server.cpp 181 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. struct slot_params {
  79. bool stream = true;
  80. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  81. bool return_tokens = false;
  82. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  83. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  84. int32_t n_predict = -1; // new tokens to predict
  85. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  86. int64_t t_max_prompt_ms = -1; // TODO: implement
  87. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  88. std::vector<common_adapter_lora_info> lora;
  89. std::vector<std::string> antiprompt;
  90. std::vector<std::string> response_fields;
  91. bool timings_per_token = false;
  92. bool post_sampling_probs = false;
  93. bool ignore_eos = false;
  94. struct common_params_sampling sampling;
  95. struct common_params_speculative speculative;
  96. // OAI-compat fields
  97. bool verbose = false;
  98. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  99. std::string oaicompat_model;
  100. std::string oaicompat_cmpl_id;
  101. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  102. json to_json() const {
  103. std::vector<std::string> samplers;
  104. samplers.reserve(sampling.samplers.size());
  105. for (const auto & sampler : sampling.samplers) {
  106. samplers.emplace_back(common_sampler_type_to_str(sampler));
  107. }
  108. json lora = json::array();
  109. for (size_t i = 0; i < this->lora.size(); ++i) {
  110. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  111. }
  112. auto grammar_triggers = json::array();
  113. for (const auto & trigger : sampling.grammar_triggers) {
  114. server_grammar_trigger ct(std::move(trigger));
  115. grammar_triggers.push_back(ct.to_json());
  116. }
  117. return json {
  118. {"n_predict", n_predict}, // Server configured n_predict
  119. {"seed", sampling.seed},
  120. {"temperature", sampling.temp},
  121. {"dynatemp_range", sampling.dynatemp_range},
  122. {"dynatemp_exponent", sampling.dynatemp_exponent},
  123. {"top_k", sampling.top_k},
  124. {"top_p", sampling.top_p},
  125. {"min_p", sampling.min_p},
  126. {"xtc_probability", sampling.xtc_probability},
  127. {"xtc_threshold", sampling.xtc_threshold},
  128. {"typical_p", sampling.typ_p},
  129. {"repeat_last_n", sampling.penalty_last_n},
  130. {"repeat_penalty", sampling.penalty_repeat},
  131. {"presence_penalty", sampling.penalty_present},
  132. {"frequency_penalty", sampling.penalty_freq},
  133. {"dry_multiplier", sampling.dry_multiplier},
  134. {"dry_base", sampling.dry_base},
  135. {"dry_allowed_length", sampling.dry_allowed_length},
  136. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  137. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  138. {"mirostat", sampling.mirostat},
  139. {"mirostat_tau", sampling.mirostat_tau},
  140. {"mirostat_eta", sampling.mirostat_eta},
  141. {"stop", antiprompt},
  142. {"max_tokens", n_predict}, // User configured n_predict
  143. {"n_keep", n_keep},
  144. {"n_discard", n_discard},
  145. {"ignore_eos", sampling.ignore_eos},
  146. {"stream", stream},
  147. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  148. {"n_probs", sampling.n_probs},
  149. {"min_keep", sampling.min_keep},
  150. {"grammar", sampling.grammar},
  151. {"grammar_lazy", sampling.grammar_lazy},
  152. {"grammar_triggers", grammar_triggers},
  153. {"preserved_tokens", sampling.preserved_tokens},
  154. {"chat_format", common_chat_format_name(oaicompat_chat_format)},
  155. {"samplers", samplers},
  156. {"speculative.n_max", speculative.n_max},
  157. {"speculative.n_min", speculative.n_min},
  158. {"speculative.p_min", speculative.p_min},
  159. {"timings_per_token", timings_per_token},
  160. {"post_sampling_probs", post_sampling_probs},
  161. {"lora", lora},
  162. };
  163. }
  164. };
  165. struct server_task {
  166. int id = -1; // to be filled by server_queue
  167. int index = -1; // used when there are multiple prompts (batch request)
  168. server_task_type type;
  169. // used by SERVER_TASK_TYPE_CANCEL
  170. int id_target = -1;
  171. // used by SERVER_TASK_TYPE_INFERENCE
  172. slot_params params;
  173. llama_tokens prompt_tokens;
  174. int id_selected_slot = -1;
  175. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  176. struct slot_action {
  177. int slot_id;
  178. std::string filename;
  179. std::string filepath;
  180. };
  181. slot_action slot_action;
  182. // used by SERVER_TASK_TYPE_METRICS
  183. bool metrics_reset_bucket = false;
  184. // used by SERVER_TASK_TYPE_SET_LORA
  185. std::vector<common_adapter_lora_info> set_lora;
  186. server_task(server_task_type type) : type(type) {}
  187. static slot_params params_from_json_cmpl(
  188. const llama_context * ctx,
  189. const common_params & params_base,
  190. const json & data) {
  191. const llama_model * model = llama_get_model(ctx);
  192. const llama_vocab * vocab = llama_model_get_vocab(model);
  193. slot_params params;
  194. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  195. slot_params defaults;
  196. defaults.sampling = params_base.sampling;
  197. defaults.speculative = params_base.speculative;
  198. // enabling this will output extra debug information in the HTTP responses from the server
  199. params.verbose = params_base.verbosity > 9;
  200. params.timings_per_token = json_value(data, "timings_per_token", false);
  201. params.stream = json_value(data, "stream", false);
  202. params.cache_prompt = json_value(data, "cache_prompt", true);
  203. params.return_tokens = json_value(data, "return_tokens", false);
  204. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  205. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  206. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  207. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  208. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  209. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  210. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  211. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  212. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  213. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  214. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  215. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  216. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  217. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  218. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  219. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  220. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  221. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  222. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  223. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  224. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  225. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  226. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  227. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  228. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  229. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  230. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  231. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  232. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  233. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  234. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  235. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  236. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  237. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  238. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  239. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  240. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  241. // Use OpenAI API logprobs only if n_probs wasn't provided
  242. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  243. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  244. }
  245. if (data.contains("lora")) {
  246. if (data.at("lora").is_array()) {
  247. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  248. } else {
  249. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  250. }
  251. } else {
  252. params.lora = params_base.lora_adapters;
  253. }
  254. // TODO: add more sanity checks for the input parameters
  255. if (params.sampling.penalty_last_n < -1) {
  256. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  257. }
  258. if (params.sampling.dry_penalty_last_n < -1) {
  259. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  260. }
  261. if (params.sampling.penalty_last_n == -1) {
  262. // note: should be the slot's context and not the full context, but it's ok
  263. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  264. }
  265. if (params.sampling.dry_penalty_last_n == -1) {
  266. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  267. }
  268. if (params.sampling.dry_base < 1.0f) {
  269. params.sampling.dry_base = defaults.sampling.dry_base;
  270. }
  271. // sequence breakers for DRY
  272. {
  273. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  274. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  275. if (data.contains("dry_sequence_breakers")) {
  276. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  277. if (params.sampling.dry_sequence_breakers.empty()) {
  278. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  279. }
  280. }
  281. }
  282. // process "json_schema" and "grammar"
  283. if (data.contains("json_schema") && !data.contains("grammar")) {
  284. try {
  285. auto schema = json_value(data, "json_schema", json::object());
  286. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  287. params.sampling.grammar = json_schema_to_grammar(schema);
  288. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  289. } catch (const std::exception & e) {
  290. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  291. }
  292. } else {
  293. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  294. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  295. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  296. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  297. }
  298. {
  299. auto it = data.find("chat_format");
  300. if (it != data.end()) {
  301. params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
  302. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
  303. } else {
  304. params.oaicompat_chat_format = defaults.oaicompat_chat_format;
  305. }
  306. }
  307. {
  308. const auto preserved_tokens = data.find("preserved_tokens");
  309. if (preserved_tokens != data.end()) {
  310. for (const auto & t : *preserved_tokens) {
  311. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  312. if (ids.size() == 1) {
  313. SRV_DBG("Preserved token: %d\n", ids[0]);
  314. params.sampling.preserved_tokens.insert(ids[0]);
  315. } else {
  316. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  317. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  318. }
  319. }
  320. }
  321. const auto grammar_triggers = data.find("grammar_triggers");
  322. if (grammar_triggers != data.end()) {
  323. for (const auto & t : *grammar_triggers) {
  324. server_grammar_trigger ct(t);
  325. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  326. const auto & word = ct.value.value;
  327. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  328. if (ids.size() == 1) {
  329. auto token = ids[0];
  330. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  331. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  332. }
  333. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  334. common_grammar_trigger trigger;
  335. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  336. trigger.value = word;
  337. trigger.token = token;
  338. params.sampling.grammar_triggers.push_back(std::move(trigger));
  339. } else {
  340. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  341. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  342. }
  343. } else {
  344. params.sampling.grammar_triggers.push_back(std::move(ct.value));
  345. }
  346. }
  347. }
  348. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  349. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  350. }
  351. }
  352. {
  353. params.sampling.logit_bias.clear();
  354. params.ignore_eos = json_value(data, "ignore_eos", false);
  355. const auto & logit_bias = data.find("logit_bias");
  356. if (logit_bias != data.end() && logit_bias->is_array()) {
  357. const int n_vocab = llama_vocab_n_tokens(vocab);
  358. for (const auto & el : *logit_bias) {
  359. // TODO: we may want to throw errors here, in case "el" is incorrect
  360. if (el.is_array() && el.size() == 2) {
  361. float bias;
  362. if (el[1].is_number()) {
  363. bias = el[1].get<float>();
  364. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  365. bias = -INFINITY;
  366. } else {
  367. continue;
  368. }
  369. if (el[0].is_number_integer()) {
  370. llama_token tok = el[0].get<llama_token>();
  371. if (tok >= 0 && tok < n_vocab) {
  372. params.sampling.logit_bias.push_back({tok, bias});
  373. }
  374. } else if (el[0].is_string()) {
  375. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  376. for (auto tok : toks) {
  377. params.sampling.logit_bias.push_back({tok, bias});
  378. }
  379. }
  380. }
  381. }
  382. }
  383. }
  384. {
  385. params.antiprompt.clear();
  386. const auto & stop = data.find("stop");
  387. if (stop != data.end() && stop->is_array()) {
  388. for (const auto & word : *stop) {
  389. if (!word.empty()) {
  390. params.antiprompt.push_back(word);
  391. }
  392. }
  393. }
  394. }
  395. {
  396. const auto samplers = data.find("samplers");
  397. if (samplers != data.end()) {
  398. if (samplers->is_array()) {
  399. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  400. } else if (samplers->is_string()){
  401. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  402. }
  403. } else {
  404. params.sampling.samplers = defaults.sampling.samplers;
  405. }
  406. }
  407. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  408. params.oaicompat_model = json_value(data, "model", model_name);
  409. return params;
  410. }
  411. // utility function
  412. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  413. std::unordered_set<int> ids(tasks.size());
  414. for (size_t i = 0; i < tasks.size(); i++) {
  415. ids.insert(tasks[i].id);
  416. }
  417. return ids;
  418. }
  419. };
  420. struct result_timings {
  421. int32_t prompt_n = -1;
  422. double prompt_ms;
  423. double prompt_per_token_ms;
  424. double prompt_per_second;
  425. int32_t predicted_n = -1;
  426. double predicted_ms;
  427. double predicted_per_token_ms;
  428. double predicted_per_second;
  429. // Optional speculative metrics - only included when > 0
  430. int32_t draft_n = 0;
  431. int32_t draft_n_accepted = 0;
  432. json to_json() const {
  433. json base = {
  434. {"prompt_n", prompt_n},
  435. {"prompt_ms", prompt_ms},
  436. {"prompt_per_token_ms", prompt_per_token_ms},
  437. {"prompt_per_second", prompt_per_second},
  438. {"predicted_n", predicted_n},
  439. {"predicted_ms", predicted_ms},
  440. {"predicted_per_token_ms", predicted_per_token_ms},
  441. {"predicted_per_second", predicted_per_second},
  442. };
  443. if (draft_n > 0) {
  444. base["draft_n"] = draft_n;
  445. base["draft_n_accepted"] = draft_n_accepted;
  446. }
  447. return base;
  448. }
  449. };
  450. struct server_task_result {
  451. int id = -1;
