server-task.cpp 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500
  1. #include "server-common.h"
  2. #include "server-task.h"
  3. #include "common.h"
  4. #include "llama.h"
  5. #include "chat.h"
  6. #include "sampling.h"
  7. #include "json-schema-to-grammar.h"
  8. using json = nlohmann::ordered_json;
  9. //
  10. // task_params
  11. //
  12. json task_params::format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) const {
  13. json data = json::array();
  14. for (const auto & lb : logit_bias) {
  15. data.push_back(json{
  16. {"bias", lb.bias},
  17. {"token", lb.token},
  18. });
  19. }
  20. return data;
  21. }
  22. json task_params::to_json(bool only_metrics) const {
  23. std::vector<std::string> samplers;
  24. samplers.reserve(sampling.samplers.size());
  25. for (const auto & sampler : sampling.samplers) {
  26. samplers.emplace_back(common_sampler_type_to_str(sampler));
  27. }
  28. json lora = json::array();
  29. for (size_t i = 0; i < this->lora.size(); ++i) {
  30. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  31. }
  32. if (only_metrics) {
  33. return json {
  34. {"seed", sampling.seed},
  35. {"temperature", sampling.temp},
  36. {"dynatemp_range", sampling.dynatemp_range},
  37. {"dynatemp_exponent", sampling.dynatemp_exponent},
  38. {"top_k", sampling.top_k},
  39. {"top_p", sampling.top_p},
  40. {"min_p", sampling.min_p},
  41. {"top_n_sigma", sampling.top_n_sigma},
  42. {"xtc_probability", sampling.xtc_probability},
  43. {"xtc_threshold", sampling.xtc_threshold},
  44. {"typical_p", sampling.typ_p},
  45. {"repeat_last_n", sampling.penalty_last_n},
  46. {"repeat_penalty", sampling.penalty_repeat},
  47. {"presence_penalty", sampling.penalty_present},
  48. {"frequency_penalty", sampling.penalty_freq},
  49. {"dry_multiplier", sampling.dry_multiplier},
  50. {"dry_base", sampling.dry_base},
  51. {"dry_allowed_length", sampling.dry_allowed_length},
  52. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  53. {"mirostat", sampling.mirostat},
  54. {"mirostat_tau", sampling.mirostat_tau},
  55. {"mirostat_eta", sampling.mirostat_eta},
  56. {"max_tokens", n_predict},
  57. {"n_predict", n_predict}, // TODO: deduplicate?
  58. {"n_keep", n_keep},
  59. {"n_discard", n_discard},
  60. {"ignore_eos", sampling.ignore_eos},
  61. {"stream", stream},
  62. {"n_probs", sampling.n_probs},
  63. {"min_keep", sampling.min_keep},
  64. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  65. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  66. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  67. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  68. {"samplers", samplers},
  69. {"speculative.n_max", speculative.n_max},
  70. {"speculative.n_min", speculative.n_min},
  71. {"speculative.p_min", speculative.p_min},
  72. {"timings_per_token", timings_per_token},
  73. {"post_sampling_probs", post_sampling_probs},
  74. {"lora", lora},
  75. };
  76. }
  77. auto grammar_triggers = json::array();
  78. for (const auto & trigger : sampling.grammar_triggers) {
  79. server_grammar_trigger ct(trigger);
  80. grammar_triggers.push_back(ct.to_json());
  81. }
  82. return json {
  83. {"seed", sampling.seed},
  84. {"temperature", sampling.temp},
  85. {"dynatemp_range", sampling.dynatemp_range},
  86. {"dynatemp_exponent", sampling.dynatemp_exponent},
  87. {"top_k", sampling.top_k},
  88. {"top_p", sampling.top_p},
  89. {"min_p", sampling.min_p},
  90. {"top_n_sigma", sampling.top_n_sigma},
  91. {"xtc_probability", sampling.xtc_probability},
  92. {"xtc_threshold", sampling.xtc_threshold},
  93. {"typical_p", sampling.typ_p},
  94. {"repeat_last_n", sampling.penalty_last_n},
  95. {"repeat_penalty", sampling.penalty_repeat},
  96. {"presence_penalty", sampling.penalty_present},
  97. {"frequency_penalty", sampling.penalty_freq},
  98. {"dry_multiplier", sampling.dry_multiplier},
  99. {"dry_base", sampling.dry_base},
  100. {"dry_allowed_length", sampling.dry_allowed_length},
  101. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  102. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  103. {"mirostat", sampling.mirostat},
  104. {"mirostat_tau", sampling.mirostat_tau},
  105. {"mirostat_eta", sampling.mirostat_eta},
  106. {"stop", antiprompt},
  107. {"max_tokens", n_predict},
  108. {"n_predict", n_predict}, // TODO: deduplicate?
