ggml.c 742 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. static void atomic_store(atomic_int * ptr, LONG val) {
  53. InterlockedExchange(ptr, val);
  54. }
  55. static LONG atomic_load(atomic_int * ptr) {
  56. return InterlockedCompareExchange(ptr, 0, 0);
  57. }
  58. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  59. return InterlockedExchangeAdd(ptr, inc);
  60. }
  61. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  62. return atomic_fetch_add(ptr, -(dec));
  63. }
  64. typedef HANDLE pthread_t;
  65. typedef DWORD thread_ret_t;
  66. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  67. (void) unused;
  68. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  69. if (handle == NULL)
  70. {
  71. return EAGAIN;
  72. }
  73. *out = handle;
  74. return 0;
  75. }
  76. static int pthread_join(pthread_t thread, void * unused) {
  77. (void) unused;
  78. int ret = (int) WaitForSingleObject(thread, INFINITE);
  79. CloseHandle(thread);
  80. return ret;
  81. }
  82. static int sched_yield (void) {
  83. Sleep (0);
  84. return 0;
  85. }
  86. #else
  87. #include <pthread.h>
  88. #include <stdatomic.h>
  89. typedef void * thread_ret_t;
  90. #include <sys/types.h>
  91. #include <sys/stat.h>
  92. #include <unistd.h>
  93. #endif
  94. typedef pthread_t ggml_thread_t;
  95. #ifdef GGML_USE_CPU_HBM
  96. #include <hbwmalloc.h>
  97. #endif
  98. #if defined(__APPLE__)
  99. #include <TargetConditionals.h>
  100. #endif
  101. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  102. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  103. #include <sys/wait.h>
  104. void ggml_print_backtrace(void) {
  105. /*
  106. #include <execinfo.h>
  107. #include <dlfcn.h>
  108. void * trace[100];
  109. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  110. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  111. */
  112. // backtrack_symbols does not show line numbers, use gdb instead
  113. char attach[32];
  114. snprintf(attach, sizeof(attach), "attach %d", getpid());
  115. int pid = fork();
  116. if (pid == 0) {
  117. execlp("gdb", "gdb", "--batch",
  118. "-ex", "set style enabled on",
  119. "-ex", attach,
  120. "-ex", "bt -frame-info source-and-location",
  121. "-ex", "detach",
  122. "-ex", "quit",
  123. (char *) NULL);
  124. } else {
  125. waitpid(pid, NULL, 0);
  126. }
  127. }
  128. #else
  129. void ggml_print_backtrace(void) {
  130. // platform not supported
  131. }
  132. #endif
  133. /*#define GGML_PERF*/
  134. #define GGML_DEBUG 0
  135. #define GGML_GELU_FP16
  136. #define GGML_GELU_QUICK_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  266. float ggml_table_f32_f16[1 << 16];
  267. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  268. switch (status) {
  269. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  270. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  271. case GGML_STATUS_SUCCESS: return "GGML status: success";
  272. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  273. }
  274. return "GGML status: unknown";
  275. }
  276. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  277. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  278. return GGML_FP16_TO_FP32(x);
  279. }
  280. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  281. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  285. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  286. return GGML_BF16_TO_FP32(x); // it just left shifts
  287. }
  288. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  289. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  290. return GGML_FP32_TO_BF16(x);
  291. }
  292. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  293. for (int64_t i = 0; i < n; i++) {
  294. y[i] = GGML_FP16_TO_FP32(x[i]);
  295. }
  296. }
  297. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  298. int64_t i = 0;
  299. #if defined(__F16C__)
  300. for (; i + 7 < n; i += 8) {
  301. __m256 x_vec = _mm256_loadu_ps(x + i);
  302. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  304. }
  305. for(; i + 3 < n; i += 4) {
  306. __m128 x_vec = _mm_loadu_ps(x + i);
  307. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  308. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  309. }
  310. #endif
  311. for (; i < n; i++) {
  312. y[i] = GGML_FP32_TO_FP16(x[i]);
  313. }
  314. }
  315. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  316. int64_t i = 0;
  317. #if defined(__AVX512F__)
  318. for (; i + 16 <= n; i += 16) {
  319. _mm512_storeu_ps(y + i,
  320. _mm512_castsi512_ps(
  321. _mm512_slli_epi32(
  322. _mm512_cvtepu16_epi32(
  323. _mm256_loadu_si256(
  324. (const __m256i *)(x + i))),
  325. 16)));
  326. }
  327. #elif defined(__AVX2__)
  328. for (; i + 8 <= n; i += 8) {
  329. _mm256_storeu_ps(y + i,
  330. _mm256_castsi256_ps(
  331. _mm256_slli_epi32(
  332. _mm256_cvtepu16_epi32(
  333. _mm_loadu_si128(
  334. (const __m128i *)(x + i))),
  335. 16)));
  336. }
  337. #endif
  338. for (; i < n; i++) {
  339. y[i] = GGML_BF16_TO_FP32(x[i]);
  340. }
  341. }
  342. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  343. int i = 0;
  344. #if defined(__AVX512BF16__)
  345. for (; i + 32 <= n; i += 32) {
  346. _mm512_storeu_si512(
  347. (__m512i *)(y + i),
  348. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  349. _mm512_loadu_ps(x + i))));
  350. }
  351. #endif
  352. for (; i < n; i++) {
  353. y[i] = GGML_FP32_TO_BF16(x[i]);
  354. }
  355. }
  356. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  357. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  358. }
  359. //
  360. // timing
  361. //
  362. #if defined(_MSC_VER) || defined(__MINGW32__)
  363. static int64_t timer_freq, timer_start;
  364. void ggml_time_init(void) {
  365. LARGE_INTEGER t;
  366. QueryPerformanceFrequency(&t);
  367. timer_freq = t.QuadPart;
  368. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  369. // and the uptime is high enough.
  370. // We subtract the program start time to reduce the likelihood of that happening.
  371. QueryPerformanceCounter(&t);
  372. timer_start = t.QuadPart;
  373. }
  374. int64_t ggml_time_ms(void) {
  375. LARGE_INTEGER t;
  376. QueryPerformanceCounter(&t);
  377. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  378. }
  379. int64_t ggml_time_us(void) {
  380. LARGE_INTEGER t;
  381. QueryPerformanceCounter(&t);
  382. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  383. }
  384. #else
  385. void ggml_time_init(void) {}
  386. int64_t ggml_time_ms(void) {
  387. struct timespec ts;
  388. clock_gettime(CLOCK_MONOTONIC, &ts);
  389. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  390. }
  391. int64_t ggml_time_us(void) {
  392. struct timespec ts;
  393. clock_gettime(CLOCK_MONOTONIC, &ts);
  394. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  395. }
  396. #endif
  397. int64_t ggml_cycles(void) {
  398. return clock();
  399. }
  400. int64_t ggml_cycles_per_ms(void) {
  401. return CLOCKS_PER_SEC/1000;
  402. }
  403. #ifdef GGML_PERF
  404. #define ggml_perf_time_ms() ggml_time_ms()
  405. #define ggml_perf_time_us() ggml_time_us()
  406. #define ggml_perf_cycles() ggml_cycles()
  407. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  408. #else
  409. #define ggml_perf_time_ms() 0
  410. #define ggml_perf_time_us() 0
  411. #define ggml_perf_cycles() 0
  412. #define ggml_perf_cycles_per_ms() 0
  413. #endif
  414. //
  415. // cross-platform UTF-8 file paths
  416. //
  417. #ifdef _WIN32
  418. static wchar_t * ggml_mbstowcs(const char * mbs) {
  419. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  420. if (!wlen) {
  421. errno = EINVAL;
  422. return NULL;
  423. }
  424. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  425. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  426. if (!wlen) {
  427. GGML_FREE(wbuf);
  428. errno = EINVAL;
  429. return NULL;
  430. }
  431. return wbuf;
  432. }
  433. #endif
  434. FILE * ggml_fopen(const char * fname, const char * mode) {
  435. #ifdef _WIN32
  436. FILE * file = NULL;
  437. // convert fname (UTF-8)
  438. wchar_t * wfname = ggml_mbstowcs(fname);
  439. if (wfname) {
  440. // convert mode (ANSI)
  441. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  442. wchar_t * wmode_p = wmode;
  443. do {
  444. *wmode_p++ = (wchar_t)*mode;
  445. } while (*mode++);
  446. // open file
  447. file = _wfopen(wfname, wmode);
  448. GGML_FREE(wfname);
  449. GGML_FREE(wmode);
  450. }
  451. return file;
  452. #else
  453. return fopen(fname, mode);
  454. #endif
  455. }
  456. //
  457. // cache line
  458. //
  459. #if defined(__cpp_lib_hardware_interference_size)
  460. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  461. #else
  462. #if defined(__POWER9_VECTOR__)
  463. #define CACHE_LINE_SIZE 128
  464. #else
  465. #define CACHE_LINE_SIZE 64
  466. #endif
  467. #endif
  468. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  469. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  470. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  471. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  472. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  473. [GGML_TYPE_I8] = {
  474. .type_name = "i8",
  475. .blck_size = 1,
  476. .type_size = sizeof(int8_t),
  477. .is_quantized = false,
  478. },
  479. [GGML_TYPE_I16] = {
  480. .type_name = "i16",
  481. .blck_size = 1,
  482. .type_size = sizeof(int16_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I32] = {
  486. .type_name = "i32",
  487. .blck_size = 1,
  488. .type_size = sizeof(int32_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I64] = {
  492. .type_name = "i64",
  493. .blck_size = 1,
  494. .type_size = sizeof(int64_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_F64] = {
  498. .type_name = "f64",
  499. .blck_size = 1,
  500. .type_size = sizeof(double),
  501. .is_quantized = false,
  502. .nrows = 1,
  503. },
  504. [GGML_TYPE_F32] = {
  505. .type_name = "f32",
  506. .blck_size = 1,
  507. .type_size = sizeof(float),
  508. .is_quantized = false,
  509. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  510. .vec_dot_type = GGML_TYPE_F32,
  511. .nrows = 1,
  512. },
  513. [GGML_TYPE_F16] = {
  514. .type_name = "f16",
  515. .blck_size = 1,
  516. .type_size = sizeof(ggml_fp16_t),
  517. .is_quantized = false,
  518. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  519. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  520. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  521. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  522. .vec_dot_type = GGML_TYPE_F16,
  523. .nrows = 1,
  524. },
  525. [GGML_TYPE_Q4_0] = {
  526. .type_name = "q4_0",
  527. .blck_size = QK4_0,
  528. .type_size = sizeof(block_q4_0),
  529. .is_quantized = true,
  530. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  531. .from_float = quantize_row_q4_0,
  532. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  533. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  534. .vec_dot_type = GGML_TYPE_Q8_0,
  535. #if defined (__ARM_FEATURE_MATMUL_INT8)
  536. .nrows = 2,
  537. #else
  538. .nrows = 1,
  539. #endif
  540. },
  541. [GGML_TYPE_Q4_1] = {
  542. .type_name = "q4_1",
  543. .blck_size = QK4_1,
  544. .type_size = sizeof(block_q4_1),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  547. .from_float = quantize_row_q4_1,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  549. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  550. .vec_dot_type = GGML_TYPE_Q8_1,
  551. #if defined (__ARM_FEATURE_MATMUL_INT8)
  552. .nrows = 2,
  553. #else
  554. .nrows = 1,
  555. #endif
  556. },
  557. [4] = { // GGML_TYPE_Q4_2
  558. .type_name = "DEPRECATED",
  559. .blck_size = 0,
  560. .type_size = 0,
  561. .is_quantized = false,
  562. .to_float = NULL,
  563. .from_float = NULL,
  564. .from_float_reference = NULL,
  565. .vec_dot = NULL,
  566. .vec_dot_type = GGML_TYPE_COUNT,
  567. .nrows = 1,
  568. },
  569. [5] = { // GGML_TYPE_Q4_3
  570. .type_name = "DEPRECATED",
  571. .blck_size = 0,
  572. .type_size = 0,
  573. .is_quantized = false,
  574. .to_float = NULL,
  575. .from_float = NULL,
  576. .from_float_reference = NULL,
  577. .vec_dot = NULL,
  578. .vec_dot_type = GGML_TYPE_COUNT,
  579. .nrows = 1,
  580. },
  581. [GGML_TYPE_Q5_0] = {
  582. .type_name = "q5_0",
  583. .blck_size = QK5_0,
  584. .type_size = sizeof(block_q5_0),
  585. .is_quantized = true,
  586. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  587. .from_float = quantize_row_q5_0,
  588. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  589. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  590. .vec_dot_type = GGML_TYPE_Q8_0,
  591. .nrows = 1,
  592. },
  593. [GGML_TYPE_Q5_1] = {
  594. .type_name = "q5_1",
  595. .blck_size = QK5_1,
  596. .type_size = sizeof(block_q5_1),
  597. .is_quantized = true,
  598. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  599. .from_float = quantize_row_q5_1,
  600. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  601. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  602. .vec_dot_type = GGML_TYPE_Q8_1,
  603. .nrows = 1,
  604. },
  605. [GGML_TYPE_Q8_0] = {
  606. .type_name = "q8_0",
  607. .blck_size = QK8_0,
  608. .type_size = sizeof(block_q8_0),
  609. .is_quantized = true,
  610. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  611. .from_float = quantize_row_q8_0,
  612. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  613. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  614. .vec_dot_type = GGML_TYPE_Q8_0,
  615. #if defined (__ARM_FEATURE_MATMUL_INT8)
  616. .nrows = 2,
  617. #else
  618. .nrows = 1,
  619. #endif
  620. },
  621. [GGML_TYPE_Q8_1] = {
  622. .type_name = "q8_1",
  623. .blck_size = QK8_1,
  624. .type_size = sizeof(block_q8_1),
  625. .is_quantized = true,
  626. .from_float = quantize_row_q8_1,
  627. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  628. .vec_dot_type = GGML_TYPE_Q8_1,
  629. .nrows = 1,
  630. },
  631. [GGML_TYPE_Q2_K] = {
  632. .type_name = "q2_K",
  633. .blck_size = QK_K,
  634. .type_size = sizeof(block_q2_K),
  635. .is_quantized = true,
  636. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  637. .from_float = quantize_row_q2_K,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  639. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  640. .vec_dot_type = GGML_TYPE_Q8_K,
  641. .nrows = 1,
  642. },
  643. [GGML_TYPE_Q3_K] = {
  644. .type_name = "q3_K",
  645. .blck_size = QK_K,
  646. .type_size = sizeof(block_q3_K),
  647. .is_quantized = true,
  648. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  649. .from_float = quantize_row_q3_K,
  650. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  651. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  652. .vec_dot_type = GGML_TYPE_Q8_K,
  653. .nrows = 1,
  654. },
  655. [GGML_TYPE_Q4_K] = {
  656. .type_name = "q4_K",
  657. .blck_size = QK_K,
  658. .type_size = sizeof(block_q4_K),
  659. .is_quantized = true,
  660. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  661. .from_float = quantize_row_q4_K,
  662. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  663. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  664. .vec_dot_type = GGML_TYPE_Q8_K,
  665. .nrows = 1,
  666. },
  667. [GGML_TYPE_Q5_K] = {
  668. .type_name = "q5_K",
  669. .blck_size = QK_K,
  670. .type_size = sizeof(block_q5_K),
  671. .is_quantized = true,
  672. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  673. .from_float = quantize_row_q5_K,
  674. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  675. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  676. .vec_dot_type = GGML_TYPE_Q8_K,
  677. .nrows = 1,
  678. },
  679. [GGML_TYPE_Q6_K] = {
  680. .type_name = "q6_K",
  681. .blck_size = QK_K,
  682. .type_size = sizeof(block_q6_K),
  683. .is_quantized = true,
  684. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  685. .from_float = quantize_row_q6_K,
  686. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  687. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  688. .vec_dot_type = GGML_TYPE_Q8_K,
  689. .nrows = 1,
  690. },
  691. [GGML_TYPE_IQ2_XXS] = {
  692. .type_name = "iq2_xxs",
  693. .blck_size = QK_K,
  694. .type_size = sizeof(block_iq2_xxs),
  695. .is_quantized = true,
  696. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  697. .from_float = NULL,
  698. .from_float_reference = NULL,
  699. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  700. .vec_dot_type = GGML_TYPE_Q8_K,
  701. .nrows = 1,
  702. },
  703. [GGML_TYPE_IQ2_XS] = {
  704. .type_name = "iq2_xs",
  705. .blck_size = QK_K,
  706. .type_size = sizeof(block_iq2_xs),
  707. .is_quantized = true,
  708. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  709. .from_float = NULL,
  710. .from_float_reference = NULL,
  711. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  712. .vec_dot_type = GGML_TYPE_Q8_K,
  713. .nrows = 1,
  714. },
  715. [GGML_TYPE_IQ3_XXS] = {
  716. .type_name = "iq3_xxs",
  717. .blck_size = QK_K,
  718. .type_size = sizeof(block_iq3_xxs),
  719. .is_quantized = true,
  720. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  721. .from_float = quantize_row_iq3_xxs,
  722. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  723. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  724. .vec_dot_type = GGML_TYPE_Q8_K,
  725. .nrows = 1,
  726. },
  727. [GGML_TYPE_IQ3_S] = {
  728. .type_name = "iq3_s",
  729. .blck_size = QK_K,
  730. .type_size = sizeof(block_iq3_s),
  731. .is_quantized = true,
  732. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  733. .from_float = quantize_row_iq3_s,
  734. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  735. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  736. .vec_dot_type = GGML_TYPE_Q8_K,
  737. .nrows = 1,
  738. },
  739. [GGML_TYPE_IQ2_S] = {
  740. .type_name = "iq2_s",
  741. .blck_size = QK_K,
  742. .type_size = sizeof(block_iq2_s),
  743. .is_quantized = true,
  744. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  745. .from_float = quantize_row_iq2_s,
  746. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  747. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  748. .vec_dot_type = GGML_TYPE_Q8_K,
  749. .nrows = 1,
  750. },
  751. [GGML_TYPE_IQ1_S] = {
  752. .type_name = "iq1_s",
  753. .blck_size = QK_K,
  754. .type_size = sizeof(block_iq1_s),
  755. .is_quantized = true,
  756. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  757. .from_float = NULL,
  758. .from_float_reference = NULL,
  759. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  760. .vec_dot_type = GGML_TYPE_Q8_K,
  761. .nrows = 1,
  762. },
  763. [GGML_TYPE_IQ1_M] = {
  764. .type_name = "iq1_m",
  765. .blck_size = QK_K,
  766. .type_size = sizeof(block_iq1_m),
  767. .is_quantized = true,
  768. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  769. .from_float = NULL,
  770. .from_float_reference = NULL,
  771. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  772. .vec_dot_type = GGML_TYPE_Q8_K,
  773. .nrows = 1,
  774. },
  775. [GGML_TYPE_IQ4_NL] = {
  776. .type_name = "iq4_nl",
  777. .blck_size = QK4_NL,
  778. .type_size = sizeof(block_iq4_nl),
  779. .is_quantized = true,
  780. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  781. .from_float = quantize_row_iq4_nl,
  782. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  783. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  784. .vec_dot_type = GGML_TYPE_Q8_0,
  785. .nrows = 1,
  786. },
  787. [GGML_TYPE_IQ4_XS] = {
  788. .type_name = "iq4_xs",
  789. .blck_size = QK_K,
  790. .type_size = sizeof(block_iq4_xs),
  791. .is_quantized = true,
  792. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  793. .from_float = quantize_row_iq4_xs,
  794. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  795. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  796. .vec_dot_type = GGML_TYPE_Q8_K,
  797. .nrows = 1,
  798. },
  799. [GGML_TYPE_Q8_K] = {
  800. .type_name = "q8_K",
  801. .blck_size = QK_K,
  802. .type_size = sizeof(block_q8_K),
  803. .is_quantized = true,
  804. .from_float = quantize_row_q8_K,
  805. },
  806. [GGML_TYPE_BF16] = {
  807. .type_name = "bf16",
  808. .blck_size = 1,
  809. .type_size = sizeof(ggml_bf16_t),
  810. .is_quantized = false,
  811. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  812. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  813. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  814. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  815. .vec_dot_type = GGML_TYPE_BF16,
  816. .nrows = 1,
  817. }
  818. };
  819. // For internal test use
  820. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  821. GGML_ASSERT(type < GGML_TYPE_COUNT);
  822. return type_traits[type];
  823. }
  824. //
  825. // simd mappings
  826. //
  827. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  828. // we then implement the fundamental computation operations below using only these macros
  829. // adding support for new architectures requires to define the corresponding SIMD macros
  830. //
  831. // GGML_F32_STEP / GGML_F16_STEP
  832. // number of elements to process in a single step
  833. //
  834. // GGML_F32_EPR / GGML_F16_EPR
  835. // number of elements to fit in a single register
  836. //
  837. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  838. #define GGML_SIMD
  839. // F32 NEON
  840. #define GGML_F32_STEP 16
  841. #define GGML_F32_EPR 4
  842. #define GGML_F32x4 float32x4_t
  843. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  844. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  845. #define GGML_F32x4_LOAD vld1q_f32
  846. #define GGML_F32x4_STORE vst1q_f32
  847. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  848. #define GGML_F32x4_ADD vaddq_f32
  849. #define GGML_F32x4_MUL vmulq_f32
  850. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  851. #define GGML_F32x4_REDUCE(res, x) \
  852. { \
  853. int offset = GGML_F32_ARR >> 1; \
  854. for (int i = 0; i < offset; ++i) { \
  855. x[i] = vaddq_f32(x[i], x[offset+i]); \
  856. } \
  857. offset >>= 1; \
  858. for (int i = 0; i < offset; ++i) { \
  859. x[i] = vaddq_f32(x[i], x[offset+i]); \
  860. } \
  861. offset >>= 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vaddq_f32(x[i], x[offset+i]); \
  864. } \
  865. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  866. }
  867. #define GGML_F32_VEC GGML_F32x4
  868. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  869. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  870. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  871. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  872. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  873. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  874. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  875. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  876. // F16 NEON
  877. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  878. #define GGML_F16_STEP 32
  879. #define GGML_F16_EPR 8
  880. #define GGML_F16x8 float16x8_t
  881. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  882. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  883. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  884. #define GGML_F16x8_STORE vst1q_f16
  885. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  886. #define GGML_F16x8_ADD vaddq_f16
  887. #define GGML_F16x8_MUL vmulq_f16
  888. #define GGML_F16x8_REDUCE(res, x) \
  889. do { \
  890. int offset = GGML_F16_ARR >> 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = vaddq_f16(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = vaddq_f16(x[i], x[offset+i]); \
  897. } \
  898. offset >>= 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = vaddq_f16(x[i], x[offset+i]); \
  901. } \
  902. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  903. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  904. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  905. } while (0)
  906. #define GGML_F16_VEC GGML_F16x8
  907. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  908. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  909. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  910. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  911. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  912. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  913. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  914. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  915. #else
  916. // if FP16 vector arithmetic is not supported, we use FP32 instead
  917. // and take advantage of the vcvt_ functions to convert to/from FP16
  918. #define GGML_F16_STEP 16
  919. #define GGML_F16_EPR 4
  920. #define GGML_F32Cx4 float32x4_t
  921. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  922. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  923. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  924. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  925. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  926. #define GGML_F32Cx4_ADD vaddq_f32
  927. #define GGML_F32Cx4_MUL vmulq_f32
  928. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  929. #define GGML_F16_VEC GGML_F32Cx4
  930. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  931. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  932. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  933. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  934. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  935. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  936. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  937. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  938. #endif
  939. #elif defined(__AVX512F__)
  940. #define GGML_SIMD
  941. // F32 AVX512
  942. #define GGML_F32_STEP 64
  943. #define GGML_F32_EPR 16
  944. #define GGML_F32x16 __m512
  945. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  946. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  947. #define GGML_F32x16_LOAD _mm512_loadu_ps
  948. #define GGML_F32x16_STORE _mm512_storeu_ps
  949. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  950. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  951. #define GGML_F32x16_ADD _mm512_add_ps
  952. #define GGML_F32x16_MUL _mm512_mul_ps
  953. #define GGML_F32x16_REDUCE(res, x) \
  954. do { \
  955. int offset = GGML_F32_ARR >> 1; \
  956. for (int i = 0; i < offset; ++i) { \
  957. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  958. } \
  959. offset >>= 1; \
  960. for (int i = 0; i < offset; ++i) { \
  961. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  962. } \
  963. offset >>= 1; \
  964. for (int i = 0; i < offset; ++i) { \
  965. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  966. } \
  967. res = _mm512_reduce_add_ps(x[0]); \
  968. } while (0)
  969. // TODO: is this optimal ?
  970. #define GGML_F32_VEC GGML_F32x16
  971. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  972. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  973. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  974. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  975. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  976. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  977. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  978. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  979. // F16 AVX512
  980. // F16 AVX
  981. #define GGML_F16_STEP 64
  982. #define GGML_F16_EPR 16
  983. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  984. #define GGML_F32Cx16 __m512
  985. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  986. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  987. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  988. // so F16C guard isn't required
  989. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  990. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  991. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  992. #define GGML_F32Cx16_ADD _mm512_add_ps
  993. #define GGML_F32Cx16_MUL _mm512_mul_ps
  994. #define GGML_F32Cx16_REDUCE(res, x) \
  995. do { \
  996. int offset = GGML_F32_ARR >> 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. offset >>= 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. res = _mm512_reduce_add_ps(x[0]); \
  1009. } while (0)
  1010. #define GGML_F16_VEC GGML_F32Cx16
  1011. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1012. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1013. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1014. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1015. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1016. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1017. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1018. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1019. #elif defined(__AVX__)
  1020. #define GGML_SIMD
  1021. // F32 AVX
  1022. #define GGML_F32_STEP 32
  1023. #define GGML_F32_EPR 8
  1024. #define GGML_F32x8 __m256
  1025. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1026. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1027. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1028. #define GGML_F32x8_STORE _mm256_storeu_ps
  1029. #if defined(__FMA__)
  1030. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1031. #else
  1032. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1033. #endif
  1034. #define GGML_F32x8_ADD _mm256_add_ps
  1035. #define GGML_F32x8_MUL _mm256_mul_ps
  1036. #define GGML_F32x8_REDUCE(res, x) \
  1037. do { \
  1038. int offset = GGML_F32_ARR >> 1; \
  1039. for (int i = 0; i < offset; ++i) { \
  1040. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1041. } \
  1042. offset >>= 1; \
  1043. for (int i = 0; i < offset; ++i) { \
  1044. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1045. } \
  1046. offset >>= 1; \
  1047. for (int i = 0; i < offset; ++i) { \
  1048. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1049. } \
  1050. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1051. _mm256_extractf128_ps(x[0], 1)); \
  1052. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1053. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1054. } while (0)
  1055. // TODO: is this optimal ?
  1056. #define GGML_F32_VEC GGML_F32x8
  1057. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1058. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1059. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1060. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1061. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1062. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1063. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1064. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1065. // F16 AVX
  1066. #define GGML_F16_STEP 32
  1067. #define GGML_F16_EPR 8
  1068. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1069. #define GGML_F32Cx8 __m256
  1070. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1071. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1072. #if defined(__F16C__)
  1073. // the _mm256_cvt intrinsics require F16C
  1074. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1075. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1076. #else
  1077. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1078. float tmp[8];
  1079. for (int i = 0; i < 8; i++) {
  1080. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1081. }
  1082. return _mm256_loadu_ps(tmp);
  1083. }
  1084. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1085. float arr[8];
  1086. _mm256_storeu_ps(arr, y);
  1087. for (int i = 0; i < 8; i++)
  1088. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1089. }
  1090. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1091. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1092. #endif
  1093. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1094. #define GGML_F32Cx8_ADD _mm256_add_ps
  1095. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1096. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1097. #define GGML_F16_VEC GGML_F32Cx8
  1098. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1099. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1100. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1101. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1102. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1103. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1104. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1105. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1106. #elif defined(__POWER9_VECTOR__)
  1107. #define GGML_SIMD
  1108. // F32 POWER9
  1109. #define GGML_F32_STEP 32
  1110. #define GGML_F32_EPR 4
  1111. #define GGML_F32x4 vector float
  1112. #define GGML_F32x4_ZERO 0.0f
  1113. #define GGML_F32x4_SET1 vec_splats
  1114. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1115. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1116. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1117. #define GGML_F32x4_ADD vec_add
  1118. #define GGML_F32x4_MUL vec_mul
  1119. #define GGML_F32x4_REDUCE(res, x) \
  1120. { \
  1121. int offset = GGML_F32_ARR >> 1; \
  1122. for (int i = 0; i < offset; ++i) { \
  1123. x[i] = vec_add(x[i], x[offset+i]); \
  1124. } \
  1125. offset >>= 1; \
  1126. for (int i = 0; i < offset; ++i) { \
  1127. x[i] = vec_add(x[i], x[offset+i]); \
  1128. } \
  1129. offset >>= 1; \
  1130. for (int i = 0; i < offset; ++i) { \
  1131. x[i] = vec_add(x[i], x[offset+i]); \
  1132. } \
  1133. res = vec_extract(x[0], 0) + \
  1134. vec_extract(x[0], 1) + \
  1135. vec_extract(x[0], 2) + \
  1136. vec_extract(x[0], 3); \
  1137. }
  1138. #define GGML_F32_VEC GGML_F32x4
  1139. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1140. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1141. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1142. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1143. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1144. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1145. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1146. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1147. // F16 POWER9
  1148. #define GGML_F16_STEP GGML_F32_STEP
  1149. #define GGML_F16_EPR GGML_F32_EPR
  1150. #define GGML_F16_VEC GGML_F32x4
  1151. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1152. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1153. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1154. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1155. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1156. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1157. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1158. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1159. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1160. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1161. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1162. #define GGML_F16_VEC_STORE(p, r, i) \
  1163. if (i & 0x1) \
  1164. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1165. r[i - GGML_ENDIAN_BYTE(0)]), \
  1166. 0, p - GGML_F16_EPR)
  1167. #elif defined(__wasm_simd128__)
  1168. #define GGML_SIMD
  1169. // F32 WASM
  1170. #define GGML_F32_STEP 16
  1171. #define GGML_F32_EPR 4
  1172. #define GGML_F32x4 v128_t
  1173. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1174. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1175. #define GGML_F32x4_LOAD wasm_v128_load
  1176. #define GGML_F32x4_STORE wasm_v128_store
  1177. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1178. #define GGML_F32x4_ADD wasm_f32x4_add
  1179. #define GGML_F32x4_MUL wasm_f32x4_mul
  1180. #define GGML_F32x4_REDUCE(res, x) \
  1181. { \
  1182. int offset = GGML_F32_ARR >> 1; \
  1183. for (int i = 0; i < offset; ++i) { \
  1184. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1185. } \
  1186. offset >>= 1; \
  1187. for (int i = 0; i < offset; ++i) { \
  1188. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1189. } \
  1190. offset >>= 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1193. } \
  1194. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1195. wasm_f32x4_extract_lane(x[0], 1) + \
  1196. wasm_f32x4_extract_lane(x[0], 2) + \
  1197. wasm_f32x4_extract_lane(x[0], 3); \
  1198. }
  1199. #define GGML_F32_VEC GGML_F32x4
  1200. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1201. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1202. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1203. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1204. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1205. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1206. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1207. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1208. // F16 WASM
  1209. #define GGML_F16_STEP 16
  1210. #define GGML_F16_EPR 4
  1211. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1212. float tmp[4];
  1213. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1214. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1215. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1216. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1217. return wasm_v128_load(tmp);
  1218. }
  1219. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1220. float tmp[4];
  1221. wasm_v128_store(tmp, x);
  1222. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1223. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1224. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1225. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1226. }
  1227. #define GGML_F16x4 v128_t
  1228. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1229. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1230. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1231. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1232. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1233. #define GGML_F16x4_ADD wasm_f32x4_add
  1234. #define GGML_F16x4_MUL wasm_f32x4_mul
  1235. #define GGML_F16x4_REDUCE(res, x) \
  1236. { \
  1237. int offset = GGML_F16_ARR >> 1; \
  1238. for (int i = 0; i < offset; ++i) { \
  1239. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1240. } \
  1241. offset >>= 1; \
  1242. for (int i = 0; i < offset; ++i) { \
  1243. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1244. } \
  1245. offset >>= 1; \
  1246. for (int i = 0; i < offset; ++i) { \
  1247. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1248. } \
  1249. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1250. wasm_f32x4_extract_lane(x[0], 1) + \
  1251. wasm_f32x4_extract_lane(x[0], 2) + \
  1252. wasm_f32x4_extract_lane(x[0], 3); \
  1253. }
  1254. #define GGML_F16_VEC GGML_F16x4
  1255. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1256. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1257. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1258. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1259. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1260. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1261. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1262. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1263. #elif defined(__SSE3__)
  1264. #define GGML_SIMD
  1265. // F32 SSE
  1266. #define GGML_F32_STEP 32
  1267. #define GGML_F32_EPR 4
  1268. #define GGML_F32x4 __m128
  1269. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1270. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1271. #define GGML_F32x4_LOAD _mm_loadu_ps
  1272. #define GGML_F32x4_STORE _mm_storeu_ps
  1273. #if defined(__FMA__)
  1274. // TODO: Does this work?
  1275. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1276. #else
  1277. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1278. #endif
  1279. #define GGML_F32x4_ADD _mm_add_ps
  1280. #define GGML_F32x4_MUL _mm_mul_ps
  1281. #define GGML_F32x4_REDUCE(res, x) \
  1282. { \
  1283. int offset = GGML_F32_ARR >> 1; \
  1284. for (int i = 0; i < offset; ++i) { \
  1285. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1286. } \
  1287. offset >>= 1; \
  1288. for (int i = 0; i < offset; ++i) { \
  1289. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1290. } \
  1291. offset >>= 1; \
  1292. for (int i = 0; i < offset; ++i) { \
  1293. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1294. } \
  1295. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1296. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1297. }
  1298. // TODO: is this optimal ?
  1299. #define GGML_F32_VEC GGML_F32x4
  1300. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1301. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1302. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1303. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1304. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1305. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1306. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1307. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1308. // F16 SSE
  1309. #define GGML_F16_STEP 32
  1310. #define GGML_F16_EPR 4
  1311. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1312. float tmp[4];
  1313. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1314. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1315. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1316. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1317. return _mm_loadu_ps(tmp);
  1318. }
  1319. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1320. float arr[4];
  1321. _mm_storeu_ps(arr, y);
  1322. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1323. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1324. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1325. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1326. }
  1327. #define GGML_F32Cx4 __m128
  1328. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1329. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1330. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1331. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1332. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1333. #define GGML_F32Cx4_ADD _mm_add_ps
  1334. #define GGML_F32Cx4_MUL _mm_mul_ps
  1335. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1336. #define GGML_F16_VEC GGML_F32Cx4
  1337. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1338. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1339. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1340. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1341. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1342. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1343. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1344. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1345. #elif defined(__loongarch_asx)
  1346. #define GGML_SIMD
  1347. // F32 LASX
  1348. #define GGML_F32_STEP 32
  1349. #define GGML_F32_EPR 8
  1350. #define GGML_F32x8 __m256
  1351. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1352. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1353. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1354. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1355. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1356. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1357. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1358. #define GGML_F32x8_REDUCE(res, x) \
  1359. do { \
  1360. int offset = GGML_F32_ARR >> 1; \
  1361. for (int i = 0; i < offset; ++i) { \
  1362. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1363. } \
  1364. offset >>= 1; \
  1365. for (int i = 0; i < offset; ++i) { \
  1366. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1367. } \
  1368. offset >>= 1; \
  1369. for (int i = 0; i < offset; ++i) { \
  1370. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1371. } \
  1372. float *tmp_p = (float *)&x[0]; \
  1373. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1374. } while (0)
  1375. // TODO: is this optimal ?
