convert_hf_to_gguf.py 358 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  252. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  253. gguf.MODEL_TENSOR.TIME_MIX_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_W2,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  256. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  257. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  258. gguf.MODEL_TENSOR.POSNET_NORM1,
  259. gguf.MODEL_TENSOR.POSNET_NORM2,
  260. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  262. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  263. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  264. )
  265. )
  266. or not new_name.endswith(".weight")
  267. ):
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. if data_qtype is False and any(
  270. self.match_model_tensor_name(new_name, key, bid)
  271. for key in (
  272. gguf.MODEL_TENSOR.TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  276. gguf.MODEL_TENSOR.LAUREL_L,
  277. gguf.MODEL_TENSOR.LAUREL_R,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # If we are using HF model id, set the metadata name to the model id
  320. if self.remote_hf_model_id:
  321. self.metadata.name = self.remote_hf_model_id
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. self.set_type()
  329. logger.info("Set meta model")
  330. self.metadata.set_gguf_meta_model(self.gguf_writer)
  331. logger.info("Set model parameters")
  332. self.set_gguf_parameters()
  333. logger.info("Set model quantization version")
  334. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  335. def write_vocab(self):
  336. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  337. def write(self):
  338. self.prepare_tensors()
  339. self.prepare_metadata(vocab_only=False)
  340. self.gguf_writer.write_header_to_file(path=self.fname_out)
  341. self.gguf_writer.write_kv_data_to_file()
  342. self.gguf_writer.write_tensors_to_file(progress=True)
  343. self.gguf_writer.close()
  344. @staticmethod
  345. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  346. part_names: list[str] = []
  347. for filename in os.listdir(dir_model):
  348. if filename.startswith(prefix) and filename.endswith(suffix):
  349. part_names.append(filename)
  350. part_names.sort()
  351. return part_names
  352. @staticmethod
  353. def load_hparams(dir_model: Path):
  354. try:
  355. # for security reason, we don't allow loading remote code by default
  356. # if a model need remote code, we will fallback to config.json
  357. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  358. except Exception as e:
  359. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  360. logger.warning("Trying to load config.json instead")
  361. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  362. config = json.load(f)
  363. if "llm_config" in config:
  364. # rename for InternVL
  365. config["text_config"] = config["llm_config"]
  366. if "thinker_config" in config:
  367. # rename for Qwen2.5-Omni
  368. config["text_config"] = config["thinker_config"]["text_config"]
  369. return config
  370. @classmethod
  371. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  372. assert names
  373. def func(modelcls: AnyModel) -> AnyModel:
  374. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  375. for name in names:
  376. cls._model_classes[model_type][name] = modelcls
  377. return modelcls
  378. return func
  379. @classmethod
  380. def print_registered_models(cls):
  381. for model_type, model_classes in cls._model_classes.items():
  382. logger.error(f"{model_type.name} models:")
  383. for name in sorted(model_classes.keys()):
  384. logger.error(f" - {name}")
  385. @classmethod
  386. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  387. try:
  388. return cls._model_classes[model_type][arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. class TextModel(ModelBase):
  392. model_type = ModelType.TEXT
  393. hf_arch: str
  394. def __init__(self, *args, **kwargs):
  395. super().__init__(*args, **kwargs)
  396. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  397. if "text_config" in self.hparams:
  398. # move the text_config to the root level
  399. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  400. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  402. @classmethod
  403. def __init_subclass__(cls):
  404. # can't use an abstract property, because overriding it without type errors
  405. # would require using decorated functions instead of simply defining the property
  406. if "model_arch" not in cls.__dict__:
  407. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  408. def set_vocab(self):
  409. self._set_vocab_gpt2()
  410. def prepare_metadata(self, vocab_only: bool):
  411. super().prepare_metadata(vocab_only=vocab_only)
  412. total_params = self.gguf_writer.get_total_parameter_count()[0]
  413. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  414. output_type: str = self.ftype.name.partition("_")[2]
  415. # Filename Output
  416. if self.fname_out.is_dir():
  417. # Generate default filename based on model specification and available metadata
  418. if not vocab_only:
  419. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  420. else:
  421. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  422. # Use the default filename
  423. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  424. else:
  425. # Output path is a custom defined templated filename
  426. # Note: `not is_dir()` is used because `.is_file()` will not detect
  427. # file template strings as it doesn't actually exist as a file
  428. # Process templated file name with the output ftype, useful with the "auto" ftype
  429. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  430. logger.info("Set model tokenizer")
  431. self.set_vocab()
  432. def set_gguf_parameters(self):
  433. self.gguf_writer.add_block_count(self.block_count)
  434. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  435. self.gguf_writer.add_context_length(n_ctx)
  436. logger.info(f"gguf: context length = {n_ctx}")
  437. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  438. self.gguf_writer.add_embedding_length(n_embd)
  439. logger.info(f"gguf: embedding length = {n_embd}")
  440. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  441. self.gguf_writer.add_feed_forward_length(n_ff)
  442. logger.info(f"gguf: feed forward length = {n_ff}")
  443. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  444. self.gguf_writer.add_head_count(n_head)
  445. logger.info(f"gguf: head count = {n_head}")
  446. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  447. self.gguf_writer.add_head_count_kv(n_head_kv)
  448. logger.info(f"gguf: key-value head count = {n_head_kv}")
  449. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  450. self.gguf_writer.add_rope_freq_base(rope_theta)
  451. logger.info(f"gguf: rope theta = {rope_theta}")
  452. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  453. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  454. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  455. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  456. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  457. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  458. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  459. self.gguf_writer.add_expert_count(n_experts)
  460. logger.info(f"gguf: expert count = {n_experts}")
  461. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  462. self.gguf_writer.add_expert_used_count(n_experts_used)
  463. logger.info(f"gguf: experts used count = {n_experts_used}")
  464. if (head_dim := self.hparams.get("head_dim")) is not None:
  465. self.gguf_writer.add_key_length(head_dim)
  466. self.gguf_writer.add_value_length(head_dim)
  467. self.gguf_writer.add_file_type(self.ftype)
  468. logger.info(f"gguf: file type = {self.ftype}")
  469. def write_vocab(self):
  470. if len(self.gguf_writer.tensors) != 1:
  471. raise ValueError('Splitting the vocabulary is not supported')
  472. self.prepare_metadata(vocab_only=True)
  473. self.gguf_writer.write_header_to_file(path=self.fname_out)
  474. self.gguf_writer.write_kv_data_to_file()
  475. self.gguf_writer.close()
  476. def does_token_look_special(self, token: str | bytes) -> bool:
  477. if isinstance(token, (bytes, bytearray)):
  478. token_text = token.decode(encoding="utf-8")
  479. elif isinstance(token, memoryview):
  480. token_text = token.tobytes().decode(encoding="utf-8")
  481. else:
  482. token_text = token
  483. # Some models mark some added tokens which ought to be control tokens as not special.
  484. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  485. seems_special = token_text in (
  486. "<pad>", # deepseek-coder
  487. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  488. )
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  490. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  491. # TODO: should these be marked as UNUSED instead? (maybe not)
  492. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  493. return seems_special
  494. # used for GPT-2 BPE and WordPiece vocabs
  495. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  496. tokens: list[str] = []
  497. toktypes: list[int] = []
  498. from transformers import AutoTokenizer
  499. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  500. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  501. assert max(tokenizer.vocab.values()) < vocab_size
  502. tokpre = self.get_vocab_base_pre(tokenizer)
  503. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  504. added_vocab = tokenizer.get_added_vocab()
  505. added_tokens_decoder = tokenizer.added_tokens_decoder
  506. for i in range(vocab_size):
  507. if i not in reverse_vocab:
  508. tokens.append(f"[PAD{i}]")
  509. toktypes.append(gguf.TokenType.UNUSED)
  510. else:
  511. token: str = reverse_vocab[i]
  512. if token in added_vocab:
  513. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  514. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  515. if not added_tokens_decoder[i].normalized:
  516. previous_token = token
  517. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  518. if previous_token != token:
  519. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  520. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  521. toktypes.append(gguf.TokenType.CONTROL)
  522. else:
  523. # NOTE: this was added for Gemma.
  524. # Encoding and decoding the tokens above isn't sufficient for this case.
  525. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  526. toktypes.append(gguf.TokenType.USER_DEFINED)
  527. else:
  528. toktypes.append(gguf.TokenType.NORMAL)
  529. tokens.append(token)
  530. return tokens, toktypes, tokpre
  531. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  532. # do not modify it manually!
  533. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  534. # Marker: Start get_vocab_base_pre
  535. def get_vocab_base_pre(self, tokenizer) -> str:
  536. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  537. # is specific for the BPE pre-tokenizer used by the model
  538. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  539. # use in llama.cpp to implement the same pre-tokenizer
  540. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  541. chktok = tokenizer.encode(chktxt)
  542. chkhsh = sha256(str(chktok).encode()).hexdigest()
  543. logger.debug(f"chktok: {chktok}")
  544. logger.debug(f"chkhsh: {chkhsh}")
  545. res = None
  546. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  547. # or pull the latest version of the model from Huggingface
  548. # don't edit the hashes manually!
  549. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  550. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  551. res = "chatglm-bpe"
  552. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  553. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  554. res = "chatglm-bpe"
  555. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  556. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  557. res = "glm4"
  558. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  559. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  560. res = "minerva-7b"
  561. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  562. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  563. res = "hunyuan"
  564. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  565. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  566. res = "falcon-h1"
  567. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  568. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  569. res = "falcon-h1"
  570. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  571. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  572. res = "falcon-h1"
  573. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  574. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  575. res = "falcon-h1"
  576. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  577. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  578. res = "kimi-k2"
  579. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  580. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  581. res = "llama-bpe"
  582. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  583. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  584. res = "deepseek-llm"
  585. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  586. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  587. res = "deepseek-coder"
  588. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  589. # ref: https://huggingface.co/tiiuae/falcon-7b
  590. res = "falcon"
  591. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  592. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  593. res = "bert-bge"
  594. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  595. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  596. res = "falcon3"
  597. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  598. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  599. res = "bert-bge-large"
  600. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  601. # ref: https://huggingface.co/mosaicml/mpt-7b
  602. res = "mpt"
  603. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  604. # ref: https://huggingface.co/bigcode/starcoder2-3b
  605. res = "starcoder"
  606. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  607. # ref: https://huggingface.co/openai-community/gpt2
  608. res = "gpt-2"
  609. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  610. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  611. res = "stablelm2"
  612. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  613. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  614. res = "refact"
  615. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  616. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  617. res = "command-r"
  618. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  619. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  620. res = "qwen2"
  621. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  622. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  623. res = "olmo"
  624. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  625. # ref: https://huggingface.co/databricks/dbrx-base
  626. res = "dbrx"
  627. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  628. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  629. res = "jina-v1-en"
  630. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  631. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  632. res = "jina-v2-en"
  633. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  634. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  635. res = "jina-v2-es"
  636. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  637. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  638. res = "jina-v2-de"
  639. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  640. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  641. res = "smaug-bpe"
  642. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  643. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  644. res = "poro-chat"
  645. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  646. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  647. res = "jina-v2-code"
  648. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  649. # ref: https://huggingface.co/LumiOpen/Viking-7B
  650. res = "viking"
  651. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  652. # ref: https://huggingface.co/core42/jais-13b
  653. res = "jais"
  654. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  655. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  656. res = "codeshell"
  657. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  658. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  659. res = "tekken"
  660. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  661. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  662. res = "smollm"
  663. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  664. # ref: https://huggingface.co/bigscience/bloom
  665. res = "bloom"
  666. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  667. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  668. res = "gpt3-finnish"
  669. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  670. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  671. res = "exaone"
  672. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  673. # ref: https://huggingface.co/microsoft/phi-2
  674. res = "phi-2"
  675. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  676. # ref: https://huggingface.co/facebook/chameleon-7b
  677. res = "chameleon"
  678. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  679. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  680. res = "roberta-bpe"
  681. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  682. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  683. res = "gigachat"
  684. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  685. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  686. res = "megrez"
  687. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  688. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  689. res = "deepseek-v3"
  690. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  691. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  692. res = "deepseek-r1-qwen"
  693. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  694. # ref: https://huggingface.co/Xenova/gpt-4o
  695. res = "gpt-4o"
  696. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  697. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  698. res = "superbpe"
  699. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  700. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  701. res = "trillion"
  702. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  703. # ref: https://huggingface.co/inclusionAI/Ling-lite
  704. res = "bailingmoe"
  705. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  706. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  707. res = "llama4"
  708. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  709. # ref: https://huggingface.co/mistral-community/pixtral-12b
  710. res = "pixtral"
  711. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  712. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  713. res = "seed-coder"
  714. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  715. # ref: https://huggingface.co/skt/A.X-4.0
  716. res = "a.x-4.0"
  717. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  718. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  719. res = "midm-2.0"
  720. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  721. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  722. res = "lfm2"
  723. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  724. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  725. res = "exaone4"
  726. if res is None:
  727. logger.warning("\n")
  728. logger.warning("**************************************************************************************")
  729. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  730. logger.warning("** There are 2 possible reasons for this:")
  731. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  732. logger.warning("** - the pre-tokenization config has changed upstream")
  733. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  734. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  735. logger.warning("**")
  736. logger.warning(f"** chkhsh: {chkhsh}")
  737. logger.warning("**************************************************************************************")
  738. logger.warning("\n")
  739. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  740. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  741. logger.debug(f"chkhsh: {chkhsh}")
  742. return res
  743. # Marker: End get_vocab_base_pre
  744. def _set_vocab_none(self) -> None:
  745. self.gguf_writer.add_tokenizer_model("none")
  746. def _set_vocab_gpt2(self) -> None:
  747. tokens, toktypes, tokpre = self.get_vocab_base()
  748. self.gguf_writer.add_tokenizer_model("gpt2")
  749. self.gguf_writer.add_tokenizer_pre(tokpre)
  750. self.gguf_writer.add_token_list(tokens)
  751. self.gguf_writer.add_token_types(toktypes)
  752. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  753. special_vocab.add_to_gguf(self.gguf_writer)
  754. def _set_vocab_qwen(self):
  755. dir_model = self.dir_model
  756. hparams = self.hparams
  757. tokens: list[str] = []
  758. toktypes: list[int] = []
  759. from transformers import AutoTokenizer
  760. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  761. vocab_size = hparams["vocab_size"]
  762. assert max(tokenizer.get_vocab().values()) < vocab_size
  763. tokpre = self.get_vocab_base_pre(tokenizer)
  764. merges = []
  765. vocab = {}
  766. mergeable_ranks = tokenizer.mergeable_ranks
  767. for token, rank in mergeable_ranks.items():
  768. vocab[QwenModel.token_bytes_to_string(token)] = rank
  769. if len(token) == 1:
  770. continue
  771. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  772. assert len(merged) == 2
  773. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  774. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  775. added_vocab = tokenizer.special_tokens
  776. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  777. for i in range(vocab_size):
  778. if i not in reverse_vocab:
  779. tokens.append(f"[PAD{i}]")
  780. toktypes.append(gguf.TokenType.UNUSED)
  781. elif reverse_vocab[i] in added_vocab:
  782. tokens.append(reverse_vocab[i])
  783. toktypes.append(gguf.TokenType.CONTROL)
  784. else:
  785. tokens.append(reverse_vocab[i])
  786. toktypes.append(gguf.TokenType.NORMAL)
  787. self.gguf_writer.add_tokenizer_model("gpt2")
  788. self.gguf_writer.add_tokenizer_pre(tokpre)
  789. self.gguf_writer.add_token_list(tokens)
  790. self.gguf_writer.add_token_types(toktypes)
  791. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  792. special_vocab.merges = merges
  793. # only add special tokens when they were not already loaded from config.json
  794. if len(special_vocab.special_token_ids) == 0:
  795. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  796. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  797. # this one is usually not in config.json anyway
  798. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  799. special_vocab.add_to_gguf(self.gguf_writer)
  800. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  801. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  802. self.gguf_writer.add_tokenizer_model("llama")
  803. self.gguf_writer.add_tokenizer_pre("default")
  804. self.gguf_writer.add_token_list(tokens)
  805. self.gguf_writer.add_token_scores(scores)
  806. self.gguf_writer.add_token_types(toktypes)
  807. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  808. special_vocab.add_to_gguf(self.gguf_writer)
  809. def _create_vocab_sentencepiece(self):
  810. from sentencepiece import SentencePieceProcessor
  811. tokenizer_path = self.dir_model / 'tokenizer.model'
  812. if not tokenizer_path.is_file():
  813. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  814. tokenizer = SentencePieceProcessor()
  815. tokenizer.LoadFromFile(str(tokenizer_path))
  816. vocab_size = self.find_hparam([
  817. "vocab_size_per_layer_input", # gemma3n
  818. "vocab_size",
  819. ], optional=True) or tokenizer.vocab_size()
  820. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  821. scores: list[float] = [-10000.0] * vocab_size
  822. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  823. for token_id in range(tokenizer.vocab_size()):
  824. if token_id >= vocab_size:
  825. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  826. break
  827. piece = tokenizer.IdToPiece(token_id)
  828. text = piece.encode("utf-8")
  829. score = tokenizer.GetScore(token_id)
  830. toktype = SentencePieceTokenTypes.NORMAL
  831. if tokenizer.IsUnknown(token_id):
  832. toktype = SentencePieceTokenTypes.UNKNOWN
  833. elif tokenizer.IsControl(token_id):
  834. toktype = SentencePieceTokenTypes.CONTROL
  835. elif tokenizer.IsUnused(token_id):
  836. toktype = SentencePieceTokenTypes.UNUSED
  837. elif tokenizer.IsByte(token_id):
  838. toktype = SentencePieceTokenTypes.BYTE
  839. tokens[token_id] = text
  840. scores[token_id] = score
  841. toktypes[token_id] = toktype
  842. added_tokens_file = self.dir_model / 'added_tokens.json'
  843. if added_tokens_file.is_file():
  844. with open(added_tokens_file, "r", encoding="utf-8") as f:
  845. added_tokens_json = json.load(f)
  846. for key in added_tokens_json:
  847. token_id = added_tokens_json[key]
  848. if token_id >= vocab_size:
  849. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  850. continue
  851. tokens[token_id] = key.encode("utf-8")
  852. scores[token_id] = -1000.0
  853. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  854. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  855. if tokenizer_config_file.is_file():
  856. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  857. tokenizer_config_json = json.load(f)
  858. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  859. for token_id, token_data in added_tokens_decoder.items():
  860. token_id = int(token_id)
  861. token: str = token_data["content"]
  862. if token_id >= vocab_size:
  863. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  864. continue
  865. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  866. if tokens[token_id] != token.encode("utf-8"):
  867. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  868. if token_data.get("special") or self.does_token_look_special(token):
  869. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  870. else:
  871. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  872. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  873. scores[token_id] = -1000.0
  874. tokens[token_id] = token.encode("utf-8")
  875. if vocab_size > len(tokens):
  876. pad_count = vocab_size - len(tokens)
  877. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  878. for i in range(1, pad_count + 1):
  879. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  880. scores.append(-1000.0)
  881. toktypes.append(SentencePieceTokenTypes.UNUSED)
  882. return tokens, scores, toktypes
  883. def _set_vocab_llama_hf(self):
  884. vocab = gguf.LlamaHfVocab(self.dir_model)
  885. tokens = []
  886. scores = []
  887. toktypes = []
  888. for text, score, toktype in vocab.all_tokens():
  889. tokens.append(text)
  890. scores.append(score)
  891. toktypes.append(toktype)
  892. assert len(tokens) == vocab.vocab_size
  893. self.gguf_writer.add_tokenizer_model("llama")
  894. self.gguf_writer.add_tokenizer_pre("default")
  895. self.gguf_writer.add_token_list(tokens)
  896. self.gguf_writer.add_token_scores(scores)
  897. self.gguf_writer.add_token_types(toktypes)
  898. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  899. special_vocab.add_to_gguf(self.gguf_writer)
  900. def _set_vocab_rwkv_world(self):
  901. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  902. vocab_size = self.hparams.get("vocab_size", 65536)
  903. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  904. toktypes: list[int] = [gguf.TokenType.CONTROL]
  905. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  906. lines = f.readlines()
  907. for line in lines:
  908. parts = line.split(' ')
  909. assert len(parts) >= 3
  910. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  911. token = token.encode("utf-8") if isinstance(token, str) else token
  912. assert isinstance(token, bytes)
  913. assert len(token) == token_len
  914. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  915. tokens.append(token_text.encode("utf-8"))
  916. toktypes.append(gguf.TokenType.NORMAL)
  917. remainder = vocab_size - len(tokens)
  918. assert remainder >= 0
  919. for i in range(len(tokens), vocab_size):
  920. tokens.append(f"[PAD{i}]".encode("utf-8"))
  921. toktypes.append(gguf.TokenType.UNUSED)
  922. self.gguf_writer.add_tokenizer_model("rwkv")
  923. self.gguf_writer.add_token_list(tokens)
  924. self.gguf_writer.add_token_types(toktypes)
  925. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  926. if special_vocab.chat_template is None:
  927. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  928. if template_path.is_file():
  929. with open(template_path, "r", encoding="utf-8") as f:
  930. template = f.read()
  931. else:
  932. template = "rwkv-world"
  933. special_vocab.chat_template = template
  934. # hack: Add '\n\n' as the EOT token to make it chat normally
  935. special_vocab._set_special_token("eot", 261)
  936. # hack: Override these as they have already been set (incorrectly)
  937. special_vocab.special_token_ids["bos"] = 0
  938. special_vocab.special_token_ids["eos"] = 0
  939. special_vocab.add_to_gguf(self.gguf_writer)
  940. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  941. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  942. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  943. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  944. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  945. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  946. assert field # tokenizer model
  947. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  948. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  949. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  950. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  951. assert field # token list
  952. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  953. if model_name == "llama-spm":
  954. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  955. assert field # token scores
  956. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  957. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  958. assert field # token types
  959. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  960. if model_name != "llama-spm":
  961. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  962. assert field # token merges
  963. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  964. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  965. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  966. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  967. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  968. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  969. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  970. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  971. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  972. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  973. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  974. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  975. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  976. def _try_set_pooling_type(self) -> None:
  977. # get pooling path
  978. pooling_path = None
  979. module_path = self.dir_model / "modules.json"
  980. if module_path.is_file():
  981. with open(module_path, encoding="utf-8") as f:
  982. modules = json.load(f)
  983. for mod in modules:
  984. if mod["type"] == "sentence_transformers.models.Pooling":
  985. pooling_path = mod["path"]
  986. break
  987. # get pooling type
  988. if pooling_path is not None:
  989. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  990. pooling = json.load(f)
  991. if pooling["pooling_mode_mean_tokens"]:
  992. pooling_type = gguf.PoolingType.MEAN
  993. elif pooling["pooling_mode_cls_token"]:
  994. pooling_type = gguf.PoolingType.CLS
  995. elif pooling["pooling_mode_lasttoken"]:
  996. pooling_type = gguf.PoolingType.LAST
  997. else:
  998. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  999. self.gguf_writer.add_pooling_type(pooling_type)
  1000. class MmprojModel(ModelBase):
  1001. model_type = ModelType.MMPROJ
  1002. model_arch = gguf.MODEL_ARCH.MMPROJ
  1003. preprocessor_config: dict[str, Any]
  1004. global_config: dict[str, Any]
  1005. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1006. has_vision_encoder: bool = True # by default
  1007. has_audio_encoder: bool = False
  1008. # for models having multiple encoders, we need to separate their hparams
  1009. hparams_vision: dict[str, Any] | None = None
  1010. hparams_audio: dict[str, Any] | None = None
  1011. def __init__(self, *args, **kwargs):
  1012. super().__init__(*args, **kwargs)
  1013. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1014. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1015. # get n_embd of the text model
  1016. if "text_config" not in self.hparams:
  1017. self.hparams["text_config"] = {}
  1018. if "audio_config" not in self.hparams:
  1019. self.hparams["audio_config"] = {}
  1020. text_config = {**self.hparams, **self.hparams["text_config"]}
  1021. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1022. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1023. # move vision config to the top level, while preserving the original hparams in global_config
  1024. import copy
  1025. self.global_config = copy.deepcopy(self.hparams)
  1026. self.hparams_vision = self.get_vision_config()
  1027. self.hparams_audio = self.get_audio_config()
  1028. if self.hparams_vision is None and self.hparams_audio is None:
  1029. raise ValueError("vision_config / audio_config not found in hparams")
  1030. # for compat with vision-only models
  1031. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1032. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1033. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1034. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1035. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1036. # load preprocessor config
  1037. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1038. self.preprocessor_config = json.load(f)
  1039. def get_vision_config(self) -> dict[str, Any] | None:
  1040. return self.global_config.get("vision_config")
  1041. def get_audio_config(self) -> dict[str, Any] | None:
  1042. return self.global_config.get("audio_config")
  1043. def set_type(self):
  1044. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1045. def set_gguf_parameters(self):
  1046. self.gguf_writer.add_file_type(self.ftype)
  1047. if self.has_vision_encoder:
  1048. self.gguf_writer.add_clip_has_vision_encoder(True)
  1049. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1050. # vision config
  1051. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1052. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1053. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1054. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1055. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1056. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1057. # preprocessor config
  1058. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1059. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1060. if self.has_audio_encoder:
  1061. self.gguf_writer.add_clip_has_audio_encoder(True)
  1062. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1063. # audio config
  1064. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1065. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1066. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1067. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1068. if not self.has_vision_encoder and not self.has_audio_encoder:
  1069. raise ValueError("MmprojModel must have either vision or audio encoder")
  1070. def write_vocab(self):
  1071. raise ValueError("MmprojModel does not support vocab writing")
  1072. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1073. assert self.hparams_vision is not None
  1074. return self._find_param(self.hparams_vision, keys, optional)
  1075. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1076. assert self.hparams_audio is not None
  1077. return self._find_param(self.hparams_audio, keys, optional)
  1078. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1079. key = next((k for k in keys if k in obj), None)
  1080. if key is not None:
  1081. return obj[key]
  1082. if optional:
  1083. return None
  1084. raise KeyError(f"could not find any of: {keys}")
  1085. @ModelBase.register("GPTNeoXForCausalLM")
  1086. class GPTNeoXModel(TextModel):
  1087. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1088. def set_gguf_parameters(self):
  1089. block_count = self.hparams["num_hidden_layers"]
  1090. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1091. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1092. self.gguf_writer.add_block_count(block_count)
  1093. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1094. self.gguf_writer.add_rope_dimension_count(
  1095. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1096. )
  1097. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1098. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1099. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1100. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1101. del bid # unused
  1102. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1103. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1104. tensors: list[tuple[str, Tensor]] = []
  1105. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1106. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1107. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1108. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1109. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1110. data_torch = torch.cat(
  1111. (
  1112. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1113. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1114. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1115. ),
  1116. dim=0,
  1117. )
  1118. logger.info("re-format attention.linear_qkv.weight")
  1119. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1120. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1121. data_torch = torch.cat(
  1122. (
  1123. qkv_bias[:, 0, :].reshape((n_embed,)),
  1124. qkv_bias[:, 1, :].reshape((n_embed,)),
  1125. qkv_bias[:, 2, :].reshape((n_embed,)),
  1126. ),
  1127. dim=0,
  1128. )
  1129. logger.info("re-format attention.linear_qkv.bias")
  1130. tensors.append((self.map_tensor_name(name), data_torch))
  1131. return tensors
  1132. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1133. class BloomModel(TextModel):
  1134. model_arch = gguf.MODEL_ARCH.BLOOM
  1135. def set_gguf_parameters(self):
  1136. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1137. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1138. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1139. self.gguf_writer.add_embedding_length(n_embed)
  1140. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1141. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1142. self.gguf_writer.add_head_count(n_head)
  1143. self.gguf_writer.add_head_count_kv(n_head)
  1144. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1145. self.gguf_writer.add_file_type(self.ftype)
  1146. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1147. del bid # unused
  1148. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1149. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1150. name = re.sub(r'transformer\.', '', name)
  1151. tensors: list[tuple[str, Tensor]] = []
  1152. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1153. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1154. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1155. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1156. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1157. data_torch = torch.cat(
  1158. (
  1159. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1160. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1161. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1162. ),
  1163. dim=0,
  1164. )
  1165. logger.info("re-format attention.linear_qkv.weight")
  1166. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1167. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1168. data_torch = torch.cat(
  1169. (
  1170. qkv_bias[:, 0, :].reshape((n_embed,)),
  1171. qkv_bias[:, 1, :].reshape((n_embed,)),
  1172. qkv_bias[:, 2, :].reshape((n_embed,)),
  1173. ),
  1174. dim=0,
  1175. )
  1176. logger.info("re-format attention.linear_qkv.bias")
  1177. tensors.append((self.map_tensor_name(name), data_torch))
  1178. return tensors
  1179. @ModelBase.register("MPTForCausalLM")
  1180. class MPTModel(TextModel):
  1181. model_arch = gguf.MODEL_ARCH.MPT
  1182. def set_vocab(self):
  1183. try:
  1184. self._set_vocab_gpt2()
  1185. except Exception:
  1186. # Fallback for SEA-LION model
  1187. self._set_vocab_sentencepiece()
  1188. self.gguf_writer.add_add_bos_token(False)
  1189. self.gguf_writer.add_pad_token_id(3)
  1190. self.gguf_writer.add_eos_token_id(1)
  1191. self.gguf_writer.add_unk_token_id(0)
  1192. def set_gguf_parameters(self):
  1193. block_count = self.hparams["n_layers"]
  1194. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1195. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1196. self.gguf_writer.add_block_count(block_count)
  1197. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1198. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1199. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1200. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1201. self.gguf_writer.add_layer_norm_eps(1e-5)
  1202. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1203. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1204. if self.hparams["attn_config"]["alibi"]:
  1205. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1206. else:
  1207. self.gguf_writer.add_max_alibi_bias(0.0)
  1208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1209. del bid # unused
  1210. if "scales" in name:
  1211. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1212. new_name = new_name.replace("scales", "act.scales")
  1213. else:
  1214. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1215. return [(new_name, data_torch)]
  1216. @ModelBase.register("OrionForCausalLM")
  1217. class OrionModel(TextModel):
  1218. model_arch = gguf.MODEL_ARCH.ORION
  1219. def set_vocab(self):
  1220. self._set_vocab_sentencepiece()
  1221. def set_gguf_parameters(self):
  1222. block_count = self.hparams["num_hidden_layers"]
  1223. head_count = self.hparams["num_attention_heads"]
  1224. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1225. ctx_length = 0
  1226. if "max_sequence_length" in self.hparams:
  1227. ctx_length = self.hparams["max_sequence_length"]
  1228. elif "max_position_embeddings" in self.hparams:
  1229. ctx_length = self.hparams["max_position_embeddings"]
  1230. elif "model_max_length" in self.hparams:
  1231. ctx_length = self.hparams["model_max_length"]
  1232. else:
  1233. raise ValueError("gguf: can not find ctx length parameter.")