  109. {"n_keep", n_keep},
  110. {"n_discard", n_discard},
  111. {"ignore_eos", sampling.ignore_eos},
  112. {"stream", stream},
  113. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  114. {"n_probs", sampling.n_probs},
  115. {"min_keep", sampling.min_keep},
  116. {"grammar", sampling.grammar},
  117. {"grammar_lazy", sampling.grammar_lazy},
  118. {"grammar_triggers", grammar_triggers},
  119. {"preserved_tokens", sampling.preserved_tokens},
  120. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  121. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  122. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  123. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  124. {"samplers", samplers},
  125. {"speculative.n_max", speculative.n_max},
  126. {"speculative.n_min", speculative.n_min},
  127. {"speculative.p_min", speculative.p_min},
  128. {"timings_per_token", timings_per_token},
  129. {"post_sampling_probs", post_sampling_probs},
  130. {"lora", lora},
  131. };
  132. }
  133. //
  134. // server_task
  135. //
  136. task_params server_task::params_from_json_cmpl(
  137. const llama_context * ctx,
  138. const common_params & params_base,
  139. const json & data) {
  140. const llama_model * model = llama_get_model(ctx);
  141. const llama_vocab * vocab = llama_model_get_vocab(model);
  142. task_params params;
  143. // Sampling parameter defaults are loaded from the global server context (but individual requests can still them)
  144. task_params defaults;
  145. defaults.sampling = params_base.sampling;
  146. defaults.speculative = params_base.speculative;
  147. defaults.n_keep = params_base.n_keep;
  148. defaults.n_predict = params_base.n_predict;
  149. defaults.antiprompt = params_base.antiprompt;
  150. // enabling this will output extra debug information in the HTTP responses from the server
  151. params.verbose = params_base.verbosity > 9;
  152. params.timings_per_token = json_value(data, "timings_per_token", false);
  153. params.stream = json_value(data, "stream", false);
  154. auto stream_opt = json_value(data, "stream_options", json::object());
  155. params.include_usage = json_value(stream_opt, "include_usage", false);
  156. params.cache_prompt = json_value(data, "cache_prompt", true);
  157. params.return_tokens = json_value(data, "return_tokens", false);
  158. params.return_progress = json_value(data, "return_progress", false);
  159. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  160. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  161. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  162. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  163. params.n_cmpl = json_value(data, "n_cmpl", json_value(data, "n", 1));
  164. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  165. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  166. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  167. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  168. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  169. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  170. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  171. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  172. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  173. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  174. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  175. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  176. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  177. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  178. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  179. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  180. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  181. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  182. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  183. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  184. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  185. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  186. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  187. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  188. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  189. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  190. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  191. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  192. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  193. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  194. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  195. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  196. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  197. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  198. // Use OpenAI API logprobs only if n_probs wasn't provided
  199. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  200. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  201. }
  202. if (data.contains("lora")) {
  203. if (data.at("lora").is_array()) {
  204. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  205. } else {
  206. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  207. }
  208. } else {
  209. params.lora = params_base.lora_adapters;
  210. }
  211. // TODO: add more sanity checks for the input parameters
  212. if (params.sampling.penalty_last_n < -1) {
  213. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  214. }
  215. if (params.sampling.dry_penalty_last_n < -1) {
  216. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  217. }
  218. if (params.sampling.penalty_last_n == -1) {
  219. // note: should be the slot's context and not the full context, but it's ok
  220. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  221. }
  222. if (params.sampling.dry_penalty_last_n == -1) {
  223. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  224. }
  225. if (params.sampling.dry_base < 1.0f) {
  226. params.sampling.dry_base = defaults.sampling.dry_base;
  227. }
  228. // sequence breakers for DRY
  229. {
