clip.cpp 218 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-alloc.h"
  10. #include "ggml-backend.h"
  11. #include "gguf.h"
  12. #include <cassert>
  13. #include <cmath>
  14. #include <cstdlib>
  15. #include <cstring>
  16. #include <fstream>
  17. #include <map>
  18. #include <stdexcept>
  19. #include <unordered_set>
  20. #include <vector>
  21. #include <cinttypes>
  22. #include <limits>
  23. #include <array>
  24. #include <functional>
  25. struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL};
  26. enum ffn_op_type {
  27. FFN_GELU,
  28. FFN_GELU_ERF,
  29. FFN_SILU,
  30. FFN_GELU_QUICK,
  31. };
  32. enum norm_type {
  33. NORM_TYPE_NORMAL,
  34. NORM_TYPE_RMS,
  35. };
  36. //#define CLIP_DEBUG_FUNCTIONS
  37. #ifdef CLIP_DEBUG_FUNCTIONS
  38. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  39. std::ofstream file(filename, std::ios::binary);
  40. if (!file.is_open()) {
  41. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  42. return;
  43. }
  44. // PPM header: P6 format, width, height, and max color value
  45. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  46. // Write pixel data
  47. for (size_t i = 0; i < img.buf.size(); i += 3) {
  48. // PPM expects binary data in RGB format, which matches our image buffer
  49. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  50. }
  51. file.close();
  52. }
  53. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  54. std::ofstream file(filename, std::ios::binary);
  55. if (!file.is_open()) {
  56. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  57. return;
  58. }
  59. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  60. int bytesPerPixel = 3;
  61. int widthInBytes = img.nx * bytesPerPixel;
  62. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  63. int stride = widthInBytes + paddingAmount;
  64. // Bitmap file header
  65. unsigned char fileHeader[14] = {
  66. 'B','M', // Signature
  67. 0,0,0,0, // Image file size in bytes
  68. 0,0,0,0, // Reserved
  69. 54,0,0,0 // Start of pixel array
  70. };
  71. // Total file size
  72. fileSize = 54 + (stride * img.ny);
  73. fileHeader[2] = (unsigned char)(fileSize);
  74. fileHeader[3] = (unsigned char)(fileSize >> 8);
  75. fileHeader[4] = (unsigned char)(fileSize >> 16);
  76. fileHeader[5] = (unsigned char)(fileSize >> 24);
  77. // Bitmap information header (BITMAPINFOHEADER)
  78. unsigned char infoHeader[40] = {
  79. 40,0,0,0, // Size of this header (40 bytes)
  80. 0,0,0,0, // Image width
  81. 0,0,0,0, // Image height
  82. 1,0, // Number of color planes
  83. 24,0, // Bits per pixel
  84. 0,0,0,0, // No compression
  85. 0,0,0,0, // Image size (can be 0 for no compression)
  86. 0,0,0,0, // X pixels per meter (not specified)
  87. 0,0,0,0, // Y pixels per meter (not specified)
  88. 0,0,0,0, // Total colors (color table not used)
  89. 0,0,0,0 // Important colors (all are important)
  90. };
  91. // Width and height in the information header
  92. infoHeader[4] = (unsigned char)(img.nx);
  93. infoHeader[5] = (unsigned char)(img.nx >> 8);
  94. infoHeader[6] = (unsigned char)(img.nx >> 16);
  95. infoHeader[7] = (unsigned char)(img.nx >> 24);
  96. infoHeader[8] = (unsigned char)(img.ny);
  97. infoHeader[9] = (unsigned char)(img.ny >> 8);
  98. infoHeader[10] = (unsigned char)(img.ny >> 16);
  99. infoHeader[11] = (unsigned char)(img.ny >> 24);
  100. // Write file headers
  101. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  102. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  103. // Pixel data
  104. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  105. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  106. for (int x = 0; x < img.nx; ++x) {
  107. // Each pixel
  108. size_t pixelIndex = (y * img.nx + x) * 3;
  109. unsigned char pixel[3] = {
  110. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  111. img.buf[pixelIndex + 1],
  112. img.buf[pixelIndex]
  113. };
  114. file.write(reinterpret_cast<char*>(pixel), 3);
  115. }
  116. // Write padding for the row
  117. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  118. }
  119. file.close();
  120. }
  121. // debug function to convert f32 to u8
  122. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  123. dst.nx = src.nx;
  124. dst.ny = src.ny;
  125. dst.buf.resize(3 * src.nx * src.ny);
  126. for (size_t i = 0; i < src.buf.size(); ++i) {
  127. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  128. }
  129. }
  130. #endif
  131. //
  132. // clip layers
  133. //
  134. enum patch_merge_type {
  135. PATCH_MERGE_FLAT,
  136. PATCH_MERGE_SPATIAL_UNPAD,
  137. };
  138. struct clip_hparams {
  139. int32_t image_size = 0;
  140. int32_t patch_size = 0;
  141. int32_t n_embd = 0;
  142. int32_t n_ff = 0;
  143. int32_t projection_dim = 0;
  144. int32_t n_head = 0;
  145. int32_t n_layer = 0;
  146. // idefics3
  147. int32_t image_longest_edge = 0;
  148. int32_t image_min_pixels = -1;
  149. int32_t image_max_pixels = -1;
  150. int32_t n_merge = 0; // number of patch merges **per-side**
  151. float image_mean[3];
  152. float image_std[3];
  153. // for models using dynamic image size, we need to have a smaller image size to warmup
  154. // otherwise, user will get OOM everytime they load the model
  155. int32_t warmup_image_size = 0;
  156. int32_t warmup_audio_size = 3000;
  157. ffn_op_type ffn_op = FFN_GELU;
  158. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  159. float eps = 1e-6;
  160. float rope_theta = 0.0;
  161. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  162. int32_t image_crop_resolution;
  163. std::unordered_set<int32_t> vision_feature_layer;
  164. int32_t attn_window_size = 0;
  165. int32_t n_wa_pattern = 0;
  166. // audio
  167. int32_t n_mel_bins = 0; // whisper preprocessor
  168. int32_t proj_stack_factor = 0; // ultravox
  169. // legacy
  170. bool has_llava_projector = false;
  171. int minicpmv_version = 0;
  172. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  173. // custom value provided by user, can be undefined if not set
  174. int32_t custom_image_min_tokens = -1;
  175. int32_t custom_image_max_tokens = -1;
  176. void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
  177. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  178. const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
  179. image_min_pixels = (custom_image_min_tokens > 0 ? custom_image_min_tokens : n_tokens_min) * patch_area;
  180. image_max_pixels = (custom_image_max_tokens > 0 ? custom_image_max_tokens : n_tokens_max) * patch_area;
  181. warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
  182. }
  183. void set_warmup_n_tokens(int n_tokens) {
  184. int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
  185. GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
  186. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  187. warmup_image_size = n_tok_per_side * patch_size * cur_merge;
  188. // TODO: support warmup size for custom token numbers
  189. }
  190. };
  191. struct clip_layer {
  192. // attention
  193. ggml_tensor * k_w = nullptr;
  194. ggml_tensor * k_b = nullptr;
  195. ggml_tensor * q_w = nullptr;
  196. ggml_tensor * q_b = nullptr;
  197. ggml_tensor * v_w = nullptr;
  198. ggml_tensor * v_b = nullptr;
  199. ggml_tensor * qkv_w = nullptr;
  200. ggml_tensor * qkv_b = nullptr;
  201. ggml_tensor * o_w = nullptr;
  202. ggml_tensor * o_b = nullptr;
  203. ggml_tensor * k_norm = nullptr;
  204. ggml_tensor * q_norm = nullptr;
  205. // layernorm 1
  206. ggml_tensor * ln_1_w = nullptr;
  207. ggml_tensor * ln_1_b = nullptr;
  208. ggml_tensor * ff_up_w = nullptr;
  209. ggml_tensor * ff_up_b = nullptr;
  210. ggml_tensor * ff_gate_w = nullptr;
  211. ggml_tensor * ff_gate_b = nullptr;
  212. ggml_tensor * ff_down_w = nullptr;
  213. ggml_tensor * ff_down_b = nullptr;
  214. // layernorm 2
  215. ggml_tensor * ln_2_w = nullptr;
  216. ggml_tensor * ln_2_b = nullptr;
  217. // layer scale (no bias)
  218. ggml_tensor * ls_1_w = nullptr;
  219. ggml_tensor * ls_2_w = nullptr;
  220. // qwen3vl deepstack merger
  221. ggml_tensor * deepstack_norm_w = nullptr;
  222. ggml_tensor * deepstack_norm_b = nullptr;
  223. ggml_tensor * deepstack_fc1_w = nullptr;
  224. ggml_tensor * deepstack_fc1_b = nullptr;
  225. ggml_tensor * deepstack_fc2_w = nullptr;
  226. ggml_tensor * deepstack_fc2_b = nullptr;
  227. bool has_deepstack() const {
  228. return deepstack_fc1_w != nullptr;
  229. }
  230. };
  231. struct clip_model {
  232. clip_modality modality = CLIP_MODALITY_VISION;
  233. projector_type proj_type = PROJECTOR_TYPE_MLP;
  234. clip_hparams hparams;
  235. // embeddings
  236. ggml_tensor * class_embedding = nullptr;
  237. ggml_tensor * patch_embeddings_0 = nullptr;
  238. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  239. ggml_tensor * patch_bias = nullptr;
  240. ggml_tensor * position_embeddings = nullptr;
  241. ggml_tensor * pre_ln_w = nullptr;
  242. ggml_tensor * pre_ln_b = nullptr;
  243. std::vector<clip_layer> layers;
  244. int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer
  245. ggml_tensor * post_ln_w;
  246. ggml_tensor * post_ln_b;
  247. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  248. ggml_tensor * mm_fc_w;
  249. ggml_tensor * mm_fc_b;
  250. // LLaVA projection
  251. ggml_tensor * mm_input_norm_w = nullptr;
  252. ggml_tensor * mm_input_norm_b = nullptr;
  253. ggml_tensor * mm_0_w = nullptr;
  254. ggml_tensor * mm_0_b = nullptr;
  255. ggml_tensor * mm_2_w = nullptr;
  256. ggml_tensor * mm_2_b = nullptr;
  257. ggml_tensor * image_newline = nullptr;
  258. // Yi type models with mlp+normalization projection
  259. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  260. ggml_tensor * mm_1_b = nullptr;
  261. ggml_tensor * mm_3_w = nullptr;
  262. ggml_tensor * mm_3_b = nullptr;
  263. ggml_tensor * mm_4_w = nullptr;
  264. ggml_tensor * mm_4_b = nullptr;
  265. // GLMV-Edge projection
  266. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  267. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  268. // MobileVLM projection
  269. ggml_tensor * mm_model_mlp_1_w = nullptr;
  270. ggml_tensor * mm_model_mlp_1_b = nullptr;
  271. ggml_tensor * mm_model_mlp_3_w = nullptr;
  272. ggml_tensor * mm_model_mlp_3_b = nullptr;
  273. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  274. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  275. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  276. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  277. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  278. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  279. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  280. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  281. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  282. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  283. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  284. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  285. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  286. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  287. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  288. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  289. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  290. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  291. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  292. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  293. // MobileVLM_V2 projection
  294. ggml_tensor * mm_model_mlp_0_w = nullptr;
  295. ggml_tensor * mm_model_mlp_0_b = nullptr;
  296. ggml_tensor * mm_model_mlp_2_w = nullptr;
  297. ggml_tensor * mm_model_mlp_2_b = nullptr;
  298. ggml_tensor * mm_model_peg_0_w = nullptr;
  299. ggml_tensor * mm_model_peg_0_b = nullptr;
  300. // MINICPMV projection
  301. ggml_tensor * mm_model_pos_embed_k = nullptr;
  302. ggml_tensor * mm_model_query = nullptr;
  303. ggml_tensor * mm_model_proj = nullptr;
  304. ggml_tensor * mm_model_kv_proj = nullptr;
  305. ggml_tensor * mm_model_attn_q_w = nullptr;
  306. ggml_tensor * mm_model_attn_q_b = nullptr;
  307. ggml_tensor * mm_model_attn_k_w = nullptr;
  308. ggml_tensor * mm_model_attn_k_b = nullptr;
  309. ggml_tensor * mm_model_attn_v_w = nullptr;
  310. ggml_tensor * mm_model_attn_v_b = nullptr;
  311. ggml_tensor * mm_model_attn_o_w = nullptr;
  312. ggml_tensor * mm_model_attn_o_b = nullptr;
  313. ggml_tensor * mm_model_ln_q_w = nullptr;
  314. ggml_tensor * mm_model_ln_q_b = nullptr;
  315. ggml_tensor * mm_model_ln_kv_w = nullptr;
  316. ggml_tensor * mm_model_ln_kv_b = nullptr;
  317. ggml_tensor * mm_model_ln_post_w = nullptr;
  318. ggml_tensor * mm_model_ln_post_b = nullptr;
  319. // gemma3
  320. ggml_tensor * mm_input_proj_w = nullptr;
  321. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  322. // pixtral
  323. ggml_tensor * token_embd_img_break = nullptr;
  324. ggml_tensor * mm_patch_merger_w = nullptr;
  325. // ultravox / whisper encoder
  326. ggml_tensor * conv1d_1_w = nullptr;
  327. ggml_tensor * conv1d_1_b = nullptr;
  328. ggml_tensor * conv1d_2_w = nullptr;
  329. ggml_tensor * conv1d_2_b = nullptr;
  330. ggml_tensor * mm_norm_pre_w = nullptr;
  331. ggml_tensor * mm_norm_mid_w = nullptr;
  332. // cogvlm
  333. ggml_tensor * mm_post_fc_norm_w = nullptr;
  334. ggml_tensor * mm_post_fc_norm_b = nullptr;
  335. ggml_tensor * mm_h_to_4h_w = nullptr;
  336. ggml_tensor * mm_gate_w = nullptr;
  337. ggml_tensor * mm_4h_to_h_w = nullptr;
  338. ggml_tensor * mm_boi = nullptr;
  339. ggml_tensor * mm_eoi = nullptr;
  340. bool audio_has_avgpool() const {
  341. return proj_type == PROJECTOR_TYPE_QWEN2A
  342. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  343. }
  344. bool audio_has_stack_frames() const {
  345. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  346. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  347. }
  348. };
  349. struct clip_ctx {
  350. clip_model model;
  351. gguf_context_ptr ctx_gguf;
  352. ggml_context_ptr ctx_data;
  353. std::vector<uint8_t> buf_compute_meta;
  354. std::vector<ggml_backend_t> backend_ptrs;
  355. std::vector<ggml_backend_buffer_type_t> backend_buft;
  356. ggml_backend_t backend = nullptr;
  357. ggml_backend_t backend_cpu = nullptr;
  358. ggml_backend_buffer_ptr buf;
  359. int max_nodes = 8192;
  360. ggml_backend_sched_ptr sched;
  361. clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO;
  362. bool is_allocated = false;
  363. // for debugging
  364. bool debug_graph = false;
  365. std::vector<ggml_tensor *> debug_print_tensors;
  366. clip_ctx(clip_context_params & ctx_params) {
  367. flash_attn_type = ctx_params.flash_attn_type;
  368. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  369. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  370. if (!backend_cpu) {
  371. throw std::runtime_error("failed to initialize CPU backend");
  372. }
  373. if (ctx_params.use_gpu) {
  374. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  375. if (backend_name != nullptr) {
  376. backend = ggml_backend_init_by_name(backend_name, nullptr);
  377. if (!backend) {
  378. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  379. }
  380. }
  381. if (!backend) {
  382. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  383. backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
  384. }
  385. }
  386. if (backend) {
  387. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  388. backend_ptrs.push_back(backend);
  389. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  390. } else {
  391. backend = backend_cpu;
  392. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  393. }
  394. if (ctx_params.image_min_tokens > 0) {
  395. model.hparams.custom_image_min_tokens = ctx_params.image_min_tokens;
  396. }
  397. if (ctx_params.image_max_tokens > 0) {
  398. model.hparams.custom_image_max_tokens = ctx_params.image_max_tokens;
  399. }
  400. backend_ptrs.push_back(backend_cpu);
  401. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  402. sched.reset(
  403. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  404. );
  405. }
  406. ~clip_ctx() {
  407. ggml_backend_free(backend);
  408. if (backend != backend_cpu) {
  409. ggml_backend_free(backend_cpu);
  410. }
  411. }
  412. // this function is added so that we don't change too much of the existing code
  413. projector_type proj_type() const {
  414. return model.proj_type;
  415. }
  416. };
  417. struct clip_graph {
  418. clip_ctx * ctx;
  419. const clip_model & model;
  420. const clip_hparams & hparams;
  421. // we only support single image per batch
  422. const clip_image_f32 & img;
  423. const int patch_size;
  424. const int n_patches_x;
  425. const int n_patches_y;
  426. const int n_patches;
  427. const int n_embd;
  428. const int n_head;
  429. const int d_head;
  430. const int n_layer;
  431. const float eps;
  432. const float kq_scale;
  433. ggml_context_ptr ctx0_ptr;
  434. ggml_context * ctx0;
  435. ggml_cgraph * gf;
  436. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  437. ctx(ctx),
  438. model(ctx->model),
  439. hparams(model.hparams),
  440. img(img),
  441. patch_size(hparams.patch_size),
  442. n_patches_x(img.nx / patch_size),
  443. n_patches_y(img.ny / patch_size),
  444. n_patches(n_patches_x * n_patches_y),
  445. n_embd(hparams.n_embd),
  446. n_head(hparams.n_head),
  447. d_head(n_embd / n_head),
  448. n_layer(hparams.n_layer),
  449. eps(hparams.eps),
  450. kq_scale(1.0f / sqrtf((float)d_head)) {
  451. struct ggml_init_params params = {
  452. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  453. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  454. /*.no_alloc =*/ true,
  455. };
  456. ctx0_ptr.reset(ggml_init(params));
  457. ctx0 = ctx0_ptr.get();
  458. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  459. }
  460. ggml_cgraph * build_siglip() {
  461. ggml_tensor * inp = build_inp();
  462. ggml_tensor * learned_pos_embd = model.position_embeddings;
  463. if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  464. learned_pos_embd = resize_position_embeddings();
  465. }
  466. ggml_tensor * cur = build_vit(
  467. inp, n_patches,
  468. NORM_TYPE_NORMAL,
  469. hparams.ffn_op,
  470. learned_pos_embd,
  471. nullptr);
  472. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  473. const int batch_size = 1;
  474. GGML_ASSERT(n_patches_x == n_patches_y);
  475. const int patches_per_image = n_patches_x;
  476. const int kernel_size = hparams.n_merge;
  477. cur = ggml_transpose(ctx0, cur);
  478. cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  479. // doing a pool2d to reduce the number of output tokens
  480. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  481. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  482. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  483. // apply norm before projection
  484. cur = ggml_rms_norm(ctx0, cur, eps);
  485. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  486. // apply projection
  487. cur = ggml_mul_mat(ctx0,
  488. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  489. cur);
  490. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  491. // pixel_shuffle
  492. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  493. const int scale_factor = model.hparams.n_merge;
  494. cur = build_patch_merge_permute(cur, scale_factor);
  495. cur = ggml_mul_mat(ctx0, model.projection, cur);
  496. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  497. // pixel unshuffle block
  498. const int scale_factor = model.hparams.n_merge;
  499. cur = build_patch_merge_permute(cur, scale_factor);
  500. // projection
  501. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  502. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  503. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  504. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  505. cur = ggml_add(ctx0, cur, model.mm_1_b);
  506. cur = ggml_gelu(ctx0, cur);
  507. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  508. cur = ggml_add(ctx0, cur, model.mm_2_b);
  509. } else if (ctx->proj_type() == PROJECTOR_TYPE_JANUS_PRO) {
  510. cur = build_ffn(cur,
  511. model.mm_0_w, model.mm_0_b,
  512. nullptr, nullptr,
  513. model.mm_1_w, model.mm_1_b,
  514. hparams.ffn_op,
  515. -1);
  516. } else {
  517. GGML_ABORT("SigLIP: Unsupported projector type");
  518. }
  519. // build the graph
  520. ggml_build_forward_expand(gf, cur);
  521. return gf;
  522. }
  523. ggml_cgraph * build_pixtral() {
  524. const int n_merge = hparams.n_merge;
  525. // 2D input positions
  526. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  527. ggml_set_name(pos_h, "pos_h");
  528. ggml_set_input(pos_h);
  529. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  530. ggml_set_name(pos_w, "pos_w");
  531. ggml_set_input(pos_w);
  532. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  533. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  534. };
  535. ggml_tensor * inp = build_inp();
  536. ggml_tensor * cur = build_vit(
  537. inp, n_patches,
  538. NORM_TYPE_RMS,
  539. hparams.ffn_op,
  540. nullptr, // no learned pos embd
  541. add_pos);
  542. // mistral small 3.1 patch merger
  543. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  544. if (model.mm_patch_merger_w) {
  545. GGML_ASSERT(hparams.n_merge > 0);
  546. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  547. // reshape image tokens to 2D grid
  548. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  549. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  550. cur = ggml_cont(ctx0, cur);
  551. // torch.nn.functional.unfold is just an im2col under the hood
  552. // we just need a dummy kernel to make it work
  553. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  554. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  555. // project to n_embd
  556. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  557. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  558. }
  559. // LlavaMultiModalProjector (always using GELU activation)
  560. {
  561. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  562. if (model.mm_1_b) {
  563. cur = ggml_add(ctx0, cur, model.mm_1_b);
  564. }
  565. cur = ggml_gelu(ctx0, cur);
  566. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  567. if (model.mm_2_b) {
  568. cur = ggml_add(ctx0, cur, model.mm_2_b);
  569. }
  570. }
  571. // arrangement of the [IMG_BREAK] token
  572. if (model.token_embd_img_break) {
  573. // not efficient, but works