  1234. self.gguf_writer.add_file_type(self.ftype)
  1235. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1236. self.gguf_writer.add_context_length(ctx_length)
  1237. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1238. self.gguf_writer.add_block_count(block_count)
  1239. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1240. self.gguf_writer.add_head_count(head_count)
  1241. self.gguf_writer.add_head_count_kv(head_count_kv)
  1242. # note: config provides rms norm but it is actually layer norm
  1243. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1244. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1245. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1246. class BaichuanModel(TextModel):
  1247. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1248. def set_vocab(self):
  1249. self._set_vocab_sentencepiece()
  1250. def set_gguf_parameters(self):
  1251. block_count = self.hparams["num_hidden_layers"]
  1252. head_count = self.hparams["num_attention_heads"]
  1253. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1254. ctx_length = 0
  1255. if "max_sequence_length" in self.hparams:
  1256. ctx_length = self.hparams["max_sequence_length"]
  1257. elif "max_position_embeddings" in self.hparams:
  1258. ctx_length = self.hparams["max_position_embeddings"]
  1259. elif "model_max_length" in self.hparams:
  1260. ctx_length = self.hparams["model_max_length"]
  1261. else:
  1262. raise ValueError("gguf: can not find ctx length parameter.")
  1263. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1264. self.gguf_writer.add_context_length(ctx_length)
  1265. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1266. self.gguf_writer.add_block_count(block_count)
  1267. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1268. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1269. self.gguf_writer.add_head_count(head_count)
  1270. self.gguf_writer.add_head_count_kv(head_count_kv)
  1271. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1272. self.gguf_writer.add_file_type(self.ftype)
  1273. rope_scaling = self.hparams.get("rope_scaling") or {}
  1274. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1275. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1276. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1277. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1278. head_count = self.hparams["num_attention_heads"]
  1279. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1280. tensors: list[tuple[str, Tensor]] = []
  1281. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1282. logger.info(f"Unpacking and permuting layer {bid}")
  1283. tensors = [
  1284. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1285. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1286. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1287. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1288. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1289. self._reverse_hf_part(data_torch, 2)),
  1290. ]
  1291. else:
  1292. tensors = [(self.map_tensor_name(name), data_torch)]
  1293. return tensors
  1294. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1295. if n_kv_head is not None and n_head != n_kv_head:
  1296. n_head //= n_kv_head
  1297. return (
  1298. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1299. .swapaxes(1, 2)
  1300. .reshape(weights.shape)
  1301. )
  1302. def _reverse_hf_permute_part(
  1303. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1304. ) -> Tensor:
  1305. r = weights.shape[0] // 3
  1306. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1307. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1308. r = weights.shape[0] // 3
  1309. return weights[r * n_part:r * n_part + r, ...]
  1310. @ModelBase.register("XverseForCausalLM")
  1311. class XverseModel(TextModel):
  1312. model_arch = gguf.MODEL_ARCH.XVERSE
  1313. def set_vocab(self):
  1314. assert (self.dir_model / "tokenizer.json").is_file()
  1315. dir_model = self.dir_model
  1316. hparams = self.hparams
  1317. tokens: list[bytes] = []
  1318. toktypes: list[int] = []
  1319. from transformers import AutoTokenizer
  1320. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1321. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1322. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1323. # because vocab_size is the count of items, and indexes start at 0.
  1324. max_vocab_index = max(tokenizer.get_vocab().values())
  1325. if max_vocab_index >= vocab_size:
  1326. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1327. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1328. added_vocab = tokenizer.get_added_vocab()
  1329. for token_id in range(vocab_size):
  1330. token_text = reverse_vocab[token_id].encode('utf-8')
  1331. # replace "\x00" to string with length > 0
  1332. if token_text == b"\x00":
  1333. toktype = gguf.TokenType.BYTE # special
  1334. token_text = f"<{token_text}>".encode('utf-8')
  1335. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1336. toktype = gguf.TokenType.BYTE # special
  1337. elif reverse_vocab[token_id] in added_vocab:
  1338. if tokenizer.added_tokens_decoder[token_id].special:
  1339. toktype = gguf.TokenType.CONTROL
  1340. else:
  1341. toktype = gguf.TokenType.USER_DEFINED
  1342. else:
  1343. toktype = gguf.TokenType.NORMAL
  1344. tokens.append(token_text)
  1345. toktypes.append(toktype)
  1346. self.gguf_writer.add_tokenizer_model("llama")
  1347. self.gguf_writer.add_tokenizer_pre("default")
  1348. self.gguf_writer.add_token_list(tokens)
  1349. self.gguf_writer.add_token_types(toktypes)
  1350. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1351. special_vocab.add_to_gguf(self.gguf_writer)
  1352. def set_gguf_parameters(self):
  1353. block_count = self.hparams["num_hidden_layers"]
  1354. head_count = self.hparams["num_attention_heads"]
  1355. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1356. ctx_length = 0
  1357. if "max_sequence_length" in self.hparams:
  1358. ctx_length = self.hparams["max_sequence_length"]
  1359. elif "max_position_embeddings" in self.hparams:
  1360. ctx_length = self.hparams["max_position_embeddings"]
  1361. elif "model_max_length" in self.hparams:
  1362. ctx_length = self.hparams["model_max_length"]
  1363. else:
  1364. raise ValueError("gguf: can not find ctx length parameter.")
  1365. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1366. self.gguf_writer.add_context_length(ctx_length)
  1367. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1368. self.gguf_writer.add_block_count(block_count)
  1369. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1370. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1371. self.gguf_writer.add_head_count(head_count)
  1372. self.gguf_writer.add_head_count_kv(head_count_kv)
  1373. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1374. self.gguf_writer.add_file_type(self.ftype)
  1375. rope_scaling = self.hparams.get("rope_scaling") or {}
  1376. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1377. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1378. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1380. del bid # unused
  1381. head_count = self.hparams["num_attention_heads"]
  1382. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1383. # HF models permute some of the tensors, so we need to undo that
  1384. if name.endswith("q_proj.weight"):
  1385. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1386. if name.endswith("k_proj.weight"):
  1387. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1388. return [(self.map_tensor_name(name), data_torch)]
  1389. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1390. if n_kv_head is not None and n_head != n_kv_head:
  1391. n_head //= n_kv_head
  1392. return (
  1393. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1394. .swapaxes(1, 2)
  1395. .reshape(weights.shape)
  1396. )
  1397. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1398. class FalconModel(TextModel):
  1399. model_arch = gguf.MODEL_ARCH.FALCON
  1400. def set_gguf_parameters(self):
  1401. block_count = self.hparams.get("num_hidden_layers")
  1402. if block_count is None:
  1403. block_count = self.hparams["n_layer"] # old name
  1404. n_head = self.hparams.get("num_attention_heads")
  1405. if n_head is None:
  1406. n_head = self.hparams["n_head"] # old name
  1407. n_head_kv = self.hparams.get("num_kv_heads")
  1408. if n_head_kv is None:
  1409. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1410. self.gguf_writer.add_context_length(2048) # not in config.json
  1411. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1412. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1413. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1414. self.gguf_writer.add_block_count(block_count)
  1415. self.gguf_writer.add_head_count(n_head)
  1416. self.gguf_writer.add_head_count_kv(n_head_kv)
  1417. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1418. self.gguf_writer.add_file_type(self.ftype)
  1419. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1420. del bid # unused
  1421. # QKV tensor transform
  1422. # The original query_key_value tensor contains n_head_kv "kv groups",
  1423. # each consisting of n_head/n_head_kv query weights followed by one key
  1424. # and one value weight (shared by all query heads in the kv group).
  1425. # This layout makes it a big pain to work with in GGML.
  1426. # So we rearrange them here,, so that we have n_head query weights
  1427. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1428. # in contiguous fashion.
  1429. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1430. if "query_key_value" in name:
  1431. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1432. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1433. head_dim = self.hparams["hidden_size"] // n_head
  1434. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1435. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1436. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1437. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1438. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1439. return [(self.map_tensor_name(name), data_torch)]
  1440. @ModelBase.register("GPTBigCodeForCausalLM")
  1441. class StarCoderModel(TextModel):
  1442. model_arch = gguf.MODEL_ARCH.STARCODER
  1443. def set_gguf_parameters(self):
  1444. block_count = self.hparams["n_layer"]
  1445. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1446. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1447. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1448. self.gguf_writer.add_block_count(block_count)
  1449. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1450. self.gguf_writer.add_head_count_kv(1)
  1451. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1452. self.gguf_writer.add_file_type(self.ftype)
  1453. @ModelBase.register("GPTRefactForCausalLM")
  1454. class RefactModel(TextModel):
  1455. model_arch = gguf.MODEL_ARCH.REFACT
  1456. def set_vocab(self):
  1457. super().set_vocab()
  1458. # TODO: how to determine special FIM tokens automatically?
  1459. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1460. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1461. special_vocab._set_special_token("prefix", 1)
  1462. special_vocab._set_special_token("suffix", 3)
  1463. special_vocab._set_special_token("middle", 2)
  1464. special_vocab.chat_template = None # do not add it twice
  1465. special_vocab.add_to_gguf(self.gguf_writer)
  1466. def set_gguf_parameters(self):
  1467. hidden_dim = self.hparams["n_embd"]
  1468. inner_dim = 4 * hidden_dim
  1469. hidden_dim = int(2 * inner_dim / 3)
  1470. multiple_of = 256
  1471. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1472. block_count = self.hparams["n_layer"]
  1473. # refact uses Alibi. So this is from config.json which might be used by training.
  1474. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1475. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1476. self.gguf_writer.add_feed_forward_length(ff_dim)
  1477. self.gguf_writer.add_block_count(block_count)
  1478. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1479. self.gguf_writer.add_head_count_kv(1)
  1480. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1481. self.gguf_writer.add_file_type(self.ftype)
  1482. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1483. hidden_dim = self.hparams["n_embd"]
  1484. inner_dim = 4 * hidden_dim
  1485. hidden_dim = int(2 * inner_dim / 3)
  1486. multiple_of = 256
  1487. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1488. n_head = self.hparams["n_head"]
  1489. n_head_kv = 1
  1490. head_dim = self.hparams["n_embd"] // n_head
  1491. tensors: list[tuple[str, Tensor]] = []
  1492. if bid is not None:
  1493. if name == f"transformer.h.{bid}.attn.kv.weight":
  1494. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1495. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1496. elif name == f"transformer.h.{bid}.attn.q.weight":
  1497. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1498. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1499. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1500. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1501. if len(tensors) == 0:
  1502. tensors.append((self.map_tensor_name(name), data_torch))
  1503. return tensors
  1504. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1505. class StableLMModel(TextModel):
  1506. model_arch = gguf.MODEL_ARCH.STABLELM
  1507. def set_vocab(self):
  1508. if (self.dir_model / "tokenizer.json").is_file():
  1509. self._set_vocab_gpt2()
  1510. else:
  1511. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1512. self._set_vocab_qwen()
  1513. def set_gguf_parameters(self):
  1514. hparams = self.hparams
  1515. block_count = hparams["num_hidden_layers"]
  1516. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1517. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1518. self.gguf_writer.add_block_count(block_count)
  1519. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1520. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1521. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1522. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1523. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1524. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1525. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1526. self.gguf_writer.add_file_type(self.ftype)
  1527. _q_norms: list[dict[str, Tensor]] | None = None
  1528. _k_norms: list[dict[str, Tensor]] | None = None
  1529. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1530. n_head = self.hparams["num_attention_heads"]
  1531. n_kv_head = self.hparams["num_key_value_heads"]
  1532. if name.find("q_layernorm.norms") != -1:
  1533. assert bid is not None
  1534. if self._q_norms is None:
  1535. self._q_norms = [{} for _ in range(self.block_count)]
  1536. self._q_norms[bid][name] = data_torch
  1537. if len(self._q_norms[bid]) >= n_head:
  1538. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1539. else:
  1540. return []
  1541. if name.find("k_layernorm.norms") != -1:
  1542. assert bid is not None
  1543. if self._k_norms is None:
  1544. self._k_norms = [{} for _ in range(self.block_count)]
  1545. self._k_norms[bid][name] = data_torch
  1546. if len(self._k_norms[bid]) >= n_kv_head:
  1547. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1548. else:
  1549. return []
  1550. return [(self.map_tensor_name(name), data_torch)]
  1551. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1552. datas: list[Tensor] = []
  1553. # extract the norms in order
  1554. for xid in range(n_head):
  1555. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1556. datas.append(norms[ename])
  1557. del norms[ename]
  1558. data_torch = torch.stack(datas, dim=0)
  1559. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1560. new_name = self.map_tensor_name(merged_name)
  1561. return [(new_name, data_torch)]
  1562. def prepare_tensors(self):
  1563. super().prepare_tensors()
  1564. if self._q_norms is not None or self._k_norms is not None:
  1565. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1566. norms = (
  1567. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1568. ) + (
  1569. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1570. )
  1571. if len(norms) > 0:
  1572. raise ValueError(f"Unprocessed norms: {norms}")
  1573. @ModelBase.register(
  1574. "LLaMAForCausalLM",
  1575. "LlamaForCausalLM",
  1576. "MistralForCausalLM",
  1577. "MixtralForCausalLM",
  1578. "VLlama3ForCausalLM",
  1579. "LlavaForConditionalGeneration",
  1580. "LlamaModel")
  1581. class LlamaModel(TextModel):
  1582. model_arch = gguf.MODEL_ARCH.LLAMA
  1583. undo_permute = True
  1584. def __init__(self, *args, **kwargs):
  1585. super().__init__(*args, **kwargs)
  1586. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1587. if self.hf_arch == "VLlama3ForCausalLM":
  1588. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1589. def set_vocab(self):
  1590. try:
  1591. self._set_vocab_sentencepiece()
  1592. except FileNotFoundError:
  1593. try:
  1594. self._set_vocab_llama_hf()
  1595. except (FileNotFoundError, TypeError):
  1596. # Llama 3
  1597. self._set_vocab_gpt2()
  1598. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1599. if self.hparams.get("vocab_size", 32000) == 32016:
  1600. special_vocab = gguf.SpecialVocab(
  1601. self.dir_model, load_merges=False,
  1602. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1603. )
  1604. special_vocab._set_special_token("prefix", 32007)
  1605. special_vocab._set_special_token("suffix", 32008)
  1606. special_vocab._set_special_token("middle", 32009)
  1607. special_vocab._set_special_token("eot", 32010)
  1608. special_vocab.add_to_gguf(self.gguf_writer)
  1609. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1610. if tokenizer_config_file.is_file():
  1611. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1612. tokenizer_config_json = json.load(f)
  1613. if "add_prefix_space" in tokenizer_config_json:
  1614. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1615. # Apply to granite small models only
  1616. if self.hparams.get("vocab_size", 32000) == 49152:
  1617. self.gguf_writer.add_add_bos_token(False)
  1618. def set_gguf_parameters(self):
  1619. super().set_gguf_parameters()
  1620. hparams = self.hparams
  1621. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1622. if (rope_dim := hparams.get("head_dim")) is None:
  1623. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1624. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1625. rope_scaling = self.hparams.get("rope_scaling") or {}
  1626. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1627. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1628. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1629. @staticmethod
  1630. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1631. if n_head_kv is not None and n_head != n_head_kv:
  1632. n_head = n_head_kv
  1633. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1634. .swapaxes(1, 2)
  1635. .reshape(weights.shape))
  1636. _experts: list[dict[str, Tensor]] | None = None
  1637. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1638. n_head = self.hparams["num_attention_heads"]
  1639. n_kv_head = self.hparams.get("num_key_value_heads")
  1640. is_vision_tensor = "vision_tower" in name \
  1641. or "vision_model" in name \
  1642. or "model.connector" in name \
  1643. or "multi_modal_projector" in name
  1644. if is_vision_tensor:
  1645. return [] # skip vision tensors
  1646. elif self.hf_arch == "LlamaModel":
  1647. name = "model." + name
  1648. elif name.startswith("model.text_model"):
  1649. name = name.replace("text_model.", "") # for SmolVLM
  1650. elif name.startswith("language_model."):
  1651. name = name.replace("language_model.", "") # for the rest
  1652. if self.undo_permute:
  1653. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1654. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1655. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1656. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1657. # process the experts separately
  1658. if name.find("block_sparse_moe.experts") != -1:
  1659. n_experts = self.hparams["num_local_experts"]
  1660. assert bid is not None
  1661. if self._experts is None:
  1662. self._experts = [{} for _ in range(self.block_count)]
  1663. self._experts[bid][name] = data_torch
  1664. if len(self._experts[bid]) >= n_experts * 3:
  1665. tensors: list[tuple[str, Tensor]] = []
  1666. # merge the experts into a single 3d tensor
  1667. for wid in ["w1", "w2", "w3"]:
  1668. datas: list[Tensor] = []
  1669. for xid in range(n_experts):
  1670. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1671. datas.append(self._experts[bid][ename])
  1672. del self._experts[bid][ename]
  1673. data_torch = torch.stack(datas, dim=0)
  1674. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1675. new_name = self.map_tensor_name(merged_name)
  1676. tensors.append((new_name, data_torch))
  1677. return tensors
  1678. else:
  1679. return []
  1680. return [(self.map_tensor_name(name), data_torch)]
  1681. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1682. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1683. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1684. base = self.hparams.get("rope_theta", 10000.0)
  1685. if (dim := self.hparams.get("head_dim")) is None:
  1686. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1687. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1688. factor = rope_scaling.get("factor", 8.0)
  1689. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1690. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1691. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1692. low_freq_wavelen = old_context_len / low_freq_factor
  1693. high_freq_wavelen = old_context_len / high_freq_factor
  1694. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1695. rope_factors = []
  1696. for freq in freqs:
  1697. wavelen = 2 * math.pi / freq
  1698. if wavelen < high_freq_wavelen:
  1699. rope_factors.append(1)
  1700. elif wavelen > low_freq_wavelen:
  1701. rope_factors.append(factor)
  1702. else:
  1703. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1704. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1705. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1706. def prepare_tensors(self):
  1707. super().prepare_tensors()
  1708. if self._experts is not None:
  1709. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1710. experts = [k for d in self._experts for k in d.keys()]
  1711. if len(experts) > 0:
  1712. raise ValueError(f"Unprocessed experts: {experts}")
  1713. @ModelBase.register("ArceeForCausalLM")
  1714. class ArceeModel(LlamaModel):
  1715. model_arch = gguf.MODEL_ARCH.ARCEE
  1716. def set_gguf_parameters(self):
  1717. super().set_gguf_parameters()
  1718. self._try_set_pooling_type()
  1719. rope_scaling = self.hparams.get("rope_scaling") or {}
  1720. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1721. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1722. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1723. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1724. @ModelBase.register(
  1725. "LlavaForConditionalGeneration", # pixtral
  1726. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1727. )
  1728. class LlavaVisionModel(MmprojModel):
  1729. img_break_tok_id = -1
  1730. def __init__(self, *args, **kwargs):
  1731. super().__init__(*args, **kwargs)
  1732. if self.hparams["model_type"] == "pixtral":
  1733. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1734. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1735. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1736. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1737. else:
  1738. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1739. def get_token_id(self, token: str) -> int:
  1740. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1741. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1742. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1743. for id_, token_data in added_tokens_decoder.items():
  1744. if token_data["content"] == token:
  1745. return int(id_)
  1746. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1747. def set_gguf_parameters(self):
  1748. super().set_gguf_parameters()
  1749. hparams = self.hparams
  1750. if hparams["model_type"] == "pixtral":
  1751. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1752. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1753. # hidden_act
  1754. if hparams["hidden_act"] == "silu":
  1755. self.gguf_writer.add_vision_use_silu(True)
  1756. elif hparams["hidden_act"] == "gelu":
  1757. self.gguf_writer.add_vision_use_gelu(True)
  1758. else:
  1759. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1760. # spatial_merge_size
  1761. if "spatial_merge_size" in self.global_config:
  1762. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1763. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1764. del bid # unused
  1765. n_head = self.hparams["num_attention_heads"]
  1766. n_kv_head = n_head
  1767. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1768. # process vision tensors
  1769. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1770. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1771. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1772. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1773. return [(self.map_tensor_name(name), data_torch)]
  1774. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1775. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1776. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1777. img_break_embd = data_torch[self.img_break_tok_id]
  1778. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1779. return [(self.map_tensor_name(name), img_break_embd)]
  1780. return [] # skip other tensors
  1781. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1782. class SmolVLMModel(MmprojModel):
  1783. def __init__(self, *args, **kwargs):
  1784. super().__init__(*args, **kwargs)
  1785. if self.hparams["model_type"] == "smolvlm_vision":
  1786. # fix for SmolVLM2, missing some keys in config.json
  1787. # default values are taken from transformers code
  1788. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1789. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1790. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1791. def set_gguf_parameters(self):
  1792. super().set_gguf_parameters()
  1793. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1794. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1795. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1796. self.gguf_writer.add_vision_use_gelu(True)
  1797. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1798. del bid, new_name, n_dims # unused
  1799. if ".embeddings." in name:
  1800. return gguf.GGMLQuantizationType.F32
  1801. return False
  1802. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1803. del bid # unused
  1804. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1805. if is_vision_tensor:
  1806. return [(self.map_tensor_name(name), data_torch)]
  1807. return [] # skip other tensors
  1808. @ModelBase.register("Llama4ForConditionalGeneration")
  1809. class Llama4Model(LlamaModel):
  1810. model_arch = gguf.MODEL_ARCH.LLAMA4
  1811. undo_permute = False
  1812. def __init__(self, *args, **kwargs):
  1813. super().__init__(*args, **kwargs)
  1814. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1815. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1816. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1817. def set_vocab(self):
  1818. self._set_vocab_gpt2()
  1819. def set_gguf_parameters(self):
  1820. super().set_gguf_parameters()
  1821. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1822. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1823. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1824. if name.startswith("language_model."):
  1825. name = name.replace("language_model.", "")
  1826. # split the gate_up into gate and up
  1827. if "gate_up_proj" in name:
  1828. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1829. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1830. dim_half = data_torch.shape[-1] // 2
  1831. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1832. return [
  1833. (self.map_tensor_name(name_gate), gate_proj_weight),
  1834. (self.map_tensor_name(name_up), up_proj_weight)
  1835. ]
  1836. if name.endswith("down_proj"):
  1837. name += ".weight"
  1838. data_torch = data_torch.transpose(-1, -2)
  1839. if "multi_modal_projector" in name or "vision_model" in name:
  1840. return []
  1841. return super().modify_tensors(data_torch, name, bid)
  1842. @ModelBase.register("Llama4ForConditionalGeneration")
  1843. class Llama4VisionModel(MmprojModel):
  1844. def set_gguf_parameters(self):
  1845. super().set_gguf_parameters()
  1846. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1847. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1848. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1849. assert self.hparams["hidden_act"] == "gelu"
  1850. self.gguf_writer.add_vision_use_gelu(True)
  1851. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1852. del bid # unused
  1853. if "multi_modal_projector" in name or "vision_model" in name:
  1854. # process vision tensors
  1855. if "positional_embedding_vlm" in name and ".weight" not in name:
  1856. name += ".weight"
  1857. if "multi_modal_projector.linear_1" in name:
  1858. # despite the name with number postfix, this is a single fully connected layer
  1859. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1860. return [(self.map_tensor_name(name), data_torch)]
  1861. return []
  1862. @ModelBase.register("Mistral3ForConditionalGeneration")
  1863. class Mistral3Model(LlamaModel):
  1864. model_arch = gguf.MODEL_ARCH.LLAMA
  1865. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1866. name = name.replace("language_model.", "")
  1867. if "multi_modal_projector" in name or "vision_tower" in name:
  1868. return []
  1869. return super().modify_tensors(data_torch, name, bid)
  1870. @ModelBase.register("DeciLMForCausalLM")
  1871. class DeciModel(TextModel):
  1872. model_arch = gguf.MODEL_ARCH.DECI
  1873. @staticmethod
  1874. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1875. # DeciLM-specific code
  1876. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1877. return DeciModel._find_multiple(intermediate_size, 256)
  1878. @staticmethod
  1879. def _find_multiple(n: int, k: int) -> int:
  1880. # DeciLM-specific code
  1881. if n % k == 0:
  1882. return n
  1883. return n + k - (n % k)
  1884. def __init__(self, *args, **kwargs):
  1885. super().__init__(*args, **kwargs)
  1886. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1887. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1888. assert self.block_count == len(_block_configs)
  1889. self._num_kv_heads = list()
  1890. self._num_heads = list()
  1891. _ffn_multipliers = list()
  1892. # ***linear attention layer***
  1893. # if n_heads_in_group is None and replace_with_linear is True
  1894. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1895. # ***attention-free layer***
  1896. # if n_heads_in_group is None and replace_with_linear is False
  1897. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1898. # ***normal attention-layer***
  1899. # if n_heads_in_group is not None, then
  1900. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1901. # _num_heads[il] is num_attention_head
  1902. # ***dummy layer*** for nemotron 253B
  1903. # if n_heads_in_group is None and ffn_mult is None
  1904. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1905. for il in range(len(_block_configs)):
  1906. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1907. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1908. self._num_kv_heads.append(0)
  1909. self._num_heads.append(self.hparams["num_attention_heads"])
  1910. else:
  1911. self._num_kv_heads.append(0)
  1912. self._num_heads.append(0)
  1913. else:
  1914. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1915. self._num_heads.append(self.hparams["num_attention_heads"])
  1916. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1917. _ffn_multipliers.append(0.0)
  1918. else:
  1919. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1920. assert self.block_count == len(self._num_kv_heads)
  1921. assert self.block_count == len(self._num_heads)
  1922. assert self.block_count == len(_ffn_multipliers)
  1923. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1924. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1925. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1926. self._ffn_dims: list[int] = [