  230. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  231. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  232. if (data.contains("dry_sequence_breakers")) {
  233. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  234. if (params.sampling.dry_sequence_breakers.empty()) {
  235. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  236. }
  237. }
  238. }
  239. // process "json_schema" and "grammar"
  240. if (data.contains("json_schema") && !data.contains("grammar")) {
  241. try {
  242. auto schema = json_value(data, "json_schema", json::object());
  243. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  244. params.sampling.grammar = json_schema_to_grammar(schema);
  245. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  246. } catch (const std::exception & e) {
  247. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  248. }
  249. } else {
  250. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  251. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  252. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  253. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  254. }
  255. {
  256. auto it = data.find("chat_format");
  257. if (it != data.end()) {
  258. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  259. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  260. } else {
  261. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  262. }
  263. common_reasoning_format reasoning_format = params_base.reasoning_format;
  264. if (data.contains("reasoning_format")) {
  265. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  266. }
  267. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  268. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  269. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  270. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  271. if (data.contains("chat_parser")) {
  272. params.oaicompat_chat_syntax.parser.load(data.at("chat_parser").get<std::string>());
  273. }
  274. }
  275. {
  276. const auto preserved_tokens = data.find("preserved_tokens");
  277. if (preserved_tokens != data.end()) {
  278. for (const auto & t : *preserved_tokens) {
  279. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  280. if (ids.size() == 1) {
  281. SRV_DBG("Preserved token: %d\n", ids[0]);
  282. params.sampling.preserved_tokens.insert(ids[0]);
  283. } else {
  284. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  285. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  286. }
  287. }
  288. }
  289. const auto grammar_triggers = data.find("grammar_triggers");
  290. if (grammar_triggers != data.end()) {
  291. for (const auto & t : *grammar_triggers) {
  292. server_grammar_trigger ct(t);
  293. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  294. const auto & word = ct.value.value;
  295. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  296. if (ids.size() == 1) {
  297. auto token = ids[0];
  298. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  299. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  300. }
  301. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  302. common_grammar_trigger trigger;
  303. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  304. trigger.value = word;
  305. trigger.token = token;
  306. params.sampling.grammar_triggers.push_back(std::move(trigger));
  307. } else {
  308. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  309. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  310. }
  311. } else {
  312. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  313. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  314. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  315. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  316. } else {
  317. throw std::runtime_error("Unknown grammar trigger type");
  318. }
  319. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  320. }
  321. }
  322. }
  323. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  324. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  325. }
  326. }
  327. {
  328. params.sampling.logit_bias.clear();
  329. const auto & logit_bias = data.find("logit_bias");
  330. if (logit_bias != data.end() && logit_bias->is_array()) {
  331. const int n_vocab = llama_vocab_n_tokens(vocab);
  332. for (const auto & el : *logit_bias) {
  333. // TODO: we may want to throw errors here, in case "el" is incorrect
  334. if (el.is_array() && el.size() == 2) {
  335. float bias;
  336. if (el[1].is_number()) {
  337. bias = el[1].get<float>();
  338. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  339. bias = -INFINITY;
  340. } else {
  341. continue;
  342. }
  343. if (el[0].is_number_integer()) {
  344. llama_token tok = el[0].get<llama_token>();
  345. if (tok >= 0 && tok < n_vocab) {
  346. params.sampling.logit_bias.push_back({tok, bias});
  347. }
  348. } else if (el[0].is_string()) {
  349. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  350. for (auto tok : toks) {
  351. params.sampling.logit_bias.push_back({tok, bias});
  352. }
  353. }
  354. }
  355. }
  356. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  357. const int n_vocab = llama_vocab_n_tokens(vocab);
  358. for (const auto & el : logit_bias->items()) {
  359. float bias;
  360. const auto & key = el.key();
  361. const auto & value = el.value();
  362. if (value.is_number()) {
  363. bias = value.get<float>();
  364. } else if (value.is_boolean() && !value.get<bool>()) {
  365. bias = -INFINITY;
  366. } else {
  367. continue;
  368. }
  369. char *end;
  370. llama_token tok = strtol(key.c_str(), &end, 10);
  371. if (*end == 0) {
  372. if (tok >= 0 && tok < n_vocab) {
  373. params.sampling.logit_bias.push_back({tok, bias});
  374. }
  375. } else {
  376. auto toks = common_tokenize(vocab, key, false);
  377. for (auto tok : toks) {
  378. params.sampling.logit_bias.push_back({tok, bias});
  379. }
  380. }
  381. }
  382. }
  383. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  384. if (params.sampling.ignore_eos) {
  385. params.sampling.logit_bias.insert(
  386. params.sampling.logit_bias.end(),
