert(BertModel):
  3716. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3717. def set_gguf_parameters(self):
  3718. super().set_gguf_parameters()
  3719. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3720. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3721. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3722. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3723. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3724. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3725. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3726. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3727. def modify_tensors(self, data_torch, name, bid):
  3728. if name.startswith("decoder."):
  3729. return []
  3730. if name.startswith("model."):
  3731. name = name[6:]
  3732. return super().modify_tensors(data_torch, name, bid)
  3733. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3734. class XLMRobertaModel(BertModel):
  3735. model_arch = gguf.MODEL_ARCH.BERT
  3736. def __init__(self, *args, **kwargs):
  3737. super().__init__(*args, **kwargs)
  3738. self._xlmroberta_tokenizer_init()
  3739. def set_vocab(self):
  3740. self._xlmroberta_set_vocab()
  3741. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3742. # if name starts with "roberta.", remove the prefix
  3743. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3744. if name.startswith("roberta."):
  3745. name = name[8:]
  3746. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3747. if name == "embeddings.position_embeddings.weight":
  3748. if self._position_offset is not None:
  3749. data_torch = data_torch[self._position_offset:,:]
  3750. return super().modify_tensors(data_torch, name, bid)
  3751. @ModelBase.register("GemmaForCausalLM")
  3752. class GemmaModel(TextModel):
  3753. model_arch = gguf.MODEL_ARCH.GEMMA
  3754. def set_vocab(self):
  3755. self._set_vocab_sentencepiece()
  3756. # TODO: these special tokens should be exported only for the CodeGemma family
  3757. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3758. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3759. special_vocab._set_special_token("prefix", 67)
  3760. special_vocab._set_special_token("suffix", 69)
  3761. special_vocab._set_special_token("middle", 68)
  3762. special_vocab._set_special_token("fsep", 70)
  3763. special_vocab._set_special_token("eot", 107)
  3764. special_vocab.chat_template = None # do not add it twice
  3765. special_vocab.add_to_gguf(self.gguf_writer)
  3766. self.gguf_writer.add_add_space_prefix(False)
  3767. def set_gguf_parameters(self):
  3768. hparams = self.hparams
  3769. block_count = hparams["num_hidden_layers"]
  3770. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3771. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3772. self.gguf_writer.add_block_count(block_count)
  3773. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3774. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3775. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3776. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3777. self.gguf_writer.add_key_length(hparams["head_dim"])
  3778. self.gguf_writer.add_value_length(hparams["head_dim"])
  3779. self.gguf_writer.add_file_type(self.ftype)
  3780. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3781. del bid # unused
  3782. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3783. # To prevent errors, skip loading lm_head.weight.
  3784. if name == "lm_head.weight":
  3785. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3786. return []
  3787. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3788. if name.endswith("norm.weight"):
  3789. data_torch = data_torch + 1
  3790. return [(self.map_tensor_name(name), data_torch)]
  3791. @ModelBase.register("Gemma2ForCausalLM")
  3792. class Gemma2Model(TextModel):
  3793. model_arch = gguf.MODEL_ARCH.GEMMA2
  3794. def set_vocab(self):
  3795. self._set_vocab_sentencepiece()
  3796. self.gguf_writer.add_add_space_prefix(False)
  3797. def set_gguf_parameters(self):
  3798. hparams = self.hparams
  3799. block_count = hparams["num_hidden_layers"]
  3800. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3801. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3802. self.gguf_writer.add_block_count(block_count)
  3803. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3804. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3805. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3806. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3807. self.gguf_writer.add_key_length(hparams["head_dim"])
  3808. self.gguf_writer.add_value_length(hparams["head_dim"])
  3809. self.gguf_writer.add_file_type(self.ftype)
  3810. self.gguf_writer.add_attn_logit_softcapping(
  3811. self.hparams["attn_logit_softcapping"]
  3812. )
  3813. self.gguf_writer.add_final_logit_softcapping(
  3814. self.hparams["final_logit_softcapping"]
  3815. )
  3816. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3818. del bid # unused
  3819. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3820. # To prevent errors, skip loading lm_head.weight.
  3821. if name == "lm_head.weight":
  3822. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3823. return []
  3824. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3825. if name.endswith("norm.weight"):
  3826. data_torch = data_torch + 1
  3827. return [(self.map_tensor_name(name), data_torch)]
  3828. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3829. class Gemma3Model(TextModel):
  3830. model_arch = gguf.MODEL_ARCH.GEMMA3
  3831. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3832. def set_vocab(self):
  3833. self._set_vocab_sentencepiece()
  3834. self.gguf_writer.add_add_space_prefix(False)
  3835. def set_gguf_parameters(self):
  3836. hparams = self.hparams
  3837. block_count = hparams["num_hidden_layers"]
  3838. # some default values are not specified in the hparams
  3839. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3840. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3841. self.gguf_writer.add_block_count(block_count)
  3842. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3843. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3844. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3845. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3846. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3847. self.gguf_writer.add_file_type(self.ftype)
  3848. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3849. # attn_logit_softcapping is removed in Gemma3
  3850. assert hparams.get("attn_logit_softcapping") is None
  3851. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3852. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3853. if hparams.get("rope_scaling") is not None:
  3854. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3855. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3856. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3857. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3858. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3859. del bid # unused
  3860. if "language_model." in name:
  3861. name = name.replace("language_model.", "")
  3862. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3863. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3864. return [] # skip vision tensors
  3865. # remove OOV (out-of-vocabulary) rows in token_embd
  3866. if "embed_tokens.weight" in name:
  3867. vocab = self._create_vocab_sentencepiece()
  3868. tokens = vocab[0]
  3869. data_torch = data_torch[:len(tokens)]
  3870. # ref code in Gemma3RMSNorm
  3871. # output = output * (1.0 + self.weight.float())
  3872. # note: this is not the case on gemma3n
  3873. if name.endswith("norm.weight"):
  3874. data_torch = data_torch + self.norm_shift
  3875. return [(self.map_tensor_name(name), data_torch)]
  3876. @ModelBase.register("Gemma3ForConditionalGeneration")
  3877. class Gemma3VisionModel(MmprojModel):
  3878. def set_gguf_parameters(self):
  3879. super().set_gguf_parameters()
  3880. hparams = self.hparams
  3881. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3882. # default values below are taken from HF tranformers code
  3883. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3884. self.gguf_writer.add_vision_use_gelu(True)
  3885. # calculate proj_scale_factor (used by tinygemma3 test model)
  3886. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3887. n_per_side = int(image_seq_length ** 0.5)
  3888. image_size = self.hparams["image_size"]
  3889. patch_size = self.hparams["patch_size"]
  3890. proj_scale_factor = (image_size // patch_size) // n_per_side
  3891. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3892. # we only need to write this if it's not the default value
  3893. # in this case, we are converting a test model
  3894. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3895. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3896. del bid, new_name, n_dims # unused
  3897. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3898. if "input_projection" in name:
  3899. return gguf.GGMLQuantizationType.F16
  3900. if ".embeddings." in name:
  3901. return gguf.GGMLQuantizationType.F32
  3902. return False
  3903. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3904. del bid # unused
  3905. if "vision_model.head." in name:
  3906. return [] # skip redundant tensors for tinygemma3
  3907. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3908. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3909. # process vision tensors
  3910. name = name.replace("_weight", ".weight")
  3911. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3912. # the other norm values are part of SigLIP model, and they are already correct
  3913. # ref code: Gemma3RMSNorm
  3914. if "soft_emb_norm.weight" in name:
  3915. logger.info(f"Correcting norm value for '{name}'")
  3916. data_torch = data_torch + 1
  3917. return [(self.map_tensor_name(name), data_torch)]
  3918. return [] # skip other tensors
  3919. @ModelBase.register("Gemma3nForConditionalGeneration")
  3920. class Gemma3NModel(Gemma3Model):
  3921. model_arch = gguf.MODEL_ARCH.GEMMA3N
  3922. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  3923. _altup_proj: list[Tensor] = []
  3924. _altup_unembd: list[Tensor] = []
  3925. def __init__(self, *args, **kwargs):
  3926. super().__init__(*args, **kwargs)
  3927. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  3928. self._altup_proj = [
  3929. torch.Tensor(), # to be replaced
  3930. torch.Tensor(), # to be replaced
  3931. torch.Tensor(), # to be replaced
  3932. ]
  3933. self._altup_unembd = [
  3934. torch.Tensor(), # to be replaced
  3935. torch.Tensor(), # to be replaced
  3936. torch.Tensor(), # to be replaced
  3937. ]
  3938. def set_vocab(self):
  3939. super().set_vocab()
  3940. def set_gguf_parameters(self):
  3941. super().set_gguf_parameters()
  3942. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  3943. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  3944. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  3945. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  3946. activation_sparsity_scale = []
  3947. for s in self.hparams["activation_sparsity_pattern"]:
  3948. normal_dist = torch.distributions.normal.Normal(0, 1)
  3949. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  3950. activation_sparsity_scale.append(std_multiplier.item())
  3951. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  3952. sliding_window_pattern = []
  3953. for t in self.hparams["layer_types"]:
  3954. sliding_window_pattern.append(t == "sliding_attention")
  3955. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  3956. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  3957. has_all = all(m.numel() > 0 for m in matrices)
  3958. if not has_all:
  3959. return None
  3960. else:
  3961. return torch.stack(matrices, dim=0)
  3962. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3963. if name.endswith("_scale"):
  3964. name = name + ".weight"
  3965. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  3966. if "language_model." not in name:
  3967. return [] # skip non-language model tensors
  3968. if "altup_unembed_projections" in name:
  3969. data_torch = data_torch.to(device="cpu")
  3970. if ".0." in name:
  3971. self._altup_unembd[0] = data_torch
  3972. elif ".1." in name:
  3973. self._altup_unembd[1] = data_torch
  3974. elif ".2." in name:
  3975. self._altup_unembd[2] = data_torch
  3976. else:
  3977. raise ValueError(f"Unknown name: {name}")
  3978. out = self._stack_matrices(self._altup_unembd)
  3979. if out is not None:
  3980. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  3981. else:
  3982. return []
  3983. if "altup_projections" in name:
  3984. data_torch = data_torch.to(device="cpu")
  3985. if ".0." in name:
  3986. self._altup_proj[0] = data_torch
  3987. elif ".1." in name:
  3988. self._altup_proj[1] = data_torch
  3989. elif ".2." in name:
  3990. self._altup_proj[2] = data_torch
  3991. else:
  3992. raise ValueError(f"Unknown name: {name}")
  3993. out = self._stack_matrices(self._altup_proj)
  3994. if out is not None:
  3995. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  3996. else:
  3997. return []
  3998. return super().modify_tensors(data_torch, name, bid)
  3999. @ModelBase.register("Starcoder2ForCausalLM")
  4000. class StarCoder2Model(TextModel):
  4001. model_arch = gguf.MODEL_ARCH.STARCODER2
  4002. @ModelBase.register("Rwkv6ForCausalLM")
  4003. class Rwkv6Model(TextModel):
  4004. model_arch = gguf.MODEL_ARCH.RWKV6
  4005. def set_vocab(self):
  4006. self._set_vocab_rwkv_world()
  4007. def set_gguf_parameters(self):
  4008. block_count = self.hparams["num_hidden_layers"]
  4009. head_size = self.hparams["head_size"]
  4010. hidden_size = self.hparams["hidden_size"]
  4011. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4012. rescale_every_n_layers = self.hparams["rescale_every"]
  4013. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4014. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4015. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4016. # RWKV isn't context limited
  4017. self.gguf_writer.add_context_length(1048576)
  4018. self.gguf_writer.add_embedding_length(hidden_size)
  4019. self.gguf_writer.add_block_count(block_count)
  4020. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4021. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4022. self.gguf_writer.add_wkv_head_size(head_size)
  4023. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4024. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4025. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4026. self.gguf_writer.add_file_type(self.ftype)
  4027. # required by llama.cpp, unused
  4028. self.gguf_writer.add_head_count(0)
  4029. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4030. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4031. new_name = self.map_tensor_name(name)
  4032. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4033. new_name += ".weight"
  4034. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4035. data_torch = data_torch.transpose(0, 1)
  4036. if new_name.endswith("time_mix_w2.weight"):
  4037. data_torch = data_torch.permute(0, 2, 1)
  4038. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4039. data_torch = data_torch.squeeze()
  4040. try:
  4041. rescale_every_n_layers = self.hparams["rescale_every"]
  4042. if rescale_every_n_layers > 0:
  4043. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4044. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4045. except KeyError:
  4046. pass
  4047. # concat time_mix_lerp weights to reduce some cpu overhead
  4048. # also reduces the number of tensors in the model
  4049. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4050. try:
  4051. self.lerp_weights[bid][new_name] = data_torch
  4052. except KeyError:
  4053. self.lerp_weights[bid] = {new_name: data_torch}
  4054. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4055. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4056. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4057. yield (new_name, data)
  4058. return
  4059. yield (new_name, data_torch)
  4060. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4061. class RWKV6Qwen2Model(Rwkv6Model):
  4062. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4063. def set_vocab(self):