  1376. #define GGML_F32_VEC GGML_F32x8
  1377. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1378. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1379. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1380. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1381. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1382. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1383. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1384. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1385. // F16 LASX
  1386. #define GGML_F16_STEP 32
  1387. #define GGML_F16_EPR 8
  1388. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1389. #define GGML_F32Cx8 __m256
  1390. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1391. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1392. static inline __m256 __lasx_f32cx8_load(ggml_fp16_t *x) {
  1393. float tmp[8];
  1394. for (int i = 0; i < 8; i++) {
  1395. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1396. }
  1397. return (__m256)__lasx_xvld(tmp, 0);
  1398. }
  1399. static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1400. float arr[8];
  1401. __lasx_xvst(y, arr, 0);
  1402. for (int i = 0; i < 8; i++)
  1403. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1404. }
  1405. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1406. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1407. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1408. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1409. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1410. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1411. #define GGML_F16_VEC GGML_F32Cx8
  1412. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1413. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1414. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1415. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1416. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1417. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1418. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1419. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1420. #elif defined(__loongarch_sx)
  1421. #define GGML_SIMD
  1422. // F32 LSX
  1423. #define GGML_F32_STEP 32
  1424. #define GGML_F32_EPR 4
  1425. #define GGML_F32x4 __m128
  1426. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1427. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1428. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1429. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1430. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1431. #define GGML_F32x4_ADD __lsx_vfadd_s
  1432. #define GGML_F32x4_MUL __lsx_vfmul_s
  1433. #define GGML_F32x4_REDUCE(res, x) \
  1434. { \
  1435. int offset = GGML_F32_ARR >> 1; \
  1436. for (int i = 0; i < offset; ++i) { \
  1437. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1438. } \
  1439. offset >>= 1; \
  1440. for (int i = 0; i < offset; ++i) { \
  1441. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1442. } \
  1443. offset >>= 1; \
  1444. for (int i = 0; i < offset; ++i) { \
  1445. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1446. } \
  1447. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1448. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1449. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1450. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1451. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1452. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1453. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1454. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1455. }
  1456. #define GGML_F32_VEC GGML_F32x4
  1457. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1458. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1459. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1460. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1461. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1462. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1463. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1464. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1465. // F16 LSX
  1466. #define GGML_F16_STEP 32
  1467. #define GGML_F16_EPR 4
  1468. static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
  1469. float tmp[4];
  1470. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1471. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1472. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1473. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1474. return __lsx_vld(tmp, 0);
  1475. }
  1476. static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1477. float arr[4];
  1478. __lsx_vst(y, arr, 0);
  1479. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1480. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1481. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1482. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1483. }
  1484. #define GGML_F32Cx4 __m128
  1485. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1486. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1487. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1488. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1489. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1490. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1491. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1492. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1493. #define GGML_F16_VEC GGML_F32Cx4
  1494. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1495. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1496. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1497. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1498. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1499. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1500. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1501. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1502. #endif
  1503. // GGML_F32_ARR / GGML_F16_ARR
  1504. // number of registers to use per step
  1505. #ifdef GGML_SIMD
  1506. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1507. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1508. #endif
  1509. //
  1510. // ggml context
  1511. //
  1512. struct ggml_context {
  1513. size_t mem_size;
  1514. void* mem_buffer;
  1515. bool mem_buffer_owned;
  1516. bool no_alloc;
  1517. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1518. int n_objects;
  1519. struct ggml_object* objects_begin;
  1520. struct ggml_object* objects_end;
  1521. struct ggml_scratch scratch;
  1522. struct ggml_scratch scratch_save;
  1523. };
  1524. struct ggml_context_container {
  1525. bool used;
  1526. struct ggml_context context;
  1527. };
  1528. struct ggml_compute_state_shared {
  1529. const struct ggml_cgraph* cgraph;
  1530. const struct ggml_cplan* cplan;
  1531. int64_t perf_node_start_cycles;
  1532. int64_t perf_node_start_time_us;
  1533. const int n_threads;
  1534. // synchronization primitives
  1535. atomic_int n_active; // num active threads
  1536. atomic_int node_n; // active graph node
  1537. atomic_int node_task; // active graph node task phase
  1538. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1539. void* abort_callback_data;
  1540. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1541. };
  1542. struct ggml_compute_state {
  1543. ggml_thread_t thrd;
  1544. int ith;
  1545. struct ggml_compute_state_shared* shared;
  1546. enum ggml_status ec;
  1547. };
  1548. //
  1549. // fundamental operations
  1550. //
  1551. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1552. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1553. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1554. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1555. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1556. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1557. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1558. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1559. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1560. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1561. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1563. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1564. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1565. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1566. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1567. assert(nrc == 1);
  1568. UNUSED(nrc);
  1569. UNUSED(bx);
  1570. UNUSED(by);
  1571. UNUSED(bs);
  1572. #if defined(GGML_SIMD)
  1573. float sumf = 0.0f;
  1574. const int np = (n & ~(GGML_F32_STEP - 1));
  1575. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1576. GGML_F32_VEC ax[GGML_F32_ARR];
  1577. GGML_F32_VEC ay[GGML_F32_ARR];
  1578. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1579. for (int j = 0; j < GGML_F32_ARR; j++) {
  1580. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1581. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1582. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1583. }
  1584. }
  1585. // reduce sum0..sum3 to sum0
  1586. GGML_F32_VEC_REDUCE(sumf, sum);
  1587. // leftovers
  1588. for (int i = np; i < n; ++i) {
  1589. sumf += x[i]*y[i];
  1590. }
  1591. #else
  1592. // scalar
  1593. ggml_float sumf = 0.0;
  1594. for (int i = 0; i < n; ++i) {
  1595. sumf += (ggml_float)(x[i]*y[i]);
  1596. }
  1597. #endif
  1598. *s = sumf;
  1599. }
  1600. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1601. assert(nrc == 1);
  1602. UNUSED(nrc);
  1603. UNUSED(bx);
  1604. UNUSED(by);
  1605. UNUSED(bs);
  1606. int i = 0;
  1607. ggml_float sumf = 0;
  1608. #if defined(__AVX512BF16__)
  1609. __m512 c1 = _mm512_setzero_ps();
  1610. __m512 c2 = _mm512_setzero_ps();
  1611. for (; i + 64 <= n; i += 64) {
  1612. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1613. m512bh(_mm512_loadu_si512((y + i))));
  1614. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1615. m512bh(_mm512_loadu_si512((y + i + 32))));
  1616. }
  1617. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1618. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1619. #elif defined(__AVX512F__)
  1620. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1621. __m512 c1 = _mm512_setzero_ps();
  1622. __m512 c2 = _mm512_setzero_ps();
  1623. for (; i + 32 <= n; i += 32) {
  1624. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1625. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1626. }
  1627. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1628. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1629. #undef LOAD
  1630. #elif defined(__AVX2__)
  1631. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1632. __m256 c1 = _mm256_setzero_ps();
  1633. __m256 c2 = _mm256_setzero_ps();
  1634. __m256 c3 = _mm256_setzero_ps();
  1635. __m256 c4 = _mm256_setzero_ps();
  1636. for (; i + 32 <= n; i += 32) {
  1637. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1638. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1639. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1640. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1641. }
  1642. __m128 g;
  1643. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1644. _mm256_add_ps(c2, c4));
  1645. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1646. _mm256_castps256_ps128(c1));
  1647. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1648. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1649. sumf += (ggml_float)_mm_cvtss_f32(g);
  1650. #undef LOAD
  1651. #endif
  1652. for (; i < n; ++i) {
  1653. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1654. GGML_BF16_TO_FP32(y[i]));
  1655. }
  1656. *s = sumf;
  1657. }
  1658. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1659. assert(nrc == 1);
  1660. UNUSED(nrc);
  1661. UNUSED(bx);
  1662. UNUSED(by);
  1663. UNUSED(bs);
  1664. ggml_float sumf = 0.0;
  1665. #if defined(GGML_SIMD)
  1666. const int np = (n & ~(GGML_F16_STEP - 1));
  1667. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1668. GGML_F16_VEC ax[GGML_F16_ARR];
  1669. GGML_F16_VEC ay[GGML_F16_ARR];
  1670. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1671. for (int j = 0; j < GGML_F16_ARR; j++) {
  1672. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1673. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1674. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1675. }
  1676. }
  1677. // reduce sum0..sum3 to sum0
  1678. GGML_F16_VEC_REDUCE(sumf, sum);
  1679. // leftovers
  1680. for (int i = np; i < n; ++i) {
  1681. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1682. }
  1683. #else
  1684. for (int i = 0; i < n; ++i) {
  1685. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1686. }
  1687. #endif
  1688. *s = sumf;
  1689. }
  1690. // compute GGML_VEC_DOT_UNROLL dot products at once
  1691. // xs - x row stride in bytes
  1692. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1693. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1694. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1695. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1696. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1697. }
  1698. #if defined(GGML_SIMD)
  1699. const int np = (n & ~(GGML_F16_STEP - 1));
  1700. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1701. GGML_F16_VEC ax[GGML_F16_ARR];
  1702. GGML_F16_VEC ay[GGML_F16_ARR];
  1703. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1704. for (int j = 0; j < GGML_F16_ARR; j++) {
  1705. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1706. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1707. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1708. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1709. }
  1710. }
  1711. }
  1712. // reduce sum0..sum3 to sum0
  1713. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1714. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1715. }
  1716. // leftovers
  1717. for (int i = np; i < n; ++i) {
  1718. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1719. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1720. }
  1721. }
  1722. #else
  1723. for (int i = 0; i < n; ++i) {
  1724. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1725. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1726. }
  1727. }
  1728. #endif
  1729. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1730. s[i] = sumf[i];
  1731. }
  1732. }
  1733. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1734. #if defined(GGML_SIMD)
  1735. const int np = (n & ~(GGML_F32_STEP - 1));
  1736. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1737. GGML_F32_VEC ax[GGML_F32_ARR];
  1738. GGML_F32_VEC ay[GGML_F32_ARR];
  1739. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1740. for (int j = 0; j < GGML_F32_ARR; j++) {
  1741. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1742. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1743. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1744. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1745. }
  1746. }
  1747. // leftovers
  1748. for (int i = np; i < n; ++i) {
  1749. y[i] += x[i]*v;
  1750. }
  1751. #else
  1752. // scalar
  1753. for (int i = 0; i < n; ++i) {
  1754. y[i] += x[i]*v;
  1755. }
  1756. #endif
  1757. }
  1758. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1759. #if defined(GGML_SIMD)
  1760. const int np = (n & ~(GGML_F16_STEP - 1));
  1761. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1762. GGML_F16_VEC ax[GGML_F16_ARR];
  1763. GGML_F16_VEC ay[GGML_F16_ARR];
  1764. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1765. for (int j = 0; j < GGML_F16_ARR; j++) {
  1766. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1767. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1768. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1769. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1770. }
  1771. }
  1772. // leftovers
  1773. for (int i = np; i < n; ++i) {
  1774. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1775. }
  1776. #else
  1777. // scalar
  1778. for (int i = 0; i < n; ++i) {
  1779. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1780. }
  1781. #endif
  1782. }
  1783. // xs and vs are byte strides of x and v
  1784. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1785. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1786. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1787. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1788. x[i] = (const float *) ((const char *) xv + i*xs);
  1789. v[i] = (const float *) ((const char *) vv + i*vs);
  1790. }
  1791. #if defined(GGML_SIMD)
  1792. const int np = (n & ~(GGML_F32_STEP - 1));
  1793. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1794. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1795. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1796. }
  1797. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1798. GGML_F32_VEC ay[GGML_F32_ARR];
  1799. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1800. for (int j = 0; j < GGML_F32_ARR; j++) {
  1801. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1802. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1803. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1804. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1805. }
  1806. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1807. }
  1808. }
  1809. // leftovers
  1810. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1811. for (int i = np; i < n; ++i) {
  1812. y[i] += x[k][i]*v[k][0];
  1813. }
  1814. }
  1815. #else
  1816. // scalar
  1817. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1818. for (int i = 0; i < n; ++i) {
  1819. y[i] += x[k][i]*v[k][0];
  1820. }
  1821. }
  1822. #endif
  1823. }
  1824. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1825. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1826. #if defined(GGML_USE_ACCELERATE)
  1827. vDSP_vsmul(y, 1, &v, y, 1, n);
  1828. #elif defined(GGML_SIMD)
  1829. const int np = (n & ~(GGML_F32_STEP - 1));
  1830. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1831. GGML_F32_VEC ay[GGML_F32_ARR];
  1832. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1833. for (int j = 0; j < GGML_F32_ARR; j++) {
  1834. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1835. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1836. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1837. }
  1838. }
  1839. // leftovers
  1840. for (int i = np; i < n; ++i) {
  1841. y[i] *= v;
  1842. }
  1843. #else
  1844. // scalar
  1845. for (int i = 0; i < n; ++i) {
  1846. y[i] *= v;
  1847. }
  1848. #endif
  1849. }
  1850. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1851. #if defined(GGML_SIMD)
  1852. const int np = (n & ~(GGML_F16_STEP - 1));
  1853. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1854. GGML_F16_VEC ay[GGML_F16_ARR];
  1855. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1856. for (int j = 0; j < GGML_F16_ARR; j++) {
  1857. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1858. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1859. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1860. }
  1861. }
  1862. // leftovers
  1863. for (int i = np; i < n; ++i) {
  1864. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1865. }
  1866. #else
  1867. // scalar
  1868. for (int i = 0; i < n; ++i) {
  1869. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1870. }
  1871. #endif
  1872. }
  1873. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1874. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1875. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1876. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1877. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1878. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1879. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1880. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1881. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1882. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1883. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1884. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1885. // TODO: optimize performance
  1886. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1887. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1888. static const float GELU_COEF_A = 0.044715f;
  1889. static const float GELU_QUICK_COEF = -1.702f;
  1890. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1891. inline static float ggml_gelu_f32(float x) {
  1892. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1893. }
  1894. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1895. const uint16_t * i16 = (const uint16_t *) x;
  1896. for (int i = 0; i < n; ++i) {
  1897. y[i] = ggml_table_gelu_f16[i16[i]];
  1898. }
  1899. }
  1900. #ifdef GGML_GELU_FP16
  1901. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1902. uint16_t t;
  1903. for (int i = 0; i < n; ++i) {
  1904. if (x[i] <= -10.0f) {
  1905. y[i] = 0.0f;
  1906. } else if (x[i] >= 10.0f) {
  1907. y[i] = x[i];
  1908. } else {
  1909. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1910. memcpy(&t, &fp16, sizeof(uint16_t));
  1911. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1912. }
  1913. }
  1914. }
  1915. #else
  1916. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1917. for (int i = 0; i < n; ++i) {
  1918. y[i] = ggml_gelu_f32(x[i]);
  1919. }
  1920. }
  1921. #endif
  1922. inline static float ggml_gelu_quick_f32(float x) {
  1923. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1924. }
  1925. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1926. // const uint16_t * i16 = (const uint16_t *) x;
  1927. // for (int i = 0; i < n; ++i) {
  1928. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1929. // }
  1930. //}
  1931. #ifdef GGML_GELU_QUICK_FP16
  1932. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1933. uint16_t t;
  1934. for (int i = 0; i < n; ++i) {
  1935. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1936. memcpy(&t, &fp16, sizeof(uint16_t));
  1937. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1938. }
  1939. }
  1940. #else
  1941. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1942. for (int i = 0; i < n; ++i) {
  1943. y[i] = ggml_gelu_quick_f32(x[i]);
  1944. }
  1945. }
  1946. #endif
  1947. // Sigmoid Linear Unit (SiLU) function
  1948. inline static float ggml_silu_f32(float x) {
  1949. return x/(1.0f + expf(-x));
  1950. }
  1951. #if defined(__ARM_NEON) && defined(__aarch64__)
  1952. // adapted from arm limited optimized routine
  1953. // the maximum error is 1.45358 plus 0.5 ulps
  1954. // numbers above 88.38 will flush to infinity
  1955. // numbers beneath -103.97 will flush to zero
  1956. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1957. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1958. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1959. const float32x4_t n = vsubq_f32(z, r);
  1960. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1961. vdupq_n_f32(0x1.7f7d1cp-20f));
  1962. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1963. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1964. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1965. const float32x4_t u = vmulq_f32(b, b);
  1966. const float32x4_t j = vfmaq_f32(
  1967. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1968. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1969. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1970. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1971. return vfmaq_f32(k, j, k);
  1972. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1973. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1974. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1975. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1976. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1977. }
  1978. // computes silu x/(1+exp(-x)) in single precision vector
  1979. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1980. const float32x4_t one = vdupq_n_f32(1.0f);
  1981. const float32x4_t zero = vdupq_n_f32(0.0f);
  1982. const float32x4_t neg_x = vsubq_f32(zero, x);
  1983. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1984. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1985. return vdivq_f32(x, one_plus_exp_neg_x);
  1986. }
  1987. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1988. // adapted from arm limited optimized routine
  1989. // the maximum error is 1.45358 plus 0.5 ulps
  1990. // numbers above 88.38 will flush to infinity
  1991. // numbers beneath -103.97 will flush to zero
  1992. inline static __m512 ggml_v_expf(__m512 x) {
  1993. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  1994. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  1995. const __m512 n = _mm512_sub_ps(z, r);
  1996. const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  1997. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  1998. const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
  1999. const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
  2000. const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
  2001. const __m512 u = _mm512_mul_ps(b, b);
  2002. const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2003. _mm512_set1_ps(0x1.573e2ep-5f)), u,
  2004. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2005. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2006. u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
  2007. if (_mm512_kortestz(c, c))
  2008. return _mm512_fmadd_ps(j, k, k);
  2009. const __m512i g = _mm512_and_si512(
  2010. _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
  2011. _mm512_set1_epi32(0x82000000u));
  2012. const __m512 s1 =
  2013. _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
  2014. const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
  2015. const __mmask16 d =
  2016. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2017. return _mm512_mask_blend_ps(
  2018. d, _mm512_mask_blend_ps(
  2019. c, _mm512_fmadd_ps(k, j, k),
  2020. _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
  2021. _mm512_mul_ps(s1, s1));
  2022. }
  2023. // computes silu x/(1+exp(-x)) in single precision vector
  2024. inline static __m512 ggml_v_silu(__m512 x) {
  2025. const __m512 one = _mm512_set1_ps(1);
  2026. const __m512 zero = _mm512_setzero_ps();
  2027. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2028. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2029. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2030. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2031. }
  2032. #elif defined(__AVX2__) && defined(__FMA__)
  2033. // adapted from arm limited optimized routine
  2034. // the maximum error is 1.45358 plus 0.5 ulps
  2035. // numbers above 88.38 will flush to infinity
  2036. // numbers beneath -103.97 will flush to zero
  2037. inline static __m256 ggml_v_expf(__m256 x) {
  2038. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2039. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2040. const __m256 n = _mm256_sub_ps(z, r);
  2041. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2042. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2043. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2044. const __m256 k = _mm256_castsi256_ps(
  2045. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2046. const __m256i c = _mm256_castps_si256(
  2047. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2048. _mm256_set1_ps(126), _CMP_GT_OQ));
  2049. const __m256 u = _mm256_mul_ps(b, b);
  2050. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2051. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2052. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2053. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2054. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2055. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2056. return _mm256_fmadd_ps(j, k, k);
  2057. const __m256i g = _mm256_and_si256(
  2058. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2059. _mm256_set1_epi32(0x82000000u));
  2060. const __m256 s1 =
  2061. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2062. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2063. const __m256i d = _mm256_castps_si256(
  2064. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2065. _mm256_set1_ps(192), _CMP_GT_OQ));
  2066. return _mm256_or_ps(
  2067. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2068. _mm256_andnot_ps(
  2069. _mm256_castsi256_ps(d),
  2070. _mm256_or_ps(
  2071. _mm256_and_ps(_mm256_castsi256_ps(c),
  2072. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2073. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2074. }
  2075. // computes silu x/(1+exp(-x)) in single precision vector
  2076. inline static __m256 ggml_v_silu(__m256 x) {
  2077. const __m256 one = _mm256_set1_ps(1);
  2078. const __m256 zero = _mm256_setzero_ps();
  2079. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2080. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2081. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2082. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2083. }
  2084. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2085. #if defined(__FMA__)
  2086. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2087. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2088. #else
  2089. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2090. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2091. #endif
  2092. // adapted from arm limited optimized routine
  2093. // the maximum error is 1.45358 plus 0.5 ulps
  2094. // numbers above 88.38 will flush to infinity
  2095. // numbers beneath -103.97 will flush to zero
  2096. inline static __m128 ggml_v_expf(__m128 x) {
  2097. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2098. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2099. const __m128 n = _mm_sub_ps(z, r);
  2100. const __m128 b =
  2101. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2102. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2103. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2104. const __m128i c =
  2105. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2106. const __m128 u = _mm_mul_ps(b, b);
  2107. const __m128 j =
  2108. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2109. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2110. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2111. if (!_mm_movemask_epi8(c))
  2112. return MADD128(j, k, k);
  2113. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2114. _mm_set1_epi32(0x82000000u));
  2115. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2116. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2117. const __m128i d =
  2118. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2119. return _mm_or_ps(
  2120. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2121. _mm_andnot_ps(_mm_castsi128_ps(d),
  2122. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2123. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2124. }
  2125. // computes silu x/(1+exp(-x)) in single precision vector
  2126. inline static __m128 ggml_v_silu(__m128 x) {
  2127. const __m128 one = _mm_set1_ps(1);
  2128. const __m128 zero = _mm_setzero_ps();
  2129. const __m128 neg_x = _mm_sub_ps(zero, x);
  2130. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2131. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2132. return _mm_div_ps(x, one_plus_exp_neg_x);
  2133. }
  2134. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2135. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2136. int i = 0;
  2137. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2138. for (; i + 15 < n; i += 16) {
  2139. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2140. }
  2141. #elif defined(__AVX2__) && defined(__FMA__)
  2142. for (; i + 7 < n; i += 8) {
  2143. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2144. }
  2145. #elif defined(__SSE2__)
  2146. for (; i + 3 < n; i += 4) {
  2147. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2148. }
  2149. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2150. for (; i + 3 < n; i += 4) {
  2151. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2152. }
  2153. #endif
  2154. for (; i < n; ++i) {
  2155. y[i] = ggml_silu_f32(x[i]);
  2156. }
  2157. }
  2158. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2159. int i = 0;
  2160. ggml_float sum = 0;
  2161. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2162. for (; i + 15 < n; i += 16) {
  2163. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2164. _mm512_set1_ps(max)));
  2165. _mm512_storeu_ps(y + i, val);
  2166. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2167. }
  2168. #elif defined(__AVX2__) && defined(__FMA__)
  2169. for (; i + 7 < n; i += 8) {
  2170. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2171. _mm256_set1_ps(max)));
  2172. _mm256_storeu_ps(y + i, val);
  2173. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2174. _mm256_castps256_ps128(val));
  2175. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2176. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2177. sum += (ggml_float)_mm_cvtss_f32(val2);
  2178. }
  2179. #elif defined(__SSE2__)
  2180. for (; i + 3 < n; i += 4) {
  2181. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2182. _mm_set1_ps(max)));
  2183. _mm_storeu_ps(y + i, val);
  2184. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2185. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2186. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2187. #else
  2188. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2189. val = _mm_add_ps(val, tmp);
  2190. tmp = _mm_movehl_ps(tmp, val);
  2191. val = _mm_add_ss(val, tmp);
  2192. #endif
  2193. sum += (ggml_float)_mm_cvtss_f32(val);
  2194. }
  2195. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2196. for (; i + 3 < n; i += 4) {
  2197. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2198. vdupq_n_f32(max)));
  2199. vst1q_f32(y + i, val);
  2200. sum += (ggml_float)vaddvq_f32(val);
  2201. }
  2202. #endif
  2203. for (; i < n; ++i) {
  2204. float val = expf(x[i] - max);
  2205. sum += (ggml_float)val;
  2206. y[i] = val;
  2207. }
  2208. return sum;
  2209. }
  2210. inline static float ggml_silu_backward_f32(float x, float dy) {
  2211. const float s = 1.0f/(1.0f + expf(-x));
  2212. return dy*s*(1.0f + x*(1.0f - s));
  2213. }
  2214. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2215. for (int i = 0; i < n; ++i) {
  2216. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2217. }
  2218. }
  2219. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2220. #ifndef GGML_USE_ACCELERATE
  2221. ggml_float sum = 0.0;
  2222. for (int i = 0; i < n; ++i) {
  2223. sum += (ggml_float)x[i];
  2224. }
  2225. *s = sum;
  2226. #else
  2227. vDSP_sve(x, 1, s, n);
  2228. #endif
  2229. }
  2230. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2231. ggml_float sum = 0.0;
  2232. for (int i = 0; i < n; ++i) {
  2233. sum += (ggml_float)x[i];
  2234. }
  2235. *s = sum;
  2236. }
  2237. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2238. float sum = 0.0f;
  2239. for (int i = 0; i < n; ++i) {
  2240. sum += GGML_FP16_TO_FP32(x[i]);
  2241. }
  2242. *s = sum;
  2243. }
  2244. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2245. float sum = 0.0f;
  2246. for (int i = 0; i < n; ++i) {
  2247. sum += GGML_BF16_TO_FP32(x[i]);
  2248. }
  2249. *s = sum;
  2250. }
  2251. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2252. #ifndef GGML_USE_ACCELERATE
  2253. float max = -INFINITY;
  2254. for (int i = 0; i < n; ++i) {
  2255. max = MAX(max, x[i]);
  2256. }
  2257. *s = max;
  2258. #else
  2259. vDSP_maxv(x, 1, s, n);
  2260. #endif
  2261. }
  2262. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2263. ggml_vec_norm_f32(n, s, x);
  2264. *s = 1.f/(*s);
  2265. }
  2266. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2267. float max = -INFINITY;
  2268. int idx = 0;
  2269. for (int i = 0; i < n; ++i) {
  2270. max = MAX(max, x[i]);
  2271. if (max == x[i]) { idx = i; }
  2272. }
  2273. *s = idx;
  2274. }
  2275. //
  2276. // data types
  2277. //
  2278. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2279. "NONE",
  2280. "DUP",
  2281. "ADD",
  2282. "ADD1",
  2283. "ACC",
  2284. "SUB",
  2285. "MUL",
  2286. "DIV",
  2287. "SQR",
  2288. "SQRT",
  2289. "LOG",
  2290. "SUM",
  2291. "SUM_ROWS",
  2292. "MEAN",
  2293. "ARGMAX",
  2294. "REPEAT",
  2295. "REPEAT_BACK",
  2296. "CONCAT",
  2297. "SILU_BACK",
  2298. "NORM",
  2299. "RMS_NORM",
  2300. "RMS_NORM_BACK",
  2301. "GROUP_NORM",
  2302. "MUL_MAT",
  2303. "MUL_MAT_ID",
  2304. "OUT_PROD",
  2305. "SCALE",
  2306. "SET",
  2307. "CPY",
  2308. "CONT",
  2309. "RESHAPE",
  2310. "VIEW",
  2311. "PERMUTE",
  2312. "TRANSPOSE",
  2313. "GET_ROWS",
  2314. "GET_ROWS_BACK",
  2315. "DIAG",
  2316. "DIAG_MASK_INF",
  2317. "DIAG_MASK_ZERO",
  2318. "SOFT_MAX",
  2319. "SOFT_MAX_BACK",
  2320. "ROPE",
  2321. "ROPE_BACK",
  2322. "CLAMP",
  2323. "CONV_TRANSPOSE_1D",
  2324. "IM2COL",
  2325. "CONV_TRANSPOSE_2D",
  2326. "POOL_1D",
  2327. "POOL_2D",
  2328. "UPSCALE",
  2329. "PAD",
  2330. "ARANGE",
  2331. "TIMESTEP_EMBEDDING",
  2332. "ARGSORT",
  2333. "LEAKY_RELU",
  2334. "FLASH_ATTN_EXT",
  2335. "FLASH_ATTN_BACK",
  2336. "SSM_CONV",
  2337. "SSM_SCAN",
  2338. "WIN_PART",
  2339. "WIN_UNPART",
  2340. "GET_REL_POS",
  2341. "ADD_REL_POS",
  2342. "UNARY",
  2343. "MAP_UNARY",
  2344. "MAP_BINARY",
  2345. "MAP_CUSTOM1_F32",
  2346. "MAP_CUSTOM2_F32",
  2347. "MAP_CUSTOM3_F32",
  2348. "MAP_CUSTOM1",
  2349. "MAP_CUSTOM2",
  2350. "MAP_CUSTOM3",
  2351. "CROSS_ENTROPY_LOSS",
  2352. "CROSS_ENTROPY_LOSS_BACK",
  2353. };
  2354. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2355. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2356. "none",
  2357. "x",
  2358. "x+y",
  2359. "x+y",
  2360. "view(x,nb,offset)+=y->x",
  2361. "x-y",
  2362. "x*y",
  2363. "x/y",
  2364. "x^2",
  2365. "√x",
  2366. "log(x)",
  2367. "Σx",
  2368. "Σx_k",
  2369. "Σx/n",
  2370. "argmax(x)",
  2371. "repeat(x)",
  2372. "repeat_back(x)",
  2373. "concat(x, y)",
  2374. "silu_back(x)",
  2375. "norm(x)",
  2376. "rms_norm(x)",
  2377. "rms_norm_back(x)",
  2378. "group_norm(x)",
  2379. "X*Y",
  2380. "X[i]*Y",
  2381. "X*Y",
  2382. "x*v",
  2383. "y-\\>view(x)",
  2384. "x-\\>y",
  2385. "cont(x)",
  2386. "reshape(x)",
  2387. "view(x)",
  2388. "permute(x)",
  2389. "transpose(x)",
  2390. "get_rows(x)",
  2391. "get_rows_back(x)",
  2392. "diag(x)",
  2393. "diag_mask_inf(x)",
  2394. "diag_mask_zero(x)",
  2395. "soft_max(x)",
  2396. "soft_max_back(x)",
  2397. "rope(x)",
  2398. "rope_back(x)",
  2399. "clamp(x)",
  2400. "conv_transpose_1d(x)",
  2401. "im2col(x)",
  2402. "conv_transpose_2d(x)",
  2403. "pool_1d(x)",
  2404. "pool_2d(x)",
  2405. "upscale(x)",
  2406. "pad(x)",
  2407. "arange(start, stop, step)",
  2408. "timestep_embedding(timesteps, dim, max_period)",
  2409. "argsort(x)",
  2410. "leaky_relu(x)",
  2411. "flash_attn_ext(x)",
  2412. "flash_attn_back(x)",
  2413. "ssm_conv(x)",
  2414. "ssm_scan(x)",
  2415. "win_part(x)",
  2416. "win_unpart(x)",
  2417. "get_rel_pos(x)",
  2418. "add_rel_pos(x)",
  2419. "unary(x)",
  2420. "f(x)",
  2421. "f(x,y)",
  2422. "custom_f32(x)",
  2423. "custom_f32(x,y)",
  2424. "custom_f32(x,y,z)",
  2425. "custom(x)",
  2426. "custom(x,y)",
  2427. "custom(x,y,z)",
  2428. "cross_entropy_loss(x,y)",
  2429. "cross_entropy_loss_back(x,y)",
  2430. };
  2431. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2432. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2433. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2434. "ABS",
  2435. "SGN",
  2436. "NEG",
  2437. "STEP",
  2438. "TANH",
  2439. "ELU",
  2440. "RELU",
  2441. "SIGMOID",
  2442. "GELU",
  2443. "GELU_QUICK",
  2444. "SILU",
  2445. "HARDSWISH",
  2446. "HARDSIGMOID",
  2447. };
  2448. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2449. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2450. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2451. // WARN:
  2452. // Mis-configuration can lead to problem that's hard to reason about:
  2453. // * At best it crash or talks nosense.
  2454. // * At worst it talks slightly difference but hard to perceive.
  2455. //
  2456. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2457. // Take care about compile options (e.g., GGML_USE_xxx).
  2458. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2459. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2460. static void ggml_setup_op_has_task_pass(void) {
  2461. { // INIT
  2462. bool * p = GGML_OP_HAS_INIT;
  2463. p[GGML_OP_ACC ] = true;
  2464. p[GGML_OP_MUL_MAT ] = true;
  2465. p[GGML_OP_MUL_MAT_ID ] = true;
  2466. p[GGML_OP_OUT_PROD ] = true;
  2467. p[GGML_OP_SET ] = true;
  2468. p[GGML_OP_GET_ROWS_BACK ] = true;
  2469. p[GGML_OP_DIAG_MASK_INF ] = true;
  2470. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2471. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2472. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2473. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2474. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2475. p[GGML_OP_ADD_REL_POS ] = true;
  2476. }
  2477. { // FINALIZE
  2478. bool * p = GGML_OP_HAS_FINALIZE;
  2479. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2480. }
  2481. }
  2482. //
  2483. // NUMA support
  2484. //
  2485. #define GGML_NUMA_MAX_NODES 8
  2486. #define GGML_NUMA_MAX_CPUS 512
  2487. struct ggml_numa_node {
  2488. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2489. uint32_t n_cpus;
  2490. };
  2491. struct ggml_numa_nodes {
  2492. enum ggml_numa_strategy numa_strategy;
  2493. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2494. uint32_t n_nodes;
  2495. uint32_t total_cpus; // hardware threads on system
  2496. uint32_t current_node; // node on which main process is execting
  2497. #if defined(__gnu_linux__)
  2498. cpu_set_t cpuset; // cpuset from numactl
  2499. #else
  2500. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2501. #endif
  2502. };
  2503. //
  2504. // ggml state
  2505. //
  2506. struct ggml_state {
  2507. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2508. struct ggml_numa_nodes numa;
  2509. };
  2510. // global state
  2511. static struct ggml_state g_state;
  2512. static atomic_int g_state_barrier = 0;
  2513. // barrier via spin lock
  2514. inline static void ggml_critical_section_start(void) {
  2515. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2516. while (processing > 0) {
  2517. // wait for other threads to finish
  2518. atomic_fetch_sub(&g_state_barrier, 1);
  2519. sched_yield(); // TODO: reconsider this
  2520. processing = atomic_fetch_add(&g_state_barrier, 1);
  2521. }
  2522. }
  2523. // TODO: make this somehow automatically executed
  2524. // some sort of "sentry" mechanism
  2525. inline static void ggml_critical_section_end(void) {
  2526. atomic_fetch_sub(&g_state_barrier, 1);
  2527. }
  2528. #if defined(__gnu_linux__)
  2529. static cpu_set_t ggml_get_numa_affinity(void) {
  2530. cpu_set_t cpuset;
  2531. pthread_t thread;
  2532. thread = pthread_self();
  2533. CPU_ZERO(&cpuset);
  2534. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2535. return cpuset;
  2536. }
  2537. #else
  2538. static uint32_t ggml_get_numa_affinity(void) {
  2539. return 0; // no NUMA support
  2540. }
  2541. #endif
  2542. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2543. if (g_state.numa.n_nodes > 0) {
  2544. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2545. return;
  2546. }
  2547. #if defined(__gnu_linux__)
  2548. struct stat st;
  2549. char path[256];
  2550. int rv;
  2551. // set numa scheme
  2552. g_state.numa.numa_strategy = numa_flag;
  2553. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2554. g_state.numa.cpuset = ggml_get_numa_affinity();
  2555. // enumerate nodes
  2556. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2557. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2558. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2559. if (stat(path, &st) != 0) { break; }
  2560. ++g_state.numa.n_nodes;
  2561. }
  2562. // enumerate CPUs
  2563. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2564. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2565. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2566. if (stat(path, &st) != 0) { break; }
  2567. ++g_state.numa.total_cpus;
  2568. }
  2569. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2570. // figure out which node we're on
  2571. uint current_cpu;
  2572. int getcpu_ret = 0;
  2573. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2574. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2575. #else
  2576. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2577. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2578. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2579. # endif
  2580. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2581. #endif
  2582. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2583. g_state.numa.n_nodes = 0;
  2584. return;
  2585. }
  2586. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2587. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2588. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2589. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2590. node->n_cpus = 0;
  2591. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2592. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2593. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2594. if (stat(path, &st) == 0) {
  2595. node->cpus[node->n_cpus++] = c;
  2596. GGML_PRINT_DEBUG(" %u", c);
  2597. }
  2598. }
  2599. GGML_PRINT_DEBUG("\n");
  2600. }
  2601. if (ggml_is_numa()) {
  2602. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2603. if (fptr != NULL) {
  2604. char buf[42];
  2605. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2606. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2607. }
  2608. fclose(fptr);
  2609. }
  2610. }
  2611. #else
  2612. GGML_UNUSED(numa_flag);
  2613. // TODO
  2614. #endif
  2615. }
  2616. bool ggml_is_numa(void) {
  2617. return g_state.numa.n_nodes > 1;
  2618. }
  2619. ////////////////////////////////////////////////////////////////////////////////
  2620. void ggml_print_object(const struct ggml_object * obj) {
  2621. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2622. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2623. }
  2624. void ggml_print_objects(const struct ggml_context * ctx) {
  2625. struct ggml_object * obj = ctx->objects_begin;
  2626. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2627. while (obj != NULL) {
  2628. ggml_print_object(obj);
  2629. obj = obj->next;
  2630. }
  2631. GGML_PRINT("%s: --- end ---\n", __func__);
  2632. }
  2633. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2634. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2635. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2636. }
  2637. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2638. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2639. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2640. }
  2641. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2642. size_t nbytes;
  2643. size_t blck_size = ggml_blck_size(tensor->type);
  2644. if (blck_size == 1) {
  2645. nbytes = ggml_type_size(tensor->type);
  2646. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2647. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2648. }
  2649. }
  2650. else {
  2651. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2652. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2653. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2654. }
  2655. }
  2656. return nbytes;
  2657. }
  2658. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2659. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2660. }
  2661. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2662. return type_traits[type].blck_size;
  2663. }
  2664. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2665. return type_traits[type].type_size;
  2666. }
  2667. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2668. assert(ne % ggml_blck_size(type) == 0);
  2669. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2670. }
  2671. double ggml_type_sizef(enum ggml_type type) {
  2672. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2673. }
  2674. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2675. return type_traits[type].type_name;
  2676. }
  2677. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2678. return type_traits[type].is_quantized;
  2679. }
  2680. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2681. return GGML_OP_NAME[op];
  2682. }
  2683. const char * ggml_op_symbol(enum ggml_op op) {
  2684. return GGML_OP_SYMBOL[op];
  2685. }
  2686. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2687. return GGML_UNARY_OP_NAME[op];
  2688. }
  2689. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2690. if (t->op == GGML_OP_UNARY) {
  2691. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2692. return ggml_unary_op_name(uop);
  2693. }
  2694. else {
  2695. return ggml_op_name(t->op);
  2696. }
  2697. }
  2698. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2699. return ggml_type_size(tensor->type);
  2700. }
  2701. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2702. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2703. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2704. }
  2705. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2706. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2707. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2708. }
  2709. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2710. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2711. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2712. }
  2713. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2714. return tensor->ne[3] == 1;
  2715. }
  2716. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2717. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2718. if (tensor->ne[i] > 1) {
  2719. return i + 1;
  2720. }
  2721. }
  2722. return 1;
  2723. }
  2724. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2725. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2726. return (t0->ne[0] == t1->ne[0]) &&
  2727. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2728. (t1->ne[3]%t0->ne[3] == 0);
  2729. }
  2730. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2731. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2732. return (t0->ne[1] == t1->ne[1]) &&
  2733. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2734. (t1->ne[3]%t0->ne[3] == 0);
  2735. }
  2736. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2737. enum ggml_type wtype = GGML_TYPE_COUNT;
  2738. switch (ftype) {