  1927. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1928. for multiplier in _ffn_multipliers
  1929. ]
  1930. def set_vocab(self):
  1931. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1932. # eos_token from '|eot_id|' to '|end_of_text|'
  1933. if self.hparams.get("vocab_size", 128256) == 128256:
  1934. tokens, toktypes, tokpre = self.get_vocab_base()
  1935. self.gguf_writer.add_tokenizer_model("gpt2")
  1936. self.gguf_writer.add_tokenizer_pre(tokpre)
  1937. self.gguf_writer.add_token_list(tokens)
  1938. self.gguf_writer.add_token_types(toktypes)
  1939. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1940. special_vocab.add_to_gguf(self.gguf_writer)
  1941. else:
  1942. # DeciLM-7B
  1943. self._set_vocab_llama_hf()
  1944. def set_gguf_parameters(self):
  1945. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1946. assert self.block_count == len(self._num_kv_heads)
  1947. assert self.block_count == len(self._num_heads)
  1948. assert self.block_count == len(self._ffn_dims)
  1949. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1950. self.gguf_writer.add_rope_freq_base(rope_theta)
  1951. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1952. self.gguf_writer.add_head_count(self._num_heads)
  1953. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1954. self.gguf_writer.add_block_count(self.block_count)
  1955. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1956. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1957. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1958. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1959. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1960. self.gguf_writer.add_file_type(self.ftype)
  1961. else: # DeciLM-7B
  1962. super().set_gguf_parameters()
  1963. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1964. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1965. assert self.block_count == len(self._num_kv_heads)
  1966. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1967. hparams = self.hparams
  1968. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1969. if (rope_dim := hparams.get("head_dim")) is None:
  1970. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1971. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1972. rope_scaling = self.hparams.get("rope_scaling") or {}
  1973. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1974. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1975. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1976. @staticmethod
  1977. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1978. if n_head_kv is not None and n_head != n_head_kv:
  1979. n_head = n_head_kv
  1980. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1981. .swapaxes(1, 2)
  1982. .reshape(weights.shape))
  1983. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1984. n_head = self.hparams["num_attention_heads"]
  1985. if bid is not None:
  1986. if "num_key_value_heads_per_layer" in self.hparams:
  1987. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1988. elif "block_configs" in self.hparams:
  1989. n_kv_head = self._num_kv_heads[bid]
  1990. n_head = self._num_heads[bid]
  1991. else:
  1992. n_kv_head = self.hparams.get("num_key_value_heads")
  1993. else:
  1994. n_kv_head = self.hparams.get("num_key_value_heads")
  1995. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1996. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1997. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1998. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1999. return [(self.map_tensor_name(name), data_torch)]
  2000. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2001. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2002. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2003. base = self.hparams.get("rope_theta", 10000.0)
  2004. if (dim := self.hparams.get("head_dim")) is None:
  2005. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2006. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2007. factor = rope_scaling.get("factor", 8.0)
  2008. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2009. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2010. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2011. low_freq_wavelen = old_context_len / low_freq_factor
  2012. high_freq_wavelen = old_context_len / high_freq_factor
  2013. assert low_freq_wavelen != high_freq_wavelen
  2014. rope_factors = []
  2015. for freq in freqs:
  2016. wavelen = 2 * math.pi / freq
  2017. if wavelen < high_freq_wavelen:
  2018. rope_factors.append(1)
  2019. elif wavelen > low_freq_wavelen:
  2020. rope_factors.append(factor)
  2021. else:
  2022. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2023. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2024. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2025. def prepare_tensors(self):
  2026. super().prepare_tensors()
  2027. @ModelBase.register("BitnetForCausalLM")
  2028. class BitnetModel(TextModel):
  2029. model_arch = gguf.MODEL_ARCH.BITNET
  2030. def set_vocab(self):
  2031. self._set_vocab_sentencepiece()
  2032. def set_gguf_parameters(self):
  2033. super().set_gguf_parameters()
  2034. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2035. self.gguf_writer.add_rope_scaling_factor(1.0)
  2036. def weight_quant(self, weight: Tensor) -> Tensor:
  2037. dtype = weight.dtype
  2038. weight = weight.float()
  2039. scale = weight.abs().mean().clamp(min=1e-5)
  2040. iscale = 1 / scale
  2041. # TODO: multiply by the scale directly instead of inverting it twice
  2042. # (this is also unnecessarily doubly inverted upstream)
  2043. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2044. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2045. return result.type(dtype)
  2046. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2047. new_name = self.map_tensor_name(name)
  2048. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2049. gguf.MODEL_TENSOR.ATTN_Q,
  2050. gguf.MODEL_TENSOR.ATTN_K,
  2051. gguf.MODEL_TENSOR.ATTN_V,
  2052. gguf.MODEL_TENSOR.ATTN_OUT,
  2053. gguf.MODEL_TENSOR.FFN_UP,
  2054. gguf.MODEL_TENSOR.FFN_DOWN,
  2055. gguf.MODEL_TENSOR.FFN_GATE,
  2056. ]):
  2057. # transform weight into 1/0/-1 (in fp32)
  2058. data_torch = self.weight_quant(data_torch)
  2059. yield (new_name, data_torch)
  2060. @ModelBase.register("GrokForCausalLM")
  2061. class GrokModel(TextModel):
  2062. model_arch = gguf.MODEL_ARCH.GROK
  2063. def set_vocab(self):
  2064. self._set_vocab_sentencepiece()
  2065. def __init__(self, *args, **kwargs):
  2066. super().__init__(*args, **kwargs)
  2067. def set_gguf_parameters(self):
  2068. super().set_gguf_parameters()
  2069. _experts: list[dict[str, Tensor]] | None = None
  2070. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2071. # process the experts separately
  2072. if name.find(".moe.") != -1:
  2073. n_experts = self.hparams["num_local_experts"]
  2074. assert bid is not None
  2075. if self._experts is None:
  2076. self._experts = [{} for _ in range(self.block_count)]
  2077. self._experts[bid][name] = data_torch
  2078. if len(self._experts[bid]) >= n_experts * 3:
  2079. tensors: list[tuple[str, Tensor]] = []
  2080. # merge the experts into a single 3d tensor
  2081. for wid in ["linear", "linear_1", "linear_v"]:
  2082. datas: list[Tensor] = []
  2083. for xid in range(n_experts):
  2084. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2085. datas.append(self._experts[bid][ename])
  2086. del self._experts[bid][ename]
  2087. data_torch = torch.stack(datas, dim=0)
  2088. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2089. new_name = self.map_tensor_name(merged_name)
  2090. tensors.append((new_name, data_torch))
  2091. return tensors
  2092. else:
  2093. return []
  2094. return [(self.map_tensor_name(name), data_torch)]
  2095. @ModelBase.register("DbrxForCausalLM")
  2096. class DbrxModel(TextModel):
  2097. model_arch = gguf.MODEL_ARCH.DBRX
  2098. def set_gguf_parameters(self):
  2099. ffn_config = self.hparams["ffn_config"]
  2100. attn_config = self.hparams["attn_config"]
  2101. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2102. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2103. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2104. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2105. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2106. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2107. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2108. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2109. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2110. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2111. self.gguf_writer.add_layer_norm_eps(1e-5)
  2112. self.gguf_writer.add_file_type(self.ftype)
  2113. logger.info(f"gguf: file type = {self.ftype}")
  2114. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2115. del bid # unused
  2116. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2117. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2118. n_embd = self.hparams["d_model"]
  2119. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2120. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2121. # But llama.cpp moe graph works differently
  2122. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2123. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2124. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2125. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2126. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2127. experts = False
  2128. for exp_tensor_name in exp_tensor_names.keys():
  2129. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2130. experts = True
  2131. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2132. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2133. data_torch = data_torch.permute(*permute_tensor)
  2134. break
  2135. # map tensor names
  2136. # In MoE models the ffn tensors are typically most of the model weights,
  2137. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2138. # Every other model has the weight names ending in .weight,
  2139. # let's assume that is the convention which is not the case for dbrx:
  2140. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2141. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2142. return [(new_name, data_torch)]
  2143. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2144. del name, new_name, bid # unused
  2145. return n_dims > 1
  2146. @ModelBase.register("MiniCPMForCausalLM")
  2147. class MiniCPMModel(TextModel):
  2148. model_arch = gguf.MODEL_ARCH.MINICPM
  2149. def set_gguf_parameters(self):
  2150. super().set_gguf_parameters()
  2151. embedding_scale = float(self.hparams["scale_emb"])
  2152. self.gguf_writer.add_embedding_scale(embedding_scale)
  2153. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2154. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2155. self.gguf_writer.add_residual_scale(residual_scale)
  2156. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2157. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2158. self.gguf_writer.add_logit_scale(logit_scale)
  2159. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2160. rope_scaling = self.hparams.get("rope_scaling") or {}
  2161. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2162. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2163. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2164. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2165. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2166. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2167. if rope_scaling is not None:
  2168. long_factors = rope_scaling.get('long_factor', None)
  2169. short_factors = rope_scaling.get('short_factor', None)
  2170. if long_factors is None or short_factors is None:
  2171. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2172. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2173. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2174. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2175. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2176. def set_vocab(self):
  2177. self._set_vocab_sentencepiece()
  2178. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2179. del bid # unused
  2180. n_head = self.hparams["num_attention_heads"]
  2181. n_kv_head = self.hparams.get("num_key_value_heads")
  2182. # HF models permute some of the tensors, so we need to undo that
  2183. if name.endswith(("q_proj.weight")):
  2184. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2185. if name.endswith(("k_proj.weight")):
  2186. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2187. return [(self.map_tensor_name(name), data_torch)]
  2188. @ModelBase.register("MiniCPM3ForCausalLM")
  2189. class MiniCPM3Model(TextModel):
  2190. model_arch = gguf.MODEL_ARCH.MINICPM3
  2191. def set_gguf_parameters(self):
  2192. hparams = self.hparams
  2193. self.gguf_writer.add_file_type(self.ftype)
  2194. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2195. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2196. self.gguf_writer.add_block_count(self.block_count)
  2197. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2198. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2199. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2200. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2201. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2202. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2203. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2204. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2205. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2206. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2207. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2208. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2209. if rope_scaling is not None:
  2210. rope_dims = self.hparams["qk_rope_head_dim"]
  2211. long_factors = rope_scaling.get('long_factor', None)
  2212. short_factors = rope_scaling.get('short_factor', None)
  2213. if long_factors is None or short_factors is None:
  2214. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2215. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2216. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2217. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2218. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2219. def set_vocab(self):
  2220. self._set_vocab_sentencepiece()
  2221. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2222. if n_kv_head is not None and n_head != n_kv_head:
  2223. n_head //= n_kv_head
  2224. return (
  2225. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2226. .swapaxes(1, 2)
  2227. .reshape(weights.shape)
  2228. )
  2229. @ModelBase.register("QWenLMHeadModel")
  2230. class QwenModel(TextModel):
  2231. model_arch = gguf.MODEL_ARCH.QWEN
  2232. @staticmethod
  2233. def token_bytes_to_string(b):
  2234. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2235. byte_encoder = bytes_to_unicode()
  2236. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2237. @staticmethod
  2238. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2239. parts = [bytes([b]) for b in token]
  2240. while True:
  2241. min_idx = None
  2242. min_rank = None
  2243. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2244. rank = mergeable_ranks.get(pair[0] + pair[1])
  2245. if rank is not None and (min_rank is None or rank < min_rank):
  2246. min_idx = i
  2247. min_rank = rank
  2248. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2249. break
  2250. assert min_idx is not None
  2251. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2252. return parts
  2253. def set_vocab(self):
  2254. self._set_vocab_qwen()
  2255. def set_gguf_parameters(self):
  2256. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2257. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2258. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2259. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2260. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2261. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2262. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2263. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2264. self.gguf_writer.add_file_type(self.ftype)
  2265. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2266. class Qwen2Model(TextModel):
  2267. model_arch = gguf.MODEL_ARCH.QWEN2
  2268. def set_vocab(self):
  2269. try:
  2270. self._set_vocab_sentencepiece()
  2271. except FileNotFoundError:
  2272. self._set_vocab_gpt2()
  2273. def set_gguf_parameters(self):
  2274. super().set_gguf_parameters()
  2275. self._try_set_pooling_type()
  2276. rope_scaling = self.hparams.get("rope_scaling") or {}
  2277. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2278. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2279. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2280. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2281. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2282. if self.hf_arch == "Qwen2Model":
  2283. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2284. if "language_model." in name:
  2285. name = name.replace("language_model.", "") # for InternVL
  2286. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2287. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2288. # skip vision and audio tensors
  2289. return []
  2290. yield from super().modify_tensors(data_torch, name, bid)
  2291. @ModelBase.register("DreamModel")
  2292. class DreamModel(TextModel):
  2293. model_arch = gguf.MODEL_ARCH.DREAM
  2294. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2295. tokens: list[str] = []
  2296. toktypes: list[int] = []
  2297. from transformers import AutoTokenizer
  2298. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2299. vocab_dict = tokenizer.get_vocab()
  2300. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2301. assert max(vocab_dict.values()) < vocab_size
  2302. tokpre = self.get_vocab_base_pre(tokenizer)
  2303. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2304. added_vocab = tokenizer.get_added_vocab()
  2305. for i in range(vocab_size):
  2306. if i not in reverse_vocab:
  2307. tokens.append(f"[PAD{i}]")
  2308. toktypes.append(gguf.TokenType.UNUSED)
  2309. elif reverse_vocab[i] in added_vocab:
  2310. tokens.append(reverse_vocab[i])
  2311. # Check if it's a special token - treat special tokens as CONTROL tokens
  2312. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2313. if tokenizer.added_tokens_decoder[i].special:
  2314. toktypes.append(gguf.TokenType.CONTROL)
  2315. else:
  2316. toktypes.append(gguf.TokenType.USER_DEFINED)
  2317. else:
  2318. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2319. toktypes.append(gguf.TokenType.CONTROL)
  2320. else:
  2321. tokens.append(reverse_vocab[i])
  2322. toktypes.append(gguf.TokenType.NORMAL)
  2323. return tokens, toktypes, tokpre
  2324. def set_vocab(self):
  2325. try:
  2326. self._set_vocab_sentencepiece()
  2327. except FileNotFoundError:
  2328. self._set_vocab_gpt2()
  2329. def set_gguf_parameters(self):
  2330. super().set_gguf_parameters()
  2331. self._try_set_pooling_type()
  2332. # Dream models use non-causal attention for diffusion
  2333. self.gguf_writer.add_causal_attention(False)
  2334. # Handle RoPE scaling similar to Qwen2
  2335. rope_scaling = self.hparams.get("rope_scaling") or {}
  2336. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2337. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2338. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2339. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2340. # Add Dream-specific parameters
  2341. mask_token_id = self.hparams.get("mask_token_id")
  2342. if mask_token_id is not None:
  2343. self.gguf_writer.add_mask_token_id(mask_token_id)
  2344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2345. # Dream model tensors should be mapped directly since it's the base model
  2346. yield from super().modify_tensors(data_torch, name, bid)
  2347. @ModelBase.register("Ernie4_5_ForCausalLM")
  2348. class Ernie4_5Model(TextModel):
  2349. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2350. def set_vocab(self):
  2351. self._set_vocab_sentencepiece()
  2352. def set_gguf_parameters(self):
  2353. super().set_gguf_parameters()
  2354. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2355. num_heads = self.hparams["num_attention_heads"]
  2356. num_kv_heads = self.hparams["num_key_value_heads"]
  2357. if (head_dim := self.hparams.get("head_dim")) is None:
  2358. head_dim = self.hparams["hidden_size"] // num_heads
  2359. if "ernie." in name:
  2360. name = name.replace("ernie.", "model.")
  2361. # split the qkv weights
  2362. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2363. if "qkv_proj" in name:
  2364. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2365. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2366. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2367. total_q_dim = num_heads * head_dim
  2368. total_k_dim = num_kv_heads * head_dim
  2369. total_v_dim = num_kv_heads * head_dim
  2370. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2371. return [
  2372. (self.map_tensor_name(name_q), q_proj_weight),
  2373. (self.map_tensor_name(name_k), k_proj_weight),
  2374. (self.map_tensor_name(name_v), v_proj_weight)
  2375. ]
  2376. # split the up_gate_proj into gate and up
  2377. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2378. if "up_gate_proj" in name:
  2379. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2380. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2381. dim_half = data_torch.shape[0] // 2
  2382. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2383. return [
  2384. (self.map_tensor_name(name_gate), gate_proj_weight),
  2385. (self.map_tensor_name(name_up), up_proj_weight)
  2386. ]
  2387. return [(self.map_tensor_name(name), data_torch)]
  2388. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2389. class Ernie4_5MoeModel(Ernie4_5Model):
  2390. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2391. _experts: list[dict[str, Tensor]] | None = None
  2392. def __init__(self, *args, **kwargs):
  2393. super().__init__(*args, **kwargs)
  2394. self._experts = [{} for _ in range(self.block_count)]
  2395. def set_gguf_parameters(self):
  2396. super().set_gguf_parameters()
  2397. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2398. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2399. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2400. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2401. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2402. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2403. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2404. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2405. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2406. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2407. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2408. # Modify correction bias name as in DeepseekV2
  2409. if name.endswith("e_score_correction_bias"):
  2410. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2411. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2412. match = re.match(r"model.mtp_block.(\d+)", name)
  2413. if match:
  2414. return []
  2415. # skip all other MTP tensors for now
  2416. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2417. if match:
  2418. return []
  2419. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2420. if match:
  2421. return []
  2422. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2423. if match:
  2424. return []
  2425. # process the experts separately
  2426. if name.find("mlp.experts") != -1:
  2427. n_experts = self.hparams["moe_num_experts"]
  2428. assert bid is not None
  2429. if self._experts is None:
  2430. self._experts = [{} for _ in range(self.block_count)]
  2431. self._experts[bid][name] = data_torch
  2432. if len(self._experts[bid]) >= n_experts * 3:
  2433. tensors: list[tuple[str, Tensor]] = []
  2434. # merge the experts into a single 3d tensor
  2435. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2436. datas: list[Tensor] = []
  2437. for xid in range(n_experts):
  2438. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2439. datas.append(self._experts[bid][ename_to_retrieve])
  2440. del self._experts[bid][ename_to_retrieve]
  2441. data_torch = torch.stack(datas, dim=0)
  2442. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2443. new_name = self.map_tensor_name(merged_name)
  2444. tensors.append((new_name, data_torch))
  2445. return tensors
  2446. else:
  2447. return []
  2448. return [(self.map_tensor_name(name), data_torch)]
  2449. def prepare_tensors(self):
  2450. super().prepare_tensors()
  2451. if self._experts is not None:
  2452. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2453. experts = [k for d in self._experts for k in d.keys()]
  2454. if len(experts) > 0:
  2455. raise ValueError(f"Unprocessed experts: {experts}")
  2456. @ModelBase.register(
  2457. "Qwen2VLModel",
  2458. "Qwen2VLForConditionalGeneration",
  2459. "Qwen2_5_VLForConditionalGeneration",
  2460. "Qwen2_5OmniModel",
  2461. )
  2462. class Qwen2VLModel(TextModel):
  2463. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2464. def set_gguf_parameters(self):
  2465. super().set_gguf_parameters()
  2466. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2467. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2468. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2469. def set_vocab(self):
  2470. try:
  2471. self._set_vocab_sentencepiece()
  2472. except FileNotFoundError:
  2473. self._set_vocab_gpt2()
  2474. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2475. del bid # unused
  2476. if name.startswith("thinker."):
  2477. name = name.replace("thinker.", "")
  2478. if name.startswith("visual") or name.startswith("audio") or \
  2479. name.startswith("talker") or name.startswith("token2wav"):
  2480. # skip multimodal tensors
  2481. return []
  2482. return [(self.map_tensor_name(name), data_torch)]
  2483. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2484. class Qwen2VLVisionModel(MmprojModel):
  2485. def __init__(self, *args, **kwargs):
  2486. super().__init__(*args, **kwargs)
  2487. assert self.hparams_vision is not None
  2488. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2489. # rename config.json values
  2490. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2491. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2492. if "embed_dim" in self.hparams_vision: # qwen2vl
  2493. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2494. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2495. def set_gguf_parameters(self):
  2496. super().set_gguf_parameters()
  2497. assert self.hparams_vision is not None
  2498. hparams = self.hparams_vision
  2499. model_type = self.global_config['model_type']
  2500. if model_type == 'qwen2_vl':
  2501. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2502. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2503. if model_type == 'qwen2_5_omni':
  2504. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2505. else:
  2506. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2507. self.gguf_writer.add_vision_use_silu(True)
  2508. # find n_wa_pattern (window attention pattern)
  2509. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2510. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2511. n_wa_pattern = fullatt_block_indexes[0] + 1
  2512. # validate n_wa_pattern
  2513. for i in range(1, len(fullatt_block_indexes)):
  2514. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2515. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2516. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2517. else:
  2518. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2519. # default values below are taken from HF tranformers code
  2520. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2521. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2522. del bid, name, n_dims # unused
  2523. if ".patch_embd." in new_name:
  2524. return gguf.GGMLQuantizationType.F16
  2525. if ".position_embd." in new_name:
  2526. return gguf.GGMLQuantizationType.F32
  2527. return False
  2528. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2529. del bid # unused
  2530. if name.startswith("visual."):
  2531. # process visual tensors
  2532. # split QKV tensors if needed
  2533. if ".qkv." in name:
  2534. if data_torch.ndim == 2: # weight
  2535. c3, _ = data_torch.shape
  2536. else: # bias
  2537. c3 = data_torch.shape[0]
  2538. assert c3 % 3 == 0
  2539. c = c3 // 3
  2540. wq = data_torch[:c]
  2541. wk = data_torch[c: c * 2]
  2542. wv = data_torch[c * 2:]
  2543. return [
  2544. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2545. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2546. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2547. ]
  2548. elif 'patch_embed.proj.weight' in name:
  2549. # split Conv3D into Conv2Ds
  2550. c1, c2, kt, kh, kw = data_torch.shape
  2551. del c1, c2, kh, kw # unused
  2552. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2553. return [
  2554. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2555. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2556. ]
  2557. else:
  2558. return [(self.map_tensor_name(name), data_torch)]
  2559. return [] # skip other tensors
  2560. @ModelBase.register("Qwen2_5OmniModel")
  2561. class Qwen25OmniModel(Qwen2VLVisionModel):
  2562. has_vision_encoder = True
  2563. has_audio_encoder = True
  2564. def __init__(self, *args, **kwargs):
  2565. super().__init__(*args, **kwargs)
  2566. assert self.hparams_audio is not None
  2567. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2568. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2569. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2570. def set_gguf_parameters(self):
  2571. super().set_gguf_parameters()
  2572. assert self.hparams_audio is not None
  2573. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2574. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2575. def get_vision_config(self) -> dict[str, Any] | None:
  2576. return self.global_config["thinker_config"].get("vision_config")
  2577. def get_audio_config(self) -> dict[str, Any] | None:
  2578. return self.global_config["thinker_config"].get("audio_config")
  2579. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2580. # SinusoidsPositionEmbedding
  2581. assert self.hparams_audio is not None
  2582. max_timescale = 10000
  2583. length = 1500
  2584. channels = self.hparams_audio["hidden_size"]
  2585. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2586. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2587. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2588. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2589. yield ("audio_tower.embed_positions.weight", pos_embd)
  2590. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2591. del bid, new_name, n_dims # unused
  2592. if ".conv" in name and ".weight" in name:
  2593. return gguf.GGMLQuantizationType.F16
  2594. return False
  2595. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2596. if name.startswith("thinker."):
  2597. name = name.replace("thinker.", "")
  2598. if name.startswith("audio_tower"):
  2599. # process audio tensors
  2600. if "conv1.bias" in name or "conv2.bias" in name:
  2601. # transpose conv1 and conv2 bias
  2602. data_torch = data_torch.unsqueeze(-1)
  2603. if "audio_bos_eos_token" in name:
  2604. # this tensor is left unused in transformers code
  2605. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2606. return []
  2607. return [(self.map_tensor_name(name), data_torch)]
  2608. return super().modify_tensors(data_torch, name, bid)
  2609. @ModelBase.register("InternVisionModel")
  2610. class InternVisionModel(MmprojModel):
  2611. def set_gguf_parameters(self):
  2612. super().set_gguf_parameters()
  2613. hparams = self.hparams
  2614. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2615. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2616. # hidden_act
  2617. if hparams["hidden_act"] == "silu":
  2618. self.gguf_writer.add_vision_use_silu(True)
  2619. elif hparams["hidden_act"] == "gelu":
  2620. self.gguf_writer.add_vision_use_gelu(True)
  2621. else:
  2622. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2623. # downsample_ratio
  2624. downsample_ratio = self.global_config.get("downsample_ratio")
  2625. assert downsample_ratio is not None
  2626. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2627. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2628. del bid, name, n_dims # unused
  2629. if ".patch_embd." in new_name:
  2630. return gguf.GGMLQuantizationType.F16
  2631. if ".position_embd." in new_name:
  2632. return gguf.GGMLQuantizationType.F32
  2633. return False
