tensor_mapping.py 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. "model.word_embeddings", # bailingmoe
  29. "language_model.model.embed_tokens", # llama4
  30. "encoder", # neobert
  31. ),
  32. # Token type embeddings
  33. MODEL_TENSOR.TOKEN_TYPES: (
  34. "embeddings.token_type_embeddings", # bert nomic-bert
  35. ),
  36. # Normalization of token embeddings
  37. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  38. "word_embeddings_layernorm", # bloom
  39. "embeddings.LayerNorm", # bert
  40. "emb_ln", # nomic-bert
  41. "transformer.norm", # openelm
  42. "rwkv.blocks.0.pre_ln", # rwkv
  43. "rwkv.blocks.0.pre_ln", # rwkv6
  44. "model.pre_ln", # rwkv7
  45. "model.layers.0.pre_norm", # rwkv7
  46. "backbone.norm", # wavtokenizer
  47. "model.embedding_norm", # lfm2
  48. ),
  49. # Position embeddings
  50. MODEL_TENSOR.POS_EMBD: (
  51. "transformer.wpe", # gpt2
  52. "embeddings.position_embeddings", # bert
  53. "wpe", # gpt2
  54. ),
  55. # Output
  56. MODEL_TENSOR.OUTPUT: (
  57. "embed_out", # gptneox
  58. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  59. "output", # llama-pth bloom internlm2
  60. "word_embeddings_for_head", # persimmon
  61. "lm_head.linear", # phi2
  62. "output_layer", # chatglm
  63. "head", # rwkv
  64. "head.out", # wavtokenizer
  65. "lm_head", # llama4
  66. ),
  67. # Output norm
  68. MODEL_TENSOR.OUTPUT_NORM: (
  69. "gpt_neox.final_layer_norm", # gptneox
  70. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  71. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  72. "norm", # llama-pth
  73. "transformer.norm_f", # mpt dbrx
  74. "ln_f", # refact bloom qwen gpt2
  75. "language_model.encoder.final_layernorm", # persimmon
  76. "model.final_layernorm", # persimmon
  77. "lm_head.ln", # phi2
  78. "model.norm_f", # mamba-qbert
  79. "backbone.norm_f", # mamba
  80. "transformer.rms_norm", # Grok
  81. "encoder.final_layernorm", # chatglm
  82. "transformer.norm", # openelm
  83. "model.norm", # nemotron
  84. "rwkv.ln_out", # rwkv6
  85. "model.ln_out", # rwkv7
  86. "backbone.final_layer_norm", # wavtokenizer
  87. "model.norm", # llama4
  88. ),
  89. # Rope frequencies
  90. MODEL_TENSOR.ROPE_FREQS: (
  91. "rope.freqs", # llama-pth
  92. "rotary_pos_emb.inv_freq", # chatglm
  93. ),
  94. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  95. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  96. MODEL_TENSOR.CONV1D: (
  97. "backbone.embed", # roberta
  98. ),
  99. }
  100. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  101. # Attention norm
  102. MODEL_TENSOR.ATTN_NORM: (
  103. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  104. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  105. "transformer.blocks.{bid}.norm_1", # mpt
  106. "transformer.h.{bid}.input_layernorm", # falcon7b
  107. "h.{bid}.input_layernorm", # bloom
  108. "transformer.h.{bid}.ln_mlp", # falcon40b
  109. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  110. "layers.{bid}.attention_norm", # llama-pth
  111. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  112. "model.layers.{bid}.ln1", # yi
  113. "h.{bid}.ln_1", # gpt2
  114. "transformer.h.{bid}.ln", # phi2
  115. "model.layers.layers.{bid}.norm", # plamo
  116. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  117. "model.layers.{bid}.attention_norm", # internlm2
  118. "model.layers.{bid}.norm", # mamba-qbert
  119. "backbone.layers.{bid}.norm", # mamba
  120. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  121. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  122. "encoder.layers.{bid}.input_layernorm", # chatglm
  123. "transformer.layers.{bid}.attn_norm", # openelm
  124. "rwkv.blocks.{bid}.ln1", # rwkv6
  125. "model.layers.{bid}.ln1", # rwkv7
  126. "model.layers.{bid}.input_layernorm", # llama4
  127. "transformer_encoder.{bid}.attention_norm", # neobert
  128. "model.layers.{bid}.operator_norm", # lfm2
  129. ),
  130. # Attention norm 2
  131. MODEL_TENSOR.ATTN_NORM_2: (
  132. "transformer.h.{bid}.ln_attn", # falcon40b
  133. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  134. "rwkv.blocks.{bid}.ln2", # rwkv6
  135. "model.layers.{bid}.ln2", # rwkv7
  136. ),
  137. # Attention query-key-value
  138. MODEL_TENSOR.ATTN_QKV: (
  139. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  140. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  141. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  142. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  143. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  144. "h.{bid}.self_attention.query_key_value", # bloom
  145. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  146. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  147. "h.{bid}.attn.c_attn", # gpt2
  148. "transformer.h.{bid}.mixer.Wqkv", # phi2
  149. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  150. "encoder.layers.{bid}.mixer.Wqkv", # jina
  151. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  152. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  153. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  154. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  155. "transformer_encoder.{bid}.qkv", # neobert
  156. ),
  157. # Attention query
  158. MODEL_TENSOR.ATTN_Q: (
  159. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  160. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  161. "layers.{bid}.attention.wq", # llama-pth
  162. "encoder.layer.{bid}.attention.self.query", # bert
  163. "transformer.layer.{bid}.attention.q_lin", # distillbert
  164. "transformer.h.{bid}.attn.q_proj", # gpt-j
  165. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  166. "model.layers.{bid}.attention.wq", # internlm2
  167. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  168. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  169. "model.layers.{bid}.self_attn.q_proj", # llama4
  170. ),
  171. # Attention key
  172. MODEL_TENSOR.ATTN_K: (
  173. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  174. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  175. "layers.{bid}.attention.wk", # llama-pth
  176. "encoder.layer.{bid}.attention.self.key", # bert