  452. int id_slot = -1;
  453. virtual bool is_error() {
  454. // only used by server_task_result_error
  455. return false;
  456. }
  457. virtual bool is_stop() {
  458. // only used by server_task_result_cmpl_*
  459. return false;
  460. }
  461. virtual int get_index() {
  462. return -1;
  463. }
  464. virtual json to_json() = 0;
  465. virtual ~server_task_result() = default;
  466. };
  467. // using shared_ptr for polymorphism of server_task_result
  468. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  469. inline std::string stop_type_to_str(stop_type type) {
  470. switch (type) {
  471. case STOP_TYPE_EOS: return "eos";
  472. case STOP_TYPE_WORD: return "word";
  473. case STOP_TYPE_LIMIT: return "limit";
  474. default: return "none";
  475. }
  476. }
  477. struct completion_token_output {
  478. llama_token tok;
  479. float prob;
  480. std::string text_to_send;
  481. struct prob_info {
  482. llama_token tok;
  483. std::string txt;
  484. float prob;
  485. };
  486. std::vector<prob_info> probs;
  487. json to_json(bool post_sampling_probs) const {
  488. json probs_for_token = json::array();
  489. for (const auto & p : probs) {
  490. std::string txt(p.txt);
  491. txt.resize(validate_utf8(txt));
  492. probs_for_token.push_back(json {
  493. {"id", p.tok},
  494. {"token", txt},
  495. {"bytes", str_to_bytes(p.txt)},
  496. {
  497. post_sampling_probs ? "prob" : "logprob",
  498. post_sampling_probs ? p.prob : logarithm(p.prob)
  499. },
  500. });
  501. }
  502. return probs_for_token;
  503. }
  504. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  505. json out = json::array();
  506. for (const auto & p : probs) {
  507. std::string txt(p.text_to_send);
  508. txt.resize(validate_utf8(txt));
  509. out.push_back(json {
  510. {"id", p.tok},
  511. {"token", txt},
  512. {"bytes", str_to_bytes(p.text_to_send)},
  513. {
  514. post_sampling_probs ? "prob" : "logprob",
  515. post_sampling_probs ? p.prob : logarithm(p.prob)
  516. },
  517. {
  518. post_sampling_probs ? "top_probs" : "top_logprobs",
  519. p.to_json(post_sampling_probs)
  520. },
  521. });
  522. }
  523. return out;
  524. }
  525. static float logarithm(float x) {
  526. // nlohmann::json converts -inf to null, so we need to prevent that
  527. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  528. }
  529. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  530. std::vector<unsigned char> bytes;
  531. for (unsigned char c : str) {
  532. bytes.push_back(c);
  533. }
  534. return bytes;
  535. }
  536. };
  537. struct server_task_result_cmpl_final : server_task_result {
  538. int index = 0;
  539. std::string content;
  540. llama_tokens tokens;
  541. bool stream;
  542. result_timings timings;
  543. std::string prompt;
  544. bool truncated;
  545. int32_t n_decoded;
  546. int32_t n_prompt_tokens;
  547. int32_t n_tokens_cached;
  548. bool has_new_line;
  549. std::string stopping_word;
  550. stop_type stop = STOP_TYPE_NONE;
  551. bool post_sampling_probs;
  552. std::vector<completion_token_output> probs_output;
  553. std::vector<std::string> response_fields;
  554. slot_params generation_params;
  555. // OAI-compat fields
  556. bool verbose = false;
  557. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  558. std::string oaicompat_model;
  559. std::string oaicompat_cmpl_id;
  560. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  561. virtual int get_index() override {
  562. return index;
  563. }
  564. virtual bool is_stop() override {
  565. return true; // in stream mode, final responses are considered stop
  566. }
  567. virtual json to_json() override {
  568. switch (oaicompat) {
  569. case OAICOMPAT_TYPE_NONE:
  570. return to_json_non_oaicompat();
  571. case OAICOMPAT_TYPE_COMPLETION:
  572. return to_json_oaicompat();
  573. case OAICOMPAT_TYPE_CHAT:
  574. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  575. default:
  576. GGML_ASSERT(false && "Invalid oaicompat_type");
  577. }
  578. }
  579. json to_json_non_oaicompat() {
  580. json res = json {
  581. {"index", index},
  582. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  583. {"tokens", stream ? llama_tokens {} : tokens},
  584. {"id_slot", id_slot},
  585. {"stop", true},
  586. {"model", oaicompat_model},
  587. {"tokens_predicted", n_decoded},
  588. {"tokens_evaluated", n_prompt_tokens},
  589. {"generation_settings", generation_params.to_json()},
  590. {"prompt", prompt},
  591. {"has_new_line", has_new_line},
  592. {"truncated", truncated},
  593. {"stop_type", stop_type_to_str(stop)},
  594. {"stopping_word", stopping_word},
  595. {"tokens_cached", n_tokens_cached},
  596. {"timings", timings.to_json()},
  597. };
  598. if (!stream && !probs_output.empty()) {
  599. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  600. }
  601. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  602. }
  603. json to_json_oaicompat() {
  604. std::time_t t = std::time(0);
  605. json logprobs = json(nullptr); // OAI default to null
  606. if (!stream && probs_output.size() > 0) {
  607. logprobs = json{
  608. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  609. };
  610. }
  611. json finish_reason = "length";
  612. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  613. finish_reason = "stop";
  614. }
  615. json res = json {
  616. {"choices", json::array({
  617. json{
  618. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  619. {"index", index},
  620. {"logprobs", logprobs},
  621. {"finish_reason", finish_reason},
  622. }
  623. })},
  624. {"created", t},
  625. {"model", oaicompat_model},
  626. {"system_fingerprint", build_info},
  627. {"object", "text_completion"},
  628. {"usage", json {
  629. {"completion_tokens", n_decoded},
  630. {"prompt_tokens", n_prompt_tokens},
  631. {"total_tokens", n_decoded + n_prompt_tokens}
  632. }},
  633. {"id", oaicompat_cmpl_id}
  634. };
  635. // extra fields for debugging purposes
  636. if (verbose) {
  637. res["__verbose"] = to_json_non_oaicompat();
  638. }
  639. if (timings.prompt_n >= 0) {
  640. res.push_back({"timings", timings.to_json()});
  641. }
  642. return res;
  643. }
  644. json to_json_oaicompat_chat() {
  645. std::string finish_reason = "length";
  646. common_chat_msg msg;
  647. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  648. SRV_DBG("Parsing chat message: %s\n", content.c_str());
  649. msg = common_chat_parse(content, oaicompat_chat_format);
  650. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  651. } else {
  652. msg.content = content;
  653. }
  654. json message {
  655. {"role", "assistant"},
  656. };
  657. if (!msg.reasoning_content.empty()) {
  658. message["reasoning_content"] = msg.reasoning_content;
  659. }
  660. if (msg.content.empty() && !msg.tool_calls.empty()) {
  661. message["content"] = json();
  662. } else {
  663. message["content"] = msg.content;
  664. }
  665. if (!msg.tool_calls.empty()) {
  666. auto tool_calls = json::array();
  667. for (const auto & tc : msg.tool_calls) {
  668. tool_calls.push_back({
  669. {"type", "function"},
  670. {"function", {
  671. {"name", tc.name},
  672. {"arguments", tc.arguments},
  673. }},
  674. // Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
  675. // We only generate a random id for the ones that don't generate one by themselves
  676. // (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
  677. {"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
  678. });
  679. }
  680. message["tool_calls"] = tool_calls;
  681. }
  682. json choice {
  683. {"finish_reason", finish_reason},
  684. {"index", 0},
  685. {"message", message},
  686. };
  687. if (!stream && probs_output.size() > 0) {
  688. choice["logprobs"] = json{
  689. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  690. };
  691. }
  692. std::time_t t = std::time(0);
  693. json res = json {
  694. {"choices", json::array({choice})},
  695. {"created", t},
  696. {"model", oaicompat_model},
  697. {"system_fingerprint", build_info},
  698. {"object", "chat.completion"},
  699. {"usage", json {
  700. {"completion_tokens", n_decoded},
  701. {"prompt_tokens", n_prompt_tokens},
  702. {"total_tokens", n_decoded + n_prompt_tokens}
  703. }},
  704. {"id", oaicompat_cmpl_id}
  705. };
  706. // extra fields for debugging purposes
  707. if (verbose) {
  708. res["__verbose"] = to_json_non_oaicompat();
  709. }
  710. if (timings.prompt_n >= 0) {
  711. res.push_back({"timings", timings.to_json()});
  712. }
  713. return res;
  714. }
  715. json to_json_oaicompat_chat_stream() {
  716. std::time_t t = std::time(0);
  717. std::string finish_reason = "length";
  718. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  719. finish_reason = "stop";
  720. }
  721. json choice = json {
  722. {"finish_reason", finish_reason},
  723. {"index", 0},
  724. {"delta", json::object()}
  725. };
  726. json ret = json {
  727. {"choices", json::array({choice})},
  728. {"created", t},
  729. {"id", oaicompat_cmpl_id},
  730. {"model", oaicompat_model},
  731. {"system_fingerprint", build_info},
  732. {"object", "chat.completion.chunk"},
  733. {"usage", json {
  734. {"completion_tokens", n_decoded},
  735. {"prompt_tokens", n_prompt_tokens},
  736. {"total_tokens", n_decoded + n_prompt_tokens},
  737. }},
  738. };
  739. if (timings.prompt_n >= 0) {
  740. ret.push_back({"timings", timings.to_json()});
  741. }
  742. // extra fields for debugging purposes
  743. if (verbose) {
  744. ret["__verbose"] = to_json_non_oaicompat();
  745. }
  746. return ret;
  747. }
  748. };
  749. struct server_task_result_cmpl_partial : server_task_result {
  750. int index = 0;
  751. std::string content;
  752. llama_tokens tokens;
  753. int32_t n_decoded;
  754. int32_t n_prompt_tokens;
  755. bool post_sampling_probs;
  756. completion_token_output prob_output;
  757. result_timings timings;
  758. // OAI-compat fields
  759. bool verbose = false;
  760. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  761. std::string oaicompat_model;
  762. std::string oaicompat_cmpl_id;
  763. virtual int get_index() override {
  764. return index;
  765. }
  766. virtual bool is_stop() override {
  767. return false; // in stream mode, partial responses are not considered stop
  768. }
  769. virtual json to_json() override {
  770. switch (oaicompat) {
  771. case OAICOMPAT_TYPE_NONE:
  772. return to_json_non_oaicompat();
  773. case OAICOMPAT_TYPE_COMPLETION:
  774. return to_json_oaicompat();
  775. case OAICOMPAT_TYPE_CHAT:
  776. return to_json_oaicompat_chat();
  777. default:
  778. GGML_ASSERT(false && "Invalid oaicompat_type");
  779. }
  780. }
  781. json to_json_non_oaicompat() {
  782. // non-OAI-compat JSON
  783. json res = json {
  784. {"index", index},
  785. {"content", content},
  786. {"tokens", tokens},
  787. {"stop", false},
  788. {"id_slot", id_slot},
  789. {"tokens_predicted", n_decoded},
  790. {"tokens_evaluated", n_prompt_tokens},
  791. };
  792. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  793. if (timings.prompt_n > 0) {
  794. res.push_back({"timings", timings.to_json()});
  795. }
  796. if (!prob_output.probs.empty()) {
  797. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  798. }
  799. return res;
  800. }
  801. json to_json_oaicompat() {
  802. std::time_t t = std::time(0);
  803. json logprobs = json(nullptr); // OAI default to null
  804. if (prob_output.probs.size() > 0) {
  805. logprobs = json{
  806. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  807. };
  808. }
  809. json res = json {
  810. {"choices", json::array({
  811. json{
  812. {"text", content},
  813. {"index", index},
  814. {"logprobs", logprobs},
  815. {"finish_reason", nullptr},
  816. }
  817. })},
  818. {"created", t},
  819. {"model", oaicompat_model},
  820. {"system_fingerprint", build_info},
  821. {"object", "text_completion"},
  822. {"id", oaicompat_cmpl_id}
  823. };
  824. // extra fields for debugging purposes
  825. if (verbose) {
  826. res["__verbose"] = to_json_non_oaicompat();
  827. }
  828. if (timings.prompt_n >= 0) {
  829. res.push_back({"timings", timings.to_json()});
  830. }
  831. return res;
  832. }
  833. json to_json_oaicompat_chat() {
  834. bool first = n_decoded == 0;
  835. std::time_t t = std::time(0);
  836. json choices;
  837. if (first) {
  838. if (content.empty()) {
  839. choices = json::array({json{{"finish_reason", nullptr},
  840. {"index", 0},
  841. {"delta", json{{"role", "assistant"}}}}});
  842. } else {
  843. // We have to send this as two updates to conform to openai behavior
  844. json initial_ret = json{{"choices", json::array({json{
  845. {"finish_reason", nullptr},
  846. {"index", 0},
  847. {"delta", json{
  848. {"role", "assistant"}
  849. }}}})},
  850. {"created", t},
  851. {"id", oaicompat_cmpl_id},
  852. {"model", oaicompat_model},
  853. {"object", "chat.completion.chunk"}};
  854. json second_ret = json{
  855. {"choices", json::array({json{{"finish_reason", nullptr},
  856. {"index", 0},
  857. {"delta", json {
  858. {"content", content}}}
  859. }})},
  860. {"created", t},
  861. {"id", oaicompat_cmpl_id},
  862. {"model", oaicompat_model},
  863. {"object", "chat.completion.chunk"}};
  864. return std::vector<json>({initial_ret, second_ret});
  865. }
  866. } else {
  867. choices = json::array({json{
  868. {"finish_reason", nullptr},
  869. {"index", 0},
  870. {"delta",
  871. json {
  872. {"content", content},
  873. }},
  874. }});
  875. }
  876. GGML_ASSERT(choices.size() >= 1);
  877. if (prob_output.probs.size() > 0) {
  878. choices[0]["logprobs"] = json{
  879. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  880. };
  881. }
  882. json ret = json {
  883. {"choices", choices},
  884. {"created", t},
  885. {"id", oaicompat_cmpl_id},
  886. {"model", oaicompat_model},
  887. {"system_fingerprint", build_info},
  888. {"object", "chat.completion.chunk"}
  889. };
  890. if (timings.prompt_n >= 0) {
  891. ret.push_back({"timings", timings.to_json()});
  892. }
  893. return std::vector<json>({ret});
  894. }
  895. };
  896. struct server_task_result_embd : server_task_result {
  897. int index = 0;
  898. std::vector<std::vector<float>> embedding;
  899. int32_t n_tokens;
  900. // OAI-compat fields
  901. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  902. virtual int get_index() override {
  903. return index;
  904. }
  905. virtual json to_json() override {
  906. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  907. ? to_json_oaicompat()
  908. : to_json_non_oaicompat();
  909. }
  910. json to_json_non_oaicompat() {
  911. return json {
  912. {"index", index},
  913. {"embedding", embedding},
  914. };
  915. }
  916. json to_json_oaicompat() {
  917. return json {
  918. {"index", index},
  919. {"embedding", embedding[0]},
  920. {"tokens_evaluated", n_tokens},
  921. };
  922. }
  923. };
  924. struct server_task_result_rerank : server_task_result {
  925. int index = 0;
  926. float score = -1e6;
  927. int32_t n_tokens;
  928. virtual int get_index() override {
  929. return index;
  930. }
  931. virtual json to_json() override {
  932. return json {
  933. {"index", index},
  934. {"score", score},
  935. {"tokens_evaluated", n_tokens},
  936. };
  937. }
  938. };
  939. // this function maybe used outside of server_task_result_error
  940. static json format_error_response(const std::string & message, const enum error_type type) {