  2634. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2635. del bid # unused
  2636. if name.startswith("vision_model") or name.startswith("mlp"):
  2637. # process visual tensors
  2638. # correct name
  2639. if name.startswith("vision_model"):
  2640. name = "vision_tower." + name
  2641. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2642. name += ".weight"
  2643. # split QKV tensors if needed
  2644. if ".qkv." in name:
  2645. if data_torch.ndim == 2: # weight
  2646. c3, _ = data_torch.shape
  2647. else: # bias
  2648. c3 = data_torch.shape[0]
  2649. assert c3 % 3 == 0
  2650. c = c3 // 3
  2651. wq = data_torch[:c]
  2652. wk = data_torch[c: c * 2]
  2653. wv = data_torch[c * 2:]
  2654. return [
  2655. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2656. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2657. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2658. ]
  2659. return [(self.map_tensor_name(name), data_torch)]
  2660. return [] # skip other tensors
  2661. @ModelBase.register("WavTokenizerDec")
  2662. class WavTokenizerDecModel(TextModel):
  2663. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2664. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2665. del bid # unused
  2666. if \
  2667. name.endswith("codebook.cluster_size") or \
  2668. name.endswith("codebook.embed_avg") or \
  2669. name.endswith("codebook.inited"):
  2670. logger.debug(f"Skipping {name!r}")
  2671. return []
  2672. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2673. return [(self.map_tensor_name(name), data_torch)]
  2674. def set_vocab(self):
  2675. self._set_vocab_none()
  2676. def set_gguf_parameters(self):
  2677. super().set_gguf_parameters()
  2678. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2679. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2680. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2681. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2682. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2683. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2684. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2685. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2686. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2687. self.gguf_writer.add_causal_attention(False)
  2688. @ModelBase.register("Qwen2MoeForCausalLM")
  2689. class Qwen2MoeModel(TextModel):
  2690. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2691. def set_gguf_parameters(self):
  2692. super().set_gguf_parameters()
  2693. if (n_experts := self.hparams.get("num_experts")) is not None:
  2694. self.gguf_writer.add_expert_count(n_experts)
  2695. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2696. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2697. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2698. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2699. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2700. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2701. # YaRN is not enabled by default
  2702. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2703. rope_scaling = self.hparams.get("rope_scaling") or {}
  2704. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2705. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2706. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2707. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2708. _experts: list[dict[str, Tensor]] | None = None
  2709. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2710. # process the experts separately
  2711. if name.find("experts") != -1:
  2712. n_experts = self.hparams["num_experts"]
  2713. assert bid is not None
  2714. if self._experts is None:
  2715. self._experts = [{} for _ in range(self.block_count)]
  2716. self._experts[bid][name] = data_torch
  2717. if len(self._experts[bid]) >= n_experts * 3:
  2718. tensors: list[tuple[str, Tensor]] = []
  2719. # merge the experts into a single 3d tensor
  2720. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2721. datas: list[Tensor] = []
  2722. for xid in range(n_experts):
  2723. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2724. datas.append(self._experts[bid][ename])
  2725. del self._experts[bid][ename]
  2726. data_torch = torch.stack(datas, dim=0)
  2727. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2728. new_name = self.map_tensor_name(merged_name)
  2729. tensors.append((new_name, data_torch))
  2730. return tensors
  2731. else:
  2732. return []
  2733. return [(self.map_tensor_name(name), data_torch)]
  2734. def prepare_tensors(self):
  2735. super().prepare_tensors()
  2736. if self._experts is not None:
  2737. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2738. experts = [k for d in self._experts for k in d.keys()]
  2739. if len(experts) > 0:
  2740. raise ValueError(f"Unprocessed experts: {experts}")
  2741. @ModelBase.register("Qwen3ForCausalLM")
  2742. class Qwen3Model(Qwen2Model):
  2743. model_arch = gguf.MODEL_ARCH.QWEN3
  2744. @ModelBase.register("Qwen3MoeForCausalLM")
  2745. class Qwen3MoeModel(Qwen2MoeModel):
  2746. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2747. @ModelBase.register("GPT2LMHeadModel")
  2748. class GPT2Model(TextModel):
  2749. model_arch = gguf.MODEL_ARCH.GPT2
  2750. def set_gguf_parameters(self):
  2751. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2752. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2753. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2754. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2755. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2756. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2757. self.gguf_writer.add_file_type(self.ftype)
  2758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2759. del bid # unused
  2760. tensors: list[tuple[str, Tensor]] = []
  2761. # we don't need these
  2762. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2763. return tensors
  2764. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2765. data_torch = data_torch.transpose(1, 0)
  2766. new_name = self.map_tensor_name(name)
  2767. tensors.append((new_name, data_torch))
  2768. return tensors
  2769. @ModelBase.register("PhiForCausalLM")
  2770. class Phi2Model(TextModel):
  2771. model_arch = gguf.MODEL_ARCH.PHI2
  2772. def set_gguf_parameters(self):
  2773. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2774. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2775. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2776. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2777. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2778. self.gguf_writer.add_embedding_length(n_embd)
  2779. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2780. self.gguf_writer.add_block_count(block_count)
  2781. self.gguf_writer.add_head_count(n_head)
  2782. self.gguf_writer.add_head_count_kv(n_head)
  2783. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2784. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2785. self.gguf_writer.add_file_type(self.ftype)
  2786. self.gguf_writer.add_add_bos_token(False)
  2787. @ModelBase.register("Phi3ForCausalLM")
  2788. class Phi3MiniModel(TextModel):
  2789. model_arch = gguf.MODEL_ARCH.PHI3
  2790. def set_vocab(self):
  2791. # Phi-4 model uses GPT2Tokenizer
  2792. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2793. if tokenizer_config_file.is_file():
  2794. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2795. tokenizer_config_json = json.load(f)
  2796. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2797. if tokenizer_class == 'GPT2Tokenizer':
  2798. return self._set_vocab_gpt2()
  2799. from sentencepiece import SentencePieceProcessor
  2800. tokenizer_path = self.dir_model / 'tokenizer.model'
  2801. if not tokenizer_path.is_file():
  2802. raise ValueError(f'Error: Missing {tokenizer_path}')
  2803. tokenizer = SentencePieceProcessor()
  2804. tokenizer.LoadFromFile(str(tokenizer_path))
  2805. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2806. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2807. scores: list[float] = [-10000.0] * vocab_size
  2808. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2809. for token_id in range(tokenizer.vocab_size()):
  2810. piece = tokenizer.IdToPiece(token_id)
  2811. text = piece.encode("utf-8")
  2812. score = tokenizer.GetScore(token_id)
  2813. toktype = SentencePieceTokenTypes.NORMAL
  2814. if tokenizer.IsUnknown(token_id):
  2815. toktype = SentencePieceTokenTypes.UNKNOWN
  2816. elif tokenizer.IsControl(token_id):
  2817. toktype = SentencePieceTokenTypes.CONTROL
  2818. elif tokenizer.IsUnused(token_id):
  2819. toktype = SentencePieceTokenTypes.UNUSED
  2820. elif tokenizer.IsByte(token_id):
  2821. toktype = SentencePieceTokenTypes.BYTE
  2822. tokens[token_id] = text
  2823. scores[token_id] = score
  2824. toktypes[token_id] = toktype
  2825. added_tokens_file = self.dir_model / 'added_tokens.json'
  2826. if added_tokens_file.is_file():
  2827. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2828. added_tokens_json = json.load(f)
  2829. for key in added_tokens_json:
  2830. token_id = added_tokens_json[key]
  2831. if token_id >= vocab_size:
  2832. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2833. continue
  2834. tokens[token_id] = key.encode("utf-8")
  2835. scores[token_id] = -1000.0
  2836. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2837. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2838. if tokenizer_config_file.is_file():
  2839. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2840. tokenizer_config_json = json.load(f)
  2841. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2842. for token_id, foken_data in added_tokens_decoder.items():
  2843. token_id = int(token_id)
  2844. token = foken_data["content"].encode("utf-8")
  2845. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2846. if tokens[token_id] != token:
  2847. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2848. tokens[token_id] = token
  2849. scores[token_id] = -1000.0
  2850. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2851. if foken_data.get("special"):
  2852. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2853. tokenizer_file = self.dir_model / 'tokenizer.json'
  2854. if tokenizer_file.is_file():
  2855. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2856. tokenizer_json = json.load(f)
  2857. added_tokens = tokenizer_json.get("added_tokens", [])
  2858. for foken_data in added_tokens:
  2859. token_id = int(foken_data["id"])
  2860. token = foken_data["content"].encode("utf-8")
  2861. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2862. if tokens[token_id] != token:
  2863. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2864. tokens[token_id] = token
  2865. scores[token_id] = -1000.0
  2866. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2867. if foken_data.get("special"):
  2868. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2869. self.gguf_writer.add_tokenizer_model("llama")
  2870. self.gguf_writer.add_tokenizer_pre("default")
  2871. self.gguf_writer.add_token_list(tokens)
  2872. self.gguf_writer.add_token_scores(scores)
  2873. self.gguf_writer.add_token_types(toktypes)
  2874. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2875. special_vocab.add_to_gguf(self.gguf_writer)
  2876. def set_gguf_parameters(self):
  2877. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2878. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2879. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2880. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2881. rms_eps = self.find_hparam(["rms_norm_eps"])
  2882. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2883. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2884. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2885. rope_dims = int(rot_pct * n_embd) // n_head
  2886. self.gguf_writer.add_context_length(max_pos_embds)
  2887. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2888. self.gguf_writer.add_embedding_length(n_embd)
  2889. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2890. self.gguf_writer.add_block_count(block_count)
  2891. self.gguf_writer.add_head_count(n_head)
  2892. self.gguf_writer.add_head_count_kv(n_head_kv)
  2893. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2894. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2895. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2896. self.gguf_writer.add_file_type(self.ftype)
  2897. sliding_window = self.hparams.get("sliding_window")
  2898. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2899. if sliding_window is None:
  2900. sliding_window = 0
  2901. self.gguf_writer.add_sliding_window(sliding_window)
  2902. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2903. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2904. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2905. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2906. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2907. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2908. rope_dims = int(rot_pct * n_embd) // n_head
  2909. # write rope scaling for long context (128k) model
  2910. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2911. if rope_scaling is None:
  2912. return
  2913. scale = max_pos_embds / orig_max_pos_embds
  2914. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2915. if len(rope_scaling_type) == 0:
  2916. raise KeyError('Missing the required key rope_scaling.type')
  2917. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2918. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2919. elif rope_scaling_type == 'yarn':
  2920. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2921. else:
  2922. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2923. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2924. long_factors = rope_scaling.get('long_factor', None)
  2925. short_factors = rope_scaling.get('short_factor', None)
  2926. if long_factors is None or short_factors is None:
  2927. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2928. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2929. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2930. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2931. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2932. @ModelBase.register("PhiMoEForCausalLM")
  2933. class PhiMoeModel(Phi3MiniModel):
  2934. model_arch = gguf.MODEL_ARCH.PHIMOE
  2935. _experts: list[dict[str, Tensor]] | None = None
  2936. def set_gguf_parameters(self):
  2937. super().set_gguf_parameters()
  2938. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2939. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2940. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2941. # process the experts separately
  2942. if name.find("block_sparse_moe.experts") != -1:
  2943. n_experts = self.hparams["num_local_experts"]
  2944. assert bid is not None
  2945. if self._experts is None:
  2946. self._experts = [{} for _ in range(self.block_count)]
  2947. self._experts[bid][name] = data_torch
  2948. if len(self._experts[bid]) >= n_experts * 3:
  2949. tensors: list[tuple[str, Tensor]] = []
  2950. # merge the experts into a single 3d tensor
  2951. for w_name in ["w1", "w2", "w3"]:
  2952. datas: list[Tensor] = []
  2953. for xid in range(n_experts):
  2954. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2955. datas.append(self._experts[bid][ename])
  2956. del self._experts[bid][ename]
  2957. data_torch = torch.stack(datas, dim=0)
  2958. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2959. new_name = self.map_tensor_name(merged_name)
  2960. tensors.append((new_name, data_torch))
  2961. return tensors
  2962. else:
  2963. return []
  2964. return [(self.map_tensor_name(name), data_torch)]
  2965. def prepare_tensors(self):
  2966. super().prepare_tensors()
  2967. if self._experts is not None:
  2968. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2969. experts = [k for d in self._experts for k in d.keys()]
  2970. if len(experts) > 0:
  2971. raise ValueError(f"Unprocessed experts: {experts}")
  2972. @ModelBase.register("PlamoForCausalLM")
  2973. class PlamoModel(TextModel):
  2974. model_arch = gguf.MODEL_ARCH.PLAMO
  2975. def set_vocab(self):
  2976. self._set_vocab_sentencepiece()
  2977. def set_gguf_parameters(self):
  2978. hparams = self.hparams
  2979. block_count = hparams["num_hidden_layers"]
  2980. self.gguf_writer.add_context_length(4096) # not in config.json
  2981. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2982. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2983. self.gguf_writer.add_block_count(block_count)
  2984. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2985. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2986. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2987. self.gguf_writer.add_file_type(self.ftype)
  2988. def shuffle_attn_q_weight(self, data_torch):
  2989. assert data_torch.size() == (5120, 5120)
  2990. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2991. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2992. data_torch = torch.reshape(data_torch, (5120, 5120))
  2993. return data_torch
  2994. def shuffle_attn_output_weight(self, data_torch):
  2995. assert data_torch.size() == (5120, 5120)
  2996. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2997. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2998. data_torch = torch.reshape(data_torch, (5120, 5120))
  2999. return data_torch
  3000. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3001. del bid # unused
  3002. new_name = self.map_tensor_name(name)
  3003. # shuffle for broadcasting of gqa in ggml_mul_mat
  3004. if new_name.endswith("attn_q.weight"):
  3005. data_torch = self.shuffle_attn_q_weight(data_torch)
  3006. elif new_name.endswith("attn_output.weight"):
  3007. data_torch = self.shuffle_attn_output_weight(data_torch)
  3008. return [(new_name, data_torch)]
  3009. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3010. class Plamo2Model(TextModel):
  3011. model_arch = gguf.MODEL_ARCH.PLAMO2
  3012. def set_vocab(self):
  3013. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3014. # We need to handle this specially
  3015. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3016. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3017. if not tokenizer_jsonl_path.is_file():
  3018. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3019. # Load tokenizer config
  3020. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3021. tokenizer_config = json.load(f)
  3022. # Load tokens from JSONL file (actually a list format)
  3023. tokens = []
  3024. scores = []
  3025. toktypes = []
  3026. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3027. for line_num, line in enumerate(f):
  3028. if line.strip():
  3029. token_data = json.loads(line)
  3030. # Format: [token, score, type, ?, ?, ?, ?]
  3031. token = token_data[0].encode("utf-8")
  3032. score = float(token_data[1])
  3033. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3034. tokens.append(token)
  3035. scores.append(score)
  3036. # Map token type strings to GGUF token types
  3037. if token_type_str == "UNKNOWN":
  3038. toktypes.append(gguf.TokenType.UNKNOWN)
  3039. elif token_type_str == "CONTROL":
  3040. toktypes.append(gguf.TokenType.CONTROL)
  3041. elif token_type_str == "BYTE":
  3042. toktypes.append(gguf.TokenType.BYTE)
  3043. else:
  3044. # Check for PLaMo-2 special tokens
  3045. token_str = token_data[0]
  3046. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3047. toktypes.append(gguf.TokenType.CONTROL)
  3048. else:
  3049. toktypes.append(gguf.TokenType.NORMAL)
  3050. vocab_size = self.hparams["vocab_size"]
  3051. if vocab_size > len(tokens):
  3052. pad_count = vocab_size - len(tokens)
  3053. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3054. for i in range(1, pad_count + 1):
  3055. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3056. scores.append(-1000.0)
  3057. toktypes.append(gguf.TokenType.UNUSED)
  3058. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3059. self.gguf_writer.add_tokenizer_model("plamo2")
  3060. self.gguf_writer.add_tokenizer_pre("default")
  3061. self.gguf_writer.add_token_list(tokens)
  3062. self.gguf_writer.add_token_scores(scores)
  3063. self.gguf_writer.add_token_types(toktypes)
  3064. # Add special tokens from config
  3065. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3066. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3067. self.gguf_writer.add_bos_token_id(token_id)
  3068. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3069. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3070. self.gguf_writer.add_eos_token_id(token_id)
  3071. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3072. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3073. self.gguf_writer.add_pad_token_id(token_id)
  3074. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3075. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3076. self.gguf_writer.add_sep_token_id(token_id)
  3077. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3078. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3079. self.gguf_writer.add_unk_token_id(token_id)
  3080. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3081. self.gguf_writer.add_eot_token_id(4)
  3082. self.gguf_writer.add_add_space_prefix(False)
  3083. def set_gguf_parameters(self):
  3084. hparams = self.hparams
  3085. block_count = hparams["num_hidden_layers"]
  3086. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3087. # Which layers are Mamba layers
  3088. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3089. # This logic matches modeling_plamo.py's is_mamba function
  3090. mamba_step = hparams.get("mamba_step", 2)
  3091. mamba_enabled = hparams.get("mamba_enabled", True)
  3092. mamba_layers = []
  3093. if mamba_enabled:
  3094. for i in range(block_count):
  3095. if block_count <= (mamba_step // 2):
  3096. # use attention in last layer
  3097. is_mamba = (i != block_count - 1)
  3098. else:
  3099. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3100. if is_mamba:
  3101. mamba_layers.append(0)
  3102. else:
  3103. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3104. if mamba_layers:
  3105. self.gguf_writer.add_head_count_kv(mamba_layers)
  3106. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3107. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3108. self.gguf_writer.add_block_count(block_count)
  3109. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3110. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3111. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1000000.0))
  3112. # Mamba parameters
  3113. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3114. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3115. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3116. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3117. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3118. self.gguf_writer.add_ssm_group_count(0)
  3119. # MLP feed forward parameters (for attention layers)
  3120. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 16384))
  3121. self.gguf_writer.add_file_type(self.ftype)
  3122. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3123. del bid # unused
  3124. if name.endswith(".A_log"):
  3125. data_torch = -torch.exp(data_torch)
  3126. elif name.endswith(".dt_bias"):
  3127. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3128. elif name.endswith(".dt_norm_weight"):
  3129. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3130. elif name.endswith(".B_norm_weight"):
  3131. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3132. elif name.endswith(".C_norm_weight"):
  3133. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3134. elif name.endswith(".k_weight"):
  3135. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3136. elif name.endswith(".q_weight"):
  3137. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3138. elif name.endswith(".conv1d.weight"):
  3139. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3140. assert data_torch.ndim == 2
  3141. elif name.endswith(".pre_mixer_norm.weight"):
  3142. data_torch += 1.0
  3143. elif name.endswith(".post_mixer_norm.weight"):
  3144. data_torch += 1.0 / 5
  3145. elif name.endswith(".pre_mlp_norm.weight"):
  3146. data_torch += 1.0
  3147. elif name.endswith(".post_mlp_norm.weight"):
  3148. data_torch += 1.0 / (5**1.5)
  3149. elif name.endswith(".norm.weight"):
  3150. data_torch += 1.0
  3151. new_name = self.map_tensor_name(name)
  3152. return [(new_name, data_torch)]
  3153. @ModelBase.register("CodeShellForCausalLM")
  3154. class CodeShellModel(TextModel):
  3155. model_arch = gguf.MODEL_ARCH.CODESHELL
  3156. def set_gguf_parameters(self):
  3157. block_count = self.hparams["n_layer"]
  3158. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3159. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3160. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3161. self.gguf_writer.add_block_count(block_count)
  3162. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3163. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3164. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3165. self.gguf_writer.add_file_type(self.ftype)
  3166. self.gguf_writer.add_rope_freq_base(10000.0)
  3167. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3168. self.gguf_writer.add_rope_scaling_factor(1.0)
  3169. _has_tok_embd = False
  3170. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3171. del bid # unused
  3172. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3173. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3174. new_name = self.map_tensor_name(name)
  3175. # assuming token_embd.weight is seen before output.weight
  3176. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3177. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3178. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3179. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3180. self.tensor_names.remove("transformer.wte.weight")
  3181. elif new_name == tok_embd_name:
  3182. self._has_tok_embd = True
  3183. return [(new_name, data_torch)]
  3184. @ModelBase.register("InternLM2ForCausalLM")
  3185. class InternLM2Model(TextModel):
  3186. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3187. def set_vocab(self):
  3188. # (TODO): Is there a better way?
  3189. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3190. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3191. # recognized as an empty string in C++.
  3192. from sentencepiece import SentencePieceProcessor
  3193. from sentencepiece import sentencepiece_model_pb2 as model
  3194. tokenizer_path = self.dir_model / 'tokenizer.model'
  3195. tokens: list[bytes] = []
  3196. scores: list[float] = []
  3197. toktypes: list[int] = []
  3198. if not tokenizer_path.is_file():
  3199. logger.error(f'Error: Missing {tokenizer_path}')
  3200. sys.exit(1)
  3201. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3202. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3203. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3204. tokenizer = SentencePieceProcessor()
  3205. tokenizer.LoadFromFile(str(tokenizer_path))
  3206. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3207. for token_id in range(vocab_size):
  3208. piece = tokenizer.IdToPiece(token_id)
  3209. text = piece.encode("utf-8")
  3210. score = tokenizer.GetScore(token_id)
  3211. if text == b"\x00":
  3212. # (TODO): fixme
  3213. # Hack here and replace the \x00 characters.
  3214. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3215. text = "🐉".encode("utf-8")
  3216. toktype = SentencePieceTokenTypes.NORMAL
  3217. if tokenizer.IsUnknown(token_id):
  3218. toktype = SentencePieceTokenTypes.UNKNOWN
  3219. elif tokenizer.IsControl(token_id):
  3220. toktype = SentencePieceTokenTypes.CONTROL
  3221. elif tokenizer.IsUnused(token_id):
  3222. toktype = SentencePieceTokenTypes.UNUSED
  3223. elif tokenizer.IsByte(token_id):
  3224. toktype = SentencePieceTokenTypes.BYTE
  3225. # take care of ununsed raw token
  3226. if piece.startswith('[UNUSED'):
  3227. toktype = SentencePieceTokenTypes.UNUSED
  3228. tokens.append(text)
  3229. scores.append(score)
  3230. toktypes.append(toktype)
  3231. added_tokens_file = self.dir_model / 'added_tokens.json'
  3232. if added_tokens_file.is_file():
  3233. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3234. added_tokens_json = json.load(f)
  3235. for key in added_tokens_json:
  3236. tokens.append(key.encode("utf-8"))
  3237. scores.append(-1000.0)
  3238. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3239. chat_eos_token = '<|im_end|>'
  3240. chat_eos_token_id = None
  3241. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3242. if tokenizer_config_file.is_file():
  3243. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3244. tokenizer_config_json = json.load(f)
  3245. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3246. for token_id, foken_data in added_tokens_decoder.items():
  3247. token_id = int(token_id)
  3248. token = foken_data["content"]
  3249. if token == chat_eos_token:
  3250. chat_eos_token_id = token_id
  3251. token = token.encode("utf-8")
  3252. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3253. if tokens[token_id] != token:
  3254. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3255. tokens[token_id] = token
  3256. scores[token_id] = -1000.0
  3257. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3258. if foken_data.get("special"):
  3259. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3260. tokenizer_file = self.dir_model / 'tokenizer.json'
  3261. if tokenizer_file.is_file():
  3262. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3263. tokenizer_json = json.load(f)
  3264. added_tokens = tokenizer_json.get("added_tokens", [])
  3265. for foken_data in added_tokens:
  3266. token_id = int(foken_data["id"])
  3267. token = foken_data["content"]
  3268. if token == chat_eos_token:
  3269. chat_eos_token_id = token_id
  3270. token = token.encode("utf-8")
  3271. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3272. if tokens[token_id] != token:
  3273. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3274. tokens[token_id] = token
  3275. scores[token_id] = -1000.0
  3276. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3277. if foken_data.get("special"):
  3278. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3279. self.gguf_writer.add_tokenizer_model("llama")
  3280. self.gguf_writer.add_tokenizer_pre("default")
  3281. self.gguf_writer.add_token_list(tokens)
  3282. self.gguf_writer.add_token_scores(scores)
  3283. self.gguf_writer.add_token_types(toktypes)
  3284. self.gguf_writer.add_add_space_prefix(add_prefix)
  3285. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3286. old_eos = special_vocab.special_token_ids["eos"]
  3287. if chat_eos_token_id is not None:
  3288. # For the chat model, we replace the eos with '<|im_end|>'.
  3289. # TODO: this is a hack, should be fixed
  3290. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3291. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3292. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3293. " in chat mode so that the conversation can end normally.")
  3294. special_vocab.add_to_gguf(self.gguf_writer)
  3295. def set_gguf_parameters(self):
  3296. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3297. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3298. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3299. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3300. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3301. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3302. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3303. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3304. self.gguf_writer.add_file_type(self.ftype)
  3305. rope_scaling = self.hparams.get("rope_scaling") or {}
  3306. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3307. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3308. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3309. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3310. num_heads = self.hparams["num_attention_heads"]
  3311. num_kv_heads = self.hparams["num_key_value_heads"]
  3312. n_embd = self.hparams["hidden_size"]
  3313. q_per_kv = num_heads // num_kv_heads
  3314. head_dim = n_embd // num_heads
  3315. num_groups = num_heads // q_per_kv
  3316. name = name.replace("language_model.", "") # InternVL
  3317. if name.startswith("mlp") or name.startswith("vision_model"):
  3318. # skip visual tensors
  3319. return []
  3320. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3321. qkv = data_torch
  3322. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3323. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3324. # The model weights of q and k equire additional reshape.