  2739. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2740. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2741. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2742. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2743. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2744. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2745. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2746. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2747. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2748. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2749. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2750. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2751. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2752. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2753. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2754. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2755. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2756. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2757. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2758. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2759. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2760. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2761. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2762. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2763. }
  2764. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2765. return wtype;
  2766. }
  2767. size_t ggml_tensor_overhead(void) {
  2768. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2769. }
  2770. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2771. return tensor->nb[0] > tensor->nb[1];
  2772. }
  2773. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2774. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2775. return
  2776. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2777. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2778. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2779. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2780. }
  2781. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2782. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2783. return
  2784. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2785. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2786. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2787. }
  2788. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2789. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2790. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2791. }
  2792. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2793. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2794. return
  2795. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2796. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2797. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2798. }
  2799. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2800. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2801. if (tensor->ne[i] == 0) {
  2802. // empty if any dimension has no elements
  2803. return true;
  2804. }
  2805. }
  2806. return false;
  2807. }
  2808. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2809. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2810. return
  2811. (t0->ne[0] == t1->ne[0] ) &&
  2812. (t0->ne[1] == t1->ne[1] ) &&
  2813. (t0->ne[2] == t1->ne[2] ) &&
  2814. (t0->ne[3] == t1->ne[3] );
  2815. }
  2816. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2817. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2818. return
  2819. (t0->nb[0] == t1->nb[0] ) &&
  2820. (t0->nb[1] == t1->nb[1] ) &&
  2821. (t0->nb[2] == t1->nb[2] ) &&
  2822. (t0->nb[3] == t1->nb[3] );
  2823. }
  2824. // check if t1 can be represented as a repeatition of t0
  2825. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2826. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2827. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2828. (t1->ne[0]%t0->ne[0] == 0) &&
  2829. (t1->ne[1]%t0->ne[1] == 0) &&
  2830. (t1->ne[2]%t0->ne[2] == 0) &&
  2831. (t1->ne[3]%t0->ne[3] == 0);
  2832. }
  2833. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2834. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2835. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2836. }
  2837. static inline int ggml_up32(int n) {
  2838. return (n + 31) & ~31;
  2839. }
  2840. //static inline int ggml_up64(int n) {
  2841. // return (n + 63) & ~63;
  2842. //}
  2843. static inline int ggml_up(int n, int m) {
  2844. // assert m is a power of 2
  2845. GGML_ASSERT((m & (m - 1)) == 0);
  2846. return (n + m - 1) & ~(m - 1);
  2847. }
  2848. // assert that pointer is aligned to GGML_MEM_ALIGN
  2849. #define ggml_assert_aligned(ptr) \
  2850. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2851. ////////////////////////////////////////////////////////////////////////////////
  2852. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2853. // make this function thread safe
  2854. ggml_critical_section_start();
  2855. static bool is_first_call = true;
  2856. if (is_first_call) {
  2857. // initialize time system (required on Windows)
  2858. ggml_time_init();
  2859. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2860. {
  2861. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2862. for (int i = 0; i < (1 << 16); ++i) {
  2863. union {
  2864. uint16_t u16;
  2865. ggml_fp16_t fp16;
  2866. } u = {i};
  2867. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2868. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2869. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2870. }
  2871. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2872. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2873. }
  2874. // initialize g_state
  2875. {
  2876. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2877. g_state = (struct ggml_state) {
  2878. /*.contexts =*/ { { 0 } },
  2879. /*.numa =*/ {
  2880. .n_nodes = 0,
  2881. .total_cpus = 0,
  2882. },
  2883. };
  2884. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2885. g_state.contexts[i].used = false;
  2886. }
  2887. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2888. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2889. }
  2890. #if defined(GGML_USE_CLBLAST)
  2891. ggml_cl_init();
  2892. #endif
  2893. ggml_setup_op_has_task_pass();
  2894. is_first_call = false;
  2895. }
  2896. // find non-used context in g_state
  2897. struct ggml_context * ctx = NULL;
  2898. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2899. if (!g_state.contexts[i].used) {
  2900. g_state.contexts[i].used = true;
  2901. ctx = &g_state.contexts[i].context;
  2902. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2903. break;
  2904. }
  2905. }
  2906. if (ctx == NULL) {
  2907. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2908. ggml_critical_section_end();
  2909. return NULL;
  2910. }
  2911. // allow to call ggml_init with 0 size
  2912. if (params.mem_size == 0) {
  2913. params.mem_size = GGML_MEM_ALIGN;
  2914. }
  2915. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2916. *ctx = (struct ggml_context) {
  2917. /*.mem_size =*/ mem_size,
  2918. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2919. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2920. /*.no_alloc =*/ params.no_alloc,
  2921. /*.no_alloc_save =*/ params.no_alloc,
  2922. /*.n_objects =*/ 0,
  2923. /*.objects_begin =*/ NULL,
  2924. /*.objects_end =*/ NULL,
  2925. /*.scratch =*/ { 0, 0, NULL, },
  2926. /*.scratch_save =*/ { 0, 0, NULL, },
  2927. };
  2928. GGML_ASSERT(ctx->mem_buffer != NULL);
  2929. ggml_assert_aligned(ctx->mem_buffer);
  2930. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2931. ggml_critical_section_end();
  2932. return ctx;
  2933. }
  2934. void ggml_free(struct ggml_context * ctx) {
  2935. if (ctx == NULL) {
  2936. return;
  2937. }
  2938. // make this function thread safe
  2939. ggml_critical_section_start();
  2940. bool found = false;
  2941. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2942. if (&g_state.contexts[i].context == ctx) {
  2943. g_state.contexts[i].used = false;
  2944. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2945. __func__, i, ggml_used_mem(ctx));
  2946. if (ctx->mem_buffer_owned) {
  2947. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2948. }
  2949. found = true;
  2950. break;
  2951. }
  2952. }
  2953. if (!found) {
  2954. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2955. }
  2956. ggml_critical_section_end();
  2957. }
  2958. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2959. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2960. }
  2961. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2962. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2963. ctx->scratch = scratch;
  2964. return result;
  2965. }
  2966. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2967. return ctx->no_alloc;
  2968. }
  2969. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2970. ctx->no_alloc = no_alloc;
  2971. }
  2972. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2973. return ctx->mem_buffer;
  2974. }
  2975. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2976. return ctx->mem_size;
  2977. }
  2978. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2979. size_t max_size = 0;
  2980. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2981. size_t bytes = ggml_nbytes(tensor);
  2982. max_size = MAX(max_size, bytes);
  2983. }
  2984. return max_size;
  2985. }
  2986. // IMPORTANT:
  2987. // when creating "opt" tensors, always save and load the scratch buffer
  2988. // this is an error prone process, but it is necessary to support inplace
  2989. // operators when using scratch buffers
  2990. // TODO: implement a better way
  2991. static void ggml_scratch_save(struct ggml_context * ctx) {
  2992. // this is needed to allow opt tensors to store their data
  2993. // TODO: again, need to find a better way
  2994. ctx->no_alloc_save = ctx->no_alloc;
  2995. ctx->no_alloc = false;
  2996. ctx->scratch_save = ctx->scratch;
  2997. ctx->scratch.data = NULL;
  2998. }
  2999. static void ggml_scratch_load(struct ggml_context * ctx) {
  3000. ctx->no_alloc = ctx->no_alloc_save;
  3001. ctx->scratch = ctx->scratch_save;
  3002. }
  3003. ////////////////////////////////////////////////////////////////////////////////
  3004. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3005. // always insert objects at the end of the context's memory pool
  3006. struct ggml_object * obj_cur = ctx->objects_end;
  3007. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3008. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3009. const size_t cur_end = cur_offs + cur_size;
  3010. // align to GGML_MEM_ALIGN
  3011. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3012. char * const mem_buffer = ctx->mem_buffer;
  3013. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3014. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3015. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3016. __func__, cur_end + size_needed, ctx->mem_size);
  3017. assert(false);
  3018. return NULL;
  3019. }
  3020. *obj_new = (struct ggml_object) {
  3021. .offs = cur_end + GGML_OBJECT_SIZE,
  3022. .size = size_needed,
  3023. .next = NULL,
  3024. .type = type,
  3025. };
  3026. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3027. if (obj_cur != NULL) {
  3028. obj_cur->next = obj_new;
  3029. } else {
  3030. // this is the first object in this context
  3031. ctx->objects_begin = obj_new;
  3032. }
  3033. ctx->objects_end = obj_new;
  3034. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3035. return obj_new;
  3036. }
  3037. static struct ggml_tensor * ggml_new_tensor_impl(
  3038. struct ggml_context * ctx,
  3039. enum ggml_type type,
  3040. int n_dims,
  3041. const int64_t * ne,
  3042. struct ggml_tensor * view_src,
  3043. size_t view_offs) {
  3044. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3045. // find the base tensor and absolute offset
  3046. if (view_src != NULL && view_src->view_src != NULL) {
  3047. view_offs += view_src->view_offs;
  3048. view_src = view_src->view_src;
  3049. }
  3050. size_t data_size = ggml_row_size(type, ne[0]);
  3051. for (int i = 1; i < n_dims; i++) {
  3052. data_size *= ne[i];
  3053. }
  3054. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3055. void * data = view_src != NULL ? view_src->data : NULL;
  3056. if (data != NULL) {
  3057. data = (char *) data + view_offs;
  3058. }
  3059. size_t obj_alloc_size = 0;
  3060. if (view_src == NULL && !ctx->no_alloc) {
  3061. if (ctx->scratch.data != NULL) {
  3062. // allocate tensor data in the scratch buffer
  3063. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3064. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3065. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3066. assert(false);
  3067. return NULL;
  3068. }
  3069. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3070. ctx->scratch.offs += data_size;
  3071. } else {
  3072. // allocate tensor data in the context's memory pool
  3073. obj_alloc_size = data_size;
  3074. }
  3075. }
  3076. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3077. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3078. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3079. #ifdef __clang__
  3080. // temporary until ggml_tensor::backend is removed
  3081. #pragma clang diagnostic push
  3082. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3083. #endif
  3084. *result = (struct ggml_tensor) {
  3085. /*.type =*/ type,
  3086. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3087. /*.buffer =*/ NULL,
  3088. /*.ne =*/ { 1, 1, 1, 1 },
  3089. /*.nb =*/ { 0, 0, 0, 0 },
  3090. /*.op =*/ GGML_OP_NONE,
  3091. /*.op_params =*/ { 0 },
  3092. /*.flags =*/ 0,
  3093. /*.grad =*/ NULL,
  3094. /*.src =*/ { NULL },
  3095. /*.perf_runs =*/ 0,
  3096. /*.perf_cycles =*/ 0,
  3097. /*.perf_time_us =*/ 0,
  3098. /*.view_src =*/ view_src,
  3099. /*.view_offs =*/ view_offs,
  3100. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3101. /*.name =*/ { 0 },
  3102. /*.extra =*/ NULL,
  3103. /*.padding =*/ { 0 },
  3104. };
  3105. #ifdef __clang__
  3106. #pragma clang diagnostic pop
  3107. #endif
  3108. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3109. //ggml_assert_aligned(result->data);
  3110. for (int i = 0; i < n_dims; i++) {
  3111. result->ne[i] = ne[i];
  3112. }
  3113. result->nb[0] = ggml_type_size(type);
  3114. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3115. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3116. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3117. }
  3118. ctx->n_objects++;
  3119. return result;
  3120. }
  3121. struct ggml_tensor * ggml_new_tensor(
  3122. struct ggml_context * ctx,
  3123. enum ggml_type type,
  3124. int n_dims,
  3125. const int64_t * ne) {
  3126. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3127. }
  3128. struct ggml_tensor * ggml_new_tensor_1d(
  3129. struct ggml_context * ctx,
  3130. enum ggml_type type,
  3131. int64_t ne0) {
  3132. return ggml_new_tensor(ctx, type, 1, &ne0);
  3133. }
  3134. struct ggml_tensor * ggml_new_tensor_2d(
  3135. struct ggml_context * ctx,
  3136. enum ggml_type type,
  3137. int64_t ne0,
  3138. int64_t ne1) {
  3139. const int64_t ne[2] = { ne0, ne1 };
  3140. return ggml_new_tensor(ctx, type, 2, ne);
  3141. }
  3142. struct ggml_tensor * ggml_new_tensor_3d(
  3143. struct ggml_context * ctx,
  3144. enum ggml_type type,
  3145. int64_t ne0,
  3146. int64_t ne1,
  3147. int64_t ne2) {
  3148. const int64_t ne[3] = { ne0, ne1, ne2 };
  3149. return ggml_new_tensor(ctx, type, 3, ne);
  3150. }
  3151. struct ggml_tensor * ggml_new_tensor_4d(
  3152. struct ggml_context * ctx,
  3153. enum ggml_type type,
  3154. int64_t ne0,
  3155. int64_t ne1,
  3156. int64_t ne2,
  3157. int64_t ne3) {
  3158. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3159. return ggml_new_tensor(ctx, type, 4, ne);
  3160. }
  3161. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3162. ggml_scratch_save(ctx);
  3163. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3164. ggml_scratch_load(ctx);
  3165. ggml_set_i32(result, value);
  3166. return result;
  3167. }
  3168. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3169. ggml_scratch_save(ctx);
  3170. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3171. ggml_scratch_load(ctx);
  3172. ggml_set_f32(result, value);
  3173. return result;
  3174. }
  3175. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3176. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3177. }
  3178. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3179. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3180. assert(params_size <= GGML_MAX_OP_PARAMS);
  3181. memcpy(tensor->op_params, params, params_size);
  3182. }
  3183. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3184. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3185. return ((const int32_t *)(tensor->op_params))[i];
  3186. }
  3187. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3188. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3189. return ((const float *)(tensor->op_params))[i];
  3190. }
  3191. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3192. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3193. ((int32_t *)(tensor->op_params))[i] = value;
  3194. }
  3195. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3196. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3197. ((float *)(tensor->op_params))[i] = value;
  3198. }
  3199. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3200. memset(tensor->data, 0, ggml_nbytes(tensor));
  3201. return tensor;
  3202. }
  3203. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3204. const int n = ggml_nrows(tensor);
  3205. const int nc = tensor->ne[0];
  3206. const size_t n1 = tensor->nb[1];
  3207. char * const data = tensor->data;
  3208. switch (tensor->type) {
  3209. case GGML_TYPE_I8:
  3210. {
  3211. assert(tensor->nb[0] == sizeof(int8_t));
  3212. for (int i = 0; i < n; i++) {
  3213. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3214. }
  3215. } break;
  3216. case GGML_TYPE_I16:
  3217. {
  3218. assert(tensor->nb[0] == sizeof(int16_t));
  3219. for (int i = 0; i < n; i++) {
  3220. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3221. }
  3222. } break;
  3223. case GGML_TYPE_I32:
  3224. {
  3225. assert(tensor->nb[0] == sizeof(int32_t));
  3226. for (int i = 0; i < n; i++) {
  3227. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3228. }
  3229. } break;
  3230. case GGML_TYPE_F16:
  3231. {
  3232. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3233. for (int i = 0; i < n; i++) {
  3234. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3235. }
  3236. } break;
  3237. case GGML_TYPE_BF16:
  3238. {
  3239. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3240. for (int i = 0; i < n; i++) {
  3241. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3242. }
  3243. } break;
  3244. case GGML_TYPE_F32:
  3245. {
  3246. assert(tensor->nb[0] == sizeof(float));
  3247. for (int i = 0; i < n; i++) {
  3248. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3249. }
  3250. } break;
  3251. default:
  3252. {
  3253. GGML_ASSERT(false);
  3254. } break;
  3255. }
  3256. return tensor;
  3257. }
  3258. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3259. const int n = ggml_nrows(tensor);
  3260. const int nc = tensor->ne[0];
  3261. const size_t n1 = tensor->nb[1];
  3262. char * const data = tensor->data;
  3263. switch (tensor->type) {
  3264. case GGML_TYPE_I8:
  3265. {
  3266. assert(tensor->nb[0] == sizeof(int8_t));
  3267. for (int i = 0; i < n; i++) {
  3268. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3269. }
  3270. } break;
  3271. case GGML_TYPE_I16:
  3272. {
  3273. assert(tensor->nb[0] == sizeof(int16_t));
  3274. for (int i = 0; i < n; i++) {
  3275. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3276. }
  3277. } break;
  3278. case GGML_TYPE_I32:
  3279. {
  3280. assert(tensor->nb[0] == sizeof(int32_t));
  3281. for (int i = 0; i < n; i++) {
  3282. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3283. }
  3284. } break;
  3285. case GGML_TYPE_F16:
  3286. {
  3287. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3288. for (int i = 0; i < n; i++) {
  3289. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3290. }
  3291. } break;
  3292. case GGML_TYPE_BF16:
  3293. {
  3294. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3295. for (int i = 0; i < n; i++) {
  3296. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3297. }
  3298. } break;
  3299. case GGML_TYPE_F32:
  3300. {
  3301. assert(tensor->nb[0] == sizeof(float));
  3302. for (int i = 0; i < n; i++) {
  3303. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3304. }
  3305. } break;
  3306. default:
  3307. {
  3308. GGML_ASSERT(false);
  3309. } break;
  3310. }
  3311. return tensor;
  3312. }
  3313. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3314. const int64_t ne2 = tensor->ne[2];
  3315. const int64_t ne1 = tensor->ne[1];
  3316. const int64_t ne0 = tensor->ne[0];
  3317. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3318. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3319. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3320. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3321. if (i0) {
  3322. * i0 = i0_;
  3323. }
  3324. if (i1) {
  3325. * i1 = i1_;
  3326. }
  3327. if (i2) {
  3328. * i2 = i2_;
  3329. }
  3330. if (i3) {
  3331. * i3 = i3_;
  3332. }
  3333. }
  3334. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3335. if (!ggml_is_contiguous(tensor)) {
  3336. int64_t id[4] = { 0, 0, 0, 0 };
  3337. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3338. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3339. }
  3340. switch (tensor->type) {
  3341. case GGML_TYPE_I8:
  3342. {
  3343. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3344. return ((int8_t *)(tensor->data))[i];
  3345. }
  3346. case GGML_TYPE_I16:
  3347. {
  3348. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3349. return ((int16_t *)(tensor->data))[i];
  3350. }
  3351. case GGML_TYPE_I32:
  3352. {
  3353. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3354. return ((int32_t *)(tensor->data))[i];
  3355. }
  3356. case GGML_TYPE_F16:
  3357. {
  3358. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3359. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3360. }
  3361. case GGML_TYPE_BF16:
  3362. {
  3363. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3364. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3365. }
  3366. case GGML_TYPE_F32:
  3367. {
  3368. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3369. return ((float *)(tensor->data))[i];
  3370. }
  3371. default:
  3372. {
  3373. GGML_ASSERT(false);
  3374. }
  3375. }
  3376. return 0.0f;
  3377. }
  3378. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3379. if (!ggml_is_contiguous(tensor)) {
  3380. int64_t id[4] = { 0, 0, 0, 0 };
  3381. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3382. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3383. return;
  3384. }
  3385. switch (tensor->type) {
  3386. case GGML_TYPE_I8:
  3387. {
  3388. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3389. ((int8_t *)(tensor->data))[i] = value;
  3390. } break;
  3391. case GGML_TYPE_I16:
  3392. {
  3393. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3394. ((int16_t *)(tensor->data))[i] = value;
  3395. } break;
  3396. case GGML_TYPE_I32:
  3397. {
  3398. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3399. ((int32_t *)(tensor->data))[i] = value;
  3400. } break;
  3401. case GGML_TYPE_F16:
  3402. {
  3403. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3404. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3405. } break;
  3406. case GGML_TYPE_BF16:
  3407. {
  3408. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3409. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3410. } break;
  3411. case GGML_TYPE_F32:
  3412. {
  3413. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3414. ((float *)(tensor->data))[i] = value;
  3415. } break;
  3416. default:
  3417. {
  3418. GGML_ASSERT(false);
  3419. } break;
  3420. }
  3421. }
  3422. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3423. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3424. switch (tensor->type) {
  3425. case GGML_TYPE_I8:
  3426. return ((int8_t *) data)[0];
  3427. case GGML_TYPE_I16:
  3428. return ((int16_t *) data)[0];
  3429. case GGML_TYPE_I32:
  3430. return ((int32_t *) data)[0];
  3431. case GGML_TYPE_F16:
  3432. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3433. case GGML_TYPE_BF16:
  3434. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3435. case GGML_TYPE_F32:
  3436. return ((float *) data)[0];
  3437. default:
  3438. GGML_ASSERT(false);
  3439. }
  3440. return 0.0f;
  3441. }
  3442. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3443. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3444. switch (tensor->type) {
  3445. case GGML_TYPE_I8:
  3446. {
  3447. ((int8_t *)(data))[0] = value;
  3448. } break;
  3449. case GGML_TYPE_I16:
  3450. {
  3451. ((int16_t *)(data))[0] = value;
  3452. } break;
  3453. case GGML_TYPE_I32:
  3454. {
  3455. ((int32_t *)(data))[0] = value;
  3456. } break;
  3457. case GGML_TYPE_F16:
  3458. {
  3459. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3460. } break;
  3461. case GGML_TYPE_BF16:
  3462. {
  3463. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3464. } break;
  3465. case GGML_TYPE_F32:
  3466. {
  3467. ((float *)(data))[0] = value;
  3468. } break;
  3469. default:
  3470. {
  3471. GGML_ASSERT(false);
  3472. } break;
  3473. }
  3474. }
  3475. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3476. if (!ggml_is_contiguous(tensor)) {
  3477. int64_t id[4] = { 0, 0, 0, 0 };
  3478. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3479. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3480. }
  3481. switch (tensor->type) {
  3482. case GGML_TYPE_I8:
  3483. {
  3484. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3485. return ((int8_t *)(tensor->data))[i];
  3486. }
  3487. case GGML_TYPE_I16:
  3488. {
  3489. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3490. return ((int16_t *)(tensor->data))[i];
  3491. }
  3492. case GGML_TYPE_I32:
  3493. {
  3494. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3495. return ((int32_t *)(tensor->data))[i];
  3496. }
  3497. case GGML_TYPE_F16:
  3498. {
  3499. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3500. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3501. }
  3502. case GGML_TYPE_BF16:
  3503. {
  3504. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3505. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3506. }
  3507. case GGML_TYPE_F32:
  3508. {
  3509. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3510. return ((float *)(tensor->data))[i];
  3511. }
  3512. default:
  3513. {
  3514. GGML_ASSERT(false);
  3515. }
  3516. }
  3517. return 0.0f;
  3518. }
  3519. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3520. if (!ggml_is_contiguous(tensor)) {
  3521. int64_t id[4] = { 0, 0, 0, 0 };
  3522. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3523. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3524. return;
  3525. }
  3526. switch (tensor->type) {
  3527. case GGML_TYPE_I8:
  3528. {
  3529. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3530. ((int8_t *)(tensor->data))[i] = value;
  3531. } break;
  3532. case GGML_TYPE_I16:
  3533. {
  3534. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3535. ((int16_t *)(tensor->data))[i] = value;
  3536. } break;
  3537. case GGML_TYPE_I32:
  3538. {
  3539. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3540. ((int32_t *)(tensor->data))[i] = value;
  3541. } break;
  3542. case GGML_TYPE_F16:
  3543. {
  3544. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3545. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3546. } break;
  3547. case GGML_TYPE_BF16:
  3548. {
  3549. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3550. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3551. } break;
  3552. case GGML_TYPE_F32:
  3553. {
  3554. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3555. ((float *)(tensor->data))[i] = value;
  3556. } break;
  3557. default:
  3558. {
  3559. GGML_ASSERT(false);
  3560. } break;
  3561. }
  3562. }
  3563. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3564. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3565. switch (tensor->type) {
  3566. case GGML_TYPE_I8:
  3567. return ((int8_t *) data)[0];
  3568. case GGML_TYPE_I16:
  3569. return ((int16_t *) data)[0];
  3570. case GGML_TYPE_I32:
  3571. return ((int32_t *) data)[0];
  3572. case GGML_TYPE_F16:
  3573. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3574. case GGML_TYPE_BF16:
  3575. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3576. case GGML_TYPE_F32:
  3577. return ((float *) data)[0];
  3578. default:
  3579. GGML_ASSERT(false);
  3580. }
  3581. return 0.0f;
  3582. }
  3583. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3584. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3585. switch (tensor->type) {
  3586. case GGML_TYPE_I8:
  3587. {
  3588. ((int8_t *)(data))[0] = value;
  3589. } break;
  3590. case GGML_TYPE_I16:
  3591. {
  3592. ((int16_t *)(data))[0] = value;
  3593. } break;
  3594. case GGML_TYPE_I32:
  3595. {
  3596. ((int32_t *)(data))[0] = value;
  3597. } break;
  3598. case GGML_TYPE_F16:
  3599. {
  3600. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3601. } break;
  3602. case GGML_TYPE_BF16:
  3603. {
  3604. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3605. } break;
  3606. case GGML_TYPE_F32:
  3607. {
  3608. ((float *)(data))[0] = value;
  3609. } break;
  3610. default:
  3611. {
  3612. GGML_ASSERT(false);
  3613. } break;
  3614. }
  3615. }
  3616. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3617. return tensor->data;
  3618. }
  3619. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3620. assert(tensor->type == GGML_TYPE_F32);
  3621. return (float *)(tensor->data);
  3622. }
  3623. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3624. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3625. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3626. }
  3627. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3628. return tensor->name;
  3629. }
  3630. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3631. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3632. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3633. return tensor;
  3634. }
  3635. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3636. va_list args;
  3637. va_start(args, fmt);
  3638. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3639. va_end(args);
  3640. return tensor;
  3641. }
  3642. struct ggml_tensor * ggml_view_tensor(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * src) {
  3645. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3646. ggml_format_name(result, "%s (view)", src->name);
  3647. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3648. result->nb[i] = src->nb[i];
  3649. }
  3650. return result;
  3651. }
  3652. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3653. struct ggml_object * obj = ctx->objects_begin;
  3654. char * const mem_buffer = ctx->mem_buffer;
  3655. while (obj != NULL) {
  3656. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3657. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3658. }
  3659. obj = obj->next;
  3660. }
  3661. return NULL;
  3662. }
  3663. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3664. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3665. obj = obj->next;
  3666. char * const mem_buffer = ctx->mem_buffer;
  3667. while (obj != NULL) {
  3668. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3669. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3670. }
  3671. obj = obj->next;
  3672. }
  3673. return NULL;
  3674. }
  3675. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3676. struct ggml_object * obj = ctx->objects_begin;
  3677. char * const mem_buffer = ctx->mem_buffer;
  3678. while (obj != NULL) {
  3679. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3680. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3681. if (strcmp(cur->name, name) == 0) {
  3682. return cur;
  3683. }
  3684. }
  3685. obj = obj->next;
  3686. }
  3687. return NULL;
  3688. }
  3689. ////////////////////////////////////////////////////////////////////////////////
  3690. // ggml_dup
  3691. static struct ggml_tensor * ggml_dup_impl(
  3692. struct ggml_context * ctx,
  3693. struct ggml_tensor * a,
  3694. bool inplace) {
  3695. bool is_node = false;
  3696. if (!inplace && (a->grad)) {
  3697. is_node = true;
  3698. }
  3699. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3700. result->op = GGML_OP_DUP;
  3701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3702. result->src[0] = a;
  3703. return result;
  3704. }
  3705. struct ggml_tensor * ggml_dup(
  3706. struct ggml_context * ctx,
  3707. struct ggml_tensor * a) {
  3708. return ggml_dup_impl(ctx, a, false);
  3709. }
  3710. struct ggml_tensor * ggml_dup_inplace(
  3711. struct ggml_context * ctx,
  3712. struct ggml_tensor * a) {
  3713. return ggml_dup_impl(ctx, a, true);
  3714. }
  3715. // ggml_add
  3716. static struct ggml_tensor * ggml_add_impl(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a,
  3719. struct ggml_tensor * b,
  3720. bool inplace) {
  3721. GGML_ASSERT(ggml_can_repeat(b, a));
  3722. bool is_node = false;
  3723. if (!inplace && (a->grad || b->grad)) {
  3724. // TODO: support backward pass for broadcasting
  3725. GGML_ASSERT(ggml_are_same_shape(a, b));
  3726. is_node = true;
  3727. }
  3728. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3729. result->op = GGML_OP_ADD;
  3730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3731. result->src[0] = a;
  3732. result->src[1] = b;
  3733. return result;
  3734. }
  3735. struct ggml_tensor * ggml_add(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a,
  3738. struct ggml_tensor * b) {
  3739. return ggml_add_impl(ctx, a, b, false);
  3740. }
  3741. struct ggml_tensor * ggml_add_inplace(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a,
  3744. struct ggml_tensor * b) {
  3745. return ggml_add_impl(ctx, a, b, true);
  3746. }
  3747. // ggml_add_cast
  3748. static struct ggml_tensor * ggml_add_cast_impl(
  3749. struct ggml_context * ctx,
  3750. struct ggml_tensor * a,
  3751. struct ggml_tensor * b,
  3752. enum ggml_type type) {
  3753. // TODO: support less-strict constraint
  3754. // GGML_ASSERT(ggml_can_repeat(b, a));
  3755. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3756. // currently only supported for quantized input and f16
  3757. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3758. a->type == GGML_TYPE_F16 ||
  3759. a->type == GGML_TYPE_BF16);
  3760. bool is_node = false;
  3761. if (a->grad || b->grad) {
  3762. // TODO: support backward pass for broadcasting
  3763. GGML_ASSERT(ggml_are_same_shape(a, b));
  3764. is_node = true;
  3765. }
  3766. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3767. result->op = GGML_OP_ADD;
  3768. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3769. result->src[0] = a;
  3770. result->src[1] = b;
  3771. return result;
  3772. }
  3773. struct ggml_tensor * ggml_add_cast(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a,
  3776. struct ggml_tensor * b,
  3777. enum ggml_type type) {
  3778. return ggml_add_cast_impl(ctx, a, b, type);
  3779. }
  3780. // ggml_add1
  3781. static struct ggml_tensor * ggml_add1_impl(
  3782. struct ggml_context * ctx,
  3783. struct ggml_tensor * a,
  3784. struct ggml_tensor * b,
  3785. bool inplace) {
  3786. GGML_ASSERT(ggml_is_scalar(b));
  3787. GGML_ASSERT(ggml_is_padded_1d(a));
  3788. bool is_node = false;
  3789. if (a->grad || b->grad) {
  3790. is_node = true;
  3791. }
  3792. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3793. result->op = GGML_OP_ADD1;
  3794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3795. result->src[0] = a;
  3796. result->src[1] = b;
  3797. return result;
  3798. }
  3799. struct ggml_tensor * ggml_add1(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. struct ggml_tensor * b) {
  3803. return ggml_add1_impl(ctx, a, b, false);
  3804. }
  3805. struct ggml_tensor * ggml_add1_inplace(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a,
  3808. struct ggml_tensor * b) {
  3809. return ggml_add1_impl(ctx, a, b, true);
  3810. }
  3811. // ggml_acc
  3812. static struct ggml_tensor * ggml_acc_impl(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a,
  3815. struct ggml_tensor * b,
  3816. size_t nb1,
  3817. size_t nb2,
  3818. size_t nb3,
  3819. size_t offset,
  3820. bool inplace) {
  3821. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3822. GGML_ASSERT(ggml_is_contiguous(a));
  3823. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3824. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3825. bool is_node = false;
  3826. if (!inplace && (a->grad || b->grad)) {
  3827. is_node = true;
  3828. }
  3829. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3830. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3831. ggml_set_op_params(result, params, sizeof(params));
  3832. result->op = GGML_OP_ACC;
  3833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3834. result->src[0] = a;
  3835. result->src[1] = b;
  3836. return result;
  3837. }
  3838. struct ggml_tensor * ggml_acc(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a,
  3841. struct ggml_tensor * b,
  3842. size_t nb1,
  3843. size_t nb2,
  3844. size_t nb3,
  3845. size_t offset) {
  3846. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3847. }
  3848. struct ggml_tensor * ggml_acc_inplace(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. struct ggml_tensor * b,
  3852. size_t nb1,
  3853. size_t nb2,
  3854. size_t nb3,
  3855. size_t offset) {
  3856. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3857. }
  3858. // ggml_sub
  3859. static struct ggml_tensor * ggml_sub_impl(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. struct ggml_tensor * b,
  3863. bool inplace) {
  3864. GGML_ASSERT(ggml_are_same_shape(a, b));
  3865. bool is_node = false;
  3866. if (!inplace && (a->grad || b->grad)) {
  3867. is_node = true;
  3868. }
  3869. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3870. result->op = GGML_OP_SUB;
  3871. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3872. result->src[0] = a;
  3873. result->src[1] = b;
  3874. return result;
  3875. }
  3876. struct ggml_tensor * ggml_sub(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. struct ggml_tensor * b) {
  3880. return ggml_sub_impl(ctx, a, b, false);
  3881. }
  3882. struct ggml_tensor * ggml_sub_inplace(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b) {
  3886. return ggml_sub_impl(ctx, a, b, true);
  3887. }
  3888. // ggml_mul
  3889. static struct ggml_tensor * ggml_mul_impl(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. struct ggml_tensor * b,
  3893. bool inplace) {
  3894. GGML_ASSERT(ggml_can_repeat(b, a));
  3895. bool is_node = false;
  3896. if (!inplace && (a->grad || b->grad)) {
  3897. // TODO: support backward pass for broadcasting
  3898. GGML_ASSERT(ggml_are_same_shape(a, b));
  3899. is_node = true;
  3900. }
  3901. if (inplace) {
  3902. GGML_ASSERT(!is_node);
  3903. }
  3904. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3905. result->op = GGML_OP_MUL;
  3906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3907. result->src[0] = a;
  3908. result->src[1] = b;
  3909. return result;
  3910. }
  3911. struct ggml_tensor * ggml_mul(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. struct ggml_tensor * b) {
  3915. return ggml_mul_impl(ctx, a, b, false);
  3916. }
  3917. struct ggml_tensor * ggml_mul_inplace(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. struct ggml_tensor * b) {
  3921. return ggml_mul_impl(ctx, a, b, true);
  3922. }
  3923. // ggml_div
  3924. static struct ggml_tensor * ggml_div_impl(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a,
  3927. struct ggml_tensor * b,
  3928. bool inplace) {
  3929. GGML_ASSERT(ggml_can_repeat(b, a));
  3930. bool is_node = false;
  3931. if (!inplace && (a->grad || b->grad)) {
  3932. is_node = true;
  3933. }
  3934. if (inplace) {
  3935. GGML_ASSERT(!is_node);
  3936. }
  3937. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3938. result->op = GGML_OP_DIV;
  3939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3940. result->src[0] = a;
  3941. result->src[1] = b;
  3942. return result;
  3943. }
  3944. struct ggml_tensor * ggml_div(
  3945. struct ggml_context * ctx,
  3946. struct ggml_tensor * a,
  3947. struct ggml_tensor * b) {
  3948. return ggml_div_impl(ctx, a, b, false);
  3949. }
  3950. struct ggml_tensor * ggml_div_inplace(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. struct ggml_tensor * b) {
  3954. return ggml_div_impl(ctx, a, b, true);
  3955. }
  3956. // ggml_sqr
  3957. static struct ggml_tensor * ggml_sqr_impl(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. bool inplace) {
  3961. bool is_node = false;
  3962. if (!inplace && (a->grad)) {
  3963. is_node = true;
  3964. }
  3965. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3966. result->op = GGML_OP_SQR;
  3967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3968. result->src[0] = a;
  3969. return result;
  3970. }
  3971. struct ggml_tensor * ggml_sqr(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a) {
  3974. return ggml_sqr_impl(ctx, a, false);
  3975. }
  3976. struct ggml_tensor * ggml_sqr_inplace(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a) {
  3979. return ggml_sqr_impl(ctx, a, true);
  3980. }
  3981. // ggml_sqrt
  3982. static struct ggml_tensor * ggml_sqrt_impl(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. bool inplace) {
  3986. bool is_node = false;
  3987. if (!inplace && (a->grad)) {
  3988. is_node = true;
  3989. }
  3990. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3991. result->op = GGML_OP_SQRT;
  3992. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3993. result->src[0] = a;
  3994. return result;
  3995. }
  3996. struct ggml_tensor * ggml_sqrt(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a) {
  3999. return ggml_sqrt_impl(ctx, a, false);
  4000. }
  4001. struct ggml_tensor * ggml_sqrt_inplace(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a) {
  4004. return ggml_sqrt_impl(ctx, a, true);
  4005. }
  4006. // ggml_log
  4007. static struct ggml_tensor * ggml_log_impl(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. bool inplace) {
  4011. bool is_node = false;
  4012. if (!inplace && (a->grad)) {
  4013. is_node = true;
  4014. }
  4015. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4016. result->op = GGML_OP_LOG;
  4017. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4018. result->src[0] = a;
  4019. return result;
  4020. }
  4021. struct ggml_tensor * ggml_log(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a) {
  4024. return ggml_log_impl(ctx, a, false);
  4025. }
  4026. struct ggml_tensor * ggml_log_inplace(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a) {
  4029. return ggml_log_impl(ctx, a, true);
  4030. }
  4031. // ggml_sum
  4032. struct ggml_tensor * ggml_sum(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a) {
  4035. bool is_node = false;
  4036. if (a->grad) {
  4037. is_node = true;
  4038. }
  4039. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4040. result->op = GGML_OP_SUM;
  4041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4042. result->src[0] = a;
  4043. return result;
  4044. }
  4045. // ggml_sum_rows
  4046. struct ggml_tensor * ggml_sum_rows(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a) {
  4049. bool is_node = false;
  4050. if (a->grad) {
  4051. is_node = true;
  4052. }
  4053. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4054. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4055. ne[i] = a->ne[i];
  4056. }
  4057. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4058. result->op = GGML_OP_SUM_ROWS;
  4059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4060. result->src[0] = a;
  4061. return result;
  4062. }
  4063. // ggml_mean
  4064. struct ggml_tensor * ggml_mean(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a) {
  4067. bool is_node = false;
  4068. if (a->grad) {
  4069. GGML_ASSERT(false); // TODO: implement
  4070. is_node = true;
  4071. }
  4072. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4073. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4074. result->op = GGML_OP_MEAN;
  4075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4076. result->src[0] = a;
  4077. return result;
  4078. }
  4079. // ggml_argmax
  4080. struct ggml_tensor * ggml_argmax(
  4081. struct ggml_context * ctx,
  4082. struct ggml_tensor * a) {
  4083. GGML_ASSERT(ggml_is_matrix(a));
  4084. bool is_node = false;
  4085. if (a->grad) {
  4086. GGML_ASSERT(false);
  4087. is_node = true;
  4088. }
  4089. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4090. result->op = GGML_OP_ARGMAX;
  4091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4092. result->src[0] = a;
  4093. return result;
  4094. }
  4095. // ggml_repeat
  4096. struct ggml_tensor * ggml_repeat(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a,
  4099. struct ggml_tensor * b) {
  4100. GGML_ASSERT(ggml_can_repeat(a, b));
  4101. bool is_node = false;
  4102. if (a->grad) {
  4103. is_node = true;
  4104. }
  4105. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4106. result->op = GGML_OP_REPEAT;
  4107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4108. result->src[0] = a;
  4109. return result;
  4110. }
  4111. // ggml_repeat_back
  4112. struct ggml_tensor * ggml_repeat_back(
  4113. struct ggml_context * ctx,
  4114. struct ggml_tensor * a,
  4115. struct ggml_tensor * b) {
  4116. GGML_ASSERT(ggml_can_repeat(b, a));
  4117. bool is_node = false;
  4118. if (a->grad) {
  4119. is_node = true;
  4120. }
  4121. if (ggml_are_same_shape(a, b) && !is_node) {
  4122. return a;
  4123. }
  4124. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4125. result->op = GGML_OP_REPEAT_BACK;
  4126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4127. result->src[0] = a;
  4128. return result;
  4129. }
  4130. // ggml_concat
  4131. struct ggml_tensor * ggml_concat(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. struct ggml_tensor * b,
  4135. int dim) {
  4136. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4137. int64_t ne[GGML_MAX_DIMS];
  4138. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4139. if (d == dim) {
  4140. ne[d] = a->ne[d] + b->ne[d];
  4141. continue;
  4142. }
  4143. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4144. ne[d] = a->ne[d];
  4145. }
  4146. bool is_node = false;
  4147. if (a->grad || b->grad) {
  4148. is_node = true;
  4149. }
  4150. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4151. ggml_set_op_params_i32(result, 0, dim);
  4152. result->op = GGML_OP_CONCAT;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src[0] = a;
  4155. result->src[1] = b;
  4156. return result;
  4157. }
  4158. // ggml_abs
  4159. struct ggml_tensor * ggml_abs(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a) {
  4162. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4163. }
  4164. struct ggml_tensor * ggml_abs_inplace(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a) {
  4167. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4168. }
  4169. // ggml_sgn
  4170. struct ggml_tensor * ggml_sgn(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a) {
  4173. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4174. }
  4175. struct ggml_tensor * ggml_sgn_inplace(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a) {
  4178. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4179. }
  4180. // ggml_neg
  4181. struct ggml_tensor * ggml_neg(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4185. }
  4186. struct ggml_tensor * ggml_neg_inplace(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a) {
  4189. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4190. }
  4191. // ggml_step
  4192. struct ggml_tensor * ggml_step(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a) {
  4195. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4196. }
  4197. struct ggml_tensor * ggml_step_inplace(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a) {
  4200. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4201. }
  4202. // ggml_tanh
  4203. struct ggml_tensor * ggml_tanh(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a) {
  4206. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4207. }
  4208. struct ggml_tensor * ggml_tanh_inplace(
  4209. struct ggml_context * ctx,
  4210. struct ggml_tensor * a) {
  4211. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4212. }
  4213. // ggml_elu
  4214. struct ggml_tensor * ggml_elu(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a) {
  4217. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4218. }
  4219. struct ggml_tensor * ggml_elu_inplace(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a) {
  4222. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4223. }
  4224. // ggml_relu
  4225. struct ggml_tensor * ggml_relu(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a) {
  4228. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4229. }
  4230. struct ggml_tensor * ggml_relu_inplace(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a) {
  4233. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4234. }
  4235. // ggml_leaky_relu
  4236. struct ggml_tensor * ggml_leaky_relu(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4239. bool is_node = false;
  4240. if (!inplace && (a->grad)) {
  4241. is_node = true;
  4242. }
  4243. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4244. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4245. result->op = GGML_OP_LEAKY_RELU;
  4246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4247. result->src[0] = a;
  4248. return result;
  4249. }
  4250. // ggml_sigmoid
  4251. struct ggml_tensor * ggml_sigmoid(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a) {
  4254. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4255. }
  4256. struct ggml_tensor * ggml_sigmoid_inplace(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a) {
  4259. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4260. }
  4261. // ggml_gelu
  4262. struct ggml_tensor * ggml_gelu(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a) {
  4265. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4266. }
  4267. struct ggml_tensor * ggml_gelu_inplace(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a) {
  4270. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4271. }
  4272. // ggml_gelu_quick
  4273. struct ggml_tensor * ggml_gelu_quick(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a) {
  4276. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4277. }
  4278. struct ggml_tensor * ggml_gelu_quick_inplace(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a) {
  4281. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4282. }