  177. "transformer.layer.{bid}.attention.k_lin", # distillbert
  178. "transformer.h.{bid}.attn.k_proj", # gpt-j
  179. "transformer.h.{bid}.attn.k", # refact
  180. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  181. "model.layers.{bid}.attention.wk", # internlm2
  182. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  183. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  184. "model.layers.{bid}.self_attn.k_proj", # llama4
  185. ),
  186. # Attention value
  187. MODEL_TENSOR.ATTN_V: (
  188. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  189. "layers.{bid}.attention.wv", # llama-pth
  190. "encoder.layer.{bid}.attention.self.value", # bert
  191. "transformer.layer.{bid}.attention.v_lin", # distillbert
  192. "transformer.h.{bid}.attn.v_proj", # gpt-j
  193. "transformer.h.{bid}.attn.v", # refact
  194. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  195. "model.layers.{bid}.attention.wv", # internlm2
  196. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  197. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  198. "model.layers.{bid}.self_attn.v_proj", # llama4
  199. ),
  200. # Attention output
  201. MODEL_TENSOR.ATTN_OUT: (
  202. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  203. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  204. "transformer.blocks.{bid}.attn.out_proj", # mpt
  205. "transformer.h.{bid}.self_attention.dense", # falcon
  206. "h.{bid}.self_attention.dense", # bloom
  207. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  208. "model.layers.{bid}.self_attn.out_proj", # lfm2
  209. "model.layers.{bid}.self_attn.linear_attn", # deci
  210. "layers.{bid}.attention.wo", # llama-pth
  211. "encoder.layer.{bid}.attention.output.dense", # bert
  212. "transformer.layer.{bid}.attention.out_lin", # distillbert
  213. "transformer.h.{bid}.attn.out_proj", # gpt-j
  214. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  215. "model.layers.{bid}.self_attn.dense", # persimmon
  216. "h.{bid}.attn.c_proj", # gpt2
  217. "transformer.h.{bid}.mixer.out_proj", # phi2
  218. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  219. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  220. "model.layers.{bid}.attention.wo", # internlm2
  221. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  222. "encoder.layers.{bid}.mixer.out_proj", # jina
  223. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  224. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  225. "encoder.layers.{bid}.self_attention.dense", # chatglm
  226. "transformer.layers.{bid}.attn.out_proj", # openelm
  227. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  228. "model.layers.{bid}.self_attn.o_proj", # llama4
  229. "transformer_encoder.{bid}.wo", # neobert
  230. ),
  231. # Attention output norm
  232. MODEL_TENSOR.ATTN_OUT_NORM: (
  233. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  234. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  235. "encoder.layers.{bid}.norm1", # nomic-bert
  236. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  237. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  238. ),
  239. MODEL_TENSOR.ATTN_POST_NORM: (
  240. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  241. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  242. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  243. ),
  244. # Rotary embeddings
  245. MODEL_TENSOR.ATTN_ROT_EMBD: (
  246. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  247. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  248. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  249. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  250. ),
  251. # Feed-forward norm
  252. MODEL_TENSOR.FFN_NORM: (
  253. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  254. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  255. "h.{bid}.post_attention_layernorm", # bloom
  256. "transformer.blocks.{bid}.norm_2", # mpt
  257. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  258. "layers.{bid}.ffn_norm", # llama-pth
  259. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  260. "model.layers.{bid}.ln2", # yi
  261. "h.{bid}.ln_2", # gpt2
  262. "model.layers.{bid}.ffn_norm", # internlm2
  263. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  264. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  265. "transformer.layers.{bid}.ffn_norm", # openelm
  266. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  267. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  268. "model.layers.{bid}.post_attention_layernorm", # llama4
  269. "transformer_encoder.{bid}.ffn_norm", # neobert
  270. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  271. ),
  272. # Post feed-forward norm
  273. MODEL_TENSOR.FFN_PRE_NORM: (
  274. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  275. "model.layers.{bid}.pre_ff_layernorm.weight",
  276. ),
  277. # Post feed-forward norm
  278. MODEL_TENSOR.FFN_POST_NORM: (
  279. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  280. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  281. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  282. "model.layers.{bid}.feed_forward.up_proj",
  283. ),
  284. MODEL_TENSOR.FFN_GATE_INP: (
  285. "layers.{bid}.feed_forward.gate", # mixtral
  286. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  287. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  288. "transformer.decoder_layer.{bid}.router", # Grok
  289. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  290. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  291. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  292. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  293. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  294. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  295. ),
  296. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  297. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  298. ),
  299. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  300. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  301. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  302. ),