  4064. try:
  4065. self._set_vocab_sentencepiece()
  4066. except FileNotFoundError:
  4067. self._set_vocab_gpt2()
  4068. def set_gguf_parameters(self):
  4069. block_count = self.hparams["num_hidden_layers"]
  4070. num_attention_heads = self.hparams["num_attention_heads"]
  4071. num_key_value_heads = self.hparams["num_key_value_heads"]
  4072. hidden_size = self.hparams["hidden_size"]
  4073. head_size = hidden_size // num_attention_heads
  4074. rms_norm_eps = self.hparams["rms_norm_eps"]
  4075. intermediate_size = self.hparams["intermediate_size"]
  4076. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4077. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4078. # RWKV isn't context limited
  4079. self.gguf_writer.add_context_length(1048576)
  4080. self.gguf_writer.add_embedding_length(hidden_size)
  4081. self.gguf_writer.add_block_count(block_count)
  4082. self.gguf_writer.add_wkv_head_size(head_size)
  4083. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4084. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4085. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4086. self.gguf_writer.add_file_type(self.ftype)
  4087. # special parameters for time_mixing in RWKV6QWEN2
  4088. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4089. self.gguf_writer.add_token_shift_count(1)
  4090. # RWKV6QWEN2 use grouped key/value like GQA
  4091. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4092. # required by llama.cpp, unused
  4093. self.gguf_writer.add_head_count(0)
  4094. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4095. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4096. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4097. data = data.view(5, -1, data.shape[-1])
  4098. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4099. # permute them here to avoid code changes
  4100. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4101. if "w2" in new_name:
  4102. data = data.view(5, -1, data.shape[-1])
  4103. yield (new_name, data)
  4104. continue
  4105. yield (new_name, data)
  4106. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4107. class Rwkv7Model(TextModel):
  4108. model_arch = gguf.MODEL_ARCH.RWKV7
  4109. def set_vocab(self):
  4110. self._set_vocab_rwkv_world()
  4111. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4112. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4113. def set_gguf_parameters(self):
  4114. block_count = self.hparams["num_hidden_layers"]
  4115. try:
  4116. head_size = self.hparams["head_size"]
  4117. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4118. except KeyError:
  4119. head_size = self.hparams["head_dim"]
  4120. layer_norm_eps = self.hparams["norm_eps"]
  4121. hidden_size = self.hparams["hidden_size"]
  4122. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4123. # ICLR: In-Context-Learning-Rate
  4124. try:
  4125. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4126. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4127. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4128. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4129. except KeyError:
  4130. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4131. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4132. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4133. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4134. # RWKV isn't context limited
  4135. self.gguf_writer.add_context_length(1048576)
  4136. self.gguf_writer.add_embedding_length(hidden_size)
  4137. self.gguf_writer.add_block_count(block_count)
  4138. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4139. self.gguf_writer.add_wkv_head_size(head_size)
  4140. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4141. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4142. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4143. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4144. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4145. self.gguf_writer.add_file_type(self.ftype)
  4146. # required by llama.cpp, unused
  4147. self.gguf_writer.add_head_count(0)
  4148. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4149. lora_needs_transpose: bool = True
  4150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4151. # unify tensor names here to make life easier
  4152. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4153. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4154. name = name.replace("time_mixer.", "")
  4155. # lora layer names in fla-hub's impl
  4156. if "_lora.lora" in name:
  4157. self.lora_needs_transpose = False
  4158. name = name.replace("_lora.lora.0.weight", "1.weight")
  4159. name = name.replace("_lora.lora.2.weight", "2.weight")
  4160. name = name.replace("_lora.lora.2.bias", "0.weight")
  4161. name = name.replace("feed_forward_norm", "ln2")
  4162. name = name.replace("g_norm", "ln_x")
  4163. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4164. # some models have dummy v0/v1/v2 on first layer while others don't
  4165. # ignore them all since they are not used
  4166. return
  4167. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4168. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4169. if bid is not None and "attention.x_" in name:
  4170. if "attention.x_x" in name:
  4171. # already concatenated
  4172. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4173. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4174. yield (new_name, data)
  4175. else:
  4176. try:
  4177. self.lerp_weights[bid][name] = data_torch
  4178. except KeyError:
  4179. self.lerp_weights[bid] = {name: data_torch}
  4180. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4181. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4182. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4183. yield (new_name, data)
  4184. return
  4185. else:
  4186. data_torch = data_torch.squeeze()
  4187. new_name = self.map_tensor_name(name)
  4188. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4189. new_name += ".weight"
  4190. if self.lora_needs_transpose and any(
  4191. new_name.endswith(t) for t in [
  4192. "time_mix_w1.weight", "time_mix_w2.weight",
  4193. "time_mix_a1.weight", "time_mix_a2.weight",
  4194. "time_mix_v1.weight", "time_mix_v2.weight",
  4195. "time_mix_g1.weight", "time_mix_g2.weight",
  4196. ]
  4197. ):
  4198. data_torch = data_torch.transpose(0, 1)
  4199. if 'r_k' in new_name:
  4200. data_torch = data_torch.flatten()
  4201. if bid == 0 and "time_mix_a" in new_name:
  4202. # dummy v0/v1/v2 on first layer
  4203. # easist way to make llama happy
  4204. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4205. yield (new_name, data_torch)
  4206. @ModelBase.register("RwkvHybridForCausalLM")
  4207. class ARwkv7Model(Rwkv7Model):
  4208. model_arch = gguf.MODEL_ARCH.ARWKV7
  4209. def set_vocab(self):
  4210. try:
  4211. self._set_vocab_sentencepiece()
  4212. except FileNotFoundError:
  4213. self._set_vocab_gpt2()
  4214. def set_gguf_parameters(self):
  4215. block_count = self.hparams["num_hidden_layers"]
  4216. hidden_size = self.hparams["hidden_size"]
  4217. head_size = self.hparams["head_size"]
  4218. rms_norm_eps = self.hparams["rms_norm_eps"]
  4219. intermediate_size = self.hparams["intermediate_size"]
  4220. wkv_has_gate = self.hparams["wkv_has_gate"]
  4221. assert self.hparams["wkv_version"] == 7
  4222. # ICLR: In-Context-Learning-Rate
  4223. lora_rank_decay = 64
  4224. lora_rank_iclr = 64
  4225. lora_rank_value_residual_mix = 32
  4226. lora_rank_gate = 128 if wkv_has_gate else 0
  4227. # RWKV isn't context limited
  4228. self.gguf_writer.add_context_length(1048576)
  4229. self.gguf_writer.add_embedding_length(hidden_size)
  4230. self.gguf_writer.add_block_count(block_count)
  4231. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4232. self.gguf_writer.add_wkv_head_size(head_size)
  4233. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4234. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4235. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4236. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4237. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4238. self.gguf_writer.add_file_type(self.ftype)
  4239. self.gguf_writer.add_token_shift_count(1)
  4240. # required by llama.cpp, unused
  4241. self.gguf_writer.add_head_count(0)
  4242. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4243. class MambaModel(TextModel):
  4244. model_arch = gguf.MODEL_ARCH.MAMBA
  4245. def __init__(self, dir_model: Path, *args, **kwargs):
  4246. # Avoid using AutoConfig for hparams
  4247. hparams = kwargs.pop("hparams", None)
  4248. if hparams is None:
  4249. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4250. hparams = json.load(f)
  4251. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4252. def set_vocab(self):
  4253. vocab_size = self.hparams["vocab_size"]
  4254. # Round vocab size to next multiple of 8
  4255. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4256. # pad using ceiling division
  4257. # ref: https://stackoverflow.com/a/17511341/22827863
  4258. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4259. self.hparams["vocab_size"] = vocab_size
  4260. if (self.dir_model / "tokenizer.json").is_file():
  4261. self._set_vocab_gpt2()
  4262. elif (self.dir_model / "tokenizer.model").is_file():
  4263. self._set_vocab_sentencepiece()
  4264. else:
  4265. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4266. self._set_vocab_builtin("gpt-neox", vocab_size)
  4267. def set_gguf_parameters(self):
  4268. d_model = self.find_hparam(["hidden_size", "d_model"])
  4269. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4270. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4271. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4272. # ceiling division
  4273. # ref: https://stackoverflow.com/a/17511341/22827863
  4274. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4275. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4276. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4277. use_dt_b_c_norm = False
  4278. # For falconmamba we do apply RMS norm on B / DT and C layers
  4279. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4280. use_dt_b_c_norm = True
  4281. # Fail early for models which don't have a block expansion factor of 2
  4282. assert d_inner == 2 * d_model
  4283. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4284. self.gguf_writer.add_embedding_length(d_model)
  4285. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4286. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4287. self.gguf_writer.add_block_count(self.block_count)
  4288. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4289. self.gguf_writer.add_ssm_inner_size(d_inner)
  4290. self.gguf_writer.add_ssm_state_size(d_state)
  4291. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4292. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4293. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4294. self.gguf_writer.add_file_type(self.ftype)
  4295. _tok_embd = None
  4296. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4297. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4298. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4299. new_name = self.map_tensor_name(name)
  4300. if name.endswith(".A_log"):
  4301. logger.debug("A_log --> A ==> " + new_name)
  4302. data_torch = -torch.exp(data_torch)
  4303. # [4 1 8192 1] -> [4 8192 1 1]
  4304. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4305. data_torch = data_torch.squeeze()
  4306. # assuming token_embd.weight is seen before output.weight
  4307. if self._tok_embd is not None and new_name == output_name:
  4308. if torch.equal(self._tok_embd, data_torch):
  4309. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4310. return []
  4311. elif new_name == tok_embd_name:
  4312. self._tok_embd = data_torch
  4313. return [(new_name, data_torch)]
  4314. @ModelBase.register("Mamba2ForCausalLM")
  4315. class Mamba2Model(TextModel):
  4316. model_arch = gguf.MODEL_ARCH.MAMBA2
  4317. def __init__(self, dir_model: Path, *args, **kwargs):
  4318. # Avoid using AutoConfig for hparams
  4319. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4320. hparams = kwargs.pop("hparams", None)
  4321. if hparams is None:
  4322. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4323. hparams = json.load(f)
  4324. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4325. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4326. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4327. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4328. def set_vocab(self):
  4329. vocab_size = self.hparams["vocab_size"]
  4330. # Round vocab size to next multiple of 16
  4331. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4332. # pad using ceiling division
  4333. # ref: https://stackoverflow.com/a/17511341/22827863
  4334. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4335. self.hparams["vocab_size"] = vocab_size
  4336. if (self.dir_model / "tokenizer.model").is_file():
  4337. self._set_vocab_sentencepiece()
  4338. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4339. # mamba-codestral
  4340. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4341. elif (self.dir_model / "tokenizer.json").is_file():
  4342. self._set_vocab_gpt2()
  4343. else:
  4344. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4345. self._set_vocab_builtin("gpt-neox", vocab_size)
  4346. def set_gguf_parameters(self):
  4347. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4348. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4349. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4350. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4351. # Fail early for models which don't have a block expansion factor of 2
  4352. # TODO: does this really matter?
  4353. # skip the assertion for FalconH1 Model
  4354. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4355. assert self.d_inner == 2 * self.d_model
  4356. assert self.d_inner % head_dim == 0
  4357. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4358. self.gguf_writer.add_embedding_length(self.d_model)
  4359. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4360. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4361. self.gguf_writer.add_block_count(self.block_count)
  4362. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4363. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4364. self.gguf_writer.add_ssm_state_size(d_state)
  4365. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4366. self.gguf_writer.add_ssm_group_count(self.n_group)
  4367. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4368. self.gguf_writer.add_file_type(self.ftype)
  4369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4370. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4371. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4372. name = name.removeprefix("model.")
  4373. if name.endswith(".dt_bias"):
  4374. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4375. new_name = self.map_tensor_name(name)
  4376. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4377. data_torch = data_torch.squeeze()
  4378. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4379. gguf.MODEL_TENSOR.SSM_A,
  4380. gguf.MODEL_TENSOR.SSM_D,
  4381. ]):
  4382. # unsqueeze A to use similar shape semantics as Mamba-1
  4383. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4384. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4385. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4386. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4387. if name.endswith(".A_log"):
  4388. logger.debug("A_log --> A ==> " + new_name)
  4389. data_torch = -torch.exp(data_torch)
  4390. yield (new_name, data_torch)
  4391. @ModelBase.register("JambaForCausalLM")
  4392. class JambaModel(TextModel):
  4393. model_arch = gguf.MODEL_ARCH.JAMBA
  4394. def get_vocab_base_pre(self, tokenizer) -> str:
  4395. del tokenizer # unused
  4396. return "gpt-2"
  4397. def set_vocab(self):
  4398. if (self.dir_model / "tokenizer.model").is_file():
  4399. # Using Jamba's tokenizer.json causes errors on model load
  4400. # (something about "byte not found in vocab"),
  4401. # but there's a working tokenizer.model
  4402. self._set_vocab_sentencepiece()
  4403. else:
  4404. # Some Jamba models only have a tokenizer.json, which works.