  4283. // ggml_silu
  4284. struct ggml_tensor * ggml_silu(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a) {
  4287. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4288. }
  4289. struct ggml_tensor * ggml_silu_inplace(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a) {
  4292. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4293. }
  4294. // ggml_silu_back
  4295. struct ggml_tensor * ggml_silu_back(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a,
  4298. struct ggml_tensor * b) {
  4299. bool is_node = false;
  4300. if (a->grad || b->grad) {
  4301. // TODO: implement backward
  4302. is_node = true;
  4303. }
  4304. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4305. result->op = GGML_OP_SILU_BACK;
  4306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4307. result->src[0] = a;
  4308. result->src[1] = b;
  4309. return result;
  4310. }
  4311. // ggml hardswish
  4312. struct ggml_tensor * ggml_hardswish(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a) {
  4315. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4316. }
  4317. // ggml hardsigmoid
  4318. struct ggml_tensor * ggml_hardsigmoid(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a) {
  4321. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4322. }
  4323. // ggml_norm
  4324. static struct ggml_tensor * ggml_norm_impl(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. float eps,
  4328. bool inplace) {
  4329. bool is_node = false;
  4330. if (!inplace && (a->grad)) {
  4331. GGML_ASSERT(false); // TODO: implement backward
  4332. is_node = true;
  4333. }
  4334. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4335. ggml_set_op_params(result, &eps, sizeof(eps));
  4336. result->op = GGML_OP_NORM;
  4337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4338. result->src[0] = a;
  4339. return result;
  4340. }
  4341. struct ggml_tensor * ggml_norm(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. float eps) {
  4345. return ggml_norm_impl(ctx, a, eps, false);
  4346. }
  4347. struct ggml_tensor * ggml_norm_inplace(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. float eps) {
  4351. return ggml_norm_impl(ctx, a, eps, true);
  4352. }
  4353. // ggml_rms_norm
  4354. static struct ggml_tensor * ggml_rms_norm_impl(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. float eps,
  4358. bool inplace) {
  4359. bool is_node = false;
  4360. if (!inplace && (a->grad)) {
  4361. is_node = true;
  4362. }
  4363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4364. ggml_set_op_params(result, &eps, sizeof(eps));
  4365. result->op = GGML_OP_RMS_NORM;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src[0] = a;
  4368. return result;
  4369. }
  4370. struct ggml_tensor * ggml_rms_norm(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. float eps) {
  4374. return ggml_rms_norm_impl(ctx, a, eps, false);
  4375. }
  4376. struct ggml_tensor * ggml_rms_norm_inplace(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. float eps) {
  4380. return ggml_rms_norm_impl(ctx, a, eps, true);
  4381. }
  4382. // ggml_rms_norm_back
  4383. struct ggml_tensor * ggml_rms_norm_back(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a,
  4386. struct ggml_tensor * b,
  4387. float eps) {
  4388. bool is_node = false;
  4389. if (a->grad) {
  4390. // TODO: implement backward
  4391. is_node = true;
  4392. }
  4393. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4394. ggml_set_op_params(result, &eps, sizeof(eps));
  4395. result->op = GGML_OP_RMS_NORM_BACK;
  4396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4397. result->src[0] = a;
  4398. result->src[1] = b;
  4399. return result;
  4400. }
  4401. // ggml_group_norm
  4402. static struct ggml_tensor * ggml_group_norm_impl(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a,
  4405. int n_groups,
  4406. bool inplace) {
  4407. bool is_node = false;
  4408. if (!inplace && (a->grad)) {
  4409. GGML_ASSERT(false); // TODO: implement backward
  4410. is_node = true;
  4411. }
  4412. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4413. result->op_params[0] = n_groups;
  4414. result->op = GGML_OP_GROUP_NORM;
  4415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4416. result->src[0] = a;
  4417. return result;
  4418. }
  4419. struct ggml_tensor * ggml_group_norm(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a,
  4422. int n_groups) {
  4423. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4424. }
  4425. struct ggml_tensor * ggml_group_norm_inplace(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. int n_groups) {
  4429. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4430. }
  4431. // ggml_mul_mat
  4432. struct ggml_tensor * ggml_mul_mat(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. struct ggml_tensor * b) {
  4436. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4437. GGML_ASSERT(!ggml_is_transposed(a));
  4438. bool is_node = false;
  4439. if (a->grad || b->grad) {
  4440. is_node = true;
  4441. }
  4442. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4443. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4444. result->op = GGML_OP_MUL_MAT;
  4445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4446. result->src[0] = a;
  4447. result->src[1] = b;
  4448. return result;
  4449. }
  4450. void ggml_mul_mat_set_prec(
  4451. struct ggml_tensor * a,
  4452. enum ggml_prec prec) {
  4453. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4454. const int32_t prec_i32 = (int32_t) prec;
  4455. ggml_set_op_params_i32(a, 0, prec_i32);
  4456. }
  4457. // ggml_mul_mat_id
  4458. /*
  4459. c = ggml_mul_mat_id(ctx, as, b, ids);
  4460. as -> [cols, rows, n_expert]
  4461. ids -> [n_experts_used, n_tokens] (i32)
  4462. b -> [cols, n_expert_used, n_tokens]
  4463. c -> [cols, n_expert_used, n_tokens]
  4464. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4465. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4466. */
  4467. struct ggml_tensor * ggml_mul_mat_id(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * as,
  4470. struct ggml_tensor * b,
  4471. struct ggml_tensor * ids) {
  4472. GGML_ASSERT(!ggml_is_transposed(as));
  4473. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4474. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4475. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4476. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4477. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4478. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4479. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4480. bool is_node = false;
  4481. if (as->grad || b->grad) {
  4482. is_node = true;
  4483. }
  4484. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4485. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4486. result->op = GGML_OP_MUL_MAT_ID;
  4487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4488. result->src[0] = as;
  4489. result->src[1] = b;
  4490. result->src[2] = ids;
  4491. return result;
  4492. }
  4493. // ggml_out_prod
  4494. struct ggml_tensor * ggml_out_prod(
  4495. struct ggml_context * ctx,
  4496. struct ggml_tensor * a,
  4497. struct ggml_tensor * b) {
  4498. GGML_ASSERT(ggml_can_out_prod(a, b));
  4499. GGML_ASSERT(!ggml_is_transposed(a));
  4500. bool is_node = false;
  4501. if (a->grad || b->grad) {
  4502. is_node = true;
  4503. }
  4504. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4505. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4506. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4507. result->op = GGML_OP_OUT_PROD;
  4508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4509. result->src[0] = a;
  4510. result->src[1] = b;
  4511. return result;
  4512. }
  4513. // ggml_scale
  4514. static struct ggml_tensor * ggml_scale_impl(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. float s,
  4518. bool inplace) {
  4519. GGML_ASSERT(ggml_is_padded_1d(a));
  4520. bool is_node = false;
  4521. if (a->grad) {
  4522. is_node = true;
  4523. }
  4524. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4525. ggml_set_op_params(result, &s, sizeof(s));
  4526. result->op = GGML_OP_SCALE;
  4527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4528. result->src[0] = a;
  4529. return result;
  4530. }
  4531. struct ggml_tensor * ggml_scale(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a,
  4534. float s) {
  4535. return ggml_scale_impl(ctx, a, s, false);
  4536. }
  4537. struct ggml_tensor * ggml_scale_inplace(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. float s) {
  4541. return ggml_scale_impl(ctx, a, s, true);
  4542. }
  4543. // ggml_set
  4544. static struct ggml_tensor * ggml_set_impl(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a,
  4547. struct ggml_tensor * b,
  4548. size_t nb1,
  4549. size_t nb2,
  4550. size_t nb3,
  4551. size_t offset,
  4552. bool inplace) {
  4553. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4554. bool is_node = false;
  4555. if (a->grad || b->grad) {
  4556. is_node = true;
  4557. }
  4558. // make a view of the destination
  4559. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4560. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4561. ggml_set_op_params(result, params, sizeof(params));
  4562. result->op = GGML_OP_SET;
  4563. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4564. result->src[0] = a;
  4565. result->src[1] = b;
  4566. return result;
  4567. }
  4568. struct ggml_tensor * ggml_set(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a,
  4571. struct ggml_tensor * b,
  4572. size_t nb1,
  4573. size_t nb2,
  4574. size_t nb3,
  4575. size_t offset) {
  4576. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4577. }
  4578. struct ggml_tensor * ggml_set_inplace(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. struct ggml_tensor * b,
  4582. size_t nb1,
  4583. size_t nb2,
  4584. size_t nb3,
  4585. size_t offset) {
  4586. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4587. }
  4588. struct ggml_tensor * ggml_set_1d(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. struct ggml_tensor * b,
  4592. size_t offset) {
  4593. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4594. }
  4595. struct ggml_tensor * ggml_set_1d_inplace(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. struct ggml_tensor * b,
  4599. size_t offset) {
  4600. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4601. }
  4602. struct ggml_tensor * ggml_set_2d(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. struct ggml_tensor * b,
  4606. size_t nb1,
  4607. size_t offset) {
  4608. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4609. }
  4610. struct ggml_tensor * ggml_set_2d_inplace(
  4611. struct ggml_context * ctx,
  4612. struct ggml_tensor * a,
  4613. struct ggml_tensor * b,
  4614. size_t nb1,
  4615. size_t offset) {
  4616. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4617. }
  4618. // ggml_cpy
  4619. static struct ggml_tensor * ggml_cpy_impl(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. struct ggml_tensor * b) {
  4623. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4624. bool is_node = false;
  4625. if (a->grad || b->grad) {
  4626. // inplace is false and either one have a grad
  4627. is_node = true;
  4628. }
  4629. // make a view of the destination
  4630. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4631. if (strlen(b->name) > 0) {
  4632. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4633. } else {
  4634. ggml_format_name(result, "%s (copy)", a->name);
  4635. }
  4636. result->op = GGML_OP_CPY;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src[0] = a;
  4639. result->src[1] = b;
  4640. return result;
  4641. }
  4642. struct ggml_tensor * ggml_cpy(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. struct ggml_tensor * b) {
  4646. return ggml_cpy_impl(ctx, a, b);
  4647. }
  4648. struct ggml_tensor * ggml_cast(
  4649. struct ggml_context * ctx,
  4650. struct ggml_tensor * a,
  4651. enum ggml_type type) {
  4652. bool is_node = false;
  4653. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4654. ggml_format_name(result, "%s (copy)", a->name);
  4655. result->op = GGML_OP_CPY;
  4656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4657. result->src[0] = a;
  4658. result->src[1] = result;
  4659. return result;
  4660. }
  4661. // ggml_cont
  4662. static struct ggml_tensor * ggml_cont_impl(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a) {
  4665. bool is_node = false;
  4666. if (a->grad) {
  4667. is_node = true;
  4668. }
  4669. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4670. ggml_format_name(result, "%s (cont)", a->name);
  4671. result->op = GGML_OP_CONT;
  4672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4673. result->src[0] = a;
  4674. return result;
  4675. }
  4676. struct ggml_tensor * ggml_cont(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a) {
  4679. return ggml_cont_impl(ctx, a);
  4680. }
  4681. // make contiguous, with new shape
  4682. GGML_API struct ggml_tensor * ggml_cont_1d(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a,
  4685. int64_t ne0) {
  4686. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4687. }
  4688. GGML_API struct ggml_tensor * ggml_cont_2d(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * a,
  4691. int64_t ne0,
  4692. int64_t ne1) {
  4693. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4694. }
  4695. GGML_API struct ggml_tensor * ggml_cont_3d(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a,
  4698. int64_t ne0,
  4699. int64_t ne1,
  4700. int64_t ne2) {
  4701. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4702. }
  4703. struct ggml_tensor * ggml_cont_4d(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. int64_t ne0,
  4707. int64_t ne1,
  4708. int64_t ne2,
  4709. int64_t ne3) {
  4710. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4711. bool is_node = false;
  4712. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4713. ggml_format_name(result, "%s (cont)", a->name);
  4714. result->op = GGML_OP_CONT;
  4715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4716. result->src[0] = a;
  4717. return result;
  4718. }
  4719. // ggml_reshape
  4720. struct ggml_tensor * ggml_reshape(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * b) {
  4724. GGML_ASSERT(ggml_is_contiguous(a));
  4725. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4726. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4727. bool is_node = false;
  4728. if (a->grad) {
  4729. is_node = true;
  4730. }
  4731. if (b->grad) {
  4732. // gradient propagation is not supported
  4733. //GGML_ASSERT(false);
  4734. }
  4735. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4736. ggml_format_name(result, "%s (reshaped)", a->name);
  4737. result->op = GGML_OP_RESHAPE;
  4738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4739. result->src[0] = a;
  4740. return result;
  4741. }
  4742. struct ggml_tensor * ggml_reshape_1d(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a,
  4745. int64_t ne0) {
  4746. GGML_ASSERT(ggml_is_contiguous(a));
  4747. GGML_ASSERT(ggml_nelements(a) == ne0);
  4748. bool is_node = false;
  4749. if (a->grad) {
  4750. is_node = true;
  4751. }
  4752. const int64_t ne[1] = { ne0 };
  4753. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4754. ggml_format_name(result, "%s (reshaped)", a->name);
  4755. result->op = GGML_OP_RESHAPE;
  4756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4757. result->src[0] = a;
  4758. return result;
  4759. }
  4760. struct ggml_tensor * ggml_reshape_2d(
  4761. struct ggml_context * ctx,
  4762. struct ggml_tensor * a,
  4763. int64_t ne0,
  4764. int64_t ne1) {
  4765. GGML_ASSERT(ggml_is_contiguous(a));
  4766. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4767. bool is_node = false;
  4768. if (a->grad) {
  4769. is_node = true;
  4770. }
  4771. const int64_t ne[2] = { ne0, ne1 };
  4772. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4773. ggml_format_name(result, "%s (reshaped)", a->name);
  4774. result->op = GGML_OP_RESHAPE;
  4775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4776. result->src[0] = a;
  4777. return result;
  4778. }
  4779. struct ggml_tensor * ggml_reshape_3d(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a,
  4782. int64_t ne0,
  4783. int64_t ne1,
  4784. int64_t ne2) {
  4785. GGML_ASSERT(ggml_is_contiguous(a));
  4786. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4787. bool is_node = false;
  4788. if (a->grad) {
  4789. is_node = true;
  4790. }
  4791. const int64_t ne[3] = { ne0, ne1, ne2 };
  4792. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4793. ggml_format_name(result, "%s (reshaped)", a->name);
  4794. result->op = GGML_OP_RESHAPE;
  4795. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4796. result->src[0] = a;
  4797. return result;
  4798. }
  4799. struct ggml_tensor * ggml_reshape_4d(
  4800. struct ggml_context * ctx,
  4801. struct ggml_tensor * a,
  4802. int64_t ne0,
  4803. int64_t ne1,
  4804. int64_t ne2,
  4805. int64_t ne3) {
  4806. GGML_ASSERT(ggml_is_contiguous(a));
  4807. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4808. bool is_node = false;
  4809. if (a->grad) {
  4810. is_node = true;
  4811. }
  4812. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4813. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4814. ggml_format_name(result, "%s (reshaped)", a->name);
  4815. result->op = GGML_OP_RESHAPE;
  4816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4817. result->src[0] = a;
  4818. return result;
  4819. }
  4820. static struct ggml_tensor * ggml_view_impl(
  4821. struct ggml_context * ctx,
  4822. struct ggml_tensor * a,
  4823. int n_dims,
  4824. const int64_t * ne,
  4825. size_t offset) {
  4826. bool is_node = false;
  4827. if (a->grad) {
  4828. is_node = true;
  4829. }
  4830. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4831. ggml_format_name(result, "%s (view)", a->name);
  4832. ggml_set_op_params(result, &offset, sizeof(offset));
  4833. result->op = GGML_OP_VIEW;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src[0] = a;
  4836. return result;
  4837. }
  4838. // ggml_view_1d
  4839. struct ggml_tensor * ggml_view_1d(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. int64_t ne0,
  4843. size_t offset) {
  4844. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4845. return result;
  4846. }
  4847. // ggml_view_2d
  4848. struct ggml_tensor * ggml_view_2d(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. int64_t ne0,
  4852. int64_t ne1,
  4853. size_t nb1,
  4854. size_t offset) {
  4855. const int64_t ne[2] = { ne0, ne1 };
  4856. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4857. result->nb[1] = nb1;
  4858. result->nb[2] = result->nb[1]*ne1;
  4859. result->nb[3] = result->nb[2];
  4860. return result;
  4861. }
  4862. // ggml_view_3d
  4863. struct ggml_tensor * ggml_view_3d(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. int64_t ne0,
  4867. int64_t ne1,
  4868. int64_t ne2,
  4869. size_t nb1,
  4870. size_t nb2,
  4871. size_t offset) {
  4872. const int64_t ne[3] = { ne0, ne1, ne2 };
  4873. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4874. result->nb[1] = nb1;
  4875. result->nb[2] = nb2;
  4876. result->nb[3] = result->nb[2]*ne2;
  4877. return result;
  4878. }
  4879. // ggml_view_4d
  4880. struct ggml_tensor * ggml_view_4d(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. int64_t ne0,
  4884. int64_t ne1,
  4885. int64_t ne2,
  4886. int64_t ne3,
  4887. size_t nb1,
  4888. size_t nb2,
  4889. size_t nb3,
  4890. size_t offset) {
  4891. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4892. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4893. result->nb[1] = nb1;
  4894. result->nb[2] = nb2;
  4895. result->nb[3] = nb3;
  4896. return result;
  4897. }
  4898. // ggml_permute
  4899. struct ggml_tensor * ggml_permute(
  4900. struct ggml_context * ctx,
  4901. struct ggml_tensor * a,
  4902. int axis0,
  4903. int axis1,
  4904. int axis2,
  4905. int axis3) {
  4906. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4907. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4908. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4909. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4910. GGML_ASSERT(axis0 != axis1);
  4911. GGML_ASSERT(axis0 != axis2);
  4912. GGML_ASSERT(axis0 != axis3);
  4913. GGML_ASSERT(axis1 != axis2);
  4914. GGML_ASSERT(axis1 != axis3);
  4915. GGML_ASSERT(axis2 != axis3);
  4916. bool is_node = false;
  4917. if (a->grad) {
  4918. is_node = true;
  4919. }
  4920. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4921. ggml_format_name(result, "%s (permuted)", a->name);
  4922. int ne[GGML_MAX_DIMS];
  4923. int nb[GGML_MAX_DIMS];
  4924. ne[axis0] = a->ne[0];
  4925. ne[axis1] = a->ne[1];
  4926. ne[axis2] = a->ne[2];
  4927. ne[axis3] = a->ne[3];
  4928. nb[axis0] = a->nb[0];
  4929. nb[axis1] = a->nb[1];
  4930. nb[axis2] = a->nb[2];
  4931. nb[axis3] = a->nb[3];
  4932. result->ne[0] = ne[0];
  4933. result->ne[1] = ne[1];
  4934. result->ne[2] = ne[2];
  4935. result->ne[3] = ne[3];
  4936. result->nb[0] = nb[0];
  4937. result->nb[1] = nb[1];
  4938. result->nb[2] = nb[2];
  4939. result->nb[3] = nb[3];
  4940. result->op = GGML_OP_PERMUTE;
  4941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4942. result->src[0] = a;
  4943. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4944. ggml_set_op_params(result, params, sizeof(params));
  4945. return result;
  4946. }
  4947. // ggml_transpose
  4948. struct ggml_tensor * ggml_transpose(
  4949. struct ggml_context * ctx,
  4950. struct ggml_tensor * a) {
  4951. bool is_node = false;
  4952. if (a->grad) {
  4953. is_node = true;
  4954. }
  4955. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4956. ggml_format_name(result, "%s (transposed)", a->name);
  4957. result->ne[0] = a->ne[1];
  4958. result->ne[1] = a->ne[0];
  4959. result->nb[0] = a->nb[1];
  4960. result->nb[1] = a->nb[0];
  4961. result->op = GGML_OP_TRANSPOSE;
  4962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4963. result->src[0] = a;
  4964. return result;
  4965. }
  4966. // ggml_get_rows
  4967. struct ggml_tensor * ggml_get_rows(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. struct ggml_tensor * b) {
  4971. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4972. GGML_ASSERT(b->ne[3] == 1);
  4973. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4974. bool is_node = false;
  4975. if (a->grad || b->grad) {
  4976. is_node = true;
  4977. }
  4978. // TODO: implement non F32 return
  4979. enum ggml_type type = GGML_TYPE_F32;
  4980. if (a->type == GGML_TYPE_I32) {
  4981. type = a->type;
  4982. }
  4983. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4984. result->op = GGML_OP_GET_ROWS;
  4985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4986. result->src[0] = a;
  4987. result->src[1] = b;
  4988. return result;
  4989. }
  4990. // ggml_get_rows_back
  4991. struct ggml_tensor * ggml_get_rows_back(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a,
  4994. struct ggml_tensor * b,
  4995. struct ggml_tensor * c) {
  4996. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4997. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4998. bool is_node = false;
  4999. if (a->grad || b->grad) {
  5000. is_node = true;
  5001. }
  5002. // TODO: implement non F32 return
  5003. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5004. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5005. result->op = GGML_OP_GET_ROWS_BACK;
  5006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5007. result->src[0] = a;
  5008. result->src[1] = b;
  5009. return result;
  5010. }
  5011. // ggml_diag
  5012. struct ggml_tensor * ggml_diag(
  5013. struct ggml_context * ctx,
  5014. struct ggml_tensor * a) {
  5015. GGML_ASSERT(a->ne[1] == 1);
  5016. bool is_node = false;
  5017. if (a->grad) {
  5018. is_node = true;
  5019. }
  5020. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5021. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5022. result->op = GGML_OP_DIAG;
  5023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5024. result->src[0] = a;
  5025. return result;
  5026. }
  5027. // ggml_diag_mask_inf
  5028. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. int n_past,
  5032. bool inplace) {
  5033. bool is_node = false;
  5034. if (a->grad) {
  5035. is_node = true;
  5036. }
  5037. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5038. int32_t params[] = { n_past };
  5039. ggml_set_op_params(result, params, sizeof(params));
  5040. result->op = GGML_OP_DIAG_MASK_INF;
  5041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5042. result->src[0] = a;
  5043. return result;
  5044. }
  5045. struct ggml_tensor * ggml_diag_mask_inf(
  5046. struct ggml_context * ctx,
  5047. struct ggml_tensor * a,
  5048. int n_past) {
  5049. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5050. }
  5051. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. int n_past) {
  5055. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5056. }
  5057. // ggml_diag_mask_zero
  5058. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. int n_past,
  5062. bool inplace) {
  5063. bool is_node = false;
  5064. if (a->grad) {
  5065. is_node = true;
  5066. }
  5067. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5068. int32_t params[] = { n_past };
  5069. ggml_set_op_params(result, params, sizeof(params));
  5070. result->op = GGML_OP_DIAG_MASK_ZERO;
  5071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5072. result->src[0] = a;
  5073. return result;
  5074. }
  5075. struct ggml_tensor * ggml_diag_mask_zero(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. int n_past) {
  5079. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5080. }
  5081. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. int n_past) {
  5085. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5086. }
  5087. // ggml_soft_max
  5088. static struct ggml_tensor * ggml_soft_max_impl(
  5089. struct ggml_context * ctx,
  5090. struct ggml_tensor * a,
  5091. struct ggml_tensor * mask,
  5092. float scale,
  5093. float max_bias,
  5094. bool inplace) {
  5095. GGML_ASSERT(ggml_is_contiguous(a));
  5096. if (mask) {
  5097. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5098. GGML_ASSERT(ggml_is_contiguous(mask));
  5099. GGML_ASSERT(ggml_is_matrix(mask));
  5100. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5101. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5102. }
  5103. if (max_bias > 0.0f) {
  5104. GGML_ASSERT(mask);
  5105. }
  5106. bool is_node = false;
  5107. if (a->grad) {
  5108. is_node = true;
  5109. }
  5110. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5111. float params[] = { scale, max_bias };
  5112. ggml_set_op_params(result, params, sizeof(params));
  5113. result->op = GGML_OP_SOFT_MAX;
  5114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5115. result->src[0] = a;
  5116. result->src[1] = mask;
  5117. return result;
  5118. }
  5119. struct ggml_tensor * ggml_soft_max(
  5120. struct ggml_context * ctx,
  5121. struct ggml_tensor * a) {
  5122. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5123. }
  5124. struct ggml_tensor * ggml_soft_max_inplace(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a) {
  5127. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5128. }
  5129. struct ggml_tensor * ggml_soft_max_ext(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a,
  5132. struct ggml_tensor * mask,
  5133. float scale,
  5134. float max_bias) {
  5135. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5136. }
  5137. // ggml_soft_max_back
  5138. static struct ggml_tensor * ggml_soft_max_back_impl(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a,
  5141. struct ggml_tensor * b,
  5142. bool inplace) {
  5143. bool is_node = false;
  5144. if (a->grad || b->grad) {
  5145. is_node = true; // TODO : implement backward pass
  5146. }
  5147. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5148. result->op = GGML_OP_SOFT_MAX_BACK;
  5149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5150. result->src[0] = a;
  5151. result->src[1] = b;
  5152. return result;
  5153. }
  5154. struct ggml_tensor * ggml_soft_max_back(
  5155. struct ggml_context * ctx,
  5156. struct ggml_tensor * a,
  5157. struct ggml_tensor * b) {
  5158. return ggml_soft_max_back_impl(ctx, a, b, false);
  5159. }
  5160. struct ggml_tensor * ggml_soft_max_back_inplace(
  5161. struct ggml_context * ctx,
  5162. struct ggml_tensor * a,
  5163. struct ggml_tensor * b) {
  5164. return ggml_soft_max_back_impl(ctx, a, b, true);
  5165. }
  5166. // ggml_rope
  5167. static struct ggml_tensor * ggml_rope_impl(
  5168. struct ggml_context * ctx,
  5169. struct ggml_tensor * a,
  5170. struct ggml_tensor * b,
  5171. struct ggml_tensor * c,
  5172. int n_dims,
  5173. int mode,
  5174. int n_ctx,
  5175. int n_orig_ctx,
  5176. float freq_base,
  5177. float freq_scale,
  5178. float ext_factor,
  5179. float attn_factor,
  5180. float beta_fast,
  5181. float beta_slow,
  5182. float xpos_base,
  5183. bool xpos_down,
  5184. bool inplace) {
  5185. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5186. GGML_ASSERT(ggml_is_vector(b));
  5187. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5188. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5189. if (c) {
  5190. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5191. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5192. }
  5193. bool is_node = false;
  5194. if (a->grad) {
  5195. is_node = true;
  5196. }
  5197. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5198. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5199. memcpy(params + 5, &freq_base, sizeof(float));
  5200. memcpy(params + 6, &freq_scale, sizeof(float));
  5201. memcpy(params + 7, &ext_factor, sizeof(float));
  5202. memcpy(params + 8, &attn_factor, sizeof(float));
  5203. memcpy(params + 9, &beta_fast, sizeof(float));
  5204. memcpy(params + 10, &beta_slow, sizeof(float));
  5205. memcpy(params + 11, &xpos_base, sizeof(float));
  5206. memcpy(params + 12, &xpos_down, sizeof(bool));
  5207. ggml_set_op_params(result, params, sizeof(params));
  5208. result->op = GGML_OP_ROPE;
  5209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5210. result->src[0] = a;
  5211. result->src[1] = b;
  5212. result->src[2] = c;
  5213. return result;
  5214. }
  5215. struct ggml_tensor * ggml_rope(
  5216. struct ggml_context * ctx,
  5217. struct ggml_tensor * a,
  5218. struct ggml_tensor * b,
  5219. int n_dims,
  5220. int mode,
  5221. int n_ctx) {
  5222. return ggml_rope_impl(
  5223. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5224. );
  5225. }
  5226. struct ggml_tensor * ggml_rope_inplace(
  5227. struct ggml_context * ctx,
  5228. struct ggml_tensor * a,
  5229. struct ggml_tensor * b,
  5230. int n_dims,
  5231. int mode,
  5232. int n_ctx) {
  5233. return ggml_rope_impl(
  5234. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5235. );
  5236. }
  5237. struct ggml_tensor * ggml_rope_ext(
  5238. struct ggml_context * ctx,
  5239. struct ggml_tensor * a,
  5240. struct ggml_tensor * b,
  5241. struct ggml_tensor * c,
  5242. int n_dims,
  5243. int mode,
  5244. int n_ctx,
  5245. int n_orig_ctx,
  5246. float freq_base,
  5247. float freq_scale,
  5248. float ext_factor,
  5249. float attn_factor,
  5250. float beta_fast,
  5251. float beta_slow) {
  5252. return ggml_rope_impl(
  5253. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5254. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5255. );
  5256. }
  5257. struct ggml_tensor * ggml_rope_ext_inplace(
  5258. struct ggml_context * ctx,
  5259. struct ggml_tensor * a,
  5260. struct ggml_tensor * b,
  5261. struct ggml_tensor * c,
  5262. int n_dims,
  5263. int mode,
  5264. int n_ctx,
  5265. int n_orig_ctx,
  5266. float freq_base,
  5267. float freq_scale,
  5268. float ext_factor,
  5269. float attn_factor,
  5270. float beta_fast,
  5271. float beta_slow) {
  5272. return ggml_rope_impl(
  5273. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5274. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5275. );
  5276. }
  5277. struct ggml_tensor * ggml_rope_custom(
  5278. struct ggml_context * ctx,
  5279. struct ggml_tensor * a,
  5280. struct ggml_tensor * b,
  5281. int n_dims,
  5282. int mode,
  5283. int n_ctx,
  5284. int n_orig_ctx,
  5285. float freq_base,
  5286. float freq_scale,
  5287. float ext_factor,
  5288. float attn_factor,
  5289. float beta_fast,
  5290. float beta_slow) {
  5291. return ggml_rope_impl(
  5292. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5293. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5294. );
  5295. }
  5296. struct ggml_tensor * ggml_rope_custom_inplace(
  5297. struct ggml_context * ctx,
  5298. struct ggml_tensor * a,
  5299. struct ggml_tensor * b,
  5300. int n_dims,
  5301. int mode,
  5302. int n_ctx,
  5303. int n_orig_ctx,
  5304. float freq_base,
  5305. float freq_scale,
  5306. float ext_factor,
  5307. float attn_factor,
  5308. float beta_fast,
  5309. float beta_slow) {
  5310. return ggml_rope_impl(
  5311. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5312. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5313. );
  5314. }
  5315. // ggml_rope_back
  5316. struct ggml_tensor * ggml_rope_back(
  5317. struct ggml_context * ctx,
  5318. struct ggml_tensor * a,
  5319. struct ggml_tensor * b,
  5320. struct ggml_tensor * c,
  5321. int n_dims,
  5322. int mode,
  5323. int n_ctx,
  5324. int n_orig_ctx,
  5325. float freq_base,
  5326. float freq_scale,
  5327. float ext_factor,
  5328. float attn_factor,
  5329. float beta_fast,
  5330. float beta_slow,
  5331. float xpos_base,
  5332. bool xpos_down) {
  5333. GGML_ASSERT(ggml_is_vector(b));
  5334. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5335. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5336. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5337. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5338. bool is_node = false;
  5339. if (a->grad) {
  5340. is_node = false; // TODO: implement backward
  5341. }
  5342. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5343. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5344. memcpy(params + 5, &freq_base, sizeof(float));
  5345. memcpy(params + 6, &freq_scale, sizeof(float));
  5346. memcpy(params + 7, &ext_factor, sizeof(float));
  5347. memcpy(params + 8, &attn_factor, sizeof(float));
  5348. memcpy(params + 9, &beta_fast, sizeof(float));
  5349. memcpy(params + 10, &beta_slow, sizeof(float));
  5350. memcpy(params + 11, &xpos_base, sizeof(float));
  5351. memcpy(params + 12, &xpos_down, sizeof(bool));
  5352. ggml_set_op_params(result, params, sizeof(params));
  5353. result->op = GGML_OP_ROPE_BACK;
  5354. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5355. result->src[0] = a;
  5356. result->src[1] = b;
  5357. return result;
  5358. }
  5359. // ggml_clamp
  5360. struct ggml_tensor * ggml_clamp(
  5361. struct ggml_context * ctx,
  5362. struct ggml_tensor * a,
  5363. float min,
  5364. float max) {
  5365. bool is_node = false;
  5366. if (a->grad) {
  5367. GGML_ASSERT(false); // TODO: implement backward
  5368. is_node = true;
  5369. }
  5370. // TODO: when implement backward, fix this:
  5371. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5372. float params[] = { min, max };
  5373. ggml_set_op_params(result, params, sizeof(params));
  5374. result->op = GGML_OP_CLAMP;
  5375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5376. result->src[0] = a;
  5377. return result;
  5378. }
  5379. // ggml_conv_1d
  5380. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5381. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5382. }
  5383. GGML_API struct ggml_tensor * ggml_conv_1d(
  5384. struct ggml_context * ctx,
  5385. struct ggml_tensor * a,
  5386. struct ggml_tensor * b,
  5387. int s0,
  5388. int p0,
  5389. int d0) {
  5390. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5391. struct ggml_tensor * result =
  5392. ggml_mul_mat(ctx,
  5393. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5394. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5395. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5396. return result;
  5397. }
  5398. // ggml_conv_1d_ph
  5399. struct ggml_tensor* ggml_conv_1d_ph(
  5400. struct ggml_context * ctx,
  5401. struct ggml_tensor * a,
  5402. struct ggml_tensor * b,
  5403. int s,
  5404. int d) {
  5405. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5406. }
  5407. // ggml_conv_transpose_1d
  5408. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5409. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5410. }
  5411. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5412. struct ggml_context * ctx,
  5413. struct ggml_tensor * a,
  5414. struct ggml_tensor * b,
  5415. int s0,
  5416. int p0,
  5417. int d0) {
  5418. GGML_ASSERT(ggml_is_matrix(b));
  5419. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5420. GGML_ASSERT(a->ne[3] == 1);
  5421. GGML_ASSERT(p0 == 0);
  5422. GGML_ASSERT(d0 == 1);
  5423. bool is_node = false;
  5424. if (a->grad || b->grad) {
  5425. GGML_ASSERT(false); // TODO: implement backward
  5426. is_node = true;
  5427. }
  5428. const int64_t ne[4] = {
  5429. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5430. a->ne[1], b->ne[2], 1,
  5431. };
  5432. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5433. int32_t params[] = { s0, p0, d0 };
  5434. ggml_set_op_params(result, params, sizeof(params));
  5435. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5437. result->src[0] = a;
  5438. result->src[1] = b;
  5439. return result;
  5440. }
  5441. // ggml_conv_depthwise
  5442. struct ggml_tensor * ggml_conv_depthwise_2d(
  5443. struct ggml_context * ctx,
  5444. struct ggml_tensor * a,
  5445. struct ggml_tensor * b,
  5446. int s0,
  5447. int s1,
  5448. int p0,
  5449. int p1,
  5450. int d0,
  5451. int d1) {
  5452. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5453. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5454. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5455. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5456. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5457. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5458. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5459. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5460. return result;
  5461. }
  5462. // ggml_conv_2d
  5463. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5464. // a: [OC,IC, KH, KW]
  5465. // b: [N, IC, IH, IW]
  5466. // result: [N, OH, OW, IC*KH*KW]
  5467. struct ggml_tensor * ggml_im2col(
  5468. struct ggml_context * ctx,
  5469. struct ggml_tensor * a,
  5470. struct ggml_tensor * b,
  5471. int s0,
  5472. int s1,
  5473. int p0,
  5474. int p1,
  5475. int d0,
  5476. int d1,
  5477. bool is_2D,
  5478. enum ggml_type dst_type) {
  5479. if(is_2D) {
  5480. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5481. } else {
  5482. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5483. }
  5484. bool is_node = false;
  5485. if (a->grad || b->grad) {
  5486. GGML_ASSERT(false); // TODO: implement backward
  5487. is_node = true;
  5488. }
  5489. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5490. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5491. const int64_t ne[4] = {
  5492. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5493. OW,
  5494. is_2D ? OH : b->ne[2],
  5495. is_2D ? b->ne[3] : 1,
  5496. };
  5497. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5498. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5499. ggml_set_op_params(result, params, sizeof(params));
  5500. result->op = GGML_OP_IM2COL;
  5501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5502. result->src[0] = a;
  5503. result->src[1] = b;
  5504. return result;
  5505. }
  5506. // a: [OC,IC, KH, KW]
  5507. // b: [N, IC, IH, IW]
  5508. // result: [N, OC, OH, OW]
  5509. struct ggml_tensor * ggml_conv_2d(
  5510. struct ggml_context * ctx,
  5511. struct ggml_tensor * a,
  5512. struct ggml_tensor * b,
  5513. int s0,
  5514. int s1,
  5515. int p0,
  5516. int p1,
  5517. int d0,
  5518. int d1) {
  5519. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5520. struct ggml_tensor * result =
  5521. ggml_mul_mat(ctx,
  5522. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5523. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5524. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5525. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5526. return result;
  5527. }
  5528. // ggml_conv_2d_sk_p0
  5529. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b) {
  5533. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5534. }
  5535. // ggml_conv_2d_s1_ph
  5536. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5537. struct ggml_context * ctx,
  5538. struct ggml_tensor * a,
  5539. struct ggml_tensor * b) {
  5540. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5541. }
  5542. // ggml_conv_transpose_2d_p0
  5543. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5544. return (ins - 1) * s - 2 * p + ks;
  5545. }
  5546. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5547. struct ggml_context * ctx,
  5548. struct ggml_tensor * a,
  5549. struct ggml_tensor * b,
  5550. int stride) {
  5551. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5552. bool is_node = false;
  5553. if (a->grad || b->grad) {
  5554. GGML_ASSERT(false); // TODO: implement backward
  5555. is_node = true;
  5556. }
  5557. const int64_t ne[4] = {
  5558. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5559. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5560. a->ne[2], b->ne[3],
  5561. };
  5562. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5563. ggml_set_op_params_i32(result, 0, stride);
  5564. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5566. result->src[0] = a;
  5567. result->src[1] = b;
  5568. return result;
  5569. }
  5570. // ggml_pool_*
  5571. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5572. return (ins + 2 * p - ks) / s + 1;
  5573. }
  5574. // ggml_pool_1d
  5575. struct ggml_tensor * ggml_pool_1d(
  5576. struct ggml_context * ctx,
  5577. struct ggml_tensor * a,
  5578. enum ggml_op_pool op,
  5579. int k0,
  5580. int s0,
  5581. int p0) {
  5582. bool is_node = false;
  5583. if (a->grad) {
  5584. GGML_ASSERT(false); // TODO: implement backward
  5585. is_node = true;
  5586. }
  5587. const int64_t ne[4] = {
  5588. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5589. a->ne[1],
  5590. a->ne[2],
  5591. a->ne[3],
  5592. };
  5593. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5594. int32_t params[] = { op, k0, s0, p0 };
  5595. ggml_set_op_params(result, params, sizeof(params));
  5596. result->op = GGML_OP_POOL_1D;
  5597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5598. result->src[0] = a;
  5599. return result;
  5600. }
  5601. // ggml_pool_2d
  5602. struct ggml_tensor * ggml_pool_2d(
  5603. struct ggml_context * ctx,
  5604. struct ggml_tensor * a,
  5605. enum ggml_op_pool op,
  5606. int k0,
  5607. int k1,
  5608. int s0,
  5609. int s1,
  5610. float p0,
  5611. float p1) {
  5612. bool is_node = false;
  5613. if (a->grad) {
  5614. GGML_ASSERT(false); // TODO: implement backward
  5615. is_node = true;
  5616. }
  5617. struct ggml_tensor * result;
  5618. const int64_t ne[3] = {
  5619. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5620. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5621. a->ne[2],
  5622. };
  5623. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5624. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5625. ggml_set_op_params(result, params, sizeof(params));
  5626. result->op = GGML_OP_POOL_2D;
  5627. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5628. result->src[0] = a;
  5629. return result;
  5630. }
  5631. // ggml_upscale
  5632. static struct ggml_tensor * ggml_upscale_impl(
  5633. struct ggml_context * ctx,
  5634. struct ggml_tensor * a,
  5635. int ne0,
  5636. int ne1,
  5637. int ne2,
  5638. int ne3) {
  5639. bool is_node = false;
  5640. if (a->grad) {
  5641. GGML_ASSERT(false); // TODO: implement backward
  5642. is_node = true;
  5643. }
  5644. GGML_ASSERT(a->ne[0] <= ne0);
  5645. GGML_ASSERT(a->ne[1] <= ne1);
  5646. GGML_ASSERT(a->ne[2] <= ne2);
  5647. GGML_ASSERT(a->ne[3] <= ne3);
  5648. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5649. ne0,
  5650. ne1,
  5651. ne2,
  5652. ne3
  5653. );
  5654. result->op = GGML_OP_UPSCALE;
  5655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5656. result->src[0] = a;
  5657. return result;
  5658. }
  5659. struct ggml_tensor * ggml_upscale(
  5660. struct ggml_context * ctx,
  5661. struct ggml_tensor * a,
  5662. int scale_factor) {
  5663. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5664. }
  5665. struct ggml_tensor * ggml_upscale_ext(
  5666. struct ggml_context * ctx,
  5667. struct ggml_tensor * a,
  5668. int ne0,
  5669. int ne1,
  5670. int ne2,
  5671. int ne3) {
  5672. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5673. }
  5674. // ggml_pad
  5675. struct ggml_tensor * ggml_pad(
  5676. struct ggml_context * ctx,
  5677. struct ggml_tensor * a,
  5678. int p0, int p1, int p2, int p3) {
  5679. bool is_node = false;
  5680. if (a->grad) {
  5681. GGML_ASSERT(false); // TODO: implement backward
  5682. is_node = true;
  5683. }
  5684. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5685. a->ne[0] + p0,
  5686. a->ne[1] + p1,
  5687. a->ne[2] + p2,
  5688. a->ne[3] + p3);
  5689. result->op = GGML_OP_PAD;
  5690. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5691. result->src[0] = a;
  5692. return result;
  5693. }
  5694. // ggml_arange
  5695. struct ggml_tensor * ggml_arange(
  5696. struct ggml_context * ctx,
  5697. float start,
  5698. float stop,
  5699. float step) {
  5700. GGML_ASSERT(stop > start);
  5701. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5702. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5703. result->op = GGML_OP_ARANGE;
  5704. ggml_set_op_params_f32(result, 0, start);
  5705. ggml_set_op_params_f32(result, 1, stop);
  5706. ggml_set_op_params_f32(result, 2, step);
  5707. return result;
  5708. }
  5709. // ggml_timestep_embedding
  5710. struct ggml_tensor * ggml_timestep_embedding(
  5711. struct ggml_context * ctx,
  5712. struct ggml_tensor * timesteps,
  5713. int dim,
  5714. int max_period) {
  5715. bool is_node = false;
  5716. if (timesteps->grad) {
  5717. GGML_ASSERT(false); // TODO: implement backward
  5718. is_node = true;
  5719. }
  5720. int actual_dim = dim;
  5721. if (dim % 2 != 0) {
  5722. actual_dim = dim + 1;
  5723. }
  5724. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5725. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5726. ggml_set_op_params_i32(result, 0, dim);
  5727. ggml_set_op_params_i32(result, 1, max_period);
  5728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5729. result->src[0] = timesteps;
  5730. return result;
  5731. }
  5732. // ggml_argsort
  5733. struct ggml_tensor * ggml_argsort(
  5734. struct ggml_context * ctx,
  5735. struct ggml_tensor * a,
  5736. enum ggml_sort_order order) {
  5737. bool is_node = false;
  5738. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5739. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5740. result->op = GGML_OP_ARGSORT;
  5741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5742. result->src[0] = a;
  5743. return result;
  5744. }
  5745. // ggml_top_k
  5746. struct ggml_tensor * ggml_top_k(
  5747. struct ggml_context * ctx,
  5748. struct ggml_tensor * a,
  5749. int k) {
  5750. GGML_ASSERT(a->ne[0] >= k);
  5751. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5752. result = ggml_view_4d(ctx, result,
  5753. k, result->ne[1], result->ne[2], result->ne[3],
  5754. result->nb[1], result->nb[2], result->nb[3],
  5755. 0);
  5756. return result;
  5757. }
  5758. // ggml_flash_attn_ext
  5759. struct ggml_tensor * ggml_flash_attn_ext(
  5760. struct ggml_context * ctx,
  5761. struct ggml_tensor * q,
  5762. struct ggml_tensor * k,
  5763. struct ggml_tensor * v,
  5764. struct ggml_tensor * mask,
  5765. float scale,
  5766. float max_bias) {
  5767. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5768. // TODO: check if vT can be multiplied by (k*qT)
  5769. if (mask) {
  5770. GGML_ASSERT(ggml_is_contiguous(mask));
  5771. GGML_ASSERT(mask->ne[2] == 1);
  5772. GGML_ASSERT(mask->ne[3] == 1);
  5773. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5774. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5775. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5776. }
  5777. if (max_bias > 0.0f) {
  5778. GGML_ASSERT(mask);
  5779. }
  5780. bool is_node = false;
  5781. if (q->grad || k->grad || v->grad) {
  5782. is_node = true;
  5783. }
  5784. // permute(0, 2, 1, 3)
  5785. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5786. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5787. float params[] = { scale, max_bias };
  5788. ggml_set_op_params(result, params, sizeof(params));
  5789. result->op = GGML_OP_FLASH_ATTN_EXT;
  5790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5791. result->src[0] = q;
  5792. result->src[1] = k;
  5793. result->src[2] = v;
  5794. result->src[3] = mask;
  5795. return result;
  5796. }
  5797. void ggml_flash_attn_ext_set_prec(
  5798. struct ggml_tensor * a,
  5799. enum ggml_prec prec) {
  5800. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5801. const int32_t prec_i32 = (int32_t) prec;
  5802. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5803. }
  5804. // ggml_flash_attn_back
  5805. struct ggml_tensor * ggml_flash_attn_back(
  5806. struct ggml_context * ctx,
  5807. struct ggml_tensor * q,
  5808. struct ggml_tensor * k,
  5809. struct ggml_tensor * v,
  5810. struct ggml_tensor * d,
  5811. bool masked) {
  5812. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5813. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5814. // TODO: check if vT can be multiplied by (k*qT)
  5815. // d shape [D,N,ne2,ne3]
  5816. // q shape [D,N,ne2,ne3]
  5817. // k shape [D,M,kvne2,ne3]
  5818. // v shape [M,D,kvne2,ne3]
  5819. const int64_t D = q->ne[0];
  5820. const int64_t N = q->ne[1];
  5821. const int64_t M = k->ne[1];
  5822. const int64_t ne2 = q->ne[2];
  5823. const int64_t ne3 = q->ne[3];
  5824. const int64_t kvne2 = k->ne[2];
  5825. GGML_ASSERT(k->ne[0] == D);
  5826. GGML_ASSERT(v->ne[0] == M);
  5827. GGML_ASSERT(v->ne[1] == D);
  5828. GGML_ASSERT(d->ne[0] == D);
  5829. GGML_ASSERT(d->ne[1] == N);
  5830. GGML_ASSERT(k->ne[2] == kvne2);
  5831. GGML_ASSERT(k->ne[3] == ne3);
  5832. GGML_ASSERT(v->ne[2] == kvne2);
  5833. GGML_ASSERT(v->ne[3] == ne3);
  5834. GGML_ASSERT(d->ne[2] == ne2);
  5835. GGML_ASSERT(d->ne[3] == ne3);
  5836. GGML_ASSERT(ne2 % kvne2 == 0);
  5837. bool is_node = false;
  5838. if (q->grad || k->grad || v->grad) {
  5839. // when using this operation (in backwards pass) these grads are set.