  387. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  388. }
  389. }
  390. {
  391. params.antiprompt.clear();
  392. const auto & stop = data.find("stop");
  393. if (stop != data.end() && stop->is_array()) {
  394. for (const auto & word : *stop) {
  395. if (!word.empty()) {
  396. params.antiprompt.push_back(word);
  397. }
  398. }
  399. }
  400. // set reverse prompt from cli args if not set in the request
  401. if (params.antiprompt.empty()) {
  402. params.antiprompt = defaults.antiprompt;
  403. }
  404. }
  405. {
  406. const auto samplers = data.find("samplers");
  407. if (samplers != data.end()) {
  408. if (samplers->is_array()) {
  409. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  410. } else if (samplers->is_string()){
  411. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  412. }
  413. } else {
  414. params.sampling.samplers = defaults.sampling.samplers;
  415. }
  416. }
  417. if (params.n_cmpl > params_base.n_parallel) {
  418. throw std::runtime_error("n_cmpl cannot be greater than the number of slots, please increase -np");
  419. }
  420. return params;
  421. }
  422. //
  423. // result_timings
  424. //
  425. json result_timings::to_json() const {
  426. json base = {
  427. {"cache_n", cache_n},
  428. {"prompt_n", prompt_n},
  429. {"prompt_ms", prompt_ms},
  430. {"prompt_per_token_ms", prompt_per_token_ms},
  431. {"prompt_per_second", prompt_per_second},
  432. {"predicted_n", predicted_n},
  433. {"predicted_ms", predicted_ms},
  434. {"predicted_per_token_ms", predicted_per_token_ms},
  435. {"predicted_per_second", predicted_per_second},
  436. };
  437. if (draft_n > 0) {
  438. base["draft_n"] = draft_n;
  439. base["draft_n_accepted"] = draft_n_accepted;
  440. }
  441. return base;
  442. }
  443. //
  444. // result_prompt_progress
  445. //
  446. json result_prompt_progress::to_json() const {
  447. return json {
  448. {"total", total},
  449. {"cache", cache},
  450. {"processed", processed},
  451. {"time_ms", time_ms},
  452. };
  453. }
  454. static inline std::string stop_type_to_str(stop_type type) {
  455. switch (type) {
  456. case STOP_TYPE_EOS: return "eos";
  457. case STOP_TYPE_WORD: return "word";
  458. case STOP_TYPE_LIMIT: return "limit";
  459. default: return "none";
  460. }
  461. }
  462. //
  463. // completion_token_output
  464. //
  465. json completion_token_output::to_json(bool post_sampling_probs) const {
  466. json probs_for_token = json::array();
  467. for (const auto & p : probs) {
  468. std::string txt(p.txt);
  469. txt.resize(validate_utf8(txt));
  470. probs_for_token.push_back(json {
  471. {"id", p.tok},
  472. {"token", txt},
  473. {"bytes", str_to_bytes(p.txt)},
  474. {
  475. post_sampling_probs ? "prob" : "logprob",
  476. post_sampling_probs ? p.prob : logarithm(p.prob)
  477. },
  478. });
  479. }
  480. return probs_for_token;
  481. }
  482. json completion_token_output::probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  483. json out = json::array();
  484. for (const auto & p : probs) {
  485. std::string txt(p.text_to_send);
  486. txt.resize(validate_utf8(txt));
  487. out.push_back(json {
  488. {"id", p.tok},
  489. {"token", txt},
  490. {"bytes", str_to_bytes(p.text_to_send)},
  491. {
  492. post_sampling_probs ? "prob" : "logprob",
  493. post_sampling_probs ? p.prob : logarithm(p.prob)
  494. },
  495. {
  496. post_sampling_probs ? "top_probs" : "top_logprobs",
  497. p.to_json(post_sampling_probs)
  498. },
  499. });
  500. }
  501. return out;
  502. }
  503. float completion_token_output::logarithm(float x) {
  504. // nlohmann::json converts -inf to null, so we need to prevent that
  505. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  506. }
  507. std::vector<unsigned char> completion_token_output::str_to_bytes(const std::string & str) {
  508. std::vector<unsigned char> bytes;
  509. for (unsigned char c : str) {
  510. bytes.push_back(c);
  511. }
  512. return bytes;
  513. }
  514. //
  515. // server_task_result_cmpl_final
  516. //
  517. json server_task_result_cmpl_final::to_json() {
  518. GGML_ASSERT(is_updated && "update() must be called before to_json()");
  519. switch (res_type) {
  520. case TASK_RESPONSE_TYPE_NONE:
  521. return to_json_non_oaicompat();
  522. case TASK_RESPONSE_TYPE_OAI_CMPL:
  523. return to_json_oaicompat();
  524. case TASK_RESPONSE_TYPE_OAI_CHAT:
  525. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  526. case TASK_RESPONSE_TYPE_ANTHROPIC:
  527. return stream ? to_json_anthropic_stream() : to_json_anthropic();
  528. default:
  529. GGML_ASSERT(false && "Invalid task_response_type");
  530. }
  531. }
  532. json server_task_result_cmpl_final::to_json_non_oaicompat() {
  533. json res = json {
  534. {"index", index},
  535. {"content", content},
  536. {"tokens", tokens},
  537. {"id_slot", id_slot},
  538. {"stop", true},
  539. {"model", oaicompat_model},
  540. {"tokens_predicted", n_decoded},
  541. {"tokens_evaluated", n_prompt_tokens},
  542. {"generation_settings", generation_params.to_json()},
  543. {"prompt", prompt},
  544. {"has_new_line", has_new_line},
  545. {"truncated", truncated},
  546. {"stop_type", stop_type_to_str(stop)},
  547. {"stopping_word", stopping_word},
  548. {"tokens_cached", n_tokens_cached},
  549. {"timings", timings.to_json()},
  550. };
  551. if (!stream && !probs_output.empty()) {
  552. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  553. }
  554. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  555. }
  556. json server_task_result_cmpl_final::to_json_oaicompat() {
  557. std::time_t t = std::time(0);
  558. json logprobs = json(nullptr); // OAI default to null
  559. if (!stream && probs_output.size() > 0) {
  560. logprobs = json{
  561. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  562. };
  563. }
  564. json finish_reason = "length";
  565. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  566. finish_reason = "stop";
  567. }
  568. json res = json {
  569. {"choices", json::array({