  941. std::string type_str;
  942. int code = 500;
  943. switch (type) {
  944. case ERROR_TYPE_INVALID_REQUEST:
  945. type_str = "invalid_request_error";
  946. code = 400;
  947. break;
  948. case ERROR_TYPE_AUTHENTICATION:
  949. type_str = "authentication_error";
  950. code = 401;
  951. break;
  952. case ERROR_TYPE_NOT_FOUND:
  953. type_str = "not_found_error";
  954. code = 404;
  955. break;
  956. case ERROR_TYPE_SERVER:
  957. type_str = "server_error";
  958. code = 500;
  959. break;
  960. case ERROR_TYPE_PERMISSION:
  961. type_str = "permission_error";
  962. code = 403;
  963. break;
  964. case ERROR_TYPE_NOT_SUPPORTED:
  965. type_str = "not_supported_error";
  966. code = 501;
  967. break;
  968. case ERROR_TYPE_UNAVAILABLE:
  969. type_str = "unavailable_error";
  970. code = 503;
  971. break;
  972. }
  973. return json {
  974. {"code", code},
  975. {"message", message},
  976. {"type", type_str},
  977. };
  978. }
  979. struct server_task_result_error : server_task_result {
  980. int index = 0;
  981. error_type err_type = ERROR_TYPE_SERVER;
  982. std::string err_msg;
  983. virtual bool is_error() override {
  984. return true;
  985. }
  986. virtual json to_json() override {
  987. return format_error_response(err_msg, err_type);
  988. }
  989. };
  990. struct server_task_result_metrics : server_task_result {
  991. int n_idle_slots;
  992. int n_processing_slots;
  993. int n_tasks_deferred;
  994. int64_t t_start;
  995. int32_t kv_cache_tokens_count;
  996. int32_t kv_cache_used_cells;
  997. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  998. uint64_t n_prompt_tokens_processed_total = 0;
  999. uint64_t t_prompt_processing_total = 0;
  1000. uint64_t n_tokens_predicted_total = 0;
  1001. uint64_t t_tokens_generation_total = 0;
  1002. uint64_t n_prompt_tokens_processed = 0;
  1003. uint64_t t_prompt_processing = 0;
  1004. uint64_t n_tokens_predicted = 0;
  1005. uint64_t t_tokens_generation = 0;
  1006. uint64_t n_decode_total = 0;
  1007. uint64_t n_busy_slots_total = 0;
  1008. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1009. // therefore, we use json to temporarily store the slot.to_json() result
  1010. json slots_data = json::array();
  1011. virtual json to_json() override {
  1012. return json {
  1013. { "idle", n_idle_slots },
  1014. { "processing", n_processing_slots },
  1015. { "deferred", n_tasks_deferred },
  1016. { "t_start", t_start },
  1017. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1018. { "t_tokens_generation_total", t_tokens_generation_total },
  1019. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1020. { "t_prompt_processing_total", t_prompt_processing_total },
  1021. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1022. { "t_prompt_processing", t_prompt_processing },
  1023. { "n_tokens_predicted", n_tokens_predicted },
  1024. { "t_tokens_generation", t_tokens_generation },
  1025. { "n_decode_total", n_decode_total },
  1026. { "n_busy_slots_total", n_busy_slots_total },
  1027. { "kv_cache_tokens_count", kv_cache_tokens_count },
  1028. { "kv_cache_used_cells", kv_cache_used_cells },
  1029. { "slots", slots_data },
  1030. };
  1031. }
  1032. };
  1033. struct server_task_result_slot_save_load : server_task_result {
  1034. std::string filename;
  1035. bool is_save; // true = save, false = load
  1036. size_t n_tokens;
  1037. size_t n_bytes;
  1038. double t_ms;
  1039. virtual json to_json() override {
  1040. if (is_save) {
  1041. return json {
  1042. { "id_slot", id_slot },
  1043. { "filename", filename },
  1044. { "n_saved", n_tokens },
  1045. { "n_written", n_bytes },
  1046. { "timings", {
  1047. { "save_ms", t_ms }
  1048. }},
  1049. };
  1050. } else {
  1051. return json {
  1052. { "id_slot", id_slot },
  1053. { "filename", filename },
  1054. { "n_restored", n_tokens },
  1055. { "n_read", n_bytes },
  1056. { "timings", {
  1057. { "restore_ms", t_ms }
  1058. }},
  1059. };
  1060. }
  1061. }
  1062. };
  1063. struct server_task_result_slot_erase : server_task_result {
  1064. size_t n_erased;
  1065. virtual json to_json() override {
  1066. return json {
  1067. { "id_slot", id_slot },
  1068. { "n_erased", n_erased },
  1069. };
  1070. }
  1071. };
  1072. struct server_task_result_apply_lora : server_task_result {
  1073. virtual json to_json() override {
  1074. return json {{ "success", true }};
  1075. }
  1076. };
  1077. struct server_slot {
  1078. int id;
  1079. int id_task = -1;
  1080. // only used for completion/embedding/infill/rerank
  1081. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1082. llama_batch batch_spec = {};
  1083. llama_context * ctx = nullptr;
  1084. llama_context * ctx_dft = nullptr;
  1085. common_speculative * spec = nullptr;
  1086. std::vector<common_adapter_lora_info> lora;
  1087. // the index relative to completion multi-task request
  1088. size_t index = 0;
  1089. struct slot_params params;
  1090. slot_state state = SLOT_STATE_IDLE;
  1091. // used to determine the slot that has been used the longest
  1092. int64_t t_last_used = -1;
  1093. // generation props
  1094. int32_t n_ctx = 0; // context size per slot
  1095. int32_t n_past = 0;
  1096. int32_t n_decoded = 0;
  1097. int32_t n_remaining = -1;
  1098. int32_t i_batch = -1;
  1099. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1100. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1101. int32_t n_prompt_tokens = 0;
  1102. int32_t n_prompt_tokens_processed = 0;
  1103. // input prompt tokens
  1104. llama_tokens prompt_tokens;
  1105. size_t last_nl_pos = 0;
  1106. std::string generated_text;
  1107. llama_tokens generated_tokens;
  1108. llama_tokens cache_tokens;
  1109. std::vector<completion_token_output> generated_token_probs;
  1110. bool has_next_token = true;
  1111. bool has_new_line = false;
  1112. bool truncated = false;
  1113. stop_type stop;
  1114. std::string stopping_word;
  1115. // sampling
  1116. json json_schema;
  1117. struct common_sampler * smpl = nullptr;
  1118. llama_token sampled;
  1119. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1120. // stats
  1121. size_t n_sent_text = 0; // number of sent text character
  1122. int64_t t_start_process_prompt;
  1123. int64_t t_start_generation;
  1124. double t_prompt_processing; // ms
  1125. double t_token_generation; // ms
  1126. std::function<void(int)> callback_on_release;
  1127. // Speculative decoding stats
  1128. int32_t n_draft_total = 0; // Total draft tokens generated
  1129. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1130. void reset() {
  1131. SLT_DBG(*this, "%s", "\n");
  1132. n_prompt_tokens = 0;
  1133. last_nl_pos = 0;
  1134. generated_text = "";
  1135. has_new_line = false;
  1136. truncated = false;
  1137. stop = STOP_TYPE_NONE;
  1138. stopping_word = "";
  1139. n_past = 0;
  1140. n_sent_text = 0;
  1141. task_type = SERVER_TASK_TYPE_COMPLETION;
  1142. generated_tokens.clear();
  1143. generated_token_probs.clear();
  1144. // clear speculative decoding stats
  1145. n_draft_total = 0;
  1146. n_draft_accepted = 0;
  1147. }
  1148. bool is_non_causal() const {
  1149. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1150. }
  1151. bool can_batch_with(server_slot & other_slot) const {
  1152. return is_non_causal() == other_slot.is_non_causal()
  1153. && are_lora_equal(lora, other_slot.lora);
  1154. }
  1155. bool has_budget(const common_params & global_params) {
  1156. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1157. return true; // limitless
  1158. }
  1159. n_remaining = -1;
  1160. if (params.n_predict != -1) {
  1161. n_remaining = params.n_predict - n_decoded;
  1162. } else if (global_params.n_predict != -1) {
  1163. n_remaining = global_params.n_predict - n_decoded;
  1164. }
  1165. return n_remaining > 0; // no budget
  1166. }
  1167. bool is_processing() const {
  1168. return state != SLOT_STATE_IDLE;
  1169. }
  1170. bool can_speculate() const {
  1171. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1172. }
  1173. void add_token(const completion_token_output & token) {
  1174. if (!is_processing()) {
  1175. SLT_WRN(*this, "%s", "slot is not processing\n");
  1176. return;
  1177. }
  1178. generated_token_probs.push_back(token);
  1179. }
  1180. void release() {
  1181. if (is_processing()) {
  1182. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1183. t_last_used = ggml_time_us();
  1184. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1185. state = SLOT_STATE_IDLE;
  1186. callback_on_release(id);
  1187. }
  1188. }
  1189. result_timings get_timings() const {
  1190. result_timings timings;
  1191. timings.prompt_n = n_prompt_tokens_processed;
  1192. timings.prompt_ms = t_prompt_processing;
  1193. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1194. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1195. timings.predicted_n = n_decoded;
  1196. timings.predicted_ms = t_token_generation;
  1197. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1198. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1199. // Add speculative metrics
  1200. if (n_draft_total > 0) {
  1201. timings.draft_n = n_draft_total;
  1202. timings.draft_n_accepted = n_draft_accepted;
  1203. }
  1204. return timings;
  1205. }
  1206. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1207. size_t stop_pos = std::string::npos;
  1208. for (const std::string & word : params.antiprompt) {
  1209. size_t pos;
  1210. if (is_full_stop) {
  1211. const size_t tmp = word.size() + last_token_size;
  1212. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1213. pos = text.find(word, from_pos);
  1214. } else {
  1215. // otherwise, partial stop
  1216. pos = find_partial_stop_string(word, text);
  1217. }
  1218. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1219. if (is_full_stop) {
  1220. stop = STOP_TYPE_WORD;
  1221. stopping_word = word;
  1222. has_next_token = false;
  1223. }
  1224. stop_pos = pos;
  1225. }
  1226. }
  1227. return stop_pos;
  1228. }
  1229. void print_timings() const {
  1230. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1231. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1232. const double t_gen = t_token_generation / n_decoded;
  1233. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1234. SLT_INF(*this,
  1235. "\n"
  1236. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1237. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1238. " total time = %10.2f ms / %5d tokens\n",
  1239. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1240. t_token_generation, n_decoded, t_gen, n_gen_second,
  1241. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1242. if (n_draft_total > 0) {
  1243. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1244. SLT_INF(*this,
  1245. "\n"
  1246. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1247. draft_ratio, n_draft_accepted, n_draft_total
  1248. );
  1249. }
  1250. }
  1251. json to_json() const {
  1252. return json {
  1253. {"id", id},
  1254. {"id_task", id_task},
  1255. {"n_ctx", n_ctx},
  1256. {"speculative", can_speculate()},
  1257. {"is_processing", is_processing()},
  1258. {"non_causal", is_non_causal()},
  1259. {"params", params.to_json()},
  1260. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1261. {"next_token",
  1262. {
  1263. {"has_next_token", has_next_token},
  1264. {"has_new_line", has_new_line},
  1265. {"n_remain", n_remaining},
  1266. {"n_decoded", n_decoded},
  1267. {"stopping_word", stopping_word},
  1268. }
  1269. },
  1270. };
  1271. }
  1272. };
  1273. struct server_metrics {
  1274. int64_t t_start = 0;
  1275. uint64_t n_prompt_tokens_processed_total = 0;
  1276. uint64_t t_prompt_processing_total = 0;
  1277. uint64_t n_tokens_predicted_total = 0;
  1278. uint64_t t_tokens_generation_total = 0;
  1279. uint64_t n_prompt_tokens_processed = 0;
  1280. uint64_t t_prompt_processing = 0;
  1281. uint64_t n_tokens_predicted = 0;
  1282. uint64_t t_tokens_generation = 0;
  1283. uint64_t n_decode_total = 0;
  1284. uint64_t n_busy_slots_total = 0;
  1285. void init() {
  1286. t_start = ggml_time_us();
  1287. }
  1288. void on_prompt_eval(const server_slot & slot) {
  1289. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1290. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1291. t_prompt_processing += slot.t_prompt_processing;
  1292. t_prompt_processing_total += slot.t_prompt_processing;
  1293. }
  1294. void on_prediction(const server_slot & slot) {
  1295. n_tokens_predicted_total += slot.n_decoded;
  1296. n_tokens_predicted += slot.n_decoded;
  1297. t_tokens_generation += slot.t_token_generation;
  1298. t_tokens_generation_total += slot.t_token_generation;
  1299. }
  1300. void on_decoded(const std::vector<server_slot> & slots) {
  1301. n_decode_total++;
  1302. for (const auto & slot : slots) {
  1303. if (slot.is_processing()) {
  1304. n_busy_slots_total++;
  1305. }
  1306. }
  1307. }
  1308. void reset_bucket() {
  1309. n_prompt_tokens_processed = 0;
  1310. t_prompt_processing = 0;
  1311. n_tokens_predicted = 0;
  1312. t_tokens_generation = 0;
  1313. }
  1314. };
  1315. struct server_queue {
  1316. int id = 0;
  1317. bool running;
  1318. // queues
  1319. std::deque<server_task> queue_tasks;
  1320. std::deque<server_task> queue_tasks_deferred;
  1321. std::mutex mutex_tasks;
  1322. std::condition_variable condition_tasks;
  1323. // callback functions
  1324. std::function<void(server_task)> callback_new_task;
  1325. std::function<void(void)> callback_update_slots;
  1326. // Add a new task to the end of the queue
  1327. int post(server_task task, bool front = false) {
  1328. std::unique_lock<std::mutex> lock(mutex_tasks);
  1329. GGML_ASSERT(task.id != -1);
  1330. // if this is cancel task make sure to clean up pending tasks
  1331. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1332. cleanup_pending_task(task.id_target);
  1333. }
  1334. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1335. if (front) {
  1336. queue_tasks.push_front(std::move(task));
  1337. } else {
  1338. queue_tasks.push_back(std::move(task));
  1339. }
  1340. condition_tasks.notify_one();
  1341. return task.id;
  1342. }
  1343. // multi-task version of post()
  1344. int post(std::vector<server_task> & tasks, bool front = false) {
  1345. std::unique_lock<std::mutex> lock(mutex_tasks);
  1346. for (auto & task : tasks) {
  1347. if (task.id == -1) {
  1348. task.id = id++;
  1349. }
  1350. // if this is cancel task make sure to clean up pending tasks
  1351. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1352. cleanup_pending_task(task.id_target);
  1353. }
  1354. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1355. if (front) {
  1356. queue_tasks.push_front(std::move(task));
  1357. } else {
  1358. queue_tasks.push_back(std::move(task));
  1359. }
  1360. }
  1361. condition_tasks.notify_one();
  1362. return 0;
  1363. }
  1364. // Add a new task, but defer until one slot is available
  1365. void defer(server_task task) {
  1366. std::unique_lock<std::mutex> lock(mutex_tasks);
  1367. QUE_DBG("defer task, id = %d\n", task.id);
  1368. queue_tasks_deferred.push_back(std::move(task));
  1369. condition_tasks.notify_one();
  1370. }
  1371. // Get the next id for creating a new task
  1372. int get_new_id() {
  1373. std::unique_lock<std::mutex> lock(mutex_tasks);
  1374. int new_id = id++;
  1375. return new_id;
  1376. }
  1377. // Register function to process a new task