  5840. // we don't want to create (big) grad of our result, so is_node is false.
  5841. is_node = false;
  5842. }
  5843. // store gradients of q, k and v as continuous tensors concatenated in result.
  5844. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5845. const int64_t elem_q = ggml_nelements(q);
  5846. const int64_t elem_k = ggml_nelements(k);
  5847. const int64_t elem_v = ggml_nelements(v);
  5848. enum ggml_type result_type = GGML_TYPE_F32;
  5849. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5850. const size_t tsize = ggml_type_size(result_type);
  5851. const size_t offs_q = 0;
  5852. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5853. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5854. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5855. const size_t nelements = (end + tsize - 1)/tsize;
  5856. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5857. int32_t masked_i = masked ? 1 : 0;
  5858. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5859. result->op = GGML_OP_FLASH_ATTN_BACK;
  5860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5861. result->src[0] = q;
  5862. result->src[1] = k;
  5863. result->src[2] = v;
  5864. result->src[3] = d;
  5865. return result;
  5866. }
  5867. // ggml_ssm_conv
  5868. struct ggml_tensor * ggml_ssm_conv(
  5869. struct ggml_context * ctx,
  5870. struct ggml_tensor * s,
  5871. struct ggml_tensor * x,
  5872. struct ggml_tensor * c,
  5873. struct ggml_tensor * sq) {
  5874. GGML_ASSERT(ggml_is_3d(s));
  5875. GGML_ASSERT(ggml_is_matrix(x));
  5876. GGML_ASSERT(ggml_is_matrix(c));
  5877. GGML_ASSERT(ggml_is_matrix(sq));
  5878. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5879. const int64_t d_conv = c->ne[0];
  5880. const int64_t d_inner = c->ne[1];
  5881. const int64_t n_tokens = x->ne[1];
  5882. const int64_t n_kv = s->ne[2];
  5883. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5884. GGML_ASSERT( s->ne[1] == d_inner);
  5885. GGML_ASSERT( x->ne[0] == d_inner);
  5886. GGML_ASSERT(sq->ne[0] == n_kv);
  5887. GGML_ASSERT(sq->ne[1] == n_tokens);
  5888. bool is_node = false;
  5889. if (s->grad || x->grad || c->grad || sq->grad) {
  5890. GGML_ASSERT(false); // TODO: implement
  5891. is_node = true;
  5892. }
  5893. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5894. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5895. result->op = GGML_OP_SSM_CONV;
  5896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5897. result->src[0] = s;
  5898. result->src[1] = x;
  5899. result->src[2] = c;
  5900. result->src[3] = sq;
  5901. return result;
  5902. }
  5903. // ggml_ssm_scan
  5904. struct ggml_tensor * ggml_ssm_scan(
  5905. struct ggml_context * ctx,
  5906. struct ggml_tensor * s,
  5907. struct ggml_tensor * x,
  5908. struct ggml_tensor * dt,
  5909. struct ggml_tensor * A,
  5910. struct ggml_tensor * B,
  5911. struct ggml_tensor * C,
  5912. struct ggml_tensor * sq) {
  5913. GGML_ASSERT(ggml_is_contiguous(s));
  5914. GGML_ASSERT(ggml_is_contiguous(x));
  5915. GGML_ASSERT(ggml_is_contiguous(dt));
  5916. GGML_ASSERT(ggml_is_contiguous(A));
  5917. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5918. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5919. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5920. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5921. {
  5922. const int64_t d_state = s->ne[0];
  5923. const int64_t d_inner = s->ne[1];
  5924. const int64_t n_tokens = x->ne[1];
  5925. GGML_ASSERT(x->ne[0] == d_inner);
  5926. GGML_ASSERT(A->ne[0] == d_state);
  5927. GGML_ASSERT(A->ne[1] == d_inner);
  5928. GGML_ASSERT(B->ne[0] == d_state);
  5929. GGML_ASSERT(B->ne[1] == n_tokens);
  5930. GGML_ASSERT(C->ne[0] == d_state);
  5931. GGML_ASSERT(C->ne[1] == n_tokens);
  5932. }
  5933. bool is_node = false;
  5934. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5935. GGML_ASSERT(false); // TODO: implement
  5936. is_node = true;
  5937. }
  5938. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5939. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5940. result->op = GGML_OP_SSM_SCAN;
  5941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5942. result->src[0] = s;
  5943. result->src[1] = x;
  5944. result->src[2] = dt;
  5945. result->src[3] = A;
  5946. result->src[4] = B;
  5947. result->src[5] = C;
  5948. result->src[6] = sq;
  5949. return result;
  5950. }
  5951. // ggml_win_part
  5952. struct ggml_tensor * ggml_win_part(
  5953. struct ggml_context * ctx,
  5954. struct ggml_tensor * a,
  5955. int w) {
  5956. GGML_ASSERT(a->ne[3] == 1);
  5957. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5958. bool is_node = false;
  5959. if (a->grad) {
  5960. GGML_ASSERT(false); // TODO: implement backward
  5961. is_node = true;
  5962. }
  5963. // padding
  5964. const int px = (w - a->ne[1]%w)%w;
  5965. const int py = (w - a->ne[2]%w)%w;
  5966. const int npx = (px + a->ne[1])/w;
  5967. const int npy = (py + a->ne[2])/w;
  5968. const int np = npx*npy;
  5969. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5970. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5971. int32_t params[] = { npx, npy, w };
  5972. ggml_set_op_params(result, params, sizeof(params));
  5973. result->op = GGML_OP_WIN_PART;
  5974. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5975. result->src[0] = a;
  5976. return result;
  5977. }
  5978. // ggml_win_unpart
  5979. struct ggml_tensor * ggml_win_unpart(
  5980. struct ggml_context * ctx,
  5981. struct ggml_tensor * a,
  5982. int w0,
  5983. int h0,
  5984. int w) {
  5985. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5986. bool is_node = false;
  5987. if (a->grad) {
  5988. GGML_ASSERT(false); // TODO: implement backward
  5989. is_node = true;
  5990. }
  5991. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5992. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5993. int32_t params[] = { w };
  5994. ggml_set_op_params(result, params, sizeof(params));
  5995. result->op = GGML_OP_WIN_UNPART;
  5996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5997. result->src[0] = a;
  5998. return result;
  5999. }
  6000. // ggml_get_rel_pos
  6001. struct ggml_tensor * ggml_get_rel_pos(
  6002. struct ggml_context * ctx,
  6003. struct ggml_tensor * a,
  6004. int qh,
  6005. int kh) {
  6006. GGML_ASSERT(qh == kh);
  6007. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6008. bool is_node = false;
  6009. if (a->grad) {
  6010. GGML_ASSERT(false); // TODO: implement backward
  6011. is_node = true;
  6012. }
  6013. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6014. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6015. result->op = GGML_OP_GET_REL_POS;
  6016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6017. result->src[0] = a;
  6018. return result;
  6019. }
  6020. // ggml_add_rel_pos
  6021. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6022. struct ggml_context * ctx,
  6023. struct ggml_tensor * a,
  6024. struct ggml_tensor * pw,
  6025. struct ggml_tensor * ph,
  6026. bool inplace) {
  6027. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6028. GGML_ASSERT(ggml_is_contiguous(a));
  6029. GGML_ASSERT(ggml_is_contiguous(pw));
  6030. GGML_ASSERT(ggml_is_contiguous(ph));
  6031. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6032. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6033. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6034. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6035. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6036. bool is_node = false;
  6037. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6038. is_node = true;
  6039. }
  6040. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6041. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6042. result->op = GGML_OP_ADD_REL_POS;
  6043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6044. result->src[0] = a;
  6045. result->src[1] = pw;
  6046. result->src[2] = ph;
  6047. return result;
  6048. }
  6049. struct ggml_tensor * ggml_add_rel_pos(
  6050. struct ggml_context * ctx,
  6051. struct ggml_tensor * a,
  6052. struct ggml_tensor * pw,
  6053. struct ggml_tensor * ph) {
  6054. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6055. }
  6056. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6057. struct ggml_context * ctx,
  6058. struct ggml_tensor * a,
  6059. struct ggml_tensor * pw,
  6060. struct ggml_tensor * ph) {
  6061. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6062. }
  6063. // gmml_unary
  6064. static struct ggml_tensor * ggml_unary_impl(
  6065. struct ggml_context * ctx,
  6066. struct ggml_tensor * a,
  6067. enum ggml_unary_op op,
  6068. bool inplace) {
  6069. bool is_node = false;
  6070. if (!inplace && (a->grad)) {
  6071. is_node = true;
  6072. }
  6073. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6074. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6075. result->op = GGML_OP_UNARY;
  6076. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6077. result->src[0] = a;
  6078. return result;
  6079. }
  6080. struct ggml_tensor * ggml_unary(
  6081. struct ggml_context * ctx,
  6082. struct ggml_tensor * a,
  6083. enum ggml_unary_op op) {
  6084. return ggml_unary_impl(ctx, a, op, false);
  6085. }
  6086. struct ggml_tensor * ggml_unary_inplace(
  6087. struct ggml_context * ctx,
  6088. struct ggml_tensor * a,
  6089. enum ggml_unary_op op) {
  6090. return ggml_unary_impl(ctx, a, op, true);
  6091. }
  6092. // ggml_map_unary
  6093. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6094. struct ggml_context * ctx,
  6095. struct ggml_tensor * a,
  6096. const ggml_unary_op_f32_t fun,
  6097. bool inplace) {
  6098. bool is_node = false;
  6099. if (!inplace && a->grad) {
  6100. is_node = true;
  6101. }
  6102. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6103. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6104. result->op = GGML_OP_MAP_UNARY;
  6105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6106. result->src[0] = a;
  6107. return result;
  6108. }
  6109. struct ggml_tensor * ggml_map_unary_f32(
  6110. struct ggml_context * ctx,
  6111. struct ggml_tensor * a,
  6112. const ggml_unary_op_f32_t fun) {
  6113. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6114. }
  6115. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6116. struct ggml_context * ctx,
  6117. struct ggml_tensor * a,
  6118. const ggml_unary_op_f32_t fun) {
  6119. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6120. }
  6121. // ggml_map_binary
  6122. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6123. struct ggml_context * ctx,
  6124. struct ggml_tensor * a,
  6125. struct ggml_tensor * b,
  6126. const ggml_binary_op_f32_t fun,
  6127. bool inplace) {
  6128. GGML_ASSERT(ggml_are_same_shape(a, b));
  6129. bool is_node = false;
  6130. if (!inplace && (a->grad || b->grad)) {
  6131. is_node = true;
  6132. }
  6133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6134. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6135. result->op = GGML_OP_MAP_BINARY;
  6136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6137. result->src[0] = a;
  6138. result->src[1] = b;
  6139. return result;
  6140. }
  6141. struct ggml_tensor * ggml_map_binary_f32(
  6142. struct ggml_context * ctx,
  6143. struct ggml_tensor * a,
  6144. struct ggml_tensor * b,
  6145. const ggml_binary_op_f32_t fun) {
  6146. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6147. }
  6148. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6149. struct ggml_context * ctx,
  6150. struct ggml_tensor * a,
  6151. struct ggml_tensor * b,
  6152. const ggml_binary_op_f32_t fun) {
  6153. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6154. }
  6155. // ggml_map_custom1_f32
  6156. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6157. struct ggml_context * ctx,
  6158. struct ggml_tensor * a,
  6159. const ggml_custom1_op_f32_t fun,
  6160. bool inplace) {
  6161. bool is_node = false;
  6162. if (!inplace && a->grad) {
  6163. is_node = true;
  6164. }
  6165. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6166. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6167. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6168. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6169. result->src[0] = a;
  6170. return result;
  6171. }
  6172. struct ggml_tensor * ggml_map_custom1_f32(
  6173. struct ggml_context * ctx,
  6174. struct ggml_tensor * a,
  6175. const ggml_custom1_op_f32_t fun) {
  6176. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6177. }
  6178. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6179. struct ggml_context * ctx,
  6180. struct ggml_tensor * a,
  6181. const ggml_custom1_op_f32_t fun) {
  6182. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6183. }
  6184. // ggml_map_custom2_f32
  6185. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6186. struct ggml_context * ctx,
  6187. struct ggml_tensor * a,
  6188. struct ggml_tensor * b,
  6189. const ggml_custom2_op_f32_t fun,
  6190. bool inplace) {
  6191. bool is_node = false;
  6192. if (!inplace && (a->grad || b->grad)) {
  6193. is_node = true;
  6194. }
  6195. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6196. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6197. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6198. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6199. result->src[0] = a;
  6200. result->src[1] = b;
  6201. return result;
  6202. }
  6203. struct ggml_tensor * ggml_map_custom2_f32(
  6204. struct ggml_context * ctx,
  6205. struct ggml_tensor * a,
  6206. struct ggml_tensor * b,
  6207. const ggml_custom2_op_f32_t fun) {
  6208. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6209. }
  6210. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6211. struct ggml_context * ctx,
  6212. struct ggml_tensor * a,
  6213. struct ggml_tensor * b,
  6214. const ggml_custom2_op_f32_t fun) {
  6215. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6216. }
  6217. // ggml_map_custom3_f32
  6218. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6219. struct ggml_context * ctx,
  6220. struct ggml_tensor * a,
  6221. struct ggml_tensor * b,
  6222. struct ggml_tensor * c,
  6223. const ggml_custom3_op_f32_t fun,
  6224. bool inplace) {
  6225. bool is_node = false;
  6226. if (!inplace && (a->grad || b->grad || c->grad)) {
  6227. is_node = true;
  6228. }
  6229. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6230. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6231. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6233. result->src[0] = a;
  6234. result->src[1] = b;
  6235. result->src[2] = c;
  6236. return result;
  6237. }
  6238. struct ggml_tensor * ggml_map_custom3_f32(
  6239. struct ggml_context * ctx,
  6240. struct ggml_tensor * a,
  6241. struct ggml_tensor * b,
  6242. struct ggml_tensor * c,
  6243. const ggml_custom3_op_f32_t fun) {
  6244. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6245. }
  6246. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6247. struct ggml_context * ctx,
  6248. struct ggml_tensor * a,
  6249. struct ggml_tensor * b,
  6250. struct ggml_tensor * c,
  6251. const ggml_custom3_op_f32_t fun) {
  6252. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6253. }
  6254. // ggml_map_custom1
  6255. struct ggml_map_custom1_op_params {
  6256. ggml_custom1_op_t fun;
  6257. int n_tasks;
  6258. void * userdata;
  6259. };
  6260. static struct ggml_tensor * ggml_map_custom1_impl(
  6261. struct ggml_context * ctx,
  6262. struct ggml_tensor * a,
  6263. const ggml_custom1_op_t fun,
  6264. int n_tasks,
  6265. void * userdata,
  6266. bool inplace) {
  6267. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6268. bool is_node = false;
  6269. if (!inplace && a->grad) {
  6270. is_node = true;
  6271. }
  6272. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6273. struct ggml_map_custom1_op_params params = {
  6274. /*.fun =*/ fun,
  6275. /*.n_tasks =*/ n_tasks,
  6276. /*.userdata =*/ userdata
  6277. };
  6278. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6279. result->op = GGML_OP_MAP_CUSTOM1;
  6280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6281. result->src[0] = a;
  6282. return result;
  6283. }
  6284. struct ggml_tensor * ggml_map_custom1(
  6285. struct ggml_context * ctx,
  6286. struct ggml_tensor * a,
  6287. const ggml_custom1_op_t fun,
  6288. int n_tasks,
  6289. void * userdata) {
  6290. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6291. }
  6292. struct ggml_tensor * ggml_map_custom1_inplace(
  6293. struct ggml_context * ctx,
  6294. struct ggml_tensor * a,
  6295. const ggml_custom1_op_t fun,
  6296. int n_tasks,
  6297. void * userdata) {
  6298. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6299. }
  6300. // ggml_map_custom2
  6301. struct ggml_map_custom2_op_params {
  6302. ggml_custom2_op_t fun;
  6303. int n_tasks;
  6304. void * userdata;
  6305. };
  6306. static struct ggml_tensor * ggml_map_custom2_impl(
  6307. struct ggml_context * ctx,
  6308. struct ggml_tensor * a,
  6309. struct ggml_tensor * b,
  6310. const ggml_custom2_op_t fun,
  6311. int n_tasks,
  6312. void * userdata,
  6313. bool inplace) {
  6314. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6315. bool is_node = false;
  6316. if (!inplace && (a->grad || b->grad)) {
  6317. is_node = true;
  6318. }
  6319. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6320. struct ggml_map_custom2_op_params params = {
  6321. /*.fun =*/ fun,
  6322. /*.n_tasks =*/ n_tasks,
  6323. /*.userdata =*/ userdata
  6324. };
  6325. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6326. result->op = GGML_OP_MAP_CUSTOM2;
  6327. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6328. result->src[0] = a;
  6329. result->src[1] = b;
  6330. return result;
  6331. }
  6332. struct ggml_tensor * ggml_map_custom2(
  6333. struct ggml_context * ctx,
  6334. struct ggml_tensor * a,
  6335. struct ggml_tensor * b,
  6336. const ggml_custom2_op_t fun,
  6337. int n_tasks,
  6338. void * userdata) {
  6339. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6340. }
  6341. struct ggml_tensor * ggml_map_custom2_inplace(
  6342. struct ggml_context * ctx,
  6343. struct ggml_tensor * a,
  6344. struct ggml_tensor * b,
  6345. const ggml_custom2_op_t fun,
  6346. int n_tasks,
  6347. void * userdata) {
  6348. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6349. }
  6350. // ggml_map_custom3
  6351. struct ggml_map_custom3_op_params {
  6352. ggml_custom3_op_t fun;
  6353. int n_tasks;
  6354. void * userdata;
  6355. };
  6356. static struct ggml_tensor * ggml_map_custom3_impl(
  6357. struct ggml_context * ctx,
  6358. struct ggml_tensor * a,
  6359. struct ggml_tensor * b,
  6360. struct ggml_tensor * c,
  6361. const ggml_custom3_op_t fun,
  6362. int n_tasks,
  6363. void * userdata,
  6364. bool inplace) {
  6365. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6366. bool is_node = false;
  6367. if (!inplace && (a->grad || b->grad || c->grad)) {
  6368. is_node = true;
  6369. }
  6370. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6371. struct ggml_map_custom3_op_params params = {
  6372. /*.fun =*/ fun,
  6373. /*.n_tasks =*/ n_tasks,
  6374. /*.userdata =*/ userdata
  6375. };
  6376. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6377. result->op = GGML_OP_MAP_CUSTOM3;
  6378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6379. result->src[0] = a;
  6380. result->src[1] = b;
  6381. result->src[2] = c;
  6382. return result;
  6383. }
  6384. struct ggml_tensor * ggml_map_custom3(
  6385. struct ggml_context * ctx,
  6386. struct ggml_tensor * a,
  6387. struct ggml_tensor * b,
  6388. struct ggml_tensor * c,
  6389. const ggml_custom3_op_t fun,
  6390. int n_tasks,
  6391. void * userdata) {
  6392. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6393. }
  6394. struct ggml_tensor * ggml_map_custom3_inplace(
  6395. struct ggml_context * ctx,
  6396. struct ggml_tensor * a,
  6397. struct ggml_tensor * b,
  6398. struct ggml_tensor * c,
  6399. const ggml_custom3_op_t fun,
  6400. int n_tasks,
  6401. void * userdata) {
  6402. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6403. }
  6404. // ggml_cross_entropy_loss
  6405. struct ggml_tensor * ggml_cross_entropy_loss(
  6406. struct ggml_context * ctx,
  6407. struct ggml_tensor * a,
  6408. struct ggml_tensor * b) {
  6409. GGML_ASSERT(ggml_are_same_shape(a, b));
  6410. bool is_node = false;
  6411. if (a->grad || b->grad) {
  6412. is_node = true;
  6413. }
  6414. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6415. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6416. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6417. result->src[0] = a;
  6418. result->src[1] = b;
  6419. return result;
  6420. }
  6421. // ggml_cross_entropy_loss_back
  6422. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6423. struct ggml_context * ctx,
  6424. struct ggml_tensor * a,
  6425. struct ggml_tensor * b,
  6426. struct ggml_tensor * c) {
  6427. GGML_ASSERT(ggml_are_same_shape(a, b));
  6428. GGML_ASSERT(ggml_is_scalar(c));
  6429. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6430. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6431. result->grad = NULL;
  6432. result->src[0] = a;
  6433. result->src[1] = b;
  6434. result->src[2] = c;
  6435. return result;
  6436. }
  6437. ////////////////////////////////////////////////////////////////////////////////
  6438. void ggml_set_param(
  6439. struct ggml_context * ctx,
  6440. struct ggml_tensor * tensor) {
  6441. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6442. GGML_ASSERT(tensor->grad == NULL);
  6443. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6444. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6445. }
  6446. // ggml_compute_forward_dup
  6447. static void ggml_compute_forward_dup_same_cont(
  6448. const struct ggml_compute_params * params,
  6449. struct ggml_tensor * dst) {
  6450. const struct ggml_tensor * src0 = dst->src[0];
  6451. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6452. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6453. GGML_ASSERT(src0->type == dst->type);
  6454. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6455. return;
  6456. }
  6457. const size_t nb00 = src0->nb[0];
  6458. const size_t nb0 = dst->nb[0];
  6459. const int ith = params->ith; // thread index
  6460. const int nth = params->nth; // number of threads
  6461. // parallelize by elements
  6462. const int ne = ggml_nelements(dst);
  6463. const int dr = (ne + nth - 1) / nth;
  6464. const int ie0 = dr * ith;
  6465. const int ie1 = MIN(ie0 + dr, ne);
  6466. if (ie0 < ie1) {
  6467. memcpy(
  6468. ((char *) dst->data + ie0*nb0),
  6469. ((char *) src0->data + ie0*nb00),
  6470. (ie1 - ie0) * ggml_type_size(src0->type));
  6471. }
  6472. }
  6473. static void ggml_compute_forward_dup_f16(
  6474. const struct ggml_compute_params * params,
  6475. struct ggml_tensor * dst) {
  6476. const struct ggml_tensor * src0 = dst->src[0];
  6477. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6478. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6479. return;
  6480. }
  6481. GGML_TENSOR_UNARY_OP_LOCALS
  6482. const int ith = params->ith; // thread index
  6483. const int nth = params->nth; // number of threads
  6484. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6485. ggml_compute_forward_dup_same_cont(params, dst);
  6486. return;
  6487. }
  6488. // parallelize by rows
  6489. const int nr = ne01;
  6490. // number of rows per thread
  6491. const int dr = (nr + nth - 1) / nth;
  6492. // row range for this thread
  6493. const int ir0 = dr * ith;
  6494. const int ir1 = MIN(ir0 + dr, nr);
  6495. if (src0->type == dst->type &&
  6496. ne00 == ne0 &&
  6497. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6498. // copy by rows
  6499. const size_t rs = ne00*nb00;
  6500. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6501. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6502. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6503. memcpy(
  6504. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6505. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6506. rs);
  6507. }
  6508. }
  6509. }
  6510. return;
  6511. }
  6512. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6513. if (ggml_is_contiguous(dst)) {
  6514. if (nb00 == sizeof(ggml_fp16_t)) {
  6515. if (dst->type == GGML_TYPE_F16) {
  6516. size_t id = 0;
  6517. const size_t rs = ne00 * nb00;
  6518. char * dst_ptr = (char *) dst->data;
  6519. for (int i03 = 0; i03 < ne03; i03++) {
  6520. for (int i02 = 0; i02 < ne02; i02++) {
  6521. id += rs * ir0;
  6522. for (int i01 = ir0; i01 < ir1; i01++) {
  6523. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6524. memcpy(dst_ptr + id, src0_ptr, rs);
  6525. id += rs;
  6526. }
  6527. id += rs * (ne01 - ir1);
  6528. }
  6529. }
  6530. } else if (dst->type == GGML_TYPE_F32) {
  6531. size_t id = 0;
  6532. float * dst_ptr = (float *) dst->data;
  6533. for (int i03 = 0; i03 < ne03; i03++) {
  6534. for (int i02 = 0; i02 < ne02; i02++) {
  6535. id += ne00 * ir0;
  6536. for (int i01 = ir0; i01 < ir1; i01++) {
  6537. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6538. for (int i00 = 0; i00 < ne00; i00++) {
  6539. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6540. id++;
  6541. }
  6542. }
  6543. id += ne00 * (ne01 - ir1);
  6544. }
  6545. }
  6546. } else if (type_traits[dst->type].from_float) {
  6547. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6548. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6549. size_t id = 0;
  6550. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6551. char * dst_ptr = (char *) dst->data;
  6552. for (int i03 = 0; i03 < ne03; i03++) {
  6553. for (int i02 = 0; i02 < ne02; i02++) {
  6554. id += rs * ir0;
  6555. for (int i01 = ir0; i01 < ir1; i01++) {
  6556. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6557. for (int i00 = 0; i00 < ne00; i00++) {
  6558. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6559. }
  6560. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6561. id += rs;
  6562. }
  6563. id += rs * (ne01 - ir1);
  6564. }
  6565. }
  6566. } else {
  6567. GGML_ASSERT(false); // TODO: implement
  6568. }
  6569. } else {
  6570. //printf("%s: this is not optimal - fix me\n", __func__);
  6571. if (dst->type == GGML_TYPE_F32) {
  6572. size_t id = 0;
  6573. float * dst_ptr = (float *) dst->data;
  6574. for (int i03 = 0; i03 < ne03; i03++) {
  6575. for (int i02 = 0; i02 < ne02; i02++) {
  6576. id += ne00 * ir0;
  6577. for (int i01 = ir0; i01 < ir1; i01++) {
  6578. for (int i00 = 0; i00 < ne00; i00++) {
  6579. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6580. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6581. id++;
  6582. }
  6583. }
  6584. id += ne00 * (ne01 - ir1);
  6585. }
  6586. }
  6587. } else if (dst->type == GGML_TYPE_F16) {
  6588. size_t id = 0;
  6589. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6590. for (int i03 = 0; i03 < ne03; i03++) {
  6591. for (int i02 = 0; i02 < ne02; i02++) {
  6592. id += ne00 * ir0;
  6593. for (int i01 = ir0; i01 < ir1; i01++) {
  6594. for (int i00 = 0; i00 < ne00; i00++) {
  6595. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6596. dst_ptr[id] = *src0_ptr;
  6597. id++;
  6598. }
  6599. }
  6600. id += ne00 * (ne01 - ir1);
  6601. }
  6602. }
  6603. } else {
  6604. GGML_ASSERT(false); // TODO: implement
  6605. }
  6606. }
  6607. return;
  6608. }
  6609. // dst counters
  6610. int64_t i10 = 0;
  6611. int64_t i11 = 0;
  6612. int64_t i12 = 0;
  6613. int64_t i13 = 0;
  6614. if (dst->type == GGML_TYPE_F16) {
  6615. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6616. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6617. i10 += ne00 * ir0;
  6618. while (i10 >= ne0) {
  6619. i10 -= ne0;
  6620. if (++i11 == ne1) {
  6621. i11 = 0;
  6622. if (++i12 == ne2) {
  6623. i12 = 0;
  6624. if (++i13 == ne3) {
  6625. i13 = 0;
  6626. }
  6627. }
  6628. }
  6629. }
  6630. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6631. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6632. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6633. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6634. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6635. if (++i10 == ne00) {
  6636. i10 = 0;
  6637. if (++i11 == ne01) {
  6638. i11 = 0;
  6639. if (++i12 == ne02) {
  6640. i12 = 0;
  6641. if (++i13 == ne03) {
  6642. i13 = 0;
  6643. }
  6644. }
  6645. }
  6646. }
  6647. }
  6648. }
  6649. i10 += ne00 * (ne01 - ir1);
  6650. while (i10 >= ne0) {
  6651. i10 -= ne0;
  6652. if (++i11 == ne1) {
  6653. i11 = 0;
  6654. if (++i12 == ne2) {
  6655. i12 = 0;
  6656. if (++i13 == ne3) {
  6657. i13 = 0;
  6658. }
  6659. }
  6660. }
  6661. }
  6662. }
  6663. }
  6664. } else if (dst->type == GGML_TYPE_F32) {
  6665. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6666. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6667. i10 += ne00 * ir0;
  6668. while (i10 >= ne0) {
  6669. i10 -= ne0;
  6670. if (++i11 == ne1) {
  6671. i11 = 0;
  6672. if (++i12 == ne2) {
  6673. i12 = 0;
  6674. if (++i13 == ne3) {
  6675. i13 = 0;
  6676. }
  6677. }
  6678. }
  6679. }
  6680. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6681. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6682. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6683. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6684. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6685. if (++i10 == ne0) {
  6686. i10 = 0;
  6687. if (++i11 == ne1) {
  6688. i11 = 0;
  6689. if (++i12 == ne2) {
  6690. i12 = 0;
  6691. if (++i13 == ne3) {
  6692. i13 = 0;
  6693. }
  6694. }
  6695. }
  6696. }
  6697. }
  6698. }
  6699. i10 += ne00 * (ne01 - ir1);
  6700. while (i10 >= ne0) {
  6701. i10 -= ne0;
  6702. if (++i11 == ne1) {
  6703. i11 = 0;
  6704. if (++i12 == ne2) {
  6705. i12 = 0;
  6706. if (++i13 == ne3) {
  6707. i13 = 0;
  6708. }
  6709. }
  6710. }
  6711. }
  6712. }
  6713. }
  6714. } else {
  6715. GGML_ASSERT(false); // TODO: implement
  6716. }
  6717. }
  6718. static void ggml_compute_forward_dup_bf16(
  6719. const struct ggml_compute_params * params,
  6720. struct ggml_tensor * dst) {
  6721. const struct ggml_tensor * src0 = dst->src[0];
  6722. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6723. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6724. return;
  6725. }
  6726. GGML_TENSOR_UNARY_OP_LOCALS
  6727. const int ith = params->ith; // thread index
  6728. const int nth = params->nth; // number of threads
  6729. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6730. ggml_compute_forward_dup_same_cont(params, dst);
  6731. return;
  6732. }
  6733. // parallelize by rows
  6734. const int nr = ne01;
  6735. // number of rows per thread
  6736. const int dr = (nr + nth - 1) / nth;
  6737. // row range for this thread
  6738. const int ir0 = dr * ith;
  6739. const int ir1 = MIN(ir0 + dr, nr);
  6740. if (src0->type == dst->type &&
  6741. ne00 == ne0 &&
  6742. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6743. // copy by rows
  6744. const size_t rs = ne00*nb00;
  6745. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6746. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6747. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6748. memcpy(
  6749. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6750. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6751. rs);
  6752. }
  6753. }
  6754. }
  6755. return;
  6756. }
  6757. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6758. if (ggml_is_contiguous(dst)) {
  6759. if (nb00 == sizeof(ggml_bf16_t)) {
  6760. if (dst->type == GGML_TYPE_BF16) {
  6761. size_t id = 0;
  6762. const size_t rs = ne00 * nb00;
  6763. char * dst_ptr = (char *) dst->data;
  6764. for (int i03 = 0; i03 < ne03; i03++) {
  6765. for (int i02 = 0; i02 < ne02; i02++) {
  6766. id += rs * ir0;
  6767. for (int i01 = ir0; i01 < ir1; i01++) {
  6768. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6769. memcpy(dst_ptr + id, src0_ptr, rs);
  6770. id += rs;
  6771. }
  6772. id += rs * (ne01 - ir1);
  6773. }
  6774. }
  6775. } else if (dst->type == GGML_TYPE_F16) {
  6776. size_t id = 0;
  6777. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6778. for (int i03 = 0; i03 < ne03; i03++) {
  6779. for (int i02 = 0; i02 < ne02; i02++) {
  6780. id += ne00 * ir0;
  6781. for (int i01 = ir0; i01 < ir1; i01++) {
  6782. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6783. for (int i00 = 0; i00 < ne00; i00++) {
  6784. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6785. id++;
  6786. }
  6787. }
  6788. id += ne00 * (ne01 - ir1);
  6789. }
  6790. }
  6791. } else if (dst->type == GGML_TYPE_F32) {
  6792. size_t id = 0;
  6793. float * dst_ptr = (float *) dst->data;
  6794. for (int i03 = 0; i03 < ne03; i03++) {
  6795. for (int i02 = 0; i02 < ne02; i02++) {
  6796. id += ne00 * ir0;
  6797. for (int i01 = ir0; i01 < ir1; i01++) {
  6798. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6799. for (int i00 = 0; i00 < ne00; i00++) {
  6800. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6801. id++;
  6802. }
  6803. }
  6804. id += ne00 * (ne01 - ir1);
  6805. }
  6806. }
  6807. } else if (type_traits[dst->type].from_float) {
  6808. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6809. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6810. size_t id = 0;
  6811. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6812. char * dst_ptr = (char *) dst->data;
  6813. for (int i03 = 0; i03 < ne03; i03++) {
  6814. for (int i02 = 0; i02 < ne02; i02++) {
  6815. id += rs * ir0;
  6816. for (int i01 = ir0; i01 < ir1; i01++) {
  6817. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6818. for (int i00 = 0; i00 < ne00; i00++) {
  6819. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6820. }
  6821. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6822. id += rs;
  6823. }
  6824. id += rs * (ne01 - ir1);
  6825. }
  6826. }
  6827. } else {
  6828. GGML_ASSERT(false); // TODO: implement
  6829. }
  6830. } else {
  6831. //printf("%s: this is not optimal - fix me\n", __func__);
  6832. if (dst->type == GGML_TYPE_F32) {
  6833. size_t id = 0;
  6834. float * dst_ptr = (float *) dst->data;
  6835. for (int i03 = 0; i03 < ne03; i03++) {
  6836. for (int i02 = 0; i02 < ne02; i02++) {
  6837. id += ne00 * ir0;
  6838. for (int i01 = ir0; i01 < ir1; i01++) {
  6839. for (int i00 = 0; i00 < ne00; i00++) {
  6840. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6841. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6842. id++;
  6843. }
  6844. }
  6845. id += ne00 * (ne01 - ir1);
  6846. }
  6847. }
  6848. } else if (dst->type == GGML_TYPE_BF16) {
  6849. size_t id = 0;
  6850. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6851. for (int i03 = 0; i03 < ne03; i03++) {
  6852. for (int i02 = 0; i02 < ne02; i02++) {
  6853. id += ne00 * ir0;
  6854. for (int i01 = ir0; i01 < ir1; i01++) {
  6855. for (int i00 = 0; i00 < ne00; i00++) {
  6856. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6857. dst_ptr[id] = *src0_ptr;
  6858. id++;
  6859. }
  6860. }
  6861. id += ne00 * (ne01 - ir1);
  6862. }
  6863. }
  6864. } else if (dst->type == GGML_TYPE_F16) {
  6865. size_t id = 0;
  6866. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6867. for (int i03 = 0; i03 < ne03; i03++) {
  6868. for (int i02 = 0; i02 < ne02; i02++) {
  6869. id += ne00 * ir0;
  6870. for (int i01 = ir0; i01 < ir1; i01++) {
  6871. for (int i00 = 0; i00 < ne00; i00++) {
  6872. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6873. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6874. id++;
  6875. }
  6876. }
  6877. id += ne00 * (ne01 - ir1);
  6878. }
  6879. }
  6880. } else {
  6881. GGML_ASSERT(false); // TODO: implement
  6882. }
  6883. }
  6884. return;
  6885. }
  6886. // dst counters
  6887. int64_t i10 = 0;
  6888. int64_t i11 = 0;
  6889. int64_t i12 = 0;
  6890. int64_t i13 = 0;
  6891. if (dst->type == GGML_TYPE_BF16) {
  6892. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6893. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6894. i10 += ne00 * ir0;
  6895. while (i10 >= ne0) {
  6896. i10 -= ne0;
  6897. if (++i11 == ne1) {
  6898. i11 = 0;
  6899. if (++i12 == ne2) {
  6900. i12 = 0;
  6901. if (++i13 == ne3) {
  6902. i13 = 0;
  6903. }
  6904. }
  6905. }
  6906. }
  6907. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6908. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6909. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6910. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6911. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6912. if (++i10 == ne00) {
  6913. i10 = 0;
  6914. if (++i11 == ne01) {
  6915. i11 = 0;
  6916. if (++i12 == ne02) {
  6917. i12 = 0;
  6918. if (++i13 == ne03) {
  6919. i13 = 0;
  6920. }
  6921. }
  6922. }
  6923. }
  6924. }
  6925. }
  6926. i10 += ne00 * (ne01 - ir1);
  6927. while (i10 >= ne0) {
  6928. i10 -= ne0;
  6929. if (++i11 == ne1) {
  6930. i11 = 0;
  6931. if (++i12 == ne2) {
  6932. i12 = 0;
  6933. if (++i13 == ne3) {
  6934. i13 = 0;
  6935. }
  6936. }
  6937. }
  6938. }
  6939. }
  6940. }
  6941. } else if (dst->type == GGML_TYPE_F16) {
  6942. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6943. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6944. i10 += ne00 * ir0;
  6945. while (i10 >= ne0) {
  6946. i10 -= ne0;
  6947. if (++i11 == ne1) {
  6948. i11 = 0;
  6949. if (++i12 == ne2) {
  6950. i12 = 0;
  6951. if (++i13 == ne3) {
  6952. i13 = 0;
  6953. }
  6954. }
  6955. }
  6956. }
  6957. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6958. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6959. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6960. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6961. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6962. if (++i10 == ne0) {
  6963. i10 = 0;
  6964. if (++i11 == ne1) {
  6965. i11 = 0;
  6966. if (++i12 == ne2) {
  6967. i12 = 0;
  6968. if (++i13 == ne3) {
  6969. i13 = 0;
  6970. }
  6971. }
  6972. }
  6973. }
  6974. }
  6975. }
  6976. i10 += ne00 * (ne01 - ir1);
  6977. while (i10 >= ne0) {
  6978. i10 -= ne0;
  6979. if (++i11 == ne1) {
  6980. i11 = 0;
  6981. if (++i12 == ne2) {
  6982. i12 = 0;
  6983. if (++i13 == ne3) {
  6984. i13 = 0;
  6985. }
  6986. }
  6987. }
  6988. }
  6989. }
  6990. }
  6991. } else if (dst->type == GGML_TYPE_F32) {
  6992. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6993. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6994. i10 += ne00 * ir0;
  6995. while (i10 >= ne0) {
  6996. i10 -= ne0;
  6997. if (++i11 == ne1) {
  6998. i11 = 0;
  6999. if (++i12 == ne2) {
  7000. i12 = 0;
  7001. if (++i13 == ne3) {
  7002. i13 = 0;
  7003. }
  7004. }
  7005. }
  7006. }
  7007. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7008. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7009. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7010. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7011. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7012. if (++i10 == ne0) {
  7013. i10 = 0;
  7014. if (++i11 == ne1) {
  7015. i11 = 0;
  7016. if (++i12 == ne2) {
  7017. i12 = 0;
  7018. if (++i13 == ne3) {
  7019. i13 = 0;
  7020. }
  7021. }
  7022. }
  7023. }
  7024. }
  7025. }
  7026. i10 += ne00 * (ne01 - ir1);
  7027. while (i10 >= ne0) {
  7028. i10 -= ne0;
  7029. if (++i11 == ne1) {
  7030. i11 = 0;
  7031. if (++i12 == ne2) {
  7032. i12 = 0;
  7033. if (++i13 == ne3) {
  7034. i13 = 0;
  7035. }
  7036. }
  7037. }
  7038. }
  7039. }
  7040. }
  7041. } else {
  7042. GGML_ASSERT(false); // TODO: implement
  7043. }
  7044. }
  7045. static void ggml_compute_forward_dup_f32(
  7046. const struct ggml_compute_params * params,
  7047. struct ggml_tensor * dst) {
  7048. const struct ggml_tensor * src0 = dst->src[0];
  7049. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7050. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7051. return;
  7052. }
  7053. GGML_TENSOR_UNARY_OP_LOCALS
  7054. const int ith = params->ith; // thread index
  7055. const int nth = params->nth; // number of threads
  7056. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7057. ggml_compute_forward_dup_same_cont(params, dst);
  7058. return;
  7059. }
  7060. // parallelize by rows
  7061. const int nr = ne01;
  7062. // number of rows per thread
  7063. const int dr = (nr + nth - 1) / nth;
  7064. // row range for this thread
  7065. const int ir0 = dr * ith;
  7066. const int ir1 = MIN(ir0 + dr, nr);
  7067. if (src0->type == dst->type &&