  4405. self._set_vocab_gpt2()
  4406. def set_gguf_parameters(self):
  4407. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4408. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4409. d_inner = self.hparams["mamba_expand"] * d_model
  4410. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4411. # ceiling division
  4412. # ref: https://stackoverflow.com/a/17511341/22827863
  4413. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4414. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4415. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4416. n_kv_head = self.hparams["num_key_value_heads"]
  4417. attn_offset = self.hparams["attn_layer_offset"]
  4418. attn_period = self.hparams["attn_layer_period"]
  4419. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4420. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4421. ]
  4422. self.gguf_writer.add_block_count(self.block_count)
  4423. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4424. self.gguf_writer.add_embedding_length(d_model)
  4425. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4426. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4427. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4428. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4429. self.gguf_writer.add_ssm_inner_size(d_inner)
  4430. self.gguf_writer.add_ssm_state_size(d_state)
  4431. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4432. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4433. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4434. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4435. self.gguf_writer.add_file_type(self.ftype)
  4436. _experts: list[dict[str, Tensor]] | None = None
  4437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4438. # Mini-Jamba
  4439. name = name.replace(".moe.", ".feed_forward.")
  4440. if bid is not None:
  4441. moe_offset = self.hparams["expert_layer_offset"]
  4442. moe_period = self.hparams["expert_layer_period"]
  4443. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4444. name = name.replace(".experts.0.", ".")
  4445. # process the experts separately
  4446. if ".feed_forward.experts." in name:
  4447. n_experts = self.hparams["num_experts"]
  4448. assert bid is not None
  4449. if self._experts is None:
  4450. self._experts = [{} for _ in range(self.block_count)]
  4451. self._experts[bid][name] = data_torch
  4452. if len(self._experts[bid]) >= n_experts * 3:
  4453. # merge the experts into a single 3d tensor
  4454. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4455. datas: list[Tensor] = []
  4456. for xid in range(n_experts):
  4457. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4458. datas.append(self._experts[bid][ename])
  4459. del self._experts[bid][ename]
  4460. data_torch = torch.stack(datas, dim=0)
  4461. # using the same merged name as qwen2moe
  4462. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4463. new_name = self.map_tensor_name(merged_name)
  4464. yield new_name, data_torch
  4465. return
  4466. new_name = self.map_tensor_name(name)
  4467. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4468. data_torch = data_torch.squeeze()
  4469. if name.endswith(".A_log"):
  4470. logger.debug("A_log --> A ==> " + new_name)
  4471. data_torch = -torch.exp(data_torch)
  4472. yield (new_name, data_torch)
  4473. def prepare_tensors(self):
  4474. super().prepare_tensors()
  4475. if self._experts is not None:
  4476. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4477. experts = [k for d in self._experts for k in d.keys()]
  4478. if len(experts) > 0:
  4479. raise ValueError(f"Unprocessed experts: {experts}")
  4480. @ModelBase.register("CohereForCausalLM")
  4481. class CommandR2Model(TextModel):
  4482. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4483. def __init__(self, *args, **kwargs):
  4484. super().__init__(*args, **kwargs)
  4485. # max_position_embeddings = 8192 in config.json but model was actually
  4486. # trained on 128k context length
  4487. # aya-23 models don't have model_max_length specified
  4488. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4489. def set_gguf_parameters(self):
  4490. super().set_gguf_parameters()
  4491. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4492. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4493. @ModelBase.register("Cohere2ForCausalLM")
  4494. class Cohere2Model(TextModel):
  4495. model_arch = gguf.MODEL_ARCH.COHERE2
  4496. def set_gguf_parameters(self):
  4497. super().set_gguf_parameters()
  4498. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4499. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4500. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4501. rotary_pct = self.hparams["rotary_pct"]
  4502. hidden_size = self.hparams["hidden_size"]
  4503. num_attention_heads = self.hparams["num_attention_heads"]
  4504. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4505. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4506. @ModelBase.register("OlmoForCausalLM")
  4507. @ModelBase.register("OLMoForCausalLM")
  4508. class OlmoModel(TextModel):
  4509. model_arch = gguf.MODEL_ARCH.OLMO
  4510. def set_gguf_parameters(self):
  4511. super().set_gguf_parameters()
  4512. self.gguf_writer.add_layer_norm_eps(1e-5)
  4513. clip_qkv = self.hparams.get("clip_qkv")
  4514. if clip_qkv is not None:
  4515. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4516. # Same as super class, but permuting q_proj, k_proj
  4517. # Copied from: LlamaModel
  4518. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4519. del bid # unused
  4520. n_head = self.hparams["num_attention_heads"]
  4521. n_kv_head = self.hparams.get("num_key_value_heads")
  4522. if name.endswith("q_proj.weight"):
  4523. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4524. if name.endswith("k_proj.weight"):
  4525. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4526. return [(self.map_tensor_name(name), data_torch)]
  4527. @ModelBase.register("Olmo2ForCausalLM")
  4528. class Olmo2Model(TextModel):
  4529. model_arch = gguf.MODEL_ARCH.OLMO2
  4530. @ModelBase.register("OlmoeForCausalLM")
  4531. class OlmoeModel(TextModel):
  4532. model_arch = gguf.MODEL_ARCH.OLMOE
  4533. def set_gguf_parameters(self):
  4534. super().set_gguf_parameters()
  4535. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4536. if (n_experts := self.hparams.get("num_experts")) is not None:
  4537. self.gguf_writer.add_expert_count(n_experts)
  4538. _experts: list[dict[str, Tensor]] | None = None
  4539. # Copied from: Qwen2MoeModel
  4540. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4541. # process the experts separately
  4542. if name.find("experts") != -1:
  4543. n_experts = self.hparams["num_experts"]
  4544. assert bid is not None
  4545. if self._experts is None:
  4546. self._experts = [{} for _ in range(self.block_count)]
  4547. self._experts[bid][name] = data_torch
  4548. if len(self._experts[bid]) >= n_experts * 3:
  4549. tensors: list[tuple[str, Tensor]] = []
  4550. # merge the experts into a single 3d tensor
  4551. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4552. datas: list[Tensor] = []
  4553. for xid in range(n_experts):
  4554. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4555. datas.append(self._experts[bid][ename])
  4556. del self._experts[bid][ename]
  4557. data_torch = torch.stack(datas, dim=0)
  4558. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4559. new_name = self.map_tensor_name(merged_name)
  4560. tensors.append((new_name, data_torch))
  4561. return tensors
  4562. else:
  4563. return []
  4564. return [(self.map_tensor_name(name), data_torch)]
  4565. # Copied from: Qwen2MoeModel
  4566. def prepare_tensors(self):
  4567. super().prepare_tensors()
  4568. if self._experts is not None:
  4569. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4570. experts = [k for d in self._experts for k in d.keys()]
  4571. if len(experts) > 0:
  4572. raise ValueError(f"Unprocessed experts: {experts}")
  4573. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4574. class JinaBertV2Model(BertModel):
  4575. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4576. def set_vocab(self):
  4577. tokenizer_class = 'BertTokenizer'
  4578. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4579. tokenizer_class = json.load(f)['tokenizer_class']
  4580. if tokenizer_class == 'BertTokenizer':
  4581. super().set_vocab()
  4582. elif tokenizer_class == 'RobertaTokenizer':
  4583. self._set_vocab_gpt2()
  4584. self.gguf_writer.add_token_type_count(2)
  4585. else:
  4586. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4587. @ModelBase.register("OpenELMForCausalLM")
  4588. class OpenELMModel(TextModel):
  4589. model_arch = gguf.MODEL_ARCH.OPENELM
  4590. @staticmethod
  4591. def _make_divisible(v: float | int, divisor: int) -> int:
  4592. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4593. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4594. # Make sure that round down does not go down by more than 10%.
  4595. if new_v < 0.9 * v:
  4596. new_v += divisor
  4597. return new_v
  4598. def __init__(self, *args, **kwargs):
  4599. super().__init__(*args, **kwargs)
  4600. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4601. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4602. self._n_embd: int = self.hparams["model_dim"]
  4603. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4604. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4605. self._ffn_dims: list[int] = [
  4606. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4607. for multiplier in ffn_multipliers
  4608. ]
  4609. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4610. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4611. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4612. def set_vocab(self):
  4613. try:
  4614. self._set_vocab_sentencepiece()
  4615. except FileNotFoundError:
  4616. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4617. def set_gguf_parameters(self):
  4618. n_embd = self._n_embd
  4619. head_dim = self.hparams["head_dim"]
  4620. rot_pct = 1.0
  4621. assert self.block_count == len(self._num_kv_heads)
  4622. assert self.block_count == len(self._num_query_heads)
  4623. assert self.block_count == len(self._ffn_dims)
  4624. self.gguf_writer.add_block_count(self.block_count)
  4625. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4626. self.gguf_writer.add_embedding_length(n_embd)
  4627. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4628. self.gguf_writer.add_head_count(self._num_query_heads)
  4629. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4630. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4631. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4632. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4633. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4634. self.gguf_writer.add_key_length(head_dim)
  4635. self.gguf_writer.add_value_length(head_dim)
  4636. self.gguf_writer.add_file_type(self.ftype)
  4637. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4638. if "n_layers" in keys:
  4639. return self.hparams["num_transformer_layers"]
  4640. return super().find_hparam(keys, optional)
  4641. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4642. # split ff
  4643. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4644. ff_dim = self._ffn_dims[bid]
  4645. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4646. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4647. return
  4648. yield (self.map_tensor_name(name), data_torch)
  4649. @ModelBase.register("ArcticForCausalLM")
  4650. class ArcticModel(TextModel):
  4651. model_arch = gguf.MODEL_ARCH.ARCTIC
  4652. def set_vocab(self):
  4653. # The reason for using a custom implementation here is that the
  4654. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4655. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4656. from sentencepiece import SentencePieceProcessor
  4657. tokenizer_path = self.dir_model / 'tokenizer.model'
  4658. if not tokenizer_path.is_file():
  4659. logger.error(f'Error: Missing {tokenizer_path}')
  4660. sys.exit(1)
  4661. # Read the whole vocabulary from the tokenizer.model file
  4662. tokenizer = SentencePieceProcessor()
  4663. tokenizer.LoadFromFile(str(tokenizer_path))
  4664. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4665. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4666. scores: list[float] = [-10000.0] * vocab_size
  4667. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4668. for token_id in range(tokenizer.vocab_size()):
  4669. piece = tokenizer.IdToPiece(token_id)
  4670. text = piece.encode("utf-8")
  4671. score = tokenizer.GetScore(token_id)
  4672. toktype = SentencePieceTokenTypes.NORMAL
  4673. if tokenizer.IsUnknown(token_id):
  4674. toktype = SentencePieceTokenTypes.UNKNOWN
  4675. elif tokenizer.IsControl(token_id):
  4676. toktype = SentencePieceTokenTypes.CONTROL
  4677. elif tokenizer.IsUnused(token_id):
  4678. toktype = SentencePieceTokenTypes.UNUSED
  4679. elif tokenizer.IsByte(token_id):
  4680. toktype = SentencePieceTokenTypes.BYTE
  4681. tokens[token_id] = text
  4682. scores[token_id] = score
  4683. toktypes[token_id] = toktype
  4684. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4685. # of information about added/redefined tokens and modify them accordingly.