  303. # Feed-forward up
  304. MODEL_TENSOR.FFN_UP: (
  305. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  306. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  307. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  308. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  309. "h.{bid}.mlp.dense_h_to_4h", # bloom
  310. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  311. "layers.{bid}.feed_forward.w3", # llama-pth
  312. "encoder.layer.{bid}.intermediate.dense", # bert
  313. "transformer.layer.{bid}.ffn.lin1", # distillbert
  314. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  315. "transformer.h.{bid}.mlp.linear_3", # refact
  316. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  317. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  318. "transformer.h.{bid}.mlp.w1", # qwen
  319. "h.{bid}.mlp.c_fc", # gpt2
  320. "transformer.h.{bid}.mlp.fc1", # phi2
  321. "model.layers.{bid}.mlp.fc1", # phi2
  322. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  323. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  324. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  325. "model.layers.{bid}.feed_forward.w3", # internlm2
  326. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  327. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  328. "model.layers.{bid}.mlp.c_fc", # starcoder2
  329. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  330. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  331. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  332. "model.layers.{bid}.residual_mlp.w3", # arctic
  333. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  334. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  335. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  336. "transformer_encoder.{bid}.ffn.w12", # neobert
  337. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  338. ),
  339. MODEL_TENSOR.FFN_UP_EXP: (
  340. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  341. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  342. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  343. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  344. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  345. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  346. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  347. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  348. ),
  349. MODEL_TENSOR.FFN_UP_SHEXP: (
  350. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  351. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  352. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  353. "model.layers.{bid}.feed_forward.down_proj",
  354. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  355. ),
  356. # AWQ-activation gate
  357. MODEL_TENSOR.FFN_ACT: (
  358. "transformer.blocks.{bid}.ffn.act", # mpt
  359. ),
  360. # Feed-forward gate
  361. MODEL_TENSOR.FFN_GATE: (
  362. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  363. "layers.{bid}.feed_forward.w1", # llama-pth
  364. "transformer.h.{bid}.mlp.w2", # qwen
  365. "transformer.h.{bid}.mlp.c_fc2", # jais
  366. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  367. "model.layers.{bid}.feed_forward.w1", # internlm2
  368. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  369. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  370. "transformer.h.{bid}.mlp.linear_1", # refact
  371. "model.layers.{bid}.residual_mlp.w1", # arctic
  372. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  373. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  374. "model.layers.{bid}.block_sparse_moe.gate", # smallthinker
  375. ),
  376. MODEL_TENSOR.FFN_GATE_EXP: (
  377. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  378. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  379. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  380. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  381. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  382. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  383. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  384. ),
  385. MODEL_TENSOR.FFN_GATE_SHEXP: (
  386. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  387. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  388. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  389. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  390. ),
  391. # Feed-forward down
  392. MODEL_TENSOR.FFN_DOWN: (
  393. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  394. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  395. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  396. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  397. "h.{bid}.mlp.dense_4h_to_h", # bloom
  398. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  399. "layers.{bid}.feed_forward.w2", # llama-pth
  400. "encoder.layer.{bid}.output.dense", # bert
  401. "transformer.layer.{bid}.ffn.lin2", # distillbert
  402. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  403. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  404. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  405. "h.{bid}.mlp.c_proj", # gpt2
  406. "transformer.h.{bid}.mlp.fc2", # phi2
  407. "model.layers.{bid}.mlp.fc2", # phi2
  408. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  409. "model.layers.{bid}.feed_forward.w2", # internlm2
  410. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  411. "model.layers.{bid}.mlp.c_proj", # starcoder2
  412. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  413. "transformer.layers.{bid}.ffn.proj_2", # openelm
  414. "model.layers.{bid}.residual_mlp.w2", # arctic
  415. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  416. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  417. "model.layers.h.{bid}.mlp.c_proj", # exaone
  418. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  419. "transformer_encoder.{bid}.ffn.w3", # neobert
  420. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  421. ),
  422. MODEL_TENSOR.FFN_DOWN_EXP: (