  3325. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3326. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3327. v = v.reshape((-1, v.shape[-1]))
  3328. return [
  3329. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3330. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3331. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3332. ]
  3333. else:
  3334. return [(self.map_tensor_name(name), data_torch)]
  3335. @ModelBase.register("InternLM3ForCausalLM")
  3336. class InternLM3Model(TextModel):
  3337. model_arch = gguf.MODEL_ARCH.LLAMA
  3338. def set_vocab(self):
  3339. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3340. self.gguf_writer.add_tokenizer_model("llama")
  3341. self.gguf_writer.add_tokenizer_pre("default")
  3342. self.gguf_writer.add_token_list(tokens)
  3343. self.gguf_writer.add_token_scores(scores)
  3344. self.gguf_writer.add_token_types(toktypes)
  3345. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3346. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3347. if tokenizer_config_file.is_file():
  3348. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3349. tokenizer_config_json = json.load(f)
  3350. if "add_prefix_space" in tokenizer_config_json:
  3351. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3352. if "added_tokens_decoder" in tokenizer_config_json:
  3353. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3354. if token_data.get("special"):
  3355. token_id = int(token_id)
  3356. token = token_data["content"]
  3357. special_vocab._set_special_token(token, token_id)
  3358. # update eos token
  3359. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3360. special_vocab.special_token_ids["eos"] = token_id
  3361. special_vocab.add_to_gguf(self.gguf_writer)
  3362. def set_gguf_parameters(self):
  3363. super().set_gguf_parameters()
  3364. hparams = self.hparams
  3365. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3366. if (rope_dim := hparams.get("head_dim")) is None:
  3367. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3368. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3369. rope_scaling = self.hparams.get("rope_scaling") or {}
  3370. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3371. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3372. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3373. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3374. n_head = self.hparams["num_attention_heads"]
  3375. n_kv_head = self.hparams.get("num_key_value_heads")
  3376. name = name.replace("language_model.", "") # InternVL
  3377. if name.startswith("mlp") or name.startswith("vision_model"):
  3378. # skip visual tensors
  3379. return []
  3380. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3381. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3382. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3383. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3384. return [(self.map_tensor_name(name), data_torch)]
  3385. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3386. class BertModel(TextModel):
  3387. model_arch = gguf.MODEL_ARCH.BERT
  3388. def __init__(self, *args, **kwargs):
  3389. super().__init__(*args, **kwargs)
  3390. self.vocab_size = None
  3391. if cls_out_labels := self.hparams.get("id2label"):
  3392. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3393. # Remove dummy labels added by AutoConfig
  3394. cls_out_labels = None
  3395. self.cls_out_labels = cls_out_labels
  3396. def set_gguf_parameters(self):
  3397. super().set_gguf_parameters()
  3398. self.gguf_writer.add_causal_attention(False)
  3399. self._try_set_pooling_type()
  3400. if self.cls_out_labels:
  3401. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3402. def set_vocab(self):
  3403. tokens, toktypes, tokpre = self.get_vocab_base()
  3404. self.vocab_size = len(tokens)
  3405. # we need this to validate the size of the token_type embeddings
  3406. # though currently we are passing all zeros to the token_type embeddings
  3407. # "Sequence A" or "Sequence B"
  3408. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3409. # convert to phantom space vocab
  3410. def phantom(tok):
  3411. if tok.startswith("[") and tok.endswith("]"):
  3412. return tok
  3413. if tok.startswith("##"):
  3414. return tok[2:]
  3415. return "\u2581" + tok
  3416. tokens = list(map(phantom, tokens))
  3417. # add vocab to gguf
  3418. self.gguf_writer.add_tokenizer_model("bert")
  3419. self.gguf_writer.add_tokenizer_pre(tokpre)
  3420. self.gguf_writer.add_token_list(tokens)
  3421. self.gguf_writer.add_token_types(toktypes)
  3422. # handle special tokens
  3423. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3424. special_vocab.add_to_gguf(self.gguf_writer)
  3425. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3426. del bid # unused
  3427. if name.startswith("bert."):
  3428. name = name[5:]
  3429. if name.endswith(".gamma"):
  3430. name = name[:-6] + ".weight"
  3431. if name.endswith(".beta"):
  3432. name = name[:-5] + ".bias"
  3433. # we are only using BERT for embeddings so we don't need the pooling layer
  3434. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3435. return [] # we don't need these
  3436. if name.startswith("cls.predictions"):
  3437. return []
  3438. if name.startswith("cls.seq_relationship"):
  3439. return []
  3440. if self.cls_out_labels:
  3441. # For BertForSequenceClassification (direct projection layer)
  3442. if name == "classifier.weight":
  3443. name = "classifier.out_proj.weight"
  3444. if name == "classifier.bias":
  3445. name = "classifier.out_proj.bias"
  3446. return [(self.map_tensor_name(name), data_torch)]
  3447. def _xlmroberta_tokenizer_init(self) -> None:
  3448. # we need the pad_token_id to know how to chop down position_embd matrix
  3449. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3450. self._position_offset = 1 + pad_token_id
  3451. if "max_position_embeddings" in self.hparams:
  3452. self.hparams["max_position_embeddings"] -= self._position_offset
  3453. else:
  3454. self._position_offset = None
  3455. def _xlmroberta_set_vocab(self) -> None:
  3456. # to avoid TypeError: Descriptors cannot be created directly
  3457. # exception when importing sentencepiece_model_pb2
  3458. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3459. from sentencepiece import SentencePieceProcessor
  3460. from sentencepiece import sentencepiece_model_pb2 as model
  3461. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3462. tokenizer_json = {}
  3463. tokenizer_config_json = {}
  3464. if not tokenizer_path.is_file():
  3465. tokenizer_path = self.dir_model / 'tokenizer.json'
  3466. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3467. if not tokenizer_path.is_file():
  3468. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3469. from base64 import b64decode
  3470. from transformers import AutoTokenizer
  3471. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3472. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3473. tokenizer_json = json.load(fp)
  3474. if tokenizer_config_path.is_file():
  3475. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3476. tokenizer_config_json = json.load(fp)
  3477. add_prefix = tokenizer.add_prefix_space
  3478. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3479. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3480. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3481. else:
  3482. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3483. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3484. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3485. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3486. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3487. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3488. tokenizer = SentencePieceProcessor()
  3489. tokenizer.LoadFromFile(str(tokenizer_path))
  3490. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3491. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3492. scores: list[float] = [-10000.0] * vocab_size
  3493. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3494. if isinstance(tokenizer, SentencePieceProcessor):
  3495. for token_id in range(tokenizer.vocab_size()):
  3496. piece = tokenizer.IdToPiece(token_id)
  3497. text = piece.encode("utf-8")
  3498. score = tokenizer.GetScore(token_id)
  3499. toktype = SentencePieceTokenTypes.NORMAL
  3500. if tokenizer.IsUnknown(token_id):
  3501. toktype = SentencePieceTokenTypes.UNKNOWN
  3502. elif tokenizer.IsControl(token_id):
  3503. toktype = SentencePieceTokenTypes.CONTROL
  3504. elif tokenizer.IsUnused(token_id):
  3505. toktype = SentencePieceTokenTypes.UNUSED
  3506. elif tokenizer.IsByte(token_id):
  3507. toktype = SentencePieceTokenTypes.BYTE
  3508. tokens[token_id] = text
  3509. scores[token_id] = score
  3510. toktypes[token_id] = toktype
  3511. else:
  3512. added_vocab = tokenizer.get_added_vocab()
  3513. unk_token = tokenizer_config_json.get("unk_token")
  3514. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3515. for token_id in range(tokenizer.vocab_size):
  3516. piece = tokenizer._convert_id_to_token(token_id)
  3517. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3518. text = piece.encode("utf-8")
  3519. score = tokenizer_json["model"]["vocab"][token_id][1]
  3520. toktype = SentencePieceTokenTypes.NORMAL
  3521. if token_id == unk_token_id:
  3522. toktype = SentencePieceTokenTypes.UNKNOWN
  3523. elif token_id in tokenizer.all_special_ids:
  3524. toktype = SentencePieceTokenTypes.CONTROL
  3525. elif token_id in added_vocab.values():
  3526. toktype = SentencePieceTokenTypes.USER_DEFINED
  3527. # No reliable way to detect this, but jina doesn't have any
  3528. # elif tokenizer.IsByte(token_id):
  3529. # toktype = SentencePieceTokenTypes.BYTE
  3530. tokens[token_id] = text
  3531. scores[token_id] = score
  3532. toktypes[token_id] = toktype
  3533. if isinstance(tokenizer, SentencePieceProcessor):
  3534. # realign tokens (see HF tokenizer code)
  3535. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3536. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3537. toktypes = [
  3538. SentencePieceTokenTypes.CONTROL,
  3539. SentencePieceTokenTypes.CONTROL,
  3540. SentencePieceTokenTypes.CONTROL,
  3541. SentencePieceTokenTypes.UNKNOWN,
  3542. ] + toktypes[3:-1]
  3543. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3544. # Add mask token missing from sentencepiece.bpe.model
  3545. tokens[250001] = b'<mask>'
  3546. scores[250001] = 0.0
  3547. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3548. self.gguf_writer.add_tokenizer_model("t5")
  3549. self.gguf_writer.add_tokenizer_pre("default")
  3550. self.gguf_writer.add_token_list(tokens)
  3551. self.gguf_writer.add_token_scores(scores)
  3552. self.gguf_writer.add_token_types(toktypes)
  3553. self.gguf_writer.add_add_space_prefix(add_prefix)
  3554. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3555. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3556. if precompiled_charsmap:
  3557. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3558. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3559. special_vocab.add_to_gguf(self.gguf_writer)
  3560. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3561. class DistilBertModel(BertModel):
  3562. model_arch = gguf.MODEL_ARCH.BERT
  3563. def set_gguf_parameters(self):
  3564. self.gguf_writer.add_layer_norm_eps(1e-12)
  3565. logger.info("gguf: layer norm epsilon = 1e-12")
  3566. super().set_gguf_parameters()
  3567. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3568. if name.startswith("distilbert."):
  3569. name = name[11:]
  3570. # These layers act as MLM head, so we don't need them
  3571. if name.startswith("vocab_"):
  3572. return []
  3573. return super().modify_tensors(data_torch, name, bid)
  3574. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3575. class RobertaModel(BertModel):
  3576. model_arch = gguf.MODEL_ARCH.BERT
  3577. def __init__(self, *args, **kwargs):
  3578. super().__init__(*args, **kwargs)
  3579. # we need the pad_token_id to know how to chop down position_embd matrix
  3580. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3581. self._position_offset = 1 + pad_token_id
  3582. if "max_position_embeddings" in self.hparams:
  3583. self.hparams["max_position_embeddings"] -= self._position_offset
  3584. else:
  3585. self._position_offset = None
  3586. def set_vocab(self):
  3587. """Support BPE tokenizers for roberta models"""
  3588. bpe_tok_path = self.dir_model / "tokenizer.json"
  3589. if bpe_tok_path.exists():
  3590. self._set_vocab_gpt2()
  3591. # we need this to validate the size of the token_type embeddings
  3592. # though currently we are passing all zeros to the token_type embeddings
  3593. # "Sequence A" or "Sequence B"
  3594. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3595. else:
  3596. return super().set_vocab()
  3597. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3598. # if name starts with "roberta.", remove the prefix
  3599. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3600. if name.startswith("roberta."):
  3601. name = name[8:]
  3602. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3603. if name == "embeddings.position_embeddings.weight":
  3604. if self._position_offset is not None:
  3605. data_torch = data_torch[self._position_offset:,:]
  3606. return super().modify_tensors(data_torch, name, bid)
  3607. @ModelBase.register("NomicBertModel")
  3608. class NomicBertModel(BertModel):
  3609. model_arch = gguf.MODEL_ARCH.BERT
  3610. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3611. hparams = kwargs.pop("hparams", None)
  3612. if hparams is None:
  3613. hparams = ModelBase.load_hparams(dir_model)
  3614. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3615. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3616. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3617. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3618. if self._tokenizer_is_xlmroberta:
  3619. self._xlmroberta_tokenizer_init()
  3620. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3621. if npos == 8192 and mtp == 2048:
  3622. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3623. elif npos == 2048 and mtp == 2048:
  3624. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3625. else:
  3626. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3627. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3628. # this doesn't do anything in the HF version
  3629. assert self.hparams["causal"] is False
  3630. # no bias tensors unless MoE
  3631. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3632. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3633. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3634. # norm at end of layer
  3635. assert self.hparams["prenorm"] is False
  3636. # standard RoPE
  3637. assert self.hparams["rotary_emb_fraction"] == 1.0
  3638. assert self.hparams["rotary_emb_interleaved"] is False
  3639. assert self.hparams["rotary_emb_scale_base"] is None
  3640. def set_vocab(self) -> None:
  3641. if self._tokenizer_is_xlmroberta:
  3642. return self._xlmroberta_set_vocab()
  3643. return super().set_vocab()
  3644. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3645. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3646. if "mlp.experts.bias" in name:
  3647. return [] # Explicitly return an empty list.
  3648. if "mlp.experts.mlp.w1" in name:
  3649. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3650. name += ".weight"
  3651. if "mlp.experts.mlp.w2" in name:
  3652. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3653. data_torch = data_torch.transpose(1, 2)
  3654. name += ".weight"
  3655. return [(self.map_tensor_name(name), data_torch)]
  3656. def set_gguf_parameters(self):
  3657. super().set_gguf_parameters()
  3658. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3659. if self.is_moe:
  3660. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3661. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3662. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3663. def _is_tokenizer_xlmroberta(self) -> bool:
  3664. with open(self.dir_model / "tokenizer.json") as f:
  3665. tokenizer_json = json.load(f)
  3666. toktyp = tokenizer_json["model"]["type"]
  3667. if toktyp == "Unigram":
  3668. return True
  3669. if toktyp == "WordPiece":
  3670. return False
  3671. raise ValueError(f"unknown tokenizer: {toktyp}")
  3672. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3673. class NeoBert(BertModel):
  3674. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3675. def set_gguf_parameters(self):
  3676. super().set_gguf_parameters()
  3677. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3678. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3679. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3680. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3681. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3682. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3683. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3684. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3685. def modify_tensors(self, data_torch, name, bid):
  3686. if name.startswith("decoder."):
  3687. return []
  3688. if name.startswith("model."):
  3689. name = name[6:]
  3690. return super().modify_tensors(data_torch, name, bid)
  3691. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3692. class XLMRobertaModel(BertModel):
  3693. model_arch = gguf.MODEL_ARCH.BERT
  3694. def __init__(self, *args, **kwargs):
  3695. super().__init__(*args, **kwargs)
  3696. self._xlmroberta_tokenizer_init()
  3697. def set_vocab(self):
  3698. self._xlmroberta_set_vocab()
  3699. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3700. # if name starts with "roberta.", remove the prefix
  3701. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3702. if name.startswith("roberta."):
  3703. name = name[8:]
  3704. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3705. if name == "embeddings.position_embeddings.weight":
  3706. if self._position_offset is not None:
  3707. data_torch = data_torch[self._position_offset:,:]
  3708. return super().modify_tensors(data_torch, name, bid)
  3709. @ModelBase.register("GemmaForCausalLM")
  3710. class GemmaModel(TextModel):
  3711. model_arch = gguf.MODEL_ARCH.GEMMA
  3712. def set_vocab(self):
  3713. self._set_vocab_sentencepiece()
  3714. # TODO: these special tokens should be exported only for the CodeGemma family
  3715. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3716. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3717. special_vocab._set_special_token("prefix", 67)
  3718. special_vocab._set_special_token("suffix", 69)
  3719. special_vocab._set_special_token("middle", 68)
  3720. special_vocab._set_special_token("fsep", 70)
  3721. special_vocab._set_special_token("eot", 107)
  3722. special_vocab.chat_template = None # do not add it twice
  3723. special_vocab.add_to_gguf(self.gguf_writer)
  3724. self.gguf_writer.add_add_space_prefix(False)
  3725. def set_gguf_parameters(self):
  3726. hparams = self.hparams
  3727. block_count = hparams["num_hidden_layers"]
  3728. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3729. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3730. self.gguf_writer.add_block_count(block_count)
  3731. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3732. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3733. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3734. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3735. self.gguf_writer.add_key_length(hparams["head_dim"])
  3736. self.gguf_writer.add_value_length(hparams["head_dim"])
  3737. self.gguf_writer.add_file_type(self.ftype)
  3738. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3739. del bid # unused
  3740. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3741. # To prevent errors, skip loading lm_head.weight.
  3742. if name == "lm_head.weight":
  3743. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3744. return []
  3745. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3746. if name.endswith("norm.weight"):
  3747. data_torch = data_torch + 1
  3748. return [(self.map_tensor_name(name), data_torch)]
  3749. @ModelBase.register("Gemma2ForCausalLM")
  3750. class Gemma2Model(TextModel):
  3751. model_arch = gguf.MODEL_ARCH.GEMMA2
  3752. def set_vocab(self):
  3753. self._set_vocab_sentencepiece()
  3754. self.gguf_writer.add_add_space_prefix(False)
  3755. def set_gguf_parameters(self):
  3756. hparams = self.hparams
  3757. block_count = hparams["num_hidden_layers"]
  3758. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3759. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3760. self.gguf_writer.add_block_count(block_count)
  3761. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3762. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3763. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3764. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3765. self.gguf_writer.add_key_length(hparams["head_dim"])
  3766. self.gguf_writer.add_value_length(hparams["head_dim"])
  3767. self.gguf_writer.add_file_type(self.ftype)
  3768. self.gguf_writer.add_attn_logit_softcapping(
  3769. self.hparams["attn_logit_softcapping"]
  3770. )
  3771. self.gguf_writer.add_final_logit_softcapping(
  3772. self.hparams["final_logit_softcapping"]
  3773. )
  3774. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3775. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3776. del bid # unused
  3777. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3778. # To prevent errors, skip loading lm_head.weight.
  3779. if name == "lm_head.weight":
  3780. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3781. return []
  3782. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3783. if name.endswith("norm.weight"):
  3784. data_torch = data_torch + 1
  3785. return [(self.map_tensor_name(name), data_torch)]
  3786. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3787. class Gemma3Model(TextModel):
  3788. model_arch = gguf.MODEL_ARCH.GEMMA3
  3789. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3790. def set_vocab(self):
  3791. self._set_vocab_sentencepiece()
  3792. self.gguf_writer.add_add_space_prefix(False)
  3793. def set_gguf_parameters(self):
  3794. hparams = self.hparams
  3795. block_count = hparams["num_hidden_layers"]
  3796. # some default values are not specified in the hparams
  3797. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3798. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3799. self.gguf_writer.add_block_count(block_count)
  3800. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3801. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3802. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3803. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3804. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3805. self.gguf_writer.add_file_type(self.ftype)
  3806. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3807. # attn_logit_softcapping is removed in Gemma3
  3808. assert hparams.get("attn_logit_softcapping") is None
  3809. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3810. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3811. if hparams.get("rope_scaling") is not None:
  3812. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3813. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3814. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3815. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3817. del bid # unused
  3818. if "language_model." in name:
  3819. name = name.replace("language_model.", "")
  3820. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3821. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3822. return [] # skip vision tensors
  3823. # remove OOV (out-of-vocabulary) rows in token_embd
  3824. if "embed_tokens.weight" in name:
  3825. vocab = self._create_vocab_sentencepiece()
  3826. tokens = vocab[0]
  3827. data_torch = data_torch[:len(tokens)]
  3828. # ref code in Gemma3RMSNorm
  3829. # output = output * (1.0 + self.weight.float())
  3830. # note: this is not the case on gemma3n
  3831. if name.endswith("norm.weight"):
  3832. data_torch = data_torch + self.norm_shift
  3833. return [(self.map_tensor_name(name), data_torch)]
  3834. @ModelBase.register("Gemma3ForConditionalGeneration")
  3835. class Gemma3VisionModel(MmprojModel):
  3836. def set_gguf_parameters(self):
  3837. super().set_gguf_parameters()
  3838. hparams = self.hparams
  3839. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3840. # default values below are taken from HF tranformers code
  3841. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3842. self.gguf_writer.add_vision_use_gelu(True)
  3843. # calculate proj_scale_factor (used by tinygemma3 test model)
  3844. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3845. n_per_side = int(image_seq_length ** 0.5)
  3846. image_size = self.hparams["image_size"]
  3847. patch_size = self.hparams["patch_size"]
  3848. proj_scale_factor = (image_size // patch_size) // n_per_side
  3849. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3850. # we only need to write this if it's not the default value
  3851. # in this case, we are converting a test model
  3852. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3853. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3854. del bid, new_name, n_dims # unused
  3855. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3856. if "input_projection" in name:
  3857. return gguf.GGMLQuantizationType.F16
  3858. if ".embeddings." in name:
  3859. return gguf.GGMLQuantizationType.F32
  3860. return False
  3861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3862. del bid # unused
  3863. if "vision_model.head." in name:
  3864. return [] # skip redundant tensors for tinygemma3
  3865. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3866. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3867. # process vision tensors
  3868. name = name.replace("_weight", ".weight")
  3869. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3870. # the other norm values are part of SigLIP model, and they are already correct
  3871. # ref code: Gemma3RMSNorm
  3872. if "soft_emb_norm.weight" in name:
  3873. logger.info(f"Correcting norm value for '{name}'")
  3874. data_torch = data_torch + 1
  3875. return [(self.map_tensor_name(name), data_torch)]
  3876. return [] # skip other tensors
  3877. @ModelBase.register("Gemma3nForConditionalGeneration")
  3878. class Gemma3NModel(Gemma3Model):
  3879. model_arch = gguf.MODEL_ARCH.GEMMA3N
  3880. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  3881. _altup_proj: list[Tensor] = []
  3882. _altup_unembd: list[Tensor] = []
  3883. def __init__(self, *args, **kwargs):
  3884. super().__init__(*args, **kwargs)
  3885. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  3886. self._altup_proj = [
  3887. torch.Tensor(), # to be replaced
  3888. torch.Tensor(), # to be replaced
  3889. torch.Tensor(), # to be replaced
  3890. ]
  3891. self._altup_unembd = [
  3892. torch.Tensor(), # to be replaced
  3893. torch.Tensor(), # to be replaced
  3894. torch.Tensor(), # to be replaced
  3895. ]
  3896. def set_vocab(self):
  3897. super().set_vocab()
  3898. def set_gguf_parameters(self):
  3899. super().set_gguf_parameters()
  3900. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  3901. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  3902. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  3903. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  3904. activation_sparsity_scale = []
  3905. for s in self.hparams["activation_sparsity_pattern"]:
  3906. normal_dist = torch.distributions.normal.Normal(0, 1)
  3907. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  3908. activation_sparsity_scale.append(std_multiplier.item())
  3909. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  3910. sliding_window_pattern = []
  3911. for t in self.hparams["layer_types"]:
  3912. sliding_window_pattern.append(t == "sliding_attention")
  3913. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  3914. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  3915. has_all = all(m.numel() > 0 for m in matrices)
  3916. if not has_all:
  3917. return None
  3918. else:
  3919. return torch.stack(matrices, dim=0)
  3920. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3921. if name.endswith("_scale"):
  3922. name = name + ".weight"
  3923. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  3924. if "language_model." not in name:
  3925. return [] # skip non-language model tensors
  3926. if "altup_unembed_projections" in name:
  3927. data_torch = data_torch.to(device="cpu")
  3928. if ".0." in name:
  3929. self._altup_unembd[0] = data_torch
  3930. elif ".1." in name:
  3931. self._altup_unembd[1] = data_torch
  3932. elif ".2." in name:
  3933. self._altup_unembd[2] = data_torch
  3934. else:
  3935. raise ValueError(f"Unknown name: {name}")
  3936. out = self._stack_matrices(self._altup_unembd)
  3937. if out is not None:
  3938. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  3939. else:
  3940. return []
  3941. if "altup_projections" in name:
  3942. data_torch = data_torch.to(device="cpu")
  3943. if ".0." in name:
  3944. self._altup_proj[0] = data_torch
  3945. elif ".1." in name:
  3946. self._altup_proj[1] = data_torch
  3947. elif ".2." in name:
  3948. self._altup_proj[2] = data_torch
  3949. else:
  3950. raise ValueError(f"Unknown name: {name}")
  3951. out = self._stack_matrices(self._altup_proj)
  3952. if out is not None:
  3953. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  3954. else:
  3955. return []
  3956. return super().modify_tensors(data_torch, name, bid)
  3957. @ModelBase.register("Starcoder2ForCausalLM")
  3958. class StarCoder2Model(TextModel):
  3959. model_arch = gguf.MODEL_ARCH.STARCODER2
  3960. @ModelBase.register("Rwkv6ForCausalLM")
  3961. class Rwkv6Model(TextModel):
  3962. model_arch = gguf.MODEL_ARCH.RWKV6
  3963. def set_vocab(self):
  3964. self._set_vocab_rwkv_world()
  3965. def set_gguf_parameters(self):
  3966. block_count = self.hparams["num_hidden_layers"]
  3967. head_size = self.hparams["head_size"]
  3968. hidden_size = self.hparams["hidden_size"]
  3969. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3970. rescale_every_n_layers = self.hparams["rescale_every"]
  3971. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3972. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3973. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3974. # RWKV isn't context limited
  3975. self.gguf_writer.add_context_length(1048576)
  3976. self.gguf_writer.add_embedding_length(hidden_size)
  3977. self.gguf_writer.add_block_count(block_count)
  3978. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3979. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3980. self.gguf_writer.add_wkv_head_size(head_size)
  3981. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3982. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3983. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3984. self.gguf_writer.add_file_type(self.ftype)
  3985. # required by llama.cpp, unused
  3986. self.gguf_writer.add_head_count(0)
  3987. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3988. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3989. new_name = self.map_tensor_name(name)
  3990. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3991. new_name += ".weight"
  3992. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3993. data_torch = data_torch.transpose(0, 1)
  3994. if new_name.endswith("time_mix_w2.weight"):
  3995. data_torch = data_torch.permute(0, 2, 1)
  3996. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3997. data_torch = data_torch.squeeze()
  3998. try:
  3999. rescale_every_n_layers = self.hparams["rescale_every"]
  4000. if rescale_every_n_layers > 0:
  4001. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4002. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4003. except KeyError:
  4004. pass
  4005. # concat time_mix_lerp weights to reduce some cpu overhead
  4006. # also reduces the number of tensors in the model
  4007. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4008. try:
  4009. self.lerp_weights[bid][new_name] = data_torch
  4010. except KeyError:
  4011. self.lerp_weights[bid] = {new_name: data_torch}
  4012. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4013. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4014. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4015. yield (new_name, data)
  4016. return
  4017. yield (new_name, data_torch)
  4018. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4019. class RWKV6Qwen2Model(Rwkv6Model):
  4020. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4021. def set_vocab(self):
  4022. try:
  4023. self._set_vocab_sentencepiece()
  4024. except FileNotFoundError:
  4025. self._set_vocab_gpt2()
  4026. def set_gguf_parameters(self):
  4027. block_count = self.hparams["num_hidden_layers"]
  4028. num_attention_heads = self.hparams["num_attention_heads"]
  4029. num_key_value_heads = self.hparams["num_key_value_heads"]
  4030. hidden_size = self.hparams["hidden_size"]
  4031. head_size = hidden_size // num_attention_heads
  4032. rms_norm_eps = self.hparams["rms_norm_eps"]
  4033. intermediate_size = self.hparams["intermediate_size"]
  4034. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4035. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4036. # RWKV isn't context limited
  4037. self.gguf_writer.add_context_length(1048576)
  4038. self.gguf_writer.add_embedding_length(hidden_size)
  4039. self.gguf_writer.add_block_count(block_count)
  4040. self.gguf_writer.add_wkv_head_size(head_size)
  4041. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4042. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4043. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4044. self.gguf_writer.add_file_type(self.ftype)
  4045. # special parameters for time_mixing in RWKV6QWEN2
  4046. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4047. self.gguf_writer.add_token_shift_count(1)
  4048. # RWKV6QWEN2 use grouped key/value like GQA
  4049. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4050. # required by llama.cpp, unused
  4051. self.gguf_writer.add_head_count(0)
  4052. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4053. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4054. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4055. data = data.view(5, -1, data.shape[-1])
  4056. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4057. # permute them here to avoid code changes
  4058. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4059. if "w2" in new_name:
  4060. data = data.view(5, -1, data.shape[-1])
  4061. yield (new_name, data)
  4062. continue
  4063. yield (new_name, data)
  4064. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4065. class Rwkv7Model(TextModel):
  4066. model_arch = gguf.MODEL_ARCH.RWKV7
  4067. def set_vocab(self):
  4068. self._set_vocab_rwkv_world()
  4069. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4070. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4071. def set_gguf_parameters(self):
  4072. block_count = self.hparams["num_hidden_layers"]
  4073. try:
  4074. head_size = self.hparams["head_size"]
  4075. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4076. except KeyError:
  4077. head_size = self.hparams["head_dim"]
  4078. layer_norm_eps = self.hparams["norm_eps"]
  4079. hidden_size = self.hparams["hidden_size"]
  4080. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4081. # ICLR: In-Context-Learning-Rate
  4082. try:
  4083. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4084. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4085. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4086. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4087. except KeyError:
  4088. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4089. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4090. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4091. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4092. # RWKV isn't context limited
  4093. self.gguf_writer.add_context_length(1048576)
  4094. self.gguf_writer.add_embedding_length(hidden_size)
  4095. self.gguf_writer.add_block_count(block_count)
  4096. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4097. self.gguf_writer.add_wkv_head_size(head_size)
  4098. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4099. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4100. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4101. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4102. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4103. self.gguf_writer.add_file_type(self.ftype)
  4104. # required by llama.cpp, unused
  4105. self.gguf_writer.add_head_count(0)
  4106. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4107. lora_needs_transpose: bool = True
  4108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4109. # unify tensor names here to make life easier
  4110. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4111. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4112. name = name.replace("time_mixer.", "")
  4113. # lora layer names in fla-hub's impl
  4114. if "_lora.lora" in name:
  4115. self.lora_needs_transpose = False
  4116. name = name.replace("_lora.lora.0.weight", "1.weight")
  4117. name = name.replace("_lora.lora.2.weight", "2.weight")
  4118. name = name.replace("_lora.lora.2.bias", "0.weight")
  4119. name = name.replace("feed_forward_norm", "ln2")
  4120. name = name.replace("g_norm", "ln_x")
  4121. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4122. # some models have dummy v0/v1/v2 on first layer while others don't
  4123. # ignore them all since they are not used
  4124. return
  4125. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4126. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4127. if bid is not None and "attention.x_" in name:
  4128. if "attention.x_x" in name:
  4129. # already concatenated
  4130. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4131. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4132. yield (new_name, data)
  4133. else:
  4134. try:
  4135. self.lerp_weights[bid][name] = data_torch
  4136. except KeyError:
  4137. self.lerp_weights[bid] = {name: data_torch}
  4138. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4139. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4140. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4141. yield (new_name, data)
  4142. return
  4143. else:
  4144. data_torch = data_torch.squeeze()
  4145. new_name = self.map_tensor_name(name)
  4146. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4147. new_name += ".weight"
  4148. if self.lora_needs_transpose and any(
  4149. new_name.endswith(t) for t in [
  4150. "time_mix_w1.weight", "time_mix_w2.weight",
  4151. "time_mix_a1.weight", "time_mix_a2.weight",
  4152. "time_mix_v1.weight", "time_mix_v2.weight",
  4153. "time_mix_g1.weight", "time_mix_g2.weight",
  4154. ]
  4155. ):
  4156. data_torch = data_torch.transpose(0, 1)
  4157. if 'r_k' in new_name:
  4158. data_torch = data_torch.flatten()
  4159. if bid == 0 and "time_mix_a" in new_name:
  4160. # dummy v0/v1/v2 on first layer
  4161. # easist way to make llama happy
  4162. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4163. yield (new_name, data_torch)
  4164. @ModelBase.register("RwkvHybridForCausalLM")
  4165. class ARwkv7Model(Rwkv7Model):
  4166. model_arch = gguf.MODEL_ARCH.ARWKV7
  4167. def set_vocab(self):
  4168. try:
  4169. self._set_vocab_sentencepiece()
  4170. except FileNotFoundError:
  4171. self._set_vocab_gpt2()
  4172. def set_gguf_parameters(self):
  4173. block_count = self.hparams["num_hidden_layers"]
  4174. hidden_size = self.hparams["hidden_size"]
  4175. head_size = self.hparams["head_size"]
  4176. rms_norm_eps = self.hparams["rms_norm_eps"]
  4177. intermediate_size = self.hparams["intermediate_size"]
  4178. wkv_has_gate = self.hparams["wkv_has_gate"]
  4179. assert self.hparams["wkv_version"] == 7
  4180. # ICLR: In-Context-Learning-Rate
  4181. lora_rank_decay = 64
  4182. lora_rank_iclr = 64
  4183. lora_rank_value_residual_mix = 32
  4184. lora_rank_gate = 128 if wkv_has_gate else 0
  4185. # RWKV isn't context limited
  4186. self.gguf_writer.add_context_length(1048576)
  4187. self.gguf_writer.add_embedding_length(hidden_size)
  4188. self.gguf_writer.add_block_count(block_count)
  4189. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4190. self.gguf_writer.add_wkv_head_size(head_size)
  4191. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4192. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4193. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4194. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4195. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4196. self.gguf_writer.add_file_type(self.ftype)
  4197. self.gguf_writer.add_token_shift_count(1)
  4198. # required by llama.cpp, unused
  4199. self.gguf_writer.add_head_count(0)
  4200. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4201. class MambaModel(TextModel):
  4202. model_arch = gguf.MODEL_ARCH.MAMBA
  4203. def __init__(self, dir_model: Path, *args, **kwargs):
  4204. # Avoid using AutoConfig for hparams
  4205. hparams = kwargs.pop("hparams", None)
  4206. if hparams is None:
  4207. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4208. hparams = json.load(f)
  4209. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4210. def set_vocab(self):
  4211. vocab_size = self.hparams["vocab_size"]
  4212. # Round vocab size to next multiple of 8
  4213. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4214. # pad using ceiling division
  4215. # ref: https://stackoverflow.com/a/17511341/22827863
  4216. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4217. self.hparams["vocab_size"] = vocab_size
  4218. if (self.dir_model / "tokenizer.json").is_file():
  4219. self._set_vocab_gpt2()
  4220. elif (self.dir_model / "tokenizer.model").is_file():
  4221. self._set_vocab_sentencepiece()
  4222. else:
  4223. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4224. self._set_vocab_builtin("gpt-neox", vocab_size)
  4225. def set_gguf_parameters(self):
  4226. d_model = self.find_hparam(["hidden_size", "d_model"])
  4227. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4228. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4229. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4230. # ceiling division
  4231. # ref: https://stackoverflow.com/a/17511341/22827863
  4232. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4233. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4234. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4235. use_dt_b_c_norm = False
  4236. # For falconmamba we do apply RMS norm on B / DT and C layers
  4237. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4238. use_dt_b_c_norm = True
  4239. # Fail early for models which don't have a block expansion factor of 2
  4240. assert d_inner == 2 * d_model
  4241. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4242. self.gguf_writer.add_embedding_length(d_model)
  4243. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4244. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4245. self.gguf_writer.add_block_count(self.block_count)
  4246. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4247. self.gguf_writer.add_ssm_inner_size(d_inner)
  4248. self.gguf_writer.add_ssm_state_size(d_state)
  4249. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4250. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4251. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4252. self.gguf_writer.add_file_type(self.ftype)
  4253. _tok_embd = None
  4254. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4255. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4256. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4257. new_name = self.map_tensor_name(name)
  4258. if name.endswith(".A_log"):
  4259. logger.debug("A_log --> A ==> " + new_name)
  4260. data_torch = -torch.exp(data_torch)
  4261. # [4 1 8192 1] -> [4 8192 1 1]
  4262. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4263. data_torch = data_torch.squeeze()
  4264. # assuming token_embd.weight is seen before output.weight
  4265. if self._tok_embd is not None and new_name == output_name:
  4266. if torch.equal(self._tok_embd, data_torch):
  4267. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4268. return []
  4269. elif new_name == tok_embd_name:
  4270. self._tok_embd = data_torch
  4271. return [(new_name, data_torch)]
  4272. @ModelBase.register("Mamba2ForCausalLM")
  4273. class Mamba2Model(TextModel):
  4274. model_arch = gguf.MODEL_ARCH.MAMBA2
  4275. def __init__(self, dir_model: Path, *args, **kwargs):
  4276. # Avoid using AutoConfig for hparams
  4277. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4278. hparams = kwargs.pop("hparams", None)
  4279. if hparams is None:
  4280. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4281. hparams = json.load(f)
  4282. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4283. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4284. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4285. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4286. def set_vocab(self):
  4287. vocab_size = self.hparams["vocab_size"]
  4288. # Round vocab size to next multiple of 16
  4289. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4290. # pad using ceiling division
  4291. # ref: https://stackoverflow.com/a/17511341/22827863
  4292. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4293. self.hparams["vocab_size"] = vocab_size
  4294. if (self.dir_model / "tokenizer.model").is_file():
  4295. self._set_vocab_sentencepiece()
  4296. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4297. # mamba-codestral
  4298. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4299. elif (self.dir_model / "tokenizer.json").is_file():
  4300. self._set_vocab_gpt2()
  4301. else:
  4302. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4303. self._set_vocab_builtin("gpt-neox", vocab_size)
  4304. def set_gguf_parameters(self):
  4305. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4306. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4307. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4308. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4309. # Fail early for models which don't have a block expansion factor of 2
  4310. # TODO: does this really matter?