  574. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  575. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  576. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  577. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  578. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  579. const int p_total = p_x * p_y;
  580. const int n_embd_text = cur->ne[0];
  581. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  582. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  583. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  584. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  585. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  586. tmp = ggml_concat(ctx0, tmp, tok, 1);
  587. cur = ggml_view_2d(ctx0, tmp,
  588. n_embd_text, n_tokens_output,
  589. ggml_row_size(tmp->type, n_embd_text), 0);
  590. }
  591. // build the graph
  592. ggml_build_forward_expand(gf, cur);
  593. return gf;
  594. }
  595. // Qwen2VL and Qwen2.5VL use M-RoPE
  596. ggml_cgraph * build_qwen2vl() {
  597. GGML_ASSERT(model.patch_bias == nullptr);
  598. GGML_ASSERT(model.class_embedding == nullptr);
  599. const int batch_size = 1;
  600. const bool use_window_attn = hparams.n_wa_pattern > 0;
  601. const int n_wa_pattern = hparams.n_wa_pattern;
  602. const int n_pos = n_patches;
  603. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  604. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  605. ? NORM_TYPE_RMS // qwen 2.5 vl
  606. : NORM_TYPE_NORMAL; // qwen 2 vl
  607. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  608. ggml_tensor * inp_raw = build_inp_raw();
  609. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  610. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  611. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  612. // second conv dimension
  613. {
  614. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  615. inp = ggml_add(ctx0, inp, inp_1);
  616. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  617. inp = ggml_cont_4d(
  618. ctx0, inp,
  619. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  620. inp = ggml_reshape_4d(
  621. ctx0, inp,
  622. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  623. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  624. inp = ggml_cont_3d(
  625. ctx0, inp,
  626. n_embd, n_patches_x * n_patches_y, batch_size);
  627. }
  628. ggml_tensor * inpL = inp;
  629. ggml_tensor * window_mask = nullptr;
  630. ggml_tensor * window_idx = nullptr;
  631. ggml_tensor * inv_window_idx = nullptr;
  632. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  633. ggml_set_name(positions, "positions");
  634. ggml_set_input(positions);
  635. // pre-layernorm
  636. if (model.pre_ln_w) {
  637. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  638. }
  639. if (use_window_attn) {
  640. // handle window attention inputs
  641. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  642. ggml_set_name(inv_window_idx, "inv_window_idx");
  643. ggml_set_input(inv_window_idx);
  644. // mask for window attention
  645. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  646. ggml_set_name(window_mask, "window_mask");
  647. ggml_set_input(window_mask);
  648. // if flash attn is used, we need to pad the mask and cast to f16
  649. if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  650. int n_pad = GGML_PAD(window_mask->ne[1], GGML_KQ_MASK_PAD) - window_mask->ne[1];
  651. if (n_pad > 0) {
  652. window_mask = ggml_pad(ctx0, window_mask, 0, n_pad, 0, 0);
  653. }
  654. window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
  655. }
  656. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  657. GGML_ASSERT(batch_size == 1);
  658. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  659. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  660. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  661. }
  662. // loop over layers
  663. for (int il = 0; il < n_layer; il++) {
  664. auto & layer = model.layers[il];
  665. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  666. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  667. // layernorm1
  668. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  669. cb(cur, "ln1", il);
  670. // self-attention
  671. {
  672. ggml_tensor * Qcur = ggml_add(ctx0,
  673. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  674. ggml_tensor * Kcur = ggml_add(ctx0,
  675. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  676. ggml_tensor * Vcur = ggml_add(ctx0,
  677. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  678. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  679. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  680. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  681. cb(Qcur, "Qcur", il);
  682. cb(Kcur, "Kcur", il);
  683. cb(Vcur, "Vcur", il);
  684. // apply M-RoPE
  685. Qcur = ggml_rope_multi(
  686. ctx0, Qcur, positions, nullptr,
  687. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  688. Kcur = ggml_rope_multi(
  689. ctx0, Kcur, positions, nullptr,
  690. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  691. cb(Qcur, "Qcur_rope", il);
  692. cb(Kcur, "Kcur_rope", il);
  693. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  694. cur = build_attn(layer.o_w, layer.o_b,
  695. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  696. cb(cur, "attn_out", il);
  697. }
  698. // re-add the layer input, e.g., residual
  699. cur = ggml_add(ctx0, cur, inpL);
  700. inpL = cur; // inpL = residual, cur = hidden_states
  701. cb(cur, "ffn_inp", il);
  702. // layernorm2
  703. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  704. cb(cur, "ffn_inp_normed", il);
  705. // ffn
  706. cur = build_ffn(cur,
  707. layer.ff_up_w, layer.ff_up_b,
  708. layer.ff_gate_w, layer.ff_gate_b,
  709. layer.ff_down_w, layer.ff_down_b,
  710. hparams.ffn_op, il);
  711. cb(cur, "ffn_out", il);
  712. // residual 2
  713. cur = ggml_add(ctx0, inpL, cur);
  714. cb(cur, "layer_out", il);
  715. inpL = cur;
  716. }
  717. // post-layernorm
  718. if (model.post_ln_w) {
  719. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  720. }
  721. // multimodal projection
  722. ggml_tensor * embeddings = inpL;
  723. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  724. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  725. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  726. // GELU activation
  727. embeddings = ggml_gelu(ctx0, embeddings);
  728. // Second linear layer
  729. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  730. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  731. if (use_window_attn) {
  732. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  733. ggml_set_name(window_idx, "window_idx");
  734. ggml_set_input(window_idx);
  735. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  736. GGML_ASSERT(batch_size == 1);
  737. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  738. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  739. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  740. }
  741. // build the graph
  742. ggml_build_forward_expand(gf, embeddings);
  743. return gf;
  744. }
  745. // Qwen3VL
  746. ggml_cgraph * build_qwen3vl() {
  747. GGML_ASSERT(model.patch_bias != nullptr);
  748. GGML_ASSERT(model.position_embeddings != nullptr);
  749. GGML_ASSERT(model.class_embedding == nullptr);
  750. const int batch_size = 1;
  751. const int n_pos = n_patches;
  752. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  753. norm_type norm_t = NORM_TYPE_NORMAL;
  754. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  755. ggml_tensor * inp_raw = build_inp_raw();
  756. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  757. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  758. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  759. // second conv dimension
  760. {
  761. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  762. inp = ggml_add(ctx0, inp, inp_1);
  763. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  764. inp = ggml_cont_4d(
  765. ctx0, inp,
  766. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  767. inp = ggml_reshape_4d(
  768. ctx0, inp,
  769. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  770. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  771. inp = ggml_cont_3d(
  772. ctx0, inp,
  773. n_embd, n_patches_x * n_patches_y, batch_size);
  774. }
  775. // add patch bias
  776. if (model.patch_bias != nullptr) {
  777. inp = ggml_add(ctx0, inp, model.patch_bias);
  778. cb(inp, "patch_bias", -1);
  779. }
  780. // calculate absolute position embedding and apply
  781. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  782. learned_pos_embd = ggml_cont_4d(
  783. ctx0, learned_pos_embd,
  784. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  785. learned_pos_embd = ggml_reshape_4d(
  786. ctx0, learned_pos_embd,
  787. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  788. learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
  789. learned_pos_embd = ggml_cont_3d(
  790. ctx0, learned_pos_embd,
  791. n_embd, n_patches_x * n_patches_y, batch_size);
  792. inp = ggml_add(ctx0, inp, learned_pos_embd);
  793. cb(inp, "inp_pos_emb", -1);
  794. ggml_tensor * inpL = inp;
  795. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  796. ggml_set_name(positions, "positions");
  797. ggml_set_input(positions);
  798. // pre-layernorm
  799. if (model.pre_ln_w) {
  800. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  801. }
  802. // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
  803. ggml_tensor * deepstack_features = nullptr;
  804. const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl
  805. // loop over layers
  806. for (int il = 0; il < n_layer; il++) {
  807. auto & layer = model.layers[il];
  808. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  809. // layernorm1
  810. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  811. cb(cur, "ln1", il);
  812. // self-attention
  813. {
  814. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  815. cur = ggml_add(ctx0, cur, layer.qkv_b);
  816. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  817. /* nb1 */ ggml_row_size(cur->type, d_head),
  818. /* nb2 */ cur->nb[1],
  819. /* offset */ 0);
  820. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  821. /* nb1 */ ggml_row_size(cur->type, d_head),
  822. /* nb2 */ cur->nb[1],
  823. /* offset */ ggml_row_size(cur->type, n_embd));
  824. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  825. /* nb1 */ ggml_row_size(cur->type, d_head),
  826. /* nb2 */ cur->nb[1],
  827. /* offset */ ggml_row_size(cur->type, 2 * n_embd));
  828. cb(Qcur, "Qcur", il);
  829. cb(Kcur, "Kcur", il);
  830. cb(Vcur, "Vcur", il);
  831. // apply M-RoPE
  832. Qcur = ggml_rope_multi(
  833. ctx0, Qcur, positions, nullptr,
  834. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  835. Kcur = ggml_rope_multi(
  836. ctx0, Kcur, positions, nullptr,
  837. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  838. cb(Qcur, "Qcur_rope", il);
  839. cb(Kcur, "Kcur_rope", il);
  840. cur = build_attn(layer.o_w, layer.o_b,
  841. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  842. cb(cur, "attn_out", il);
  843. }
  844. // re-add the layer input, e.g., residual
  845. cur = ggml_add(ctx0, cur, inpL);
  846. inpL = cur; // inpL = residual, cur = hidden_states
  847. cb(cur, "ffn_inp", il);
  848. // layernorm2
  849. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  850. cb(cur, "ffn_inp_normed", il);
  851. // ffn
  852. cur = build_ffn(cur,
  853. layer.ff_up_w, layer.ff_up_b,
  854. layer.ff_gate_w, layer.ff_gate_b,
  855. layer.ff_down_w, layer.ff_down_b,
  856. hparams.ffn_op, il);
  857. cb(cur, "ffn_out", il);
  858. // residual 2
  859. cur = ggml_add(ctx0, inpL, cur);
  860. cb(cur, "layer_out", il);
  861. if (layer.has_deepstack()) {
  862. ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
  863. feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
  864. feat = build_ffn(feat,
  865. layer.deepstack_fc1_w, layer.deepstack_fc1_b,
  866. nullptr, nullptr,
  867. layer.deepstack_fc2_w, layer.deepstack_fc2_b,
  868. ffn_op_type::FFN_GELU, il);
  869. if(!deepstack_features) {
  870. deepstack_features = feat;
  871. } else {
  872. // concat along the feature dimension
  873. deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
  874. }
  875. }
  876. inpL = cur;
  877. }
  878. // post-layernorm
  879. if (model.post_ln_w) {
  880. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  881. }
  882. // multimodal projection
  883. ggml_tensor * embeddings = inpL;
  884. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  885. embeddings = build_ffn(embeddings,
  886. model.mm_0_w, model.mm_0_b,
  887. nullptr, nullptr,
  888. model.mm_1_w, model.mm_1_b,
  889. ffn_op_type::FFN_GELU, -1);
  890. embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
  891. // build the graph
  892. ggml_build_forward_expand(gf, embeddings);
  893. return gf;
  894. }
  895. ggml_cgraph * build_minicpmv() {
  896. GGML_ASSERT(model.class_embedding == nullptr);
  897. const int n_pos = n_patches;
  898. const int n_embd_proj = clip_n_mmproj_embd(ctx);
  899. // position embeddings for the projector (not for ViT)
  900. // see: https://huggingface.co/openbmb/MiniCPM-o-2_6/blob/main/resampler.py#L70
  901. // base frequency omega
  902. ggml_tensor * omega = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_embd_proj / 4);
  903. ggml_set_name(omega, "omega");
  904. ggml_set_input(omega);
  905. // 2D input positions (using float for sinusoidal embeddings)
  906. ggml_tensor * pos_h = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
  907. ggml_set_name(pos_h, "pos_h");
  908. ggml_set_input(pos_h);
  909. ggml_tensor * pos_w = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
  910. ggml_set_name(pos_w, "pos_w");
  911. ggml_set_input(pos_w);
  912. // for selecting learned pos embd, used by ViT
  913. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  914. ggml_set_name(positions, "positions");
  915. ggml_set_input(positions);
  916. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  917. ggml_tensor * inp = build_inp();
  918. ggml_tensor * embeddings = build_vit(
  919. inp, n_pos,
  920. NORM_TYPE_NORMAL,
  921. hparams.ffn_op,
  922. learned_pos_embd,
  923. nullptr);
  924. // resampler projector (it is just another transformer)
  925. ggml_tensor * q = model.mm_model_query;
  926. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  927. // norm
  928. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  929. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  930. // calculate sinusoidal pos embd
  931. ggml_tensor * pos_embed = nullptr;
  932. {
  933. // outer product
  934. ggml_tensor * omega_b = ggml_repeat_4d(ctx0, omega, omega->ne[0], n_pos, 1, 1); // n_pos rows
  935. ggml_tensor * theta_x = ggml_mul(ctx0, omega_b, pos_w);
  936. ggml_tensor * theta_y = ggml_mul(ctx0, omega_b, pos_h);
  937. // sin and cos
  938. ggml_tensor * pos_embd_x = ggml_concat(
  939. ctx0,
  940. ggml_sin(ctx0, theta_x),
  941. ggml_cos(ctx0, theta_x),
  942. 0 // concat on first dim
  943. );
  944. ggml_tensor * pos_embd_y = ggml_concat(
  945. ctx0,
  946. ggml_sin(ctx0, theta_y),
  947. ggml_cos(ctx0, theta_y),
  948. 0 // concat on first dim
  949. );
  950. pos_embed = ggml_concat(ctx0, pos_embd_x, pos_embd_y, 0);
  951. }
  952. // k = v + pos_embed
  953. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  954. // attention
  955. {
  956. const int d_head = 128;
  957. int n_head = n_embd_proj/d_head;
  958. // Use actual config value if available, otherwise fall back to hardcoded values
  959. int num_query = ctx->model.hparams.minicpmv_query_num;
  960. ggml_tensor * Q = ggml_add(ctx0,
  961. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  962. model.mm_model_attn_q_b);
  963. ggml_tensor * K = ggml_add(ctx0,
  964. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  965. model.mm_model_attn_k_b);
  966. ggml_tensor * V = ggml_add(ctx0,
  967. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  968. model.mm_model_attn_v_b);
  969. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  970. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  971. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  972. cb(Q, "resampler_Q", -1);
  973. cb(K, "resampler_K", -1);
  974. cb(V, "resampler_V", -1);
  975. float resampler_kq_scale = 1.0f/ sqrtf(float(d_head));
  976. embeddings = build_attn(
  977. model.mm_model_attn_o_w,
  978. model.mm_model_attn_o_b,
  979. Q, K, V, nullptr, resampler_kq_scale, -1);
  980. cb(embeddings, "resampler_attn_out", -1);
  981. }
  982. // layernorm
  983. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  984. // projection
  985. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  986. // build the graph
  987. ggml_build_forward_expand(gf, embeddings);
  988. return gf;
  989. }
  990. ggml_cgraph * build_internvl() {
  991. GGML_ASSERT(model.class_embedding != nullptr);
  992. GGML_ASSERT(model.position_embeddings != nullptr);
  993. const int n_pos = n_patches + 1;
  994. ggml_tensor * inp = build_inp();
  995. // add CLS token
  996. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  997. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  998. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  999. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  1000. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  1001. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  1002. ggml_tensor * cur = build_vit(
  1003. inp, n_pos,
  1004. norm_t,
  1005. hparams.ffn_op,
  1006. model.position_embeddings,
  1007. nullptr);
  1008. // remove CLS token
  1009. cur = ggml_view_2d(ctx0, cur,
  1010. n_embd, n_patches,
  1011. ggml_row_size(cur->type, n_embd), 0);
  1012. // pixel shuffle
  1013. {
  1014. const int scale_factor = model.hparams.n_merge;
  1015. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  1016. const int height = n_patches_y;
  1017. const int width = n_patches_x;
  1018. GGML_ASSERT(scale_factor > 0);
  1019. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  1020. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1021. cur = ggml_cont_4d(ctx0, cur,
  1022. n_embd * scale_factor * scale_factor,
  1023. height / scale_factor,
  1024. width / scale_factor,
  1025. bsz);
  1026. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1027. // flatten to 2D
  1028. cur = ggml_cont_2d(ctx0, cur,
  1029. n_embd * scale_factor * scale_factor,
  1030. cur->ne[1] * cur->ne[2]);
  1031. }
  1032. // projector (always using GELU activation)
  1033. {
  1034. // projector LayerNorm uses pytorch's default eps = 1e-5
  1035. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  1036. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  1037. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1038. cur = ggml_add(ctx0, cur, model.mm_1_b);
  1039. cur = ggml_gelu(ctx0, cur);
  1040. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  1041. cur = ggml_add(ctx0, cur, model.mm_3_b);
  1042. }
  1043. // build the graph
  1044. ggml_build_forward_expand(gf, cur);
  1045. return gf;
  1046. }
  1047. ggml_cgraph * build_llama4() {
  1048. GGML_ASSERT(model.class_embedding != nullptr);
  1049. GGML_ASSERT(model.position_embeddings != nullptr);
  1050. const int n_pos = n_patches + 1; // +1 for [CLS]
  1051. // 2D input positions
  1052. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1053. ggml_set_name(pos_h, "pos_h");
  1054. ggml_set_input(pos_h);
  1055. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1056. ggml_set_name(pos_w, "pos_w");
  1057. ggml_set_input(pos_w);
  1058. ggml_tensor * inp = build_inp_raw();
  1059. // Llama4UnfoldConvolution
  1060. {
  1061. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  1062. patch_size, patch_size, 3, n_embd);
  1063. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  1064. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  1065. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  1066. cb(inp, "patch_conv", -1);
  1067. }
  1068. // add CLS token
  1069. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1070. // build ViT with 2D position embeddings
  1071. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1072. // first half is X axis and second half is Y axis
  1073. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  1074. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  1075. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1076. };
  1077. ggml_tensor * cur = build_vit(
  1078. inp, n_pos,
  1079. NORM_TYPE_NORMAL,
  1080. hparams.ffn_op,
  1081. model.position_embeddings,
  1082. add_pos);
  1083. // remove CLS token
  1084. cur = ggml_view_2d(ctx0, cur,
  1085. n_embd, n_patches,
  1086. ggml_row_size(cur->type, n_embd), 0);
  1087. // pixel shuffle
  1088. // based on Llama4VisionPixelShuffleMLP
  1089. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  1090. {
  1091. const int scale_factor = model.hparams.n_merge;
  1092. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  1093. GGML_ASSERT(scale_factor > 0);
  1094. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  1095. cur = ggml_reshape_4d(ctx0, cur,
  1096. n_embd * scale_factor,
  1097. n_patches_x / scale_factor,
  1098. n_patches_y,
  1099. bsz);
  1100. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1101. cur = ggml_cont_4d(ctx0, cur,
  1102. n_embd * scale_factor * scale_factor,
  1103. n_patches_x / scale_factor,
  1104. n_patches_y / scale_factor,
  1105. bsz);
  1106. //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1107. // flatten to 2D
  1108. cur = ggml_cont_2d(ctx0, cur,
  1109. n_embd * scale_factor * scale_factor,
  1110. n_patches / scale_factor / scale_factor);
  1111. cb(cur, "pixel_shuffle", -1);
  1112. }
  1113. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  1114. {
  1115. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  1116. cur = ggml_gelu(ctx0, cur);
  1117. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  1118. cur = ggml_gelu(ctx0, cur);
  1119. cb(cur, "adapter_mlp", -1);
  1120. }
  1121. // Llama4MultiModalProjector
  1122. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1123. cb(cur, "projected", -1);
  1124. // build the graph
  1125. ggml_build_forward_expand(gf, cur);
  1126. return gf;
  1127. }
  1128. ggml_cgraph * build_kimivl() {
  1129. // 2D input positions
  1130. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1131. ggml_set_name(pos_h, "pos_h");
  1132. ggml_set_input(pos_h);
  1133. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1134. ggml_set_name(pos_w, "pos_w");