  4686. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4687. if tokenizer_config_file.is_file():
  4688. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4689. tokenizer_config_json = json.load(f)
  4690. if "added_tokens_decoder" in tokenizer_config_json:
  4691. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4692. for token_id, token_json in added_tokens_decoder.items():
  4693. token_id = int(token_id)
  4694. if token_id >= vocab_size:
  4695. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4696. continue
  4697. token_content = token_json["content"]
  4698. token_type = SentencePieceTokenTypes.USER_DEFINED
  4699. token_score = -10000.0
  4700. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4701. # Set the score to 0.0 as in the original tokenizer.model
  4702. if ("special" in token_json) and token_json["special"]:
  4703. if token_content == tokenizer_config_json["unk_token"]:
  4704. token_type = SentencePieceTokenTypes.UNKNOWN
  4705. else:
  4706. token_type = SentencePieceTokenTypes.CONTROL
  4707. token_score = 0.0
  4708. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4709. tokens[token_id] = token_content.encode("utf-8")
  4710. toktypes[token_id] = token_type
  4711. scores[token_id] = token_score
  4712. self.gguf_writer.add_tokenizer_model("llama")
  4713. self.gguf_writer.add_tokenizer_pre("default")
  4714. self.gguf_writer.add_token_list(tokens)
  4715. self.gguf_writer.add_token_scores(scores)
  4716. self.gguf_writer.add_token_types(toktypes)
  4717. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4718. special_vocab.add_to_gguf(self.gguf_writer)
  4719. def set_gguf_parameters(self):
  4720. super().set_gguf_parameters()
  4721. hparams = self.hparams
  4722. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4723. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4724. _experts: list[dict[str, Tensor]] | None = None
  4725. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4726. n_head = self.hparams["num_attention_heads"]
  4727. n_kv_head = self.hparams.get("num_key_value_heads")
  4728. if name.endswith("q_proj.weight"):
  4729. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4730. if name.endswith("k_proj.weight"):
  4731. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4732. # process the experts separately
  4733. if name.find("block_sparse_moe.experts") != -1:
  4734. n_experts = self.hparams["num_local_experts"]
  4735. assert bid is not None
  4736. if self._experts is None:
  4737. self._experts = [{} for _ in range(self.block_count)]
  4738. self._experts[bid][name] = data_torch
  4739. if len(self._experts[bid]) >= n_experts * 3:
  4740. tensors: list[tuple[str, Tensor]] = []
  4741. # merge the experts into a single 3d tensor
  4742. for wid in ["w1", "w2", "w3"]:
  4743. datas: list[Tensor] = []
  4744. for xid in range(n_experts):
  4745. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4746. datas.append(self._experts[bid][ename])
  4747. del self._experts[bid][ename]
  4748. data_torch = torch.stack(datas, dim=0)
  4749. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4750. new_name = self.map_tensor_name(merged_name)
  4751. tensors.append((new_name, data_torch))
  4752. return tensors
  4753. else:
  4754. return []
  4755. return [(self.map_tensor_name(name), data_torch)]
  4756. def prepare_tensors(self):
  4757. super().prepare_tensors()
  4758. if self._experts is not None:
  4759. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4760. experts = [k for d in self._experts for k in d.keys()]
  4761. if len(experts) > 0:
  4762. raise ValueError(f"Unprocessed experts: {experts}")
  4763. @ModelBase.register("DeepseekForCausalLM")
  4764. class DeepseekModel(TextModel):
  4765. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4766. def set_vocab(self):
  4767. try:
  4768. self._set_vocab_sentencepiece()
  4769. except FileNotFoundError:
  4770. self._set_vocab_gpt2()
  4771. def set_gguf_parameters(self):
  4772. super().set_gguf_parameters()
  4773. hparams = self.hparams
  4774. if (rope_dim := hparams.get("head_dim")) is None:
  4775. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4776. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4777. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4778. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4779. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4780. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4781. self.gguf_writer.add_expert_weights_scale(1.0)
  4782. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4783. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4784. _experts: list[dict[str, Tensor]] | None = None
  4785. @staticmethod
  4786. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4787. if n_head_kv is not None and n_head != n_head_kv:
  4788. n_head = n_head_kv
  4789. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4790. .swapaxes(1, 2)
  4791. .reshape(weights.shape))
  4792. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4793. n_head = self.hparams["num_attention_heads"]
  4794. n_kv_head = self.hparams.get("num_key_value_heads")
  4795. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4796. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4797. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4798. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4799. # process the experts separately
  4800. if name.find("mlp.experts") != -1:
  4801. n_experts = self.hparams["n_routed_experts"]
  4802. assert bid is not None
  4803. if self._experts is None:
  4804. self._experts = [{} for _ in range(self.block_count)]
  4805. self._experts[bid][name] = data_torch
  4806. if len(self._experts[bid]) >= n_experts * 3:
  4807. tensors: list[tuple[str, Tensor]] = []
  4808. # merge the experts into a single 3d tensor
  4809. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4810. datas: list[Tensor] = []
  4811. for xid in range(n_experts):
  4812. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4813. datas.append(self._experts[bid][ename])
  4814. del self._experts[bid][ename]
  4815. data_torch = torch.stack(datas, dim=0)
  4816. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4817. new_name = self.map_tensor_name(merged_name)
  4818. tensors.append((new_name, data_torch))
  4819. return tensors
  4820. else:
  4821. return []
  4822. return [(self.map_tensor_name(name), data_torch)]
  4823. def prepare_tensors(self):
  4824. super().prepare_tensors()
  4825. if self._experts is not None:
  4826. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4827. experts = [k for d in self._experts for k in d.keys()]
  4828. if len(experts) > 0:
  4829. raise ValueError(f"Unprocessed experts: {experts}")
  4830. @ModelBase.register("DeepseekV2ForCausalLM")
  4831. @ModelBase.register("DeepseekV3ForCausalLM")
  4832. class DeepseekV2Model(TextModel):
  4833. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4834. def set_vocab(self):
  4835. try:
  4836. self._set_vocab_gpt2()
  4837. return
  4838. except Exception:
  4839. pass
  4840. from transformers import AutoTokenizer
  4841. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4842. tokpre = self.get_vocab_base_pre(tokenizer)
  4843. if tokpre == "kimi-k2":
  4844. # Build merges list using the approach similar to HunYuanMoE
  4845. merges = []
  4846. vocab = {}
  4847. mergeable_ranks = tokenizer.model._mergeable_ranks
  4848. for token, rank in mergeable_ranks.items():
  4849. vocab[QwenModel.token_bytes_to_string(token)] = rank
  4850. if len(token) == 1:
  4851. continue
  4852. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  4853. if len(merged) == 2:
  4854. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  4855. # Build token list
  4856. vocab_size = self.hparams["vocab_size"]
  4857. special_tokens = tokenizer.special_tokens
  4858. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  4859. tokens: list[str] = []
  4860. toktypes: list[int] = []
  4861. for i in range(vocab_size):
  4862. if i not in reverse_vocab:
  4863. tokens.append(f"[PAD{i}]")
  4864. toktypes.append(gguf.TokenType.UNUSED)
  4865. else:
  4866. token = reverse_vocab[i]
  4867. tokens.append(token)
  4868. if i in special_tokens.values():
  4869. toktypes.append(gguf.TokenType.CONTROL)
  4870. else:
  4871. toktypes.append(gguf.TokenType.NORMAL)
  4872. self.gguf_writer.add_tokenizer_model("gpt2")
  4873. self.gguf_writer.add_tokenizer_pre(tokpre)
  4874. self.gguf_writer.add_token_list(tokens)
  4875. self.gguf_writer.add_token_types(toktypes)
  4876. self.gguf_writer.add_token_merges(merges)
  4877. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  4878. special_vocab.add_to_gguf(self.gguf_writer)
  4879. else:
  4880. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  4881. def set_gguf_parameters(self):
  4882. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4883. self.hparams["num_key_value_heads"] = 1
  4884. super().set_gguf_parameters()
  4885. hparams = self.hparams
  4886. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4887. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4888. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4889. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4890. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4891. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4892. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4893. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4894. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4895. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4896. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4897. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4898. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4899. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4900. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4901. if hparams["scoring_func"] == "sigmoid":
  4902. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4903. elif hparams["scoring_func"] == "softmax":
  4904. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4905. else:
  4906. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4907. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4908. rope_scaling = self.hparams.get("rope_scaling") or {}
  4909. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4910. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4911. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4912. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4913. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4914. _experts: list[dict[str, Tensor]] | None = None
  4915. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4916. # rename e_score_correction_bias tensors
  4917. if name.endswith("e_score_correction_bias"):
  4918. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4919. # skip Multi-Token Prediction (MTP) layers
  4920. block_count = self.hparams["num_hidden_layers"]
  4921. match = re.match(r"model.layers.(\d+)", name)
  4922. if match and int(match.group(1)) >= block_count:
  4923. return []
  4924. # process the experts separately
  4925. if name.find("mlp.experts") != -1:
  4926. n_experts = self.hparams["n_routed_experts"]
  4927. assert bid is not None
  4928. if self._experts is None:
  4929. self._experts = [{} for _ in range(self.block_count)]
  4930. self._experts[bid][name] = data_torch
  4931. if len(self._experts[bid]) >= n_experts * 3:
  4932. tensors: list[tuple[str, Tensor]] = []
  4933. # merge the experts into a single 3d tensor
  4934. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4935. datas: list[Tensor] = []
  4936. for xid in range(n_experts):
  4937. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4938. datas.append(self._experts[bid][ename])
  4939. del self._experts[bid][ename]
  4940. data_torch = torch.stack(datas, dim=0)
  4941. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4942. new_name = self.map_tensor_name(merged_name)
  4943. tensors.append((new_name, data_torch))
  4944. return tensors
  4945. else:
  4946. return []
  4947. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4948. if name.endswith("kv_b_proj.weight"):
  4949. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4950. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4951. n_head_kv = self.hparams["num_key_value_heads"]
  4952. v_head_dim = self.hparams["v_head_dim"]
  4953. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4954. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4955. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4956. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4957. k_b = k_b.transpose(1, 2)
  4958. return [
  4959. (self.map_tensor_name(name_kb), k_b),
  4960. (self.map_tensor_name(name_vb), v_b)
  4961. ]
  4962. return [(self.map_tensor_name(name), data_torch)]
  4963. def prepare_tensors(self):
  4964. super().prepare_tensors()
  4965. if self._experts is not None:
  4966. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4967. experts = [k for d in self._experts for k in d.keys()]
  4968. if len(experts) > 0:
  4969. raise ValueError(f"Unprocessed experts: {experts}")
  4970. @ModelBase.register("Dots1ForCausalLM")
  4971. class Dots1Model(Qwen2MoeModel):
  4972. model_arch = gguf.MODEL_ARCH.DOTS1
  4973. def __init__(self, *args, **kwargs):
  4974. super().__init__(*args, **kwargs)
  4975. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  4976. def set_gguf_parameters(self):
  4977. super().set_gguf_parameters()
  4978. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  4979. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  4980. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  4981. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  4982. if self.hparams["scoring_func"] == "noaux_tc":
  4983. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4984. else:
  4985. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  4986. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  4987. if name.endswith("e_score_correction_bias"):
  4988. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4989. if "shared_experts" in name:
  4990. return [(self.map_tensor_name(name), data_torch)]
  4991. return super().modify_tensors(data_torch, name, bid)
  4992. @ModelBase.register("PLMForCausalLM")
  4993. class PLMModel(TextModel):
  4994. model_arch = gguf.MODEL_ARCH.PLM
  4995. def set_vocab(self):
  4996. self._set_vocab_gpt2()
  4997. def set_gguf_parameters(self):
  4998. super().set_gguf_parameters()
  4999. hparams = self.hparams
  5000. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5001. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5002. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5003. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5004. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5006. return [(self.map_tensor_name(name), data_torch)]
  5007. def prepare_tensors(self):
  5008. super().prepare_tensors()
  5009. @ModelBase.register("T5WithLMHeadModel")
  5010. @ModelBase.register("T5ForConditionalGeneration")
  5011. @ModelBase.register("MT5ForConditionalGeneration")
  5012. @ModelBase.register("UMT5ForConditionalGeneration")
  5013. class T5Model(TextModel):
  5014. model_arch = gguf.MODEL_ARCH.T5
  5015. def __init__(self, *args, **kwargs):
  5016. super().__init__(*args, **kwargs)
  5017. self.shared_token_embeddings_found = False
  5018. def set_vocab(self):
  5019. # to avoid TypeError: Descriptors cannot be created directly
  5020. # exception when importing sentencepiece_model_pb2
  5021. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5022. from sentencepiece import SentencePieceProcessor
  5023. from sentencepiece import sentencepiece_model_pb2 as model
  5024. tokenizer_path = self.dir_model / 'tokenizer.model'
  5025. # many older models use spiece.model tokenizer model filename
  5026. if not tokenizer_path.is_file():
  5027. tokenizer_path = self.dir_model / 'spiece.model'
  5028. if not tokenizer_path.is_file():
  5029. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5030. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5031. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5032. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5033. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5034. # assure the tokenizer model file name is correct
  5035. assert tokenizer_path.name == 'tokenizer.model'
  5036. return self._set_vocab_sentencepiece()
  5037. else:
  5038. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5039. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5040. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5041. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5042. tokenizer = SentencePieceProcessor()
  5043. tokenizer.LoadFromFile(str(tokenizer_path))
  5044. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5045. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5046. scores: list[float] = [-10000.0] * vocab_size
  5047. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5048. for token_id in range(tokenizer.vocab_size()):
  5049. piece = tokenizer.IdToPiece(token_id)
  5050. text = piece.encode("utf-8")
  5051. score = tokenizer.GetScore(token_id)
  5052. toktype = SentencePieceTokenTypes.NORMAL
  5053. if tokenizer.IsUnknown(token_id):
  5054. toktype = SentencePieceTokenTypes.UNKNOWN
  5055. elif tokenizer.IsControl(token_id):
  5056. toktype = SentencePieceTokenTypes.CONTROL
  5057. elif tokenizer.IsUnused(token_id):
  5058. toktype = SentencePieceTokenTypes.UNUSED
  5059. elif tokenizer.IsByte(token_id):
  5060. toktype = SentencePieceTokenTypes.BYTE
  5061. tokens[token_id] = text
  5062. scores[token_id] = score
  5063. toktypes[token_id] = toktype
  5064. added_tokens_file = self.dir_model / 'added_tokens.json'
  5065. if added_tokens_file.is_file():
  5066. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5067. added_tokens_json = json.load(f)
  5068. for key in added_tokens_json:
  5069. token_id = added_tokens_json[key]
  5070. if token_id >= vocab_size:
  5071. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5072. continue
  5073. tokens[token_id] = key.encode("utf-8")
  5074. scores[token_id] = -1000.0
  5075. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5076. if vocab_size > len(tokens):
  5077. pad_count = vocab_size - len(tokens)
  5078. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5079. for i in range(1, pad_count + 1):
  5080. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5081. scores.append(-1000.0)
  5082. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5083. self.gguf_writer.add_tokenizer_model("t5")
  5084. self.gguf_writer.add_tokenizer_pre("default")
  5085. self.gguf_writer.add_token_list(tokens)
  5086. self.gguf_writer.add_token_scores(scores)
  5087. self.gguf_writer.add_token_types(toktypes)
  5088. self.gguf_writer.add_add_space_prefix(add_prefix)
  5089. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5090. if precompiled_charsmap:
  5091. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5092. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5093. special_vocab.add_to_gguf(self.gguf_writer)
  5094. def set_gguf_parameters(self):
  5095. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5096. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5097. n_ctx = 512
  5098. self.gguf_writer.add_context_length(n_ctx)
  5099. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5100. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5101. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5102. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5103. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5104. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5105. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5106. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5107. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5108. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5109. self.gguf_writer.add_file_type(self.ftype)
  5110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5111. del bid # unused
  5112. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5113. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5114. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5115. # and decoder and ignore the remaining ones.