  4311. # skip the assertion for FalconH1 Model
  4312. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4313. assert self.d_inner == 2 * self.d_model
  4314. assert self.d_inner % head_dim == 0
  4315. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4316. self.gguf_writer.add_embedding_length(self.d_model)
  4317. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4318. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4319. self.gguf_writer.add_block_count(self.block_count)
  4320. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4321. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4322. self.gguf_writer.add_ssm_state_size(d_state)
  4323. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4324. self.gguf_writer.add_ssm_group_count(self.n_group)
  4325. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4326. self.gguf_writer.add_file_type(self.ftype)
  4327. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4328. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4329. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4330. name = name.removeprefix("model.")
  4331. if name.endswith(".dt_bias"):
  4332. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4333. new_name = self.map_tensor_name(name)
  4334. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4335. data_torch = data_torch.squeeze()
  4336. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4337. gguf.MODEL_TENSOR.SSM_A,
  4338. gguf.MODEL_TENSOR.SSM_D,
  4339. ]):
  4340. # unsqueeze A to use similar shape semantics as Mamba-1
  4341. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4342. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4343. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4344. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4345. if name.endswith(".A_log"):
  4346. logger.debug("A_log --> A ==> " + new_name)
  4347. data_torch = -torch.exp(data_torch)
  4348. yield (new_name, data_torch)
  4349. @ModelBase.register("JambaForCausalLM")
  4350. class JambaModel(TextModel):
  4351. model_arch = gguf.MODEL_ARCH.JAMBA
  4352. def get_vocab_base_pre(self, tokenizer) -> str:
  4353. del tokenizer # unused
  4354. return "gpt-2"
  4355. def set_vocab(self):
  4356. if (self.dir_model / "tokenizer.model").is_file():
  4357. # Using Jamba's tokenizer.json causes errors on model load
  4358. # (something about "byte not found in vocab"),
  4359. # but there's a working tokenizer.model
  4360. self._set_vocab_sentencepiece()
  4361. else:
  4362. # Some Jamba models only have a tokenizer.json, which works.
  4363. self._set_vocab_gpt2()
  4364. def set_gguf_parameters(self):
  4365. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4366. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4367. d_inner = self.hparams["mamba_expand"] * d_model
  4368. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4369. # ceiling division
  4370. # ref: https://stackoverflow.com/a/17511341/22827863
  4371. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4372. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4373. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4374. n_kv_head = self.hparams["num_key_value_heads"]
  4375. attn_offset = self.hparams["attn_layer_offset"]
  4376. attn_period = self.hparams["attn_layer_period"]
  4377. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4378. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4379. ]
  4380. self.gguf_writer.add_block_count(self.block_count)
  4381. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4382. self.gguf_writer.add_embedding_length(d_model)
  4383. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4384. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4385. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4386. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4387. self.gguf_writer.add_ssm_inner_size(d_inner)
  4388. self.gguf_writer.add_ssm_state_size(d_state)
  4389. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4390. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4391. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4392. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4393. self.gguf_writer.add_file_type(self.ftype)
  4394. _experts: list[dict[str, Tensor]] | None = None
  4395. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4396. # Mini-Jamba
  4397. name = name.replace(".moe.", ".feed_forward.")
  4398. if bid is not None:
  4399. moe_offset = self.hparams["expert_layer_offset"]
  4400. moe_period = self.hparams["expert_layer_period"]
  4401. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4402. name = name.replace(".experts.0.", ".")
  4403. # process the experts separately
  4404. if ".feed_forward.experts." in name:
  4405. n_experts = self.hparams["num_experts"]
  4406. assert bid is not None
  4407. if self._experts is None:
  4408. self._experts = [{} for _ in range(self.block_count)]
  4409. self._experts[bid][name] = data_torch
  4410. if len(self._experts[bid]) >= n_experts * 3:
  4411. # merge the experts into a single 3d tensor
  4412. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4413. datas: list[Tensor] = []
  4414. for xid in range(n_experts):
  4415. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4416. datas.append(self._experts[bid][ename])
  4417. del self._experts[bid][ename]
  4418. data_torch = torch.stack(datas, dim=0)
  4419. # using the same merged name as qwen2moe
  4420. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4421. new_name = self.map_tensor_name(merged_name)
  4422. yield new_name, data_torch
  4423. return
  4424. new_name = self.map_tensor_name(name)
  4425. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4426. data_torch = data_torch.squeeze()
  4427. if name.endswith(".A_log"):
  4428. logger.debug("A_log --> A ==> " + new_name)
  4429. data_torch = -torch.exp(data_torch)
  4430. yield (new_name, data_torch)
  4431. def prepare_tensors(self):
  4432. super().prepare_tensors()
  4433. if self._experts is not None:
  4434. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4435. experts = [k for d in self._experts for k in d.keys()]
  4436. if len(experts) > 0:
  4437. raise ValueError(f"Unprocessed experts: {experts}")
  4438. @ModelBase.register("CohereForCausalLM")
  4439. class CommandR2Model(TextModel):
  4440. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4441. def __init__(self, *args, **kwargs):
  4442. super().__init__(*args, **kwargs)
  4443. # max_position_embeddings = 8192 in config.json but model was actually
  4444. # trained on 128k context length
  4445. # aya-23 models don't have model_max_length specified
  4446. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4447. def set_gguf_parameters(self):
  4448. super().set_gguf_parameters()
  4449. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4450. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4451. @ModelBase.register("Cohere2ForCausalLM")
  4452. class Cohere2Model(TextModel):
  4453. model_arch = gguf.MODEL_ARCH.COHERE2
  4454. def set_gguf_parameters(self):
  4455. super().set_gguf_parameters()
  4456. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4457. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4458. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4459. rotary_pct = self.hparams["rotary_pct"]
  4460. hidden_size = self.hparams["hidden_size"]
  4461. num_attention_heads = self.hparams["num_attention_heads"]
  4462. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4463. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4464. @ModelBase.register("OlmoForCausalLM")
  4465. @ModelBase.register("OLMoForCausalLM")
  4466. class OlmoModel(TextModel):
  4467. model_arch = gguf.MODEL_ARCH.OLMO
  4468. def set_gguf_parameters(self):
  4469. super().set_gguf_parameters()
  4470. self.gguf_writer.add_layer_norm_eps(1e-5)
  4471. clip_qkv = self.hparams.get("clip_qkv")
  4472. if clip_qkv is not None:
  4473. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4474. # Same as super class, but permuting q_proj, k_proj
  4475. # Copied from: LlamaModel
  4476. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4477. del bid # unused
  4478. n_head = self.hparams["num_attention_heads"]
  4479. n_kv_head = self.hparams.get("num_key_value_heads")
  4480. if name.endswith("q_proj.weight"):
  4481. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4482. if name.endswith("k_proj.weight"):
  4483. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4484. return [(self.map_tensor_name(name), data_torch)]
  4485. @ModelBase.register("Olmo2ForCausalLM")
  4486. class Olmo2Model(TextModel):
  4487. model_arch = gguf.MODEL_ARCH.OLMO2
  4488. @ModelBase.register("OlmoeForCausalLM")
  4489. class OlmoeModel(TextModel):
  4490. model_arch = gguf.MODEL_ARCH.OLMOE
  4491. def set_gguf_parameters(self):
  4492. super().set_gguf_parameters()
  4493. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4494. if (n_experts := self.hparams.get("num_experts")) is not None:
  4495. self.gguf_writer.add_expert_count(n_experts)
  4496. _experts: list[dict[str, Tensor]] | None = None
  4497. # Copied from: Qwen2MoeModel
  4498. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4499. # process the experts separately
  4500. if name.find("experts") != -1:
  4501. n_experts = self.hparams["num_experts"]
  4502. assert bid is not None
  4503. if self._experts is None:
  4504. self._experts = [{} for _ in range(self.block_count)]
  4505. self._experts[bid][name] = data_torch
  4506. if len(self._experts[bid]) >= n_experts * 3:
  4507. tensors: list[tuple[str, Tensor]] = []
  4508. # merge the experts into a single 3d tensor
  4509. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4510. datas: list[Tensor] = []
  4511. for xid in range(n_experts):
  4512. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4513. datas.append(self._experts[bid][ename])
  4514. del self._experts[bid][ename]
  4515. data_torch = torch.stack(datas, dim=0)
  4516. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4517. new_name = self.map_tensor_name(merged_name)
  4518. tensors.append((new_name, data_torch))
  4519. return tensors
  4520. else:
  4521. return []
  4522. return [(self.map_tensor_name(name), data_torch)]
  4523. # Copied from: Qwen2MoeModel
  4524. def prepare_tensors(self):
  4525. super().prepare_tensors()
  4526. if self._experts is not None:
  4527. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4528. experts = [k for d in self._experts for k in d.keys()]
  4529. if len(experts) > 0:
  4530. raise ValueError(f"Unprocessed experts: {experts}")
  4531. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4532. class JinaBertV2Model(BertModel):
  4533. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4534. def set_vocab(self):
  4535. tokenizer_class = 'BertTokenizer'
  4536. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4537. tokenizer_class = json.load(f)['tokenizer_class']
  4538. if tokenizer_class == 'BertTokenizer':
  4539. super().set_vocab()
  4540. elif tokenizer_class == 'RobertaTokenizer':
  4541. self._set_vocab_gpt2()
  4542. self.gguf_writer.add_token_type_count(2)
  4543. else:
  4544. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4545. @ModelBase.register("OpenELMForCausalLM")
  4546. class OpenELMModel(TextModel):
  4547. model_arch = gguf.MODEL_ARCH.OPENELM
  4548. @staticmethod
  4549. def _make_divisible(v: float | int, divisor: int) -> int:
  4550. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4551. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4552. # Make sure that round down does not go down by more than 10%.
  4553. if new_v < 0.9 * v:
  4554. new_v += divisor
  4555. return new_v
  4556. def __init__(self, *args, **kwargs):
  4557. super().__init__(*args, **kwargs)
  4558. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4559. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4560. self._n_embd: int = self.hparams["model_dim"]
  4561. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4562. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4563. self._ffn_dims: list[int] = [
  4564. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4565. for multiplier in ffn_multipliers
  4566. ]
  4567. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4568. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4569. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4570. def set_vocab(self):
  4571. try:
  4572. self._set_vocab_sentencepiece()
  4573. except FileNotFoundError:
  4574. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4575. def set_gguf_parameters(self):
  4576. n_embd = self._n_embd
  4577. head_dim = self.hparams["head_dim"]
  4578. rot_pct = 1.0
  4579. assert self.block_count == len(self._num_kv_heads)
  4580. assert self.block_count == len(self._num_query_heads)
  4581. assert self.block_count == len(self._ffn_dims)
  4582. self.gguf_writer.add_block_count(self.block_count)
  4583. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4584. self.gguf_writer.add_embedding_length(n_embd)
  4585. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4586. self.gguf_writer.add_head_count(self._num_query_heads)
  4587. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4588. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4589. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4590. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4591. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4592. self.gguf_writer.add_key_length(head_dim)
  4593. self.gguf_writer.add_value_length(head_dim)
  4594. self.gguf_writer.add_file_type(self.ftype)
  4595. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4596. if "n_layers" in keys:
  4597. return self.hparams["num_transformer_layers"]
  4598. return super().find_hparam(keys, optional)
  4599. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4600. # split ff
  4601. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4602. ff_dim = self._ffn_dims[bid]
  4603. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4604. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4605. return
  4606. yield (self.map_tensor_name(name), data_torch)
  4607. @ModelBase.register("ArcticForCausalLM")
  4608. class ArcticModel(TextModel):
  4609. model_arch = gguf.MODEL_ARCH.ARCTIC
  4610. def set_vocab(self):
  4611. # The reason for using a custom implementation here is that the
  4612. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4613. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4614. from sentencepiece import SentencePieceProcessor
  4615. tokenizer_path = self.dir_model / 'tokenizer.model'
  4616. if not tokenizer_path.is_file():
  4617. logger.error(f'Error: Missing {tokenizer_path}')
  4618. sys.exit(1)
  4619. # Read the whole vocabulary from the tokenizer.model file
  4620. tokenizer = SentencePieceProcessor()
  4621. tokenizer.LoadFromFile(str(tokenizer_path))
  4622. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4623. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4624. scores: list[float] = [-10000.0] * vocab_size
  4625. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4626. for token_id in range(tokenizer.vocab_size()):
  4627. piece = tokenizer.IdToPiece(token_id)
  4628. text = piece.encode("utf-8")
  4629. score = tokenizer.GetScore(token_id)
  4630. toktype = SentencePieceTokenTypes.NORMAL
  4631. if tokenizer.IsUnknown(token_id):
  4632. toktype = SentencePieceTokenTypes.UNKNOWN
  4633. elif tokenizer.IsControl(token_id):
  4634. toktype = SentencePieceTokenTypes.CONTROL
  4635. elif tokenizer.IsUnused(token_id):
  4636. toktype = SentencePieceTokenTypes.UNUSED
  4637. elif tokenizer.IsByte(token_id):
  4638. toktype = SentencePieceTokenTypes.BYTE
  4639. tokens[token_id] = text
  4640. scores[token_id] = score
  4641. toktypes[token_id] = toktype
  4642. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4643. # of information about added/redefined tokens and modify them accordingly.
  4644. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4645. if tokenizer_config_file.is_file():
  4646. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4647. tokenizer_config_json = json.load(f)
  4648. if "added_tokens_decoder" in tokenizer_config_json:
  4649. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4650. for token_id, token_json in added_tokens_decoder.items():
  4651. token_id = int(token_id)
  4652. if token_id >= vocab_size:
  4653. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4654. continue
  4655. token_content = token_json["content"]
  4656. token_type = SentencePieceTokenTypes.USER_DEFINED
  4657. token_score = -10000.0
  4658. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4659. # Set the score to 0.0 as in the original tokenizer.model
  4660. if ("special" in token_json) and token_json["special"]:
  4661. if token_content == tokenizer_config_json["unk_token"]:
  4662. token_type = SentencePieceTokenTypes.UNKNOWN
  4663. else:
  4664. token_type = SentencePieceTokenTypes.CONTROL
  4665. token_score = 0.0
  4666. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4667. tokens[token_id] = token_content.encode("utf-8")
  4668. toktypes[token_id] = token_type
  4669. scores[token_id] = token_score
  4670. self.gguf_writer.add_tokenizer_model("llama")
  4671. self.gguf_writer.add_tokenizer_pre("default")
  4672. self.gguf_writer.add_token_list(tokens)
  4673. self.gguf_writer.add_token_scores(scores)
  4674. self.gguf_writer.add_token_types(toktypes)
  4675. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4676. special_vocab.add_to_gguf(self.gguf_writer)
  4677. def set_gguf_parameters(self):
  4678. super().set_gguf_parameters()
  4679. hparams = self.hparams
  4680. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4681. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4682. _experts: list[dict[str, Tensor]] | None = None
  4683. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4684. n_head = self.hparams["num_attention_heads"]
  4685. n_kv_head = self.hparams.get("num_key_value_heads")
  4686. if name.endswith("q_proj.weight"):
  4687. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4688. if name.endswith("k_proj.weight"):
  4689. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4690. # process the experts separately
  4691. if name.find("block_sparse_moe.experts") != -1:
  4692. n_experts = self.hparams["num_local_experts"]
  4693. assert bid is not None
  4694. if self._experts is None:
  4695. self._experts = [{} for _ in range(self.block_count)]
  4696. self._experts[bid][name] = data_torch
  4697. if len(self._experts[bid]) >= n_experts * 3:
  4698. tensors: list[tuple[str, Tensor]] = []
  4699. # merge the experts into a single 3d tensor
  4700. for wid in ["w1", "w2", "w3"]:
  4701. datas: list[Tensor] = []
  4702. for xid in range(n_experts):
  4703. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4704. datas.append(self._experts[bid][ename])
  4705. del self._experts[bid][ename]
  4706. data_torch = torch.stack(datas, dim=0)
  4707. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4708. new_name = self.map_tensor_name(merged_name)
  4709. tensors.append((new_name, data_torch))
  4710. return tensors
  4711. else:
  4712. return []
  4713. return [(self.map_tensor_name(name), data_torch)]
  4714. def prepare_tensors(self):
  4715. super().prepare_tensors()
  4716. if self._experts is not None:
  4717. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4718. experts = [k for d in self._experts for k in d.keys()]
  4719. if len(experts) > 0:
  4720. raise ValueError(f"Unprocessed experts: {experts}")
  4721. @ModelBase.register("DeepseekForCausalLM")
  4722. class DeepseekModel(TextModel):
  4723. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4724. def set_vocab(self):
  4725. try:
  4726. self._set_vocab_sentencepiece()
  4727. except FileNotFoundError:
  4728. self._set_vocab_gpt2()
  4729. def set_gguf_parameters(self):
  4730. super().set_gguf_parameters()
  4731. hparams = self.hparams
  4732. if (rope_dim := hparams.get("head_dim")) is None:
  4733. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4734. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4735. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4736. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4737. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4738. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4739. self.gguf_writer.add_expert_weights_scale(1.0)
  4740. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4741. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4742. _experts: list[dict[str, Tensor]] | None = None
  4743. @staticmethod
  4744. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4745. if n_head_kv is not None and n_head != n_head_kv:
  4746. n_head = n_head_kv
  4747. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4748. .swapaxes(1, 2)
  4749. .reshape(weights.shape))
  4750. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4751. n_head = self.hparams["num_attention_heads"]
  4752. n_kv_head = self.hparams.get("num_key_value_heads")
  4753. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4754. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4755. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4756. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4757. # process the experts separately
  4758. if name.find("mlp.experts") != -1:
  4759. n_experts = self.hparams["n_routed_experts"]
  4760. assert bid is not None
  4761. if self._experts is None:
  4762. self._experts = [{} for _ in range(self.block_count)]
  4763. self._experts[bid][name] = data_torch
  4764. if len(self._experts[bid]) >= n_experts * 3:
  4765. tensors: list[tuple[str, Tensor]] = []
  4766. # merge the experts into a single 3d tensor
  4767. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4768. datas: list[Tensor] = []
  4769. for xid in range(n_experts):
  4770. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4771. datas.append(self._experts[bid][ename])
  4772. del self._experts[bid][ename]
  4773. data_torch = torch.stack(datas, dim=0)
  4774. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4775. new_name = self.map_tensor_name(merged_name)
  4776. tensors.append((new_name, data_torch))
  4777. return tensors
  4778. else:
  4779. return []
  4780. return [(self.map_tensor_name(name), data_torch)]
  4781. def prepare_tensors(self):
  4782. super().prepare_tensors()
  4783. if self._experts is not None:
  4784. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4785. experts = [k for d in self._experts for k in d.keys()]
  4786. if len(experts) > 0:
  4787. raise ValueError(f"Unprocessed experts: {experts}")
  4788. @ModelBase.register("DeepseekV2ForCausalLM")
  4789. @ModelBase.register("DeepseekV3ForCausalLM")
  4790. class DeepseekV2Model(TextModel):
  4791. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4792. def set_vocab(self):
  4793. try:
  4794. self._set_vocab_gpt2()
  4795. return
  4796. except Exception:
  4797. pass
  4798. from transformers import AutoTokenizer
  4799. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4800. tokpre = self.get_vocab_base_pre(tokenizer)
  4801. if tokpre == "kimi-k2":
  4802. # Build merges list using the approach similar to HunYuanMoE
  4803. merges = []
  4804. vocab = {}
  4805. mergeable_ranks = tokenizer.model._mergeable_ranks
  4806. for token, rank in mergeable_ranks.items():
  4807. vocab[QwenModel.token_bytes_to_string(token)] = rank
  4808. if len(token) == 1:
  4809. continue
  4810. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  4811. if len(merged) == 2:
  4812. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  4813. # Build token list
  4814. vocab_size = self.hparams["vocab_size"]
  4815. special_tokens = tokenizer.special_tokens
  4816. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  4817. tokens: list[str] = []
  4818. toktypes: list[int] = []
  4819. for i in range(vocab_size):
  4820. if i not in reverse_vocab:
  4821. tokens.append(f"[PAD{i}]")
  4822. toktypes.append(gguf.TokenType.UNUSED)
  4823. else:
  4824. token = reverse_vocab[i]
  4825. tokens.append(token)
  4826. if i in special_tokens.values():
  4827. toktypes.append(gguf.TokenType.CONTROL)
  4828. else:
  4829. toktypes.append(gguf.TokenType.NORMAL)
  4830. self.gguf_writer.add_tokenizer_model("gpt2")
  4831. self.gguf_writer.add_tokenizer_pre(tokpre)
  4832. self.gguf_writer.add_token_list(tokens)
  4833. self.gguf_writer.add_token_types(toktypes)
  4834. self.gguf_writer.add_token_merges(merges)
  4835. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  4836. special_vocab.add_to_gguf(self.gguf_writer)
  4837. else:
  4838. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  4839. def set_gguf_parameters(self):
  4840. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4841. self.hparams["num_key_value_heads"] = 1
  4842. super().set_gguf_parameters()
  4843. hparams = self.hparams
  4844. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4845. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4846. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4847. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4848. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4849. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4850. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4851. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4852. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4853. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4854. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4855. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4856. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4857. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4858. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4859. if hparams["scoring_func"] == "sigmoid":
  4860. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4861. elif hparams["scoring_func"] == "softmax":
  4862. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4863. else:
  4864. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4865. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4866. rope_scaling = self.hparams.get("rope_scaling") or {}
  4867. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4868. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4869. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4870. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4871. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4872. _experts: list[dict[str, Tensor]] | None = None
  4873. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4874. # rename e_score_correction_bias tensors
  4875. if name.endswith("e_score_correction_bias"):
  4876. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4877. # skip Multi-Token Prediction (MTP) layers
  4878. block_count = self.hparams["num_hidden_layers"]
  4879. match = re.match(r"model.layers.(\d+)", name)
  4880. if match and int(match.group(1)) >= block_count:
  4881. return []
  4882. # process the experts separately
  4883. if name.find("mlp.experts") != -1:
  4884. n_experts = self.hparams["n_routed_experts"]
  4885. assert bid is not None
  4886. if self._experts is None:
  4887. self._experts = [{} for _ in range(self.block_count)]
  4888. self._experts[bid][name] = data_torch
  4889. if len(self._experts[bid]) >= n_experts * 3:
  4890. tensors: list[tuple[str, Tensor]] = []
  4891. # merge the experts into a single 3d tensor
  4892. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4893. datas: list[Tensor] = []
  4894. for xid in range(n_experts):
  4895. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4896. datas.append(self._experts[bid][ename])
  4897. del self._experts[bid][ename]
  4898. data_torch = torch.stack(datas, dim=0)
  4899. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4900. new_name = self.map_tensor_name(merged_name)
  4901. tensors.append((new_name, data_torch))
  4902. return tensors
  4903. else:
  4904. return []
  4905. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4906. if name.endswith("kv_b_proj.weight"):
  4907. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4908. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4909. n_head_kv = self.hparams["num_key_value_heads"]
  4910. v_head_dim = self.hparams["v_head_dim"]
  4911. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4912. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4913. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4914. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4915. k_b = k_b.transpose(1, 2)
  4916. return [
  4917. (self.map_tensor_name(name_kb), k_b),
  4918. (self.map_tensor_name(name_vb), v_b)
  4919. ]
  4920. return [(self.map_tensor_name(name), data_torch)]
  4921. def prepare_tensors(self):
  4922. super().prepare_tensors()
  4923. if self._experts is not None:
  4924. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4925. experts = [k for d in self._experts for k in d.keys()]
  4926. if len(experts) > 0:
  4927. raise ValueError(f"Unprocessed experts: {experts}")
  4928. @ModelBase.register("Dots1ForCausalLM")
  4929. class Dots1Model(Qwen2MoeModel):
  4930. model_arch = gguf.MODEL_ARCH.DOTS1
  4931. def __init__(self, *args, **kwargs):
  4932. super().__init__(*args, **kwargs)
  4933. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  4934. def set_gguf_parameters(self):
  4935. super().set_gguf_parameters()
  4936. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  4937. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  4938. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  4939. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  4940. if self.hparams["scoring_func"] == "noaux_tc":
  4941. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4942. else:
  4943. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  4944. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  4945. if name.endswith("e_score_correction_bias"):
  4946. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4947. if "shared_experts" in name:
  4948. return [(self.map_tensor_name(name), data_torch)]
  4949. return super().modify_tensors(data_torch, name, bid)
  4950. @ModelBase.register("PLMForCausalLM")
  4951. class PLMModel(TextModel):
  4952. model_arch = gguf.MODEL_ARCH.PLM
  4953. def set_vocab(self):
  4954. self._set_vocab_gpt2()
  4955. def set_gguf_parameters(self):
  4956. super().set_gguf_parameters()
  4957. hparams = self.hparams
  4958. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4959. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4960. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4961. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4962. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4963. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4964. return [(self.map_tensor_name(name), data_torch)]
  4965. def prepare_tensors(self):
  4966. super().prepare_tensors()
  4967. @ModelBase.register("T5WithLMHeadModel")
  4968. @ModelBase.register("T5ForConditionalGeneration")
  4969. @ModelBase.register("MT5ForConditionalGeneration")
  4970. @ModelBase.register("UMT5ForConditionalGeneration")
  4971. class T5Model(TextModel):
  4972. model_arch = gguf.MODEL_ARCH.T5
  4973. def __init__(self, *args, **kwargs):
  4974. super().__init__(*args, **kwargs)
  4975. self.shared_token_embeddings_found = False
  4976. def set_vocab(self):
  4977. # to avoid TypeError: Descriptors cannot be created directly
  4978. # exception when importing sentencepiece_model_pb2
  4979. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4980. from sentencepiece import SentencePieceProcessor
  4981. from sentencepiece import sentencepiece_model_pb2 as model
  4982. tokenizer_path = self.dir_model / 'tokenizer.model'
  4983. # many older models use spiece.model tokenizer model filename
  4984. if not tokenizer_path.is_file():
  4985. tokenizer_path = self.dir_model / 'spiece.model'
  4986. if not tokenizer_path.is_file():
  4987. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4988. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4989. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4990. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4991. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4992. # assure the tokenizer model file name is correct
  4993. assert tokenizer_path.name == 'tokenizer.model'
  4994. return self._set_vocab_sentencepiece()
  4995. else:
  4996. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4997. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4998. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4999. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5000. tokenizer = SentencePieceProcessor()
  5001. tokenizer.LoadFromFile(str(tokenizer_path))
  5002. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5003. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5004. scores: list[float] = [-10000.0] * vocab_size
  5005. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5006. for token_id in range(tokenizer.vocab_size()):
  5007. piece = tokenizer.IdToPiece(token_id)
  5008. text = piece.encode("utf-8")
  5009. score = tokenizer.GetScore(token_id)
  5010. toktype = SentencePieceTokenTypes.NORMAL
  5011. if tokenizer.IsUnknown(token_id):
  5012. toktype = SentencePieceTokenTypes.UNKNOWN
  5013. elif tokenizer.IsControl(token_id):
  5014. toktype = SentencePieceTokenTypes.CONTROL
  5015. elif tokenizer.IsUnused(token_id):
  5016. toktype = SentencePieceTokenTypes.UNUSED
  5017. elif tokenizer.IsByte(token_id):
  5018. toktype = SentencePieceTokenTypes.BYTE
  5019. tokens[token_id] = text
  5020. scores[token_id] = score
  5021. toktypes[token_id] = toktype
  5022. added_tokens_file = self.dir_model / 'added_tokens.json'
  5023. if added_tokens_file.is_file():
  5024. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5025. added_tokens_json = json.load(f)
  5026. for key in added_tokens_json:
  5027. token_id = added_tokens_json[key]
  5028. if token_id >= vocab_size:
  5029. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5030. continue
  5031. tokens[token_id] = key.encode("utf-8")
  5032. scores[token_id] = -1000.0
  5033. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5034. if vocab_size > len(tokens):
  5035. pad_count = vocab_size - len(tokens)
  5036. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5037. for i in range(1, pad_count + 1):
  5038. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5039. scores.append(-1000.0)
  5040. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5041. self.gguf_writer.add_tokenizer_model("t5")
  5042. self.gguf_writer.add_tokenizer_pre("default")
  5043. self.gguf_writer.add_token_list(tokens)
  5044. self.gguf_writer.add_token_scores(scores)
  5045. self.gguf_writer.add_token_types(toktypes)
  5046. self.gguf_writer.add_add_space_prefix(add_prefix)
  5047. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5048. if precompiled_charsmap:
  5049. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5050. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5051. special_vocab.add_to_gguf(self.gguf_writer)
  5052. def set_gguf_parameters(self):
  5053. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5054. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5055. n_ctx = 512
  5056. self.gguf_writer.add_context_length(n_ctx)
  5057. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5058. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5059. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5060. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5061. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5062. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5063. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5064. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5065. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5066. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5067. self.gguf_writer.add_file_type(self.ftype)
  5068. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5069. del bid # unused
  5070. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5071. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5072. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5073. # and decoder and ignore the remaining ones.