  1135. ggml_set_input(pos_w);
  1136. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  1137. // build ViT with 2D position embeddings
  1138. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1139. // first half is X axis and second half is Y axis
  1140. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1141. };
  1142. ggml_tensor * inp = build_inp();
  1143. ggml_tensor * cur = build_vit(
  1144. inp, n_patches,
  1145. NORM_TYPE_NORMAL,
  1146. hparams.ffn_op,
  1147. learned_pos_embd,
  1148. add_pos);
  1149. cb(cur, "vit_out", -1);
  1150. {
  1151. // patch_merger
  1152. const int scale_factor = model.hparams.n_merge;
  1153. cur = build_patch_merge_permute(cur, scale_factor);
  1154. // projection norm
  1155. int proj_inp_dim = cur->ne[0];
  1156. cur = ggml_view_2d(ctx0, cur,
  1157. n_embd, cur->ne[1] * scale_factor * scale_factor,
  1158. ggml_row_size(cur->type, n_embd), 0);
  1159. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  1160. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  1161. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  1162. cur = ggml_view_2d(ctx0, cur,
  1163. proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
  1164. ggml_row_size(cur->type, proj_inp_dim), 0);
  1165. cb(cur, "proj_inp_normed", -1);
  1166. // projection mlp
  1167. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1168. cur = ggml_add(ctx0, cur, model.mm_1_b);
  1169. cur = ggml_gelu(ctx0, cur);
  1170. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1171. cur = ggml_add(ctx0, cur, model.mm_2_b);
  1172. cb(cur, "proj_out", -1);
  1173. }
  1174. // build the graph
  1175. ggml_build_forward_expand(gf, cur);
  1176. return gf;
  1177. }
  1178. // this graph is used by llava, granite and glm
  1179. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  1180. ggml_cgraph * build_llava() {
  1181. const int batch_size = 1;
  1182. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  1183. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  1184. // Calculate the deepest feature layer based on hparams and projector type
  1185. int max_feature_layer = n_layer;
  1186. {
  1187. // Get the index of the second to last layer; this is the default for models that have a llava projector
  1188. int il_last = hparams.n_layer - 1;
  1189. int deepest_feature_layer = -1;
  1190. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1191. il_last += 1;
  1192. }
  1193. // If we set explicit vision feature layers, only go up to the deepest one
  1194. // NOTE: only used by granite-vision models for now
  1195. for (const auto & feature_layer : hparams.vision_feature_layer) {
  1196. if (feature_layer > deepest_feature_layer) {
  1197. deepest_feature_layer = feature_layer;
  1198. }
  1199. }
  1200. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  1201. }
  1202. ggml_tensor * inp = build_inp();
  1203. // concat class_embeddings and patch_embeddings
  1204. if (model.class_embedding) {
  1205. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1206. }
  1207. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1208. ggml_set_name(positions, "positions");
  1209. ggml_set_input(positions);
  1210. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  1211. ggml_tensor * inpL = inp;
  1212. // pre-layernorm
  1213. if (model.pre_ln_w) {
  1214. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1215. cb(inpL, "pre_ln", -1);
  1216. }
  1217. std::vector<ggml_tensor *> embedding_stack;
  1218. const auto & vision_feature_layer = hparams.vision_feature_layer;
  1219. // loop over layers
  1220. for (int il = 0; il < max_feature_layer; il++) {
  1221. auto & layer = model.layers[il];
  1222. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1223. // If this is an embedding feature layer, save the output.
  1224. // NOTE: 0 index here refers to the input to the encoder.
  1225. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  1226. embedding_stack.push_back(cur);
  1227. }
  1228. // layernorm1
  1229. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1230. cb(cur, "layer_inp_normed", il);
  1231. // self-attention
  1232. {
  1233. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1234. if (layer.q_b) {
  1235. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1236. }
  1237. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1238. if (layer.k_b) {
  1239. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1240. }
  1241. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1242. if (layer.v_b) {
  1243. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1244. }
  1245. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1246. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1247. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1248. cb(Qcur, "Qcur", il);
  1249. cb(Kcur, "Kcur", il);
  1250. cb(Vcur, "Vcur", il);
  1251. cur = build_attn(layer.o_w, layer.o_b,
  1252. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1253. cb(cur, "attn_out", il);
  1254. }
  1255. // re-add the layer input, e.g., residual
  1256. cur = ggml_add(ctx0, cur, inpL);
  1257. inpL = cur; // inpL = residual, cur = hidden_states
  1258. cb(cur, "ffn_inp", il);
  1259. // layernorm2
  1260. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1261. cb(cur, "ffn_inp_normed", il);
  1262. // ffn
  1263. cur = build_ffn(cur,
  1264. layer.ff_up_w, layer.ff_up_b,
  1265. layer.ff_gate_w, layer.ff_gate_b,
  1266. layer.ff_down_w, layer.ff_down_b,
  1267. hparams.ffn_op, il);
  1268. cb(cur, "ffn_out", il);
  1269. // residual 2
  1270. cur = ggml_add(ctx0, inpL, cur);
  1271. cb(cur, "layer_out", il);
  1272. inpL = cur;
  1273. }
  1274. // post-layernorm
  1275. if (model.post_ln_w) {
  1276. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1277. }
  1278. ggml_tensor * embeddings = inpL;
  1279. // process vision feature layers (used by granite)
  1280. {
  1281. // final layer is a vision feature layer
  1282. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  1283. embedding_stack.push_back(inpL);
  1284. }
  1285. // If feature layers are explicitly set, stack them (if we have multiple)
  1286. if (!embedding_stack.empty()) {
  1287. embeddings = embedding_stack[0];
  1288. for (size_t i = 1; i < embedding_stack.size(); i++) {
  1289. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  1290. }
  1291. }
  1292. }
  1293. // llava projector (also used by granite)
  1294. if (ctx->model.hparams.has_llava_projector) {
  1295. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1296. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1297. ggml_set_name(patches, "patches");
  1298. ggml_set_input(patches);
  1299. // shape [1, 576, 1024]
  1300. // ne is whcn, ne = [1024, 576, 1, 1]
  1301. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1302. // print_tensor_info(embeddings, "embeddings");
  1303. // llava projector
  1304. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1305. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1306. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1307. embeddings = ggml_gelu(ctx0, embeddings);
  1308. if (model.mm_2_w) {
  1309. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1310. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1311. }
  1312. }
  1313. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1314. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1315. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1316. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1317. // First LayerNorm
  1318. embeddings = ggml_norm(ctx0, embeddings, eps);
  1319. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1320. model.mm_1_b);
  1321. // GELU activation
  1322. embeddings = ggml_gelu(ctx0, embeddings);
  1323. // Second linear layer
  1324. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1325. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1326. // Second LayerNorm
  1327. embeddings = ggml_norm(ctx0, embeddings, eps);
  1328. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1329. model.mm_4_b);
  1330. }
  1331. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1332. // MobileVLM projector
  1333. int n_patch = 24;
  1334. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1335. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1336. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1337. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1338. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1339. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1340. // block 1
  1341. ggml_tensor * block_1 = nullptr;
  1342. {
  1343. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1344. mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
  1345. mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1346. // stride = 1, padding = 1, bias is nullptr
  1347. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1348. // layer norm
  1349. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1350. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1351. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1352. block_1 = ggml_norm(ctx0, block_1, eps);
  1353. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1354. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1355. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1356. // hardswish
  1357. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1358. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1359. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1360. // pointwise conv
  1361. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1362. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1363. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1364. block_1 = ggml_relu(ctx0, block_1);
  1365. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1366. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1367. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1368. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1369. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1370. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1371. int w = block_1->ne[0], h = block_1->ne[1];
  1372. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1373. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1374. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1375. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1376. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1377. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1378. block_1 = ggml_norm(ctx0, block_1, eps);
  1379. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1380. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1381. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1382. // residual
  1383. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1384. }
  1385. // block_2
  1386. {
  1387. // stride = 2
  1388. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1389. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1390. // layer norm
  1391. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1392. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1393. block_1 = ggml_norm(ctx0, block_1, eps);
  1394. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1395. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1396. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1397. // hardswish
  1398. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1399. // not sure the parameters is right for globalAvgPooling
  1400. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1401. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1402. // pointwise conv
  1403. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1404. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1405. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1406. block_1 = ggml_relu(ctx0, block_1);
  1407. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1408. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1409. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1410. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1411. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1412. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1413. int w = block_1->ne[0], h = block_1->ne[1];
  1414. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1415. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1416. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1417. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1418. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1419. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1420. block_1 = ggml_norm(ctx0, block_1, eps);
  1421. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1422. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1423. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1424. }
  1425. embeddings = block_1;
  1426. }
  1427. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1428. {
  1429. int n_patch = 24;
  1430. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1431. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1432. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1433. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1434. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1435. // mlp_2 ne = [2048, 576, 1, 1]
  1436. // // AVG Pool Layer 2*2, strides = 2
  1437. mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
  1438. // mlp_2 ne = [576, 2048, 1, 1]
  1439. mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1440. // mlp_2 ne [24, 24, 2048, 1]
  1441. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1442. // weight ne = [3, 3, 2048, 1]
  1443. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1444. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1445. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1446. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1447. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1448. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1449. embeddings = peg_0;
  1450. }
  1451. else {
  1452. GGML_ABORT("fatal error");
  1453. }
  1454. }
  1455. // glm projector
  1456. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1457. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1458. embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
  1459. embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1460. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1461. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1462. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1463. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1464. // GLU
  1465. {
  1466. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1467. embeddings = ggml_norm(ctx0, embeddings, eps);
  1468. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1469. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1470. ggml_tensor * x = embeddings;
  1471. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1472. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1473. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1474. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1475. }
  1476. // arrangement of BOI/EOI token embeddings
  1477. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1478. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1479. {
  1480. embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
  1481. embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
  1482. }
  1483. }
  1484. else {
  1485. GGML_ABORT("llava: unknown projector type");
  1486. }
  1487. // build the graph
  1488. ggml_build_forward_expand(gf, embeddings);
  1489. return gf;
  1490. }
  1491. // whisper encoder with custom projector
  1492. ggml_cgraph * build_whisper_enc() {
  1493. const int n_frames = img.nx;
  1494. const int n_pos = n_frames / 2;
  1495. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1496. ggml_tensor * inp = build_inp_raw(1);
  1497. // conv1d block
  1498. {
  1499. // convolution + gelu
  1500. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1501. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1502. cur = ggml_gelu_erf(ctx0, cur);
  1503. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1504. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1505. cur = ggml_gelu_erf(ctx0, cur);
  1506. // transpose
  1507. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1508. cb(inp, "after_conv1d", -1);
  1509. }
  1510. // sanity check (only check one layer, but it should be the same for all)
  1511. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1512. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1513. GGML_ASSERT(model.layers[0].q_b);
  1514. GGML_ASSERT(model.layers[0].v_b);
  1515. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1516. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1517. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1518. ctx0, model.position_embeddings,
  1519. model.position_embeddings->ne[0], n_pos,
  1520. model.position_embeddings->nb[1], 0
  1521. );
  1522. ggml_tensor * cur = build_vit(
  1523. inp, n_pos,
  1524. NORM_TYPE_NORMAL,
  1525. hparams.ffn_op,
  1526. pos_embd_selected,
  1527. nullptr);
  1528. cb(cur, "after_transformer", -1);
  1529. if (model.audio_has_stack_frames()) {
  1530. // StackAudioFrames
  1531. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1532. int64_t stride = n_embd * hparams.proj_stack_factor;
  1533. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1534. int64_t pad = padded_len - ggml_nelements(cur);
  1535. if (pad > 0) {
  1536. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1537. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1538. }
  1539. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1540. ggml_row_size(cur->type, stride), 0);
  1541. cb(cur, "after_stacked", -1);
  1542. }
  1543. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1544. // UltravoxProjector
  1545. // pre-norm
  1546. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1547. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1548. // ffn in
  1549. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1550. // swiglu
  1551. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1552. cur = ggml_swiglu_swapped(ctx0, cur);
  1553. // mid-norm
  1554. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1555. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1556. // ffn out
  1557. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1558. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1559. // projector
  1560. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1561. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1562. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1563. // projector
  1564. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1565. cur = ggml_gelu_erf(ctx0, cur);
  1566. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1567. } else {
  1568. GGML_ABORT("%s: unknown projector type", __func__);
  1569. }
  1570. cb(cur, "projected", -1);
  1571. ggml_build_forward_expand(gf, cur);
  1572. return gf;
  1573. }
  1574. // cogvlm vision encoder
  1575. ggml_cgraph * build_cogvlm() {
  1576. GGML_ASSERT(model.class_embedding != nullptr);
  1577. GGML_ASSERT(model.position_embeddings != nullptr);
  1578. const int n_pos = n_patches + 1; // +1 for [CLS]
  1579. // build input and concatenate class embedding
  1580. ggml_tensor * inp = build_inp();
  1581. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1582. inp = ggml_add(ctx0, inp, model.position_embeddings);
  1583. cb(inp, "inp_pos", -1);
  1584. ggml_tensor * inpL = inp;
  1585. for (int il = 0; il < n_layer; il++) {
  1586. auto & layer = model.layers[il];
  1587. ggml_tensor * cur = inpL;
  1588. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  1589. cur = ggml_add(ctx0, cur, layer.qkv_b);
  1590. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1591. cur->nb[1], 0);
  1592. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1593. cur->nb[1], n_embd * sizeof(float));
  1594. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1595. cur->nb[1], 2 * n_embd * sizeof(float));
  1596. cb(Qcur, "Qcur", il);
  1597. cb(Kcur, "Kcur", il);
  1598. cb(Vcur, "Vcur", il);
  1599. cur = build_attn(layer.o_w, layer.o_b,
  1600. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1601. cb(cur, "attn_out", il);
  1602. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1603. cb(cur, "attn_post_norm", il);
  1604. cur = ggml_add(ctx0, cur, inpL);
  1605. inpL = cur;
  1606. cur = build_ffn(cur,
  1607. layer.ff_up_w, layer.ff_up_b,
  1608. layer.ff_gate_w, layer.ff_gate_b,
  1609. layer.ff_down_w, layer.ff_down_b,
  1610. hparams.ffn_op, il);
  1611. cb(cur, "ffn_out", il);
  1612. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1613. cb(cur, "ffn_post_norm", il);
  1614. cur = ggml_add(ctx0, cur, inpL);
  1615. cb(cur, "layer_out", il);
  1616. inpL = cur;
  1617. }
  1618. // remove CLS token (like build_llama4 does)
  1619. ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
  1620. n_embd, n_patches,
  1621. ggml_row_size(inpL->type, n_embd), 0);
  1622. // Multiply with mm_model_proj
  1623. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1624. // Apply layernorm, weight, bias
  1625. cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
  1626. // Apply GELU
  1627. cur = ggml_gelu_inplace(ctx0, cur);
  1628. // Branch 1: multiply with mm_h_to_4h_w
  1629. ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
  1630. // Branch 2: multiply with mm_gate_w
  1631. ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
  1632. // Apply silu
  1633. gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
  1634. // Apply mm_4h_to_h_w
  1635. cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
  1636. // Concatenate with boi and eoi
  1637. cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
  1638. cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
  1639. // build the graph
  1640. ggml_build_forward_expand(gf, cur);
  1641. return gf;
  1642. }
  1643. private:
  1644. //
  1645. // utility functions
  1646. //
  1647. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1648. if (ctx->debug_graph) {
  1649. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1650. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1651. ggml_set_name(cur, cur_name.c_str());
  1652. ggml_set_output(cur);
  1653. ggml_build_forward_expand(gf, cur);
  1654. ctx->debug_print_tensors.push_back(cur);
  1655. }
  1656. }
  1657. // siglip2 naflex
  1658. ggml_tensor * resize_position_embeddings() {
  1659. ggml_tensor * pos_embd = model.position_embeddings;