  1378. void on_new_task(std::function<void(server_task)> callback) {
  1379. callback_new_task = std::move(callback);
  1380. }
  1381. // Register the function to be called when all slots data is ready to be processed
  1382. void on_update_slots(std::function<void(void)> callback) {
  1383. callback_update_slots = std::move(callback);
  1384. }
  1385. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1386. void pop_deferred_task() {
  1387. std::unique_lock<std::mutex> lock(mutex_tasks);
  1388. if (!queue_tasks_deferred.empty()) {
  1389. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1390. queue_tasks_deferred.pop_front();
  1391. }
  1392. condition_tasks.notify_one();
  1393. }
  1394. // end the start_loop routine
  1395. void terminate() {
  1396. std::unique_lock<std::mutex> lock(mutex_tasks);
  1397. running = false;
  1398. condition_tasks.notify_all();
  1399. }
  1400. /**
  1401. * Main loop consists of these steps:
  1402. * - Wait until a new task arrives
  1403. * - Process the task (i.e. maybe copy data into slot)
  1404. * - Check if multitask is finished
  1405. * - Update all slots
  1406. */
  1407. void start_loop() {
  1408. running = true;
  1409. while (true) {
  1410. QUE_DBG("%s", "processing new tasks\n");
  1411. while (true) {
  1412. std::unique_lock<std::mutex> lock(mutex_tasks);
  1413. if (!running) {
  1414. QUE_DBG("%s", "terminate\n");
  1415. return;
  1416. }
  1417. if (queue_tasks.empty()) {
  1418. lock.unlock();
  1419. break;
  1420. }
  1421. server_task task = queue_tasks.front();
  1422. queue_tasks.pop_front();
  1423. lock.unlock();
  1424. QUE_DBG("processing task, id = %d\n", task.id);
  1425. callback_new_task(std::move(task));
  1426. }
  1427. // all tasks in the current loop is processed, slots data is now ready
  1428. QUE_DBG("%s", "update slots\n");
  1429. callback_update_slots();
  1430. QUE_DBG("%s", "waiting for new tasks\n");
  1431. {
  1432. std::unique_lock<std::mutex> lock(mutex_tasks);
  1433. if (!running) {
  1434. QUE_DBG("%s", "terminate\n");
  1435. return;
  1436. }
  1437. if (queue_tasks.empty()) {
  1438. condition_tasks.wait(lock, [&]{
  1439. return (!queue_tasks.empty() || !running);
  1440. });
  1441. }
  1442. }
  1443. }
  1444. }
  1445. private:
  1446. void cleanup_pending_task(int id_target) {
  1447. // no need lock because this is called exclusively by post()
  1448. auto rm_func = [id_target](const server_task & task) {
  1449. return task.id_target == id_target;
  1450. };
  1451. queue_tasks.erase(
  1452. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1453. queue_tasks.end());
  1454. queue_tasks_deferred.erase(
  1455. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1456. queue_tasks_deferred.end());
  1457. }
  1458. };
  1459. struct server_response {
  1460. bool running = true;
  1461. // for keeping track of all tasks waiting for the result
  1462. std::unordered_set<int> waiting_task_ids;
  1463. // the main result queue (using ptr for polymorphism)
  1464. std::vector<server_task_result_ptr> queue_results;
  1465. std::mutex mutex_results;
  1466. std::condition_variable condition_results;
  1467. // add the id_task to the list of tasks waiting for response
  1468. void add_waiting_task_id(int id_task) {
  1469. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1470. std::unique_lock<std::mutex> lock(mutex_results);
  1471. waiting_task_ids.insert(id_task);
  1472. }
  1473. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1474. std::unique_lock<std::mutex> lock(mutex_results);
  1475. for (const auto & task : tasks) {
  1476. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1477. waiting_task_ids.insert(task.id);
  1478. }
  1479. }
  1480. // when the request is finished, we can remove task associated with it
  1481. void remove_waiting_task_id(int id_task) {
  1482. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1483. std::unique_lock<std::mutex> lock(mutex_results);
  1484. waiting_task_ids.erase(id_task);
  1485. // make sure to clean up all pending results
  1486. queue_results.erase(
  1487. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1488. return res->id == id_task;
  1489. }),
  1490. queue_results.end());
  1491. }
  1492. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1493. std::unique_lock<std::mutex> lock(mutex_results);
  1494. for (const auto & id_task : id_tasks) {
  1495. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1496. waiting_task_ids.erase(id_task);
  1497. }
  1498. }
  1499. // This function blocks the thread until there is a response for one of the id_tasks
  1500. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1501. while (true) {
  1502. std::unique_lock<std::mutex> lock(mutex_results);
  1503. condition_results.wait(lock, [&]{
  1504. if (!running) {
  1505. SRV_DBG("%s : queue result stop\n", __func__);
  1506. std::terminate(); // we cannot return here since the caller is HTTP code
  1507. }
  1508. return !queue_results.empty();
  1509. });
  1510. for (size_t i = 0; i < queue_results.size(); i++) {
  1511. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1512. server_task_result_ptr res = std::move(queue_results[i]);
  1513. queue_results.erase(queue_results.begin() + i);
  1514. return res;
  1515. }
  1516. }
  1517. }
  1518. // should never reach here
  1519. }
  1520. // same as recv(), but have timeout in seconds
  1521. // if timeout is reached, nullptr is returned
  1522. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1523. while (true) {
  1524. std::unique_lock<std::mutex> lock(mutex_results);
  1525. for (int i = 0; i < (int) queue_results.size(); i++) {
  1526. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1527. server_task_result_ptr res = std::move(queue_results[i]);
  1528. queue_results.erase(queue_results.begin() + i);
  1529. return res;
  1530. }
  1531. }
  1532. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1533. if (!running) {
  1534. SRV_DBG("%s : queue result stop\n", __func__);
  1535. std::terminate(); // we cannot return here since the caller is HTTP code
  1536. }
  1537. if (cr_res == std::cv_status::timeout) {
  1538. return nullptr;
  1539. }
  1540. }
  1541. // should never reach here
  1542. }
  1543. // single-task version of recv()
  1544. server_task_result_ptr recv(int id_task) {
  1545. std::unordered_set<int> id_tasks = {id_task};
  1546. return recv(id_tasks);
  1547. }
  1548. // Send a new result to a waiting id_task
  1549. void send(server_task_result_ptr && result) {
  1550. SRV_DBG("sending result for task id = %d\n", result->id);
  1551. std::unique_lock<std::mutex> lock(mutex_results);
  1552. for (const auto & id_task : waiting_task_ids) {
  1553. if (result->id == id_task) {
  1554. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1555. queue_results.emplace_back(std::move(result));
  1556. condition_results.notify_all();
  1557. return;
  1558. }
  1559. }
  1560. }
  1561. // terminate the waiting loop
  1562. void terminate() {
  1563. running = false;
  1564. condition_results.notify_all();
  1565. }
  1566. };
  1567. struct server_context {
  1568. common_params params_base;
  1569. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1570. common_init_result llama_init;
  1571. common_init_result llama_init_dft;
  1572. llama_model * model = nullptr;
  1573. llama_context * ctx = nullptr;
  1574. const llama_vocab * vocab = nullptr;
  1575. llama_model * model_dft = nullptr;
  1576. llama_context_params cparams_dft;
  1577. llama_batch batch = {};
  1578. bool clean_kv_cache = true;
  1579. bool add_bos_token = true;
  1580. bool has_eos_token = false;
  1581. int32_t n_ctx; // total context for all clients / slots
  1582. // slots / clients
  1583. std::vector<server_slot> slots;
  1584. json default_generation_settings_for_props;
  1585. server_queue queue_tasks;
  1586. server_response queue_results;
  1587. server_metrics metrics;
  1588. // Necessary similarity of prompt for slot selection
  1589. float slot_prompt_similarity = 0.0f;
  1590. common_chat_templates_ptr chat_templates;
  1591. ~server_context() {
  1592. // Clear any sampling context
  1593. for (server_slot & slot : slots) {
  1594. common_sampler_free(slot.smpl);
  1595. slot.smpl = nullptr;
  1596. llama_free(slot.ctx_dft);
  1597. slot.ctx_dft = nullptr;
  1598. common_speculative_free(slot.spec);
  1599. slot.spec = nullptr;
  1600. llama_batch_free(slot.batch_spec);
  1601. }
  1602. llama_batch_free(batch);
  1603. }
  1604. bool load_model(const common_params & params) {
  1605. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1606. params_base = params;
  1607. llama_init = common_init_from_params(params_base);
  1608. model = llama_init.model.get();
  1609. ctx = llama_init.context.get();
  1610. if (model == nullptr) {
  1611. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1612. return false;
  1613. }
  1614. vocab = llama_model_get_vocab(model);
  1615. n_ctx = llama_n_ctx(ctx);
  1616. add_bos_token = llama_vocab_get_add_bos(vocab);
  1617. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1618. if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
  1619. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  1620. auto params_dft = params_base;
  1621. params_dft.devices = params_base.speculative.devices;
  1622. params_dft.model = params_base.speculative.model;
  1623. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1624. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1625. params_dft.n_parallel = 1;
  1626. // force F16 KV cache for the draft model for extra performance
  1627. params_dft.cache_type_k = GGML_TYPE_F16;
  1628. params_dft.cache_type_v = GGML_TYPE_F16;
  1629. llama_init_dft = common_init_from_params(params_dft);
  1630. model_dft = llama_init_dft.model.get();
  1631. if (model_dft == nullptr) {
  1632. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  1633. return false;
  1634. }
  1635. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1636. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  1637. return false;
  1638. }
  1639. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1640. cparams_dft = common_context_params_to_llama(params_dft);
  1641. cparams_dft.n_batch = n_ctx_dft;
  1642. // the context is not needed - we will create one for each slot
  1643. llama_init_dft.context.reset();
  1644. }
  1645. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1646. try {
  1647. common_chat_format_example(chat_templates.get(), params.use_jinja);
  1648. } catch (const std::exception & e) {
  1649. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1650. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1651. chat_templates = common_chat_templates_init(model, "chatml");
  1652. }
  1653. return true;
  1654. }
  1655. void init() {
  1656. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1657. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1658. for (int i = 0; i < params_base.n_parallel; i++) {
  1659. server_slot slot;
  1660. slot.id = i;
  1661. slot.ctx = ctx;
  1662. slot.n_ctx = n_ctx_slot;
  1663. slot.n_predict = params_base.n_predict;
  1664. if (model_dft) {
  1665. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1666. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1667. if (slot.ctx_dft == nullptr) {
  1668. SRV_ERR("%s", "failed to create draft context\n");
  1669. return;
  1670. }
  1671. slot.spec = common_speculative_init(slot.ctx_dft);
  1672. if (slot.spec == nullptr) {
  1673. SRV_ERR("%s", "failed to create speculator\n");
  1674. return;
  1675. }
  1676. }
  1677. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1678. slot.params.sampling = params_base.sampling;
  1679. slot.callback_on_release = [this](int) {
  1680. queue_tasks.pop_deferred_task();
  1681. };
  1682. slot.reset();
  1683. slots.push_back(slot);
  1684. }
  1685. default_generation_settings_for_props = slots[0].to_json();
  1686. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1687. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1688. {
  1689. const int32_t n_batch = llama_n_batch(ctx);
  1690. // only a single seq_id per token is needed
  1691. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1692. }
  1693. metrics.init();
  1694. }
  1695. server_slot * get_slot_by_id(int id) {
  1696. for (server_slot & slot : slots) {
  1697. if (slot.id == id) {
  1698. return &slot;
  1699. }
  1700. }
  1701. return nullptr;
  1702. }
  1703. server_slot * get_available_slot(const server_task & task) {
  1704. server_slot * ret = nullptr;
  1705. // find the slot that has at least n% prompt similarity
  1706. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1707. int lcs_len = 0;
  1708. float similarity = 0;
  1709. for (server_slot & slot : slots) {
  1710. // skip the slot if it is not available
  1711. if (slot.is_processing()) {
  1712. continue;
  1713. }
  1714. // skip the slot if it does not contains cached tokens
  1715. if (slot.cache_tokens.empty()) {
  1716. continue;
  1717. }
  1718. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1719. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1720. // fraction of the common subsequence length compared to the current slot's prompt length
  1721. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1722. // select the current slot if the criteria match
  1723. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1724. lcs_len = cur_lcs_len;
  1725. similarity = cur_similarity;
  1726. ret = &slot;
  1727. }
  1728. }
  1729. if (ret != nullptr) {
  1730. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1731. }
  1732. }
  1733. // find the slot that has been least recently used
  1734. if (ret == nullptr) {
  1735. int64_t t_last = ggml_time_us();
  1736. for (server_slot & slot : slots) {
  1737. // skip the slot if it is not available
  1738. if (slot.is_processing()) {
  1739. continue;
  1740. }
  1741. // select the current slot if the criteria match
  1742. if (slot.t_last_used < t_last) {
  1743. t_last = slot.t_last_used;
  1744. ret = &slot;
  1745. }
  1746. }
  1747. if (ret != nullptr) {
  1748. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1749. }
  1750. }
  1751. return ret;
  1752. }
  1753. bool can_be_detokenized(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
  1754. const llama_model * model = llama_get_model(ctx);
  1755. const llama_vocab * vocab = llama_model_get_vocab(model);
  1756. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1757. for (const auto & token : tokens) {
  1758. if (token < 0 || token >= n_vocab) {
  1759. return false;
  1760. }
  1761. }
  1762. return true;
  1763. }
  1764. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1765. slot.reset();
  1766. slot.id_task = task.id;
  1767. slot.index = task.index;
  1768. slot.task_type = task.type;
  1769. slot.params = std::move(task.params);
  1770. slot.prompt_tokens = std::move(task.prompt_tokens);
  1771. if (!are_lora_equal(task.params.lora, slot.lora)) {
  1772. // if lora is changed, we cannot reuse cached tokens
  1773. slot.cache_tokens.clear();
  1774. slot.lora = task.params.lora;
  1775. }
  1776. bool can_detokenize = can_be_detokenized(ctx, slot.prompt_tokens);
  1777. if (!can_detokenize) {
  1778. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  1779. return false;
  1780. }
  1781. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1782. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1783. // Might be better to reject the request with a 400 ?