  5074. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5075. if not self.shared_token_embeddings_found:
  5076. name = "shared.weight"
  5077. self.shared_token_embeddings_found = True
  5078. else:
  5079. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5080. return []
  5081. return [(self.map_tensor_name(name), data_torch)]
  5082. @ModelBase.register("T5EncoderModel")
  5083. class T5EncoderModel(TextModel):
  5084. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5085. def __init__(self, *args, **kwargs):
  5086. super().__init__(*args, **kwargs)
  5087. self.shared_token_embeddings_found = False
  5088. def set_vocab(self):
  5089. # to avoid TypeError: Descriptors cannot be created directly
  5090. # exception when importing sentencepiece_model_pb2
  5091. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5092. from sentencepiece import SentencePieceProcessor
  5093. from sentencepiece import sentencepiece_model_pb2 as model
  5094. tokenizer_path = self.dir_model / 'tokenizer.model'
  5095. # many older models use spiece.model tokenizer model filename
  5096. if not tokenizer_path.is_file():
  5097. tokenizer_path = self.dir_model / 'spiece.model'
  5098. if not tokenizer_path.is_file():
  5099. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5100. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5101. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5102. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5103. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5104. # assure the tokenizer model file name is correct
  5105. assert tokenizer_path.name == 'tokenizer.model'
  5106. return self._set_vocab_sentencepiece()
  5107. else:
  5108. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5109. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5110. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5111. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5112. tokenizer = SentencePieceProcessor()
  5113. tokenizer.LoadFromFile(str(tokenizer_path))
  5114. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5115. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5116. scores: list[float] = [-10000.0] * vocab_size
  5117. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5118. for token_id in range(tokenizer.vocab_size()):
  5119. piece = tokenizer.IdToPiece(token_id)
  5120. text = piece.encode("utf-8")
  5121. score = tokenizer.GetScore(token_id)
  5122. toktype = SentencePieceTokenTypes.NORMAL
  5123. if tokenizer.IsUnknown(token_id):
  5124. toktype = SentencePieceTokenTypes.UNKNOWN
  5125. elif tokenizer.IsControl(token_id):
  5126. toktype = SentencePieceTokenTypes.CONTROL
  5127. elif tokenizer.IsUnused(token_id):
  5128. toktype = SentencePieceTokenTypes.UNUSED
  5129. elif tokenizer.IsByte(token_id):
  5130. toktype = SentencePieceTokenTypes.BYTE
  5131. tokens[token_id] = text
  5132. scores[token_id] = score
  5133. toktypes[token_id] = toktype
  5134. added_tokens_file = self.dir_model / 'added_tokens.json'
  5135. if added_tokens_file.is_file():
  5136. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5137. added_tokens_json = json.load(f)
  5138. for key in added_tokens_json:
  5139. token_id = added_tokens_json[key]
  5140. if token_id >= vocab_size:
  5141. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5142. continue
  5143. tokens[token_id] = key.encode("utf-8")
  5144. scores[token_id] = -1000.0
  5145. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5146. if vocab_size > len(tokens):
  5147. pad_count = vocab_size - len(tokens)
  5148. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5149. for i in range(1, pad_count + 1):
  5150. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5151. scores.append(-1000.0)
  5152. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5153. self.gguf_writer.add_tokenizer_model("t5")
  5154. self.gguf_writer.add_tokenizer_pre("default")
  5155. self.gguf_writer.add_token_list(tokens)
  5156. self.gguf_writer.add_token_scores(scores)
  5157. self.gguf_writer.add_token_types(toktypes)
  5158. self.gguf_writer.add_add_space_prefix(add_prefix)
  5159. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5160. if precompiled_charsmap:
  5161. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5162. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5163. special_vocab.add_to_gguf(self.gguf_writer)
  5164. def set_gguf_parameters(self):
  5165. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5166. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5167. n_ctx = 512
  5168. self.gguf_writer.add_context_length(n_ctx)
  5169. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5170. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5171. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5172. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5173. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5174. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5175. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5176. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5177. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5178. self.gguf_writer.add_file_type(self.ftype)
  5179. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5180. del bid # unused
  5181. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5182. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5183. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5184. # and decoder and ignore the remaining ones.
  5185. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5186. if not self.shared_token_embeddings_found:
  5187. name = "shared.weight"
  5188. self.shared_token_embeddings_found = True
  5189. else:
  5190. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5191. return []
  5192. return [(self.map_tensor_name(name), data_torch)]
  5193. @ModelBase.register("JAISLMHeadModel")
  5194. class JaisModel(TextModel):
  5195. model_arch = gguf.MODEL_ARCH.JAIS
  5196. def __init__(self, *args, **kwargs):
  5197. super().__init__(*args, **kwargs)
  5198. # SwigLU activation
  5199. assert self.hparams["activation_function"] == "swiglu"
  5200. # ALiBi position embedding
  5201. assert self.hparams["position_embedding_type"] == "alibi"
  5202. # Embeddings scale
  5203. self.embeddings_scale = 1.0
  5204. if 'mup_embeddings_scale' in self.hparams:
  5205. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5206. elif 'embeddings_scale' in self.hparams:
  5207. self.embeddings_scale = self.hparams['embeddings_scale']
  5208. else:
  5209. assert False
  5210. self.width_scale = 1.0
  5211. if 'mup_output_alpha' in self.hparams:
  5212. assert 'mup_width_scale' in self.hparams
  5213. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5214. elif 'width_scale' in self.hparams:
  5215. self.width_scale = self.hparams['width_scale']
  5216. else:
  5217. assert False
  5218. self.max_alibi_bias = 8.0
  5219. def set_vocab(self):
  5220. self._set_vocab_gpt2()
  5221. def set_gguf_parameters(self):
  5222. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5223. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5224. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5225. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5226. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5227. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5228. self.gguf_writer.add_file_type(self.ftype)
  5229. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5230. del bid # unused
  5231. tensors: list[tuple[str, Tensor]] = []
  5232. # we don't need these
  5233. if name.endswith((".attn.bias")):
  5234. return tensors
  5235. if name.endswith(("relative_pe.slopes")):
  5236. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5237. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5238. # but Jais's PyTorch model simply precalculates the slope values and places them
  5239. # in relative_pes.slopes
  5240. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5241. first_val = float(data_torch[0].item())
  5242. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5243. return tensors
  5244. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5245. data_torch = data_torch.transpose(1, 0)
  5246. new_name = self.map_tensor_name(name)
  5247. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5248. tensors.append((new_name, data_torch * self.embeddings_scale))
  5249. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5250. tensors.append((new_name, data_torch * self.width_scale))
  5251. else:
  5252. tensors.append((new_name, data_torch))
  5253. return tensors
  5254. def prepare_tensors(self):
  5255. super().prepare_tensors()
  5256. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5257. @ModelBase.register("Glm4ForCausalLM")
  5258. class Glm4Model(TextModel):
  5259. model_arch = gguf.MODEL_ARCH.GLM4
  5260. def set_vocab(self):
  5261. from transformers import AutoTokenizer
  5262. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5263. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5264. tokens, toktypes, tokpre = self.get_vocab_base()
  5265. self.gguf_writer.add_tokenizer_model("gpt2")
  5266. self.gguf_writer.add_tokenizer_pre(tokpre)
  5267. self.gguf_writer.add_token_list(tokens)
  5268. self.gguf_writer.add_token_types(toktypes)
  5269. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5270. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5271. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5272. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5273. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5274. special_vocab.add_to_gguf(self.gguf_writer)
  5275. def set_gguf_parameters(self):
  5276. super().set_gguf_parameters()
  5277. rope_dim = self.hparams["head_dim"]
  5278. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5279. rope_scaling = self.hparams.get("rope_scaling") or {}
  5280. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5281. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5282. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5283. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5284. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5285. class ChatGLMModel(TextModel):
  5286. model_arch = gguf.MODEL_ARCH.CHATGLM
  5287. def set_vocab_chatglm3(self):
  5288. dir_model = self.dir_model
  5289. hparams = self.hparams
  5290. tokens: list[bytes] = []
  5291. toktypes: list[int] = []
  5292. scores: list[float] = []
  5293. from transformers import AutoTokenizer
  5294. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5295. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5296. assert max(tokenizer.get_vocab().values()) < vocab_size
  5297. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5298. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5299. for token_id in range(vocab_size):
  5300. piece = tokenizer._convert_id_to_token(token_id)
  5301. if token_id == 0:
  5302. piece = "<unk>"
  5303. elif token_id == 1:
  5304. piece = "<bos>"
  5305. elif token_id == 2:
  5306. piece = "<eos>"
  5307. text = piece.encode("utf-8")
  5308. score = 0.0
  5309. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5310. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5311. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5312. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5313. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5314. if piece in special_tokens:
  5315. toktype = SentencePieceTokenTypes.CONTROL
  5316. elif len(piece) == 0:
  5317. text = f"[PAD{token_id}]".encode("utf-8")
  5318. toktype = SentencePieceTokenTypes.UNUSED
  5319. else:
  5320. toktype = SentencePieceTokenTypes.USER_DEFINED
  5321. tokens.append(text)
  5322. scores.append(score)
  5323. toktypes.append(toktype)
  5324. continue
  5325. toktype = SentencePieceTokenTypes.NORMAL
  5326. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5327. toktype = SentencePieceTokenTypes.UNKNOWN
  5328. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5329. toktype = SentencePieceTokenTypes.CONTROL
  5330. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5331. toktype = SentencePieceTokenTypes.UNUSED
  5332. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5333. toktype = SentencePieceTokenTypes.BYTE
  5334. tokens.append(text)
  5335. scores.append(score)
  5336. toktypes.append(toktype)
  5337. self.gguf_writer.add_tokenizer_model("llama")
  5338. # glm3 needs prefix and suffix formatted as:
  5339. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5340. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5341. self.gguf_writer.add_token_list(tokens)
  5342. self.gguf_writer.add_token_scores(scores)
  5343. self.gguf_writer.add_token_types(toktypes)
  5344. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5345. special_vocab.add_to_gguf(self.gguf_writer)
  5346. @staticmethod
  5347. def token_bytes_to_string(b):
  5348. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5349. byte_encoder = bytes_to_unicode()
  5350. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5351. @staticmethod
  5352. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5353. parts = [bytes([b]) for b in token]
  5354. while True:
  5355. min_idx = None
  5356. min_rank = None
  5357. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5358. rank = mergeable_ranks.get(pair[0] + pair[1])
  5359. if rank is not None and (min_rank is None or rank < min_rank):
  5360. min_idx = i
  5361. min_rank = rank
  5362. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5363. break
  5364. assert min_idx is not None
  5365. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5366. return parts
  5367. def set_vocab(self):
  5368. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5369. self.set_vocab_chatglm3()
  5370. return
  5371. dir_model = self.dir_model
  5372. hparams = self.hparams
  5373. tokens: list[str] = []
  5374. toktypes: list[int] = []
  5375. from transformers import AutoTokenizer
  5376. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5377. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5378. assert max(tokenizer.get_vocab().values()) < vocab_size
  5379. tokens, toktypes, tokpre = self.get_vocab_base()
  5380. self.gguf_writer.add_tokenizer_model("gpt2")
  5381. self.gguf_writer.add_tokenizer_pre(tokpre)
  5382. self.gguf_writer.add_token_list(tokens)
  5383. self.gguf_writer.add_token_types(toktypes)
  5384. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5385. # only add special tokens when they were not already loaded from config.json
  5386. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5387. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5388. # this one is usually not in config.json anyway
  5389. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5390. special_vocab.add_to_gguf(self.gguf_writer)
  5391. def set_gguf_parameters(self):
  5392. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5393. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5394. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5395. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5396. self.gguf_writer.add_embedding_length(n_embed)
  5397. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5398. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5399. self.gguf_writer.add_head_count(n_head)
  5400. self.gguf_writer.add_head_count_kv(n_head_kv)
  5401. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5402. self.gguf_writer.add_file_type(self.ftype)
  5403. if "attention_dim" in self.hparams:
  5404. rope_dim = self.hparams["attention_dim"]
  5405. else:
  5406. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5407. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5408. self.gguf_writer.add_add_bos_token(False)
  5409. rope_freq = 10000
  5410. if "rope_ratio" in self.hparams:
  5411. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5412. self.gguf_writer.add_rope_freq_base(rope_freq)
  5413. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5414. del bid # unused
  5415. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5416. return []
  5417. name = name.removeprefix("transformer.")
  5418. return [(self.map_tensor_name(name), data_torch)]
  5419. @ModelBase.register("NemotronForCausalLM")
  5420. class NemotronModel(TextModel):
  5421. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5422. def set_vocab(self):
  5423. self._set_vocab_sentencepiece()
  5424. self.gguf_writer.add_pad_token_id(0)
  5425. self.gguf_writer.add_unk_token_id(1)
  5426. def set_gguf_parameters(self):
  5427. super().set_gguf_parameters()
  5428. hparams = self.hparams
  5429. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5430. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5431. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5432. # * Partial RoPE
  5433. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5434. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5435. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5436. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5437. # * RopeScaling for Nemotron
  5438. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5439. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5440. else:
  5441. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5442. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5443. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5444. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5445. # model.layers.{l}.input_layernorm.weight
  5446. # model.layers.{l}.post_attention_layernorm.weight
  5447. # model.norm.weight
  5448. if name.endswith("norm.weight"):
  5449. data_torch = data_torch + 1
  5450. return [(self.map_tensor_name(name), data_torch)]
  5451. @ModelBase.register("ExaoneForCausalLM")
  5452. class ExaoneModel(TextModel):
  5453. model_arch = gguf.MODEL_ARCH.EXAONE
  5454. def set_gguf_parameters(self):
  5455. hparams = self.hparams
  5456. assert (hparams["activation_function"] == "silu")
  5457. max_position_embeddings = hparams["max_position_embeddings"]
  5458. embed_dim = hparams["hidden_size"]
  5459. num_heads = hparams["num_attention_heads"]
  5460. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5461. layer_norm_eps = hparams["layer_norm_epsilon"]
  5462. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5463. num_layers = hparams["num_layers"]
  5464. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5465. # attention_dropout_rate = hparams["attention_dropout"]
  5466. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5467. # embed_dropout_rate = hparams["embed_dropout"]
  5468. self.gguf_writer.add_embedding_length(embed_dim)
  5469. self.gguf_writer.add_head_count(num_heads)
  5470. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5471. self.gguf_writer.add_context_length(max_position_embeddings)
  5472. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5473. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5474. self.gguf_writer.add_block_count(num_layers)
  5475. self.gguf_writer.add_file_type(self.ftype)
  5476. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5477. self.gguf_writer.add_rope_freq_base(rope_theta)
  5478. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5479. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5480. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5481. rope_scaling = self.hparams.get("rope_scaling") or {}
  5482. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5483. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5484. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5485. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5486. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5487. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5488. base = self.hparams.get("rope_theta", 10000.0)
  5489. if (dim := self.hparams.get("head_dim")) is None:
  5490. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5491. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5492. factor = rope_scaling.get("factor", 8.0)
  5493. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5494. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5495. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5496. low_freq_wavelen = old_context_len / low_freq_factor
  5497. high_freq_wavelen = old_context_len / high_freq_factor
  5498. assert low_freq_wavelen != high_freq_wavelen
  5499. rope_factors = []
  5500. for freq in freqs:
  5501. wavelen = 2 * math.pi / freq
  5502. if wavelen < high_freq_wavelen:
  5503. rope_factors.append(1)
  5504. elif wavelen > low_freq_wavelen:
  5505. rope_factors.append(factor)
  5506. else:
  5507. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5508. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5509. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5510. @ModelBase.register("Exaone4ForCausalLM")
  5511. class Exaone4Model(TextModel):
  5512. model_arch = gguf.MODEL_ARCH.EXAONE4
  5513. def set_vocab(self):
  5514. tokens, toktypes, tokpre = self.get_vocab_base()
  5515. self.gguf_writer.add_tokenizer_model("gpt2")
  5516. self.gguf_writer.add_tokenizer_pre(tokpre)
  5517. self.gguf_writer.add_token_list(tokens)
  5518. self.gguf_writer.add_token_types(toktypes)
  5519. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5520. special_vocab.add_to_gguf(self.gguf_writer)
  5521. def set_gguf_parameters(self):
  5522. super().set_gguf_parameters()
  5523. hparams = self.hparams
  5524. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5525. if hparams.get("sliding_window") is not None:
  5526. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  5527. if "layer_types" in hparams:
  5528. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  5529. elif "sliding_window_pattern" in hparams:
  5530. sliding_window_pattern = []
  5531. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  5532. for i in range(hparams["num_hidden_layers"]):
  5533. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  5534. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  5535. for i in range(hparams["num_hidden_layers"]):
  5536. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  5537. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  5538. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5539. rope_scaling = self.hparams.get("rope_scaling") or {}
  5540. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5541. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5542. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5543. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5544. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5545. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5546. base = self.hparams.get("rope_theta", 10_000.0)
  5547. if (dim := self.hparams.get("head_dim")) is None:
  5548. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5549. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5550. factor = rope_scaling.get("factor", 16.0)
  5551. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5552. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5553. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5554. low_freq_wavelen = old_context_len / low_freq_factor
  5555. high_freq_wavelen = old_context_len / high_freq_factor
  5556. rope_factors = []
  5557. for freq in freqs:
  5558. wavelen = 2 * math.pi / freq
  5559. if wavelen < high_freq_wavelen:
  5560. rope_factors.append(1)
  5561. elif wavelen > low_freq_wavelen:
  5562. rope_factors.append(factor)
  5563. else:
  5564. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5565. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5566. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5567. @ModelBase.register("GraniteForCausalLM")
  5568. class GraniteModel(LlamaModel):
  5569. """Conversion for IBM's GraniteForCausalLM"""
  5570. model_arch = gguf.MODEL_ARCH.GRANITE
  5571. def set_gguf_parameters(self):
  5572. """Granite uses standard llama parameters with the following differences:
  5573. - No head_dim support
  5574. - New multiplier params:
  5575. - attention_scale
  5576. - embedding_scale
  5577. - residual_scale
  5578. - logits_scaling
  5579. """
  5580. if head_dim := self.hparams.pop("head_dim", None):
  5581. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5582. super().set_gguf_parameters()
  5583. # NOTE: Convert _multiplier params to _scale params for naming
  5584. # consistency
  5585. if attention_scale := self.hparams.get("attention_multiplier"):
  5586. self.gguf_writer.add_attention_scale(attention_scale)
  5587. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5588. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5589. self.gguf_writer.add_embedding_scale(embedding_scale)
  5590. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5591. if residual_scale := self.hparams.get("residual_multiplier"):
  5592. self.gguf_writer.add_residual_scale(residual_scale)
  5593. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5594. if logits_scale := self.hparams.get("logits_scaling"):
  5595. self.gguf_writer.add_logit_scale(logits_scale)
  5596. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5597. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5598. class GraniteMoeModel(GraniteModel):
  5599. """Conversion for IBM's GraniteMoeForCausalLM"""
  5600. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5601. def set_gguf_parameters(self):
  5602. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5603. - shared_intermediate_size
  5604. """
  5605. super().set_gguf_parameters()
  5606. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5607. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5608. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5609. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5610. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5611. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5612. the hidden size that is then split during forward. To keep compatibility
  5613. with existing mixtral support, we pull them apart here.
  5614. """
  5615. if name.endswith("block_sparse_moe.input_linear.weight"):
  5616. ffn_dim = self.hparams["intermediate_size"]
  5617. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5618. gate, up = data_torch.split(ffn_dim, dim=-2)
  5619. return [
  5620. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5621. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5622. ]
  5623. has_experts = bool(self.hparams.get('num_local_experts'))
  5624. if name.endswith("shared_mlp.input_linear.weight"):
  5625. ffn_dim = self.hparams["shared_intermediate_size"]
  5626. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5627. gate, up = data_torch.split(ffn_dim, dim=-2)
  5628. if has_experts:
  5629. return [
  5630. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5631. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5632. ]
  5633. return [
  5634. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  5635. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  5636. ]
  5637. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  5638. return [
  5639. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  5640. ]
  5641. return super().modify_tensors(data_torch, name, bid)
  5642. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  5643. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  5644. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  5645. layers and optionally uses MoE w/ a shared expert"""
  5646. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  5647. undo_permute = True
  5648. def __init__(self, *args, **kwargs):
  5649. # Hybrid mamba models use a prefix for the mamba-specific params.