  1660. const int height = img.ny / patch_size;
  1661. const int width = img.nx / patch_size;
  1662. const uint32_t mode = GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS;
  1663. const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
  1664. GGML_ASSERT(pos_embd);
  1665. if (height == n_per_side && width == n_per_side) {
  1666. return pos_embd;
  1667. }
  1668. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
  1669. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
  1670. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
  1671. pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
  1672. pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
  1673. return pos_embd;
  1674. }
  1675. // build vision transformer (ViT) cgraph
  1676. // this function should cover most of the models
  1677. // if your model has specific features, you should probably duplicate this function
  1678. ggml_tensor * build_vit(
  1679. ggml_tensor * inp,
  1680. int64_t n_pos,
  1681. norm_type norm_t,
  1682. ffn_op_type ffn_t,
  1683. ggml_tensor * learned_pos_embd,
  1684. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1685. ) {
  1686. if (learned_pos_embd) {
  1687. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1688. cb(inp, "pos_embed", -1);
  1689. }
  1690. ggml_tensor * inpL = inp;
  1691. // pre-layernorm
  1692. if (model.pre_ln_w) {
  1693. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1694. cb(inpL, "pre_ln", -1);
  1695. }
  1696. // loop over layers
  1697. for (int il = 0; il < n_layer; il++) {
  1698. auto & layer = model.layers[il];
  1699. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1700. // layernorm1
  1701. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1702. cb(cur, "layer_inp_normed", il);
  1703. // self-attention
  1704. {
  1705. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1706. if (layer.q_b) {
  1707. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1708. }
  1709. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1710. if (layer.k_b) {
  1711. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1712. }
  1713. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1714. if (layer.v_b) {
  1715. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1716. }
  1717. if (layer.q_norm) {
  1718. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1719. cb(Qcur, "Qcur_norm", il);
  1720. }
  1721. if (layer.k_norm) {
  1722. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1723. cb(Kcur, "Kcur_norm", il);
  1724. }
  1725. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1726. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1727. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1728. cb(Qcur, "Qcur", il);
  1729. cb(Kcur, "Kcur", il);
  1730. cb(Vcur, "Vcur", il);
  1731. if (add_pos) {
  1732. Qcur = add_pos(Qcur, layer);
  1733. Kcur = add_pos(Kcur, layer);
  1734. cb(Qcur, "Qcur_pos", il);
  1735. cb(Kcur, "Kcur_pos", il);
  1736. }
  1737. cur = build_attn(layer.o_w, layer.o_b,
  1738. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1739. cb(cur, "attn_out", il);
  1740. }
  1741. if (layer.ls_1_w) {
  1742. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1743. cb(cur, "attn_out_scaled", il);
  1744. }
  1745. // re-add the layer input, e.g., residual
  1746. cur = ggml_add(ctx0, cur, inpL);
  1747. inpL = cur; // inpL = residual, cur = hidden_states
  1748. cb(cur, "ffn_inp", il);
  1749. // layernorm2
  1750. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1751. cb(cur, "ffn_inp_normed", il);
  1752. // ffn
  1753. cur = build_ffn(cur,
  1754. layer.ff_up_w, layer.ff_up_b,
  1755. layer.ff_gate_w, layer.ff_gate_b,
  1756. layer.ff_down_w, layer.ff_down_b,
  1757. ffn_t, il);
  1758. cb(cur, "ffn_out", il);
  1759. if (layer.ls_2_w) {
  1760. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1761. cb(cur, "ffn_out_scaled", il);
  1762. }
  1763. // residual 2
  1764. cur = ggml_add(ctx0, inpL, cur);
  1765. cb(cur, "layer_out", il);
  1766. inpL = cur;
  1767. }
  1768. if (ctx->model.audio_has_avgpool()) {
  1769. ggml_tensor * cur = inpL;
  1770. cur = ggml_transpose(ctx0, cur);
  1771. cur = ggml_cont(ctx0, cur);
  1772. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1773. cur = ggml_transpose(ctx0, cur);
  1774. cur = ggml_cont(ctx0, cur);
  1775. inpL = cur;
  1776. }
  1777. // post-layernorm
  1778. if (model.post_ln_w) {
  1779. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1780. }
  1781. return inpL;
  1782. }
  1783. // build the input after conv2d (inp_raw --> patches)
  1784. // returns tensor with shape [n_embd, n_patches]
  1785. ggml_tensor * build_inp() {
  1786. ggml_tensor * inp_raw = build_inp_raw();
  1787. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1788. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1789. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1790. if (model.patch_bias) {
  1791. inp = ggml_add(ctx0, inp, model.patch_bias);
  1792. cb(inp, "patch_bias", -1);
  1793. }
  1794. return inp;
  1795. }
  1796. ggml_tensor * build_inp_raw(int channels = 3) {
  1797. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1798. ggml_set_name(inp_raw, "inp_raw");
  1799. ggml_set_input(inp_raw);
  1800. return inp_raw;
  1801. }
  1802. ggml_tensor * build_norm(
  1803. ggml_tensor * cur,
  1804. ggml_tensor * mw,
  1805. ggml_tensor * mb,
  1806. norm_type type,
  1807. float norm_eps,
  1808. int il) const {
  1809. cur = type == NORM_TYPE_RMS
  1810. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1811. : ggml_norm(ctx0, cur, norm_eps);
  1812. if (mw || mb) {
  1813. cb(cur, "norm", il);
  1814. }
  1815. if (mw) {
  1816. cur = ggml_mul(ctx0, cur, mw);
  1817. if (mb) {
  1818. cb(cur, "norm_w", il);
  1819. }
  1820. }
  1821. if (mb) {
  1822. cur = ggml_add(ctx0, cur, mb);
  1823. }
  1824. return cur;
  1825. }
  1826. ggml_tensor * build_ffn(
  1827. ggml_tensor * cur,
  1828. ggml_tensor * up,
  1829. ggml_tensor * up_b,
  1830. ggml_tensor * gate,
  1831. ggml_tensor * gate_b,
  1832. ggml_tensor * down,
  1833. ggml_tensor * down_b,
  1834. ffn_op_type type_op,
  1835. int il) const {
  1836. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1837. cb(tmp, "ffn_up", il);
  1838. if (up_b) {
  1839. tmp = ggml_add(ctx0, tmp, up_b);
  1840. cb(tmp, "ffn_up_b", il);
  1841. }
  1842. if (gate) {
  1843. cur = ggml_mul_mat(ctx0, gate, cur);
  1844. cb(cur, "ffn_gate", il);
  1845. if (gate_b) {
  1846. cur = ggml_add(ctx0, cur, gate_b);
  1847. cb(cur, "ffn_gate_b", il);
  1848. }
  1849. } else {
  1850. cur = tmp;
  1851. }
  1852. // we only support parallel ffn for now
  1853. switch (type_op) {
  1854. case FFN_SILU:
  1855. if (gate) {
  1856. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1857. cb(cur, "ffn_swiglu", il);
  1858. } else {
  1859. cur = ggml_silu(ctx0, cur);
  1860. cb(cur, "ffn_silu", il);
  1861. } break;
  1862. case FFN_GELU:
  1863. if (gate) {
  1864. cur = ggml_geglu_split(ctx0, cur, tmp);
  1865. cb(cur, "ffn_geglu", il);
  1866. } else {
  1867. cur = ggml_gelu(ctx0, cur);
  1868. cb(cur, "ffn_gelu", il);
  1869. } break;
  1870. case FFN_GELU_ERF:
  1871. if (gate) {
  1872. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1873. cb(cur, "ffn_geglu_erf", il);
  1874. } else {
  1875. cur = ggml_gelu_erf(ctx0, cur);
  1876. cb(cur, "ffn_gelu_erf", il);
  1877. } break;
  1878. case FFN_GELU_QUICK:
  1879. if (gate) {
  1880. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1881. cb(cur, "ffn_geglu_quick", il);
  1882. } else {
  1883. cur = ggml_gelu_quick(ctx0, cur);
  1884. cb(cur, "ffn_gelu_quick", il);
  1885. } break;
  1886. }
  1887. if (down) {
  1888. cur = ggml_mul_mat(ctx0, down, cur);
  1889. }
  1890. if (down_b) {
  1891. cb(cur, "ffn_down", il);
  1892. }
  1893. if (down_b) {
  1894. cur = ggml_add(ctx0, cur, down_b);
  1895. }
  1896. return cur;
  1897. }
  1898. ggml_tensor * build_attn(
  1899. ggml_tensor * wo,
  1900. ggml_tensor * wo_b,
  1901. ggml_tensor * q_cur,
  1902. ggml_tensor * k_cur,
  1903. ggml_tensor * v_cur,
  1904. ggml_tensor * kq_mask,
  1905. float kq_scale,
  1906. int il) const {
  1907. // these nodes are added to the graph together so that they are not reordered
  1908. // by doing so, the number of splits in the graph is reduced
  1909. ggml_build_forward_expand(gf, q_cur);
  1910. ggml_build_forward_expand(gf, k_cur);
  1911. ggml_build_forward_expand(gf, v_cur);
  1912. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1913. //cb(q, "q", il);
  1914. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1915. //cb(k, "k", il);
  1916. ggml_tensor * cur;
  1917. if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  1918. ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
  1919. k = ggml_cast(ctx0, k, GGML_TYPE_F16);
  1920. v = ggml_cast(ctx0, v, GGML_TYPE_F16);
  1921. cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f);
  1922. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  1923. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
  1924. } else {
  1925. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1926. v = ggml_cont(ctx0, v);
  1927. const auto n_tokens = q->ne[1];
  1928. const auto n_head = q->ne[2];
  1929. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1930. // F32 may not needed for vision encoders?
  1931. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1932. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1933. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1934. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1935. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1936. }
  1937. cb(cur, "kqv_out", il);
  1938. if (wo) {
  1939. cur = ggml_mul_mat(ctx0, wo, cur);
  1940. }
  1941. if (wo_b) {
  1942. cur = ggml_add(ctx0, cur, wo_b);
  1943. }
  1944. return cur;
  1945. }
  1946. // implementation of the 2D RoPE without adding a new op in ggml
  1947. // this is not efficient (use double the memory), but works on all backends
  1948. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1949. static ggml_tensor * build_rope_2d(
  1950. ggml_context * ctx0,
  1951. ggml_tensor * cur,
  1952. ggml_tensor * pos_a, // first half
  1953. ggml_tensor * pos_b, // second half
  1954. const float freq_base,
  1955. const bool interleave_freq
  1956. ) {
  1957. const int64_t n_dim = cur->ne[0];
  1958. const int64_t n_head = cur->ne[1];
  1959. const int64_t n_pos = cur->ne[2];
  1960. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1961. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1962. // first half of cur will use 1e-0, 1e-2 (even)
  1963. // second half of cur will use 1e-1, 1e-3 (odd)
  1964. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1965. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1966. // then for the second half, we use freq_scale to shift the inv_freq
  1967. // ^ why? replace (2i) with (2i+1) in the above equation
  1968. const float freq_scale_odd = interleave_freq
  1969. ? std::pow(freq_base, (float)-2/n_dim)
  1970. : 1.0;
  1971. // first half
  1972. ggml_tensor * first;
  1973. {
  1974. first = ggml_view_3d(ctx0, cur,
  1975. n_dim/2, n_head, n_pos,
  1976. ggml_row_size(cur->type, n_dim),
  1977. ggml_row_size(cur->type, n_dim*n_head),
  1978. 0);
  1979. first = ggml_rope_ext(
  1980. ctx0,
  1981. first,
  1982. pos_a, // positions
  1983. nullptr, // freq factors
  1984. n_dim/2, // n_dims
  1985. 0, 0, freq_base,
  1986. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1987. );
  1988. }
  1989. // second half
  1990. ggml_tensor * second;
  1991. {
  1992. second = ggml_view_3d(ctx0, cur,
  1993. n_dim/2, n_head, n_pos,
  1994. ggml_row_size(cur->type, n_dim),
  1995. ggml_row_size(cur->type, n_dim*n_head),
  1996. n_dim/2 * ggml_element_size(cur));
  1997. second = ggml_rope_ext(
  1998. ctx0,
  1999. second,
  2000. pos_b, // positions
  2001. nullptr, // freq factors
  2002. n_dim/2, // n_dims
  2003. 0, 0, freq_base,
  2004. freq_scale_odd,
  2005. 0.0f, 1.0f, 0.0f, 0.0f
  2006. );
  2007. }
  2008. cur = ggml_concat(ctx0, first, second, 0);
  2009. return cur;
  2010. }
  2011. // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
  2012. // support dynamic resolution
  2013. ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
  2014. GGML_ASSERT(scale_factor > 1);
  2015. const int n_embd = cur->ne[0];
  2016. int width = img.nx / patch_size;
  2017. int height = img.ny / patch_size;
  2018. // pad width and height to factor
  2019. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  2020. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  2021. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  2022. if (pad_width || pad_height) {
  2023. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  2024. width += pad_width;
  2025. height += pad_height;
  2026. }
  2027. // unshuffle h
  2028. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  2029. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  2030. // unshuffle w
  2031. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  2032. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  2033. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  2034. cb(cur, "pixel_shuffle", -1);
  2035. return cur;
  2036. }
  2037. };
  2038. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  2039. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  2040. clip_graph graph(ctx, *imgs.entries[0]);
  2041. ggml_cgraph * res;
  2042. switch (ctx->proj_type()) {
  2043. case PROJECTOR_TYPE_GEMMA3:
  2044. case PROJECTOR_TYPE_IDEFICS3:
  2045. case PROJECTOR_TYPE_LFM2:
  2046. {
  2047. res = graph.build_siglip();
  2048. } break;
  2049. case PROJECTOR_TYPE_PIXTRAL:
  2050. case PROJECTOR_TYPE_LIGHTONOCR:
  2051. {
  2052. res = graph.build_pixtral();
  2053. } break;
  2054. case PROJECTOR_TYPE_QWEN2VL:
  2055. case PROJECTOR_TYPE_QWEN25VL:
  2056. {
  2057. res = graph.build_qwen2vl();
  2058. } break;
  2059. case PROJECTOR_TYPE_QWEN3VL:
  2060. {
  2061. res = graph.build_qwen3vl();
  2062. } break;
  2063. case PROJECTOR_TYPE_MINICPMV:
  2064. {
  2065. res = graph.build_minicpmv();
  2066. } break;
  2067. case PROJECTOR_TYPE_INTERNVL:
  2068. {
  2069. res = graph.build_internvl();
  2070. } break;
  2071. case PROJECTOR_TYPE_LLAMA4:
  2072. {
  2073. res = graph.build_llama4();
  2074. } break;
  2075. case PROJECTOR_TYPE_ULTRAVOX:
  2076. case PROJECTOR_TYPE_VOXTRAL:
  2077. case PROJECTOR_TYPE_QWEN2A:
  2078. {
  2079. res = graph.build_whisper_enc();
  2080. } break;
  2081. case PROJECTOR_TYPE_KIMIVL:
  2082. {
  2083. res = graph.build_kimivl();
  2084. } break;
  2085. case PROJECTOR_TYPE_JANUS_PRO:
  2086. {
  2087. res = graph.build_siglip();
  2088. } break;
  2089. case PROJECTOR_TYPE_COGVLM:
  2090. {
  2091. res = graph.build_cogvlm();
  2092. } break;
  2093. default:
  2094. {
  2095. res = graph.build_llava();
  2096. } break;
  2097. }
  2098. return res;
  2099. }
  2100. struct clip_model_loader {
  2101. ggml_context_ptr ctx_meta;
  2102. gguf_context_ptr ctx_gguf;
  2103. std::string fname;
  2104. size_t model_size = 0; // in bytes
  2105. bool has_vision = false;
  2106. bool has_audio = false;
  2107. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  2108. clip_model_loader(const char * fname) : fname(fname) {
  2109. struct ggml_context * meta = nullptr;
  2110. struct gguf_init_params params = {
  2111. /*.no_alloc = */ true,
  2112. /*.ctx = */ &meta,
  2113. };
  2114. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  2115. if (!ctx_gguf.get()) {
  2116. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  2117. }
  2118. ctx_meta.reset(meta);
  2119. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  2120. // print gguf info
  2121. {
  2122. std::string name;
  2123. get_string(KEY_NAME, name, false);
  2124. std::string description;
  2125. get_string(KEY_DESCRIPTION, description, false);
  2126. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  2127. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  2128. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  2129. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  2130. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  2131. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  2132. LOG_INF("\n");
  2133. }
  2134. // modalities
  2135. {
  2136. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  2137. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  2138. if (has_vision) {
  2139. LOG_INF("%s: has vision encoder\n", __func__);
  2140. }
  2141. if (has_audio) {
  2142. LOG_INF("%s: has audio encoder\n", __func__);
  2143. }
  2144. }
  2145. // tensors
  2146. {
  2147. for (int i = 0; i < n_tensors; ++i) {
  2148. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2149. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  2150. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  2151. ggml_tensor * cur = ggml_get_tensor(meta, name);
  2152. size_t tensor_size = ggml_nbytes(cur);
  2153. model_size += tensor_size;
  2154. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  2155. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  2156. }
  2157. }
  2158. }
  2159. void load_hparams(clip_model & model, clip_modality modality) {
  2160. auto & hparams = model.hparams;
  2161. std::string log_ffn_op; // for logging
  2162. // sanity check
  2163. if (modality == CLIP_MODALITY_VISION) {
  2164. GGML_ASSERT(has_vision);
  2165. } else if (modality == CLIP_MODALITY_AUDIO) {
  2166. GGML_ASSERT(has_audio);
  2167. }
  2168. model.modality = modality;
  2169. // projector type
  2170. std::string proj_type;
  2171. {
  2172. // default key
  2173. get_string(KEY_PROJ_TYPE, proj_type, false);
  2174. // for models with mixed modalities
  2175. if (proj_type.empty()) {
  2176. if (modality == CLIP_MODALITY_VISION) {
  2177. get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
  2178. } else if (modality == CLIP_MODALITY_AUDIO) {
  2179. get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
  2180. } else {
  2181. GGML_ABORT("unknown modality");
  2182. }
  2183. }
  2184. model.proj_type = clip_projector_type_from_string(proj_type);
  2185. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  2186. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  2187. }
  2188. // correct arch for multimodal models (legacy method)
  2189. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  2190. model.proj_type = modality == CLIP_MODALITY_VISION
  2191. ? PROJECTOR_TYPE_QWEN25VL
  2192. : PROJECTOR_TYPE_QWEN2A;
  2193. }
  2194. }
  2195. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  2196. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  2197. // other hparams
  2198. {
  2199. const char * prefix = is_vision ? "vision" : "audio";
  2200. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  2201. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  2202. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  2203. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  2204. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  2205. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  2206. if (is_vision) {
  2207. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  2208. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  2209. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  2210. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  2211. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  2212. if (hparams.minicpmv_query_num == 0) {
  2213. // Fallback to hardcoded values for legacy models
  2214. if (hparams.minicpmv_version == 3) {
  2215. hparams.minicpmv_query_num = 64;
  2216. } else if (hparams.minicpmv_version == 4) {
  2217. hparams.minicpmv_query_num = 64;
  2218. } else if (hparams.minicpmv_version == 5) {
  2219. hparams.minicpmv_query_num = 64;
  2220. } else if (hparams.minicpmv_version == 6) {
  2221. hparams.minicpmv_query_num = 64;
  2222. } else {
  2223. hparams.minicpmv_query_num = 96;
  2224. }
  2225. }
  2226. } else if (is_audio) {
  2227. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  2228. // some hparams are unused, but still need to set to avoid issues
  2229. hparams.image_size = 0;
  2230. hparams.patch_size = 1;
  2231. } else {
  2232. GGML_ASSERT(false && "unknown modality");
  2233. }
  2234. // for pinpoints, we need to convert it into a list of resolution candidates
  2235. {
  2236. std::vector<int> pinpoints;
  2237. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  2238. if (!pinpoints.empty()) {
  2239. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  2240. hparams.image_res_candidates.push_back({
  2241. pinpoints[i],
  2242. pinpoints[i+1],
  2243. });
  2244. }
  2245. }
  2246. }
  2247. // default warmup value
  2248. hparams.warmup_image_size = hparams.image_size;
  2249. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  2250. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2251. || model.proj_type == PROJECTOR_TYPE_LDP
  2252. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  2253. {
  2254. bool use_gelu = false;
  2255. bool use_silu = false;
  2256. get_bool(KEY_USE_GELU, use_gelu, false);
  2257. get_bool(KEY_USE_SILU, use_silu, false);
  2258. if (use_gelu && use_silu) {
  2259. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  2260. }
  2261. if (use_gelu) {
  2262. hparams.ffn_op = FFN_GELU;
  2263. log_ffn_op = "gelu";
  2264. } else if (use_silu) {
  2265. hparams.ffn_op = FFN_SILU;
  2266. log_ffn_op = "silu";
  2267. } else {
  2268. hparams.ffn_op = FFN_GELU_QUICK;
  2269. log_ffn_op = "gelu_quick";
  2270. }
  2271. }
  2272. {
  2273. std::string mm_patch_merge_type;
  2274. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  2275. if (mm_patch_merge_type == "spatial_unpad") {
  2276. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  2277. }
  2278. }
  2279. if (is_vision) {
  2280. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  2281. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  2282. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  2283. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  2284. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  2285. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  2286. for (int i = 0; i < 3; ++i) {
  2287. hparams.image_mean[i] = mean_data[i];
  2288. hparams.image_std[i] = std_data[i];
  2289. }
  2290. }
  2291. // Load the vision feature layer indices if they are explicitly provided;
  2292. // if multiple vision feature layers are present, the values will be concatenated
  2293. // to form the final visual features.