  5116. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5117. if not self.shared_token_embeddings_found:
  5118. name = "shared.weight"
  5119. self.shared_token_embeddings_found = True
  5120. else:
  5121. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5122. return []
  5123. return [(self.map_tensor_name(name), data_torch)]
  5124. @ModelBase.register("T5EncoderModel")
  5125. class T5EncoderModel(TextModel):
  5126. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5127. def __init__(self, *args, **kwargs):
  5128. super().__init__(*args, **kwargs)
  5129. self.shared_token_embeddings_found = False
  5130. def set_vocab(self):
  5131. # to avoid TypeError: Descriptors cannot be created directly
  5132. # exception when importing sentencepiece_model_pb2
  5133. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5134. from sentencepiece import SentencePieceProcessor
  5135. from sentencepiece import sentencepiece_model_pb2 as model
  5136. tokenizer_path = self.dir_model / 'tokenizer.model'
  5137. # many older models use spiece.model tokenizer model filename
  5138. if not tokenizer_path.is_file():
  5139. tokenizer_path = self.dir_model / 'spiece.model'
  5140. if not tokenizer_path.is_file():
  5141. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5142. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5143. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5144. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5145. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5146. # assure the tokenizer model file name is correct
  5147. assert tokenizer_path.name == 'tokenizer.model'
  5148. return self._set_vocab_sentencepiece()
  5149. else:
  5150. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5151. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5152. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5153. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5154. tokenizer = SentencePieceProcessor()
  5155. tokenizer.LoadFromFile(str(tokenizer_path))
  5156. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5157. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5158. scores: list[float] = [-10000.0] * vocab_size
  5159. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5160. for token_id in range(tokenizer.vocab_size()):
  5161. piece = tokenizer.IdToPiece(token_id)
  5162. text = piece.encode("utf-8")
  5163. score = tokenizer.GetScore(token_id)
  5164. toktype = SentencePieceTokenTypes.NORMAL
  5165. if tokenizer.IsUnknown(token_id):
  5166. toktype = SentencePieceTokenTypes.UNKNOWN
  5167. elif tokenizer.IsControl(token_id):
  5168. toktype = SentencePieceTokenTypes.CONTROL
  5169. elif tokenizer.IsUnused(token_id):
  5170. toktype = SentencePieceTokenTypes.UNUSED
  5171. elif tokenizer.IsByte(token_id):
  5172. toktype = SentencePieceTokenTypes.BYTE
  5173. tokens[token_id] = text
  5174. scores[token_id] = score
  5175. toktypes[token_id] = toktype
  5176. added_tokens_file = self.dir_model / 'added_tokens.json'
  5177. if added_tokens_file.is_file():
  5178. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5179. added_tokens_json = json.load(f)
  5180. for key in added_tokens_json:
  5181. token_id = added_tokens_json[key]
  5182. if token_id >= vocab_size:
  5183. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5184. continue
  5185. tokens[token_id] = key.encode("utf-8")
  5186. scores[token_id] = -1000.0
  5187. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5188. if vocab_size > len(tokens):
  5189. pad_count = vocab_size - len(tokens)
  5190. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5191. for i in range(1, pad_count + 1):
  5192. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5193. scores.append(-1000.0)
  5194. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5195. self.gguf_writer.add_tokenizer_model("t5")
  5196. self.gguf_writer.add_tokenizer_pre("default")
  5197. self.gguf_writer.add_token_list(tokens)
  5198. self.gguf_writer.add_token_scores(scores)
  5199. self.gguf_writer.add_token_types(toktypes)
  5200. self.gguf_writer.add_add_space_prefix(add_prefix)
  5201. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5202. if precompiled_charsmap:
  5203. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5204. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5205. special_vocab.add_to_gguf(self.gguf_writer)
  5206. def set_gguf_parameters(self):
  5207. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5208. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5209. n_ctx = 512
  5210. self.gguf_writer.add_context_length(n_ctx)
  5211. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5212. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5213. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5214. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5215. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5216. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5217. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5218. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5219. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5220. self.gguf_writer.add_file_type(self.ftype)
  5221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5222. del bid # unused
  5223. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5224. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5225. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5226. # and decoder and ignore the remaining ones.
  5227. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5228. if not self.shared_token_embeddings_found:
  5229. name = "shared.weight"
  5230. self.shared_token_embeddings_found = True
  5231. else:
  5232. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5233. return []
  5234. return [(self.map_tensor_name(name), data_torch)]
  5235. @ModelBase.register("JAISLMHeadModel")
  5236. class JaisModel(TextModel):
  5237. model_arch = gguf.MODEL_ARCH.JAIS
  5238. def __init__(self, *args, **kwargs):
  5239. super().__init__(*args, **kwargs)
  5240. # SwigLU activation
  5241. assert self.hparams["activation_function"] == "swiglu"
  5242. # ALiBi position embedding
  5243. assert self.hparams["position_embedding_type"] == "alibi"
  5244. # Embeddings scale
  5245. self.embeddings_scale = 1.0
  5246. if 'mup_embeddings_scale' in self.hparams:
  5247. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5248. elif 'embeddings_scale' in self.hparams:
  5249. self.embeddings_scale = self.hparams['embeddings_scale']
  5250. else:
  5251. assert False
  5252. self.width_scale = 1.0
  5253. if 'mup_output_alpha' in self.hparams:
  5254. assert 'mup_width_scale' in self.hparams
  5255. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5256. elif 'width_scale' in self.hparams:
  5257. self.width_scale = self.hparams['width_scale']
  5258. else:
  5259. assert False
  5260. self.max_alibi_bias = 8.0
  5261. def set_vocab(self):
  5262. self._set_vocab_gpt2()
  5263. def set_gguf_parameters(self):
  5264. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5265. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5266. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5267. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5268. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5269. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5270. self.gguf_writer.add_file_type(self.ftype)
  5271. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5272. del bid # unused
  5273. tensors: list[tuple[str, Tensor]] = []
  5274. # we don't need these
  5275. if name.endswith((".attn.bias")):
  5276. return tensors
  5277. if name.endswith(("relative_pe.slopes")):
  5278. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5279. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5280. # but Jais's PyTorch model simply precalculates the slope values and places them
  5281. # in relative_pes.slopes
  5282. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5283. first_val = float(data_torch[0].item())
  5284. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5285. return tensors
  5286. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5287. data_torch = data_torch.transpose(1, 0)
  5288. new_name = self.map_tensor_name(name)
  5289. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5290. tensors.append((new_name, data_torch * self.embeddings_scale))
  5291. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5292. tensors.append((new_name, data_torch * self.width_scale))
  5293. else:
  5294. tensors.append((new_name, data_torch))
  5295. return tensors
  5296. def prepare_tensors(self):
  5297. super().prepare_tensors()
  5298. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5299. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5300. class Glm4Model(TextModel):
  5301. model_arch = gguf.MODEL_ARCH.GLM4
  5302. def set_vocab(self):
  5303. from transformers import AutoTokenizer
  5304. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5305. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5306. tokens, toktypes, tokpre = self.get_vocab_base()
  5307. self.gguf_writer.add_tokenizer_model("gpt2")
  5308. self.gguf_writer.add_tokenizer_pre(tokpre)
  5309. self.gguf_writer.add_token_list(tokens)
  5310. self.gguf_writer.add_token_types(toktypes)
  5311. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5312. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5313. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5314. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5315. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5316. special_vocab.add_to_gguf(self.gguf_writer)
  5317. def set_gguf_parameters(self):
  5318. super().set_gguf_parameters()
  5319. if (rope_dim := self.hparams.get("head_dim")) is None:
  5320. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5321. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5322. rope_scaling = self.hparams.get("rope_scaling") or {}
  5323. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5324. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5325. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5326. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5327. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5328. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5329. return []
  5330. elif name.startswith("model.language_model."):
  5331. name = name.replace("language_model.", "") # for Glm4v
  5332. return super().modify_tensors(data_torch, name, bid)
  5333. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5334. class ChatGLMModel(TextModel):
  5335. model_arch = gguf.MODEL_ARCH.CHATGLM
  5336. def set_vocab_chatglm3(self):
  5337. dir_model = self.dir_model
  5338. hparams = self.hparams
  5339. tokens: list[bytes] = []
  5340. toktypes: list[int] = []
  5341. scores: list[float] = []
  5342. from transformers import AutoTokenizer
  5343. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5344. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5345. assert max(tokenizer.get_vocab().values()) < vocab_size
  5346. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5347. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5348. for token_id in range(vocab_size):
  5349. piece = tokenizer._convert_id_to_token(token_id)
  5350. if token_id == 0:
  5351. piece = "<unk>"
  5352. elif token_id == 1:
  5353. piece = "<bos>"
  5354. elif token_id == 2:
  5355. piece = "<eos>"
  5356. text = piece.encode("utf-8")
  5357. score = 0.0
  5358. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5359. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5360. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5361. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5362. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5363. if piece in special_tokens:
  5364. toktype = SentencePieceTokenTypes.CONTROL
  5365. elif len(piece) == 0:
  5366. text = f"[PAD{token_id}]".encode("utf-8")
  5367. toktype = SentencePieceTokenTypes.UNUSED
  5368. else:
  5369. toktype = SentencePieceTokenTypes.USER_DEFINED
  5370. tokens.append(text)
  5371. scores.append(score)
  5372. toktypes.append(toktype)
  5373. continue
  5374. toktype = SentencePieceTokenTypes.NORMAL
  5375. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5376. toktype = SentencePieceTokenTypes.UNKNOWN
  5377. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5378. toktype = SentencePieceTokenTypes.CONTROL
  5379. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5380. toktype = SentencePieceTokenTypes.UNUSED
  5381. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5382. toktype = SentencePieceTokenTypes.BYTE
  5383. tokens.append(text)
  5384. scores.append(score)
  5385. toktypes.append(toktype)
  5386. self.gguf_writer.add_tokenizer_model("llama")
  5387. # glm3 needs prefix and suffix formatted as:
  5388. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5389. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5390. self.gguf_writer.add_token_list(tokens)
  5391. self.gguf_writer.add_token_scores(scores)
  5392. self.gguf_writer.add_token_types(toktypes)
  5393. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5394. special_vocab.add_to_gguf(self.gguf_writer)
  5395. @staticmethod
  5396. def token_bytes_to_string(b):
  5397. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5398. byte_encoder = bytes_to_unicode()
  5399. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5400. @staticmethod
  5401. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5402. parts = [bytes([b]) for b in token]
  5403. while True:
  5404. min_idx = None
  5405. min_rank = None
  5406. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5407. rank = mergeable_ranks.get(pair[0] + pair[1])
  5408. if rank is not None and (min_rank is None or rank < min_rank):
  5409. min_idx = i
  5410. min_rank = rank
  5411. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5412. break
  5413. assert min_idx is not None
  5414. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5415. return parts
  5416. def set_vocab(self):
  5417. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5418. self.set_vocab_chatglm3()
  5419. return
  5420. dir_model = self.dir_model
  5421. hparams = self.hparams
  5422. tokens: list[str] = []
  5423. toktypes: list[int] = []
  5424. from transformers import AutoTokenizer
  5425. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5426. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5427. assert max(tokenizer.get_vocab().values()) < vocab_size
  5428. tokens, toktypes, tokpre = self.get_vocab_base()
  5429. self.gguf_writer.add_tokenizer_model("gpt2")
  5430. self.gguf_writer.add_tokenizer_pre(tokpre)
  5431. self.gguf_writer.add_token_list(tokens)
  5432. self.gguf_writer.add_token_types(toktypes)
  5433. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5434. # only add special tokens when they were not already loaded from config.json
  5435. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5436. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5437. # this one is usually not in config.json anyway
  5438. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5439. special_vocab.add_to_gguf(self.gguf_writer)
  5440. def set_gguf_parameters(self):
  5441. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5442. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5443. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5444. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5445. self.gguf_writer.add_embedding_length(n_embed)
  5446. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5447. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5448. self.gguf_writer.add_head_count(n_head)
  5449. self.gguf_writer.add_head_count_kv(n_head_kv)
  5450. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5451. self.gguf_writer.add_file_type(self.ftype)
  5452. if "attention_dim" in self.hparams:
  5453. rope_dim = self.hparams["attention_dim"]
  5454. else:
  5455. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5456. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5457. self.gguf_writer.add_add_bos_token(False)
  5458. rope_freq = 10000
  5459. if "rope_ratio" in self.hparams:
  5460. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5461. self.gguf_writer.add_rope_freq_base(rope_freq)
  5462. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5463. del bid # unused
  5464. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5465. return []
  5466. name = name.removeprefix("transformer.")