  5650. # TODO: Extend this if the prefix(es) need to be configurable
  5651. self.hparam_prefixes = ["mamba"]
  5652. super().__init__(*args, **kwargs)
  5653. # Lists of which layers use ssm vs attention
  5654. self._attn_layers = self.get_attn_layers()
  5655. self._ssm_layers = [
  5656. i for i in range(self.block_count)
  5657. if i not in self._attn_layers
  5658. ]
  5659. # n_group and d_inner are used during reshape_tensors for mamba2
  5660. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  5661. self.n_group = self.find_hparam(["n_groups"])
  5662. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  5663. def get_attn_layers(self):
  5664. # Explicit list of layer type names
  5665. if layer_types := self.hparams.get("layer_types"):
  5666. return [
  5667. i for i, typ in enumerate(layer_types)
  5668. if typ == "attention"
  5669. ]
  5670. # Layer types indicated by index or period
  5671. attn_layers = self.hparams.get("attn_layer_indices", [])
  5672. if not attn_layers:
  5673. attn_period = self.hparams.get("attn_layer_period")
  5674. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  5675. attn_offset = self.hparams.get("attn_layer_offset")
  5676. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  5677. attn_layers = [
  5678. i for i in range(self.block_count)
  5679. if i % attn_period == attn_offset
  5680. ]
  5681. return attn_layers
  5682. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5683. prefixed = []
  5684. for pfx in self.hparam_prefixes:
  5685. prefixed.extend(
  5686. "_".join([pfx, k])
  5687. for k in keys
  5688. )
  5689. keys = list(keys) + prefixed
  5690. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  5691. def modify_tensors(
  5692. self, data_torch: Tensor, name: str, bid: int | None
  5693. ) -> Iterable[tuple[str, Tensor]]:
  5694. if (
  5695. name.endswith("block_sparse_moe.input_linear.weight")
  5696. or "shared_mlp" in name
  5697. ):
  5698. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5699. # Determine whether this is a mamba layer or an attention layer
  5700. if bid in self._ssm_layers:
  5701. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  5702. elif bid in self._attn_layers:
  5703. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5704. return [(self.map_tensor_name(name), data_torch)]
  5705. def set_gguf_parameters(self):
  5706. """This method merges params from both parents and some that are
  5707. specific to this model. The result is some duplication of how the params
  5708. get set. The following warnings are expected during conversion:
  5709. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  5710. WARNING:Duplicated key name 'granitehybrid.context_length'
  5711. """
  5712. GraniteMoeModel.set_gguf_parameters(self)
  5713. ## Mamba mixer params ##
  5714. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  5715. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  5716. self.gguf_writer.add_ssm_group_count(self.n_group)
  5717. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5718. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  5719. # in llama.cpp
  5720. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  5721. ## Attention params ##
  5722. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  5723. head_count_kv_vec = [
  5724. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  5725. ]
  5726. if rope_dim := self.hparams.get("attn_rotary_emb"):
  5727. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5728. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  5729. ## If Bamba, use rope, otherwise don't
  5730. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  5731. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  5732. if not use_rope:
  5733. self.gguf_writer.add_context_length(2**20)
  5734. ## Validation ##
  5735. d_head = self.find_hparam(["d_head"], optional=True) or 64
  5736. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5737. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  5738. def set_vocab(self):
  5739. self.hparams["pad_vocab_size_multiple"] = 8
  5740. Mamba2Model.set_vocab(self)
  5741. @ModelBase.register("BailingMoeForCausalLM")
  5742. class BailingMoeModel(TextModel):
  5743. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5744. def set_vocab(self):
  5745. self._set_vocab_gpt2()
  5746. def set_gguf_parameters(self):
  5747. super().set_gguf_parameters()
  5748. hparams = self.hparams
  5749. if (rope_dim := hparams.get("head_dim")) is None:
  5750. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5751. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5752. rope_scaling = self.hparams.get("rope_scaling") or {}
  5753. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5754. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5755. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5756. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5757. else:
  5758. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5759. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5760. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5761. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5762. self.gguf_writer.add_expert_weights_scale(1.0)
  5763. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5764. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  5765. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5766. _experts: list[dict[str, Tensor]] | None = None
  5767. @staticmethod
  5768. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5769. if n_head_kv is not None and n_head != n_head_kv:
  5770. n_head = n_head_kv
  5771. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5772. .swapaxes(1, 2)
  5773. .reshape(weights.shape))
  5774. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5775. n_head = self.hparams["num_attention_heads"]
  5776. n_kv_head = self.hparams.get("num_key_value_heads")
  5777. n_embd = self.hparams["hidden_size"]
  5778. if (head_dim := self.hparams.get("head_dim")) is None:
  5779. head_dim = n_embd // n_head
  5780. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5781. if name.endswith("attention.dense.weight"):
  5782. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  5783. elif name.endswith("query_key_value.weight"):
  5784. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  5785. return [
  5786. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  5787. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  5788. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  5789. ]
  5790. elif name.find("mlp.experts") != -1:
  5791. n_experts = self.hparams["num_experts"]
  5792. assert bid is not None
  5793. tensors: list[tuple[str, Tensor]] = []
  5794. if self._experts is None:
  5795. self._experts = [{} for _ in range(self.block_count)]
  5796. self._experts[bid][name] = data_torch
  5797. if len(self._experts[bid]) >= n_experts * 3:
  5798. # merge the experts into a single 3d tensor
  5799. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5800. datas: list[Tensor] = []
  5801. for xid in range(n_experts):
  5802. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5803. datas.append(self._experts[bid][ename])
  5804. del self._experts[bid][ename]
  5805. data_torch = torch.stack(datas, dim=0)
  5806. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5807. new_name = self.map_tensor_name(merged_name)
  5808. tensors.append((new_name, data_torch))
  5809. return tensors
  5810. new_name = self.map_tensor_name(name)
  5811. if new_name == output_name and self.hparams.get("norm_head"):
  5812. data_torch = data_torch.float()
  5813. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5814. return [(new_name, data_torch)]
  5815. def prepare_tensors(self):
  5816. super().prepare_tensors()
  5817. if self._experts is not None:
  5818. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5819. experts = [k for d in self._experts for k in d.keys()]
  5820. if len(experts) > 0:
  5821. raise ValueError(f"Unprocessed experts: {experts}")
  5822. @ModelBase.register("ChameleonForConditionalGeneration")
  5823. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5824. class ChameleonModel(TextModel):
  5825. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5826. def set_gguf_parameters(self):
  5827. super().set_gguf_parameters()
  5828. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5829. def set_vocab(self):
  5830. self._set_vocab_gpt2()
  5831. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5832. # ignore image tokenizer for now
  5833. # TODO: remove this once image support is implemented for Chameleon
  5834. if name.startswith("model.vqmodel"):
  5835. return []
  5836. n_head = self.hparams["num_attention_heads"]
  5837. n_kv_head = self.hparams.get("num_key_value_heads")
  5838. hidden_dim = self.hparams.get("hidden_size")
  5839. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5840. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5841. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5842. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5843. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5844. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5845. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5846. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5847. return [(self.map_tensor_name(name), data_torch)]
  5848. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5849. @staticmethod
  5850. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5851. head_dim = hidden_dim // n_heads
  5852. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5853. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5854. return data_torch
  5855. @ModelBase.register("UltravoxModel")
  5856. class UltravoxModel(TextModel):
  5857. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  5858. def __init__(self, *args, **kwargs):
  5859. super().__init__(*args, **kwargs)
  5860. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  5861. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  5862. class WhisperEncoderModel(MmprojModel):
  5863. has_vision_encoder = False # no vision encoder
  5864. has_audio_encoder = True
  5865. def __init__(self, *args, **kwargs):
  5866. super().__init__(*args, **kwargs)
  5867. self.hparams["hidden_size"] = self.hparams["d_model"]
  5868. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  5869. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  5870. def set_gguf_parameters(self):
  5871. super().set_gguf_parameters()
  5872. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  5873. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  5874. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  5875. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5876. del bid, new_name, n_dims # unused
  5877. if ".conv" in name and ".weight" in name:
  5878. return gguf.GGMLQuantizationType.F16
  5879. return False
  5880. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5881. del bid # unused
  5882. if name.startswith("language_model."):
  5883. # skip language model tensors
  5884. return []
  5885. # prevent clash naming with vision tensors
  5886. if name.startswith("multi_modal_projector"):
  5887. name = "audio." + name
  5888. if "conv1.bias" in name or "conv2.bias" in name:
  5889. # transpose conv1 and conv2 bias
  5890. data_torch = data_torch.unsqueeze(-1)
  5891. return [(self.map_tensor_name(name), data_torch)]
  5892. @ModelBase.register("UltravoxModel")
  5893. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  5894. has_vision_encoder = False # no vision encoder
  5895. has_audio_encoder = True
  5896. def set_gguf_parameters(self):
  5897. super().set_gguf_parameters()
  5898. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  5899. @ModelBase.register("FalconH1ForCausalLM")
  5900. class FalconH1Model(Mamba2Model):
  5901. model_arch = gguf.MODEL_ARCH.FALCON_H1
  5902. def __init__(self, *args, **kwargs):
  5903. # Set the hparam prefixes for Falcon Mamba2
  5904. self.hparam_prefixes = ["mamba"]
  5905. # Initialize the base Mamba2Model
  5906. super().__init__(*args, **kwargs)
  5907. # Use Llama conversion for attention
  5908. self._transformer_model_class = LlamaModel
  5909. # n_group and d_inner are used during reshape_tensors for mamba2
  5910. self.n_group = self.find_hparam(["n_groups"])
  5911. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  5912. self.d_head = self.find_hparam(["d_head"])
  5913. # Initialize any Falcon Mamba2 specific attributes
  5914. self.has_attention = True # Falcon Mamba2 has attention components
  5915. # Load Falcon-H1 multipliers from hyperparameters
  5916. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  5917. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  5918. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  5919. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  5920. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  5921. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  5922. self.intermediate_size = self.find_hparam(["intermediate_size"])
  5923. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  5924. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5925. prefixed = []
  5926. for pfx in self.hparam_prefixes:
  5927. prefixed.extend(
  5928. "_".join([pfx, k])
  5929. for k in keys
  5930. )
  5931. keys = list(keys) + prefixed
  5932. return super().find_hparam(keys, *args, **kwargs)
  5933. def set_vocab(self):
  5934. self._set_vocab_gpt2()
  5935. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5936. tensors = list(super().modify_tensors(data_torch, name, bid))
  5937. tensor = tensors[0][1]
  5938. if "down_proj" in name:
  5939. tensor = tensor * self.mlp_multipliers[1]
  5940. elif "gate_proj" in name:
  5941. tensor = tensor * self.mlp_multipliers[0]
  5942. elif "k_proj" in name:
  5943. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  5944. elif "q_proj" in name:
  5945. tensor = tensor * self.attention_in_multiplier
  5946. elif "v_proj" in name:
  5947. tensor = tensor * self.attention_in_multiplier
  5948. elif "o_proj" in name:
  5949. tensor = tensor * self.attention_out_multiplier
  5950. elif "out_proj" in name:
  5951. tensor = tensor * self.ssm_out_multiplier
  5952. elif "in_proj" in name:
  5953. tensor = tensor * self.ssm_in_multiplier
  5954. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  5955. intermediate_size = self.hparams["mamba_d_ssm"]
  5956. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  5957. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  5958. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  5959. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  5960. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  5961. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  5962. elif "lm_head" in name:
  5963. tensor = tensor * self.hparams["lm_head_multiplier"]
  5964. elif "embed_tokens" in name:
  5965. tensor = tensor * self.hparams["embedding_multiplier"]
  5966. elif "mamba.norm" in name:
  5967. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  5968. tensors = [(tensors[0][0], tensor)]
  5969. return tensors
  5970. def set_gguf_parameters(self):
  5971. super().set_gguf_parameters()
  5972. ## General Params ##
  5973. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5974. # Override some Mamba2 defaults
  5975. self.gguf_writer.add_block_count(self.block_count)
  5976. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  5977. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5978. ## Attention params ##
  5979. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  5980. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  5981. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  5982. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  5983. ## Validation ##
  5984. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5985. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  5986. # Add any other Falcon Mamba2 specific configuration
  5987. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  5988. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  5989. class HunYuanMoEModel(TextModel):
  5990. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  5991. def __init__(self, *args, **kwargs):
  5992. super().__init__(*args, **kwargs)
  5993. # For handling tied embeddings
  5994. self._tok_embd = None
  5995. def set_vocab(self):
  5996. from transformers import AutoTokenizer
  5997. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5998. # 1. Get the pre-tokenizer identifier hash
  5999. tokpre = self.get_vocab_base_pre(tokenizer)
  6000. # 2. Reverse-engineer the merges list from mergeable_ranks
  6001. merges = []
  6002. vocab = {}
  6003. mergeable_ranks = tokenizer.mergeable_ranks
  6004. for token, rank in mergeable_ranks.items():
  6005. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6006. if len(token) == 1:
  6007. continue
  6008. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6009. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6010. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6011. # 3. Generate the tokens and toktypes lists
  6012. vocab_size = self.hparams["vocab_size"]
  6013. assert tokenizer.vocab_size == vocab_size
  6014. special_tokens = tokenizer.special_tokens
  6015. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6016. tokens: list[str] = []
  6017. toktypes: list[int] = []
  6018. for i in range(vocab_size):
  6019. if i not in reverse_vocab:
  6020. tokens.append(f"[PAD{i}]")
  6021. toktypes.append(gguf.TokenType.UNUSED)
  6022. else:
  6023. token = reverse_vocab[i]
  6024. tokens.append(token)
  6025. if i in special_tokens.values():
  6026. toktypes.append(gguf.TokenType.CONTROL)
  6027. else:
  6028. toktypes.append(gguf.TokenType.NORMAL)
  6029. # 4. Write all vocab-related fields to the GGUF writer
  6030. self.gguf_writer.add_tokenizer_model("gpt2")
  6031. self.gguf_writer.add_tokenizer_pre(tokpre)
  6032. self.gguf_writer.add_token_list(tokens)
  6033. self.gguf_writer.add_token_types(toktypes)
  6034. self.gguf_writer.add_token_merges(merges)
  6035. # 5. Add special tokens and chat templates
  6036. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6037. special_vocab.add_to_gguf(self.gguf_writer)
  6038. # FIX for BOS token: Overwrite incorrect id read from config.json
  6039. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6040. def set_gguf_parameters(self):
  6041. super().set_gguf_parameters()
  6042. hparams = self.hparams
  6043. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6044. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6045. moe_intermediate_size = hparams["moe_intermediate_size"]
  6046. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6047. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6048. moe_topk = hparams["moe_topk"]
  6049. assert all(topk == moe_topk[0] for topk in moe_topk)
  6050. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6051. moe_shared_expert = hparams["num_shared_expert"]
  6052. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6053. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6054. # Rope
  6055. rope_scaling = hparams.get("rope_scaling", {})
  6056. if rope_scaling.get("type") == "dynamic":
  6057. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6058. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6059. alpha = rope_scaling.get("alpha", 1000)
  6060. base = hparams.get("rope_theta", 10000.0)
  6061. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6062. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6063. self.gguf_writer.add_rope_freq_base(scaled_base)
  6064. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6065. self.gguf_writer.add_rope_scaling_factor(1)
  6066. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6067. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6068. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6069. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6070. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6071. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6072. _experts: list[dict[str, Tensor]] | None = None
  6073. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6074. if name == "model.embed_tokens.weight":
  6075. self._tok_embd = data_torch.clone()
  6076. if name == "lm_head.weight":
  6077. if self.hparams.get("tie_word_embeddings", False):
  6078. logger.info("Skipping tied output layer 'lm_head.weight'")
  6079. return []
  6080. if name.find("mlp.experts") != -1:
  6081. n_experts = self.hparams["num_experts"]
  6082. assert bid is not None
  6083. if self._experts is None:
  6084. self._experts = [{} for _ in range(self.block_count)]
  6085. self._experts[bid][name] = data_torch
  6086. if len(self._experts[bid]) >= n_experts * 3:
  6087. # merge the experts into a single 3d tensor
  6088. tensors: list[tuple[str, Tensor]] = []
  6089. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6090. datas: list[Tensor] = []
  6091. for xid in range(n_experts):
  6092. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6093. datas.append(self._experts[bid][ename])
  6094. del self._experts[bid][ename]
  6095. data_torch = torch.stack(datas, dim=0)
  6096. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6097. new_name = self.map_tensor_name(merged_name)
  6098. tensors.append((new_name, data_torch))
  6099. return tensors
  6100. else:
  6101. return []
  6102. return [(self.map_tensor_name(name), data_torch)]
  6103. def prepare_tensors(self):
  6104. super().prepare_tensors()
  6105. if self._experts is not None:
  6106. experts = [k for d in self._experts for k in d.keys()]
  6107. if len(experts) > 0:
  6108. raise ValueError(f"Unprocessed experts: {experts}")
  6109. @ModelBase.register("SmolLM3ForCausalLM")
  6110. class SmolLM3Model(LlamaModel):
  6111. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6112. def set_vocab(self):
  6113. super().set_vocab()
  6114. # remove unsupported array slicing in chat template
  6115. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6116. from transformers import AutoTokenizer
  6117. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6118. if tokenizer.chat_template is not None:
  6119. chat_template = tokenizer.chat_template.replace("[:]", "")
  6120. self.gguf_writer.add_chat_template(chat_template)
  6121. @ModelBase.register("Lfm2ForCausalLM")
  6122. @ModelBase.register("LFM2ForCausalLM")
  6123. class LFM2Model(TextModel):
  6124. model_arch = gguf.MODEL_ARCH.LFM2
  6125. def _add_feed_forward_length(self):
  6126. ff_dim = self.hparams["block_ff_dim"]
  6127. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6128. ff_dim = self.hparams["block_ff_dim"]
  6129. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6130. multiple_of = self.hparams["block_multiple_of"]
  6131. if auto_adjust_ff_dim:
  6132. ff_dim = int(2 * ff_dim / 3)
  6133. # custom dim factor multiplier
  6134. if ffn_dim_multiplier is not None:
  6135. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6136. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6137. self.gguf_writer.add_feed_forward_length(ff_dim)
  6138. def set_gguf_parameters(self):
  6139. # set num_key_value_heads only for attention layers
  6140. self.hparams["num_key_value_heads"] = [
  6141. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6142. for layer_type in self.hparams["layer_types"]
  6143. ]
  6144. super().set_gguf_parameters()
  6145. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6146. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6147. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6148. self._add_feed_forward_length()
  6149. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6150. # conv op requires 2d tensor
  6151. if 'conv.conv' in name:
  6152. data_torch = data_torch.squeeze(1)
  6153. return [(self.map_tensor_name(name), data_torch)]
  6154. ###### CONVERSION LOGIC ######
  6155. # tree of lazy tensors
  6156. class LazyTorchTensor(gguf.LazyBase):
  6157. _tensor_type = torch.Tensor
  6158. # to keep the type-checker happy
  6159. dtype: torch.dtype
  6160. shape: torch.Size
  6161. # only used when converting a torch.Tensor to a np.ndarray
  6162. _dtype_map: dict[torch.dtype, type] = {
  6163. torch.float16: np.float16,
  6164. torch.float32: np.float32,
  6165. }
  6166. # used for safetensors slices
  6167. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  6168. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  6169. _dtype_str_map: dict[str, torch.dtype] = {
  6170. "F64": torch.float64,
  6171. "F32": torch.float32,
  6172. "BF16": torch.bfloat16,
  6173. "F16": torch.float16,
  6174. # "U64": torch.uint64,
  6175. "I64": torch.int64,
  6176. # "U32": torch.uint32,
  6177. "I32": torch.int32,
  6178. # "U16": torch.uint16,
  6179. "I16": torch.int16,
  6180. "U8": torch.uint8,
  6181. "I8": torch.int8,
  6182. "BOOL": torch.bool,
  6183. "F8_E4M3": torch.float8_e4m3fn,
  6184. "F8_E5M2": torch.float8_e5m2,
  6185. }
  6186. def numpy(self) -> gguf.LazyNumpyTensor:
  6187. dtype = self._dtype_map[self.dtype]
  6188. return gguf.LazyNumpyTensor(
  6189. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6190. args=(self,),
  6191. func=(lambda s: s.numpy())
  6192. )
  6193. @classmethod
  6194. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6195. return torch.empty(size=shape, dtype=dtype, device="meta")
  6196. @classmethod
  6197. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6198. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6199. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6200. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6201. return cast(torch.Tensor, lazy)
  6202. @classmethod
  6203. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6204. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6205. shape = remote_tensor.shape
  6206. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6207. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6208. return cast(torch.Tensor, lazy)
  6209. @classmethod
  6210. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6211. del types # unused
  6212. if kwargs is None:
  6213. kwargs = {}
  6214. if func is torch.Tensor.numpy:
  6215. return args[0].numpy()
  6216. return cls._wrap_fn(func)(*args, **kwargs)
  6217. def parse_args() -> argparse.Namespace:
  6218. parser = argparse.ArgumentParser(
  6219. description="Convert a huggingface model to a GGML compatible file")
  6220. parser.add_argument(
  6221. "--vocab-only", action="store_true",
  6222. help="extract only the vocab",
  6223. )
  6224. parser.add_argument(
  6225. "--outfile", type=Path,
  6226. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6227. )
  6228. parser.add_argument(
  6229. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6230. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6231. )
  6232. parser.add_argument(
  6233. "--bigendian", action="store_true",
  6234. help="model is executed on big endian machine",
  6235. )
  6236. parser.add_argument(
  6237. "model", type=str,
  6238. help="directory containing model file or huggingface repository ID (if --remote)",
  6239. nargs="?",
  6240. )
  6241. parser.add_argument(
  6242. "--use-temp-file", action="store_true",
  6243. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  6244. )
  6245. parser.add_argument(
  6246. "--no-lazy", action="store_true",
  6247. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  6248. )
  6249. parser.add_argument(
  6250. "--model-name", type=str, default=None,
  6251. help="name of the model",
  6252. )
  6253. parser.add_argument(
  6254. "--verbose", action="store_true",
  6255. help="increase output verbosity",
  6256. )
  6257. parser.add_argument(
  6258. "--split-max-tensors", type=int, default=0,
  6259. help="max tensors in each split",
  6260. )
  6261. parser.add_argument(
  6262. "--split-max-size", type=str, default="0",
  6263. help="max size per split N(M|G)",
  6264. )
  6265. parser.add_argument(
  6266. "--dry-run", action="store_true",
  6267. help="only print out a split plan and exit, without writing any new files",
  6268. )
  6269. parser.add_argument(
  6270. "--no-tensor-first-split", action="store_true",
  6271. help="do not add tensors to the first split (disabled by default)"
  6272. )
  6273. parser.add_argument(
  6274. "--metadata", type=Path,
  6275. help="Specify the path for an authorship metadata override file"
  6276. )
  6277. parser.add_argument(
  6278. "--print-supported-models", action="store_true",
  6279. help="Print the supported models"
  6280. )
  6281. parser.add_argument(
  6282. "--remote", action="store_true",
  6283. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  6284. )
  6285. parser.add_argument(
  6286. "--mmproj", action="store_true",
  6287. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  6288. )
  6289. args = parser.parse_args()
  6290. if not args.print_supported_models and args.model is None:
  6291. parser.error("the following arguments are required: model")
  6292. return args
  6293. def split_str_to_n_bytes(split_str: str) -> int:
  6294. if split_str.endswith("K"):
  6295. n = int(split_str[:-1]) * 1000
  6296. elif split_str.endswith("M"):
  6297. n = int(split_str[:-1]) * 1000 * 1000
  6298. elif split_str.endswith("G"):
  6299. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  6300. elif split_str.isnumeric():
  6301. n = int(split_str)
  6302. else:
  6303. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  6304. if n < 0:
  6305. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  6306. return n
  6307. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  6308. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  6309. # maybe we should fallback to text model's arch in that case, since not many models have both
  6310. text_config = hparams.get("text_config", {})
  6311. vision_config = hparams.get("vision_config", {})
  6312. arch = None
  6313. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  6314. arch = arches[0]
  6315. elif "ssm_cfg" in hparams:
  6316. # For non-hf Mamba and Mamba2 models
  6317. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  6318. # if "architectures" is found in the sub-config, use that instead
  6319. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  6320. arch = text_config["architectures"][0]
  6321. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  6322. arch = vision_config["architectures"][0]
  6323. if arch is None:
  6324. raise ValueError("Failed to detect model architecture")
  6325. return arch
  6326. def main() -> None:
  6327. args = parse_args()
  6328. if args.print_supported_models:
  6329. logger.error("Supported models:")
  6330. ModelBase.print_registered_models()
  6331. sys.exit(0)
  6332. if args.verbose:
  6333. logging.basicConfig(level=logging.DEBUG)
  6334. else:
  6335. logging.basicConfig(level=logging.INFO)
  6336. if args.remote:
  6337. hf_repo_id = args.model
  6338. from huggingface_hub import snapshot_download
  6339. local_dir = snapshot_download(
  6340. repo_id=hf_repo_id,
  6341. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  6342. dir_model = Path(local_dir)
  6343. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  6344. else:
  6345. hf_repo_id = None
  6346. dir_model = Path(args.model)
  6347. if not dir_model.is_dir():
  6348. logger.error(f'Error: {dir_model} is not a directory')
  6349. sys.exit(1)
  6350. ftype_map: dict[str, gguf.LlamaFileType] = {
  6351. "f32": gguf.LlamaFileType.ALL_F32,
  6352. "f16": gguf.LlamaFileType.MOSTLY_F16,
  6353. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  6354. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  6355. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  6356. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  6357. "auto": gguf.LlamaFileType.GUESSED,
  6358. }
  6359. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  6360. if args.use_temp_file and is_split:
  6361. logger.error("Error: Cannot use temp file when splitting")
  6362. sys.exit(1)
  6363. if args.outfile is not None:
  6364. fname_out = args.outfile
  6365. elif hf_repo_id:
  6366. # if remote, use the model ID as the output file name
  6367. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  6368. else:
  6369. fname_out = dir_model
  6370. logger.info(f"Loading model: {dir_model.name}")
  6371. if args.mmproj:
  6372. if "mmproj" not in fname_out.name:
  6373. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  6374. with torch.inference_mode():
  6375. output_type = ftype_map[args.outtype]
  6376. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  6377. hparams = ModelBase.load_hparams(dir_model)
  6378. model_architecture = get_model_architecture(hparams, model_type)
  6379. logger.info(f"Model architecture: {model_architecture}")
  6380. try:
  6381. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  6382. except NotImplementedError:
  6383. logger.error(f"Model {model_architecture} is not supported")
  6384. sys.exit(1)
  6385. model_instance = model_class(dir_model, output_type, fname_out,
  6386. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  6387. eager=args.no_lazy,
  6388. metadata_override=args.metadata, model_name=args.model_name,
  6389. split_max_tensors=args.split_max_tensors,
  6390. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  6391. small_first_shard=args.no_tensor_first_split,
  6392. remote_hf_model_id=hf_repo_id)
  6393. if args.vocab_only:
  6394. logger.info("Exporting model vocab...")
  6395. model_instance.write_vocab()
  6396. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  6397. else:
  6398. logger.info("Exporting model...")
  6399. model_instance.write()
  6400. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  6401. logger.info(f"Model successfully exported to {out_path}")
  6402. if __name__ == '__main__':
  6403. main()