  2294. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  2295. // be non-negative, since we use -1 to mark values as unset here.
  2296. std::vector<int> vision_feature_layer;
  2297. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  2298. // convert std::vector to std::unordered_set
  2299. for (auto & layer : vision_feature_layer) {
  2300. hparams.vision_feature_layer.insert(layer);
  2301. }
  2302. // model-specific params
  2303. switch (model.proj_type) {
  2304. case PROJECTOR_TYPE_MINICPMV:
  2305. {
  2306. if (hparams.minicpmv_version == 0) {
  2307. hparams.minicpmv_version = 2; // default to 2 if not set
  2308. }
  2309. } break;
  2310. case PROJECTOR_TYPE_INTERNVL:
  2311. {
  2312. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2313. } break;
  2314. case PROJECTOR_TYPE_IDEFICS3:
  2315. {
  2316. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2317. get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false);
  2318. } break;
  2319. case PROJECTOR_TYPE_LFM2:
  2320. {
  2321. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2322. // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
  2323. // config above specifies number of tokens after downsampling, while here it is before, relax lowerbound to 64
  2324. hparams.set_limit_image_tokens(64, 1024);
  2325. } break;
  2326. case PROJECTOR_TYPE_PIXTRAL:
  2327. case PROJECTOR_TYPE_LIGHTONOCR:
  2328. {
  2329. // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json
  2330. // TODO: verify the image_min_tokens
  2331. hparams.n_merge = 1; // the original pixtral does not use patch merging
  2332. hparams.rope_theta = 10000.0f;
  2333. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2334. hparams.set_limit_image_tokens(8, 1024);
  2335. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2336. } break;
  2337. case PROJECTOR_TYPE_KIMIVL:
  2338. {
  2339. hparams.rope_theta = 10000.0f;
  2340. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2341. // TODO: check kimivl preprocessor for exact values
  2342. hparams.set_limit_image_tokens(8, 1024);
  2343. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2344. } break;
  2345. case PROJECTOR_TYPE_GEMMA3:
  2346. {
  2347. // default value (used by all model sizes in gemma 3 family)
  2348. // number of patches for each **side** is reduced by a factor of 4
  2349. hparams.n_merge = 4;
  2350. // test model (tinygemma3) has a different value, we optionally read it
  2351. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2352. } break;
  2353. case PROJECTOR_TYPE_QWEN2VL:
  2354. case PROJECTOR_TYPE_QWEN25VL:
  2355. case PROJECTOR_TYPE_QWEN3VL:
  2356. {
  2357. hparams.n_merge = 2; // default value for Qwen 2 and 2.5
  2358. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2359. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it
  2360. // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  2361. hparams.set_limit_image_tokens(8, 4096);
  2362. hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup
  2363. const int warn_min_pixels = 1024 * hparams.n_merge * hparams.n_merge * hparams.patch_size * hparams.patch_size;
  2364. if (hparams.image_min_pixels < warn_min_pixels) {
  2365. LOG_WRN("%s: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks\n", __func__);
  2366. LOG_WRN("%s: if you encounter problems with accuracy, try adding --image-min-tokens 1024\n", __func__);
  2367. LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__);
  2368. }
  2369. } break;
  2370. case PROJECTOR_TYPE_LLAMA4:
  2371. {
  2372. hparams.rope_theta = 10000.0f;
  2373. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2374. set_llava_uhd_res_candidates(model, 3);
  2375. } break;
  2376. case PROJECTOR_TYPE_ULTRAVOX:
  2377. case PROJECTOR_TYPE_QWEN2A:
  2378. case PROJECTOR_TYPE_VOXTRAL:
  2379. {
  2380. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  2381. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  2382. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  2383. if (hparams.n_mel_bins != 128) {
  2384. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  2385. }
  2386. hparams.ffn_op = FFN_GELU_ERF;
  2387. log_ffn_op = "gelu_erf"; // temporary solution for logging
  2388. } break;
  2389. default:
  2390. break;
  2391. }
  2392. // sanity check
  2393. {
  2394. if (hparams.image_max_pixels < hparams.image_min_pixels) {
  2395. throw std::runtime_error(string_format("%s: image_max_pixels (%d) is less than image_min_pixels (%d)\n", __func__, hparams.image_max_pixels, hparams.image_min_pixels));
  2396. }
  2397. }
  2398. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  2399. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  2400. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  2401. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  2402. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  2403. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  2404. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  2405. if (is_vision) {
  2406. LOG_INF("\n--- vision hparams ---\n");
  2407. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  2408. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  2409. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  2410. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  2411. LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge);
  2412. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  2413. if (hparams.image_min_pixels > 0) {
  2414. LOG_INF("%s: image_min_pixels: %d%s\n", __func__, hparams.image_min_pixels, hparams.custom_image_min_tokens > 0 ? " (custom value)" : "");
  2415. }
  2416. if (hparams.image_max_pixels > 0) {
  2417. LOG_INF("%s: image_max_pixels: %d%s\n", __func__, hparams.image_max_pixels, hparams.custom_image_max_tokens > 0 ? " (custom value)" : "");
  2418. }
  2419. } else if (is_audio) {
  2420. LOG_INF("\n--- audio hparams ---\n");
  2421. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  2422. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  2423. }
  2424. LOG_INF("\n");
  2425. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  2426. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  2427. }
  2428. }
  2429. void load_tensors(clip_ctx & ctx_clip) {
  2430. auto & model = ctx_clip.model;
  2431. auto & hparams = model.hparams;
  2432. std::map<std::string, size_t> tensor_offset;
  2433. std::vector<ggml_tensor *> tensors_to_load;
  2434. // TODO @ngxson : support both audio and video in the future
  2435. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  2436. // get offsets
  2437. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  2438. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2439. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  2440. }
  2441. // create data context
  2442. struct ggml_init_params params = {
  2443. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  2444. /*.mem_buffer =*/ NULL,
  2445. /*.no_alloc =*/ true,
  2446. };
  2447. ctx_clip.ctx_data.reset(ggml_init(params));
  2448. if (!ctx_clip.ctx_data) {
  2449. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  2450. }
  2451. // helper function
  2452. auto get_tensor = [&](const std::string & name, bool required = true) {
  2453. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  2454. if (!cur && required) {
  2455. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  2456. }
  2457. if (cur) {
  2458. tensors_to_load.push_back(cur);
  2459. // add tensors to context
  2460. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  2461. ggml_set_name(data_tensor, cur->name);
  2462. cur = data_tensor;
  2463. }
  2464. return cur;
  2465. };
  2466. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  2467. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  2468. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  2469. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  2470. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2471. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2472. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2473. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2474. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2475. // layers
  2476. model.layers.resize(hparams.n_layer);
  2477. for (int il = 0; il < hparams.n_layer; ++il) {
  2478. auto & layer = model.layers[il];
  2479. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false);
  2480. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false);
  2481. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false);
  2482. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2483. layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false);
  2484. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2485. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2486. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2487. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2488. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2489. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2490. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2491. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2492. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2493. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2494. layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false);
  2495. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2496. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2497. // ffn
  2498. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2499. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2500. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2501. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2502. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2503. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2504. // qwen3vl deepstack layer
  2505. layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
  2506. layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
  2507. layer.deepstack_fc1_w = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "weight"), false);
  2508. layer.deepstack_fc1_b = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "bias"), false);
  2509. layer.deepstack_fc2_w = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "weight"), false);
  2510. layer.deepstack_fc2_b = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "bias"), false);
  2511. if (layer.has_deepstack()) {
  2512. model.n_deepstack_layers++;
  2513. }
  2514. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2515. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2516. bool is_ffn_swapped = (
  2517. // only old models need this fix
  2518. model.proj_type == PROJECTOR_TYPE_MLP
  2519. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2520. || model.proj_type == PROJECTOR_TYPE_LDP
  2521. || model.proj_type == PROJECTOR_TYPE_LDPV2
  2522. || model.proj_type == PROJECTOR_TYPE_QWEN2VL
  2523. || model.proj_type == PROJECTOR_TYPE_QWEN25VL
  2524. || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
  2525. || model.proj_type == PROJECTOR_TYPE_GEMMA3
  2526. || model.proj_type == PROJECTOR_TYPE_IDEFICS3
  2527. || model.proj_type == PROJECTOR_TYPE_MINICPMV
  2528. ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
  2529. if (is_ffn_swapped) {
  2530. // swap up and down weights
  2531. ggml_tensor * tmp = layer.ff_up_w;
  2532. layer.ff_up_w = layer.ff_down_w;
  2533. layer.ff_down_w = tmp;
  2534. // swap up and down biases
  2535. tmp = layer.ff_up_b;
  2536. layer.ff_up_b = layer.ff_down_b;
  2537. layer.ff_down_b = tmp;
  2538. if (il == 0) {
  2539. LOG_WRN("%s: ffn up/down are swapped\n", __func__);
  2540. }
  2541. }
  2542. }
  2543. switch (model.proj_type) {
  2544. case PROJECTOR_TYPE_MLP:
  2545. case PROJECTOR_TYPE_MLP_NORM:
  2546. {
  2547. // LLaVA projection
  2548. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2549. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2550. // Yi-type llava
  2551. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2552. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2553. // missing in Yi-type llava
  2554. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2555. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2556. // Yi-type llava
  2557. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2558. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2559. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2560. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2561. if (model.mm_3_w) {
  2562. // TODO: this is a hack to support Yi-type llava
  2563. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2564. }
  2565. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2566. } break;
  2567. case PROJECTOR_TYPE_LDP:
  2568. {
  2569. // MobileVLM projection
  2570. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2571. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2572. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2573. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2574. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2575. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2576. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2577. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2578. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2579. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2580. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2581. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2582. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2583. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2584. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2585. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2586. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2587. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2588. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2589. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2590. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2591. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2592. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2593. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2594. } break;
  2595. case PROJECTOR_TYPE_LDPV2:
  2596. {
  2597. // MobilVLM_V2 projection
  2598. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2599. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2600. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2601. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2602. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2603. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2604. } break;
  2605. case PROJECTOR_TYPE_MINICPMV:
  2606. {
  2607. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2608. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2609. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2610. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2611. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2612. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2613. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2614. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2615. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2616. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2617. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2618. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2619. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2620. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2621. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2622. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2623. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2624. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2625. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2626. } break;
  2627. case PROJECTOR_TYPE_GLM_EDGE:
  2628. {
  2629. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2630. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2631. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2632. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2633. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2634. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2635. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2636. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2637. model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2638. model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2639. } break;
  2640. case PROJECTOR_TYPE_QWEN2VL:
  2641. case PROJECTOR_TYPE_QWEN25VL:
  2642. {
  2643. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2644. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2645. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2646. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2647. } break;
  2648. case PROJECTOR_TYPE_QWEN3VL:
  2649. {
  2650. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2651. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2652. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2653. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2654. } break;
  2655. case PROJECTOR_TYPE_GEMMA3:
  2656. {
  2657. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2658. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2659. } break;
  2660. case PROJECTOR_TYPE_IDEFICS3:
  2661. {
  2662. model.projection = get_tensor(TN_MM_PROJECTOR);
  2663. } break;
  2664. case PROJECTOR_TYPE_LFM2:
  2665. case PROJECTOR_TYPE_KIMIVL:
  2666. {
  2667. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  2668. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  2669. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2670. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2671. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2672. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2673. } break;
  2674. case PROJECTOR_TYPE_PIXTRAL:
  2675. {
  2676. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2677. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2678. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2679. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2680. // [IMG_BREAK] token embedding
  2681. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2682. // for mistral small 3.1
  2683. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2684. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2685. } break;
  2686. case PROJECTOR_TYPE_LIGHTONOCR:
  2687. {
  2688. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2689. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2690. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2691. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2692. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2693. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2694. } break;
  2695. case PROJECTOR_TYPE_ULTRAVOX:
  2696. {
  2697. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2698. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2699. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2700. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2701. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2702. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2703. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2704. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2705. } break;
  2706. case PROJECTOR_TYPE_QWEN2A:
  2707. {
  2708. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2709. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2710. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2711. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2712. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2713. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2714. } break;
  2715. case PROJECTOR_TYPE_VOXTRAL:
  2716. {
  2717. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2718. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2719. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2720. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2721. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2722. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2723. } break;
  2724. case PROJECTOR_TYPE_INTERNVL:
  2725. {
  2726. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2727. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2728. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2729. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2730. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2731. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2732. } break;
  2733. case PROJECTOR_TYPE_LLAMA4:
  2734. {
  2735. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2736. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2737. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2738. } break;
  2739. case PROJECTOR_TYPE_COGVLM:
  2740. {
  2741. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2742. model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
  2743. model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
  2744. model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight"));
  2745. model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
  2746. model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight"));
  2747. model.mm_boi = get_tensor(TN_TOK_BOI);
  2748. model.mm_eoi = get_tensor(TN_TOK_EOI);
  2749. } break;
  2750. case PROJECTOR_TYPE_JANUS_PRO:
  2751. {
  2752. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2753. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2754. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2755. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2756. } break;
  2757. default:
  2758. GGML_ASSERT(false && "unknown projector type");
  2759. }
  2760. // load data
  2761. {
  2762. std::vector<uint8_t> read_buf;
  2763. auto fin = std::ifstream(fname, std::ios::binary);
  2764. if (!fin) {
  2765. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2766. }
  2767. // alloc memory and offload data
  2768. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2769. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2770. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2771. for (auto & t : tensors_to_load) {
  2772. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2773. const size_t offset = tensor_offset[t->name];
  2774. fin.seekg(offset, std::ios::beg);
  2775. if (!fin) {
  2776. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2777. }
  2778. size_t num_bytes = ggml_nbytes(cur);
  2779. if (ggml_backend_buft_is_host(buft)) {
  2780. // for the CPU and Metal backend, we can read directly into the tensor
  2781. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2782. } else {
  2783. // read into a temporary buffer first, then copy to device memory
  2784. read_buf.resize(num_bytes);
  2785. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2786. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2787. }
  2788. }
  2789. fin.close();
  2790. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2791. }
  2792. }
  2793. struct support_info_op {
  2794. ggml_tensor * op;
  2795. // true if the op runs on the accelerated ctx_clip.backend
  2796. bool is_accel = true;
  2797. };
  2798. struct support_info_graph {
  2799. // whether the clip_ctx.backend supports flash attention
  2800. bool fattn = true;
  2801. ggml_tensor * fattn_op = nullptr; // for debugging
  2802. std::vector<support_info_op> ops;
  2803. };
  2804. static void warmup(clip_ctx & ctx_clip) {
  2805. // create a fake batch
  2806. const auto & hparams = ctx_clip.model.hparams;
  2807. clip_image_f32_batch batch;
  2808. clip_image_f32_ptr img(clip_image_f32_init());
  2809. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2810. img->nx = hparams.warmup_image_size;
  2811. img->ny = hparams.warmup_image_size;
  2812. LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
  2813. } else {
  2814. img->nx = hparams.warmup_audio_size;
  2815. img->ny = hparams.n_mel_bins;
  2816. LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
  2817. }
  2818. batch.entries.push_back(std::move(img));
  2819. warmup(ctx_clip, batch);
  2820. }
  2821. static void warmup(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
  2822. support_info_graph info;
  2823. if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) {
  2824. // try to enable flash attention to see if it's supported
  2825. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED;
  2826. info = alloc_compute_meta(ctx_clip, batch);
  2827. if (!info.fattn && info.fattn_op) {
  2828. auto op = info.fattn_op;
  2829. LOG_WRN("%s: *****************************************************************\n", __func__);
  2830. LOG_WRN("%s: WARNING: flash attention not supported by %s, memory usage will increase\n", __func__, ggml_backend_name(ctx_clip.backend));
  2831. LOG_WRN("%s: op params: \n", __func__);
  2832. static auto print_shape = [](const char * fn, const char * name, ggml_tensor * t) {
  2833. LOG_WRN("%s: %s: type = %s, ne = [%d %d %d %d], nb = [%d %d %d %d]\n", fn,
  2834. name, ggml_type_name(t->type),
  2835. t->ne[0], t->ne[1], t->ne[2], t->ne[3],
  2836. t->nb[0], t->nb[1], t->nb[2], t->nb[3]);
  2837. };
  2838. print_shape(__func__, " dst", op);
  2839. print_shape(__func__, "src0", op->src[0]);
  2840. print_shape(__func__, "src1", op->src[1]);
  2841. print_shape(__func__, "src2", op->src[2]);
  2842. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  2843. LOG_WRN("%s: *****************************************************************\n", __func__);
  2844. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED;
  2845. alloc_compute_meta(ctx_clip, batch);
  2846. }
  2847. } else {