  570. json{
  571. {"text", content},
  572. {"index", index},
  573. {"logprobs", logprobs},
  574. {"finish_reason", finish_reason},
  575. }
  576. })},
  577. {"created", t},
  578. {"model", oaicompat_model},
  579. {"system_fingerprint", build_info},
  580. {"object", "text_completion"},
  581. {"usage", json {
  582. {"completion_tokens", n_decoded},
  583. {"prompt_tokens", n_prompt_tokens},
  584. {"total_tokens", n_decoded + n_prompt_tokens}
  585. }},
  586. {"id", oaicompat_cmpl_id}
  587. };
  588. // extra fields for debugging purposes
  589. if (verbose) {
  590. res["__verbose"] = to_json_non_oaicompat();
  591. }
  592. if (timings.prompt_n >= 0) {
  593. res.push_back({"timings", timings.to_json()});
  594. }
  595. return res;
  596. }
  597. json server_task_result_cmpl_final::to_json_oaicompat_chat() {
  598. std::string finish_reason = "length";
  599. common_chat_msg msg;
  600. if (!oaicompat_msg.empty()) {
  601. msg = oaicompat_msg;
  602. } else {
  603. msg.role = "assistant";
  604. msg.content = content;
  605. }
  606. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  607. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  608. }
  609. json choice {
  610. {"finish_reason", finish_reason},
  611. {"index", index},
  612. {"message", msg.to_json_oaicompat<json>()},
  613. };
  614. if (!stream && probs_output.size() > 0) {
  615. choice["logprobs"] = json{
  616. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  617. };
  618. }
  619. std::time_t t = std::time(0);
  620. json res = json {
  621. {"choices", json::array({choice})},
  622. {"created", t},
  623. {"model", oaicompat_model},
  624. {"system_fingerprint", build_info},
  625. {"object", "chat.completion"},
  626. {"usage", json {
  627. {"completion_tokens", n_decoded},
  628. {"prompt_tokens", n_prompt_tokens},
  629. {"total_tokens", n_decoded + n_prompt_tokens}
  630. }},
  631. {"id", oaicompat_cmpl_id}
  632. };
  633. // extra fields for debugging purposes
  634. if (verbose) {
  635. res["__verbose"] = to_json_non_oaicompat();
  636. }
  637. if (timings.prompt_n >= 0) {
  638. res.push_back({"timings", timings.to_json()});
  639. }
  640. return res;
  641. }
  642. common_chat_msg task_result_state::update_chat_msg(
  643. const std::string & text_added,
  644. bool is_partial,
  645. std::vector<common_chat_msg_diff> & diffs) {
  646. generated_text += text_added;
  647. auto msg_prv_copy = chat_msg;
  648. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  649. auto new_msg = common_chat_parse(
  650. generated_text,
  651. is_partial,
  652. oaicompat_chat_syntax);
  653. if (!new_msg.empty()) {
  654. new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id);
  655. chat_msg = new_msg;
  656. diffs = common_chat_msg_diff::compute_diffs(msg_prv_copy, new_msg.empty() ? msg_prv_copy : new_msg);
  657. }
  658. return chat_msg;
  659. }
  660. json server_task_result_cmpl_final::to_json_oaicompat_chat_stream() {
  661. std::time_t t = std::time(0);
  662. std::string finish_reason = "length";
  663. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  664. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  665. }
  666. json deltas = json::array();
  667. for (const auto & diff : oaicompat_msg_diffs) {
  668. deltas.push_back({
  669. {"choices", json::array({
  670. json {
  671. {"finish_reason", nullptr},
  672. {"index", 0},
  673. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  674. },
  675. })},
  676. {"created", t},
  677. {"id", oaicompat_cmpl_id},
  678. {"model", oaicompat_model},
  679. {"system_fingerprint", build_info},
  680. {"object", "chat.completion.chunk"},
  681. });
  682. }
  683. deltas.push_back({
  684. {"choices", json::array({
  685. json {
  686. {"finish_reason", finish_reason},
  687. {"index", 0},
  688. {"delta", json::object()},
  689. },
  690. })},
  691. {"created", t},
  692. {"id", oaicompat_cmpl_id},
  693. {"model", oaicompat_model},
  694. {"system_fingerprint", build_info},
  695. {"object", "chat.completion.chunk"},
  696. });
  697. if (include_usage) {
  698. // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
  699. // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
  700. deltas.push_back({
  701. {"choices", json::array()},
  702. {"created", t},
  703. {"id", oaicompat_cmpl_id},
  704. {"model", oaicompat_model},
  705. {"system_fingerprint", build_info},
  706. {"object", "chat.completion.chunk"},
  707. {"usage", json {
  708. {"completion_tokens", n_decoded},
  709. {"prompt_tokens", n_prompt_tokens},
  710. {"total_tokens", n_decoded + n_prompt_tokens},
  711. }},
  712. });
  713. }
  714. if (timings.prompt_n >= 0) {
  715. deltas.back().push_back({"timings", timings.to_json()});
  716. }
  717. // extra fields for debugging purposes
  718. if (verbose && !deltas.empty()) {
  719. deltas.front()["__verbose"] = to_json_non_oaicompat();
  720. }
  721. return deltas;
  722. }
  723. json server_task_result_cmpl_final::to_json_anthropic() {
  724. std::string stop_reason = "max_tokens";
  725. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  726. stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
  727. }
  728. json content_blocks = json::array();
  729. common_chat_msg msg;
  730. if (!oaicompat_msg.empty()) {
  731. msg = oaicompat_msg;
  732. } else {
  733. msg.role = "assistant";
  734. msg.content = content;
  735. }
  736. if (!msg.content.empty()) {
  737. content_blocks.push_back({
  738. {"type", "text"},
  739. {"text", msg.content}
  740. });
  741. }
  742. for (const auto & tool_call : msg.tool_calls) {
  743. json tool_use_block = {
  744. {"type", "tool_use"},
  745. {"id", tool_call.id},
  746. {"name", tool_call.name}
  747. };
  748. try {
  749. tool_use_block["input"] = json::parse(tool_call.arguments);
  750. } catch (const std::exception &) {
  751. tool_use_block["input"] = json::object();
  752. }
  753. content_blocks.push_back(tool_use_block);
  754. }
  755. json res = {
  756. {"id", oaicompat_cmpl_id},
  757. {"type", "message"},