  5467. return [(self.map_tensor_name(name), data_torch)]
  5468. @ModelBase.register("NemotronForCausalLM")
  5469. class NemotronModel(TextModel):
  5470. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5471. def set_vocab(self):
  5472. self._set_vocab_sentencepiece()
  5473. self.gguf_writer.add_pad_token_id(0)
  5474. self.gguf_writer.add_unk_token_id(1)
  5475. def set_gguf_parameters(self):
  5476. super().set_gguf_parameters()
  5477. hparams = self.hparams
  5478. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5479. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5480. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5481. # * Partial RoPE
  5482. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5483. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5484. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5485. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5486. # * RopeScaling for Nemotron
  5487. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5488. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5489. else:
  5490. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5491. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5492. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5493. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5494. # model.layers.{l}.input_layernorm.weight
  5495. # model.layers.{l}.post_attention_layernorm.weight
  5496. # model.norm.weight
  5497. if name.endswith("norm.weight"):
  5498. data_torch = data_torch + 1
  5499. return [(self.map_tensor_name(name), data_torch)]
  5500. @ModelBase.register("ExaoneForCausalLM")
  5501. class ExaoneModel(TextModel):
  5502. model_arch = gguf.MODEL_ARCH.EXAONE
  5503. def set_gguf_parameters(self):
  5504. hparams = self.hparams
  5505. assert (hparams["activation_function"] == "silu")
  5506. max_position_embeddings = hparams["max_position_embeddings"]
  5507. embed_dim = hparams["hidden_size"]
  5508. num_heads = hparams["num_attention_heads"]
  5509. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5510. layer_norm_eps = hparams["layer_norm_epsilon"]
  5511. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5512. num_layers = hparams["num_layers"]
  5513. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5514. # attention_dropout_rate = hparams["attention_dropout"]
  5515. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5516. # embed_dropout_rate = hparams["embed_dropout"]
  5517. self.gguf_writer.add_embedding_length(embed_dim)
  5518. self.gguf_writer.add_head_count(num_heads)
  5519. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5520. self.gguf_writer.add_context_length(max_position_embeddings)
  5521. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5522. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5523. self.gguf_writer.add_block_count(num_layers)
  5524. self.gguf_writer.add_file_type(self.ftype)
  5525. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5526. self.gguf_writer.add_rope_freq_base(rope_theta)
  5527. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5528. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5529. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5530. rope_scaling = self.hparams.get("rope_scaling") or {}
  5531. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5532. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5533. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5534. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5535. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5536. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5537. base = self.hparams.get("rope_theta", 10000.0)
  5538. if (dim := self.hparams.get("head_dim")) is None:
  5539. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5540. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5541. factor = rope_scaling.get("factor", 8.0)
  5542. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5543. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5544. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5545. low_freq_wavelen = old_context_len / low_freq_factor
  5546. high_freq_wavelen = old_context_len / high_freq_factor
  5547. assert low_freq_wavelen != high_freq_wavelen
  5548. rope_factors = []
  5549. for freq in freqs:
  5550. wavelen = 2 * math.pi / freq
  5551. if wavelen < high_freq_wavelen:
  5552. rope_factors.append(1)
  5553. elif wavelen > low_freq_wavelen:
  5554. rope_factors.append(factor)
  5555. else:
  5556. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5557. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5558. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5559. @ModelBase.register("Exaone4ForCausalLM")
  5560. class Exaone4Model(TextModel):
  5561. model_arch = gguf.MODEL_ARCH.EXAONE4
  5562. def set_vocab(self):
  5563. tokens, toktypes, tokpre = self.get_vocab_base()
  5564. self.gguf_writer.add_tokenizer_model("gpt2")
  5565. self.gguf_writer.add_tokenizer_pre(tokpre)
  5566. self.gguf_writer.add_token_list(tokens)
  5567. self.gguf_writer.add_token_types(toktypes)
  5568. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5569. special_vocab.add_to_gguf(self.gguf_writer)
  5570. def set_gguf_parameters(self):
  5571. super().set_gguf_parameters()
  5572. hparams = self.hparams
  5573. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5574. if hparams.get("sliding_window") is not None:
  5575. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  5576. if "layer_types" in hparams:
  5577. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  5578. elif "sliding_window_pattern" in hparams:
  5579. sliding_window_pattern = []
  5580. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  5581. for i in range(hparams["num_hidden_layers"]):
  5582. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  5583. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  5584. for i in range(hparams["num_hidden_layers"]):
  5585. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  5586. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  5587. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5588. rope_scaling = self.hparams.get("rope_scaling") or {}
  5589. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5590. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5591. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5592. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5593. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5594. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5595. base = self.hparams.get("rope_theta", 10_000.0)
  5596. if (dim := self.hparams.get("head_dim")) is None:
  5597. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5598. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5599. factor = rope_scaling.get("factor", 16.0)
  5600. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5601. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5602. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5603. low_freq_wavelen = old_context_len / low_freq_factor
  5604. high_freq_wavelen = old_context_len / high_freq_factor
  5605. rope_factors = []
  5606. for freq in freqs:
  5607. wavelen = 2 * math.pi / freq
  5608. if wavelen < high_freq_wavelen:
  5609. rope_factors.append(1)
  5610. elif wavelen > low_freq_wavelen:
  5611. rope_factors.append(factor)
  5612. else:
  5613. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5614. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5615. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5616. @ModelBase.register("GraniteForCausalLM")
  5617. class GraniteModel(LlamaModel):
  5618. """Conversion for IBM's GraniteForCausalLM"""
  5619. model_arch = gguf.MODEL_ARCH.GRANITE
  5620. def set_gguf_parameters(self):
  5621. """Granite uses standard llama parameters with the following differences:
  5622. - No head_dim support
  5623. - New multiplier params:
  5624. - attention_scale
  5625. - embedding_scale
  5626. - residual_scale
  5627. - logits_scaling
  5628. """
  5629. if head_dim := self.hparams.pop("head_dim", None):
  5630. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5631. super().set_gguf_parameters()
  5632. # NOTE: Convert _multiplier params to _scale params for naming
  5633. # consistency
  5634. if attention_scale := self.hparams.get("attention_multiplier"):
  5635. self.gguf_writer.add_attention_scale(attention_scale)
  5636. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5637. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5638. self.gguf_writer.add_embedding_scale(embedding_scale)
  5639. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5640. if residual_scale := self.hparams.get("residual_multiplier"):
  5641. self.gguf_writer.add_residual_scale(residual_scale)
  5642. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5643. if logits_scale := self.hparams.get("logits_scaling"):
  5644. self.gguf_writer.add_logit_scale(logits_scale)
  5645. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5646. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5647. class GraniteMoeModel(GraniteModel):
  5648. """Conversion for IBM's GraniteMoeForCausalLM"""
  5649. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5650. def set_gguf_parameters(self):
  5651. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5652. - shared_intermediate_size
  5653. """
  5654. super().set_gguf_parameters()
  5655. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5656. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5657. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5658. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5659. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5660. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5661. the hidden size that is then split during forward. To keep compatibility
  5662. with existing mixtral support, we pull them apart here.
  5663. """
  5664. if name.endswith("block_sparse_moe.input_linear.weight"):
  5665. ffn_dim = self.hparams["intermediate_size"]
  5666. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5667. gate, up = data_torch.split(ffn_dim, dim=-2)
  5668. return [
  5669. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5670. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5671. ]
  5672. has_experts = bool(self.hparams.get('num_local_experts'))
  5673. if name.endswith("shared_mlp.input_linear.weight"):
  5674. ffn_dim = self.hparams["shared_intermediate_size"]
  5675. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5676. gate, up = data_torch.split(ffn_dim, dim=-2)
  5677. if has_experts:
  5678. return [
  5679. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5680. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5681. ]
  5682. return [
  5683. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  5684. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  5685. ]
  5686. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  5687. return [
  5688. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  5689. ]
  5690. return super().modify_tensors(data_torch, name, bid)
  5691. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  5692. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  5693. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  5694. layers and optionally uses MoE w/ a shared expert"""
  5695. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  5696. undo_permute = True
  5697. def __init__(self, *args, **kwargs):
  5698. # Hybrid mamba models use a prefix for the mamba-specific params.
  5699. # TODO: Extend this if the prefix(es) need to be configurable
  5700. self.hparam_prefixes = ["mamba"]
  5701. super().__init__(*args, **kwargs)
  5702. # Lists of which layers use ssm vs attention
  5703. self._attn_layers = self.get_attn_layers()
  5704. self._ssm_layers = [
  5705. i for i in range(self.block_count)
  5706. if i not in self._attn_layers
  5707. ]
  5708. # n_group and d_inner are used during reshape_tensors for mamba2
  5709. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  5710. self.n_group = self.find_hparam(["n_groups"])
  5711. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  5712. def get_attn_layers(self):
  5713. # Explicit list of layer type names
  5714. if layer_types := self.hparams.get("layer_types"):
  5715. return [
  5716. i for i, typ in enumerate(layer_types)
  5717. if typ == "attention"
  5718. ]
  5719. # Layer types indicated by index or period
  5720. attn_layers = self.hparams.get("attn_layer_indices", [])
  5721. if not attn_layers:
  5722. attn_period = self.hparams.get("attn_layer_period")
  5723. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  5724. attn_offset = self.hparams.get("attn_layer_offset")
  5725. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  5726. attn_layers = [
  5727. i for i in range(self.block_count)
  5728. if i % attn_period == attn_offset
  5729. ]
  5730. return attn_layers
  5731. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5732. prefixed = []
  5733. for pfx in self.hparam_prefixes:
  5734. prefixed.extend(
  5735. "_".join([pfx, k])
  5736. for k in keys
  5737. )
  5738. keys = list(keys) + prefixed
  5739. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  5740. def modify_tensors(
  5741. self, data_torch: Tensor, name: str, bid: int | None
  5742. ) -> Iterable[tuple[str, Tensor]]:
  5743. if (
  5744. name.endswith("block_sparse_moe.input_linear.weight")
  5745. or "shared_mlp" in name
  5746. ):
  5747. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5748. # Determine whether this is a mamba layer or an attention layer
  5749. if bid in self._ssm_layers:
  5750. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  5751. elif bid in self._attn_layers:
  5752. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5753. return [(self.map_tensor_name(name), data_torch)]
  5754. def set_gguf_parameters(self):
  5755. """This method merges params from both parents and some that are
  5756. specific to this model. The result is some duplication of how the params
  5757. get set. The following warnings are expected during conversion:
  5758. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  5759. WARNING:Duplicated key name 'granitehybrid.context_length'
  5760. """
  5761. GraniteMoeModel.set_gguf_parameters(self)
  5762. ## Mamba mixer params ##
  5763. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  5764. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  5765. self.gguf_writer.add_ssm_group_count(self.n_group)
  5766. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5767. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  5768. # in llama.cpp
  5769. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  5770. ## Attention params ##
  5771. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  5772. head_count_kv_vec = [
  5773. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  5774. ]
  5775. if rope_dim := self.hparams.get("attn_rotary_emb"):
  5776. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5777. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  5778. ## If Bamba, use rope, otherwise don't
  5779. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  5780. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  5781. if not use_rope:
  5782. self.gguf_writer.add_context_length(2**20)
  5783. ## Validation ##
  5784. d_head = self.find_hparam(["d_head"], optional=True) or 64
  5785. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5786. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  5787. def set_vocab(self):
  5788. self.hparams["pad_vocab_size_multiple"] = 8
  5789. Mamba2Model.set_vocab(self)
  5790. @ModelBase.register("BailingMoeForCausalLM")
  5791. class BailingMoeModel(TextModel):
  5792. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5793. def set_vocab(self):
  5794. self._set_vocab_gpt2()
  5795. def set_gguf_parameters(self):
  5796. super().set_gguf_parameters()
  5797. hparams = self.hparams
  5798. if (rope_dim := hparams.get("head_dim")) is None:
  5799. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5800. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5801. rope_scaling = self.hparams.get("rope_scaling") or {}
  5802. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5803. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5804. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5805. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5806. else:
  5807. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5808. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5809. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5810. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5811. self.gguf_writer.add_expert_weights_scale(1.0)
  5812. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5813. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  5814. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5815. _experts: list[dict[str, Tensor]] | None = None
  5816. @staticmethod
  5817. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5818. if n_head_kv is not None and n_head != n_head_kv:
  5819. n_head = n_head_kv
  5820. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5821. .swapaxes(1, 2)
  5822. .reshape(weights.shape))
  5823. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5824. n_head = self.hparams["num_attention_heads"]
  5825. n_kv_head = self.hparams.get("num_key_value_heads")
  5826. n_embd = self.hparams["hidden_size"]
  5827. if (head_dim := self.hparams.get("head_dim")) is None:
  5828. head_dim = n_embd // n_head
  5829. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5830. if name.endswith("attention.dense.weight"):
  5831. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  5832. elif name.endswith("query_key_value.weight"):
  5833. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  5834. return [
  5835. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  5836. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  5837. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  5838. ]
  5839. elif name.find("mlp.experts") != -1:
  5840. n_experts = self.hparams["num_experts"]
  5841. assert bid is not None
  5842. tensors: list[tuple[str, Tensor]] = []
  5843. if self._experts is None:
  5844. self._experts = [{} for _ in range(self.block_count)]
  5845. self._experts[bid][name] = data_torch
  5846. if len(self._experts[bid]) >= n_experts * 3:
  5847. # merge the experts into a single 3d tensor
  5848. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5849. datas: list[Tensor] = []
  5850. for xid in range(n_experts):
  5851. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5852. datas.append(self._experts[bid][ename])
  5853. del self._experts[bid][ename]
  5854. data_torch = torch.stack(datas, dim=0)
  5855. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5856. new_name = self.map_tensor_name(merged_name)
  5857. tensors.append((new_name, data_torch))
  5858. return tensors
  5859. new_name = self.map_tensor_name(name)
  5860. if new_name == output_name and self.hparams.get("norm_head"):
  5861. data_torch = data_torch.float()
  5862. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5863. return [(new_name, data_torch)]
  5864. def prepare_tensors(self):
  5865. super().prepare_tensors()
  5866. if self._experts is not None:
  5867. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5868. experts = [k for d in self._experts for k in d.keys()]
  5869. if len(experts) > 0:
  5870. raise ValueError(f"Unprocessed experts: {experts}")
  5871. @ModelBase.register("ChameleonForConditionalGeneration")
  5872. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5873. class ChameleonModel(TextModel):
  5874. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5875. def set_gguf_parameters(self):
  5876. super().set_gguf_parameters()
  5877. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5878. def set_vocab(self):
  5879. self._set_vocab_gpt2()
  5880. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5881. # ignore image tokenizer for now
  5882. # TODO: remove this once image support is implemented for Chameleon
  5883. if name.startswith("model.vqmodel"):
  5884. return []
  5885. n_head = self.hparams["num_attention_heads"]
  5886. n_kv_head = self.hparams.get("num_key_value_heads")
  5887. hidden_dim = self.hparams.get("hidden_size")
  5888. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5889. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5890. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5891. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5892. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5893. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5894. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5895. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5896. return [(self.map_tensor_name(name), data_torch)]
  5897. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5898. @staticmethod
  5899. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5900. head_dim = hidden_dim // n_heads
  5901. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5902. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5903. return data_torch
  5904. @ModelBase.register("UltravoxModel")
  5905. class UltravoxModel(TextModel):
  5906. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  5907. def __init__(self, *args, **kwargs):
  5908. super().__init__(*args, **kwargs)
  5909. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  5910. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  5911. class WhisperEncoderModel(MmprojModel):
  5912. has_vision_encoder = False # no vision encoder
  5913. has_audio_encoder = True
  5914. def __init__(self, *args, **kwargs):
  5915. super().__init__(*args, **kwargs)
  5916. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  5917. self.hparams["hidden_size"] = self.hparams["d_model"]
  5918. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  5919. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  5920. def set_gguf_parameters(self):
  5921. super().set_gguf_parameters()
  5922. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  5923. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  5924. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  5925. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5926. del bid, new_name, n_dims # unused
  5927. if ".conv" in name and ".weight" in name:
  5928. return gguf.GGMLQuantizationType.F16
  5929. return False
  5930. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5931. del bid # unused
  5932. if name.startswith("language_model."):
  5933. # skip language model tensors
  5934. return []
  5935. # prevent clash naming with vision tensors
  5936. if name.startswith("multi_modal_projector"):
  5937. name = "audio." + name
  5938. if "conv1.bias" in name or "conv2.bias" in name:
  5939. # transpose conv1 and conv2 bias
  5940. data_torch = data_torch.unsqueeze(-1)
  5941. return [(self.map_tensor_name(name), data_torch)]
  5942. @ModelBase.register("UltravoxModel")
  5943. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  5944. has_vision_encoder = False # no vision encoder
  5945. has_audio_encoder = True
  5946. def set_gguf_parameters(self):
  5947. super().set_gguf_parameters()
  5948. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  5949. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  5950. @ModelBase.register("VoxtralForConditionalGeneration")
  5951. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  5952. has_vision_encoder = False # no vision encoder
  5953. has_audio_encoder = True
  5954. def set_gguf_parameters(self):
  5955. super().set_gguf_parameters()
  5956. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  5957. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  5958. @ModelBase.register("FalconH1ForCausalLM")
  5959. class FalconH1Model(Mamba2Model):
  5960. model_arch = gguf.MODEL_ARCH.FALCON_H1
  5961. def __init__(self, *args, **kwargs):
  5962. # Set the hparam prefixes for Falcon Mamba2
  5963. self.hparam_prefixes = ["mamba"]
  5964. # Initialize the base Mamba2Model
  5965. super().__init__(*args, **kwargs)
  5966. # Use Llama conversion for attention
  5967. self._transformer_model_class = LlamaModel
  5968. # n_group and d_inner are used during reshape_tensors for mamba2
  5969. self.n_group = self.find_hparam(["n_groups"])
  5970. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  5971. self.d_head = self.find_hparam(["d_head"])
  5972. # Initialize any Falcon Mamba2 specific attributes
  5973. self.has_attention = True # Falcon Mamba2 has attention components
  5974. # Load Falcon-H1 multipliers from hyperparameters
  5975. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  5976. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  5977. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  5978. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  5979. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  5980. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  5981. self.intermediate_size = self.find_hparam(["intermediate_size"])
  5982. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  5983. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5984. prefixed = []
  5985. for pfx in self.hparam_prefixes:
  5986. prefixed.extend(
  5987. "_".join([pfx, k])
  5988. for k in keys
  5989. )
  5990. keys = list(keys) + prefixed
  5991. return super().find_hparam(keys, *args, **kwargs)
  5992. def set_vocab(self):
  5993. self._set_vocab_gpt2()
  5994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5995. tensors = list(super().modify_tensors(data_torch, name, bid))
  5996. tensor = tensors[0][1]
  5997. if "down_proj" in name:
  5998. tensor = tensor * self.mlp_multipliers[1]
  5999. elif "gate_proj" in name:
  6000. tensor = tensor * self.mlp_multipliers[0]
  6001. elif "k_proj" in name:
  6002. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6003. elif "q_proj" in name:
  6004. tensor = tensor * self.attention_in_multiplier
  6005. elif "v_proj" in name:
  6006. tensor = tensor * self.attention_in_multiplier
  6007. elif "o_proj" in name:
  6008. tensor = tensor * self.attention_out_multiplier
  6009. elif "out_proj" in name:
  6010. tensor = tensor * self.ssm_out_multiplier
  6011. elif "in_proj" in name:
  6012. tensor = tensor * self.ssm_in_multiplier
  6013. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6014. intermediate_size = self.hparams["mamba_d_ssm"]
  6015. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6016. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6017. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6018. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6019. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6020. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6021. elif "lm_head" in name:
  6022. tensor = tensor * self.hparams["lm_head_multiplier"]
  6023. elif "embed_tokens" in name:
  6024. tensor = tensor * self.hparams["embedding_multiplier"]
  6025. elif "mamba.norm" in name:
  6026. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6027. tensors = [(tensors[0][0], tensor)]
  6028. return tensors
  6029. def set_gguf_parameters(self):
  6030. super().set_gguf_parameters()
  6031. ## General Params ##
  6032. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6033. # Override some Mamba2 defaults
  6034. self.gguf_writer.add_block_count(self.block_count)
  6035. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6036. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6037. ## Attention params ##
  6038. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6039. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6040. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6041. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6042. ## Validation ##
  6043. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6044. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6045. # Add any other Falcon Mamba2 specific configuration
  6046. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6047. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6048. class HunYuanMoEModel(TextModel):
  6049. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6050. def __init__(self, *args, **kwargs):
  6051. super().__init__(*args, **kwargs)
  6052. # For handling tied embeddings
  6053. self._tok_embd = None
  6054. def set_vocab(self):
  6055. from transformers import AutoTokenizer
  6056. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6057. # 1. Get the pre-tokenizer identifier hash
  6058. tokpre = self.get_vocab_base_pre(tokenizer)
  6059. # 2. Reverse-engineer the merges list from mergeable_ranks
  6060. merges = []
  6061. vocab = {}
  6062. mergeable_ranks = tokenizer.mergeable_ranks
  6063. for token, rank in mergeable_ranks.items():
  6064. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6065. if len(token) == 1:
  6066. continue
  6067. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6068. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6069. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6070. # 3. Generate the tokens and toktypes lists
  6071. vocab_size = self.hparams["vocab_size"]
  6072. assert tokenizer.vocab_size == vocab_size
  6073. special_tokens = tokenizer.special_tokens
  6074. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6075. tokens: list[str] = []
  6076. toktypes: list[int] = []
  6077. for i in range(vocab_size):
  6078. if i not in reverse_vocab:
  6079. tokens.append(f"[PAD{i}]")
  6080. toktypes.append(gguf.TokenType.UNUSED)
  6081. else:
  6082. token = reverse_vocab[i]
  6083. tokens.append(token)
  6084. if i in special_tokens.values():
  6085. toktypes.append(gguf.TokenType.CONTROL)
  6086. else:
  6087. toktypes.append(gguf.TokenType.NORMAL)
  6088. # 4. Write all vocab-related fields to the GGUF writer
  6089. self.gguf_writer.add_tokenizer_model("gpt2")
  6090. self.gguf_writer.add_tokenizer_pre(tokpre)
  6091. self.gguf_writer.add_token_list(tokens)
  6092. self.gguf_writer.add_token_types(toktypes)
  6093. self.gguf_writer.add_token_merges(merges)
  6094. # 5. Add special tokens and chat templates
  6095. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6096. special_vocab.add_to_gguf(self.gguf_writer)
  6097. # FIX for BOS token: Overwrite incorrect id read from config.json
  6098. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6099. def set_gguf_parameters(self):
  6100. super().set_gguf_parameters()
  6101. hparams = self.hparams
  6102. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6103. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6104. moe_intermediate_size = hparams["moe_intermediate_size"]
  6105. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6106. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6107. moe_topk = hparams["moe_topk"]
  6108. assert all(topk == moe_topk[0] for topk in moe_topk)
  6109. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6110. moe_shared_expert = hparams["num_shared_expert"]
  6111. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6112. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6113. # Rope
  6114. rope_scaling = hparams.get("rope_scaling", {})
  6115. if rope_scaling.get("type") == "dynamic":
  6116. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6117. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6118. alpha = rope_scaling.get("alpha", 1000)
  6119. base = hparams.get("rope_theta", 10000.0)
  6120. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6121. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6122. self.gguf_writer.add_rope_freq_base(scaled_base)
  6123. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6124. self.gguf_writer.add_rope_scaling_factor(1)
  6125. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6126. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6127. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6128. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6129. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6130. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6131. _experts: list[dict[str, Tensor]] | None = None
  6132. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6133. if name == "model.embed_tokens.weight":
  6134. self._tok_embd = data_torch.clone()
  6135. if name == "lm_head.weight":
  6136. if self.hparams.get("tie_word_embeddings", False):
  6137. logger.info("Skipping tied output layer 'lm_head.weight'")
  6138. return []
  6139. if name.find("mlp.experts") != -1:
  6140. n_experts = self.hparams["num_experts"]
  6141. assert bid is not None
  6142. if self._experts is None:
  6143. self._experts = [{} for _ in range(self.block_count)]
  6144. self._experts[bid][name] = data_torch
  6145. if len(self._experts[bid]) >= n_experts * 3:
  6146. # merge the experts into a single 3d tensor
  6147. tensors: list[tuple[str, Tensor]] = []
  6148. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6149. datas: list[Tensor] = []
  6150. for xid in range(n_experts):
  6151. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6152. datas.append(self._experts[bid][ename])
  6153. del self._experts[bid][ename]
  6154. data_torch = torch.stack(datas, dim=0)
  6155. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6156. new_name = self.map_tensor_name(merged_name)
  6157. tensors.append((new_name, data_torch))
  6158. return tensors
  6159. else:
  6160. return []
  6161. return [(self.map_tensor_name(name), data_torch)]
  6162. def prepare_tensors(self):
  6163. super().prepare_tensors()
  6164. if self._experts is not None:
  6165. experts = [k for d in self._experts for k in d.keys()]
  6166. if len(experts) > 0:
  6167. raise ValueError(f"Unprocessed experts: {experts}")
  6168. @ModelBase.register("SmolLM3ForCausalLM")
  6169. class SmolLM3Model(LlamaModel):
  6170. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6171. def set_vocab(self):
  6172. super().set_vocab()
  6173. # remove unsupported array slicing in chat template
  6174. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6175. from transformers import AutoTokenizer
  6176. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6177. if tokenizer.chat_template is not None:
  6178. chat_template = tokenizer.chat_template.replace("[:]", "")
  6179. self.gguf_writer.add_chat_template(chat_template)
  6180. @ModelBase.register("Lfm2ForCausalLM")
  6181. @ModelBase.register("LFM2ForCausalLM")
  6182. class LFM2Model(TextModel):
  6183. model_arch = gguf.MODEL_ARCH.LFM2
  6184. def _add_feed_forward_length(self):
  6185. ff_dim = self.hparams["block_ff_dim"]
  6186. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6187. ff_dim = self.hparams["block_ff_dim"]
  6188. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6189. multiple_of = self.hparams["block_multiple_of"]
  6190. if auto_adjust_ff_dim:
  6191. ff_dim = int(2 * ff_dim / 3)
  6192. # custom dim factor multiplier
  6193. if ffn_dim_multiplier is not None:
  6194. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6195. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6196. self.gguf_writer.add_feed_forward_length(ff_dim)
  6197. def set_gguf_parameters(self):
  6198. # set num_key_value_heads only for attention layers
  6199. self.hparams["num_key_value_heads"] = [
  6200. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6201. for layer_type in self.hparams["layer_types"]
  6202. ]
  6203. super().set_gguf_parameters()
  6204. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6205. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6206. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6207. self._add_feed_forward_length()
  6208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6209. # conv op requires 2d tensor
  6210. if 'conv.conv' in name:
  6211. data_torch = data_torch.squeeze(1)
  6212. return [(self.map_tensor_name(name), data_torch)]
  6213. @ModelBase.register("SmallThinkerForCausalLM")
  6214. class SmallThinkerModel(TextModel):
  6215. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  6216. def set_gguf_parameters(self):
  6217. super().set_gguf_parameters()
  6218. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  6219. self.gguf_writer.add_expert_count(n_experts)
  6220. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  6221. self.gguf_writer.add_expert_used_count(n_experts_used)
  6222. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  6223. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6224. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  6225. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6226. if (self.hparams.get('moe_primary_router_apply_softmax')):
  6227. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6228. else:
  6229. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6230. # YaRN is not enabled by default
  6231. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6232. rope_scaling = self.hparams.get("rope_scaling") or {}
  6233. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6234. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6235. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6236. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6237. sliding_window_layout = self.hparams.get("sliding_window_layout")
  6238. if sliding_window_layout:
  6239. for i in sliding_window_layout:
  6240. if i != 0:
  6241. sliding_window = self.hparams.get("sliding_window_size")
  6242. if sliding_window:
  6243. self.gguf_writer.add_sliding_window(sliding_window)
  6244. break
  6245. _experts: list[dict[str, Tensor]] | None = None
  6246. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6247. # process the experts separately
  6248. if name.find("experts") != -1:
  6249. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  6250. assert bid is not None
  6251. if self._experts is None:
  6252. self._experts = [{} for _ in range(self.block_count)]
  6253. self._experts[bid][name] = data_torch
  6254. if len(self._experts[bid]) >= n_experts * 3:
  6255. tensors: list[tuple[str, Tensor]] = []
  6256. # merge the experts into a single 3d tensor
  6257. for w_name in ["down", "gate", "up"]:
  6258. datas: list[Tensor] = []
  6259. for xid in range(n_experts):
  6260. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6261. datas.append(self._experts[bid][ename])
  6262. del self._experts[bid][ename]
  6263. data_torch = torch.stack(datas, dim=0)
  6264. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6265. new_name = self.map_tensor_name(merged_name)
  6266. tensors.append((new_name, data_torch))
  6267. return tensors
  6268. else:
  6269. return []
  6270. return [(self.map_tensor_name(name), data_torch)]
  6271. def prepare_tensors(self):
  6272. super().prepare_tensors()
  6273. if self._experts is not None:
  6274. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6275. experts = [k for d in self._experts for k in d.keys()]
  6276. if len(experts) > 0:
  6277. raise ValueError(f"Unprocessed experts: {experts}")
  6278. ###### CONVERSION LOGIC ######
  6279. # tree of lazy tensors
  6280. class LazyTorchTensor(gguf.LazyBase):
  6281. _tensor_type = torch.Tensor
  6282. # to keep the type-checker happy
  6283. dtype: torch.dtype
  6284. shape: torch.Size
  6285. # only used when converting a torch.Tensor to a np.ndarray
  6286. _dtype_map: dict[torch.dtype, type] = {
  6287. torch.float16: np.float16,
  6288. torch.float32: np.float32,
  6289. }
  6290. # used for safetensors slices
  6291. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  6292. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  6293. _dtype_str_map: dict[str, torch.dtype] = {
  6294. "F64": torch.float64,
  6295. "F32": torch.float32,
  6296. "BF16": torch.bfloat16,
  6297. "F16": torch.float16,
  6298. # "U64": torch.uint64,
  6299. "I64": torch.int64,
  6300. # "U32": torch.uint32,
  6301. "I32": torch.int32,
  6302. # "U16": torch.uint16,
  6303. "I16": torch.int16,
  6304. "U8": torch.uint8,
  6305. "I8": torch.int8,
  6306. "BOOL": torch.bool,
  6307. "F8_E4M3": torch.float8_e4m3fn,
  6308. "F8_E5M2": torch.float8_e5m2,
  6309. }
  6310. def numpy(self) -> gguf.LazyNumpyTensor:
  6311. dtype = self._dtype_map[self.dtype]
  6312. return gguf.LazyNumpyTensor(
  6313. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6314. args=(self,),
  6315. func=(lambda s: s.numpy())
  6316. )
  6317. @classmethod
  6318. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6319. return torch.empty(size=shape, dtype=dtype, device="meta")
  6320. @classmethod
  6321. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6322. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6323. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6324. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6325. return cast(torch.Tensor, lazy)
  6326. @classmethod
  6327. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6328. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6329. shape = remote_tensor.shape
  6330. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6331. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6332. return cast(torch.Tensor, lazy)
  6333. @classmethod
  6334. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6335. del types # unused
  6336. if kwargs is None:
  6337. kwargs = {}
  6338. if func is torch.Tensor.numpy:
  6339. return args[0].numpy()
  6340. return cls._wrap_fn(func)(*args, **kwargs)
  6341. def parse_args() -> argparse.Namespace:
  6342. parser = argparse.ArgumentParser(
  6343. description="Convert a huggingface model to a GGML compatible file")
  6344. parser.add_argument(
  6345. "--vocab-only", action="store_true",
  6346. help="extract only the vocab",
  6347. )
  6348. parser.add_argument(
  6349. "--outfile", type=Path,
  6350. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6351. )
  6352. parser.add_argument(
  6353. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6354. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6355. )
  6356. parser.add_argument(
  6357. "--bigendian", action="store_true",
  6358. help="model is executed on big endian machine",
  6359. )
  6360. parser.add_argument(
  6361. "model", type=str,
  6362. help="directory containing model file or huggingface repository ID (if --remote)",
  6363. nargs="?",
  6364. )
  6365. parser.add_argument(
  6366. "--use-temp-file", action="store_true",
  6367. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  6368. )
  6369. parser.add_argument(
  6370. "--no-lazy", action="store_true",
  6371. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  6372. )
  6373. parser.add_argument(
  6374. "--model-name", type=str, default=None,
  6375. help="name of the model",
  6376. )
  6377. parser.add_argument(
  6378. "--verbose", action="store_true",
  6379. help="increase output verbosity",
  6380. )
  6381. parser.add_argument(
  6382. "--split-max-tensors", type=int, default=0,
  6383. help="max tensors in each split",
  6384. )
  6385. parser.add_argument(
  6386. "--split-max-size", type=str, default="0",
  6387. help="max size per split N(M|G)",
  6388. )
  6389. parser.add_argument(
  6390. "--dry-run", action="store_true",
  6391. help="only print out a split plan and exit, without writing any new files",
  6392. )
  6393. parser.add_argument(
  6394. "--no-tensor-first-split", action="store_true",
  6395. help="do not add tensors to the first split (disabled by default)"
  6396. )
  6397. parser.add_argument(
  6398. "--metadata", type=Path,
  6399. help="Specify the path for an authorship metadata override file"
  6400. )
  6401. parser.add_argument(
  6402. "--print-supported-models", action="store_true",
  6403. help="Print the supported models"
  6404. )
  6405. parser.add_argument(
  6406. "--remote", action="store_true",
  6407. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  6408. )
  6409. parser.add_argument(
  6410. "--mmproj", action="store_true",
  6411. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  6412. )
  6413. args = parser.parse_args()
  6414. if not args.print_supported_models and args.model is None:
  6415. parser.error("the following arguments are required: model")
  6416. return args
  6417. def split_str_to_n_bytes(split_str: str) -> int:
  6418. if split_str.endswith("K"):
  6419. n = int(split_str[:-1]) * 1000
  6420. elif split_str.endswith("M"):
  6421. n = int(split_str[:-1]) * 1000 * 1000
  6422. elif split_str.endswith("G"):
  6423. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  6424. elif split_str.isnumeric():
  6425. n = int(split_str)
  6426. else:
  6427. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  6428. if n < 0:
  6429. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  6430. return n
  6431. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  6432. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  6433. # maybe we should fallback to text model's arch in that case, since not many models have both
  6434. text_config = hparams.get("text_config", {})
  6435. vision_config = hparams.get("vision_config", {})
  6436. arch = None
  6437. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  6438. arch = arches[0]
  6439. elif "ssm_cfg" in hparams:
  6440. # For non-hf Mamba and Mamba2 models
  6441. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  6442. # if "architectures" is found in the sub-config, use that instead
  6443. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  6444. arch = text_config["architectures"][0]
  6445. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  6446. arch = vision_config["architectures"][0]
  6447. if arch is None:
  6448. raise ValueError("Failed to detect model architecture")
  6449. return arch
  6450. def main() -> None:
  6451. args = parse_args()
  6452. if args.print_supported_models:
  6453. logger.error("Supported models:")
  6454. ModelBase.print_registered_models()
  6455. sys.exit(0)
  6456. if args.verbose:
  6457. logging.basicConfig(level=logging.DEBUG)
  6458. else:
  6459. logging.basicConfig(level=logging.INFO)
  6460. if args.remote:
  6461. hf_repo_id = args.model
  6462. from huggingface_hub import snapshot_download
  6463. local_dir = snapshot_download(
  6464. repo_id=hf_repo_id,
  6465. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  6466. dir_model = Path(local_dir)
  6467. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  6468. else:
  6469. hf_repo_id = None
  6470. dir_model = Path(args.model)
  6471. if not dir_model.is_dir():
  6472. logger.error(f'Error: {dir_model} is not a directory')
  6473. sys.exit(1)
  6474. ftype_map: dict[str, gguf.LlamaFileType] = {
  6475. "f32": gguf.LlamaFileType.ALL_F32,
  6476. "f16": gguf.LlamaFileType.MOSTLY_F16,
  6477. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  6478. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  6479. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  6480. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  6481. "auto": gguf.LlamaFileType.GUESSED,
  6482. }
  6483. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  6484. if args.use_temp_file and is_split:
  6485. logger.error("Error: Cannot use temp file when splitting")
  6486. sys.exit(1)
  6487. if args.outfile is not None:
  6488. fname_out = args.outfile
  6489. elif hf_repo_id:
  6490. # if remote, use the model ID as the output file name
  6491. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  6492. else:
  6493. fname_out = dir_model
  6494. logger.info(f"Loading model: {dir_model.name}")
  6495. if args.mmproj:
  6496. if "mmproj" not in fname_out.name:
  6497. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  6498. with torch.inference_mode():
  6499. output_type = ftype_map[args.outtype]
  6500. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  6501. hparams = ModelBase.load_hparams(dir_model)
  6502. model_architecture = get_model_architecture(hparams, model_type)
  6503. logger.info(f"Model architecture: {model_architecture}")
  6504. try:
  6505. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  6506. except NotImplementedError:
  6507. logger.error(f"Model {model_architecture} is not supported")
  6508. sys.exit(1)
  6509. model_instance = model_class(dir_model, output_type, fname_out,
  6510. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  6511. eager=args.no_lazy,
  6512. metadata_override=args.metadata, model_name=args.model_name,
  6513. split_max_tensors=args.split_max_tensors,
  6514. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  6515. small_first_shard=args.no_tensor_first_split,
  6516. remote_hf_model_id=hf_repo_id)
  6517. if args.vocab_only:
  6518. logger.info("Exporting model vocab...")
  6519. model_instance.write_vocab()
  6520. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  6521. else:
  6522. logger.info("Exporting model...")
  6523. model_instance.write()
  6524. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  6525. logger.info(f"Model successfully exported to {out_path}")
  6526. if __name__ == '__main__':
  6527. main()