  423. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  424. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  425. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  426. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  427. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  428. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  429. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  430. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  431. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  432. ),
  433. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  434. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  435. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  436. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  437. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  438. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  439. ),
  440. MODEL_TENSOR.ATTN_Q_NORM: (
  441. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  442. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  443. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  444. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  445. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  446. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  447. "transformer.layers.{bid}.attn.q_norm", # openelm
  448. "model.layers.layers.{bid}.mixer.q", # plamo2
  449. ),
  450. MODEL_TENSOR.ATTN_K_NORM: (
  451. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  452. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  453. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  454. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  455. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  456. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  457. "transformer.layers.{bid}.attn.k_norm", # openelm
  458. "model.layers.layers.{bid}.mixer.k", # plamo2
  459. ),
  460. MODEL_TENSOR.ROPE_FREQS: (
  461. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  462. ),
  463. MODEL_TENSOR.LAYER_OUT_NORM: (
  464. "encoder.layer.{bid}.output.LayerNorm", # bert
  465. "transformer.layer.{bid}.output_layer_norm", # distillbert
  466. "encoder.layers.{bid}.norm2", # nomic-bert
  467. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  468. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  469. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  470. ),
  471. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  472. "model.embed_tokens_per_layer", # gemma3n
  473. ),
  474. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  475. "model.per_layer_model_projection", # gemma3n
  476. ),
  477. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  478. "model.per_layer_projection_norm", # gemma3n
  479. ),
  480. MODEL_TENSOR.ALTUP_PROJ: (
  481. "model.altup_projections", # gemma3n
  482. ),
  483. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  484. "model.altup_unembed_projections", # gemma3n
  485. ),
  486. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  487. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  488. ),
  489. MODEL_TENSOR.PER_LAYER_PROJ: (
  490. "model.layers.{bid}.per_layer_projection", # gemma3n
  491. ),
  492. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  493. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  494. ),
  495. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  496. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  497. ),
  498. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  499. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  500. ),
  501. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  502. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  503. ),
  504. MODEL_TENSOR.ALTUP_ROUTER: (
  505. "model.layers.{bid}.altup.modality_router", # gemma3n
  506. ),
  507. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  508. "model.layers.{bid}.altup.router_norm", # gemma3n
  509. ),
  510. MODEL_TENSOR.LAUREL_L: (
  511. "model.layers.{bid}.laurel.linear_left", # gemma3n
  512. ),
  513. MODEL_TENSOR.LAUREL_R: (
  514. "model.layers.{bid}.laurel.linear_right", # gemma3n
  515. ),
  516. MODEL_TENSOR.LAUREL_POST_NORM: (
  517. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  518. ),
  519. MODEL_TENSOR.SSM_IN: (
  520. "model.layers.{bid}.in_proj", # mamba-hf
  521. "backbone.layers.{bid}.mixer.in_proj", # mamba
  522. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  523. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  524. ),
  525. MODEL_TENSOR.SSM_CONV1D: (
  526. "model.layers.{bid}.conv1d", # mamba-hf
  527. "backbone.layers.{bid}.mixer.conv1d", # mamba
  528. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  529. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  530. ),
  531. MODEL_TENSOR.SSM_X: (
  532. "model.layers.{bid}.x_proj", # mamba-hf
  533. "backbone.layers.{bid}.mixer.x_proj", # mamba
  534. "model.layers.{bid}.mamba.x_proj", # jamba
  535. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  536. ),
  537. MODEL_TENSOR.SSM_DT: (
  538. "model.layers.{bid}.dt_proj", # mamba-hf
  539. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  540. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  541. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  542. ),
  543. MODEL_TENSOR.SSM_DT_NORM: (
  544. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  545. ),
  546. MODEL_TENSOR.SSM_A: (
  547. "model.layers.{bid}.A_log", # mamba-hf
  548. "backbone.layers.{bid}.mixer.A_log", # mamba
  549. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  550. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  551. ),
  552. MODEL_TENSOR.SSM_B_NORM: (
  553. "model.layers.{bid}.mamba.b_layernorm", # jamba
  554. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  555. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  556. ),
  557. MODEL_TENSOR.SSM_C_NORM: (
  558. "model.layers.{bid}.mamba.c_layernorm", # jamba
  559. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  560. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  561. ),
  562. MODEL_TENSOR.SSM_D: (
  563. "model.layers.{bid}.D", # mamba-hf
  564. "backbone.layers.{bid}.mixer.D", # mamba
  565. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  566. "model.layers.layers.{bid}.mixer.D", # plamo2