  758. {"role", "assistant"},
  759. {"content", content_blocks},
  760. {"model", oaicompat_model},
  761. {"stop_reason", stop_reason},
  762. {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)},
  763. {"usage", {
  764. {"input_tokens", n_prompt_tokens},
  765. {"output_tokens", n_decoded}
  766. }}
  767. };
  768. return res;
  769. }
  770. json server_task_result_cmpl_final::to_json_anthropic_stream() {
  771. json events = json::array();
  772. std::string stop_reason = "max_tokens";
  773. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  774. stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
  775. }
  776. bool has_text = !oaicompat_msg.content.empty();
  777. size_t num_tool_calls = oaicompat_msg.tool_calls.size();
  778. bool text_block_started = false;
  779. std::unordered_set<size_t> tool_calls_started;
  780. for (const auto & diff : oaicompat_msg_diffs) {
  781. if (!diff.content_delta.empty()) {
  782. if (!text_block_started) {
  783. events.push_back({
  784. {"event", "content_block_start"},
  785. {"data", {
  786. {"type", "content_block_start"},
  787. {"index", 0},
  788. {"content_block", {
  789. {"type", "text"},
  790. {"text", ""}
  791. }}
  792. }}
  793. });
  794. text_block_started = true;
  795. }
  796. events.push_back({
  797. {"event", "content_block_delta"},
  798. {"data", {
  799. {"type", "content_block_delta"},
  800. {"index", 0},
  801. {"delta", {
  802. {"type", "text_delta"},
  803. {"text", diff.content_delta}
  804. }}
  805. }}
  806. });
  807. }
  808. if (diff.tool_call_index != std::string::npos) {
  809. size_t content_block_index = (has_text ? 1 : 0) + diff.tool_call_index;
  810. if (tool_calls_started.find(diff.tool_call_index) == tool_calls_started.end()) {
  811. const auto & full_tool_call = oaicompat_msg.tool_calls[diff.tool_call_index];
  812. events.push_back({
  813. {"event", "content_block_start"},
  814. {"data", {
  815. {"type", "content_block_start"},
  816. {"index", content_block_index},
  817. {"content_block", {
  818. {"type", "tool_use"},
  819. {"id", full_tool_call.id},
  820. {"name", full_tool_call.name}
  821. }}
  822. }}
  823. });
  824. tool_calls_started.insert(diff.tool_call_index);
  825. }
  826. if (!diff.tool_call_delta.arguments.empty()) {
  827. events.push_back({
  828. {"event", "content_block_delta"},
  829. {"data", {
  830. {"type", "content_block_delta"},
  831. {"index", content_block_index},
  832. {"delta", {
  833. {"type", "input_json_delta"},
  834. {"partial_json", diff.tool_call_delta.arguments}
  835. }}
  836. }}
  837. });
  838. }
  839. }
  840. }
  841. if (has_text) {
  842. events.push_back({
  843. {"event", "content_block_stop"},
  844. {"data", {
  845. {"type", "content_block_stop"},
  846. {"index", 0}
  847. }}
  848. });
  849. }
  850. for (size_t i = 0; i < num_tool_calls; i++) {
  851. size_t content_block_index = (has_text ? 1 : 0) + i;
  852. events.push_back({
  853. {"event", "content_block_stop"},
  854. {"data", {
  855. {"type", "content_block_stop"},
  856. {"index", content_block_index}
  857. }}
  858. });
  859. }
  860. events.push_back({
  861. {"event", "message_delta"},
  862. {"data", {
  863. {"type", "message_delta"},
  864. {"delta", {
  865. {"stop_reason", stop_reason},
  866. {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)}
  867. }},
  868. {"usage", {
  869. {"output_tokens", n_decoded}
  870. }}
  871. }}
  872. });
  873. events.push_back({
  874. {"event", "message_stop"},
  875. {"data", {
  876. {"type", "message_stop"}
  877. }}
  878. });
  879. return events;
  880. }
  881. //
  882. // server_task_result_cmpl_partial
  883. //
  884. json server_task_result_cmpl_partial::to_json() {
  885. GGML_ASSERT(is_updated && "update() must be called before to_json()");
  886. switch (res_type) {
  887. case TASK_RESPONSE_TYPE_NONE:
  888. return to_json_non_oaicompat();
  889. case TASK_RESPONSE_TYPE_OAI_CMPL:
  890. return to_json_oaicompat();
  891. case TASK_RESPONSE_TYPE_OAI_CHAT:
  892. return to_json_oaicompat_chat();
  893. case TASK_RESPONSE_TYPE_ANTHROPIC:
  894. return to_json_anthropic();
  895. default:
  896. GGML_ASSERT(false && "Invalid task_response_type");
  897. }
  898. }
  899. json server_task_result_cmpl_partial::to_json_non_oaicompat() {
  900. // non-OAI-compat JSON
  901. json res = json {
  902. {"index", index},
  903. {"content", content},
  904. {"tokens", tokens},
  905. {"stop", false},
  906. {"id_slot", id_slot},
  907. {"tokens_predicted", n_decoded},
  908. {"tokens_evaluated", n_prompt_tokens},
  909. };
  910. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  911. if (timings.prompt_n > 0) {
  912. res.push_back({"timings", timings.to_json()});
  913. }
  914. if (is_progress) {
  915. res.push_back({"prompt_progress", progress.to_json()});
  916. }
  917. if (!prob_output.probs.empty()) {
  918. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  919. }
  920. return res;
  921. }
  922. json server_task_result_cmpl_partial::to_json_oaicompat() {
  923. std::time_t t = std::time(0);
  924. json logprobs = json(nullptr); // OAI default to null
  925. if (prob_output.probs.size() > 0) {
  926. logprobs = json{
  927. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  928. };
  929. }
  930. json res = json {
  931. {"choices", json::array({
  932. json{
  933. {"text", content},
  934. {"index", index},
  935. {"logprobs", logprobs},
  936. {"finish_reason", nullptr},
  937. }
  938. })},
  939. {"created", t},
  940. {"model", oaicompat_model},
  941. {"system_fingerprint", build_info},
  942. {"object", "text_completion"},
  943. {"id", oaicompat_cmpl_id}
  944. };
  945. // extra fields for debugging purposes
  946. if (verbose) {
  947. res["__verbose"] = to_json_non_oaicompat();
  948. }
  949. if (timings.prompt_n >= 0) {
  950. res.push_back({"timings", timings.to_json()});
  951. }
  952. if (is_progress) {
  953. res.push_back({"prompt_progress", progress.to_json()});
  954. }
  955. return res;
  956. }