  7068. ne00 == ne0 &&
  7069. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7070. // copy by rows
  7071. const size_t rs = ne00*nb00;
  7072. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7073. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7074. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7075. memcpy(
  7076. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7077. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7078. rs);
  7079. }
  7080. }
  7081. }
  7082. return;
  7083. }
  7084. if (ggml_is_contiguous(dst)) {
  7085. // TODO: simplify
  7086. if (nb00 == sizeof(float)) {
  7087. if (dst->type == GGML_TYPE_F32) {
  7088. size_t id = 0;
  7089. const size_t rs = ne00 * nb00;
  7090. char * dst_ptr = (char *) dst->data;
  7091. for (int i03 = 0; i03 < ne03; i03++) {
  7092. for (int i02 = 0; i02 < ne02; i02++) {
  7093. id += rs * ir0;
  7094. for (int i01 = ir0; i01 < ir1; i01++) {
  7095. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7096. memcpy(dst_ptr + id, src0_ptr, rs);
  7097. id += rs;
  7098. }
  7099. id += rs * (ne01 - ir1);
  7100. }
  7101. }
  7102. } else if (type_traits[dst->type].from_float) {
  7103. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7104. size_t id = 0;
  7105. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7106. char * dst_ptr = (char *) dst->data;
  7107. for (int i03 = 0; i03 < ne03; i03++) {
  7108. for (int i02 = 0; i02 < ne02; i02++) {
  7109. id += rs * ir0;
  7110. for (int i01 = ir0; i01 < ir1; i01++) {
  7111. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7112. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7113. id += rs;
  7114. }
  7115. id += rs * (ne01 - ir1);
  7116. }
  7117. }
  7118. } else {
  7119. GGML_ASSERT(false); // TODO: implement
  7120. }
  7121. } else {
  7122. //printf("%s: this is not optimal - fix me\n", __func__);
  7123. if (dst->type == GGML_TYPE_F32) {
  7124. size_t id = 0;
  7125. float * dst_ptr = (float *) dst->data;
  7126. for (int i03 = 0; i03 < ne03; i03++) {
  7127. for (int i02 = 0; i02 < ne02; i02++) {
  7128. id += ne00 * ir0;
  7129. for (int i01 = ir0; i01 < ir1; i01++) {
  7130. for (int i00 = 0; i00 < ne00; i00++) {
  7131. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7132. dst_ptr[id] = *src0_ptr;
  7133. id++;
  7134. }
  7135. }
  7136. id += ne00 * (ne01 - ir1);
  7137. }
  7138. }
  7139. } else if (dst->type == GGML_TYPE_F16) {
  7140. size_t id = 0;
  7141. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7142. for (int i03 = 0; i03 < ne03; i03++) {
  7143. for (int i02 = 0; i02 < ne02; i02++) {
  7144. id += ne00 * ir0;
  7145. for (int i01 = ir0; i01 < ir1; i01++) {
  7146. for (int i00 = 0; i00 < ne00; i00++) {
  7147. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7148. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7149. id++;
  7150. }
  7151. }
  7152. id += ne00 * (ne01 - ir1);
  7153. }
  7154. }
  7155. } else if (dst->type == GGML_TYPE_BF16) {
  7156. size_t id = 0;
  7157. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7158. for (int i03 = 0; i03 < ne03; i03++) {
  7159. for (int i02 = 0; i02 < ne02; i02++) {
  7160. id += ne00 * ir0;
  7161. for (int i01 = ir0; i01 < ir1; i01++) {
  7162. for (int i00 = 0; i00 < ne00; i00++) {
  7163. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7164. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7165. id++;
  7166. }
  7167. }
  7168. id += ne00 * (ne01 - ir1);
  7169. }
  7170. }
  7171. } else {
  7172. GGML_ASSERT(false); // TODO: implement
  7173. }
  7174. }
  7175. return;
  7176. }
  7177. // dst counters
  7178. int64_t i10 = 0;
  7179. int64_t i11 = 0;
  7180. int64_t i12 = 0;
  7181. int64_t i13 = 0;
  7182. if (dst->type == GGML_TYPE_F32) {
  7183. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7184. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7185. i10 += ne00 * ir0;
  7186. while (i10 >= ne0) {
  7187. i10 -= ne0;
  7188. if (++i11 == ne1) {
  7189. i11 = 0;
  7190. if (++i12 == ne2) {
  7191. i12 = 0;
  7192. if (++i13 == ne3) {
  7193. i13 = 0;
  7194. }
  7195. }
  7196. }
  7197. }
  7198. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7199. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7200. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7201. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7202. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7203. if (++i10 == ne0) {
  7204. i10 = 0;
  7205. if (++i11 == ne1) {
  7206. i11 = 0;
  7207. if (++i12 == ne2) {
  7208. i12 = 0;
  7209. if (++i13 == ne3) {
  7210. i13 = 0;
  7211. }
  7212. }
  7213. }
  7214. }
  7215. }
  7216. }
  7217. i10 += ne00 * (ne01 - ir1);
  7218. while (i10 >= ne0) {
  7219. i10 -= ne0;
  7220. if (++i11 == ne1) {
  7221. i11 = 0;
  7222. if (++i12 == ne2) {
  7223. i12 = 0;
  7224. if (++i13 == ne3) {
  7225. i13 = 0;
  7226. }
  7227. }
  7228. }
  7229. }
  7230. }
  7231. }
  7232. } else if (dst->type == GGML_TYPE_F16) {
  7233. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7234. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7235. i10 += ne00 * ir0;
  7236. while (i10 >= ne0) {
  7237. i10 -= ne0;
  7238. if (++i11 == ne1) {
  7239. i11 = 0;
  7240. if (++i12 == ne2) {
  7241. i12 = 0;
  7242. if (++i13 == ne3) {
  7243. i13 = 0;
  7244. }
  7245. }
  7246. }
  7247. }
  7248. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7249. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7250. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7251. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7252. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7253. if (++i10 == ne0) {
  7254. i10 = 0;
  7255. if (++i11 == ne1) {
  7256. i11 = 0;
  7257. if (++i12 == ne2) {
  7258. i12 = 0;
  7259. if (++i13 == ne3) {
  7260. i13 = 0;
  7261. }
  7262. }
  7263. }
  7264. }
  7265. }
  7266. }
  7267. i10 += ne00 * (ne01 - ir1);
  7268. while (i10 >= ne0) {
  7269. i10 -= ne0;
  7270. if (++i11 == ne1) {
  7271. i11 = 0;
  7272. if (++i12 == ne2) {
  7273. i12 = 0;
  7274. if (++i13 == ne3) {
  7275. i13 = 0;
  7276. }
  7277. }
  7278. }
  7279. }
  7280. }
  7281. }
  7282. } else if (dst->type == GGML_TYPE_BF16) {
  7283. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7284. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7285. i10 += ne00 * ir0;
  7286. while (i10 >= ne0) {
  7287. i10 -= ne0;
  7288. if (++i11 == ne1) {
  7289. i11 = 0;
  7290. if (++i12 == ne2) {
  7291. i12 = 0;
  7292. if (++i13 == ne3) {
  7293. i13 = 0;
  7294. }
  7295. }
  7296. }
  7297. }
  7298. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7299. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7300. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7301. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7302. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7303. if (++i10 == ne0) {
  7304. i10 = 0;
  7305. if (++i11 == ne1) {
  7306. i11 = 0;
  7307. if (++i12 == ne2) {
  7308. i12 = 0;
  7309. if (++i13 == ne3) {
  7310. i13 = 0;
  7311. }
  7312. }
  7313. }
  7314. }
  7315. }
  7316. }
  7317. i10 += ne00 * (ne01 - ir1);
  7318. while (i10 >= ne0) {
  7319. i10 -= ne0;
  7320. if (++i11 == ne1) {
  7321. i11 = 0;
  7322. if (++i12 == ne2) {
  7323. i12 = 0;
  7324. if (++i13 == ne3) {
  7325. i13 = 0;
  7326. }
  7327. }
  7328. }
  7329. }
  7330. }
  7331. }
  7332. } else {
  7333. GGML_ASSERT(false); // TODO: implement
  7334. }
  7335. }
  7336. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7337. static void ggml_compute_forward_dup_bytes(
  7338. const struct ggml_compute_params * params,
  7339. struct ggml_tensor * dst) {
  7340. const struct ggml_tensor * src0 = dst->src[0];
  7341. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7342. GGML_ASSERT(src0->type == dst->type);
  7343. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7344. return;
  7345. }
  7346. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7347. ggml_compute_forward_dup_same_cont(params, dst);
  7348. return;
  7349. }
  7350. GGML_TENSOR_UNARY_OP_LOCALS;
  7351. const size_t type_size = ggml_type_size(src0->type);
  7352. const int ith = params->ith; // thread index
  7353. const int nth = params->nth; // number of threads
  7354. // parallelize by rows
  7355. const int nr = ne01;
  7356. // number of rows per thread
  7357. const int dr = (nr + nth - 1) / nth;
  7358. // row range for this thread
  7359. const int ir0 = dr * ith;
  7360. const int ir1 = MIN(ir0 + dr, nr);
  7361. if (src0->type == dst->type &&
  7362. ne00 == ne0 &&
  7363. nb00 == type_size && nb0 == type_size) {
  7364. // copy by rows
  7365. const size_t rs = ne00 * type_size;
  7366. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7367. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7368. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7369. memcpy(
  7370. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7371. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7372. rs);
  7373. }
  7374. }
  7375. }
  7376. return;
  7377. }
  7378. if (ggml_is_contiguous(dst)) {
  7379. size_t id = 0;
  7380. char * dst_ptr = (char *) dst->data;
  7381. const size_t rs = ne00 * type_size;
  7382. if (nb00 == type_size) {
  7383. // src0 is contigous on first dimension, copy by rows
  7384. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7385. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7386. id += rs * ir0;
  7387. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7388. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7389. memcpy(dst_ptr + id, src0_ptr, rs);
  7390. id += rs;
  7391. }
  7392. id += rs * (ne01 - ir1);
  7393. }
  7394. }
  7395. } else {
  7396. //printf("%s: this is not optimal - fix me\n", __func__);
  7397. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7398. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7399. id += rs * ir0;
  7400. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7401. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7402. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7403. memcpy(dst_ptr + id, src0_ptr, type_size);
  7404. id += type_size;
  7405. }
  7406. }
  7407. id += rs * (ne01 - ir1);
  7408. }
  7409. }
  7410. }
  7411. return;
  7412. }
  7413. // dst counters
  7414. int64_t i10 = 0;
  7415. int64_t i11 = 0;
  7416. int64_t i12 = 0;
  7417. int64_t i13 = 0;
  7418. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7419. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7420. i10 += ne00 * ir0;
  7421. while (i10 >= ne0) {
  7422. i10 -= ne0;
  7423. if (++i11 == ne1) {
  7424. i11 = 0;
  7425. if (++i12 == ne2) {
  7426. i12 = 0;
  7427. if (++i13 == ne3) {
  7428. i13 = 0;
  7429. }
  7430. }
  7431. }
  7432. }
  7433. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7434. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7435. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7436. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7437. memcpy(dst_ptr, src0_ptr, type_size);
  7438. if (++i10 == ne0) {
  7439. i10 = 0;
  7440. if (++i11 == ne1) {
  7441. i11 = 0;
  7442. if (++i12 == ne2) {
  7443. i12 = 0;
  7444. if (++i13 == ne3) {
  7445. i13 = 0;
  7446. }
  7447. }
  7448. }
  7449. }
  7450. }
  7451. }
  7452. i10 += ne00 * (ne01 - ir1);
  7453. while (i10 >= ne0) {
  7454. i10 -= ne0;
  7455. if (++i11 == ne1) {
  7456. i11 = 0;
  7457. if (++i12 == ne2) {
  7458. i12 = 0;
  7459. if (++i13 == ne3) {
  7460. i13 = 0;
  7461. }
  7462. }
  7463. }
  7464. }
  7465. }
  7466. }
  7467. }
  7468. static void ggml_compute_forward_dup(
  7469. const struct ggml_compute_params * params,
  7470. struct ggml_tensor * dst) {
  7471. const struct ggml_tensor * src0 = dst->src[0];
  7472. if (src0->type == dst->type) {
  7473. ggml_compute_forward_dup_bytes(params, dst);
  7474. return;
  7475. }
  7476. switch (src0->type) {
  7477. case GGML_TYPE_F16:
  7478. {
  7479. ggml_compute_forward_dup_f16(params, dst);
  7480. } break;
  7481. case GGML_TYPE_BF16:
  7482. {
  7483. ggml_compute_forward_dup_bf16(params, dst);
  7484. } break;
  7485. case GGML_TYPE_F32:
  7486. {
  7487. ggml_compute_forward_dup_f32(params, dst);
  7488. } break;
  7489. default:
  7490. {
  7491. GGML_ASSERT(false);
  7492. } break;
  7493. }
  7494. }
  7495. // ggml_compute_forward_add
  7496. static void ggml_compute_forward_add_f32(
  7497. const struct ggml_compute_params * params,
  7498. struct ggml_tensor * dst) {
  7499. const struct ggml_tensor * src0 = dst->src[0];
  7500. const struct ggml_tensor * src1 = dst->src[1];
  7501. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7502. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7503. return;
  7504. }
  7505. const int ith = params->ith;
  7506. const int nth = params->nth;
  7507. #ifdef GGML_USE_CLBLAST
  7508. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7509. // TODO: OpenCL kernel support full broadcast
  7510. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7511. if (ith == 0) {
  7512. ggml_cl_add(src0, src1, dst);
  7513. }
  7514. return;
  7515. }
  7516. #endif
  7517. const int nr = ggml_nrows(src0);
  7518. GGML_TENSOR_BINARY_OP_LOCALS
  7519. GGML_ASSERT( nb0 == sizeof(float));
  7520. GGML_ASSERT(nb00 == sizeof(float));
  7521. // rows per thread
  7522. const int dr = (nr + nth - 1)/nth;
  7523. // row range for this thread
  7524. const int ir0 = dr*ith;
  7525. const int ir1 = MIN(ir0 + dr, nr);
  7526. if (nb10 == sizeof(float)) {
  7527. for (int ir = ir0; ir < ir1; ++ir) {
  7528. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7529. const int64_t i03 = ir/(ne02*ne01);
  7530. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7531. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7532. const int64_t i13 = i03 % ne13;
  7533. const int64_t i12 = i02 % ne12;
  7534. const int64_t i11 = i01 % ne11;
  7535. const int64_t nr0 = ne00 / ne10;
  7536. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7537. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7538. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7539. for (int64_t r = 0; r < nr0; ++r) {
  7540. #ifdef GGML_USE_ACCELERATE
  7541. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7542. #else
  7543. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7544. #endif
  7545. }
  7546. }
  7547. } else {
  7548. // src1 is not contiguous
  7549. for (int ir = ir0; ir < ir1; ++ir) {
  7550. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7551. const int64_t i03 = ir/(ne02*ne01);
  7552. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7553. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7554. const int64_t i13 = i03 % ne13;
  7555. const int64_t i12 = i02 % ne12;
  7556. const int64_t i11 = i01 % ne11;
  7557. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7558. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7559. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7560. const int64_t i10 = i0 % ne10;
  7561. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7562. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7563. }
  7564. }
  7565. }
  7566. }
  7567. static void ggml_compute_forward_add_f16_f32(
  7568. const struct ggml_compute_params * params,
  7569. struct ggml_tensor * dst) {
  7570. const struct ggml_tensor * src0 = dst->src[0];
  7571. const struct ggml_tensor * src1 = dst->src[1];
  7572. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7573. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7574. return;
  7575. }
  7576. const int ith = params->ith;
  7577. const int nth = params->nth;
  7578. const int nr = ggml_nrows(src0);
  7579. GGML_TENSOR_BINARY_OP_LOCALS
  7580. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7581. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7582. if (dst->type == GGML_TYPE_F32) {
  7583. GGML_ASSERT( nb0 == sizeof(float));
  7584. }
  7585. else {
  7586. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7587. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7588. }
  7589. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7590. // rows per thread
  7591. const int dr = (nr + nth - 1)/nth;
  7592. // row range for this thread
  7593. const int ir0 = dr*ith;
  7594. const int ir1 = MIN(ir0 + dr, nr);
  7595. if (nb10 == sizeof(float)) {
  7596. if (dst->type == GGML_TYPE_F16) {
  7597. for (int ir = ir0; ir < ir1; ++ir) {
  7598. // src0, src1 and dst are same shape => same indices
  7599. const int i3 = ir/(ne2*ne1);
  7600. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7601. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7602. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7603. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7604. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7605. for (int i = 0; i < ne0; i++) {
  7606. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7607. }
  7608. }
  7609. } else {
  7610. for (int ir = ir0; ir < ir1; ++ir) {
  7611. // src0, src1 and dst are same shape => same indices
  7612. const int i3 = ir/(ne2*ne1);
  7613. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7614. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7615. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7616. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7617. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7618. for (int i = 0; i < ne0; i++) {
  7619. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7620. }
  7621. }
  7622. }
  7623. }
  7624. else {
  7625. // src1 is not contiguous
  7626. GGML_ASSERT(false);
  7627. }
  7628. }
  7629. static void ggml_compute_forward_add_bf16_f32(
  7630. const struct ggml_compute_params * params,
  7631. struct ggml_tensor * dst) {
  7632. const struct ggml_tensor * src0 = dst->src[0];
  7633. const struct ggml_tensor * src1 = dst->src[1];
  7634. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7635. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7636. return;
  7637. }
  7638. const int ith = params->ith;
  7639. const int nth = params->nth;
  7640. const int nr = ggml_nrows(src0);
  7641. GGML_TENSOR_BINARY_OP_LOCALS
  7642. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7643. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7644. if (dst->type == GGML_TYPE_F32) {
  7645. GGML_ASSERT( nb0 == sizeof(float));
  7646. }
  7647. else {
  7648. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7649. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7650. }
  7651. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7652. // rows per thread
  7653. const int dr = (nr + nth - 1)/nth;
  7654. // row range for this thread
  7655. const int ir0 = dr*ith;
  7656. const int ir1 = MIN(ir0 + dr, nr);
  7657. if (nb10 == sizeof(float)) {
  7658. if (dst->type == GGML_TYPE_BF16) {
  7659. for (int ir = ir0; ir < ir1; ++ir) {
  7660. // src0, src1 and dst are same shape => same indices
  7661. const int i3 = ir/(ne2*ne1);
  7662. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7663. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7664. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7665. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7666. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7667. for (int i = 0; i < ne0; i++) {
  7668. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7669. }
  7670. }
  7671. } else {
  7672. for (int ir = ir0; ir < ir1; ++ir) {
  7673. // src0, src1 and dst are same shape => same indices
  7674. const int i3 = ir/(ne2*ne1);
  7675. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7676. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7677. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7678. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7679. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7680. for (int i = 0; i < ne0; i++) {
  7681. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7682. }
  7683. }
  7684. }
  7685. }
  7686. else {
  7687. // src1 is not contiguous
  7688. GGML_ASSERT(false);
  7689. }
  7690. }
  7691. static void ggml_compute_forward_add_f16_f16(
  7692. const struct ggml_compute_params * params,
  7693. struct ggml_tensor * dst) {
  7694. const struct ggml_tensor * src0 = dst->src[0];
  7695. const struct ggml_tensor * src1 = dst->src[1];
  7696. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7697. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7698. return;
  7699. }
  7700. const int ith = params->ith;
  7701. const int nth = params->nth;
  7702. const int nr = ggml_nrows(src0);
  7703. GGML_TENSOR_BINARY_OP_LOCALS
  7704. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7705. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7706. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7707. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7708. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7709. // rows per thread
  7710. const int dr = (nr + nth - 1)/nth;
  7711. // row range for this thread
  7712. const int ir0 = dr*ith;
  7713. const int ir1 = MIN(ir0 + dr, nr);
  7714. if (nb10 == sizeof(ggml_fp16_t)) {
  7715. for (int ir = ir0; ir < ir1; ++ir) {
  7716. // src0, src1 and dst are same shape => same indices
  7717. const int i3 = ir/(ne2*ne1);
  7718. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7719. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7720. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7721. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7722. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7723. for (int i = 0; i < ne0; i++) {
  7724. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7725. }
  7726. }
  7727. }
  7728. else {
  7729. // src1 is not contiguous
  7730. GGML_ASSERT(false);
  7731. }
  7732. }
  7733. static void ggml_compute_forward_add_bf16_bf16(
  7734. const struct ggml_compute_params * params,
  7735. struct ggml_tensor * dst) {
  7736. const struct ggml_tensor * src0 = dst->src[0];
  7737. const struct ggml_tensor * src1 = dst->src[1];
  7738. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7739. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7740. return;
  7741. }
  7742. const int ith = params->ith;
  7743. const int nth = params->nth;
  7744. const int nr = ggml_nrows(src0);
  7745. GGML_TENSOR_BINARY_OP_LOCALS
  7746. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7747. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7748. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7749. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7750. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7751. // rows per thread
  7752. const int dr = (nr + nth - 1)/nth;
  7753. // row range for this thread
  7754. const int ir0 = dr*ith;
  7755. const int ir1 = MIN(ir0 + dr, nr);
  7756. if (nb10 == sizeof(ggml_bf16_t)) {
  7757. for (int ir = ir0; ir < ir1; ++ir) {
  7758. // src0, src1 and dst are same shape => same indices
  7759. const int i3 = ir/(ne2*ne1);
  7760. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7761. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7762. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7763. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7764. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7765. for (int i = 0; i < ne0; i++) {
  7766. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7767. }
  7768. }
  7769. }
  7770. else {
  7771. // src1 is not contiguous
  7772. GGML_ASSERT(false);
  7773. }
  7774. }
  7775. static void ggml_compute_forward_add_q_f32(
  7776. const struct ggml_compute_params * params,
  7777. struct ggml_tensor * dst) {
  7778. const struct ggml_tensor * src0 = dst->src[0];
  7779. const struct ggml_tensor * src1 = dst->src[1];
  7780. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7781. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7782. return;
  7783. }
  7784. const int nr = ggml_nrows(src0);
  7785. GGML_TENSOR_BINARY_OP_LOCALS
  7786. const int ith = params->ith;
  7787. const int nth = params->nth;
  7788. const enum ggml_type type = src0->type;
  7789. const enum ggml_type dtype = dst->type;
  7790. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7791. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7792. // we don't support permuted src0 or src1
  7793. GGML_ASSERT(nb00 == ggml_type_size(type));
  7794. GGML_ASSERT(nb10 == sizeof(float));
  7795. // dst cannot be transposed or permuted
  7796. GGML_ASSERT(nb0 <= nb1);
  7797. GGML_ASSERT(nb1 <= nb2);
  7798. GGML_ASSERT(nb2 <= nb3);
  7799. GGML_ASSERT(ggml_is_quantized(src0->type));
  7800. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7801. // rows per thread
  7802. const int dr = (nr + nth - 1)/nth;
  7803. // row range for this thread
  7804. const int ir0 = dr*ith;
  7805. const int ir1 = MIN(ir0 + dr, nr);
  7806. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7807. for (int ir = ir0; ir < ir1; ++ir) {
  7808. // src0 indices
  7809. const int i03 = ir/(ne02*ne01);
  7810. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7811. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7812. // src1 and dst are same shape as src0 => same indices
  7813. const int i13 = i03;
  7814. const int i12 = i02;
  7815. const int i11 = i01;
  7816. const int i3 = i03;
  7817. const int i2 = i02;
  7818. const int i1 = i01;
  7819. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7820. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7821. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7822. assert(ne00 % 32 == 0);
  7823. // unquantize row from src0 to temp buffer
  7824. dequantize_row_q(src0_row, wdata, ne00);
  7825. // add src1
  7826. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7827. // quantize row to dst
  7828. if (quantize_row_q != NULL) {
  7829. quantize_row_q(wdata, dst_row, ne00);
  7830. } else {
  7831. memcpy(dst_row, wdata, ne0*nb0);
  7832. }
  7833. }
  7834. }
  7835. static void ggml_compute_forward_add(
  7836. const struct ggml_compute_params * params,
  7837. struct ggml_tensor * dst) {
  7838. const struct ggml_tensor * src0 = dst->src[0];
  7839. const struct ggml_tensor * src1 = dst->src[1];
  7840. switch (src0->type) {
  7841. case GGML_TYPE_F32:
  7842. {
  7843. if (src1->type == GGML_TYPE_F32) {
  7844. ggml_compute_forward_add_f32(params, dst);
  7845. }
  7846. else {
  7847. GGML_ASSERT(false);
  7848. }
  7849. } break;
  7850. case GGML_TYPE_F16:
  7851. {
  7852. if (src1->type == GGML_TYPE_F16) {
  7853. ggml_compute_forward_add_f16_f16(params, dst);
  7854. }
  7855. else if (src1->type == GGML_TYPE_F32) {
  7856. ggml_compute_forward_add_f16_f32(params, dst);
  7857. }
  7858. else {
  7859. GGML_ASSERT(false);
  7860. }
  7861. } break;
  7862. case GGML_TYPE_BF16:
  7863. {
  7864. if (src1->type == GGML_TYPE_BF16) {
  7865. ggml_compute_forward_add_bf16_bf16(params, dst);
  7866. }
  7867. else if (src1->type == GGML_TYPE_F32) {
  7868. ggml_compute_forward_add_bf16_f32(params, dst);
  7869. }
  7870. else {
  7871. GGML_ASSERT(false);
  7872. }
  7873. } break;
  7874. case GGML_TYPE_Q4_0:
  7875. case GGML_TYPE_Q4_1:
  7876. case GGML_TYPE_Q5_0:
  7877. case GGML_TYPE_Q5_1:
  7878. case GGML_TYPE_Q8_0:
  7879. case GGML_TYPE_Q2_K:
  7880. case GGML_TYPE_Q3_K:
  7881. case GGML_TYPE_Q4_K:
  7882. case GGML_TYPE_Q5_K:
  7883. case GGML_TYPE_Q6_K:
  7884. case GGML_TYPE_IQ2_XXS:
  7885. case GGML_TYPE_IQ2_XS:
  7886. case GGML_TYPE_IQ3_XXS:
  7887. case GGML_TYPE_IQ1_S:
  7888. case GGML_TYPE_IQ1_M:
  7889. case GGML_TYPE_IQ4_NL:
  7890. case GGML_TYPE_IQ4_XS:
  7891. case GGML_TYPE_IQ3_S:
  7892. case GGML_TYPE_IQ2_S:
  7893. {
  7894. ggml_compute_forward_add_q_f32(params, dst);
  7895. } break;
  7896. default:
  7897. {
  7898. GGML_ASSERT(false);
  7899. } break;
  7900. }
  7901. }
  7902. // ggml_compute_forward_add1
  7903. static void ggml_compute_forward_add1_f32(
  7904. const struct ggml_compute_params * params,
  7905. struct ggml_tensor * dst) {
  7906. const struct ggml_tensor * src0 = dst->src[0];
  7907. const struct ggml_tensor * src1 = dst->src[1];
  7908. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7909. GGML_ASSERT(ggml_is_scalar(src1));
  7910. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7911. return;
  7912. }
  7913. const int ith = params->ith;
  7914. const int nth = params->nth;
  7915. const int nr = ggml_nrows(src0);
  7916. GGML_TENSOR_UNARY_OP_LOCALS
  7917. GGML_ASSERT( nb0 == sizeof(float));
  7918. GGML_ASSERT(nb00 == sizeof(float));
  7919. // rows per thread
  7920. const int dr = (nr + nth - 1)/nth;
  7921. // row range for this thread
  7922. const int ir0 = dr*ith;
  7923. const int ir1 = MIN(ir0 + dr, nr);
  7924. for (int ir = ir0; ir < ir1; ++ir) {
  7925. // src0 and dst are same shape => same indices
  7926. const int i3 = ir/(ne2*ne1);
  7927. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7928. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7929. #ifdef GGML_USE_ACCELERATE
  7930. UNUSED(ggml_vec_add1_f32);
  7931. vDSP_vadd(
  7932. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7933. (float *) ((char *) src1->data), 0,
  7934. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7935. ne0);
  7936. #else
  7937. ggml_vec_add1_f32(ne0,
  7938. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7939. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7940. *(float *) src1->data);
  7941. #endif
  7942. }
  7943. }
  7944. static void ggml_compute_forward_add1_f16_f32(
  7945. const struct ggml_compute_params * params,
  7946. struct ggml_tensor * dst) {
  7947. const struct ggml_tensor * src0 = dst->src[0];
  7948. const struct ggml_tensor * src1 = dst->src[1];
  7949. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7950. GGML_ASSERT(ggml_is_scalar(src1));
  7951. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7952. return;
  7953. }
  7954. // scalar to add
  7955. const float v = *(float *) src1->data;
  7956. const int ith = params->ith;
  7957. const int nth = params->nth;
  7958. const int nr = ggml_nrows(src0);
  7959. GGML_TENSOR_UNARY_OP_LOCALS
  7960. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7961. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7962. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7963. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7964. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7965. // rows per thread
  7966. const int dr = (nr + nth - 1)/nth;
  7967. // row range for this thread
  7968. const int ir0 = dr*ith;
  7969. const int ir1 = MIN(ir0 + dr, nr);
  7970. for (int ir = ir0; ir < ir1; ++ir) {
  7971. // src0 and dst are same shape => same indices
  7972. const int i3 = ir/(ne2*ne1);
  7973. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7974. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7975. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7976. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7977. for (int i = 0; i < ne0; i++) {
  7978. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7979. }
  7980. }
  7981. }
  7982. static void ggml_compute_forward_add1_f16_f16(
  7983. const struct ggml_compute_params * params,
  7984. struct ggml_tensor * dst) {
  7985. const struct ggml_tensor * src0 = dst->src[0];
  7986. const struct ggml_tensor * src1 = dst->src[1];
  7987. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7988. GGML_ASSERT(ggml_is_scalar(src1));
  7989. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7990. return;
  7991. }
  7992. // scalar to add
  7993. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7994. const int ith = params->ith;
  7995. const int nth = params->nth;
  7996. const int nr = ggml_nrows(src0);
  7997. GGML_TENSOR_UNARY_OP_LOCALS
  7998. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7999. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8000. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8001. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8002. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8003. // rows per thread
  8004. const int dr = (nr + nth - 1)/nth;
  8005. // row range for this thread
  8006. const int ir0 = dr*ith;
  8007. const int ir1 = MIN(ir0 + dr, nr);
  8008. for (int ir = ir0; ir < ir1; ++ir) {
  8009. // src0 and dst are same shape => same indices
  8010. const int i3 = ir/(ne2*ne1);
  8011. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8012. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8013. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8014. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8015. for (int i = 0; i < ne0; i++) {
  8016. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8017. }
  8018. }
  8019. }
  8020. static void ggml_compute_forward_add1_q_f32(
  8021. const struct ggml_compute_params * params,
  8022. struct ggml_tensor * dst) {
  8023. const struct ggml_tensor * src0 = dst->src[0];
  8024. const struct ggml_tensor * src1 = dst->src[1];
  8025. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8026. GGML_ASSERT(ggml_is_scalar(src1));
  8027. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8028. return;
  8029. }
  8030. // scalar to add
  8031. const float v = *(float *) src1->data;
  8032. const int ith = params->ith;
  8033. const int nth = params->nth;
  8034. const int nr = ggml_nrows(src0);
  8035. GGML_TENSOR_UNARY_OP_LOCALS
  8036. const enum ggml_type type = src0->type;
  8037. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8038. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8039. // we don't support permuted src0
  8040. GGML_ASSERT(nb00 == ggml_type_size(type));
  8041. // dst cannot be transposed or permuted
  8042. GGML_ASSERT(nb0 <= nb1);
  8043. GGML_ASSERT(nb1 <= nb2);
  8044. GGML_ASSERT(nb2 <= nb3);
  8045. GGML_ASSERT(ggml_is_quantized(src0->type));
  8046. GGML_ASSERT(dst->type == src0->type);
  8047. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8048. // rows per thread
  8049. const int dr = (nr + nth - 1)/nth;
  8050. // row range for this thread
  8051. const int ir0 = dr*ith;
  8052. const int ir1 = MIN(ir0 + dr, nr);
  8053. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8054. for (int ir = ir0; ir < ir1; ++ir) {
  8055. // src0 and dst are same shape => same indices
  8056. const int i3 = ir/(ne2*ne1);
  8057. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8058. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8059. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8060. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8061. assert(ne0 % 32 == 0);
  8062. // unquantize row from src0 to temp buffer
  8063. dequantize_row_q(src0_row, wdata, ne0);
  8064. // add src1
  8065. ggml_vec_acc1_f32(ne0, wdata, v);
  8066. // quantize row to dst
  8067. quantize_row_q(wdata, dst_row, ne0);
  8068. }
  8069. }
  8070. static void ggml_compute_forward_add1_bf16_f32(
  8071. const struct ggml_compute_params * params,
  8072. struct ggml_tensor * dst) {
  8073. const struct ggml_tensor * src0 = dst->src[0];
  8074. const struct ggml_tensor * src1 = dst->src[1];
  8075. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8076. GGML_ASSERT(ggml_is_scalar(src1));
  8077. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8078. return;
  8079. }
  8080. // scalar to add
  8081. const float v = *(float *) src1->data;
  8082. const int ith = params->ith;
  8083. const int nth = params->nth;
  8084. const int nr = ggml_nrows(src0);
  8085. GGML_TENSOR_UNARY_OP_LOCALS
  8086. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8087. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8088. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8089. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8090. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8091. // rows per thread
  8092. const int dr = (nr + nth - 1)/nth;
  8093. // row range for this thread
  8094. const int ir0 = dr*ith;
  8095. const int ir1 = MIN(ir0 + dr, nr);
  8096. for (int ir = ir0; ir < ir1; ++ir) {
  8097. // src0 and dst are same shape => same indices
  8098. const int i3 = ir/(ne2*ne1);
  8099. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8100. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8101. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8102. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8103. for (int i = 0; i < ne0; i++) {
  8104. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8105. }
  8106. }
  8107. }
  8108. static void ggml_compute_forward_add1_bf16_bf16(
  8109. const struct ggml_compute_params * params,
  8110. struct ggml_tensor * dst) {
  8111. const struct ggml_tensor * src0 = dst->src[0];
  8112. const struct ggml_tensor * src1 = dst->src[1];
  8113. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8114. GGML_ASSERT(ggml_is_scalar(src1));
  8115. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8116. return;
  8117. }
  8118. // scalar to add
  8119. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8120. const int ith = params->ith;
  8121. const int nth = params->nth;
  8122. const int nr = ggml_nrows(src0);
  8123. GGML_TENSOR_UNARY_OP_LOCALS
  8124. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8125. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8126. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8127. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8128. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8129. // rows per thread
  8130. const int dr = (nr + nth - 1)/nth;
  8131. // row range for this thread
  8132. const int ir0 = dr*ith;
  8133. const int ir1 = MIN(ir0 + dr, nr);
  8134. for (int ir = ir0; ir < ir1; ++ir) {
  8135. // src0 and dst are same shape => same indices
  8136. const int i3 = ir/(ne2*ne1);
  8137. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8138. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8139. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8140. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8141. for (int i = 0; i < ne0; i++) {
  8142. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8143. }
  8144. }
  8145. }
  8146. static void ggml_compute_forward_add1(
  8147. const struct ggml_compute_params * params,
  8148. struct ggml_tensor * dst) {
  8149. const struct ggml_tensor * src0 = dst->src[0];
  8150. const struct ggml_tensor * src1 = dst->src[1];
  8151. switch (src0->type) {
  8152. case GGML_TYPE_F32:
  8153. {
  8154. ggml_compute_forward_add1_f32(params, dst);
  8155. } break;
  8156. case GGML_TYPE_F16:
  8157. {
  8158. if (src1->type == GGML_TYPE_F16) {
  8159. ggml_compute_forward_add1_f16_f16(params, dst);
  8160. }
  8161. else if (src1->type == GGML_TYPE_F32) {
  8162. ggml_compute_forward_add1_f16_f32(params, dst);
  8163. }
  8164. else {
  8165. GGML_ASSERT(false);
  8166. }
  8167. } break;
  8168. case GGML_TYPE_BF16:
  8169. {
  8170. if (src1->type == GGML_TYPE_BF16) {
  8171. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8172. }
  8173. else if (src1->type == GGML_TYPE_F32) {
  8174. ggml_compute_forward_add1_bf16_f32(params, dst);
  8175. }
  8176. else {
  8177. GGML_ASSERT(false);
  8178. }
  8179. } break;
  8180. case GGML_TYPE_Q4_0:
  8181. case GGML_TYPE_Q4_1:
  8182. case GGML_TYPE_Q5_0:
  8183. case GGML_TYPE_Q5_1:
  8184. case GGML_TYPE_Q8_0:
  8185. case GGML_TYPE_Q8_1:
  8186. case GGML_TYPE_Q2_K:
  8187. case GGML_TYPE_Q3_K:
  8188. case GGML_TYPE_Q4_K:
  8189. case GGML_TYPE_Q5_K:
  8190. case GGML_TYPE_Q6_K:
  8191. case GGML_TYPE_IQ2_XXS:
  8192. case GGML_TYPE_IQ2_XS:
  8193. case GGML_TYPE_IQ3_XXS:
  8194. case GGML_TYPE_IQ1_S:
  8195. case GGML_TYPE_IQ1_M:
  8196. case GGML_TYPE_IQ4_NL:
  8197. case GGML_TYPE_IQ4_XS:
  8198. case GGML_TYPE_IQ3_S:
  8199. case GGML_TYPE_IQ2_S:
  8200. {
  8201. ggml_compute_forward_add1_q_f32(params, dst);
  8202. } break;
  8203. default:
  8204. {
  8205. GGML_ASSERT(false);
  8206. } break;
  8207. }
  8208. }
  8209. // ggml_compute_forward_acc
  8210. static void ggml_compute_forward_acc_f32(
  8211. const struct ggml_compute_params * params,
  8212. struct ggml_tensor * dst) {
  8213. const struct ggml_tensor * src0 = dst->src[0];
  8214. const struct ggml_tensor * src1 = dst->src[1];
  8215. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8216. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8217. // view src0 and dst with these strides and data offset inbytes during acc
  8218. // nb0 is implicitly element_size because src0 and dst are contiguous
  8219. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8220. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8221. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8222. size_t offset = ((int32_t *) dst->op_params)[3];
  8223. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8224. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8225. if (params->ith != 0) {
  8226. return;
  8227. }
  8228. // memcpy needs to be synchronized across threads to avoid race conditions.