  1784. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1785. slot.params.n_predict = slot.n_predict;
  1786. }
  1787. if (slot.params.ignore_eos && has_eos_token) {
  1788. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1789. }
  1790. {
  1791. if (slot.smpl != nullptr) {
  1792. common_sampler_free(slot.smpl);
  1793. }
  1794. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1795. if (slot.smpl == nullptr) {
  1796. // for now, the only error that may happen here is invalid grammar
  1797. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1798. return false;
  1799. }
  1800. }
  1801. if (slot.ctx_dft) {
  1802. llama_batch_free(slot.batch_spec);
  1803. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1804. }
  1805. slot.state = SLOT_STATE_STARTED;
  1806. SLT_INF(slot, "%s", "processing task\n");
  1807. return true;
  1808. }
  1809. void kv_cache_clear() {
  1810. SRV_DBG("%s", "clearing KV cache\n");
  1811. // clear the entire KV cache
  1812. llama_kv_self_clear(ctx);
  1813. clean_kv_cache = false;
  1814. }
  1815. bool process_token(completion_token_output & result, server_slot & slot) {
  1816. // remember which tokens were sampled - used for repetition penalties during sampling
  1817. const std::string token_str = result.text_to_send;
  1818. slot.sampled = result.tok;
  1819. slot.generated_text += token_str;
  1820. if (slot.params.return_tokens) {
  1821. slot.generated_tokens.push_back(result.tok);
  1822. }
  1823. slot.has_next_token = true;
  1824. // check if there is incomplete UTF-8 character at the end
  1825. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1826. // search stop word and delete it
  1827. if (!incomplete) {
  1828. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1829. const std::string str_test = slot.generated_text.substr(pos);
  1830. bool send_text = true;
  1831. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1832. if (stop_pos != std::string::npos) {
  1833. slot.generated_text.erase(
  1834. slot.generated_text.begin() + pos + stop_pos,
  1835. slot.generated_text.end());
  1836. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1837. } else if (slot.has_next_token) {
  1838. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1839. send_text = stop_pos == std::string::npos;
  1840. }
  1841. // check if there is any token to predict
  1842. if (send_text) {
  1843. // no send the stop word in the response
  1844. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1845. slot.n_sent_text += result.text_to_send.size();
  1846. // add the token to slot queue and cache
  1847. } else {
  1848. result.text_to_send = "";
  1849. }
  1850. slot.add_token(result);
  1851. if (slot.params.stream) {
  1852. send_partial_response(slot, result);
  1853. }
  1854. }
  1855. if (incomplete) {
  1856. slot.has_next_token = true;
  1857. }
  1858. // check the limits
  1859. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1860. slot.stop = STOP_TYPE_LIMIT;
  1861. slot.has_next_token = false;
  1862. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1863. }
  1864. if (slot.has_new_line) {
  1865. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1866. if (slot.params.n_indent > 0) {
  1867. // check the current indentation
  1868. // TODO: improve by not doing it more than once for each new line
  1869. if (slot.last_nl_pos > 0) {
  1870. size_t pos = slot.last_nl_pos;
  1871. int n_indent = 0;
  1872. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1873. n_indent++;
  1874. pos++;
  1875. }
  1876. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1877. slot.stop = STOP_TYPE_LIMIT;
  1878. slot.has_next_token = false;
  1879. // cut the last line
  1880. slot.generated_text.erase(pos, std::string::npos);
  1881. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1882. }
  1883. }
  1884. // find the next new line
  1885. {
  1886. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1887. if (pos != std::string::npos) {
  1888. slot.last_nl_pos = pos + 1;
  1889. }
  1890. }
  1891. }
  1892. }
  1893. // check if there is a new line in the generated text
  1894. if (result.text_to_send.find('\n') != std::string::npos) {
  1895. slot.has_new_line = true;
  1896. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  1897. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1898. slot.stop = STOP_TYPE_LIMIT;
  1899. slot.has_next_token = false;
  1900. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1901. }
  1902. }
  1903. // if context shift is disabled, we stop when it reaches the context limit
  1904. if (slot.n_past >= slot.n_ctx) {
  1905. slot.truncated = true;
  1906. slot.stop = STOP_TYPE_LIMIT;
  1907. slot.has_next_token = false;
  1908. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1909. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1910. }
  1911. if (llama_vocab_is_eog(vocab, result.tok)) {
  1912. slot.stop = STOP_TYPE_EOS;
  1913. slot.has_next_token = false;
  1914. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1915. }
  1916. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1917. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1918. slot.truncated = true;
  1919. slot.stop = STOP_TYPE_LIMIT;
  1920. slot.has_next_token = false; // stop prediction
  1921. SLT_WRN(slot,
  1922. "n_predict (%d) is set for infinite generation. "
  1923. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1924. slot.params.n_predict, n_ctx_train);
  1925. }
  1926. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1927. return slot.has_next_token; // continue
  1928. }
  1929. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1930. size_t n_probs = slot.params.sampling.n_probs;
  1931. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1932. if (post_sampling) {
  1933. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1934. const size_t max_probs = cur_p->size;
  1935. // set probability for sampled token
  1936. for (size_t i = 0; i < max_probs; i++) {
  1937. if (cur_p->data[i].id == result.tok) {
  1938. result.prob = cur_p->data[i].p;
  1939. break;
  1940. }
  1941. }
  1942. // set probability for top n_probs tokens
  1943. result.probs.reserve(max_probs);
  1944. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1945. result.probs.push_back({
  1946. cur_p->data[i].id,
  1947. common_token_to_piece(ctx, cur_p->data[i].id, special),
  1948. cur_p->data[i].p
  1949. });
  1950. }
  1951. } else {
  1952. // TODO: optimize this with min-p optimization
  1953. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1954. // set probability for sampled token
  1955. for (size_t i = 0; i < n_vocab; i++) {
  1956. // set probability for sampled token
  1957. if (cur[i].id == result.tok) {
  1958. result.prob = cur[i].p;
  1959. break;
  1960. }
  1961. }
  1962. // set probability for top n_probs tokens
  1963. result.probs.reserve(n_probs);
  1964. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1965. result.probs.push_back({
  1966. cur[i].id,
  1967. common_token_to_piece(ctx, cur[i].id, special),
  1968. cur[i].p
  1969. });
  1970. }
  1971. }
  1972. }
  1973. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1974. send_error(task.id, error, type);
  1975. }
  1976. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1977. send_error(slot.id_task, error, type);
  1978. }
  1979. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1980. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1981. auto res = std::make_unique<server_task_result_error>();
  1982. res->id = id_task;
  1983. res->err_type = type;
  1984. res->err_msg = error;
  1985. queue_results.send(std::move(res));
  1986. }
  1987. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1988. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1989. res->id = slot.id_task;
  1990. res->index = slot.index;
  1991. res->content = tkn.text_to_send;
  1992. res->tokens = { tkn.tok };
  1993. res->n_decoded = slot.n_decoded;
  1994. res->n_prompt_tokens = slot.n_prompt_tokens;
  1995. res->post_sampling_probs = slot.params.post_sampling_probs;
  1996. res->verbose = slot.params.verbose;
  1997. res->oaicompat = slot.params.oaicompat;
  1998. res->oaicompat_model = slot.params.oaicompat_model;
  1999. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2000. // populate res.probs_output
  2001. if (slot.params.sampling.n_probs > 0) {
  2002. res->prob_output = tkn; // copy the token probs
  2003. }
  2004. // populate timings if this is final response or timings_per_token is enabled
  2005. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  2006. res->timings = slot.get_timings();
  2007. }
  2008. queue_results.send(std::move(res));
  2009. }
  2010. void send_final_response(server_slot & slot) {
  2011. auto res = std::make_unique<server_task_result_cmpl_final>();
  2012. res->id = slot.id_task;
  2013. res->id_slot = slot.id;
  2014. res->index = slot.index;
  2015. res->content = std::move(slot.generated_text);
  2016. res->tokens = std::move(slot.generated_tokens);
  2017. res->timings = slot.get_timings();
  2018. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  2019. res->response_fields = std::move(slot.params.response_fields);
  2020. res->truncated = slot.truncated;
  2021. res->n_decoded = slot.n_decoded;
  2022. res->n_prompt_tokens = slot.n_prompt_tokens;
  2023. res->n_tokens_cached = slot.n_past;
  2024. res->has_new_line = slot.has_new_line;
  2025. res->stopping_word = slot.stopping_word;
  2026. res->stop = slot.stop;
  2027. res->post_sampling_probs = slot.params.post_sampling_probs;
  2028. res->verbose = slot.params.verbose;
  2029. res->stream = slot.params.stream;
  2030. res->oaicompat = slot.params.oaicompat;
  2031. res->oaicompat_model = slot.params.oaicompat_model;
  2032. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2033. res->oaicompat_chat_format = slot.params.oaicompat_chat_format;
  2034. // populate res.probs_output
  2035. if (slot.params.sampling.n_probs > 0) {
  2036. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  2037. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2038. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2039. res->probs_output = std::vector<completion_token_output>(
  2040. slot.generated_token_probs.begin(),
  2041. slot.generated_token_probs.end() - safe_offset);
  2042. } else {
  2043. res->probs_output = std::vector<completion_token_output>(
  2044. slot.generated_token_probs.begin(),
  2045. slot.generated_token_probs.end());
  2046. }
  2047. }
  2048. res->generation_params = slot.params; // copy the parameters
  2049. queue_results.send(std::move(res));
  2050. }
  2051. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2052. auto res = std::make_unique<server_task_result_embd>();
  2053. res->id = slot.id_task;
  2054. res->index = slot.index;
  2055. res->n_tokens = slot.n_prompt_tokens;
  2056. res->oaicompat = slot.params.oaicompat;
  2057. const int n_embd = llama_model_n_embd(model);
  2058. std::vector<float> embd_res(n_embd, 0.0f);
  2059. for (int i = 0; i < batch.n_tokens; ++i) {
  2060. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2061. continue;
  2062. }
  2063. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2064. if (embd == NULL) {
  2065. embd = llama_get_embeddings_ith(ctx, i);
  2066. }
  2067. if (embd == NULL) {
  2068. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2069. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2070. continue;
  2071. }
  2072. // normalize only when there is pooling
  2073. // TODO: configurable
  2074. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2075. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  2076. res->embedding.push_back(embd_res);
  2077. } else {
  2078. res->embedding.push_back({ embd, embd + n_embd });
  2079. }
  2080. }
  2081. SLT_DBG(slot, "%s", "sending embeddings\n");
  2082. queue_results.send(std::move(res));
  2083. }
  2084. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2085. auto res = std::make_unique<server_task_result_rerank>();
  2086. res->id = slot.id_task;
  2087. res->index = slot.index;
  2088. res->n_tokens = slot.n_prompt_tokens;
  2089. for (int i = 0; i < batch.n_tokens; ++i) {
  2090. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2091. continue;
  2092. }
  2093. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2094. if (embd == NULL) {
  2095. embd = llama_get_embeddings_ith(ctx, i);
  2096. }
  2097. if (embd == NULL) {
  2098. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2099. res->score = -1e6;
  2100. continue;
  2101. }
  2102. res->score = embd[0];
  2103. }
  2104. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2105. queue_results.send(std::move(res));
  2106. }
  2107. //
  2108. // Functions to create new task(s) and receive result(s)
  2109. //
  2110. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2111. std::vector<server_task> cancel_tasks;
  2112. cancel_tasks.reserve(id_tasks.size());
  2113. for (const auto & id_task : id_tasks) {
  2114. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2115. server_task task(SERVER_TASK_TYPE_CANCEL);
  2116. task.id_target = id_task;
  2117. queue_results.remove_waiting_task_id(id_task);
  2118. cancel_tasks.push_back(task);
  2119. }
  2120. // push to beginning of the queue, so it has highest priority
  2121. queue_tasks.post(cancel_tasks, true);
  2122. }
  2123. // receive the results from task(s)
  2124. void receive_multi_results(
  2125. const std::unordered_set<int> & id_tasks,
  2126. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2127. const std::function<void(json)> & error_handler,
  2128. const std::function<bool()> & is_connection_closed) {
  2129. std::vector<server_task_result_ptr> results(id_tasks.size());
  2130. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2131. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2132. if (is_connection_closed()) {
  2133. cancel_tasks(id_tasks);
  2134. return;
  2135. }
  2136. if (result == nullptr) {
  2137. i--; // retry
  2138. continue;
  2139. }
  2140. if (result->is_error()) {
  2141. error_handler(result->to_json());
  2142. cancel_tasks(id_tasks);
  2143. return;
  2144. }
  2145. GGML_ASSERT(
  2146. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2147. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2148. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2149. );
  2150. const size_t idx = result->get_index();
  2151. GGML_ASSERT(idx < results.size() && "index out of range");
  2152. results[idx] = std::move(result);
  2153. }
  2154. result_handler(results);
  2155. }
  2156. // receive the results from task(s), in stream mode
  2157. void receive_cmpl_results_stream(
  2158. const std::unordered_set<int> & id_tasks,
  2159. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2160. const std::function<void(json)> & error_handler,
  2161. const std::function<bool()> & is_connection_closed) {
  2162. size_t n_finished = 0;
  2163. while (true) {
  2164. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2165. if (is_connection_closed()) {
  2166. cancel_tasks(id_tasks);
  2167. return;
  2168. }
  2169. if (result == nullptr) {
  2170. continue; // retry
  2171. }
  2172. if (result->is_error()) {
  2173. error_handler(result->to_json());
  2174. cancel_tasks(id_tasks);
  2175. return;
  2176. }
  2177. GGML_ASSERT(
  2178. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2179. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2180. );
  2181. if (!result_handler(result)) {
  2182. cancel_tasks(id_tasks);
  2183. break;
  2184. }
  2185. if (result->is_stop()) {
  2186. if (++n_finished == id_tasks.size()) {
  2187. break;
  2188. }
  2189. }
  2190. }
  2191. }
  2192. //
  2193. // Functions to process the task
  2194. //
  2195. void process_single_task(server_task task) {
  2196. switch (task.type) {
  2197. case SERVER_TASK_TYPE_COMPLETION:
  2198. case SERVER_TASK_TYPE_INFILL:
  2199. case SERVER_TASK_TYPE_EMBEDDING:
  2200. case SERVER_TASK_TYPE_RERANK:
  2201. {
  2202. const int id_slot = task.id_selected_slot;
  2203. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2204. if (slot == nullptr) {
  2205. // if no slot is available, we defer this task for processing later
  2206. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2207. queue_tasks.defer(task);
  2208. break;
  2209. }
  2210. if (slot->is_processing()) {
  2211. // if requested slot is unavailable, we defer this task for processing later
  2212. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2213. queue_tasks.defer(task);
  2214. break;
  2215. }
  2216. if (!launch_slot_with_task(*slot, task)) {
  2217. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2218. break;
  2219. }
  2220. } break;
  2221. case SERVER_TASK_TYPE_CANCEL:
  2222. {
  2223. // release slot linked with the task id
  2224. for (auto & slot : slots) {
  2225. if (slot.id_task == task.id_target) {
  2226. slot.release();
  2227. break;
  2228. }
  2229. }
  2230. } break;
  2231. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2232. {
  2233. // do nothing
  2234. } break;
  2235. case SERVER_TASK_TYPE_METRICS:
  2236. {
  2237. json slots_data = json::array();
  2238. int n_idle_slots = 0;
  2239. int n_processing_slots = 0;
  2240. for (server_slot & slot : slots) {
  2241. json slot_data = slot.to_json();
  2242. if (slot.is_processing()) {
  2243. n_processing_slots++;
  2244. } else {
  2245. n_idle_slots++;
  2246. }
  2247. slots_data.push_back(slot_data);
  2248. }
  2249. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2250. auto res = std::make_unique<server_task_result_metrics>();
  2251. res->id = task.id;
  2252. res->slots_data = std::move(slots_data);
  2253. res->n_idle_slots = n_idle_slots;
  2254. res->n_processing_slots = n_processing_slots;
  2255. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2256. res->t_start = metrics.t_start;
  2257. res->kv_cache_tokens_count = llama_kv_self_n_tokens(ctx);
  2258. res->kv_cache_used_cells = llama_kv_self_used_cells(ctx);
  2259. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2260. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2261. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2262. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2263. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2264. res->t_prompt_processing = metrics.t_prompt_processing;
  2265. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2266. res->t_tokens_generation = metrics.t_tokens_generation;
  2267. res->n_decode_total = metrics.n_decode_total;
  2268. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2269. if (task.metrics_reset_bucket) {
  2270. metrics.reset_bucket();
  2271. }
  2272. queue_results.send(std::move(res));
  2273. } break;
  2274. case SERVER_TASK_TYPE_SLOT_SAVE:
  2275. {
  2276. int id_slot = task.slot_action.slot_id;
  2277. server_slot * slot = get_slot_by_id(id_slot);
  2278. if (slot == nullptr) {
  2279. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2280. break;
  2281. }
  2282. if (slot->is_processing()) {
  2283. // if requested slot is unavailable, we defer this task for processing later
  2284. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2285. queue_tasks.defer(task);
  2286. break;
  2287. }
  2288. const size_t token_count = slot->cache_tokens.size();
  2289. const int64_t t_start = ggml_time_us();
  2290. std::string filename = task.slot_action.filename;
  2291. std::string filepath = task.slot_action.filepath;
  2292. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2293. const int64_t t_end = ggml_time_us();
  2294. const double t_save_ms = (t_end - t_start) / 1000.0;
  2295. auto res = std::make_unique<server_task_result_slot_save_load>();
  2296. res->id = task.id;
  2297. res->id_slot = id_slot;
  2298. res->filename = filename;
  2299. res->is_save = true;
  2300. res->n_tokens = token_count;