  567. ),
  568. MODEL_TENSOR.SSM_DT_NORM: (
  569. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  570. ),
  571. MODEL_TENSOR.SSM_NORM: (
  572. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  573. "backbone.layers.{bid}.mixer.norm", # mamba2
  574. ),
  575. MODEL_TENSOR.SSM_OUT: (
  576. "model.layers.{bid}.out_proj", # mamba-hf
  577. "backbone.layers.{bid}.mixer.out_proj", # mamba
  578. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  579. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  580. ),
  581. MODEL_TENSOR.TIME_MIX_W0: (
  582. "model.layers.{bid}.attention.w0", # rwkv7
  583. ),
  584. MODEL_TENSOR.TIME_MIX_W1: (
  585. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  586. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  587. "model.layers.{bid}.attention.w1", # rwkv7
  588. ),
  589. MODEL_TENSOR.TIME_MIX_W2: (
  590. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  591. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  592. "model.layers.{bid}.attention.w2", # rwkv7
  593. ),
  594. MODEL_TENSOR.TIME_MIX_A0: (
  595. "model.layers.{bid}.attention.a0", # rwkv7
  596. ),
  597. MODEL_TENSOR.TIME_MIX_A1: (
  598. "model.layers.{bid}.attention.a1", # rwkv7
  599. ),
  600. MODEL_TENSOR.TIME_MIX_A2: (
  601. "model.layers.{bid}.attention.a2", # rwkv7
  602. ),
  603. MODEL_TENSOR.TIME_MIX_V0: (
  604. "model.layers.{bid}.attention.v0", # rwkv7
  605. ),
  606. MODEL_TENSOR.TIME_MIX_V1: (
  607. "model.layers.{bid}.attention.v1", # rwkv7
  608. ),
  609. MODEL_TENSOR.TIME_MIX_V2: (
  610. "model.layers.{bid}.attention.v2", # rwkv7
  611. ),
  612. MODEL_TENSOR.TIME_MIX_G1: (
  613. "model.layers.{bid}.attention.g1", # rwkv7
  614. ),
  615. MODEL_TENSOR.TIME_MIX_G2: (
  616. "model.layers.{bid}.attention.g2", # rwkv7
  617. ),
  618. MODEL_TENSOR.TIME_MIX_K_K: (
  619. "model.layers.{bid}.attention.k_k", # rwkv7
  620. ),
  621. MODEL_TENSOR.TIME_MIX_K_A: (
  622. "model.layers.{bid}.attention.k_a", # rwkv7
  623. ),
  624. MODEL_TENSOR.TIME_MIX_R_K: (
  625. "model.layers.{bid}.attention.r_k", # rwkv7
  626. ),
  627. MODEL_TENSOR.TIME_MIX_LERP_X: (
  628. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  629. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  630. ),
  631. MODEL_TENSOR.TIME_MIX_LERP_K: (
  632. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  633. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  634. ),
  635. MODEL_TENSOR.TIME_MIX_LERP_V: (
  636. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  637. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  638. ),
  639. MODEL_TENSOR.TIME_MIX_LERP_R: (
  640. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  641. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  642. ),
  643. MODEL_TENSOR.TIME_MIX_LERP_G: (
  644. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  645. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  646. ),
  647. MODEL_TENSOR.TIME_MIX_LERP_W: (
  648. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  649. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  650. ),
  651. MODEL_TENSOR.TIME_MIX_FIRST: (
  652. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  653. ),
  654. MODEL_TENSOR.TIME_MIX_DECAY: (
  655. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  656. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  657. ),
  658. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  659. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  660. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  661. ),
  662. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  663. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  664. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  665. ),
  666. MODEL_TENSOR.TIME_MIX_KEY: (
  667. "rwkv.blocks.{bid}.attention.key", # rwkv6
  668. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  669. "model.layers.{bid}.attention.key", # rwkv7
  670. "model.layers.{bid}.attention.k_proj", # rwkv7
  671. ),
  672. MODEL_TENSOR.TIME_MIX_VALUE: (
  673. "rwkv.blocks.{bid}.attention.value", # rwkv6
  674. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  675. "model.layers.{bid}.attention.value", # rwkv7
  676. "model.layers.{bid}.attention.v_proj", # rwkv7
  677. ),
  678. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  679. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  680. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  681. "model.layers.{bid}.attention.receptance", # rwkv7
  682. "model.layers.{bid}.attention.r_proj", # rwkv7
  683. ),
  684. MODEL_TENSOR.TIME_MIX_GATE: (
  685. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  686. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  687. ),
  688. MODEL_TENSOR.TIME_MIX_LN: (
  689. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  690. "model.layers.{bid}.attention.ln_x" # rwkv7
  691. ),
  692. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  693. "rwkv.blocks.{bid}.attention.output", # rwkv6
  694. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  695. "model.layers.{bid}.attention.output", # rwkv7
  696. "model.layers.{bid}.attention.o_proj", # rwkv7
  697. ),
  698. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  699. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  700. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  701. ),
  702. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  703. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  704. ),
  705. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  706. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  707. "model.layers.{bid}.feed_forward.key", # rwkv7
  708. ),
  709. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  710. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  711. ),
  712. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  713. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  714. "model.layers.{bid}.feed_forward.value", # rwkv7
  715. ),
  716. MODEL_TENSOR.ATTN_Q_A: (
  717. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  718. ),
  719. MODEL_TENSOR.ATTN_Q_B: (