  957. json server_task_result_cmpl_partial::to_json_oaicompat_chat() {
  958. bool first = n_decoded == 1;
  959. std::time_t t = std::time(0);
  960. json choices;
  961. std::vector<json> deltas;
  962. auto add_delta = [&](const json & delta) {
  963. deltas.push_back({
  964. {"choices", json::array({
  965. json {
  966. {"finish_reason", nullptr},
  967. {"index", index},
  968. {"delta", delta},
  969. },
  970. })},
  971. {"created", t},
  972. {"id", oaicompat_cmpl_id},
  973. {"model", oaicompat_model},
  974. {"system_fingerprint", build_info},
  975. {"object", "chat.completion.chunk"},
  976. });
  977. };
  978. // We have to send an initial update to conform to openai behavior
  979. if (first || is_progress) {
  980. add_delta({
  981. {"role", "assistant"},
  982. {"content", nullptr},
  983. });
  984. }
  985. for (const auto & diff : oaicompat_msg_diffs) {
  986. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  987. }
  988. if (!deltas.empty()) {
  989. auto & last_json = deltas[deltas.size() - 1];
  990. GGML_ASSERT(last_json.at("choices").size() >= 1);
  991. if (prob_output.probs.size() > 0) {
  992. last_json.at("choices").at(0)["logprobs"] = json {
  993. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  994. };
  995. }
  996. if (timings.prompt_n >= 0) {
  997. last_json.push_back({"timings", timings.to_json()});
  998. }
  999. if (is_progress) {
  1000. last_json.push_back({"prompt_progress", progress.to_json()});
  1001. }
  1002. }
  1003. return deltas;
  1004. }
  1005. //
  1006. // server_task_result_embd
  1007. //
  1008. json server_task_result_embd::to_json() {
  1009. return res_type == TASK_RESPONSE_TYPE_OAI_EMBD
  1010. ? to_json_oaicompat()
  1011. : to_json_non_oaicompat();
  1012. }
  1013. json server_task_result_embd::to_json_non_oaicompat() {
  1014. return json {
  1015. {"index", index},
  1016. {"embedding", embedding},
  1017. };
  1018. }
  1019. json server_task_result_embd::to_json_oaicompat() {
  1020. return json {
  1021. {"index", index},
  1022. {"embedding", embedding[0]},
  1023. {"tokens_evaluated", n_tokens},
  1024. };
  1025. }
  1026. //
  1027. // server_task_result_rerank
  1028. //
  1029. json server_task_result_rerank::to_json() {
  1030. return json {
  1031. {"index", index},
  1032. {"score", score},
  1033. {"tokens_evaluated", n_tokens},
  1034. };
  1035. }
  1036. json server_task_result_cmpl_partial::to_json_anthropic() {
  1037. json events = json::array();
  1038. bool first = (n_decoded == 1);
  1039. static bool text_block_started = false;
  1040. if (first) {
  1041. text_block_started = false;
  1042. events.push_back({
  1043. {"event", "message_start"},
  1044. {"data", {
  1045. {"type", "message_start"},
  1046. {"message", {
  1047. {"id", oaicompat_cmpl_id},
  1048. {"type", "message"},
  1049. {"role", "assistant"},
  1050. {"content", json::array()},
  1051. {"model", oaicompat_model},
  1052. {"stop_reason", nullptr},
  1053. {"stop_sequence", nullptr},
  1054. {"usage", {
  1055. {"input_tokens", n_prompt_tokens},
  1056. {"output_tokens", 0}
  1057. }}
  1058. }}
  1059. }}
  1060. });
  1061. }
  1062. for (const auto & diff : oaicompat_msg_diffs) {
  1063. if (!diff.content_delta.empty()) {
  1064. if (!text_block_started) {
  1065. events.push_back({
  1066. {"event", "content_block_start"},
  1067. {"data", {
  1068. {"type", "content_block_start"},
  1069. {"index", 0},
  1070. {"content_block", {
  1071. {"type", "text"},
  1072. {"text", ""}
  1073. }}
  1074. }}
  1075. });
  1076. text_block_started = true;
  1077. }
  1078. events.push_back({
  1079. {"event", "content_block_delta"},
  1080. {"data", {
  1081. {"type", "content_block_delta"},
  1082. {"index", 0},
  1083. {"delta", {
  1084. {"type", "text_delta"},
  1085. {"text", diff.content_delta}
  1086. }}
  1087. }}
  1088. });
  1089. }
  1090. if (diff.tool_call_index != std::string::npos) {
  1091. size_t content_block_index = (text_block_started ? 1 : 0) + diff.tool_call_index;
  1092. if (!diff.tool_call_delta.name.empty()) {
  1093. events.push_back({
  1094. {"event", "content_block_start"},
  1095. {"data", {
  1096. {"type", "content_block_start"},
  1097. {"index", content_block_index},
  1098. {"content_block", {
  1099. {"type", "tool_use"},
  1100. {"id", diff.tool_call_delta.id},
  1101. {"name", diff.tool_call_delta.name}
  1102. }}
  1103. }}
  1104. });
  1105. }
  1106. if (!diff.tool_call_delta.arguments.empty()) {
  1107. events.push_back({
  1108. {"event", "content_block_delta"},
  1109. {"data", {
  1110. {"type", "content_block_delta"},
  1111. {"index", content_block_index},
  1112. {"delta", {
  1113. {"type", "input_json_delta"},
  1114. {"partial_json", diff.tool_call_delta.arguments}
  1115. }}
  1116. }}
  1117. });
  1118. }
  1119. }
  1120. }
  1121. return events;
  1122. }
  1123. //
  1124. // server_task_result_error
  1125. //
  1126. json server_task_result_error::to_json() {
  1127. json res = format_error_response(err_msg, err_type);
  1128. if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  1129. res["n_prompt_tokens"] = n_prompt_tokens;
  1130. res["n_ctx"] = n_ctx;
  1131. }
  1132. return res;
  1133. }
  1134. //
  1135. // server_task_result_metrics
  1136. //
  1137. json server_task_result_metrics::to_json() {
  1138. return json {
  1139. { "idle", n_idle_slots },
  1140. { "processing", n_processing_slots },
  1141. { "deferred", n_tasks_deferred },
  1142. { "t_start", t_start },
  1143. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1144. { "t_tokens_generation_total", t_tokens_generation_total },
  1145. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1146. { "t_prompt_processing_total", t_prompt_processing_total },
  1147. { "n_tokens_max", n_tokens_max },
  1148. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1149. { "t_prompt_processing", t_prompt_processing },
  1150. { "n_tokens_predicted", n_tokens_predicted },
  1151. { "t_tokens_generation", t_tokens_generation },
  1152. { "n_decode_total", n_decode_total },