  2301. res->n_bytes = nwrite;
  2302. res->t_ms = t_save_ms;
  2303. queue_results.send(std::move(res));
  2304. } break;
  2305. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2306. {
  2307. int id_slot = task.slot_action.slot_id;
  2308. server_slot * slot = get_slot_by_id(id_slot);
  2309. if (slot == nullptr) {
  2310. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2311. break;
  2312. }
  2313. if (slot->is_processing()) {
  2314. // if requested slot is unavailable, we defer this task for processing later
  2315. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2316. queue_tasks.defer(task);
  2317. break;
  2318. }
  2319. const int64_t t_start = ggml_time_us();
  2320. std::string filename = task.slot_action.filename;
  2321. std::string filepath = task.slot_action.filepath;
  2322. slot->cache_tokens.resize(slot->n_ctx);
  2323. size_t token_count = 0;
  2324. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2325. if (nread == 0) {
  2326. slot->cache_tokens.resize(0);
  2327. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2328. break;
  2329. }
  2330. slot->cache_tokens.resize(token_count);
  2331. const int64_t t_end = ggml_time_us();
  2332. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2333. auto res = std::make_unique<server_task_result_slot_save_load>();
  2334. res->id = task.id;
  2335. res->id_slot = id_slot;
  2336. res->filename = filename;
  2337. res->is_save = false;
  2338. res->n_tokens = token_count;
  2339. res->n_bytes = nread;
  2340. res->t_ms = t_restore_ms;
  2341. queue_results.send(std::move(res));
  2342. } break;
  2343. case SERVER_TASK_TYPE_SLOT_ERASE:
  2344. {
  2345. int id_slot = task.slot_action.slot_id;
  2346. server_slot * slot = get_slot_by_id(id_slot);
  2347. if (slot == nullptr) {
  2348. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2349. break;
  2350. }
  2351. if (slot->is_processing()) {
  2352. // if requested slot is unavailable, we defer this task for processing later
  2353. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2354. queue_tasks.defer(task);
  2355. break;
  2356. }
  2357. // Erase token cache
  2358. const size_t n_erased = slot->cache_tokens.size();
  2359. llama_kv_self_seq_rm(ctx, slot->id, -1, -1);
  2360. slot->cache_tokens.clear();
  2361. auto res = std::make_unique<server_task_result_slot_erase>();
  2362. res->id = task.id;
  2363. res->id_slot = id_slot;
  2364. res->n_erased = n_erased;
  2365. queue_results.send(std::move(res));
  2366. } break;
  2367. case SERVER_TASK_TYPE_SET_LORA:
  2368. {
  2369. params_base.lora_adapters = std::move(task.set_lora);
  2370. auto res = std::make_unique<server_task_result_apply_lora>();
  2371. res->id = task.id;
  2372. queue_results.send(std::move(res));
  2373. } break;
  2374. }
  2375. }
  2376. void update_slots() {
  2377. // check if all slots are idle
  2378. {
  2379. bool all_idle = true;
  2380. for (auto & slot : slots) {
  2381. if (slot.is_processing()) {
  2382. all_idle = false;
  2383. break;
  2384. }
  2385. }
  2386. if (all_idle) {
  2387. SRV_INF("%s", "all slots are idle\n");
  2388. if (clean_kv_cache) {
  2389. kv_cache_clear();
  2390. }
  2391. return;
  2392. }
  2393. }
  2394. {
  2395. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2396. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2397. task.id = queue_tasks.get_new_id();
  2398. queue_tasks.post(task);
  2399. }
  2400. // apply context-shift if needed
  2401. // TODO: simplify and improve
  2402. for (server_slot & slot : slots) {
  2403. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2404. if (!params_base.ctx_shift) {
  2405. // this check is redundant (for good)
  2406. // we should never get here, because generation should already stopped in process_token()
  2407. slot.release();
  2408. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2409. continue;
  2410. }
  2411. // Shift context
  2412. const int n_keep = slot.params.n_keep + add_bos_token;
  2413. const int n_left = slot.n_past - n_keep;
  2414. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2415. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2416. llama_kv_self_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2417. llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2418. if (slot.params.cache_prompt) {
  2419. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2420. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2421. }
  2422. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2423. }
  2424. slot.n_past -= n_discard;
  2425. slot.truncated = true;
  2426. }
  2427. }
  2428. // start populating the batch for this iteration
  2429. common_batch_clear(batch);
  2430. // track if given slot can be batched with slots already in the batch
  2431. server_slot * slot_batched = nullptr;
  2432. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2433. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2434. };
  2435. // frist, add sampled tokens from any ongoing sequences
  2436. for (auto & slot : slots) {
  2437. if (slot.state != SLOT_STATE_GENERATING) {
  2438. continue;
  2439. }
  2440. // check if we can batch this slot with the previous one
  2441. if (!slot_batched) {
  2442. slot_batched = &slot;
  2443. } else if (!slot_batched->can_batch_with(slot)) {
  2444. continue;
  2445. }
  2446. slot.i_batch = batch.n_tokens;
  2447. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2448. slot.n_past += 1;
  2449. if (slot.params.cache_prompt) {
  2450. slot.cache_tokens.push_back(slot.sampled);
  2451. }
  2452. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2453. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2454. }
  2455. // process in chunks of params.n_batch
  2456. int32_t n_batch = llama_n_batch(ctx);
  2457. int32_t n_ubatch = llama_n_ubatch(ctx);
  2458. // next, batch any pending prompts without exceeding n_batch
  2459. if (params_base.cont_batching || batch.n_tokens == 0) {
  2460. for (auto & slot : slots) {
  2461. // check if we can batch this slot with the previous one
  2462. if (slot.is_processing()) {
  2463. if (!slot_batched) {
  2464. slot_batched = &slot;
  2465. } else if (!slot_batched->can_batch_with(slot)) {
  2466. continue;
  2467. }
  2468. }
  2469. // this slot still has a prompt to be processed
  2470. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2471. auto & prompt_tokens = slot.prompt_tokens;
  2472. // TODO: maybe move branch to outside of this loop in the future
  2473. if (slot.state == SLOT_STATE_STARTED) {
  2474. slot.t_start_process_prompt = ggml_time_us();
  2475. slot.t_start_generation = 0;
  2476. slot.n_past = 0;
  2477. slot.n_prompt_tokens = prompt_tokens.size();
  2478. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2479. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2480. // print prompt tokens (for debugging)
  2481. if (1) {
  2482. // first 16 tokens (avoid flooding logs)
  2483. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2484. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2485. }
  2486. } else {
  2487. // all
  2488. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2489. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2490. }
  2491. }
  2492. // empty prompt passed -> release the slot and send empty response
  2493. if (prompt_tokens.empty()) {
  2494. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2495. slot.release();
  2496. slot.print_timings();
  2497. send_final_response(slot);
  2498. continue;
  2499. }
  2500. if (slot.is_non_causal()) {
  2501. if (slot.n_prompt_tokens > n_ubatch) {
  2502. slot.release();
  2503. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2504. continue;
  2505. }
  2506. if (slot.n_prompt_tokens > slot.n_ctx) {
  2507. slot.release();
  2508. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2509. continue;
  2510. }
  2511. } else {
  2512. if (!params_base.ctx_shift) {
  2513. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2514. // TODO: there should be a separate parameter that control prompt truncation
  2515. // context shift should be applied only during the generation phase
  2516. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2517. slot.release();
  2518. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2519. continue;
  2520. }
  2521. }
  2522. if (slot.params.n_keep < 0) {
  2523. slot.params.n_keep = slot.n_prompt_tokens;
  2524. }
  2525. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2526. // if input prompt is too big, truncate it
  2527. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2528. const int n_left = slot.n_ctx - slot.params.n_keep;
  2529. const int n_block_size = n_left / 2;
  2530. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2531. llama_tokens new_tokens(
  2532. prompt_tokens.begin(),
  2533. prompt_tokens.begin() + slot.params.n_keep);
  2534. new_tokens.insert(
  2535. new_tokens.end(),
  2536. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2537. prompt_tokens.end());
  2538. prompt_tokens = std::move(new_tokens);
  2539. slot.truncated = true;
  2540. slot.n_prompt_tokens = prompt_tokens.size();
  2541. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2542. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2543. }
  2544. if (slot.params.cache_prompt) {
  2545. // reuse any previously computed tokens that are common with the new prompt
  2546. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2547. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2548. if (params_base.n_cache_reuse > 0) {
  2549. size_t head_c = slot.n_past; // cache
  2550. size_t head_p = slot.n_past; // current prompt
  2551. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2552. while (head_c < slot.cache_tokens.size() &&
  2553. head_p < prompt_tokens.size()) {
  2554. size_t n_match = 0;
  2555. while (head_c + n_match < slot.cache_tokens.size() &&
  2556. head_p + n_match < prompt_tokens.size() &&
  2557. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2558. n_match++;
  2559. }
  2560. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2561. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2562. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2563. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2564. //}
  2565. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2566. llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c);
  2567. llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
  2568. for (size_t i = 0; i < n_match; i++) {
  2569. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2570. slot.n_past++;
  2571. }
  2572. head_c += n_match;
  2573. head_p += n_match;
  2574. } else {
  2575. head_c += 1;
  2576. }
  2577. }
  2578. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2579. }
  2580. }
  2581. }
  2582. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2583. // we have to evaluate at least 1 token to generate logits.
  2584. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2585. slot.n_past--;
  2586. }
  2587. slot.n_prompt_tokens_processed = 0;
  2588. }
  2589. // non-causal tasks require to fit the entire prompt in the physical batch
  2590. if (slot.is_non_causal()) {
  2591. // cannot fit the prompt in the current batch - will try next iter
  2592. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2593. continue;
  2594. }
  2595. }
  2596. // keep only the common part
  2597. if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2598. // could not partially delete (likely using a non-Transformer model)
  2599. llama_kv_self_seq_rm(ctx, slot.id, -1, -1);
  2600. // there is no common part left
  2601. slot.n_past = 0;
  2602. }
  2603. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2604. // remove the non-common part from the cache
  2605. slot.cache_tokens.resize(slot.n_past);
  2606. // add prompt tokens for processing in the current batch
  2607. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2608. // without pooling, we want to output the embeddings for all the tokens in the batch
  2609. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2610. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2611. if (slot.params.cache_prompt) {
  2612. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2613. }
  2614. slot.n_prompt_tokens_processed++;
  2615. slot.n_past++;
  2616. }
  2617. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2618. // entire prompt has been processed
  2619. if (slot.n_past == slot.n_prompt_tokens) {
  2620. slot.state = SLOT_STATE_DONE_PROMPT;
  2621. GGML_ASSERT(batch.n_tokens > 0);
  2622. common_sampler_reset(slot.smpl);
  2623. // Process all prompt tokens through sampler system
  2624. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2625. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2626. }
  2627. // extract the logits only for the last token
  2628. batch.logits[batch.n_tokens - 1] = true;
  2629. slot.n_decoded = 0;
  2630. slot.i_batch = batch.n_tokens - 1;
  2631. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2632. }
  2633. }
  2634. if (batch.n_tokens >= n_batch) {
  2635. break;
  2636. }
  2637. }
  2638. }
  2639. if (batch.n_tokens == 0) {
  2640. SRV_WRN("%s", "no tokens to decode\n");
  2641. return;
  2642. }
  2643. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2644. if (slot_batched) {
  2645. // make sure we're in the right embedding mode
  2646. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2647. // apply lora, only need to do it once per batch
  2648. common_set_adapter_lora(ctx, slot_batched->lora);
  2649. }
  2650. // process the created batch of tokens
  2651. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2652. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2653. llama_batch batch_view = {
  2654. n_tokens,
  2655. batch.token + i,
  2656. nullptr,
  2657. batch.pos + i,
  2658. batch.n_seq_id + i,
  2659. batch.seq_id + i,
  2660. batch.logits + i,
  2661. };
  2662. const int ret = llama_decode(ctx, batch_view);
  2663. metrics.on_decoded(slots);
  2664. if (ret != 0) {
  2665. if (n_batch == 1 || ret < 0) {
  2666. // if you get here, it means the KV cache is full - try increasing it via the context size
  2667. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2668. for (auto & slot : slots) {
  2669. slot.release();
  2670. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2671. }
  2672. break; // break loop of n_batch
  2673. }
  2674. // retry with half the batch size to try to find a free slot in the KV cache
  2675. n_batch /= 2;
  2676. i -= n_batch;
  2677. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2678. continue; // continue loop of n_batch
  2679. }
  2680. for (auto & slot : slots) {
  2681. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2682. continue; // continue loop of slots
  2683. }
  2684. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2685. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2686. // prompt evaluated for embedding
  2687. send_embedding(slot, batch_view);
  2688. slot.release();
  2689. slot.i_batch = -1;
  2690. continue; // continue loop of slots
  2691. }
  2692. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2693. send_rerank(slot, batch_view);
  2694. slot.release();
  2695. slot.i_batch = -1;
  2696. continue; // continue loop of slots
  2697. }
  2698. // prompt evaluated for next-token prediction
  2699. slot.state = SLOT_STATE_GENERATING;
  2700. } else if (slot.state != SLOT_STATE_GENERATING) {
  2701. continue; // continue loop of slots
  2702. }
  2703. const int tok_idx = slot.i_batch - i;
  2704. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2705. slot.i_batch = -1;
  2706. common_sampler_accept(slot.smpl, id, true);
  2707. slot.n_decoded += 1;
  2708. const int64_t t_current = ggml_time_us();
  2709. if (slot.n_decoded == 1) {
  2710. slot.t_start_generation = t_current;
  2711. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2712. metrics.on_prompt_eval(slot);
  2713. }
  2714. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2715. completion_token_output result;
  2716. result.tok = id;
  2717. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2718. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2719. if (slot.params.sampling.n_probs > 0) {
  2720. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2721. }
  2722. if (!process_token(result, slot)) {
  2723. // release slot because of stop condition
  2724. slot.release();
  2725. slot.print_timings();
  2726. send_final_response(slot);
  2727. metrics.on_prediction(slot);
  2728. continue;
  2729. }
  2730. }
  2731. // do speculative decoding
  2732. for (auto & slot : slots) {
  2733. if (!slot.is_processing() || !slot.can_speculate()) {
  2734. continue;
  2735. }
  2736. if (slot.state != SLOT_STATE_GENERATING) {
  2737. continue;
  2738. }
  2739. // determine the max draft that fits the current slot state
  2740. int n_draft_max = slot.params.speculative.n_max;
  2741. // note: n_past is not yet increased for the `id` token sampled above
  2742. // also, need to leave space for 1 extra token to allow context shifts
  2743. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2744. if (slot.n_remaining > 0) {
  2745. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2746. }
  2747. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2748. if (n_draft_max < slot.params.speculative.n_min) {
  2749. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2750. continue;
  2751. }
  2752. llama_token id = slot.sampled;
  2753. struct common_speculative_params params_spec;
  2754. params_spec.n_draft = n_draft_max;
  2755. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2756. params_spec.p_min = slot.params.speculative.p_min;
  2757. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2758. // keep track of total number of tokens generated in the draft
  2759. slot.n_draft_total += draft.size();
  2760. // ignore small drafts
  2761. if (slot.params.speculative.n_min > (int) draft.size()) {
  2762. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2763. continue;
  2764. }
  2765. // construct the speculation batch
  2766. common_batch_clear(slot.batch_spec);
  2767. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2768. for (size_t i = 0; i < draft.size(); ++i) {
  2769. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2770. }
  2771. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2772. llama_decode(ctx, slot.batch_spec);
  2773. // the accepted tokens from the speculation
  2774. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2775. slot.n_past += ids.size();
  2776. slot.n_decoded += ids.size();
  2777. // update how many tokens out of draft was accepted
  2778. slot.n_draft_accepted += ids.size() - 1;
  2779. slot.cache_tokens.push_back(id);
  2780. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2781. llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
  2782. for (size_t i = 0; i < ids.size(); ++i) {
  2783. completion_token_output result;
  2784. result.tok = ids[i];
  2785. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2786. result.prob = 1.0f; // set later
  2787. // TODO: set result.probs
  2788. if (!process_token(result, slot)) {
  2789. // release slot because of stop condition
  2790. slot.release();
  2791. slot.print_timings();
  2792. send_final_response(slot);
  2793. metrics.on_prediction(slot);
  2794. break;
  2795. }
  2796. }
  2797. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2798. }
  2799. }
  2800. SRV_DBG("%s", "run slots completed\n");
  2801. }
  2802. json model_meta() const {
  2803. return json {
  2804. {"vocab_type", llama_vocab_type (vocab)},
  2805. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2806. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2807. {"n_embd", llama_model_n_embd (model)},
  2808. {"n_params", llama_model_n_params (model)},
  2809. {"size", llama_model_size (model)},
  2810. };
  2811. }