  720. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  721. ),
  722. MODEL_TENSOR.ATTN_KV_A_MQA: (
  723. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  724. ),
  725. MODEL_TENSOR.ATTN_KV_B: (
  726. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  727. ),
  728. MODEL_TENSOR.ATTN_K_B: (
  729. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  730. ),
  731. MODEL_TENSOR.ATTN_V_B: (
  732. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  733. ),
  734. MODEL_TENSOR.ATTN_Q_A_NORM: (
  735. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  736. ),
  737. MODEL_TENSOR.ATTN_KV_A_NORM: (
  738. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  739. ),
  740. MODEL_TENSOR.ATTN_SUB_NORM: (
  741. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  742. ),
  743. MODEL_TENSOR.FFN_SUB_NORM: (
  744. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  745. ),
  746. MODEL_TENSOR.DEC_ATTN_NORM: (
  747. "decoder.block.{bid}.layer.0.layer_norm", # t5
  748. ),
  749. MODEL_TENSOR.DEC_ATTN_Q: (
  750. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  751. ),
  752. MODEL_TENSOR.DEC_ATTN_K: (
  753. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  754. ),
  755. MODEL_TENSOR.DEC_ATTN_V: (
  756. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  757. ),
  758. MODEL_TENSOR.DEC_ATTN_OUT: (
  759. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  760. ),
  761. MODEL_TENSOR.DEC_ATTN_REL_B: (
  762. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  763. ),
  764. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  765. "decoder.block.{bid}.layer.1.layer_norm", # t5
  766. ),
  767. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  768. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  769. ),
  770. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  771. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  772. ),
  773. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  774. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  775. ),
  776. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  777. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  778. ),
  779. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  780. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  781. ),
  782. MODEL_TENSOR.DEC_FFN_NORM: (
  783. "decoder.block.{bid}.layer.2.layer_norm", # t5
  784. ),
  785. MODEL_TENSOR.DEC_FFN_GATE: (
  786. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  787. ),
  788. MODEL_TENSOR.DEC_FFN_UP: (
  789. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  790. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  791. ),
  792. MODEL_TENSOR.DEC_FFN_DOWN: (
  793. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  794. ),
  795. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  796. "decoder.final_layer_norm", # t5
  797. ),
  798. MODEL_TENSOR.ENC_ATTN_NORM: (
  799. "encoder.block.{bid}.layer.0.layer_norm", # t5
  800. ),
  801. MODEL_TENSOR.ENC_ATTN_Q: (
  802. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  803. ),
  804. MODEL_TENSOR.ENC_ATTN_K: (
  805. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  806. ),
  807. MODEL_TENSOR.ENC_ATTN_V: (
  808. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  809. ),
  810. MODEL_TENSOR.ENC_ATTN_OUT: (
  811. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  812. ),
  813. MODEL_TENSOR.ENC_ATTN_REL_B: (
  814. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  815. ),
  816. MODEL_TENSOR.ENC_FFN_NORM: (
  817. "encoder.block.{bid}.layer.1.layer_norm", # t5
  818. ),
  819. MODEL_TENSOR.ENC_FFN_GATE: (
  820. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  821. ),
  822. MODEL_TENSOR.ENC_FFN_UP: (
  823. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  824. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  825. ),
  826. MODEL_TENSOR.ENC_FFN_DOWN: (
  827. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  828. ),
  829. ############################################################################
  830. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  831. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  832. "encoder.final_layer_norm", # t5
  833. "layer_norm", # neobert
  834. ),
  835. MODEL_TENSOR.CLS: (
  836. "classifier", # jina
  837. "classifier.dense", # roberta
  838. "pre_classifier", # distillbert
  839. "dense", # neobert
  840. ),
  841. MODEL_TENSOR.CLS_OUT: (
  842. "classifier.out_proj", # roberta
  843. ),
  844. #############################################################################
  845. MODEL_TENSOR.CONVNEXT_DW: (
  846. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  847. ),
  848. MODEL_TENSOR.CONVNEXT_NORM: (
  849. "backbone.convnext.{bid}.norm", # wavtokenizer
  850. ),
  851. MODEL_TENSOR.CONVNEXT_PW1: (
  852. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  853. ),
  854. MODEL_TENSOR.CONVNEXT_PW2: (
  855. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  856. ),
  857. MODEL_TENSOR.CONVNEXT_GAMMA: (
  858. "backbone.convnext.{bid}.gamma", # wavtokenizer
  859. ),
  860. MODEL_TENSOR.POSNET_CONV1: (
  861. "backbone.posnet.{bid}.conv1", # wavtokenizer
  862. ),
  863. MODEL_TENSOR.POSNET_CONV2: (
  864. "backbone.posnet.{bid}.conv2", # wavtokenizer
  865. ),
  866. MODEL_TENSOR.POSNET_NORM: (
  867. "backbone.posnet.{bid}.norm", # wavtokenizer
  868. ),
  869. MODEL_TENSOR.POSNET_NORM1: (
  870. "backbone.posnet.{bid}.norm1", # wavtokenizer
  871. ),
  872. MODEL_TENSOR.POSNET_NORM2: (
  873. "backbone.posnet.{bid}.norm2", # wavtokenizer
  874. ),
  875. MODEL_TENSOR.POSNET_ATTN_NORM: (
  876. "backbone.posnet.{bid}.norm", # wavtokenizer
  877. ),
  878. MODEL_TENSOR.POSNET_ATTN_Q: (
  879. "backbone.posnet.{bid}.q", # wavtokenizer
  880. ),
  881. MODEL_TENSOR.POSNET_ATTN_K: (
  882. "backbone.posnet.{bid}.k", # wavtokenizer
  883. ),
  884. MODEL_TENSOR.POSNET_ATTN_V: (
  885. "backbone.posnet.{bid}.v", # wavtokenizer
  886. ),
  887. MODEL_TENSOR.POSNET_ATTN_OUT: (
  888. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  889. ),
  890. MODEL_TENSOR.SHORTCONV_CONV: (
  891. "model.layers.{bid}.conv.conv",
  892. ),