  2848. info = alloc_compute_meta(ctx_clip, batch);
  2849. if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  2850. LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__);
  2851. }
  2852. }
  2853. ctx_clip.is_allocated = true; // mark buffers as allocated
  2854. LOG_INF("%s: flash attention is %s\n", __func__,
  2855. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  2856. // print ops that are not supported by the GPU backend (if there is one)
  2857. if (ctx_clip.backend && ctx_clip.backend != ctx_clip.backend_cpu) {
  2858. std::vector<support_info_op> unsupported_ops;
  2859. for (const auto & op : info.ops) {
  2860. if (!op.is_accel) {
  2861. unsupported_ops.push_back(op);
  2862. }
  2863. }
  2864. if (!unsupported_ops.empty()) {
  2865. LOG_WRN("%s: *****************************************************************\n", __func__);
  2866. LOG_WRN("%s: WARNING: the CLIP graph uses unsupported operators by the backend\n", __func__);
  2867. LOG_WRN("%s: the performance will be suboptimal \n", __func__);
  2868. LOG_WRN("%s: list of unsupported ops (backend=%s):\n", __func__, ggml_backend_name(ctx_clip.backend));
  2869. for (const auto & op : unsupported_ops) {
  2870. LOG_WRN("%s: %16s: type = %s, ne = [%d %d %d %d]\n", __func__,
  2871. ggml_op_name(op.op->op),
  2872. ggml_type_name(op.op->type),
  2873. op.op->ne[0], op.op->ne[1], op.op->ne[2], op.op->ne[3]);
  2874. }
  2875. LOG_WRN("%s: flash attention is %s\n", __func__,
  2876. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  2877. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  2878. LOG_WRN("%s: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118\n", __func__);
  2879. LOG_WRN("%s: *****************************************************************\n", __func__);
  2880. }
  2881. }
  2882. }
  2883. static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
  2884. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2885. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2886. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2887. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2888. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2889. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2890. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2891. if (size > 1) {
  2892. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2893. ggml_backend_buft_name(buft),
  2894. size / 1024.0 / 1024.0);
  2895. }
  2896. }
  2897. const int n_splits = ggml_backend_sched_get_n_splits(ctx_clip.sched.get());
  2898. const int n_nodes = ggml_graph_n_nodes(gf);
  2899. LOG_INF("%s: graph splits = %d, nodes = %d\n", __func__, n_splits, n_nodes);
  2900. support_info_graph res {
  2901. /*.fattn = */ true,
  2902. /*.fattn_op = */ nullptr,
  2903. /*.ops = */ {},
  2904. };
  2905. // check op support
  2906. for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
  2907. ggml_tensor * node = ggml_graph_node(gf, i);
  2908. res.ops.push_back({node, true});
  2909. if (!ggml_backend_supports_op(ctx_clip.backend, node)) {
  2910. res.ops.back().is_accel = false;
  2911. if (node->op == GGML_OP_FLASH_ATTN_EXT) {
  2912. res.fattn = false;
  2913. res.fattn_op = node;
  2914. }
  2915. }
  2916. }
  2917. return res;
  2918. }
  2919. void get_bool(const std::string & key, bool & output, bool required = true) const {
  2920. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2921. if (i < 0) {
  2922. if (required) {
  2923. throw std::runtime_error("Key not found: " + key);
  2924. }
  2925. return;
  2926. }
  2927. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2928. }
  2929. void get_i32(const std::string & key, int & output, bool required = true) const {
  2930. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2931. if (i < 0) {
  2932. if (required) {
  2933. throw std::runtime_error("Key not found: " + key);
  2934. }
  2935. return;
  2936. }
  2937. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2938. }
  2939. void get_u32(const std::string & key, int & output, bool required = true) const {
  2940. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2941. if (i < 0) {
  2942. if (required) {
  2943. throw std::runtime_error("Key not found: " + key);
  2944. }
  2945. return;
  2946. }
  2947. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2948. }
  2949. void get_f32(const std::string & key, float & output, bool required = true) const {
  2950. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2951. if (i < 0) {
  2952. if (required) {
  2953. throw std::runtime_error("Key not found: " + key);
  2954. }
  2955. return;
  2956. }
  2957. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2958. }
  2959. void get_string(const std::string & key, std::string & output, bool required = true) const {
  2960. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2961. if (i < 0) {
  2962. if (required) {
  2963. throw std::runtime_error("Key not found: " + key);
  2964. }
  2965. return;
  2966. }
  2967. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2968. }
  2969. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) const {
  2970. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2971. if (i < 0) {
  2972. if (required) {
  2973. throw std::runtime_error("Key not found: " + key);
  2974. }
  2975. return;
  2976. }
  2977. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2978. output.resize(n);
  2979. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2980. for (int i = 0; i < n; ++i) {
  2981. output[i] = values[i];
  2982. }
  2983. }
  2984. static void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2985. auto & hparams = model.hparams;
  2986. for (int x = 1; x <= max_patches_per_side; x++) {
  2987. for (int y = 1; y <= max_patches_per_side; y++) {
  2988. if (x == 1 && y == 1) {
  2989. continue; // skip the first point
  2990. }
  2991. hparams.image_res_candidates.push_back(clip_image_size{
  2992. x*hparams.image_size,
  2993. y*hparams.image_size,
  2994. });
  2995. }
  2996. }
  2997. }
  2998. };
  2999. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  3000. clip_ctx * ctx_vision = nullptr;
  3001. clip_ctx * ctx_audio = nullptr;
  3002. try {
  3003. clip_model_loader loader(fname);
  3004. if (loader.has_vision) {
  3005. ctx_vision = new clip_ctx(ctx_params);
  3006. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  3007. loader.load_tensors(*ctx_vision);
  3008. if (ctx_params.warmup) {
  3009. loader.warmup(*ctx_vision);
  3010. }
  3011. }
  3012. if (loader.has_audio) {
  3013. ctx_audio = new clip_ctx(ctx_params);
  3014. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  3015. loader.load_tensors(*ctx_audio);
  3016. if (ctx_params.warmup) {
  3017. loader.warmup(*ctx_audio);
  3018. }
  3019. }
  3020. } catch (const std::exception & e) {
  3021. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  3022. delete ctx_vision;
  3023. delete ctx_audio;
  3024. return {nullptr, nullptr};
  3025. }
  3026. return {ctx_vision, ctx_audio};
  3027. }
  3028. struct clip_image_size * clip_image_size_init() {
  3029. struct clip_image_size * load_image_size = new struct clip_image_size();
  3030. load_image_size->width = 448;
  3031. load_image_size->height = 448;
  3032. return load_image_size;
  3033. }
  3034. struct clip_image_u8 * clip_image_u8_init() {
  3035. return new clip_image_u8();
  3036. }
  3037. struct clip_image_f32 * clip_image_f32_init() {
  3038. return new clip_image_f32();
  3039. }
  3040. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  3041. return new clip_image_f32_batch();
  3042. }
  3043. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  3044. if (nx) *nx = img->nx;
  3045. if (ny) *ny = img->ny;
  3046. return img->buf.data();
  3047. }
  3048. void clip_image_size_free(struct clip_image_size * load_image_size) {
  3049. if (load_image_size == nullptr) {
  3050. return;
  3051. }
  3052. delete load_image_size;
  3053. }
  3054. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  3055. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  3056. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { delete batch; }
  3057. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { delete batch; }
  3058. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  3059. return batch->entries.size();
  3060. }
  3061. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  3062. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3063. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3064. return 0;
  3065. }
  3066. return batch->entries[idx]->nx;
  3067. }
  3068. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  3069. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3070. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3071. return 0;
  3072. }
  3073. return batch->entries[idx]->ny;
  3074. }
  3075. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  3076. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3077. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3078. return nullptr;
  3079. }
  3080. return batch->entries[idx].get();
  3081. }
  3082. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  3083. img->nx = nx;
  3084. img->ny = ny;
  3085. img->buf.resize(3 * nx * ny);
  3086. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  3087. }
  3088. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  3089. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  3090. dst.nx = src.nx;
  3091. dst.ny = src.ny;
  3092. dst.buf.resize(src.buf.size());
  3093. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  3094. for (size_t i = 0; i < src.buf.size(); ++i) {
  3095. int c = i % 3; // rgb
  3096. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  3097. }
  3098. }
  3099. // set of tools to manupulate images
  3100. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  3101. struct img_tool {
  3102. enum resize_algo {
  3103. RESIZE_ALGO_BILINEAR,
  3104. RESIZE_ALGO_BICUBIC,
  3105. // RESIZE_ALGO_LANCZOS, // TODO
  3106. };
  3107. static void resize(
  3108. const clip_image_u8 & src,
  3109. clip_image_u8 & dst,
  3110. const clip_image_size & target_resolution,
  3111. resize_algo algo,
  3112. bool add_padding = true, // TODO: define the behavior for add_padding = false
  3113. std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  3114. dst.nx = target_resolution.width;
  3115. dst.ny = target_resolution.height;
  3116. dst.buf.resize(3 * dst.nx * dst.ny);
  3117. if (dst.nx == src.nx && dst.ny == src.ny) {
  3118. // no resize needed, simple copy
  3119. dst.buf = src.buf;
  3120. return;
  3121. }
  3122. if (!add_padding) {
  3123. // direct resize
  3124. switch (algo) {
  3125. case RESIZE_ALGO_BILINEAR:
  3126. resize_bilinear(src, dst, target_resolution.width, target_resolution.height);
  3127. break;
  3128. case RESIZE_ALGO_BICUBIC:
  3129. resize_bicubic(src, dst, target_resolution.width, target_resolution.height);
  3130. break;
  3131. default:
  3132. throw std::runtime_error("Unsupported resize algorithm");
  3133. }
  3134. } else {
  3135. // resize with padding
  3136. clip_image_u8 resized_image;
  3137. float scale_w = static_cast<float>(target_resolution.width) / src.nx;
  3138. float scale_h = static_cast<float>(target_resolution.height) / src.ny;
  3139. float scale = std::min(scale_w, scale_h);
  3140. int new_width = std::min(static_cast<int>(std::ceil(src.nx * scale)), target_resolution.width);
  3141. int new_height = std::min(static_cast<int>(std::ceil(src.ny * scale)), target_resolution.height);
  3142. switch (algo) {
  3143. case RESIZE_ALGO_BILINEAR:
  3144. resize_bilinear(src, resized_image, new_width, new_height);
  3145. break;
  3146. case RESIZE_ALGO_BICUBIC:
  3147. resize_bicubic(src, resized_image, new_width, new_height);
  3148. break;
  3149. default:
  3150. throw std::runtime_error("Unsupported resize algorithm");
  3151. }
  3152. // fill dst with pad_color
  3153. fill(dst, pad_color);
  3154. int offset_x = (target_resolution.width - new_width) / 2;
  3155. int offset_y = (target_resolution.height - new_height) / 2;
  3156. composite(dst, resized_image, offset_x, offset_y);
  3157. }
  3158. }
  3159. static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  3160. dst.nx = w;
  3161. dst.ny = h;
  3162. dst.buf.resize(3 * w * h);
  3163. for (int i = 0; i < h; ++i) {
  3164. for (int j = 0; j < w; ++j) {
  3165. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  3166. int dst_idx = 3 * (i*w + j);
  3167. dst.buf[dst_idx] = image.buf[src_idx];
  3168. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  3169. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  3170. }
  3171. }
  3172. }
  3173. // calculate the size of the **resized** image, while preserving the aspect ratio
  3174. // the calculated size will be aligned to the nearest multiple of align_size
  3175. // if H or W size is larger than longest_edge, it will be resized to longest_edge
  3176. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) {
  3177. GGML_ASSERT(align_size > 0);
  3178. if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) {
  3179. return {0, 0};
  3180. }
  3181. float scale = std::min(static_cast<float>(longest_edge) / inp_size.width,
  3182. static_cast<float>(longest_edge) / inp_size.height);
  3183. float target_width_f = static_cast<float>(inp_size.width) * scale;
  3184. float target_height_f = static_cast<float>(inp_size.height) * scale;
  3185. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3186. int aligned_width = ceil_by_factor(target_width_f);
  3187. int aligned_height = ceil_by_factor(target_height_f);
  3188. return {aligned_width, aligned_height};
  3189. }
  3190. // calculate the size of the **resized** image, while preserving the aspect ratio
  3191. // the calculated size will have min_pixels <= W*H <= max_pixels
  3192. // this is referred as "smart_resize" in transformers code
  3193. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) {
  3194. GGML_ASSERT(align_size > 0);
  3195. const int width = inp_size.width;
  3196. const int height = inp_size.height;
  3197. auto round_by_factor = [f = align_size](float x) { return static_cast<int>(std::round(x / static_cast<float>(f))) * f; };
  3198. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3199. auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  3200. // always align up first
  3201. int h_bar = std::max(align_size, round_by_factor(height));
  3202. int w_bar = std::max(align_size, round_by_factor(width));
  3203. if (h_bar * w_bar > max_pixels) {
  3204. const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
  3205. h_bar = std::max(align_size, floor_by_factor(height / beta));
  3206. w_bar = std::max(align_size, floor_by_factor(width / beta));
  3207. } else if (h_bar * w_bar < min_pixels) {
  3208. const auto beta = std::sqrt(static_cast<float>(min_pixels) / (height * width));
  3209. h_bar = ceil_by_factor(height * beta);
  3210. w_bar = ceil_by_factor(width * beta);
  3211. }
  3212. return {w_bar, h_bar};
  3213. }
  3214. // draw src image into dst image at offset (offset_x, offset_y)
  3215. static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) {
  3216. for (int y = 0; y < src.ny; ++y) {
  3217. for (int x = 0; x < src.nx; ++x) {
  3218. int dx = x + offset_x;
  3219. int dy = y + offset_y;
  3220. // skip pixels that would be out of bounds in the destination
  3221. if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) {
  3222. continue;
  3223. }
  3224. size_t dst_idx = 3 * (static_cast<size_t>(dy) * dst.nx + static_cast<size_t>(dx));
  3225. size_t src_idx = 3 * (static_cast<size_t>(y) * src.nx + static_cast<size_t>(x));
  3226. dst.buf[dst_idx + 0] = src.buf[src_idx + 0];
  3227. dst.buf[dst_idx + 1] = src.buf[src_idx + 1];
  3228. dst.buf[dst_idx + 2] = src.buf[src_idx + 2];
  3229. }
  3230. }
  3231. }
  3232. // fill the image with a solid color
  3233. static void fill(clip_image_u8 & img, const std::array<uint8_t, 3> & color) {
  3234. for (size_t i = 0; i < img.buf.size(); i += 3) {
  3235. img.buf[i] = color[0];
  3236. img.buf[i + 1] = color[1];
  3237. img.buf[i + 2] = color[2];
  3238. }
  3239. }
  3240. private:
  3241. // Bilinear resize function
  3242. static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) {
  3243. dst.nx = target_width;
  3244. dst.ny = target_height;
  3245. dst.buf.resize(3 * target_width * target_height);
  3246. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  3247. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  3248. for (int y = 0; y < target_height; y++) {
  3249. for (int x = 0; x < target_width; x++) {
  3250. float px = x_ratio * x;
  3251. float py = y_ratio * y;
  3252. int x_floor = static_cast<int>(px);
  3253. int y_floor = static_cast<int>(py);
  3254. float x_lerp = px - x_floor;
  3255. float y_lerp = py - y_floor;
  3256. for (int c = 0; c < 3; c++) {
  3257. float top = lerp(
  3258. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  3259. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  3260. x_lerp
  3261. );
  3262. float bottom = lerp(
  3263. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  3264. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  3265. x_lerp
  3266. );
  3267. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  3268. }
  3269. }
  3270. }
  3271. }
  3272. // Bicubic resize function
  3273. // part of image will be cropped if the aspect ratio is different
  3274. static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  3275. const int nx = img.nx;
  3276. const int ny = img.ny;
  3277. dst.nx = target_width;
  3278. dst.ny = target_height;
  3279. dst.buf.resize(3 * target_width * target_height);
  3280. float Cc;
  3281. float C[5] = {};
  3282. float d0, d2, d3, a0, a1, a2, a3;
  3283. int i, j, k, jj;
  3284. int x, y;
  3285. float dx, dy;
  3286. float tx, ty;
  3287. tx = (float)nx / (float)target_width;
  3288. ty = (float)ny / (float)target_height;
  3289. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  3290. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  3291. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  3292. for (i = 0; i < target_height; i++) {
  3293. for (j = 0; j < target_width; j++) {
  3294. x = (int)(tx * j);
  3295. y = (int)(ty * i);
  3296. dx = tx * j - x;
  3297. dy = ty * i - y;
  3298. for (k = 0; k < 3; k++) {
  3299. for (jj = 0; jj <= 3; jj++) {
  3300. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3301. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3302. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3303. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3304. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3305. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3306. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3307. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  3308. d0 = C[0] - C[1];
  3309. d2 = C[2] - C[1];
  3310. d3 = C[3] - C[1];
  3311. a0 = C[1];
  3312. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3313. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3314. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3315. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  3316. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  3317. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  3318. }
  3319. }
  3320. }
  3321. }
  3322. return true;
  3323. }
  3324. static inline int clip(int x, int lower, int upper) {
  3325. return std::max(lower, std::min(x, upper));
  3326. }
  3327. // Linear interpolation between two points
  3328. static inline float lerp(float s, float e, float t) {
  3329. return s + (e - s) * t;
  3330. }
  3331. };
  3332. /**
  3333. * implementation of LLaVA-UHD:
  3334. * - https://arxiv.org/pdf/2403.11703
  3335. * - https://github.com/thunlp/LLaVA-UHD
  3336. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  3337. *
  3338. * overview:
  3339. * - an image always have a single overview (downscaled image)
  3340. * - an image can have 0 or multiple slices, depending on the image size
  3341. * - each slice can then be considered as a separate image
  3342. *
  3343. * for example:
  3344. *
  3345. * [overview] --> [slice 1] --> [slice 2]
  3346. * | |
  3347. * +--> [slice 3] --> [slice 4]
  3348. */
  3349. struct llava_uhd {
  3350. struct slice_coordinates {
  3351. int x;
  3352. int y;
  3353. clip_image_size size;
  3354. };
  3355. struct slice_instructions {
  3356. clip_image_size overview_size; // size of downscaled image
  3357. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  3358. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  3359. std::vector<slice_coordinates> slices;
  3360. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  3361. };
  3362. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  3363. slice_instructions res;
  3364. const int patch_size = clip_get_patch_size(ctx);
  3365. const int slice_size = clip_get_image_size(ctx);
  3366. const int original_width = original_size.width;
  3367. const int original_height = original_size.height;
  3368. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  3369. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  3370. if (!has_slices) {
  3371. // skip slicing logic
  3372. res.overview_size = clip_image_size{slice_size, slice_size};
  3373. res.refined_size = clip_image_size{0, 0};
  3374. res.grid_size = clip_image_size{0, 0};
  3375. return res;
  3376. }
  3377. if (has_pinpoints) {
  3378. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  3379. auto refine_size = llava_uhd::select_best_resolution(
  3380. original_size,
  3381. ctx->model.hparams.image_res_candidates);
  3382. res.overview_size = clip_image_size{slice_size, slice_size};
  3383. res.refined_size = refine_size;
  3384. res.grid_size = clip_image_size{0, 0};
  3385. res.padding_refined = true;
  3386. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  3387. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  3388. __func__, original_width, original_height,
  3389. res.overview_size.width, res.overview_size.height,
  3390. res.refined_size.width, res.refined_size.height);
  3391. for (int y = 0; y < refine_size.height; y += slice_size) {
  3392. for (int x = 0; x < refine_size.width; x += slice_size) {
  3393. slice_coordinates slice;
  3394. slice.x = x;
  3395. slice.y = y;
  3396. slice.size.width = std::min(slice_size, refine_size.width - x);
  3397. slice.size.height = std::min(slice_size, refine_size.height - y);
  3398. res.slices.push_back(slice);
  3399. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3400. __func__, (int)res.slices.size() - 1,
  3401. slice.x, slice.y, slice.size.width, slice.size.height);
  3402. }
  3403. }
  3404. res.grid_size.height = refine_size.height / slice_size;
  3405. res.grid_size.width = refine_size.width / slice_size;
  3406. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  3407. return res;
  3408. }
  3409. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  3410. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  3411. res.overview_size = best_size;
  3412. {
  3413. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  3414. const float log_ratio = log((float)original_width / original_height);
  3415. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  3416. const int multiple = fmin(ceil(ratio), max_slice_nums);
  3417. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  3418. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  3419. res.grid_size = best_grid;
  3420. res.refined_size = refine_size;
  3421. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  3422. __func__, original_width, original_height,
  3423. res.overview_size.width, res.overview_size.height,
  3424. res.refined_size.width, res.refined_size.height,
  3425. res.grid_size.width, res.grid_size.height);
  3426. int width = refine_size.width;
  3427. int height = refine_size.height;
  3428. int grid_x = int(width / best_grid.width);
  3429. int grid_y = int(height / best_grid.height);
  3430. for (int patches_y = 0, ic = 0;
  3431. patches_y < refine_size.height && ic < best_grid.height;
  3432. patches_y += grid_y, ic += 1) {
  3433. for (int patches_x = 0, jc = 0;
  3434. patches_x < refine_size.width && jc < best_grid.width;
  3435. patches_x += grid_x, jc += 1) {
  3436. slice_coordinates slice;
  3437. slice.x = patches_x;
  3438. slice.y = patches_y;
  3439. slice.size.width = grid_x;
  3440. slice.size.height = grid_y;
  3441. res.slices.push_back(slice);
  3442. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3443. __func__, (int)res.slices.size() - 1,
  3444. slice.x, slice.y, slice.size.width, slice.size.height);
  3445. }
  3446. }
  3447. }
  3448. return res;
  3449. }
  3450. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  3451. std::vector<clip_image_u8_ptr> output;
  3452. img_tool::resize_algo interpolation = img_tool::RESIZE_ALGO_BILINEAR; // TODO: make it configurable
  3453. // resize to overview size
  3454. clip_image_u8_ptr resized_img(clip_image_u8_init());
  3455. img_tool::resize(*img, *resized_img, inst.overview_size, interpolation);
  3456. output.push_back(std::move(resized_img));
  3457. if (inst.slices.empty()) {
  3458. // no slices, just return the resized image
  3459. return output;
  3460. }
  3461. // resize to refined size
  3462. clip_image_u8_ptr refined_img(clip_image_u8_init());
  3463. if (inst.padding_refined) {
  3464. img_tool::resize(*img, *refined_img, inst.refined_size, interpolation);
  3465. } else {
  3466. // only algo bicubic preserves the ratio; old models rely on this behavior
  3467. // TODO: do we need to support other algos here?