  2812. };
  2813. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2814. // skip GH copilot requests when using default port
  2815. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2816. return;
  2817. }
  2818. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  2819. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2820. SRV_DBG("request: %s\n", req.body.c_str());
  2821. SRV_DBG("response: %s\n", res.body.c_str());
  2822. }
  2823. std::function<void(int)> shutdown_handler;
  2824. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2825. inline void signal_handler(int signal) {
  2826. if (is_terminating.test_and_set()) {
  2827. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2828. // this is for better developer experience, we can remove when the server is stable enough
  2829. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2830. exit(1);
  2831. }
  2832. shutdown_handler(signal);
  2833. }
  2834. int main(int argc, char ** argv) {
  2835. // own arguments required by this example
  2836. common_params params;
  2837. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2838. return 1;
  2839. }
  2840. common_init();
  2841. // struct that contains llama context and inference
  2842. server_context ctx_server;
  2843. llama_backend_init();
  2844. llama_numa_init(params.numa);
  2845. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2846. LOG_INF("\n");
  2847. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2848. LOG_INF("\n");
  2849. std::unique_ptr<httplib::Server> svr;
  2850. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2851. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2852. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2853. svr.reset(
  2854. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2855. );
  2856. } else {
  2857. LOG_INF("Running without SSL\n");
  2858. svr.reset(new httplib::Server());
  2859. }
  2860. #else
  2861. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2862. LOG_ERR("Server is built without SSL support\n");
  2863. return 1;
  2864. }
  2865. svr.reset(new httplib::Server());
  2866. #endif
  2867. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2868. svr->set_default_headers({{"Server", "llama.cpp"}});
  2869. svr->set_logger(log_server_request);
  2870. auto res_error = [](httplib::Response & res, const json & error_data) {
  2871. json final_response {{"error", error_data}};
  2872. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2873. res.status = json_value(error_data, "code", 500);
  2874. };
  2875. auto res_ok = [](httplib::Response & res, const json & data) {
  2876. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2877. res.status = 200;
  2878. };
  2879. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2880. std::string message;
  2881. try {
  2882. std::rethrow_exception(ep);
  2883. } catch (const std::exception & e) {
  2884. message = e.what();
  2885. } catch (...) {
  2886. message = "Unknown Exception";
  2887. }
  2888. try {
  2889. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2890. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2891. res_error(res, formatted_error);
  2892. } catch (const std::exception & e) {
  2893. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  2894. }
  2895. });
  2896. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2897. if (res.status == 404) {
  2898. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2899. }
  2900. // for other error codes, we skip processing here because it's already done by res_error()
  2901. });
  2902. // set timeouts and change hostname and port
  2903. svr->set_read_timeout (params.timeout_read);
  2904. svr->set_write_timeout(params.timeout_write);
  2905. std::unordered_map<std::string, std::string> log_data;
  2906. log_data["hostname"] = params.hostname;
  2907. log_data["port"] = std::to_string(params.port);
  2908. if (params.api_keys.size() == 1) {
  2909. auto key = params.api_keys[0];
  2910. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2911. } else if (params.api_keys.size() > 1) {
  2912. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2913. }
  2914. // Necessary similarity of prompt for slot selection
  2915. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2916. //
  2917. // Middlewares
  2918. //
  2919. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2920. static const std::unordered_set<std::string> public_endpoints = {
  2921. "/health",
  2922. "/models",
  2923. "/v1/models",
  2924. };
  2925. // If API key is not set, skip validation
  2926. if (params.api_keys.empty()) {
  2927. return true;
  2928. }
  2929. // If path is public or is static file, skip validation
  2930. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2931. return true;
  2932. }
  2933. // Check for API key in the header
  2934. auto auth_header = req.get_header_value("Authorization");
  2935. std::string prefix = "Bearer ";
  2936. if (auth_header.substr(0, prefix.size()) == prefix) {
  2937. std::string received_api_key = auth_header.substr(prefix.size());
  2938. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2939. return true; // API key is valid
  2940. }
  2941. }
  2942. // API key is invalid or not provided
  2943. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2944. LOG_WRN("Unauthorized: Invalid API Key\n");
  2945. return false;
  2946. };
  2947. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2948. server_state current_state = state.load();
  2949. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2950. auto tmp = string_split<std::string>(req.path, '.');
  2951. if (req.path == "/" || tmp.back() == "html") {
  2952. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2953. res.status = 503;
  2954. } else {
  2955. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2956. }
  2957. return false;
  2958. }
  2959. return true;
  2960. };
  2961. // register server middlewares
  2962. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2963. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2964. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2965. if (req.method == "OPTIONS") {
  2966. res.set_header("Access-Control-Allow-Credentials", "true");
  2967. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2968. res.set_header("Access-Control-Allow-Headers", "*");
  2969. res.set_content("", "text/html"); // blank response, no data
  2970. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2971. }
  2972. if (!middleware_server_state(req, res)) {
  2973. return httplib::Server::HandlerResponse::Handled;
  2974. }
  2975. if (!middleware_validate_api_key(req, res)) {
  2976. return httplib::Server::HandlerResponse::Handled;
  2977. }
  2978. return httplib::Server::HandlerResponse::Unhandled;
  2979. });
  2980. //
  2981. // Route handlers (or controllers)
  2982. //
  2983. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2984. // error and loading states are handled by middleware
  2985. json health = {{"status", "ok"}};
  2986. res_ok(res, health);
  2987. };
  2988. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2989. if (!params.endpoint_slots) {
  2990. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2991. return;
  2992. }
  2993. // request slots data using task queue
  2994. server_task task(SERVER_TASK_TYPE_METRICS);
  2995. task.id = ctx_server.queue_tasks.get_new_id();
  2996. ctx_server.queue_results.add_waiting_task_id(task.id);
  2997. ctx_server.queue_tasks.post(task, true); // high-priority task
  2998. // get the result
  2999. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3000. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3001. if (result->is_error()) {
  3002. res_error(res, result->to_json());
  3003. return;
  3004. }
  3005. // TODO: get rid of this dynamic_cast
  3006. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3007. GGML_ASSERT(res_metrics != nullptr);
  3008. // optionally return "fail_on_no_slot" error
  3009. if (req.has_param("fail_on_no_slot")) {
  3010. if (res_metrics->n_idle_slots == 0) {
  3011. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3012. return;
  3013. }
  3014. }
  3015. res_ok(res, res_metrics->slots_data);
  3016. };
  3017. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3018. if (!params.endpoint_metrics) {
  3019. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3020. return;
  3021. }
  3022. // request slots data using task queue
  3023. server_task task(SERVER_TASK_TYPE_METRICS);
  3024. task.id = ctx_server.queue_tasks.get_new_id();
  3025. task.metrics_reset_bucket = true;
  3026. ctx_server.queue_results.add_waiting_task_id(task.id);
  3027. ctx_server.queue_tasks.post(task, true); // high-priority task
  3028. // get the result
  3029. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3030. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3031. if (result->is_error()) {
  3032. res_error(res, result->to_json());
  3033. return;
  3034. }
  3035. // TODO: get rid of this dynamic_cast
  3036. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3037. GGML_ASSERT(res_metrics != nullptr);
  3038. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3039. json all_metrics_def = json {
  3040. {"counter", {{
  3041. {"name", "prompt_tokens_total"},
  3042. {"help", "Number of prompt tokens processed."},
  3043. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3044. }, {
  3045. {"name", "prompt_seconds_total"},
  3046. {"help", "Prompt process time"},
  3047. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3048. }, {
  3049. {"name", "tokens_predicted_total"},
  3050. {"help", "Number of generation tokens processed."},
  3051. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3052. }, {
  3053. {"name", "tokens_predicted_seconds_total"},
  3054. {"help", "Predict process time"},
  3055. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3056. }, {
  3057. {"name", "n_decode_total"},
  3058. {"help", "Total number of llama_decode() calls"},
  3059. {"value", res_metrics->n_decode_total}
  3060. }, {
  3061. {"name", "n_busy_slots_per_decode"},
  3062. {"help", "Average number of busy slots per llama_decode() call"},
  3063. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3064. }}},
  3065. {"gauge", {{
  3066. {"name", "prompt_tokens_seconds"},
  3067. {"help", "Average prompt throughput in tokens/s."},
  3068. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3069. },{
  3070. {"name", "predicted_tokens_seconds"},
  3071. {"help", "Average generation throughput in tokens/s."},
  3072. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3073. },{
  3074. {"name", "kv_cache_usage_ratio"},
  3075. {"help", "KV-cache usage. 1 means 100 percent usage."},
  3076. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  3077. },{
  3078. {"name", "kv_cache_tokens"},
  3079. {"help", "KV-cache tokens."},
  3080. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  3081. },{
  3082. {"name", "requests_processing"},
  3083. {"help", "Number of requests processing."},
  3084. {"value", (uint64_t) res_metrics->n_processing_slots}
  3085. },{
  3086. {"name", "requests_deferred"},
  3087. {"help", "Number of requests deferred."},
  3088. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3089. }}}
  3090. };
  3091. std::stringstream prometheus;
  3092. for (const auto & el : all_metrics_def.items()) {
  3093. const auto & type = el.key();
  3094. const auto & metrics_def = el.value();
  3095. for (const auto & metric_def : metrics_def) {
  3096. const std::string name = metric_def.at("name");
  3097. const std::string help = metric_def.at("help");
  3098. auto value = json_value(metric_def, "value", 0.);
  3099. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3100. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3101. << "llamacpp:" << name << " " << value << "\n";
  3102. }
  3103. }
  3104. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3105. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3106. res.status = 200; // HTTP OK
  3107. };
  3108. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3109. json request_data = json::parse(req.body);
  3110. std::string filename = request_data.at("filename");
  3111. if (!fs_validate_filename(filename)) {
  3112. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3113. return;
  3114. }
  3115. std::string filepath = params.slot_save_path + filename;
  3116. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3117. task.id = ctx_server.queue_tasks.get_new_id();
  3118. task.slot_action.slot_id = id_slot;
  3119. task.slot_action.filename = filename;
  3120. task.slot_action.filepath = filepath;
  3121. ctx_server.queue_results.add_waiting_task_id(task.id);
  3122. ctx_server.queue_tasks.post(task);
  3123. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3124. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3125. if (result->is_error()) {
  3126. res_error(res, result->to_json());
  3127. return;
  3128. }
  3129. res_ok(res, result->to_json());
  3130. };
  3131. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3132. json request_data = json::parse(req.body);
  3133. std::string filename = request_data.at("filename");
  3134. if (!fs_validate_filename(filename)) {
  3135. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3136. return;
  3137. }
  3138. std::string filepath = params.slot_save_path + filename;
  3139. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3140. task.id = ctx_server.queue_tasks.get_new_id();
  3141. task.slot_action.slot_id = id_slot;
  3142. task.slot_action.filename = filename;
  3143. task.slot_action.filepath = filepath;
  3144. ctx_server.queue_results.add_waiting_task_id(task.id);
  3145. ctx_server.queue_tasks.post(task);
  3146. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3147. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3148. if (result->is_error()) {
  3149. res_error(res, result->to_json());
  3150. return;
  3151. }
  3152. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3153. res_ok(res, result->to_json());
  3154. };
  3155. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3156. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3157. task.id = ctx_server.queue_tasks.get_new_id();
  3158. task.slot_action.slot_id = id_slot;
  3159. ctx_server.queue_results.add_waiting_task_id(task.id);
  3160. ctx_server.queue_tasks.post(task);
  3161. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3162. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3163. if (result->is_error()) {
  3164. res_error(res, result->to_json());
  3165. return;
  3166. }
  3167. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3168. res_ok(res, result->to_json());
  3169. };
  3170. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3171. if (params.slot_save_path.empty()) {
  3172. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3173. return;
  3174. }
  3175. std::string id_slot_str = req.path_params.at("id_slot");
  3176. int id_slot;
  3177. try {
  3178. id_slot = std::stoi(id_slot_str);
  3179. } catch (const std::exception &) {
  3180. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3181. return;
  3182. }
  3183. std::string action = req.get_param_value("action");
  3184. if (action == "save") {
  3185. handle_slots_save(req, res, id_slot);
  3186. } else if (action == "restore") {
  3187. handle_slots_restore(req, res, id_slot);
  3188. } else if (action == "erase") {
  3189. handle_slots_erase(req, res, id_slot);
  3190. } else {
  3191. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3192. }
  3193. };
  3194. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3195. // this endpoint is publicly available, please only return what is safe to be exposed
  3196. json data = {
  3197. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3198. { "total_slots", ctx_server.params_base.n_parallel },
  3199. { "model_path", ctx_server.params_base.model.path },
  3200. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3201. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3202. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3203. { "build_info", build_info },
  3204. };
  3205. if (ctx_server.params_base.use_jinja) {
  3206. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3207. data["chat_template_tool_use"] = tool_use_src;
  3208. }
  3209. }
  3210. res_ok(res, data);
  3211. };
  3212. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3213. if (!ctx_server.params_base.endpoint_props) {
  3214. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3215. return;
  3216. }
  3217. json data = json::parse(req.body);
  3218. // update any props here
  3219. res_ok(res, {{ "success", true }});
  3220. };
  3221. const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3222. json data = {
  3223. {
  3224. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  3225. },
  3226. {
  3227. "model_info", {
  3228. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  3229. }
  3230. },
  3231. };
  3232. res_ok(res, data);
  3233. };
  3234. // handle completion-like requests (completion, chat, infill)
  3235. // we can optionally provide a custom format for partial results and final results
  3236. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3237. server_task_type type,
  3238. json & data,
  3239. std::function<bool()> is_connection_closed,
  3240. httplib::Response & res,
  3241. oaicompat_type oaicompat) {
  3242. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3243. if (ctx_server.params_base.embedding) {
  3244. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3245. return;
  3246. }
  3247. auto completion_id = gen_chatcmplid();
  3248. std::vector<server_task> tasks;
  3249. try {
  3250. const auto & prompt = data.at("prompt");
  3251. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3252. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3253. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3254. tasks.reserve(tokenized_prompts.size());
  3255. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3256. server_task task = server_task(type);
  3257. task.id = ctx_server.queue_tasks.get_new_id();
  3258. task.index = i;
  3259. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3260. task.params = server_task::params_from_json_cmpl(
  3261. ctx_server.ctx,
  3262. ctx_server.params_base,
  3263. data);
  3264. task.id_selected_slot = json_value(data, "id_slot", -1);
  3265. // OAI-compat
  3266. task.params.oaicompat = oaicompat;
  3267. task.params.oaicompat_cmpl_id = completion_id;
  3268. // oaicompat_model is already populated by params_from_json_cmpl
  3269. tasks.push_back(task);
  3270. }
  3271. } catch (const std::exception & e) {
  3272. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3273. return;
  3274. }
  3275. ctx_server.queue_results.add_waiting_tasks(tasks);
  3276. ctx_server.queue_tasks.post(tasks);
  3277. bool stream = json_value(data, "stream", false);
  3278. const auto task_ids = server_task::get_list_id(tasks);
  3279. if (!stream) {
  3280. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3281. if (results.size() == 1) {
  3282. // single result
  3283. res_ok(res, results[0]->to_json());
  3284. } else {
  3285. // multiple results (multitask)
  3286. json arr = json::array();
  3287. for (auto & res : results) {
  3288. arr.push_back(res->to_json());
  3289. }
  3290. res_ok(res, arr);
  3291. }
  3292. }, [&](const json & error_data) {
  3293. res_error(res, error_data);
  3294. }, is_connection_closed);
  3295. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3296. } else {
  3297. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3298. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3299. json res_json = result->to_json();
  3300. if (res_json.is_array()) {
  3301. for (const auto & res : res_json) {
  3302. if (!server_sent_event(sink, "data", res)) {