  893. MODEL_TENSOR.SHORTCONV_INPROJ: (
  894. "model.layers.{bid}.conv.in_proj",
  895. ),
  896. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  897. "model.layers.{bid}.conv.out_proj",
  898. ),
  899. #############################################################################
  900. ## Vision encoder
  901. MODEL_TENSOR.V_MMPROJ: (
  902. "multi_modal_projector.linear_{bid}",
  903. "visual.merger.mlp.{bid}", # qwen2vl
  904. ),
  905. MODEL_TENSOR.V_MMPROJ_FC: (
  906. "model.connector.modality_projection.proj", # SmolVLM
  907. ),
  908. MODEL_TENSOR.V_MMPROJ_MLP: (
  909. "model.mm_projector.mlp.mlp.{bid}",
  910. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  911. "mlp1.{bid}", # InternVL
  912. ),
  913. MODEL_TENSOR.V_MMPROJ_PEG: (
  914. "model.mm_projector.peg.peg.{bid}",
  915. ),
  916. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  917. "vision_tower.vision_model.embeddings.class_embedding",
  918. "vision_model.class_embedding", # llama 4
  919. ),
  920. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  921. "vision_tower.vision_model.embeddings.patch_embedding",
  922. "vpm.embeddings.patch_embedding",
  923. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  924. "vision_tower.patch_conv", # pixtral
  925. "vision_model.patch_embedding.linear", # llama 4
  926. "visual.patch_embed.proj", # qwen2vl
  927. ),
  928. MODEL_TENSOR.V_ENC_EMBD_POS: (
  929. "vision_tower.vision_model.embeddings.position_embedding",
  930. "vpm.embeddings.position_embedding",
  931. "model.vision_model.embeddings.position_embedding", # SmolVLM
  932. "vision_model.positional_embedding_vlm", # llama 4
  933. ),
  934. MODEL_TENSOR.V_ENC_ATTN_Q: (
  935. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  936. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  937. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  938. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  939. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
  940. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  941. ),
  942. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  943. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  944. ),
  945. MODEL_TENSOR.V_ENC_ATTN_K: (
  946. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  947. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  948. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  949. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  950. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
  951. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  952. ),
  953. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  954. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  955. ),
  956. MODEL_TENSOR.V_ENC_ATTN_V: (
  957. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  958. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  959. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  960. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  961. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
  962. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  963. ),
  964. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  965. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  966. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  967. "vpm.encoder.layers.{bid}.layer_norm1",
  968. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  969. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
  970. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  971. "visual.blocks.{bid}.norm1", # qwen2vl
  972. ),
  973. MODEL_TENSOR.V_ENC_ATTN_O: (
  974. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  975. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  976. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  977. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  978. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  979. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
  980. "visual.blocks.{bid}.attn.proj", # qwen2vl
  981. ),
  982. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  983. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  984. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  985. "vpm.encoder.layers.{bid}.layer_norm2",
  986. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  987. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  988. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
  989. "visual.blocks.{bid}.norm2", # qwen2vl
  990. ),
  991. MODEL_TENSOR.V_ENC_FFN_UP: (
  992. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  993. "vpm.encoder.layers.{bid}.mlp.fc1",
  994. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  995. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
  996. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  997. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  998. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  999. ),
  1000. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1001. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
  1002. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1003. ),
  1004. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1005. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1006. "vpm.encoder.layers.{bid}.mlp.fc2",
  1007. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1008. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
  1009. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1010. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1011. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1012. ),
  1013. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1014. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1015. ),
  1016. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1017. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1018. ),
  1019. MODEL_TENSOR.V_PRE_NORM: (
  1020. "vision_tower.vision_model.pre_layrnorm",
  1021. "vision_tower.ln_pre", # pixtral
  1022. "vision_model.layernorm_pre", # llama4
  1023. ),
  1024. MODEL_TENSOR.V_POST_NORM: (
  1025. "vision_tower.vision_model.post_layernorm",
  1026. "model.vision_model.post_layernorm", # SmolVLM