  3468. img_tool::resize(*img, *refined_img, inst.refined_size, img_tool::RESIZE_ALGO_BICUBIC, false);
  3469. }
  3470. // create slices
  3471. for (const auto & slice : inst.slices) {
  3472. int x = slice.x;
  3473. int y = slice.y;
  3474. int w = slice.size.width;
  3475. int h = slice.size.height;
  3476. clip_image_u8_ptr img_slice(clip_image_u8_init());
  3477. img_tool::crop(*refined_img, *img_slice, x, y, w, h);
  3478. output.push_back(std::move(img_slice));
  3479. }
  3480. return output;
  3481. }
  3482. private:
  3483. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3484. int width = original_size.width;
  3485. int height = original_size.height;
  3486. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  3487. float r = static_cast<float>(width) / height;
  3488. height = static_cast<int>(scale_resolution / std::sqrt(r));
  3489. width = static_cast<int>(height * r);
  3490. }
  3491. clip_image_size res;
  3492. res.width = ensure_divide(width, patch_size);
  3493. res.height = ensure_divide(height, patch_size);
  3494. return res;
  3495. }
  3496. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  3497. float scale_width = static_cast<float>(target_max.width) / orig.width;
  3498. float scale_height = static_cast<float>(target_max.height) / orig.height;
  3499. float scale = std::min(scale_width, scale_height);
  3500. return clip_image_size{
  3501. static_cast<int>(orig.width * scale),
  3502. static_cast<int>(orig.height * scale),
  3503. };
  3504. }
  3505. /**
  3506. * Selects the best resolution from a list of possible resolutions based on the original size.
  3507. *
  3508. * For example, when given a list of resolutions:
  3509. * - 100x100
  3510. * - 200x100
  3511. * - 100x200
  3512. * - 200x200
  3513. *
  3514. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  3515. *
  3516. * @param original_size The original size of the image
  3517. * @param possible_resolutions A list of possible resolutions
  3518. * @return The best fit resolution
  3519. */
  3520. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  3521. clip_image_size best_fit;
  3522. int min_wasted_area = std::numeric_limits<int>::max();
  3523. int max_effective_resolution = 0;
  3524. for (const clip_image_size & candidate : possible_resolutions) {
  3525. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  3526. int effective_resolution = std::min(
  3527. target_size.width * target_size.height,
  3528. original_size.width * original_size.height);
  3529. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  3530. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  3531. max_effective_resolution = effective_resolution;
  3532. min_wasted_area = wasted_area;
  3533. best_fit = candidate;
  3534. }
  3535. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  3536. }
  3537. return best_fit;
  3538. }
  3539. static int ensure_divide(int length, int patch_size) {
  3540. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  3541. }
  3542. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3543. int width = original_size.width;
  3544. int height = original_size.height;
  3545. int grid_x = grid.width;
  3546. int grid_y = grid.height;
  3547. int refine_width = ensure_divide(width, grid_x);
  3548. int refine_height = ensure_divide(height, grid_y);
  3549. clip_image_size grid_size;
  3550. grid_size.width = refine_width / grid_x;
  3551. grid_size.height = refine_height / grid_y;
  3552. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  3553. int best_grid_width = best_grid_size.width;
  3554. int best_grid_height = best_grid_size.height;
  3555. clip_image_size refine_size;
  3556. refine_size.width = best_grid_width * grid_x;
  3557. refine_size.height = best_grid_height * grid_y;
  3558. return refine_size;
  3559. }
  3560. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  3561. std::vector<int> candidate_split_grids_nums;
  3562. for (int i : {multiple - 1, multiple, multiple + 1}) {
  3563. if (i == 1 || i > max_slice_nums) {
  3564. continue;
  3565. }
  3566. candidate_split_grids_nums.push_back(i);
  3567. }
  3568. std::vector<clip_image_size> candidate_grids;
  3569. for (int split_grids_nums : candidate_split_grids_nums) {
  3570. int m = 1;
  3571. while (m <= split_grids_nums) {
  3572. if (split_grids_nums % m == 0) {
  3573. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  3574. }
  3575. ++m;
  3576. }
  3577. }
  3578. clip_image_size best_grid{1, 1};
  3579. float min_error = std::numeric_limits<float>::infinity();
  3580. for (const auto& grid : candidate_grids) {
  3581. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  3582. if (error < min_error) {
  3583. best_grid = grid;
  3584. min_error = error;
  3585. }
  3586. }
  3587. return best_grid;
  3588. }
  3589. };
  3590. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  3591. // res_imgs memory is being allocated here, previous allocations will be freed if found
  3592. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  3593. clip_image_size original_size{img->nx, img->ny};
  3594. auto & params = ctx->model.hparams;
  3595. switch (ctx->proj_type()) {
  3596. case PROJECTOR_TYPE_MINICPMV:
  3597. {
  3598. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3599. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3600. for (size_t i = 0; i < imgs.size(); ++i) {
  3601. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3602. clip_image_f32_ptr res(clip_image_f32_init());
  3603. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3604. res_imgs->entries.push_back(std::move(res));
  3605. }
  3606. res_imgs->grid_x = inst.grid_size.width;
  3607. res_imgs->grid_y = inst.grid_size.height;
  3608. } break;
  3609. case PROJECTOR_TYPE_QWEN2VL:
  3610. case PROJECTOR_TYPE_QWEN25VL:
  3611. case PROJECTOR_TYPE_QWEN3VL:
  3612. {
  3613. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3614. clip_image_u8 resized;
  3615. const clip_image_size new_size = img_tool::calc_size_preserved_ratio(
  3616. original_size,
  3617. params.patch_size * 2,
  3618. params.image_min_pixels,
  3619. params.image_max_pixels);
  3620. img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
  3621. // clip_image_save_to_bmp(resized, "preproc.bmp");
  3622. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3623. // clip_image_f32_ptr res(clip_image_f32_init());
  3624. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  3625. // res_imgs->data[0] = *res;
  3626. res_imgs->entries.push_back(std::move(img_f32));
  3627. } break;
  3628. case PROJECTOR_TYPE_IDEFICS3:
  3629. {
  3630. // The refined size has two steps:
  3631. // 1. Resize w/ aspect-ratio preserving such that the longer side is
  3632. // the preprocessor longest size
  3633. // 2. Resize w/out preserving aspect ratio such that both sides are
  3634. // multiples of image_size (always rounding up)
  3635. //
  3636. // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
  3637. const clip_image_size refined_size = img_tool::calc_size_preserved_ratio(
  3638. original_size, params.image_size, params.image_longest_edge);
  3639. // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
  3640. // __func__, original_size.width, original_size.height,
  3641. // refined_size.width, refined_size.height);
  3642. llava_uhd::slice_instructions instructions;
  3643. instructions.overview_size = clip_image_size{params.image_size, params.image_size};
  3644. instructions.refined_size = refined_size;
  3645. instructions.grid_size = clip_image_size{
  3646. static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
  3647. static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
  3648. };
  3649. for (int y = 0; y < refined_size.height; y += params.image_size) {
  3650. for (int x = 0; x < refined_size.width; x += params.image_size) {
  3651. // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
  3652. instructions.slices.push_back(llava_uhd::slice_coordinates{
  3653. /* x */x,
  3654. /* y */y,
  3655. /* size */clip_image_size{
  3656. std::min(params.image_size, refined_size.width - x),
  3657. std::min(params.image_size, refined_size.height - y)
  3658. }
  3659. });
  3660. }
  3661. }
  3662. auto imgs = llava_uhd::slice_image(img, instructions);
  3663. // cast and normalize to f32
  3664. for (size_t i = 0; i < imgs.size(); ++i) {
  3665. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3666. clip_image_f32_ptr res(clip_image_f32_init());
  3667. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3668. res_imgs->entries.push_back(std::move(res));
  3669. }
  3670. res_imgs->grid_x = instructions.grid_size.width;
  3671. res_imgs->grid_y = instructions.grid_size.height;
  3672. } break;
  3673. case PROJECTOR_TYPE_GLM_EDGE:
  3674. case PROJECTOR_TYPE_GEMMA3:
  3675. case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
  3676. {
  3677. clip_image_u8 resized_image;
  3678. int sz = params.image_size;
  3679. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR);
  3680. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3681. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  3682. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3683. res_imgs->entries.push_back(std::move(img_f32));
  3684. } break;
  3685. case PROJECTOR_TYPE_JANUS_PRO:
  3686. {
  3687. // Janus Pro preprocessing: pad to square with gray(127), resize to 384x384
  3688. const std::array<uint8_t, 3> pad_color = {127, 127, 127};
  3689. clip_image_u8 resized_image;
  3690. int sz = params.image_size;
  3691. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3692. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3693. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3694. res_imgs->entries.push_back(std::move(img_f32));
  3695. } break;
  3696. case PROJECTOR_TYPE_PIXTRAL:
  3697. case PROJECTOR_TYPE_LIGHTONOCR:
  3698. {
  3699. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3700. clip_image_u8 resized_image;
  3701. // the original pixtral model doesn't have n_merge
  3702. const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge;
  3703. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3704. original_size,
  3705. params.patch_size * cur_merge,
  3706. params.image_min_pixels,
  3707. params.image_max_pixels);
  3708. img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR);
  3709. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3710. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3711. res_imgs->entries.push_back(std::move(img_f32));
  3712. } break;
  3713. case PROJECTOR_TYPE_LLAMA4:
  3714. {
  3715. GGML_ASSERT(!params.image_res_candidates.empty());
  3716. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3717. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3718. for (size_t i = 0; i < imgs.size(); ++i) {
  3719. clip_image_f32_ptr res(clip_image_f32_init());
  3720. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3721. res_imgs->entries.push_back(std::move(res));
  3722. }
  3723. res_imgs->grid_x = inst.grid_size.width;
  3724. res_imgs->grid_y = inst.grid_size.height;
  3725. } break;
  3726. case PROJECTOR_TYPE_LFM2:
  3727. case PROJECTOR_TYPE_KIMIVL:
  3728. {
  3729. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3730. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3731. original_size,
  3732. params.patch_size * params.n_merge,
  3733. params.image_min_pixels,
  3734. params.image_max_pixels);
  3735. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3736. clip_image_u8 resized_img;
  3737. const bool pad = (ctx->proj_type() != PROJECTOR_TYPE_LFM2);
  3738. img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, pad, pad_color);
  3739. clip_image_f32_ptr res(clip_image_f32_init());
  3740. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  3741. res_imgs->entries.push_back(std::move(res));
  3742. } break;
  3743. case PROJECTOR_TYPE_MLP:
  3744. case PROJECTOR_TYPE_MLP_NORM:
  3745. case PROJECTOR_TYPE_LDP:
  3746. case PROJECTOR_TYPE_LDPV2:
  3747. case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm?
  3748. {
  3749. // TODO @ngxson : refactor the code below to avoid duplicated logic
  3750. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  3751. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3752. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  3753. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  3754. if (params.image_res_candidates.empty()) { // pad_to_square
  3755. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  3756. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3757. const int longer_side = std::max(img->nx, img->ny);
  3758. temp->nx = longer_side;
  3759. temp->ny = longer_side;
  3760. temp->buf.resize(3 * longer_side * longer_side);
  3761. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  3762. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3763. // resize the image to the target_size
  3764. img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3765. clip_image_f32_ptr res(clip_image_f32_init());
  3766. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  3767. res_imgs->entries.push_back(std::move(res));
  3768. } else {
  3769. // "spatial_unpad" with "anyres" processing for llava-1.6
  3770. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3771. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3772. for (size_t i = 0; i < imgs.size(); ++i) {
  3773. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3774. clip_image_f32_ptr res(clip_image_f32_init());
  3775. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3776. res_imgs->entries.push_back(std::move(res));
  3777. }
  3778. }
  3779. } break;
  3780. default:
  3781. LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type());
  3782. return false;
  3783. }
  3784. return true;
  3785. }
  3786. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  3787. return ctx->model.image_newline;
  3788. }
  3789. void clip_free(clip_ctx * ctx) {
  3790. if (ctx == nullptr) {
  3791. return;
  3792. }
  3793. delete ctx;
  3794. }
  3795. // deprecated
  3796. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  3797. const int32_t nx = ctx->model.hparams.image_size;
  3798. const int32_t ny = ctx->model.hparams.image_size;
  3799. return clip_embd_nbytes_by_img(ctx, nx, ny);
  3800. }
  3801. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  3802. clip_image_f32 img;
  3803. img.nx = img_w;
  3804. img.ny = img_h;
  3805. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  3806. }
  3807. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  3808. return ctx->model.hparams.image_size;
  3809. }
  3810. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  3811. return ctx->model.hparams.patch_size;
  3812. }
  3813. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  3814. return ctx->model.hparams.n_embd;
  3815. }
  3816. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  3817. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  3818. }
  3819. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3820. const auto & params = ctx->model.hparams;
  3821. const int n_total = clip_n_output_tokens(ctx, img);
  3822. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3823. return img->nx / (params.patch_size * 2);
  3824. }
  3825. return n_total;
  3826. }
  3827. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3828. const auto & params = ctx->model.hparams;
  3829. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3830. return img->ny / (params.patch_size * 2);
  3831. }
  3832. return 1;
  3833. }
  3834. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3835. const auto & params = ctx->model.hparams;
  3836. // for models with fixed size image, the input image is already pre-processed and resized to square
  3837. int patch_size = params.patch_size;
  3838. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  3839. projector_type proj = ctx->proj_type();
  3840. switch (proj) {
  3841. case PROJECTOR_TYPE_MLP:
  3842. case PROJECTOR_TYPE_MLP_NORM:
  3843. case PROJECTOR_TYPE_JANUS_PRO:
  3844. {
  3845. // do nothing
  3846. } break;
  3847. case PROJECTOR_TYPE_LDP:
  3848. case PROJECTOR_TYPE_LDPV2:
  3849. case PROJECTOR_TYPE_GLM_EDGE:
  3850. {
  3851. n_patches /= 4;
  3852. if (ctx->model.mm_boi) {
  3853. n_patches += 2; // for BOI and EOI token embeddings
  3854. }
  3855. } break;
  3856. case PROJECTOR_TYPE_MINICPMV:
  3857. {
  3858. // Use actual config value if available, otherwise fall back to hardcoded values
  3859. if (params.minicpmv_query_num > 0) {
  3860. n_patches = params.minicpmv_query_num;
  3861. } else {
  3862. // Fallback to hardcoded values for legacy models
  3863. if (params.minicpmv_version == 2) {
  3864. n_patches = 96;
  3865. } else if (params.minicpmv_version == 3) {
  3866. n_patches = 64;
  3867. } else if (params.minicpmv_version == 4) {
  3868. n_patches = 64;
  3869. } else if (params.minicpmv_version == 5) {
  3870. // MiniCPM-V 4.0
  3871. n_patches = 64;
  3872. } else if (params.minicpmv_version == 6) {
  3873. // MiniCPM-V 4.5
  3874. n_patches = 64;
  3875. } else {
  3876. GGML_ABORT("Unknown minicpmv version");
  3877. }
  3878. }
  3879. } break;
  3880. case PROJECTOR_TYPE_QWEN2VL:
  3881. case PROJECTOR_TYPE_QWEN25VL:
  3882. case PROJECTOR_TYPE_QWEN3VL:
  3883. {
  3884. // dynamic size (2 conv, so double patch size)
  3885. int x_patch = img->nx / (params.patch_size * 2);
  3886. int y_patch = img->ny / (params.patch_size * 2);
  3887. n_patches = x_patch * y_patch;
  3888. } break;
  3889. case PROJECTOR_TYPE_GEMMA3:
  3890. case PROJECTOR_TYPE_IDEFICS3:
  3891. case PROJECTOR_TYPE_INTERNVL:
  3892. case PROJECTOR_TYPE_LLAMA4:
  3893. {
  3894. // both X and Y are downscaled by the scale factor
  3895. int scale_factor = ctx->model.hparams.n_merge;
  3896. n_patches /= (scale_factor * scale_factor);
  3897. } break;
  3898. case PROJECTOR_TYPE_LFM2:
  3899. case PROJECTOR_TYPE_KIMIVL:
  3900. {
  3901. // dynamic size
  3902. int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
  3903. int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
  3904. int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
  3905. n_patches = x_patch * y_patch;
  3906. } break;
  3907. case PROJECTOR_TYPE_PIXTRAL:
  3908. case PROJECTOR_TYPE_LIGHTONOCR:
  3909. {
  3910. // dynamic size
  3911. int n_merge = ctx->model.hparams.n_merge;
  3912. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  3913. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  3914. if (ctx->model.token_embd_img_break) {
  3915. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3916. } else {
  3917. n_patches = n_patches_y * n_patches_x;
  3918. }
  3919. } break;
  3920. case PROJECTOR_TYPE_VOXTRAL:
  3921. case PROJECTOR_TYPE_ULTRAVOX:
  3922. case PROJECTOR_TYPE_QWEN2A:
  3923. {