  8229. // => do it in INIT phase
  8230. memcpy(
  8231. ((char *) dst->data),
  8232. ((char *) src0->data),
  8233. ggml_nbytes(dst));
  8234. }
  8235. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8236. return;
  8237. }
  8238. const int ith = params->ith;
  8239. const int nth = params->nth;
  8240. const int nr = ggml_nrows(src1);
  8241. const int nc = src1->ne[0];
  8242. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8243. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8244. // src0 and dst as viewed during acc
  8245. const size_t nb0 = ggml_element_size(src0);
  8246. const size_t nb00 = nb0;
  8247. const size_t nb01 = nb1;
  8248. const size_t nb02 = nb2;
  8249. const size_t nb03 = nb3;
  8250. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8251. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8252. GGML_ASSERT(nb10 == sizeof(float));
  8253. // rows per thread
  8254. const int dr = (nr + nth - 1)/nth;
  8255. // row range for this thread
  8256. const int ir0 = dr*ith;
  8257. const int ir1 = MIN(ir0 + dr, nr);
  8258. for (int ir = ir0; ir < ir1; ++ir) {
  8259. // src0 and dst are viewed with shape of src1 and offset
  8260. // => same indices
  8261. const int i3 = ir/(ne12*ne11);
  8262. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8263. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8264. #ifdef GGML_USE_ACCELERATE
  8265. vDSP_vadd(
  8266. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8267. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8268. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8269. #else
  8270. ggml_vec_add_f32(nc,
  8271. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8272. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8273. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8274. #endif
  8275. }
  8276. }
  8277. static void ggml_compute_forward_acc(
  8278. const struct ggml_compute_params * params,
  8279. struct ggml_tensor * dst) {
  8280. const struct ggml_tensor * src0 = dst->src[0];
  8281. switch (src0->type) {
  8282. case GGML_TYPE_F32:
  8283. {
  8284. ggml_compute_forward_acc_f32(params, dst);
  8285. } break;
  8286. case GGML_TYPE_F16:
  8287. case GGML_TYPE_BF16:
  8288. case GGML_TYPE_Q4_0:
  8289. case GGML_TYPE_Q4_1:
  8290. case GGML_TYPE_Q5_0:
  8291. case GGML_TYPE_Q5_1:
  8292. case GGML_TYPE_Q8_0:
  8293. case GGML_TYPE_Q8_1:
  8294. case GGML_TYPE_Q2_K:
  8295. case GGML_TYPE_Q3_K:
  8296. case GGML_TYPE_Q4_K:
  8297. case GGML_TYPE_Q5_K:
  8298. case GGML_TYPE_Q6_K:
  8299. case GGML_TYPE_IQ2_XXS:
  8300. case GGML_TYPE_IQ2_XS:
  8301. case GGML_TYPE_IQ3_XXS:
  8302. case GGML_TYPE_IQ1_S:
  8303. case GGML_TYPE_IQ1_M:
  8304. case GGML_TYPE_IQ4_NL:
  8305. case GGML_TYPE_IQ4_XS:
  8306. case GGML_TYPE_IQ3_S:
  8307. case GGML_TYPE_IQ2_S:
  8308. default:
  8309. {
  8310. GGML_ASSERT(false);
  8311. } break;
  8312. }
  8313. }
  8314. // ggml_compute_forward_sub
  8315. static void ggml_compute_forward_sub_f32(
  8316. const struct ggml_compute_params * params,
  8317. struct ggml_tensor * dst) {
  8318. const struct ggml_tensor * src0 = dst->src[0];
  8319. const struct ggml_tensor * src1 = dst->src[1];
  8320. assert(params->ith == 0);
  8321. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8322. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8323. return;
  8324. }
  8325. const int nr = ggml_nrows(src0);
  8326. GGML_TENSOR_BINARY_OP_LOCALS
  8327. GGML_ASSERT( nb0 == sizeof(float));
  8328. GGML_ASSERT(nb00 == sizeof(float));
  8329. if (nb10 == sizeof(float)) {
  8330. for (int ir = 0; ir < nr; ++ir) {
  8331. // src0, src1 and dst are same shape => same indices
  8332. const int i3 = ir/(ne2*ne1);
  8333. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8334. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8335. #ifdef GGML_USE_ACCELERATE
  8336. vDSP_vsub(
  8337. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8338. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8339. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8340. ne0);
  8341. #else
  8342. ggml_vec_sub_f32(ne0,
  8343. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8344. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8345. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8346. #endif
  8347. // }
  8348. // }
  8349. }
  8350. } else {
  8351. // src1 is not contiguous
  8352. for (int ir = 0; ir < nr; ++ir) {
  8353. // src0, src1 and dst are same shape => same indices
  8354. const int i3 = ir/(ne2*ne1);
  8355. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8356. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8357. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8358. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8359. for (int i0 = 0; i0 < ne0; i0++) {
  8360. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8361. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8362. }
  8363. }
  8364. }
  8365. }
  8366. static void ggml_compute_forward_sub(
  8367. const struct ggml_compute_params * params,
  8368. struct ggml_tensor * dst) {
  8369. const struct ggml_tensor * src0 = dst->src[0];
  8370. switch (src0->type) {
  8371. case GGML_TYPE_F32:
  8372. {
  8373. ggml_compute_forward_sub_f32(params, dst);
  8374. } break;
  8375. default:
  8376. {
  8377. GGML_ASSERT(false);
  8378. } break;
  8379. }
  8380. }
  8381. // ggml_compute_forward_mul
  8382. static void ggml_compute_forward_mul_f32(
  8383. const struct ggml_compute_params * params,
  8384. struct ggml_tensor * dst) {
  8385. const struct ggml_tensor * src0 = dst->src[0];
  8386. const struct ggml_tensor * src1 = dst->src[1];
  8387. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8388. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8389. return;
  8390. }
  8391. const int ith = params->ith;
  8392. const int nth = params->nth;
  8393. #if defined(GGML_USE_CLBLAST)
  8394. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8395. // TODO: OpenCL kernel support full broadcast
  8396. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8397. if (ith == 0) {
  8398. ggml_cl_mul(src0, src1, dst);
  8399. }
  8400. return;
  8401. }
  8402. #endif
  8403. const int64_t nr = ggml_nrows(src0);
  8404. GGML_TENSOR_BINARY_OP_LOCALS
  8405. GGML_ASSERT( nb0 == sizeof(float));
  8406. GGML_ASSERT(nb00 == sizeof(float));
  8407. if (nb10 == sizeof(float)) {
  8408. for (int64_t ir = ith; ir < nr; ir += nth) {
  8409. // src0 and dst are same shape => same indices
  8410. const int64_t i03 = ir/(ne02*ne01);
  8411. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8412. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8413. const int64_t i13 = i03 % ne13;
  8414. const int64_t i12 = i02 % ne12;
  8415. const int64_t i11 = i01 % ne11;
  8416. const int64_t nr0 = ne00 / ne10;
  8417. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8418. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8419. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8420. for (int64_t r = 0 ; r < nr0; ++r) {
  8421. #ifdef GGML_USE_ACCELERATE
  8422. UNUSED(ggml_vec_mul_f32);
  8423. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8424. #else
  8425. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8426. #endif
  8427. }
  8428. }
  8429. } else {
  8430. // src1 is not contiguous
  8431. for (int64_t ir = ith; ir < nr; ir += nth) {
  8432. // src0 and dst are same shape => same indices
  8433. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8434. const int64_t i03 = ir/(ne02*ne01);
  8435. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8436. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8437. const int64_t i13 = i03 % ne13;
  8438. const int64_t i12 = i02 % ne12;
  8439. const int64_t i11 = i01 % ne11;
  8440. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8441. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8442. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8443. const int64_t i10 = i0 % ne10;
  8444. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8445. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8446. }
  8447. }
  8448. }
  8449. }
  8450. static void ggml_compute_forward_mul(
  8451. const struct ggml_compute_params * params,
  8452. struct ggml_tensor * dst) {
  8453. const struct ggml_tensor * src0 = dst->src[0];
  8454. const struct ggml_tensor * src1 = dst->src[1];
  8455. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8456. switch (src0->type) {
  8457. case GGML_TYPE_F32:
  8458. {
  8459. ggml_compute_forward_mul_f32(params, dst);
  8460. } break;
  8461. default:
  8462. {
  8463. GGML_ASSERT(false);
  8464. } break;
  8465. }
  8466. }
  8467. // ggml_compute_forward_div
  8468. static void ggml_compute_forward_div_f32(
  8469. const struct ggml_compute_params * params,
  8470. struct ggml_tensor * dst) {
  8471. const struct ggml_tensor * src0 = dst->src[0];
  8472. const struct ggml_tensor * src1 = dst->src[1];
  8473. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8474. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8475. return;
  8476. }
  8477. const int ith = params->ith;
  8478. const int nth = params->nth;
  8479. const int64_t nr = ggml_nrows(src0);
  8480. GGML_TENSOR_BINARY_OP_LOCALS
  8481. GGML_ASSERT( nb0 == sizeof(float));
  8482. GGML_ASSERT(nb00 == sizeof(float));
  8483. if (nb10 == sizeof(float)) {
  8484. for (int64_t ir = ith; ir < nr; ir += nth) {
  8485. // src0 and dst are same shape => same indices
  8486. const int64_t i03 = ir/(ne02*ne01);
  8487. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8488. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8489. const int64_t i13 = i03 % ne13;
  8490. const int64_t i12 = i02 % ne12;
  8491. const int64_t i11 = i01 % ne11;
  8492. const int64_t nr0 = ne00 / ne10;
  8493. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8494. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8495. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8496. for (int64_t r = 0; r < nr0; ++r) {
  8497. #ifdef GGML_USE_ACCELERATE
  8498. UNUSED(ggml_vec_div_f32);
  8499. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8500. #else
  8501. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8502. #endif
  8503. }
  8504. }
  8505. } else {
  8506. // src1 is not contiguous
  8507. for (int64_t ir = ith; ir < nr; ir += nth) {
  8508. // src0 and dst are same shape => same indices
  8509. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8510. const int64_t i03 = ir/(ne02*ne01);
  8511. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8512. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8513. const int64_t i13 = i03 % ne13;
  8514. const int64_t i12 = i02 % ne12;
  8515. const int64_t i11 = i01 % ne11;
  8516. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8517. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8518. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8519. const int64_t i10 = i0 % ne10;
  8520. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8521. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8522. }
  8523. }
  8524. }
  8525. }
  8526. static void ggml_compute_forward_div(
  8527. const struct ggml_compute_params * params,
  8528. struct ggml_tensor * dst) {
  8529. const struct ggml_tensor * src0 = dst->src[0];
  8530. switch (src0->type) {
  8531. case GGML_TYPE_F32:
  8532. {
  8533. ggml_compute_forward_div_f32(params, dst);
  8534. } break;
  8535. default:
  8536. {
  8537. GGML_ASSERT(false);
  8538. } break;
  8539. }
  8540. }
  8541. // ggml_compute_forward_sqr
  8542. static void ggml_compute_forward_sqr_f32(
  8543. const struct ggml_compute_params * params,
  8544. struct ggml_tensor * dst) {
  8545. const struct ggml_tensor * src0 = dst->src[0];
  8546. assert(params->ith == 0);
  8547. assert(ggml_are_same_shape(src0, dst));
  8548. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8549. return;
  8550. }
  8551. const int n = ggml_nrows(src0);
  8552. const int nc = src0->ne[0];
  8553. assert( dst->nb[0] == sizeof(float));
  8554. assert(src0->nb[0] == sizeof(float));
  8555. for (int i = 0; i < n; i++) {
  8556. ggml_vec_sqr_f32(nc,
  8557. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8558. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8559. }
  8560. }
  8561. static void ggml_compute_forward_sqr(
  8562. const struct ggml_compute_params * params,
  8563. struct ggml_tensor * dst) {
  8564. const struct ggml_tensor * src0 = dst->src[0];
  8565. switch (src0->type) {
  8566. case GGML_TYPE_F32:
  8567. {
  8568. ggml_compute_forward_sqr_f32(params, dst);
  8569. } break;
  8570. default:
  8571. {
  8572. GGML_ASSERT(false);
  8573. } break;
  8574. }
  8575. }
  8576. // ggml_compute_forward_sqrt
  8577. static void ggml_compute_forward_sqrt_f32(
  8578. const struct ggml_compute_params * params,
  8579. struct ggml_tensor * dst) {
  8580. const struct ggml_tensor * src0 = dst->src[0];
  8581. assert(params->ith == 0);
  8582. assert(ggml_are_same_shape(src0, dst));
  8583. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8584. return;
  8585. }
  8586. const int n = ggml_nrows(src0);
  8587. const int nc = src0->ne[0];
  8588. assert( dst->nb[0] == sizeof(float));
  8589. assert(src0->nb[0] == sizeof(float));
  8590. for (int i = 0; i < n; i++) {
  8591. ggml_vec_sqrt_f32(nc,
  8592. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8593. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8594. }
  8595. }
  8596. static void ggml_compute_forward_sqrt(
  8597. const struct ggml_compute_params * params,
  8598. struct ggml_tensor * dst) {
  8599. const struct ggml_tensor * src0 = dst->src[0];
  8600. switch (src0->type) {
  8601. case GGML_TYPE_F32:
  8602. {
  8603. ggml_compute_forward_sqrt_f32(params, dst);
  8604. } break;
  8605. default:
  8606. {
  8607. GGML_ASSERT(false);
  8608. } break;
  8609. }
  8610. }
  8611. // ggml_compute_forward_log
  8612. static void ggml_compute_forward_log_f32(
  8613. const struct ggml_compute_params * params,
  8614. struct ggml_tensor * dst) {
  8615. const struct ggml_tensor * src0 = dst->src[0];
  8616. GGML_ASSERT(params->ith == 0);
  8617. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8618. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8619. return;
  8620. }
  8621. const int n = ggml_nrows(src0);
  8622. const int nc = src0->ne[0];
  8623. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8624. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8625. for (int i = 0; i < n; i++) {
  8626. ggml_vec_log_f32(nc,
  8627. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8628. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8629. }
  8630. }
  8631. static void ggml_compute_forward_log(
  8632. const struct ggml_compute_params * params,
  8633. struct ggml_tensor * dst) {
  8634. const struct ggml_tensor * src0 = dst->src[0];
  8635. switch (src0->type) {
  8636. case GGML_TYPE_F32:
  8637. {
  8638. ggml_compute_forward_log_f32(params, dst);
  8639. } break;
  8640. default:
  8641. {
  8642. GGML_ASSERT(false);
  8643. } break;
  8644. }
  8645. }
  8646. // ggml_compute_forward_sum
  8647. static void ggml_compute_forward_sum_f32(
  8648. const struct ggml_compute_params * params,
  8649. struct ggml_tensor * dst) {
  8650. const struct ggml_tensor * src0 = dst->src[0];
  8651. assert(params->ith == 0);
  8652. assert(ggml_is_scalar(dst));
  8653. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8654. return;
  8655. }
  8656. assert(ggml_is_scalar(dst));
  8657. assert(src0->nb[0] == sizeof(float));
  8658. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8659. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8660. ggml_float sum = 0;
  8661. ggml_float row_sum = 0;
  8662. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8663. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8664. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8665. ggml_vec_sum_f32_ggf(ne00,
  8666. &row_sum,
  8667. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8668. sum += row_sum;
  8669. }
  8670. }
  8671. }
  8672. ((float *) dst->data)[0] = sum;
  8673. }
  8674. static void ggml_compute_forward_sum_f16(
  8675. const struct ggml_compute_params * params,
  8676. struct ggml_tensor * dst) {
  8677. const struct ggml_tensor * src0 = dst->src[0];
  8678. assert(params->ith == 0);
  8679. assert(ggml_is_scalar(dst));
  8680. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8681. return;
  8682. }
  8683. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8684. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8685. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8686. float sum = 0;
  8687. float row_sum = 0;
  8688. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8689. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8690. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8691. ggml_vec_sum_f16_ggf(ne00,
  8692. &row_sum,
  8693. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8694. sum += row_sum;
  8695. }
  8696. }
  8697. }
  8698. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8699. }
  8700. static void ggml_compute_forward_sum_bf16(
  8701. const struct ggml_compute_params * params,
  8702. struct ggml_tensor * dst) {
  8703. const struct ggml_tensor * src0 = dst->src[0];
  8704. assert(params->ith == 0);
  8705. assert(ggml_is_scalar(dst));
  8706. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8707. return;
  8708. }
  8709. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8710. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8711. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8712. float sum = 0;
  8713. float row_sum = 0;
  8714. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8715. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8716. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8717. ggml_vec_sum_bf16_ggf(ne00,
  8718. &row_sum,
  8719. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8720. sum += row_sum;
  8721. }
  8722. }
  8723. }
  8724. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8725. }
  8726. static void ggml_compute_forward_sum(
  8727. const struct ggml_compute_params * params,
  8728. struct ggml_tensor * dst) {
  8729. const struct ggml_tensor * src0 = dst->src[0];
  8730. switch (src0->type) {
  8731. case GGML_TYPE_F32:
  8732. {
  8733. ggml_compute_forward_sum_f32(params, dst);
  8734. } break;
  8735. case GGML_TYPE_F16:
  8736. {
  8737. ggml_compute_forward_sum_f16(params, dst);
  8738. } break;
  8739. case GGML_TYPE_BF16:
  8740. {
  8741. ggml_compute_forward_sum_bf16(params, dst);
  8742. } break;
  8743. default:
  8744. {
  8745. GGML_ASSERT(false);
  8746. } break;
  8747. }
  8748. }
  8749. // ggml_compute_forward_sum_rows
  8750. static void ggml_compute_forward_sum_rows_f32(
  8751. const struct ggml_compute_params * params,
  8752. struct ggml_tensor * dst) {
  8753. const struct ggml_tensor * src0 = dst->src[0];
  8754. GGML_ASSERT(params->ith == 0);
  8755. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8756. return;
  8757. }
  8758. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8759. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8760. GGML_TENSOR_UNARY_OP_LOCALS
  8761. GGML_ASSERT(ne0 == 1);
  8762. GGML_ASSERT(ne1 == ne01);
  8763. GGML_ASSERT(ne2 == ne02);
  8764. GGML_ASSERT(ne3 == ne03);
  8765. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8766. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8767. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8768. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8769. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8770. float row_sum = 0;
  8771. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8772. dst_row[0] = row_sum;
  8773. }
  8774. }
  8775. }
  8776. }
  8777. static void ggml_compute_forward_sum_rows(
  8778. const struct ggml_compute_params * params,
  8779. struct ggml_tensor * dst) {
  8780. const struct ggml_tensor * src0 = dst->src[0];
  8781. switch (src0->type) {
  8782. case GGML_TYPE_F32:
  8783. {
  8784. ggml_compute_forward_sum_rows_f32(params, dst);
  8785. } break;
  8786. default:
  8787. {
  8788. GGML_ASSERT(false);
  8789. } break;
  8790. }
  8791. }
  8792. // ggml_compute_forward_mean
  8793. static void ggml_compute_forward_mean_f32(
  8794. const struct ggml_compute_params * params,
  8795. struct ggml_tensor * dst) {
  8796. const struct ggml_tensor * src0 = dst->src[0];
  8797. assert(params->ith == 0);
  8798. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8799. return;
  8800. }
  8801. assert(src0->nb[0] == sizeof(float));
  8802. GGML_TENSOR_UNARY_OP_LOCALS
  8803. assert(ne0 == 1);
  8804. assert(ne1 == ne01);
  8805. assert(ne2 == ne02);
  8806. assert(ne3 == ne03);
  8807. UNUSED(ne0);
  8808. UNUSED(ne1);
  8809. UNUSED(ne2);
  8810. UNUSED(ne3);
  8811. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8812. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8813. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8814. ggml_vec_sum_f32(ne00,
  8815. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8816. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8817. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8818. }
  8819. }
  8820. }
  8821. }
  8822. static void ggml_compute_forward_mean(
  8823. const struct ggml_compute_params * params,
  8824. struct ggml_tensor * dst) {
  8825. const struct ggml_tensor * src0 = dst->src[0];
  8826. switch (src0->type) {
  8827. case GGML_TYPE_F32:
  8828. {
  8829. ggml_compute_forward_mean_f32(params, dst);
  8830. } break;
  8831. default:
  8832. {
  8833. GGML_ASSERT(false);
  8834. } break;
  8835. }
  8836. }
  8837. // ggml_compute_forward_argmax
  8838. static void ggml_compute_forward_argmax_f32(
  8839. const struct ggml_compute_params * params,
  8840. struct ggml_tensor * dst) {
  8841. const struct ggml_tensor * src0 = dst->src[0];
  8842. assert(params->ith == 0);
  8843. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8844. return;
  8845. }
  8846. assert(src0->nb[0] == sizeof(float));
  8847. assert(dst->nb[0] == sizeof(float));
  8848. const int64_t ne00 = src0->ne[0];
  8849. const int64_t ne01 = src0->ne[1];
  8850. const size_t nb01 = src0->nb[1];
  8851. const size_t nb0 = dst->nb[0];
  8852. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8853. float * src = (float *) ((char *) src0->data + i1*nb01);
  8854. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8855. int v = 0;
  8856. ggml_vec_argmax_f32(ne00, &v, src);
  8857. dst_[0] = v;
  8858. }
  8859. }
  8860. static void ggml_compute_forward_argmax(
  8861. const struct ggml_compute_params * params,
  8862. struct ggml_tensor * dst) {
  8863. const struct ggml_tensor * src0 = dst->src[0];
  8864. switch (src0->type) {
  8865. case GGML_TYPE_F32:
  8866. {
  8867. ggml_compute_forward_argmax_f32(params, dst);
  8868. } break;
  8869. default:
  8870. {
  8871. GGML_ASSERT(false);
  8872. } break;
  8873. }
  8874. }
  8875. // ggml_compute_forward_repeat
  8876. static void ggml_compute_forward_repeat_f32(
  8877. const struct ggml_compute_params * params,
  8878. struct ggml_tensor * dst) {
  8879. const struct ggml_tensor * src0 = dst->src[0];
  8880. GGML_ASSERT(params->ith == 0);
  8881. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8882. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8883. return;
  8884. }
  8885. GGML_TENSOR_UNARY_OP_LOCALS
  8886. // guaranteed to be an integer due to the check in ggml_can_repeat
  8887. const int nr0 = (int)(ne0/ne00);
  8888. const int nr1 = (int)(ne1/ne01);
  8889. const int nr2 = (int)(ne2/ne02);
  8890. const int nr3 = (int)(ne3/ne03);
  8891. // TODO: support for transposed / permuted tensors
  8892. GGML_ASSERT(nb0 == sizeof(float));
  8893. GGML_ASSERT(nb00 == sizeof(float));
  8894. // TODO: maybe this is not optimal?
  8895. for (int i3 = 0; i3 < nr3; i3++) {
  8896. for (int k3 = 0; k3 < ne03; k3++) {
  8897. for (int i2 = 0; i2 < nr2; i2++) {
  8898. for (int k2 = 0; k2 < ne02; k2++) {
  8899. for (int i1 = 0; i1 < nr1; i1++) {
  8900. for (int k1 = 0; k1 < ne01; k1++) {
  8901. for (int i0 = 0; i0 < nr0; i0++) {
  8902. ggml_vec_cpy_f32(ne00,
  8903. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8904. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8905. }
  8906. }
  8907. }
  8908. }
  8909. }
  8910. }
  8911. }
  8912. }
  8913. static void ggml_compute_forward_repeat_f16(
  8914. const struct ggml_compute_params * params,
  8915. struct ggml_tensor * dst) {
  8916. const struct ggml_tensor * src0 = dst->src[0];
  8917. GGML_ASSERT(params->ith == 0);
  8918. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8919. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8920. return;
  8921. }
  8922. GGML_TENSOR_UNARY_OP_LOCALS
  8923. // guaranteed to be an integer due to the check in ggml_can_repeat
  8924. const int nr0 = (int)(ne0/ne00);
  8925. const int nr1 = (int)(ne1/ne01);
  8926. const int nr2 = (int)(ne2/ne02);
  8927. const int nr3 = (int)(ne3/ne03);
  8928. // TODO: support for transposed / permuted tensors
  8929. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8930. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8931. // TODO: maybe this is not optimal?
  8932. for (int i3 = 0; i3 < nr3; i3++) {
  8933. for (int k3 = 0; k3 < ne03; k3++) {
  8934. for (int i2 = 0; i2 < nr2; i2++) {
  8935. for (int k2 = 0; k2 < ne02; k2++) {
  8936. for (int i1 = 0; i1 < nr1; i1++) {
  8937. for (int k1 = 0; k1 < ne01; k1++) {
  8938. for (int i0 = 0; i0 < nr0; i0++) {
  8939. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8940. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8941. // ggml_vec_cpy_f16(ne00, y, x)
  8942. for (int i = 0; i < ne00; ++i) {
  8943. y[i] = x[i];
  8944. }
  8945. }
  8946. }
  8947. }
  8948. }
  8949. }
  8950. }
  8951. }
  8952. }
  8953. static void ggml_compute_forward_repeat(
  8954. const struct ggml_compute_params * params,
  8955. struct ggml_tensor * dst) {
  8956. const struct ggml_tensor * src0 = dst->src[0];
  8957. switch (src0->type) {
  8958. case GGML_TYPE_F16:
  8959. case GGML_TYPE_BF16:
  8960. case GGML_TYPE_I16:
  8961. {
  8962. ggml_compute_forward_repeat_f16(params, dst);
  8963. } break;
  8964. case GGML_TYPE_F32:
  8965. case GGML_TYPE_I32:
  8966. {
  8967. ggml_compute_forward_repeat_f32(params, dst);
  8968. } break;
  8969. default:
  8970. {
  8971. GGML_ASSERT(false);
  8972. } break;
  8973. }
  8974. }
  8975. // ggml_compute_forward_repeat_back
  8976. static void ggml_compute_forward_repeat_back_f32(
  8977. const struct ggml_compute_params * params,
  8978. struct ggml_tensor * dst) {
  8979. const struct ggml_tensor * src0 = dst->src[0];
  8980. GGML_ASSERT(params->ith == 0);
  8981. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8982. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8983. return;
  8984. }
  8985. GGML_TENSOR_UNARY_OP_LOCALS
  8986. // guaranteed to be an integer due to the check in ggml_can_repeat
  8987. const int nr0 = (int)(ne00/ne0);
  8988. const int nr1 = (int)(ne01/ne1);
  8989. const int nr2 = (int)(ne02/ne2);
  8990. const int nr3 = (int)(ne03/ne3);
  8991. // TODO: support for transposed / permuted tensors
  8992. GGML_ASSERT(nb0 == sizeof(float));
  8993. GGML_ASSERT(nb00 == sizeof(float));
  8994. if (ggml_is_contiguous(dst)) {
  8995. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8996. } else {
  8997. for (int k3 = 0; k3 < ne3; k3++) {
  8998. for (int k2 = 0; k2 < ne2; k2++) {
  8999. for (int k1 = 0; k1 < ne1; k1++) {
  9000. ggml_vec_set_f32(ne0,
  9001. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9002. 0);
  9003. }
  9004. }
  9005. }
  9006. }
  9007. // TODO: maybe this is not optimal?