  1153. { "n_busy_slots_total", n_busy_slots_total },
  1154. { "slots", slots_data },
  1155. };
  1156. }
  1157. //
  1158. // server_task_result_slot_save_load
  1159. //
  1160. json server_task_result_slot_save_load::to_json() {
  1161. if (is_save) {
  1162. return json {
  1163. { "id_slot", id_slot },
  1164. { "filename", filename },
  1165. { "n_saved", n_tokens },
  1166. { "n_written", n_bytes },
  1167. { "timings", {
  1168. { "save_ms", t_ms }
  1169. }},
  1170. };
  1171. }
  1172. return json {
  1173. { "id_slot", id_slot },
  1174. { "filename", filename },
  1175. { "n_restored", n_tokens },
  1176. { "n_read", n_bytes },
  1177. { "timings", {
  1178. { "restore_ms", t_ms }
  1179. }},
  1180. };
  1181. }
  1182. //
  1183. // server_task_result_slot_erase
  1184. //
  1185. json server_task_result_slot_erase::to_json() {
  1186. return json {
  1187. { "id_slot", id_slot },
  1188. { "n_erased", n_erased },
  1189. };
  1190. }
  1191. //
  1192. // server_task_result_apply_lora
  1193. //
  1194. json server_task_result_apply_lora::to_json() {
  1195. return json {{ "success", true }};
  1196. }
  1197. //
  1198. // server_prompt_cache
  1199. //
  1200. size_t server_prompt_cache::size() const {
  1201. size_t res = 0;
  1202. for (const auto & state : states) {
  1203. res += state.size();
  1204. }
  1205. return res;
  1206. }
  1207. size_t server_prompt_cache::n_tokens() const {
  1208. size_t res = 0;
  1209. for (const auto & state : states) {
  1210. res += state.n_tokens();
  1211. }
  1212. return res;
  1213. }
  1214. server_prompt * server_prompt_cache::alloc(const server_prompt & prompt, size_t state_size) {
  1215. // first check if the current state is contained fully in the cache
  1216. for (auto it = states.begin(); it != states.end(); ++it) {
  1217. const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens);
  1218. if (cur_lcp_len == (int) prompt.tokens.size()) {
  1219. SRV_WRN("%s", " - prompt is already in the cache, skipping\n");
  1220. return nullptr;
  1221. }
  1222. }
  1223. // next, remove any cached prompts that are fully contained in the current prompt
  1224. for (auto it = states.begin(); it != states.end();) {
  1225. const int len = it->tokens.get_common_prefix(prompt.tokens);
  1226. if (len == (int) it->tokens.size()) {
  1227. SRV_WRN(" - removing obsolete cached prompt with length %d\n", len);
  1228. it = states.erase(it);
  1229. } else {
  1230. ++it;
  1231. }
  1232. }
  1233. std::vector<uint8_t> state_data;
  1234. // check if we can allocate enough memory for the new state
  1235. try {
  1236. state_data.resize(state_size);
  1237. } catch (const std::bad_alloc & e) {
  1238. SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what());
  1239. limit_size = std::max<size_t>(1, 0.4*size());
  1240. SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0));
  1241. update();
  1242. return nullptr;
  1243. }
  1244. // TODO: for some reason we can't copy server_tokens, so we have to do this workaround
  1245. auto & cur = states.emplace_back();
  1246. cur = {
  1247. /*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
  1248. /*.data =*/ std::move(state_data),
  1249. /*.checkpoints =*/ prompt.checkpoints,
  1250. };
  1251. return &cur;
  1252. }
  1253. bool server_prompt_cache::load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) {
  1254. const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
  1255. float f_keep_best = float(lcp_best) / prompt.tokens.size();
  1256. float sim_best = float(lcp_best) / tokens_new.size();
  1257. SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1258. auto it_best = states.end();
  1259. // find the most similar cached prompt, that would also preserve the most context
  1260. for (auto it = states.begin(); it != states.end(); ++it) {
  1261. const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
  1262. const float f_keep_cur = float(lcp_cur) / it->tokens.size();
  1263. const float sim_cur = float(lcp_cur) / tokens_new.size();
  1264. // don't trash large prompts
  1265. if (f_keep_cur < 0.25f) {
  1266. continue;
  1267. }
  1268. if (f_keep_best < f_keep_cur && sim_best < sim_cur) {
  1269. f_keep_best = f_keep_cur;
  1270. sim_best = sim_cur;
  1271. it_best = it;
  1272. }
  1273. }
  1274. if (it_best != states.end()) {
  1275. SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1276. const size_t size = it_best->data.size();
  1277. const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0);
  1278. if (n != size) {
  1279. SRV_WRN("failed to restore state with size %zu\n", size);
  1280. return false;
  1281. }
  1282. it_best->data.clear();
  1283. it_best->data.shrink_to_fit();
  1284. prompt = std::move(*it_best);
  1285. states.erase(it_best);
  1286. }
  1287. return true;
  1288. }
  1289. void server_prompt_cache::update() {
  1290. if (limit_size > 0) {
  1291. // always keep at least one state, regardless of the limits
  1292. while (states.size() > 1 && size() > limit_size) {
  1293. if (states.empty()) {
  1294. break;
  1295. }
  1296. SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
  1297. states.pop_front();
  1298. }
  1299. }
  1300. // average size per token
  1301. const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
  1302. // dynamically increase the token limit if it can fit in the memory limit
  1303. const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
  1304. if (limit_tokens > 0) {
  1305. while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
  1306. if (states.empty()) {
  1307. break;
  1308. }
  1309. SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
  1310. limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
  1311. states.pop_front();
  1312. }
  1313. }
  1314. SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
  1315. states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
  1316. for (const auto & state : states) {
  1317. SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
  1318. (const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
  1319. }
  1320. }