  3924. n_patches = img->nx;
  3925. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3926. if (ctx->model.audio_has_stack_frames()) {
  3927. GGML_ASSERT(proj_stack_factor > 0);
  3928. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  3929. n_patches = n_len / proj_stack_factor;
  3930. }
  3931. // whisper downscales input token by half after conv1d
  3932. n_patches /= 2;
  3933. if (ctx->model.audio_has_avgpool()) {
  3934. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3935. n_patches /= 2;
  3936. }
  3937. } break;
  3938. case PROJECTOR_TYPE_COGVLM:
  3939. {
  3940. n_patches += 2; // for BOI and EOI token embeddings
  3941. } break;
  3942. default:
  3943. GGML_ABORT("unsupported projector type");
  3944. }
  3945. return n_patches;
  3946. }
  3947. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3948. clip_image_f32_batch imgs;
  3949. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3950. *img_copy = *img;
  3951. imgs.entries.push_back(std::move(img_copy));
  3952. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3953. }
  3954. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3955. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3956. int batch_size = imgs.entries.size();
  3957. // TODO @ngxson : implement batch size > 1 as a loop
  3958. // we don't need true batching support because the cgraph will gonna be big anyway
  3959. if (batch_size != 1) {
  3960. return false; // only support batch size of 1
  3961. }
  3962. // if buffers are not allocated, we need to do a warmup run to allocate them
  3963. if (!ctx->is_allocated) {
  3964. clip_model_loader::warmup(*ctx, *imgs_c_ptr);
  3965. }
  3966. // build the inference graph
  3967. ctx->debug_print_tensors.clear();
  3968. ggml_backend_sched_reset(ctx->sched.get());
  3969. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3970. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3971. // set inputs
  3972. const auto & model = ctx->model;
  3973. const auto & hparams = model.hparams;
  3974. const int image_size_width = imgs.entries[0]->nx;
  3975. const int image_size_height = imgs.entries[0]->ny;
  3976. const int patch_size = hparams.patch_size;
  3977. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3978. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3979. const int pos_w = image_size_width / patch_size;
  3980. const int pos_h = image_size_height / patch_size;
  3981. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3982. auto get_inp_tensor = [&gf](const char * name) {
  3983. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3984. if (inp == nullptr) {
  3985. GGML_ABORT("Failed to get tensor %s", name);
  3986. }
  3987. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3988. GGML_ABORT("Tensor %s is not an input tensor", name);
  3989. }
  3990. return inp;
  3991. };
  3992. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3993. ggml_tensor * cur = get_inp_tensor(name);
  3994. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3995. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3996. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3997. };
  3998. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3999. ggml_tensor * cur = get_inp_tensor(name);
  4000. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  4001. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  4002. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  4003. };
  4004. // set input pixel values
  4005. if (!imgs.is_audio) {
  4006. size_t nelem = 0;
  4007. for (const auto & img : imgs.entries) {
  4008. nelem += img->nx * img->ny * 3;
  4009. }
  4010. std::vector<float> inp_raw(nelem);
  4011. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  4012. //
  4013. // ┌──W──┐
  4014. // │ H │ channel = R
  4015. // ├─────┤ │
  4016. // │ H │ channel = G
  4017. // ├─────┤ │
  4018. // │ H │ channel = B
  4019. // └─────┘ │
  4020. // ──────┘ x B
  4021. for (size_t i = 0; i < imgs.entries.size(); i++) {
  4022. const int nx = imgs.entries[i]->nx;
  4023. const int ny = imgs.entries[i]->ny;
  4024. const int n = nx * ny;
  4025. for (int b = 0; b < batch_size; b++) {
  4026. float * batch_entry = inp_raw.data() + b * (3*n);
  4027. for (int y = 0; y < ny; y++) {
  4028. for (int x = 0; x < nx; x++) {
  4029. size_t base_src = 3*(y * nx + x); // idx of the first channel
  4030. size_t base_dst = y * nx + x; // idx of the first channel
  4031. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  4032. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  4033. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  4034. }
  4035. }
  4036. }
  4037. }
  4038. set_input_f32("inp_raw", inp_raw);
  4039. } else {
  4040. // audio input
  4041. GGML_ASSERT(imgs.entries.size() == 1);
  4042. const auto & mel_inp = imgs.entries[0];
  4043. const int n_step = mel_inp->nx;
  4044. const int n_mel = mel_inp->ny;
  4045. std::vector<float> inp_raw(n_step * n_mel);
  4046. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  4047. set_input_f32("inp_raw", inp_raw);
  4048. }
  4049. // set input per projector
  4050. switch (ctx->model.proj_type) {
  4051. case PROJECTOR_TYPE_MINICPMV:
  4052. {
  4053. // inspired from siglip:
  4054. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  4055. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  4056. std::vector<int32_t> positions(pos_h * pos_w);
  4057. int bucket_coords_h[1024];
  4058. int bucket_coords_w[1024];
  4059. for (int i = 0; i < pos_h; i++){
  4060. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  4061. }
  4062. for (int i = 0; i < pos_w; i++){
  4063. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  4064. }
  4065. for (int i = 0, id = 0; i < pos_h; i++){
  4066. for (int j = 0; j < pos_w; j++){
  4067. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  4068. }
  4069. }
  4070. set_input_i32("positions", positions);
  4071. // inputs for resampler projector
  4072. // set the 2D positions (using float for sinusoidal embedding)
  4073. int n_patches_per_col = image_size_width / patch_size;
  4074. std::vector<float> pos_data(n_pos);
  4075. // dimension H
  4076. for (int i = 0; i < n_pos; i++) {
  4077. pos_data[i] = static_cast<float>(i / n_patches_per_col);
  4078. }
  4079. set_input_f32("pos_h", pos_data);
  4080. // dimension W
  4081. for (int i = 0; i < n_pos; i++) {
  4082. pos_data[i] = static_cast<float>(i % n_patches_per_col);
  4083. }
  4084. set_input_f32("pos_w", pos_data);
  4085. // base frequency omega
  4086. const float base_freq = 10000.0f;
  4087. const int n_embd_proj = clip_n_mmproj_embd(ctx);
  4088. std::vector<float> omega(n_embd_proj / 4);
  4089. for (int i = 0; i < n_embd_proj / 4; ++i) {
  4090. omega[i] = 1.0f / std::pow(base_freq, static_cast<float>(i) / (n_embd_proj / 4));
  4091. }
  4092. set_input_f32("omega", omega);
  4093. } break;
  4094. case PROJECTOR_TYPE_QWEN2VL:
  4095. case PROJECTOR_TYPE_QWEN3VL:
  4096. {
  4097. const int merge_ratio = hparams.n_merge;
  4098. const int pw = image_size_width / patch_size;
  4099. const int ph = image_size_height / patch_size;
  4100. std::vector<int> positions(n_pos * 4);
  4101. int ptr = 0;
  4102. for (int y = 0; y < ph; y += merge_ratio) {
  4103. for (int x = 0; x < pw; x += merge_ratio) {
  4104. for (int dy = 0; dy < 2; dy++) {
  4105. for (int dx = 0; dx < 2; dx++) {
  4106. positions[ ptr] = y + dy;
  4107. positions[ num_patches + ptr] = x + dx;
  4108. positions[2 * num_patches + ptr] = y + dy;
  4109. positions[3 * num_patches + ptr] = x + dx;
  4110. ptr++;
  4111. }
  4112. }
  4113. }
  4114. }
  4115. set_input_i32("positions", positions);
  4116. } break;
  4117. case PROJECTOR_TYPE_QWEN25VL:
  4118. {
  4119. // pw * ph = number of tokens output by ViT after apply patch merger
  4120. // ipw * ipw = number of vision token been processed inside ViT
  4121. const int merge_ratio = 2;
  4122. const int pw = image_size_width / patch_size / merge_ratio;
  4123. const int ph = image_size_height / patch_size / merge_ratio;
  4124. const int ipw = image_size_width / patch_size;
  4125. const int iph = image_size_height / patch_size;
  4126. std::vector<int> idx (ph * pw);
  4127. std::vector<int> inv_idx(ph * pw);
  4128. if (use_window_attn) {
  4129. const int attn_window_size = 112;
  4130. const int grid_window = attn_window_size / patch_size / merge_ratio;
  4131. int dst = 0;
  4132. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  4133. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  4134. int mask_row = 0;
  4135. for (int y = 0; y < ph; y += grid_window) {
  4136. for (int x = 0; x < pw; x += grid_window) {
  4137. const int win_h = std::min(grid_window, ph - y);
  4138. const int win_w = std::min(grid_window, pw - x);
  4139. const int dst_0 = dst;
  4140. // group all tokens belong to the same window togather (to a continue range)
  4141. for (int dy = 0; dy < win_h; dy++) {
  4142. for (int dx = 0; dx < win_w; dx++) {
  4143. const int src = (y + dy) * pw + (x + dx);
  4144. GGML_ASSERT(src < (int)idx.size());
  4145. GGML_ASSERT(dst < (int)inv_idx.size());
  4146. idx [src] = dst;
  4147. inv_idx[dst] = src;
  4148. dst++;
  4149. }
  4150. }
  4151. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  4152. int row_offset = mask_row * (ipw * iph);
  4153. std::fill(
  4154. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  4155. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  4156. 0.0);
  4157. mask_row++;
  4158. }
  4159. }
  4160. }
  4161. set_input_i32("window_idx", idx);
  4162. set_input_i32("inv_window_idx", inv_idx);
  4163. set_input_f32("window_mask", mask);
  4164. } else {
  4165. for (int i = 0; i < ph * pw; i++) {
  4166. idx[i] = i;
  4167. }
  4168. }
  4169. const int mpow = merge_ratio * merge_ratio;
  4170. std::vector<int> positions(n_pos * 4);
  4171. int ptr = 0;
  4172. for (int y = 0; y < iph; y += merge_ratio) {
  4173. for (int x = 0; x < ipw; x += merge_ratio) {
  4174. for (int dy = 0; dy < 2; dy++) {
  4175. for (int dx = 0; dx < 2; dx++) {
  4176. auto remap = idx[ptr / mpow];
  4177. remap = (remap * mpow) + (ptr % mpow);
  4178. positions[ remap] = y + dy;
  4179. positions[ num_patches + remap] = x + dx;
  4180. positions[2 * num_patches + remap] = y + dy;
  4181. positions[3 * num_patches + remap] = x + dx;
  4182. ptr++;
  4183. }
  4184. }
  4185. }
  4186. }
  4187. set_input_i32("positions", positions);
  4188. } break;
  4189. case PROJECTOR_TYPE_PIXTRAL:
  4190. case PROJECTOR_TYPE_KIMIVL:
  4191. case PROJECTOR_TYPE_LIGHTONOCR:
  4192. {
  4193. // set the 2D positions
  4194. int n_patches_per_col = image_size_width / patch_size;
  4195. std::vector<int> pos_data(n_pos);
  4196. // dimension H
  4197. for (int i = 0; i < n_pos; i++) {
  4198. pos_data[i] = i / n_patches_per_col;
  4199. }
  4200. set_input_i32("pos_h", pos_data);
  4201. // dimension W
  4202. for (int i = 0; i < n_pos; i++) {
  4203. pos_data[i] = i % n_patches_per_col;
  4204. }
  4205. set_input_i32("pos_w", pos_data);
  4206. } break;
  4207. case PROJECTOR_TYPE_GLM_EDGE:
  4208. {
  4209. // llava and other models
  4210. std::vector<int32_t> positions(n_pos);
  4211. for (int i = 0; i < n_pos; i++) {
  4212. positions[i] = i;
  4213. }
  4214. set_input_i32("positions", positions);
  4215. } break;
  4216. case PROJECTOR_TYPE_MLP:
  4217. case PROJECTOR_TYPE_MLP_NORM:
  4218. case PROJECTOR_TYPE_LDP:
  4219. case PROJECTOR_TYPE_LDPV2:
  4220. {
  4221. // llava and other models
  4222. std::vector<int32_t> positions(n_pos);
  4223. for (int i = 0; i < n_pos; i++) {
  4224. positions[i] = i;
  4225. }
  4226. set_input_i32("positions", positions);
  4227. // The patches vector is used to get rows to index into the embeds with;
  4228. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  4229. // when retrieving the rows.
  4230. int patch_offset = model.class_embedding ? 1 : 0;
  4231. std::vector<int32_t> patches(num_patches);
  4232. for (int i = 0; i < num_patches; i++) {
  4233. patches[i] = i + patch_offset;
  4234. }
  4235. set_input_i32("patches", patches);
  4236. } break;
  4237. case PROJECTOR_TYPE_GEMMA3:
  4238. case PROJECTOR_TYPE_IDEFICS3:
  4239. case PROJECTOR_TYPE_INTERNVL:
  4240. case PROJECTOR_TYPE_QWEN2A:
  4241. case PROJECTOR_TYPE_ULTRAVOX:
  4242. case PROJECTOR_TYPE_LFM2:
  4243. case PROJECTOR_TYPE_VOXTRAL:
  4244. case PROJECTOR_TYPE_JANUS_PRO:
  4245. case PROJECTOR_TYPE_COGVLM:
  4246. {
  4247. // do nothing
  4248. } break;
  4249. case PROJECTOR_TYPE_LLAMA4:
  4250. {
  4251. // set the 2D positions
  4252. int n_patches_per_col = image_size_width / patch_size;
  4253. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  4254. // last pos is always kept 0, it's for CLS
  4255. // dimension H
  4256. for (int i = 0; i < num_patches; i++) {
  4257. pos_data[i] = (i / n_patches_per_col) + 1;
  4258. }
  4259. set_input_i32("pos_h", pos_data);
  4260. // dimension W
  4261. for (int i = 0; i < num_patches; i++) {
  4262. pos_data[i] = (i % n_patches_per_col) + 1;
  4263. }
  4264. set_input_i32("pos_w", pos_data);
  4265. } break;
  4266. default:
  4267. GGML_ABORT("Unknown projector type");
  4268. }
  4269. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  4270. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  4271. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  4272. if (reg) {
  4273. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  4274. if (ggml_backend_set_n_threads_fn) {
  4275. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  4276. }
  4277. }
  4278. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  4279. if (status != GGML_STATUS_SUCCESS) {
  4280. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  4281. return false;
  4282. }
  4283. // print debug nodes
  4284. if (ctx->debug_graph) {
  4285. LOG_INF("\n\n---\n\n");
  4286. LOG_INF("\n\nDebug graph:\n\n");
  4287. for (ggml_tensor * t : ctx->debug_print_tensors) {
  4288. std::vector<uint8_t> data(ggml_nbytes(t));
  4289. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  4290. print_tensor_shape(t);
  4291. print_tensor_data(t, data.data(), 3);
  4292. }
  4293. }
  4294. // the last node is the embedding tensor
  4295. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  4296. // sanity check (only support batch size of 1 for now)
  4297. const int n_tokens_out = embeddings->ne[1];
  4298. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  4299. if (n_tokens_out != expected_n_tokens_out) {
  4300. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  4301. GGML_ABORT("Invalid number of output tokens");
  4302. }
  4303. // copy the embeddings to the location passed by the user
  4304. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  4305. return true;
  4306. }
  4307. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  4308. switch (ctx->model.proj_type) {
  4309. case PROJECTOR_TYPE_LDP:
  4310. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  4311. case PROJECTOR_TYPE_LDPV2:
  4312. return ctx->model.mm_model_peg_0_b->ne[0];
  4313. case PROJECTOR_TYPE_MLP:
  4314. case PROJECTOR_TYPE_PIXTRAL:
  4315. case PROJECTOR_TYPE_LIGHTONOCR:
  4316. return ctx->model.mm_2_w->ne[1];
  4317. case PROJECTOR_TYPE_MLP_NORM:
  4318. return ctx->model.mm_3_b->ne[0];
  4319. case PROJECTOR_TYPE_MINICPMV:
  4320. return ctx->model.mm_model_proj->ne[0];
  4321. case PROJECTOR_TYPE_GLM_EDGE:
  4322. return ctx->model.mm_model_mlp_3_w->ne[1];
  4323. case PROJECTOR_TYPE_QWEN2VL:
  4324. case PROJECTOR_TYPE_QWEN25VL:
  4325. case PROJECTOR_TYPE_JANUS_PRO:
  4326. return ctx->model.mm_1_b->ne[0];
  4327. case PROJECTOR_TYPE_QWEN3VL:
  4328. // main path + deepstack paths
  4329. return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
  4330. case PROJECTOR_TYPE_GEMMA3:
  4331. return ctx->model.mm_input_proj_w->ne[0];
  4332. case PROJECTOR_TYPE_IDEFICS3:
  4333. return ctx->model.projection->ne[1];
  4334. case PROJECTOR_TYPE_ULTRAVOX:
  4335. case PROJECTOR_TYPE_VOXTRAL:
  4336. return ctx->model.mm_2_w->ne[1];
  4337. case PROJECTOR_TYPE_INTERNVL:
  4338. return ctx->model.mm_3_w->ne[1];
  4339. case PROJECTOR_TYPE_LLAMA4:
  4340. return ctx->model.mm_model_proj->ne[1];
  4341. case PROJECTOR_TYPE_QWEN2A:
  4342. return ctx->model.mm_fc_w->ne[1];
  4343. case PROJECTOR_TYPE_LFM2:
  4344. case PROJECTOR_TYPE_KIMIVL:
  4345. return ctx->model.mm_2_w->ne[1];
  4346. case PROJECTOR_TYPE_COGVLM:
  4347. return ctx->model.mm_4h_to_h_w->ne[1];
  4348. default:
  4349. GGML_ABORT("Unknown projector type");
  4350. }
  4351. }
  4352. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  4353. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  4354. return ctx->model.hparams.minicpmv_version;
  4355. }
  4356. return 0;
  4357. }
  4358. bool clip_is_glm(const struct clip_ctx * ctx) {
  4359. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  4360. }
  4361. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  4362. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  4363. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  4364. || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
  4365. }
  4366. bool clip_is_llava(const struct clip_ctx * ctx) {
  4367. return ctx->model.hparams.has_llava_projector;
  4368. }
  4369. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  4370. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  4371. }
  4372. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  4373. return ctx->model.modality == CLIP_MODALITY_VISION;
  4374. }
  4375. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  4376. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  4377. }
  4378. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  4379. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  4380. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  4381. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  4382. }
  4383. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  4384. clip_image_f32 clip_img;
  4385. clip_img.buf.resize(h * w * 3);
  4386. for (int i = 0; i < h*w*3; i++)
  4387. {
  4388. clip_img.buf[i] = img[i];
  4389. }
  4390. clip_img.nx = w;
  4391. clip_img.ny = h;
  4392. clip_image_encode(ctx, n_threads, &clip_img, vec);
  4393. return true;
  4394. }
  4395. //
  4396. // API used internally with mtmd
  4397. //
  4398. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  4399. return ctx->proj_type();
  4400. }
  4401. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  4402. clip_image_f32 * audio = new clip_image_f32;
  4403. audio->nx = n_frames;
  4404. audio->ny = n_mel;
  4405. audio->buf.resize(n_frames * n_mel);
  4406. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  4407. batch->entries.push_back(clip_image_f32_ptr(audio));
  4408. batch->is_audio = true;
  4409. }