  3303. // sending failed (HTTP connection closed), cancel the generation
  3304. return false;
  3305. }
  3306. }
  3307. return true;
  3308. } else {
  3309. return server_sent_event(sink, "data", res_json);
  3310. }
  3311. }, [&](const json & error_data) {
  3312. server_sent_event(sink, "error", error_data);
  3313. }, [&sink]() {
  3314. // note: do not use req.is_connection_closed here because req is already destroyed
  3315. return !sink.is_writable();
  3316. });
  3317. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3318. static const std::string ev_done = "data: [DONE]\n\n";
  3319. sink.write(ev_done.data(), ev_done.size());
  3320. }
  3321. sink.done();
  3322. return false;
  3323. };
  3324. auto on_complete = [task_ids, &ctx_server] (bool) {
  3325. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3326. };
  3327. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3328. }
  3329. };
  3330. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3331. json data = json::parse(req.body);
  3332. return handle_completions_impl(
  3333. SERVER_TASK_TYPE_COMPLETION,
  3334. data,
  3335. req.is_connection_closed,
  3336. res,
  3337. OAICOMPAT_TYPE_NONE);
  3338. };
  3339. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3340. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3341. return handle_completions_impl(
  3342. SERVER_TASK_TYPE_COMPLETION,
  3343. data,
  3344. req.is_connection_closed,
  3345. res,
  3346. OAICOMPAT_TYPE_COMPLETION);
  3347. };
  3348. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3349. // check model compatibility
  3350. std::string err;
  3351. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3352. err += "prefix token is missing. ";
  3353. }
  3354. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3355. err += "suffix token is missing. ";
  3356. }
  3357. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3358. err += "middle token is missing. ";
  3359. }
  3360. if (!err.empty()) {
  3361. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3362. return;
  3363. }
  3364. json data = json::parse(req.body);
  3365. // validate input
  3366. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3367. // prompt is optional
  3368. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3369. }
  3370. if (!data.contains("input_prefix")) {
  3371. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3372. }
  3373. if (!data.contains("input_suffix")) {
  3374. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3375. }
  3376. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3377. // input_extra is optional
  3378. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3379. return;
  3380. }
  3381. json input_extra = json_value(data, "input_extra", json::array());
  3382. for (const auto & chunk : input_extra) {
  3383. // { "text": string, "filename": string }
  3384. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3385. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3386. return;
  3387. }
  3388. // filename is optional
  3389. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3390. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3391. return;
  3392. }
  3393. }
  3394. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3395. std::string prompt = json_value(data, "prompt", std::string());
  3396. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3397. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3398. data["prompt"] = format_infill(
  3399. ctx_server.vocab,
  3400. data.at("input_prefix"),
  3401. data.at("input_suffix"),
  3402. data.at("input_extra"),
  3403. ctx_server.params_base.n_batch,
  3404. ctx_server.params_base.n_predict,
  3405. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3406. ctx_server.params_base.spm_infill,
  3407. tokenized_prompts[0]
  3408. );
  3409. return handle_completions_impl(
  3410. SERVER_TASK_TYPE_INFILL,
  3411. data,
  3412. req.is_connection_closed,
  3413. res,
  3414. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3415. };
  3416. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3417. LOG_DBG("request: %s\n", req.body.c_str());
  3418. if (ctx_server.params_base.embedding) {
  3419. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3420. return;
  3421. }
  3422. auto body = json::parse(req.body);
  3423. json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
  3424. return handle_completions_impl(
  3425. SERVER_TASK_TYPE_COMPLETION,
  3426. data,
  3427. req.is_connection_closed,
  3428. res,
  3429. OAICOMPAT_TYPE_CHAT);
  3430. };
  3431. // same with handle_chat_completions, but without inference part
  3432. const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3433. auto body = json::parse(req.body);
  3434. json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
  3435. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3436. };
  3437. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3438. json models = {
  3439. {"object", "list"},
  3440. {"data", {
  3441. {
  3442. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  3443. {"object", "model"},
  3444. {"created", std::time(0)},
  3445. {"owned_by", "llamacpp"},
  3446. {"meta", ctx_server.model_meta()}
  3447. },
  3448. }}
  3449. };
  3450. res_ok(res, models);
  3451. };
  3452. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3453. const json body = json::parse(req.body);
  3454. json tokens_response = json::array();
  3455. if (body.count("content") != 0) {
  3456. const bool add_special = json_value(body, "add_special", false);
  3457. const bool with_pieces = json_value(body, "with_pieces", false);
  3458. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3459. if (with_pieces) {
  3460. for (const auto& token : tokens) {
  3461. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3462. json piece_json;
  3463. // Check if the piece is valid UTF-8
  3464. if (is_valid_utf8(piece)) {
  3465. piece_json = piece;
  3466. } else {
  3467. // If not valid UTF-8, store as array of byte values
  3468. piece_json = json::array();
  3469. for (unsigned char c : piece) {
  3470. piece_json.push_back(static_cast<int>(c));
  3471. }
  3472. }
  3473. tokens_response.push_back({
  3474. {"id", token},
  3475. {"piece", piece_json}
  3476. });
  3477. }
  3478. } else {
  3479. tokens_response = tokens;
  3480. }
  3481. }
  3482. const json data = format_tokenizer_response(tokens_response);
  3483. res_ok(res, data);
  3484. };
  3485. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3486. const json body = json::parse(req.body);
  3487. std::string content;
  3488. if (body.count("tokens") != 0) {
  3489. const llama_tokens tokens = body.at("tokens");
  3490. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3491. }
  3492. const json data = format_detokenized_response(content);
  3493. res_ok(res, data);
  3494. };
  3495. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3496. const json body = json::parse(req.body);
  3497. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3498. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3499. return;
  3500. }
  3501. // for the shape of input/content, see tokenize_input_prompts()
  3502. json prompt;
  3503. if (body.count("input") != 0) {
  3504. prompt = body.at("input");
  3505. } else if (body.contains("content")) {
  3506. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3507. prompt = body.at("content");
  3508. } else {
  3509. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3510. return;
  3511. }
  3512. bool use_base64 = false;
  3513. if (body.count("encoding_format") != 0) {
  3514. const std::string& format = body.at("encoding_format");
  3515. if (format == "base64") {
  3516. use_base64 = true;
  3517. } else if (format != "float") {
  3518. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3519. return;
  3520. }
  3521. }
  3522. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3523. for (const auto & tokens : tokenized_prompts) {
  3524. // this check is necessary for models that do not add BOS token to the input
  3525. if (tokens.empty()) {
  3526. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3527. return;
  3528. }
  3529. }
  3530. // create and queue the task
  3531. json responses = json::array();
  3532. bool error = false;
  3533. {
  3534. std::vector<server_task> tasks;
  3535. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3536. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3537. task.id = ctx_server.queue_tasks.get_new_id();
  3538. task.index = i;
  3539. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3540. // OAI-compat
  3541. task.params.oaicompat = oaicompat;
  3542. tasks.push_back(task);
  3543. }
  3544. ctx_server.queue_results.add_waiting_tasks(tasks);
  3545. ctx_server.queue_tasks.post(tasks);
  3546. // get the result
  3547. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3548. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3549. for (auto & res : results) {
  3550. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3551. responses.push_back(res->to_json());
  3552. }
  3553. }, [&](const json & error_data) {
  3554. res_error(res, error_data);
  3555. error = true;
  3556. }, req.is_connection_closed);
  3557. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3558. }
  3559. if (error) {
  3560. return;
  3561. }
  3562. // write JSON response
  3563. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3564. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3565. : json(responses);
  3566. res_ok(res, root);
  3567. };
  3568. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3569. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3570. };
  3571. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3572. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3573. };
  3574. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3575. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3576. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3577. return;
  3578. }
  3579. const json body = json::parse(req.body);
  3580. // TODO: implement
  3581. //int top_n = 1;
  3582. //if (body.count("top_n") != 1) {
  3583. // top_n = body.at("top_n");
  3584. //} else {
  3585. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3586. // return;
  3587. //}
  3588. // if true, use TEI API format, otherwise use Jina API format
  3589. // Jina: https://jina.ai/reranker/
  3590. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  3591. bool is_tei_format = body.contains("texts");
  3592. json query;
  3593. if (body.count("query") == 1) {
  3594. query = body.at("query");
  3595. if (!query.is_string()) {
  3596. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3597. return;
  3598. }
  3599. } else {
  3600. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3601. return;
  3602. }
  3603. std::vector<std::string> documents = json_value(body, "documents",
  3604. json_value(body, "texts", std::vector<std::string>()));
  3605. if (documents.empty()) {
  3606. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3607. return;
  3608. }
  3609. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3610. // create and queue the task
  3611. json responses = json::array();
  3612. bool error = false;
  3613. {
  3614. std::vector<server_task> tasks;
  3615. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3616. tasks.reserve(tokenized_docs.size());
  3617. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3618. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3619. task.id = ctx_server.queue_tasks.get_new_id();
  3620. task.index = i;
  3621. task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3622. tasks.push_back(task);
  3623. }
  3624. ctx_server.queue_results.add_waiting_tasks(tasks);
  3625. ctx_server.queue_tasks.post(tasks);
  3626. // get the result
  3627. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3628. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3629. for (auto & res : results) {
  3630. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3631. responses.push_back(res->to_json());
  3632. }
  3633. }, [&](const json & error_data) {
  3634. res_error(res, error_data);
  3635. error = true;
  3636. }, req.is_connection_closed);
  3637. }
  3638. if (error) {
  3639. return;
  3640. }
  3641. // write JSON response
  3642. json root = format_response_rerank(
  3643. body,
  3644. responses,
  3645. is_tei_format,
  3646. documents);
  3647. res_ok(res, root);
  3648. };
  3649. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3650. json result = json::array();
  3651. const auto & loras = ctx_server.params_base.lora_adapters;
  3652. for (size_t i = 0; i < loras.size(); ++i) {
  3653. auto & lora = loras[i];
  3654. result.push_back({
  3655. {"id", i},
  3656. {"path", lora.path},
  3657. {"scale", lora.scale},
  3658. });
  3659. }
  3660. res_ok(res, result);
  3661. res.status = 200; // HTTP OK
  3662. };
  3663. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3664. const json body = json::parse(req.body);
  3665. if (!body.is_array()) {
  3666. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3667. return;
  3668. }
  3669. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3670. task.id = ctx_server.queue_tasks.get_new_id();
  3671. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3672. ctx_server.queue_results.add_waiting_task_id(task.id);
  3673. ctx_server.queue_tasks.post(task);
  3674. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3675. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3676. if (result->is_error()) {
  3677. res_error(res, result->to_json());
  3678. return;
  3679. }
  3680. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3681. res_ok(res, result->to_json());
  3682. };
  3683. //
  3684. // Router
  3685. //
  3686. if (!params.webui) {
  3687. LOG_INF("Web UI is disabled\n");
  3688. } else {
  3689. // register static assets routes
  3690. if (!params.public_path.empty()) {
  3691. // Set the base directory for serving static files
  3692. bool is_found = svr->set_mount_point("/", params.public_path);
  3693. if (!is_found) {
  3694. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3695. return 1;
  3696. }
  3697. } else {
  3698. // using embedded static index.html
  3699. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3700. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3701. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3702. } else {
  3703. res.set_header("Content-Encoding", "gzip");
  3704. // COEP and COOP headers, required by pyodide (python interpreter)
  3705. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  3706. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  3707. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3708. }
  3709. return false;
  3710. });
  3711. }
  3712. }
  3713. // register API routes
  3714. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3715. svr->Get ("/metrics", handle_metrics);
  3716. svr->Get ("/props", handle_props);
  3717. svr->Post("/props", handle_props_change);
  3718. svr->Post("/api/show", handle_api_show);
  3719. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3720. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3721. svr->Post("/completion", handle_completions); // legacy
  3722. svr->Post("/completions", handle_completions);
  3723. svr->Post("/v1/completions", handle_completions_oai);
  3724. svr->Post("/chat/completions", handle_chat_completions);
  3725. svr->Post("/v1/chat/completions", handle_chat_completions);
  3726. svr->Post("/infill", handle_infill);
  3727. svr->Post("/embedding", handle_embeddings); // legacy
  3728. svr->Post("/embeddings", handle_embeddings);
  3729. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3730. svr->Post("/rerank", handle_rerank);
  3731. svr->Post("/reranking", handle_rerank);
  3732. svr->Post("/v1/rerank", handle_rerank);
  3733. svr->Post("/v1/reranking", handle_rerank);
  3734. svr->Post("/tokenize", handle_tokenize);
  3735. svr->Post("/detokenize", handle_detokenize);
  3736. svr->Post("/apply-template", handle_apply_template);
  3737. // LoRA adapters hotswap
  3738. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3739. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3740. // Save & load slots
  3741. svr->Get ("/slots", handle_slots);
  3742. svr->Post("/slots/:id_slot", handle_slots_action);
  3743. //
  3744. // Start the server
  3745. //
  3746. if (params.n_threads_http < 1) {
  3747. // +2 threads for monitoring endpoints
  3748. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3749. }
  3750. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3751. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3752. // clean up function, to be called before exit
  3753. auto clean_up = [&svr, &ctx_server]() {
  3754. SRV_INF("%s: cleaning up before exit...\n", __func__);
  3755. svr->stop();
  3756. ctx_server.queue_results.terminate();
  3757. llama_backend_free();
  3758. };
  3759. bool was_bound = false;
  3760. if (string_ends_with(std::string(params.hostname), ".sock")) {
  3761. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  3762. svr->set_address_family(AF_UNIX);
  3763. // bind_to_port requires a second arg, any value other than 0 should
  3764. // simply get ignored
  3765. was_bound = svr->bind_to_port(params.hostname, 8080);
  3766. } else {
  3767. LOG_INF("%s: binding port with default address family\n", __func__);
  3768. // bind HTTP listen port
  3769. if (params.port == 0) {
  3770. int bound_port = svr->bind_to_any_port(params.hostname);
  3771. if ((was_bound = (bound_port >= 0))) {
  3772. params.port = bound_port;
  3773. }
  3774. } else {
  3775. was_bound = svr->bind_to_port(params.hostname, params.port);
  3776. }
  3777. }
  3778. if (!was_bound) {
  3779. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3780. clean_up();
  3781. return 1;
  3782. }
  3783. // run the HTTP server in a thread
  3784. std::thread t([&]() { svr->listen_after_bind(); });
  3785. svr->wait_until_ready();
  3786. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3787. // load the model
  3788. LOG_INF("%s: loading model\n", __func__);
  3789. if (!ctx_server.load_model(params)) {
  3790. clean_up();
  3791. t.join();
  3792. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3793. return 1;
  3794. }
  3795. ctx_server.init();
  3796. state.store(SERVER_STATE_READY);
  3797. LOG_INF("%s: model loaded\n", __func__);
  3798. // print sample chat example to make it clear which template is used
  3799. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3800. common_chat_templates_source(ctx_server.chat_templates.get()),
  3801. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
  3802. ctx_server.queue_tasks.on_new_task([&ctx_server](const server_task & task) {
  3803. ctx_server.process_single_task(task);
  3804. });
  3805. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  3806. ctx_server.update_slots();
  3807. });
  3808. shutdown_handler = [&](int) {
  3809. // this will unblock start_loop()
  3810. ctx_server.queue_tasks.terminate();
  3811. };
  3812. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3813. struct sigaction sigint_action;
  3814. sigint_action.sa_handler = signal_handler;
  3815. sigemptyset (&sigint_action.sa_mask);
  3816. sigint_action.sa_flags = 0;
  3817. sigaction(SIGINT, &sigint_action, NULL);
  3818. sigaction(SIGTERM, &sigint_action, NULL);
  3819. #elif defined (_WIN32)
  3820. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3821. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3822. };
  3823. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3824. #endif
  3825. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3826. // this call blocks the main thread until queue_tasks.terminate() is called
  3827. ctx_server.queue_tasks.start_loop();
  3828. clean_up();
  3829. t.join();
  3830. return 0;
  3831. }