  1027. "vision_model.layernorm_post", # llama4
  1028. "visual.merger.ln_q", # qwen2vl
  1029. ),
  1030. MODEL_TENSOR.V_MM_INP_PROJ: (
  1031. "multi_modal_projector.mm_input_projection",
  1032. ),
  1033. MODEL_TENSOR.V_MM_INP_NORM: (
  1034. "multi_modal_projector.norm",
  1035. ),
  1036. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1037. "multi_modal_projector.mm_soft_emb_norm",
  1038. ),
  1039. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1040. "resampler.pos_embed_k",
  1041. ),
  1042. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1043. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1044. ),
  1045. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1046. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1047. ),
  1048. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1049. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1050. ),
  1051. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1052. "resampler.attn.out_proj",
  1053. ),
  1054. MODEL_TENSOR.V_RESMPL_KV: (
  1055. "resampler.kv_proj",
  1056. ),
  1057. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1058. "resampler.ln_post",
  1059. ),
  1060. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1061. "resampler.ln_kv",
  1062. ),
  1063. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1064. "resampler.ln_q",
  1065. ),
  1066. MODEL_TENSOR.V_RESMPL_PROJ: (
  1067. "resampler.proj",
  1068. ),
  1069. MODEL_TENSOR.V_RESMPL_QUERY: (
  1070. "resampler.query",
  1071. ),
  1072. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1073. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1074. ),
  1075. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1076. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
  1077. ),
  1078. # audio (mtmd)
  1079. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1080. "audio_tower.embed_positions", # ultravox
  1081. ),
  1082. MODEL_TENSOR.A_ENC_CONV1D: (
  1083. "audio_tower.conv{bid}", # ultravox
  1084. ),
  1085. MODEL_TENSOR.A_PRE_NORM: (),
  1086. MODEL_TENSOR.A_POST_NORM: (
  1087. "audio_tower.layer_norm", # ultravox
  1088. "audio_tower.ln_post", # qwen2omni
  1089. ),
  1090. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1091. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1092. ),
  1093. MODEL_TENSOR.A_ENC_ATTN_K: (
  1094. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1095. ),
  1096. MODEL_TENSOR.A_ENC_ATTN_V: (
  1097. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1098. ),
  1099. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1100. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1101. ),
  1102. MODEL_TENSOR.A_ENC_OUTPUT: (
  1103. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1104. ),
  1105. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1106. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1107. ),
  1108. MODEL_TENSOR.A_ENC_FFN_UP: (
  1109. "audio_tower.layers.{bid}.fc1", # ultravox
  1110. ),
  1111. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1112. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1113. "audio_tower.layers.{bid}.fc2", # ultravox
  1114. ),
  1115. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1116. # this prefix is added in the conversion code in modify_tensors()
  1117. MODEL_TENSOR.A_MMPROJ: (
  1118. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1119. ),
  1120. MODEL_TENSOR.A_MMPROJ_FC: (
  1121. "audio.multi_modal_projector.linear", # qwen2audio
  1122. "audio_tower.proj", # qwen2omni
  1123. ),
  1124. MODEL_TENSOR.A_MM_NORM_PRE: (
  1125. "audio.multi_modal_projector.ln_pre", # ultravox
  1126. ),
  1127. MODEL_TENSOR.A_MM_NORM_MID: (
  1128. "audio.multi_modal_projector.ln_mid", # ultravox
  1129. ),
  1130. }
  1131. # architecture-specific block mappings
  1132. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1133. MODEL_ARCH.ARCTIC: {
  1134. MODEL_TENSOR.FFN_NORM: (
  1135. "model.layers.{bid}.residual_layernorm",
  1136. ),
  1137. MODEL_TENSOR.FFN_NORM_EXP: (
  1138. "model.layers.{bid}.post_attention_layernorm",
  1139. ),
  1140. },
  1141. }
  1142. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1143. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1144. self.mapping = {}
  1145. for tensor, keys in self.mappings_cfg.items():
  1146. if tensor not in MODEL_TENSORS[arch]:
  1147. continue
  1148. tensor_name = TENSOR_NAMES[tensor]
  1149. self.mapping[tensor_name] = (tensor, tensor_name)
  1150. for key in keys:
  1151. self.mapping[key] = (tensor, tensor_name)
  1152. if arch in self.arch_block_mappings_cfg:
  1153. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1154. for bid in range(n_blocks):
  1155. for tensor, keys in self.block_mappings_cfg.items():
  1156. if tensor not in MODEL_TENSORS[arch]:
  1157. continue
  1158. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1159. self.mapping[tensor_name] = (tensor, tensor_name)
  1160. for key in keys:
  1161. key = key.format(bid = bid)
  1162. self.mapping[key] = (tensor, tensor_name)
  1163. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1164. result = self.mapping.get(key)
  1165. if result is not None:
  1166. return result
  1167. for suffix in try_suffixes:
  1168. if key.endswith(suffix):
  1169. result = self.mapping.get(key[:-len(suffix)])
  1170. if result is not None:
  1171. return result[0], result[1] + suffix
  1172. return None
  1173. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1174. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1175. if result is None:
  1176. return None
  1177. return result[1]
  1178. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1179. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1180. if result is None:
  1181. return None
  1182. return result[0]
  1183. def __getitem__(self, key: str) -> str:
  1184. try:
  1185. return self.mapping[key][1]
  1186. except KeyError:
  1187. raise KeyError(key)
  1188. def __contains__(self, key: str) -> bool:
  1189. return key in self.mapping
  1190. def __repr__(self) -> str:
  1191. return repr(self.mapping)
  1192. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1193. return TensorNameMap(arch, n_blocks)