  9008. for (int i3 = 0; i3 < nr3; i3++) {
  9009. for (int k3 = 0; k3 < ne3; k3++) {
  9010. for (int i2 = 0; i2 < nr2; i2++) {
  9011. for (int k2 = 0; k2 < ne2; k2++) {
  9012. for (int i1 = 0; i1 < nr1; i1++) {
  9013. for (int k1 = 0; k1 < ne1; k1++) {
  9014. for (int i0 = 0; i0 < nr0; i0++) {
  9015. ggml_vec_acc_f32(ne0,
  9016. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9017. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9018. }
  9019. }
  9020. }
  9021. }
  9022. }
  9023. }
  9024. }
  9025. }
  9026. static void ggml_compute_forward_repeat_back(
  9027. const struct ggml_compute_params * params,
  9028. struct ggml_tensor * dst) {
  9029. const struct ggml_tensor * src0 = dst->src[0];
  9030. switch (src0->type) {
  9031. case GGML_TYPE_F32:
  9032. {
  9033. ggml_compute_forward_repeat_back_f32(params, dst);
  9034. } break;
  9035. default:
  9036. {
  9037. GGML_ASSERT(false);
  9038. } break;
  9039. }
  9040. }
  9041. // ggml_compute_forward_concat
  9042. static void ggml_compute_forward_concat_f32(
  9043. const struct ggml_compute_params * params,
  9044. struct ggml_tensor * dst) {
  9045. const struct ggml_tensor * src0 = dst->src[0];
  9046. const struct ggml_tensor * src1 = dst->src[1];
  9047. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9048. return;
  9049. }
  9050. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9051. const int ith = params->ith;
  9052. const int nth = params->nth;
  9053. GGML_TENSOR_BINARY_OP_LOCALS
  9054. // TODO: support for transposed / permuted tensors
  9055. GGML_ASSERT(nb0 == sizeof(float));
  9056. GGML_ASSERT(nb00 == sizeof(float));
  9057. GGML_ASSERT(nb10 == sizeof(float));
  9058. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9059. GGML_ASSERT(dim >= 0 && dim < 4);
  9060. int64_t o[4] = {0, 0, 0, 0};
  9061. o[dim] = src0->ne[dim];
  9062. const float * x;
  9063. // TODO: smarter multi-theading
  9064. for (int i3 = 0; i3 < ne3; i3++) {
  9065. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9066. for (int i1 = 0; i1 < ne1; i1++) {
  9067. for (int i0 = 0; i0 < ne0; i0++) {
  9068. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9069. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9070. } else {
  9071. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9072. }
  9073. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9074. *y = *x;
  9075. }
  9076. }
  9077. }
  9078. }
  9079. }
  9080. static void ggml_compute_forward_concat(
  9081. const struct ggml_compute_params * params,
  9082. struct ggml_tensor* dst) {
  9083. const struct ggml_tensor * src0 = dst->src[0];
  9084. switch (src0->type) {
  9085. case GGML_TYPE_F32:
  9086. case GGML_TYPE_I32:
  9087. {
  9088. ggml_compute_forward_concat_f32(params, dst);
  9089. } break;
  9090. default:
  9091. {
  9092. GGML_ASSERT(false);
  9093. } break;
  9094. }
  9095. }
  9096. // ggml_compute_forward_abs
  9097. static void ggml_compute_forward_abs_f32(
  9098. const struct ggml_compute_params * params,
  9099. struct ggml_tensor * dst) {
  9100. const struct ggml_tensor * src0 = dst->src[0];
  9101. assert(params->ith == 0);
  9102. assert(ggml_are_same_shape(src0, dst));
  9103. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9104. return;
  9105. }
  9106. const int n = ggml_nrows(src0);
  9107. const int nc = src0->ne[0];
  9108. assert(dst->nb[0] == sizeof(float));
  9109. assert(src0->nb[0] == sizeof(float));
  9110. for (int i = 0; i < n; i++) {
  9111. ggml_vec_abs_f32(nc,
  9112. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9113. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9114. }
  9115. }
  9116. static void ggml_compute_forward_abs(
  9117. const struct ggml_compute_params * params,
  9118. struct ggml_tensor * dst) {
  9119. const struct ggml_tensor * src0 = dst->src[0];
  9120. switch (src0->type) {
  9121. case GGML_TYPE_F32:
  9122. {
  9123. ggml_compute_forward_abs_f32(params, dst);
  9124. } break;
  9125. default:
  9126. {
  9127. GGML_ASSERT(false);
  9128. } break;
  9129. }
  9130. }
  9131. // ggml_compute_forward_sgn
  9132. static void ggml_compute_forward_sgn_f32(
  9133. const struct ggml_compute_params * params,
  9134. struct ggml_tensor * dst) {
  9135. const struct ggml_tensor * src0 = dst->src[0];
  9136. assert(params->ith == 0);
  9137. assert(ggml_are_same_shape(src0, dst));
  9138. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9139. return;
  9140. }
  9141. const int n = ggml_nrows(src0);
  9142. const int nc = src0->ne[0];
  9143. assert(dst->nb[0] == sizeof(float));
  9144. assert(src0->nb[0] == sizeof(float));
  9145. for (int i = 0; i < n; i++) {
  9146. ggml_vec_sgn_f32(nc,
  9147. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9148. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9149. }
  9150. }
  9151. static void ggml_compute_forward_sgn(
  9152. const struct ggml_compute_params * params,
  9153. struct ggml_tensor * dst) {
  9154. const struct ggml_tensor * src0 = dst->src[0];
  9155. switch (src0->type) {
  9156. case GGML_TYPE_F32:
  9157. {
  9158. ggml_compute_forward_sgn_f32(params, dst);
  9159. } break;
  9160. default:
  9161. {
  9162. GGML_ASSERT(false);
  9163. } break;
  9164. }
  9165. }
  9166. // ggml_compute_forward_neg
  9167. static void ggml_compute_forward_neg_f32(
  9168. const struct ggml_compute_params * params,
  9169. struct ggml_tensor * dst) {
  9170. const struct ggml_tensor * src0 = dst->src[0];
  9171. assert(params->ith == 0);
  9172. assert(ggml_are_same_shape(src0, dst));
  9173. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9174. return;
  9175. }
  9176. const int n = ggml_nrows(src0);
  9177. const int nc = src0->ne[0];
  9178. assert(dst->nb[0] == sizeof(float));
  9179. assert(src0->nb[0] == sizeof(float));
  9180. for (int i = 0; i < n; i++) {
  9181. ggml_vec_neg_f32(nc,
  9182. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9183. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9184. }
  9185. }
  9186. static void ggml_compute_forward_neg(
  9187. const struct ggml_compute_params * params,
  9188. struct ggml_tensor * dst) {
  9189. const struct ggml_tensor * src0 = dst->src[0];
  9190. switch (src0->type) {
  9191. case GGML_TYPE_F32:
  9192. {
  9193. ggml_compute_forward_neg_f32(params, dst);
  9194. } break;
  9195. default:
  9196. {
  9197. GGML_ASSERT(false);
  9198. } break;
  9199. }
  9200. }
  9201. // ggml_compute_forward_step
  9202. static void ggml_compute_forward_step_f32(
  9203. const struct ggml_compute_params * params,
  9204. struct ggml_tensor * dst) {
  9205. const struct ggml_tensor * src0 = dst->src[0];
  9206. assert(params->ith == 0);
  9207. assert(ggml_are_same_shape(src0, dst));
  9208. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9209. return;
  9210. }
  9211. const int n = ggml_nrows(src0);
  9212. const int nc = src0->ne[0];
  9213. assert(dst->nb[0] == sizeof(float));
  9214. assert(src0->nb[0] == sizeof(float));
  9215. for (int i = 0; i < n; i++) {
  9216. ggml_vec_step_f32(nc,
  9217. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9218. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9219. }
  9220. }
  9221. static void ggml_compute_forward_step(
  9222. const struct ggml_compute_params * params,
  9223. struct ggml_tensor * dst) {
  9224. const struct ggml_tensor * src0 = dst->src[0];
  9225. switch (src0->type) {
  9226. case GGML_TYPE_F32:
  9227. {
  9228. ggml_compute_forward_step_f32(params, dst);
  9229. } break;
  9230. default:
  9231. {
  9232. GGML_ASSERT(false);
  9233. } break;
  9234. }
  9235. }
  9236. // ggml_compute_forward_tanh
  9237. static void ggml_compute_forward_tanh_f32(
  9238. const struct ggml_compute_params * params,
  9239. struct ggml_tensor * dst) {
  9240. const struct ggml_tensor * src0 = dst->src[0];
  9241. assert(params->ith == 0);
  9242. assert(ggml_are_same_shape(src0, dst));
  9243. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9244. return;
  9245. }
  9246. const int n = ggml_nrows(src0);
  9247. const int nc = src0->ne[0];
  9248. assert(dst->nb[0] == sizeof(float));
  9249. assert(src0->nb[0] == sizeof(float));
  9250. for (int i = 0; i < n; i++) {
  9251. ggml_vec_tanh_f32(nc,
  9252. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9253. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9254. }
  9255. }
  9256. static void ggml_compute_forward_tanh(
  9257. const struct ggml_compute_params * params,
  9258. struct ggml_tensor * dst) {
  9259. const struct ggml_tensor * src0 = dst->src[0];
  9260. switch (src0->type) {
  9261. case GGML_TYPE_F32:
  9262. {
  9263. ggml_compute_forward_tanh_f32(params, dst);
  9264. } break;
  9265. default:
  9266. {
  9267. GGML_ASSERT(false);
  9268. } break;
  9269. }
  9270. }
  9271. // ggml_compute_forward_elu
  9272. static void ggml_compute_forward_elu_f32(
  9273. const struct ggml_compute_params * params,
  9274. struct ggml_tensor * dst) {
  9275. const struct ggml_tensor * src0 = dst->src[0];
  9276. assert(params->ith == 0);
  9277. assert(ggml_are_same_shape(src0, dst));
  9278. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9279. return;
  9280. }
  9281. const int n = ggml_nrows(src0);
  9282. const int nc = src0->ne[0];
  9283. assert(dst->nb[0] == sizeof(float));
  9284. assert(src0->nb[0] == sizeof(float));
  9285. for (int i = 0; i < n; i++) {
  9286. ggml_vec_elu_f32(nc,
  9287. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9288. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9289. }
  9290. }
  9291. static void ggml_compute_forward_elu(
  9292. const struct ggml_compute_params * params,
  9293. struct ggml_tensor * dst) {
  9294. const struct ggml_tensor * src0 = dst->src[0];
  9295. switch (src0->type) {
  9296. case GGML_TYPE_F32:
  9297. {
  9298. ggml_compute_forward_elu_f32(params, dst);
  9299. } break;
  9300. default:
  9301. {
  9302. GGML_ASSERT(false);
  9303. } break;
  9304. }
  9305. }
  9306. // ggml_compute_forward_relu
  9307. static void ggml_compute_forward_relu_f32(
  9308. const struct ggml_compute_params * params,
  9309. struct ggml_tensor * dst) {
  9310. const struct ggml_tensor * src0 = dst->src[0];
  9311. assert(params->ith == 0);
  9312. assert(ggml_are_same_shape(src0, dst));
  9313. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9314. return;
  9315. }
  9316. const int n = ggml_nrows(src0);
  9317. const int nc = src0->ne[0];
  9318. assert(dst->nb[0] == sizeof(float));
  9319. assert(src0->nb[0] == sizeof(float));
  9320. for (int i = 0; i < n; i++) {
  9321. ggml_vec_relu_f32(nc,
  9322. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9323. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9324. }
  9325. }
  9326. static void ggml_compute_forward_relu(
  9327. const struct ggml_compute_params * params,
  9328. struct ggml_tensor * dst) {
  9329. const struct ggml_tensor * src0 = dst->src[0];
  9330. switch (src0->type) {
  9331. case GGML_TYPE_F32:
  9332. {
  9333. ggml_compute_forward_relu_f32(params, dst);
  9334. } break;
  9335. default:
  9336. {
  9337. GGML_ASSERT(false);
  9338. } break;
  9339. }
  9340. }
  9341. // ggml_compute_forward_sigmoid
  9342. static void ggml_compute_forward_sigmoid_f32(
  9343. const struct ggml_compute_params * params,
  9344. struct ggml_tensor * dst) {
  9345. const struct ggml_tensor * src0 = dst->src[0];
  9346. assert(params->ith == 0);
  9347. assert(ggml_are_same_shape(src0, dst));
  9348. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9349. return;
  9350. }
  9351. const int n = ggml_nrows(src0);
  9352. const int nc = src0->ne[0];
  9353. assert(dst->nb[0] == sizeof(float));
  9354. assert(src0->nb[0] == sizeof(float));
  9355. for (int i = 0; i < n; i++) {
  9356. ggml_vec_sigmoid_f32(nc,
  9357. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9358. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9359. }
  9360. }
  9361. static void ggml_compute_forward_sigmoid(
  9362. const struct ggml_compute_params * params,
  9363. struct ggml_tensor * dst) {
  9364. const struct ggml_tensor * src0 = dst->src[0];
  9365. switch (src0->type) {
  9366. case GGML_TYPE_F32:
  9367. {
  9368. ggml_compute_forward_sigmoid_f32(params, dst);
  9369. } break;
  9370. default:
  9371. {
  9372. GGML_ASSERT(false);
  9373. } break;
  9374. }
  9375. }
  9376. // ggml_compute_forward_gelu
  9377. static void ggml_compute_forward_gelu_f32(
  9378. const struct ggml_compute_params * params,
  9379. struct ggml_tensor * dst) {
  9380. const struct ggml_tensor * src0 = dst->src[0];
  9381. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9382. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9383. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9384. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9385. return;
  9386. }
  9387. const int ith = params->ith;
  9388. const int nth = params->nth;
  9389. const int nc = src0->ne[0];
  9390. const int nr = ggml_nrows(src0);
  9391. // rows per thread
  9392. const int dr = (nr + nth - 1)/nth;
  9393. // row range for this thread
  9394. const int ir0 = dr*ith;
  9395. const int ir1 = MIN(ir0 + dr, nr);
  9396. for (int i1 = ir0; i1 < ir1; i1++) {
  9397. ggml_vec_gelu_f32(nc,
  9398. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9399. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9400. #ifndef NDEBUG
  9401. for (int k = 0; k < nc; k++) {
  9402. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9403. UNUSED(x);
  9404. assert(!isnan(x));
  9405. assert(!isinf(x));
  9406. }
  9407. #endif
  9408. }
  9409. }
  9410. static void ggml_compute_forward_gelu(
  9411. const struct ggml_compute_params * params,
  9412. struct ggml_tensor * dst) {
  9413. const struct ggml_tensor * src0 = dst->src[0];
  9414. switch (src0->type) {
  9415. case GGML_TYPE_F32:
  9416. {
  9417. ggml_compute_forward_gelu_f32(params, dst);
  9418. } break;
  9419. default:
  9420. {
  9421. GGML_ASSERT(false);
  9422. } break;
  9423. }
  9424. }
  9425. // ggml_compute_forward_gelu_quick
  9426. static void ggml_compute_forward_gelu_quick_f32(
  9427. const struct ggml_compute_params * params,
  9428. struct ggml_tensor * dst) {
  9429. const struct ggml_tensor * src0 = dst->src[0];
  9430. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9431. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9432. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9433. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9434. return;
  9435. }
  9436. const int ith = params->ith;
  9437. const int nth = params->nth;
  9438. const int nc = src0->ne[0];
  9439. const int nr = ggml_nrows(src0);
  9440. // rows per thread
  9441. const int dr = (nr + nth - 1)/nth;
  9442. // row range for this thread
  9443. const int ir0 = dr*ith;
  9444. const int ir1 = MIN(ir0 + dr, nr);
  9445. for (int i1 = ir0; i1 < ir1; i1++) {
  9446. ggml_vec_gelu_quick_f32(nc,
  9447. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9448. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9449. #ifndef NDEBUG
  9450. for (int k = 0; k < nc; k++) {
  9451. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9452. UNUSED(x);
  9453. assert(!isnan(x));
  9454. assert(!isinf(x));
  9455. }
  9456. #endif
  9457. }
  9458. }
  9459. static void ggml_compute_forward_gelu_quick(
  9460. const struct ggml_compute_params * params,
  9461. struct ggml_tensor * dst) {
  9462. const struct ggml_tensor * src0 = dst->src[0];
  9463. switch (src0->type) {
  9464. case GGML_TYPE_F32:
  9465. {
  9466. ggml_compute_forward_gelu_quick_f32(params, dst);
  9467. } break;
  9468. default:
  9469. {
  9470. GGML_ASSERT(false);
  9471. } break;
  9472. }
  9473. }
  9474. // ggml_compute_forward_silu
  9475. static void ggml_compute_forward_silu_f32(
  9476. const struct ggml_compute_params * params,
  9477. struct ggml_tensor * dst) {
  9478. const struct ggml_tensor * src0 = dst->src[0];
  9479. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9480. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9481. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9482. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9483. return;
  9484. }
  9485. const int ith = params->ith;
  9486. const int nth = params->nth;
  9487. const int nc = src0->ne[0];
  9488. const int nr = ggml_nrows(src0);
  9489. // rows per thread
  9490. const int dr = (nr + nth - 1)/nth;
  9491. // row range for this thread
  9492. const int ir0 = dr*ith;
  9493. const int ir1 = MIN(ir0 + dr, nr);
  9494. for (int i1 = ir0; i1 < ir1; i1++) {
  9495. ggml_vec_silu_f32(nc,
  9496. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9497. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9498. #ifndef NDEBUG
  9499. for (int k = 0; k < nc; k++) {
  9500. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9501. UNUSED(x);
  9502. assert(!isnan(x));
  9503. assert(!isinf(x));
  9504. }
  9505. #endif
  9506. }
  9507. }
  9508. static void ggml_compute_forward_silu(
  9509. const struct ggml_compute_params * params,
  9510. struct ggml_tensor * dst) {
  9511. const struct ggml_tensor * src0 = dst->src[0];
  9512. switch (src0->type) {
  9513. case GGML_TYPE_F32:
  9514. {
  9515. ggml_compute_forward_silu_f32(params, dst);
  9516. } break;
  9517. default:
  9518. {
  9519. GGML_ASSERT(false);
  9520. } break;
  9521. }
  9522. }
  9523. // ggml_compute_forward_leaky_relu
  9524. static void ggml_compute_forward_leaky_relu_f32(
  9525. const struct ggml_compute_params * params,
  9526. struct ggml_tensor * dst) {
  9527. const struct ggml_tensor * src0 = dst->src[0];
  9528. assert(params->ith == 0);
  9529. assert(ggml_are_same_shape(src0, dst));
  9530. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9531. return;
  9532. }
  9533. const int n = ggml_nrows(src0);
  9534. const int nc = src0->ne[0];
  9535. float negative_slope;
  9536. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9537. assert(dst->nb[0] == sizeof(float));
  9538. assert(src0->nb[0] == sizeof(float));
  9539. for (int i = 0; i < n; i++) {
  9540. ggml_vec_leaky_relu_f32(nc,
  9541. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9542. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9543. }
  9544. }
  9545. static void ggml_compute_forward_leaky_relu(
  9546. const struct ggml_compute_params * params,
  9547. struct ggml_tensor * dst) {
  9548. const struct ggml_tensor * src0 = dst->src[0];
  9549. switch (src0->type) {
  9550. case GGML_TYPE_F32:
  9551. {
  9552. ggml_compute_forward_leaky_relu_f32(params, dst);
  9553. } break;
  9554. default:
  9555. {
  9556. GGML_ASSERT(false);
  9557. } break;
  9558. }
  9559. }
  9560. // ggml_compute_forward_silu_back
  9561. static void ggml_compute_forward_silu_back_f32(
  9562. const struct ggml_compute_params * params,
  9563. struct ggml_tensor * dst) {
  9564. const struct ggml_tensor * src0 = dst->src[0];
  9565. const struct ggml_tensor * grad = dst->src[1];
  9566. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9567. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9568. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9569. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9570. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9571. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9572. return;
  9573. }
  9574. const int ith = params->ith;
  9575. const int nth = params->nth;
  9576. const int nc = src0->ne[0];
  9577. const int nr = ggml_nrows(src0);
  9578. // rows per thread
  9579. const int dr = (nr + nth - 1)/nth;
  9580. // row range for this thread
  9581. const int ir0 = dr*ith;
  9582. const int ir1 = MIN(ir0 + dr, nr);
  9583. for (int i1 = ir0; i1 < ir1; i1++) {
  9584. ggml_vec_silu_backward_f32(nc,
  9585. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9586. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9587. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9588. #ifndef NDEBUG
  9589. for (int k = 0; k < nc; k++) {
  9590. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9591. UNUSED(x);
  9592. assert(!isnan(x));
  9593. assert(!isinf(x));
  9594. }
  9595. #endif
  9596. }
  9597. }
  9598. static void ggml_compute_forward_silu_back(
  9599. const struct ggml_compute_params * params,
  9600. struct ggml_tensor * dst) {
  9601. const struct ggml_tensor * src0 = dst->src[0];
  9602. switch (src0->type) {
  9603. case GGML_TYPE_F32:
  9604. {
  9605. ggml_compute_forward_silu_back_f32(params, dst);
  9606. } break;
  9607. default:
  9608. {
  9609. GGML_ASSERT(false);
  9610. } break;
  9611. }
  9612. }
  9613. static void ggml_compute_forward_hardswish_f32(
  9614. const struct ggml_compute_params * params,
  9615. struct ggml_tensor * dst) {
  9616. const struct ggml_tensor * src0 = dst->src[0];
  9617. assert(params->ith == 0);
  9618. assert(ggml_are_same_shape(src0, dst));
  9619. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9620. return;
  9621. }
  9622. const int n = ggml_nrows(src0);
  9623. const int nc = src0->ne[0];
  9624. assert(dst->nb[0] == sizeof(float));
  9625. assert(src0->nb[0] == sizeof(float));
  9626. for (int i = 0; i < n; i++) {
  9627. ggml_vec_hardswish_f32(nc,
  9628. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9629. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9630. }
  9631. }
  9632. static void ggml_compute_forward_hardswish(
  9633. const struct ggml_compute_params * params,
  9634. struct ggml_tensor * dst) {
  9635. const struct ggml_tensor * src0 = dst->src[0];
  9636. switch (src0->type) {
  9637. case GGML_TYPE_F32:
  9638. {
  9639. ggml_compute_forward_hardswish_f32(params, dst);
  9640. } break;
  9641. default:
  9642. {
  9643. GGML_ASSERT(false);
  9644. } break;
  9645. }
  9646. }
  9647. static void ggml_compute_forward_hardsigmoid_f32(
  9648. const struct ggml_compute_params * params,
  9649. struct ggml_tensor * dst) {
  9650. const struct ggml_tensor * src0 = dst->src[0];
  9651. assert(params->ith == 0);
  9652. assert(ggml_are_same_shape(src0, dst));
  9653. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9654. return;
  9655. }
  9656. const int n = ggml_nrows(src0);
  9657. const int nc = src0->ne[0];
  9658. assert(dst->nb[0] == sizeof(float));
  9659. assert(src0->nb[0] == sizeof(float));
  9660. for (int i = 0; i < n; i++) {
  9661. ggml_vec_hardsigmoid_f32(nc,
  9662. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9663. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9664. }
  9665. }
  9666. static void ggml_compute_forward_hardsigmoid(
  9667. const struct ggml_compute_params * params,
  9668. struct ggml_tensor * dst) {
  9669. const struct ggml_tensor * src0 = dst->src[0];
  9670. switch (src0->type) {
  9671. case GGML_TYPE_F32:
  9672. {
  9673. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9674. } break;
  9675. default:
  9676. {
  9677. GGML_ASSERT(false);
  9678. } break;
  9679. }
  9680. }
  9681. // ggml_compute_forward_norm
  9682. static void ggml_compute_forward_norm_f32(
  9683. const struct ggml_compute_params * params,
  9684. struct ggml_tensor * dst) {
  9685. const struct ggml_tensor * src0 = dst->src[0];
  9686. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9687. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9688. return;
  9689. }
  9690. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9691. const int ith = params->ith;
  9692. const int nth = params->nth;
  9693. GGML_TENSOR_UNARY_OP_LOCALS
  9694. float eps;
  9695. memcpy(&eps, dst->op_params, sizeof(float));
  9696. GGML_ASSERT(eps > 0.0f);
  9697. // TODO: optimize
  9698. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9699. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9700. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9701. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9702. ggml_float sum = 0.0;
  9703. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9704. sum += (ggml_float)x[i00];
  9705. }
  9706. float mean = sum/ne00;
  9707. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9708. ggml_float sum2 = 0.0;
  9709. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9710. float v = x[i00] - mean;
  9711. y[i00] = v;
  9712. sum2 += (ggml_float)(v*v);
  9713. }
  9714. float variance = sum2/ne00;
  9715. const float scale = 1.0f/sqrtf(variance + eps);
  9716. ggml_vec_scale_f32(ne00, y, scale);
  9717. }
  9718. }
  9719. }
  9720. }
  9721. static void ggml_compute_forward_norm(
  9722. const struct ggml_compute_params * params,
  9723. struct ggml_tensor * dst) {
  9724. const struct ggml_tensor * src0 = dst->src[0];
  9725. switch (src0->type) {
  9726. case GGML_TYPE_F32:
  9727. {
  9728. ggml_compute_forward_norm_f32(params, dst);
  9729. } break;
  9730. default:
  9731. {
  9732. GGML_ASSERT(false);
  9733. } break;
  9734. }
  9735. }
  9736. // ggml_compute_forward_group_rms_norm
  9737. static void ggml_compute_forward_rms_norm_f32(
  9738. const struct ggml_compute_params * params,
  9739. struct ggml_tensor * dst) {
  9740. const struct ggml_tensor * src0 = dst->src[0];
  9741. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9742. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9743. return;
  9744. }
  9745. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9746. const int ith = params->ith;
  9747. const int nth = params->nth;
  9748. GGML_TENSOR_UNARY_OP_LOCALS
  9749. float eps;
  9750. memcpy(&eps, dst->op_params, sizeof(float));
  9751. GGML_ASSERT(eps > 0.0f);
  9752. // TODO: optimize
  9753. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9754. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9755. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9756. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9757. ggml_float sum = 0.0;
  9758. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9759. sum += (ggml_float)(x[i00] * x[i00]);
  9760. }
  9761. const float mean = sum/ne00;
  9762. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9763. memcpy(y, x, ne00 * sizeof(float));
  9764. // for (int i00 = 0; i00 < ne00; i00++) {
  9765. // y[i00] = x[i00];
  9766. // }
  9767. const float scale = 1.0f/sqrtf(mean + eps);
  9768. ggml_vec_scale_f32(ne00, y, scale);
  9769. }
  9770. }
  9771. }
  9772. }
  9773. static void ggml_compute_forward_rms_norm(
  9774. const struct ggml_compute_params * params,
  9775. struct ggml_tensor * dst) {
  9776. const struct ggml_tensor * src0 = dst->src[0];
  9777. switch (src0->type) {
  9778. case GGML_TYPE_F32:
  9779. {
  9780. ggml_compute_forward_rms_norm_f32(params, dst);
  9781. } break;
  9782. default:
  9783. {
  9784. GGML_ASSERT(false);
  9785. } break;
  9786. }
  9787. }
  9788. static void ggml_compute_forward_rms_norm_back_f32(
  9789. const struct ggml_compute_params * params,
  9790. struct ggml_tensor * dst) {
  9791. const struct ggml_tensor * src0 = dst->src[0];
  9792. const struct ggml_tensor * src1 = dst->src[1];
  9793. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9794. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9795. return;
  9796. }
  9797. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9798. const int ith = params->ith;
  9799. const int nth = params->nth;
  9800. GGML_TENSOR_BINARY_OP_LOCALS
  9801. float eps;
  9802. memcpy(&eps, dst->op_params, sizeof(float));
  9803. // TODO: optimize
  9804. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9805. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9806. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9807. // src1 is same shape as src0 => same indices
  9808. const int64_t i11 = i01;
  9809. const int64_t i12 = i02;
  9810. const int64_t i13 = i03;
  9811. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9812. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9813. ggml_float sum_xx = 0.0;
  9814. ggml_float sum_xdz = 0.0;
  9815. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9816. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9817. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9818. }
  9819. //const float mean = (float)(sum_xx)/ne00;
  9820. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9821. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9822. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9823. // we could cache rms from forward pass to improve performance.
  9824. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9825. //const float rms = sqrtf(mean_eps);
  9826. const float rrms = 1.0f / sqrtf(mean_eps);
  9827. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9828. {
  9829. // z = rms_norm(x)
  9830. //
  9831. // rms_norm(src0) =
  9832. // scale(
  9833. // src0,
  9834. // div(
  9835. // 1,
  9836. // sqrt(
  9837. // add(
  9838. // scale(
  9839. // sum(
  9840. // sqr(
  9841. // src0)),
  9842. // (1.0/N)),
  9843. // eps))));
  9844. // postorder:
  9845. // ## op args grad
  9846. // 00 param src0 grad[#00]
  9847. // 01 const 1
  9848. // 02 sqr (#00) grad[#02]
  9849. // 03 sum (#02) grad[#03]
  9850. // 04 const 1/N
  9851. // 05 scale (#03, #04) grad[#05]
  9852. // 06 const eps
  9853. // 07 add (#05, #06) grad[#07]
  9854. // 08 sqrt (#07) grad[#08]
  9855. // 09 div (#01,#08) grad[#09]
  9856. // 10 scale (#00,#09) grad[#10]
  9857. //
  9858. // backward pass, given grad[#10]
  9859. // #10: scale
  9860. // grad[#00] += scale(grad[#10],#09)
  9861. // grad[#09] += sum(mul(grad[#10],#00))
  9862. // #09: div
  9863. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9864. // #08: sqrt
  9865. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9866. // #07: add
  9867. // grad[#05] += grad[#07]
  9868. // #05: scale
  9869. // grad[#03] += scale(grad[#05],#04)
  9870. // #03: sum
  9871. // grad[#02] += repeat(grad[#03], #02)
  9872. // #02:
  9873. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9874. //
  9875. // substitute and simplify:
  9876. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9877. // grad[#02] = repeat(grad[#03], #02)
  9878. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9879. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9880. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9881. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9882. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9883. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9884. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9885. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9886. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9887. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9888. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9889. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9890. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9891. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9892. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9893. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9894. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9895. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9896. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9897. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9898. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9899. // a = b*c + d*e
  9900. // a = b*c*f/f + d*e*f/f
  9901. // a = (b*c*f + d*e*f)*(1/f)
  9902. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9903. // a = (b + d*e/c)*c
  9904. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9905. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9906. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9907. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9908. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9909. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9910. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9911. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9912. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9913. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9914. }
  9915. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9916. // post-order:
  9917. // dx := x
  9918. // dx := scale(dx,-mean_xdz/mean_eps)
  9919. // dx := add(dx, dz)
  9920. // dx := scale(dx, rrms)
  9921. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9922. ggml_vec_cpy_f32 (ne00, dx, x);
  9923. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9924. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9925. ggml_vec_acc_f32 (ne00, dx, dz);
  9926. ggml_vec_scale_f32(ne00, dx, rrms);
  9927. }
  9928. }
  9929. }
  9930. }
  9931. static void ggml_compute_forward_rms_norm_back(
  9932. const struct ggml_compute_params * params,
  9933. struct ggml_tensor * dst) {
  9934. const struct ggml_tensor * src0 = dst->src[0];
  9935. switch (src0->type) {
  9936. case GGML_TYPE_F32:
  9937. {
  9938. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9939. } break;
  9940. default:
  9941. {
  9942. GGML_ASSERT(false);
  9943. } break;
  9944. }
  9945. }
  9946. // ggml_compute_forward_group_norm
  9947. static void ggml_compute_forward_group_norm_f32(
  9948. const struct ggml_compute_params * params,
  9949. struct ggml_tensor * dst) {
  9950. const struct ggml_tensor * src0 = dst->src[0];
  9951. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9952. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9953. return;
  9954. }
  9955. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9956. const int ith = params->ith;
  9957. const int nth = params->nth;
  9958. GGML_TENSOR_UNARY_OP_LOCALS
  9959. const float eps = 1e-6f; // TODO: make this a parameter
  9960. // TODO: optimize
  9961. int n_channels = src0->ne[2];
  9962. int n_groups = dst->op_params[0];
  9963. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9964. for (int i = ith; i < n_groups; i += nth) {
  9965. int start = i * n_channels_per_group;
  9966. int end = start + n_channels_per_group;
  9967. if (end > n_channels) {
  9968. end = n_channels;
  9969. }
  9970. int step = end - start;
  9971. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9972. ggml_float sum = 0.0;
  9973. for (int64_t i02 = start; i02 < end; i02++) {
  9974. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9975. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9976. ggml_float sumr = 0.0;
  9977. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9978. sumr += (ggml_float)x[i00];
  9979. }
  9980. sum += sumr;
  9981. }
  9982. }
  9983. const float mean = sum / (ne00 * ne01 * step);
  9984. ggml_float sum2 = 0.0;
  9985. for (int64_t i02 = start; i02 < end; i02++) {
  9986. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9987. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9988. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9989. ggml_float sumr = 0.0;
  9990. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9991. float v = x[i00] - mean;
  9992. y[i00] = v;
  9993. sumr += (ggml_float)(v * v);
  9994. }
  9995. sum2 += sumr;
  9996. }
  9997. }
  9998. const float variance = sum2 / (ne00 * ne01 * step);
  9999. const float scale = 1.0f / sqrtf(variance + eps);
  10000. for (int64_t i02 = start; i02 < end; i02++) {
  10001. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10002. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10003. ggml_vec_scale_f32(ne00, y, scale);
  10004. }
  10005. }
  10006. }
  10007. }
  10008. }
  10009. static void ggml_compute_forward_group_norm(
  10010. const struct ggml_compute_params * params,
  10011. struct ggml_tensor * dst) {
  10012. const struct ggml_tensor * src0 = dst->src[0];
  10013. switch (src0->type) {
  10014. case GGML_TYPE_F32:
  10015. {
  10016. ggml_compute_forward_group_norm_f32(params, dst);
  10017. } break;
  10018. default:
  10019. {
  10020. GGML_ASSERT(false);
  10021. } break;
  10022. }
  10023. }
  10024. // ggml_compute_forward_mul_mat
  10025. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10026. // helper function to determine if it is better to use BLAS or not
  10027. // for large matrices, BLAS is faster
  10028. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10029. const struct ggml_tensor * src0 = dst->src[0];
  10030. const struct ggml_tensor * src1 = dst->src[1];
  10031. //const int64_t ne00 = src0->ne[0];
  10032. //const int64_t ne01 = src0->ne[1];
  10033. const int64_t ne10 = src1->ne[0];
  10034. const int64_t ne0 = dst->ne[0];
  10035. const int64_t ne1 = dst->ne[1];
  10036. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10037. // all the experts for each batch element and the processing would become incredibly slow
  10038. // TODO: find the optimal values for these
  10039. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10040. ggml_is_contiguous(src0) &&
  10041. ggml_is_contiguous(src1) &&
  10042. //src0->type == GGML_TYPE_F32 &&
  10043. src1->type == GGML_TYPE_F32 &&
  10044. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10045. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10046. return true;
  10047. }
  10048. return false;
  10049. }
  10050. #endif
  10051. static void ggml_compute_forward_mul_mat_one_chunk(
  10052. const struct ggml_compute_params * params,
  10053. struct ggml_tensor * dst,
  10054. const int64_t num_rows_per_vec_dot,
  10055. const int64_t ir0_start,
  10056. const int64_t ir0_end,
  10057. const int64_t ir1_start,
  10058. const int64_t ir1_end) {
  10059. const struct ggml_tensor * src0 = dst->src[0];
  10060. const struct ggml_tensor * src1 = dst->src[1];
  10061. GGML_TENSOR_BINARY_OP_LOCALS
  10062. const enum ggml_type type = src0->type;
  10063. const bool src1_cont = ggml_is_contiguous(src1);
  10064. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10065. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10066. // broadcast factors
  10067. const int64_t r2 = ne12 / ne02;
  10068. const int64_t r3 = ne13 / ne03;
  10069. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10070. // threads with no work simply yield (not sure if it helps)
  10071. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10072. return;
  10073. }
  10074. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10075. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10076. assert(ne12 % ne02 == 0);
  10077. assert(ne13 % ne03 == 0);
  10078. // block-tiling attempt
  10079. const int64_t blck_0 = 16;
  10080. const int64_t blck_1 = 16;
  10081. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10082. // attempt to reduce false-sharing (does not seem to make a difference)
  10083. // 16 * 2, accounting for mmla kernels
  10084. float tmp[32];
  10085. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10086. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10087. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10088. const int64_t i13 = (ir1 / (ne12 * ne1));
  10089. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10090. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10091. // broadcast src0 into src1
  10092. const int64_t i03 = i13 / r3;
  10093. const int64_t i02 = i12 / r2;
  10094. const int64_t i1 = i11;
  10095. const int64_t i2 = i12;
  10096. const int64_t i3 = i13;
  10097. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10098. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10099. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10100. // the original src1 data pointer, so we should index using the indices directly
  10101. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10102. const char * src1_col = (const char*)wdata +
  10103. (src1_cont || src1->type != vec_dot_type
  10104. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10105. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10106. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10107. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10108. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10109. //}
  10110. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10111. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10112. }
  10113. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10114. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10115. }
  10116. }
  10117. }
  10118. }
  10119. }
  10120. static void ggml_compute_forward_mul_mat(
  10121. const struct ggml_compute_params * params,
  10122. struct ggml_tensor * dst,
  10123. struct ggml_compute_state * state) {
  10124. const struct ggml_tensor * src0 = dst->src[0];
  10125. const struct ggml_tensor * src1 = dst->src[1];
  10126. int64_t t0 = ggml_perf_time_us();
  10127. UNUSED(t0);
  10128. GGML_TENSOR_BINARY_OP_LOCALS
  10129. const int ith = params->ith;
  10130. const int nth = params->nth;
  10131. const enum ggml_type type = src0->type;
  10132. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10133. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10134. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10135. GGML_ASSERT(ne0 == ne01);
  10136. GGML_ASSERT(ne1 == ne11);
  10137. GGML_ASSERT(ne2 == ne12);
  10138. GGML_ASSERT(ne3 == ne13);
  10139. // we don't support permuted src0 or src1
  10140. GGML_ASSERT(nb00 == ggml_type_size(type));
  10141. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10142. // dst cannot be transposed or permuted
  10143. GGML_ASSERT(nb0 == sizeof(float));
  10144. GGML_ASSERT(nb0 <= nb1);
  10145. GGML_ASSERT(nb1 <= nb2);
  10146. GGML_ASSERT(nb2 <= nb3);
  10147. // broadcast factors
  10148. const int64_t r2 = ne12 / ne02;
  10149. const int64_t r3 = ne13 / ne03;
  10150. UNUSED(r2);
  10151. UNUSED(r3);
  10152. // nb01 >= nb00 - src0 is not transposed
  10153. // compute by src0 rows
  10154. #if defined(GGML_USE_CLBLAST)
  10155. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10156. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10157. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10158. }
  10159. return;
  10160. }
  10161. #endif
  10162. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10163. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10164. const int64_t ne_plane = ne01*ne00;
  10165. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10166. UNUSED(desired_wsize);
  10167. if (params->type == GGML_TASK_TYPE_INIT) {
  10168. if (type != GGML_TYPE_F32) {
  10169. assert(params->wsize >= desired_wsize);
  10170. // parallelize by src0 rows
  10171. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10172. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10173. // broadcast src0 into src1 across 2nd,3rd dimension
  10174. const int64_t i03 = i13/r3;
  10175. const int64_t i02 = i12/r2;
  10176. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10177. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10178. ggml_to_float_t const to_float = type_traits[type].to_float;
  10179. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10180. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10181. }
  10182. }
  10183. }
  10184. }
  10185. return;
  10186. }
  10187. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10188. return;
  10189. }
  10190. // perform sgemm, parallelization controlled by blas lib
  10191. if (ith != 0) {
  10192. return;
  10193. }
  10194. //const int64_t tgemm0 = ggml_perf_time_us();
  10195. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10196. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10197. const int64_t i03 = i13/r3;
  10198. const int64_t i02 = i12/r2;
  10199. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10200. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10201. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10202. if (type != GGML_TYPE_F32) {
  10203. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10204. }
  10205. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10206. ne1, ne01, ne10,
  10207. 1.0f, y, ne10,
  10208. x, ne00,
  10209. 0.0f, d, ne01);
  10210. }
  10211. }
  10212. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10213. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10214. return;
  10215. }
  10216. #endif
  10217. #if GGML_USE_LLAMAFILE
  10218. const bool src1_cont = ggml_is_contiguous(src1);
  10219. if (src1_cont) {
  10220. for (int64_t i13 = 0; i13 < ne13; i13++)
  10221. for (int64_t i12 = 0; i12 < ne12; i12++)
  10222. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10223. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10224. nb01/ggml_type_size(src0->type),
  10225. (const char *)src1->data + i12*nb12 + i13*nb13,
  10226. nb11/ggml_type_size(src1->type),
  10227. (char *)dst->data + i12*nb2 + i13*nb3,
  10228. nb1/ggml_type_size(dst->type),
  10229. ith, nth,
  10230. params->type,
  10231. src0->type,
  10232. src1->type,
  10233. dst->type))
  10234. goto UseGgmlGemm1;
  10235. return;
  10236. }
  10237. UseGgmlGemm1:;
  10238. #endif
  10239. if (params->type == GGML_TASK_TYPE_INIT) {
  10240. if (ith != 0) {
  10241. return;
  10242. }
  10243. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10244. atomic_store(&state->shared->current_chunk, nth);
  10245. if (src1->type != vec_dot_type) {
  10246. char * wdata = params->wdata;
  10247. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10248. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10249. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10250. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10251. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10252. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10253. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10254. wdata += row_size;
  10255. }
  10256. }
  10257. }
  10258. }
  10259. return;
  10260. }
  10261. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10262. return;
  10263. }
  10264. #if GGML_USE_LLAMAFILE
  10265. if (src1->type != vec_dot_type) {
  10266. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10267. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10268. for (int64_t i13 = 0; i13 < ne13; i13++)
  10269. for (int64_t i12 = 0; i12 < ne12; i12++)
  10270. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10271. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10272. nb01/ggml_type_size(src0->type),
  10273. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10274. row_size/ggml_type_size(vec_dot_type),
  10275. (char *)dst->data + i12*nb2 + i13*nb3,
  10276. nb1/ggml_type_size(dst->type),
  10277. ith, nth,
  10278. params->type,
  10279. src0->type,
  10280. vec_dot_type,
  10281. dst->type))
  10282. goto UseGgmlGemm2;
  10283. return;
  10284. }
  10285. UseGgmlGemm2:;
  10286. #endif
  10287. #ifdef GGML_PERF
  10288. int chunks_executed = 0;
  10289. UNUSED(chunks_executed);
  10290. #endif
  10291. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10292. const int64_t nr0 = ne0;
  10293. // This is the size of the rest of the dimensions of the result
  10294. const int64_t nr1 = ne1 * ne2 * ne3;
  10295. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10296. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10297. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10298. // this check can be removed once they are extended to support odd numbered rows/cols too
  10299. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10300. num_rows_per_vec_dot = 1;
  10301. }
  10302. // Now select a reasonable chunk size.
  10303. int chunk_size = 16;
  10304. // We need to step up the size if it's small
  10305. if (nr0 == 1 || nr1 == 1) {
  10306. chunk_size = 64;
  10307. }
  10308. // distribute the work across the inner or outer loop based on which one is larger
  10309. // The number of chunks in the 0/1 dim.
  10310. // CEIL(nr0/chunk_size)
  10311. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10312. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10313. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10314. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10315. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10316. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10317. // distribute the thread work across the inner or outer loop based on which one is larger
  10318. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10319. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10320. }
  10321. // The number of elements in each chunk
  10322. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10323. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10324. //if (ith == 0)
  10325. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10326. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10327. int current_chunk = ith;
  10328. while (current_chunk < nchunk0 * nchunk1) {
  10329. const int64_t ith0 = current_chunk % nchunk0;
  10330. const int64_t ith1 = current_chunk / nchunk0;
  10331. const int64_t ir0_start = dr0 * ith0;
  10332. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10333. const int64_t ir1_start = dr1 * ith1;
  10334. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10335. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10336. #ifdef GGML_PERF
  10337. chunks_executed++;
  10338. #endif
  10339. if (nth >= nchunk0 * nchunk1) {
  10340. break;
  10341. }
  10342. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10343. }
  10344. #ifdef GGML_PERF
  10345. // These numbers are useful when trying to measure how well the threading scheduling works.
  10346. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10347. //float time = (ggml_perf_time_us() - t0);
  10348. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10349. #endif
  10350. }
  10351. // ggml_compute_forward_mul_mat_id
  10352. static void ggml_compute_forward_mul_mat_id(
  10353. const struct ggml_compute_params * params,
  10354. struct ggml_tensor * dst) {
  10355. const struct ggml_tensor * src0 = dst->src[0];
  10356. const struct ggml_tensor * src1 = dst->src[1];
  10357. const struct ggml_tensor * ids = dst->src[2];
  10358. GGML_TENSOR_BINARY_OP_LOCALS
  10359. const int ith = params->ith;
  10360. const int nth = params->nth;
  10361. const enum ggml_type type = src0->type;
  10362. const bool src1_cont = ggml_is_contiguous(src1);
  10363. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10364. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10365. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10366. // we don't support permuted src0 or src1
  10367. GGML_ASSERT(nb00 == ggml_type_size(type));
  10368. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10369. // dst cannot be transposed or permuted
  10370. GGML_ASSERT(nb0 == sizeof(float));
  10371. GGML_ASSERT(nb0 <= nb1);
  10372. GGML_ASSERT(nb1 <= nb2);
  10373. GGML_ASSERT(nb2 <= nb3);
  10374. // row groups
  10375. const int n_ids = ids->ne[0]; // n_expert_used
  10376. const int n_as = ne02; // n_expert
  10377. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10378. (char *) params->wdata :
  10379. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10380. struct mmid_row_mapping {
  10381. int32_t i1;
  10382. int32_t i2;
  10383. };
  10384. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10385. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10386. if (params->type == GGML_TASK_TYPE_INIT) {
  10387. if (ith != 0) {
  10388. return;
  10389. }
  10390. char * wdata = params->wdata;
  10391. if (src1->type != vec_dot_type) {
  10392. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10393. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10394. assert(src1->type == GGML_TYPE_F32);
  10395. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10396. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10397. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10398. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10399. wdata += row_size;
  10400. }
  10401. }
  10402. }
  10403. }
  10404. // initialize matrix_row_counts
  10405. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10406. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10407. // group rows by src0 matrix
  10408. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10409. for (int id = 0; id < n_ids; ++id) {
  10410. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10411. assert(i02 >= 0 && i02 < n_as);
  10412. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10413. matrix_row_counts[i02] += 1;
  10414. }
  10415. }
  10416. return;
  10417. }
  10418. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10419. return;
  10420. }
  10421. // compute each matrix multiplication in sequence
  10422. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10423. const int64_t cne1 = matrix_row_counts[cur_a];
  10424. if (cne1 == 0) {
  10425. continue;
  10426. }
  10427. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10428. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10429. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10430. const int64_t nr0 = ne01; // src0 rows
  10431. const int64_t nr1 = cne1; // src1 rows
  10432. // distribute the thread work across the inner or outer loop based on which one is larger
  10433. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10434. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10435. const int64_t ith0 = ith % nth0;
  10436. const int64_t ith1 = ith / nth0;
  10437. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10438. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10439. const int64_t ir010 = dr0*ith0;
  10440. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10441. const int64_t ir110 = dr1*ith1;
  10442. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10443. // threads with no work simply yield (not sure if it helps)
  10444. //if (ir010 >= ir011 || ir110 >= ir111) {
  10445. // sched_yield();
  10446. // continue;
  10447. //}
  10448. // block-tiling attempt
  10449. const int64_t blck_0 = 16;
  10450. const int64_t blck_1 = 16;
  10451. // attempt to reduce false-sharing (does not seem to make a difference)
  10452. float tmp[16];
  10453. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10454. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10455. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10456. const int64_t _i12 = ir1; // logical row index for this expert
  10457. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10458. const int id = row_mapping.i1; // selected expert index
  10459. const int64_t i11 = id % ne11;
  10460. const int64_t i12 = row_mapping.i2; // row index in src1
  10461. const int64_t i1 = id; // selected expert index
  10462. const int64_t i2 = i12; // row
  10463. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10464. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10465. // the original src1 data pointer, so we should index using the indices directly
  10466. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10467. const char * src1_col = (const char *) wdata +
  10468. (src1_cont || src1->type != vec_dot_type
  10469. ? (i11 + i12*ne11)*row_size
  10470. : (i11*nb11 + i12*nb12));
  10471. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10472. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10473. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10474. //}
  10475. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10476. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10477. }
  10478. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10479. }
  10480. }
  10481. }
  10482. }
  10483. #undef MMID_MATRIX_ROW
  10484. }
  10485. // ggml_compute_forward_out_prod
  10486. static void ggml_compute_forward_out_prod_f32(
  10487. const struct ggml_compute_params * params,
  10488. struct ggml_tensor * dst) {
  10489. const struct ggml_tensor * src0 = dst->src[0];
  10490. const struct ggml_tensor * src1 = dst->src[1];
  10491. // int64_t t0 = ggml_perf_time_us();
  10492. // UNUSED(t0);
  10493. GGML_TENSOR_BINARY_OP_LOCALS
  10494. const int ith = params->ith;
  10495. const int nth = params->nth;
  10496. GGML_ASSERT(ne0 == ne00);
  10497. GGML_ASSERT(ne1 == ne10);
  10498. GGML_ASSERT(ne2 == ne02);
  10499. GGML_ASSERT(ne02 == ne12);
  10500. GGML_ASSERT(ne3 == ne13);
  10501. GGML_ASSERT(ne03 == ne13);
  10502. // we don't support permuted src0 or src1
  10503. GGML_ASSERT(nb00 == sizeof(float));
  10504. // dst cannot be transposed or permuted
  10505. GGML_ASSERT(nb0 == sizeof(float));
  10506. // GGML_ASSERT(nb0 <= nb1);
  10507. // GGML_ASSERT(nb1 <= nb2);
  10508. // GGML_ASSERT(nb2 <= nb3);
  10509. // nb01 >= nb00 - src0 is not transposed
  10510. // compute by src0 rows
  10511. // TODO: #if defined(GGML_USE_CLBLAST)
  10512. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10513. bool use_blas = ggml_is_matrix(src0) &&
  10514. ggml_is_matrix(src1) &&
  10515. ggml_is_contiguous(src0) &&
  10516. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10517. #endif
  10518. if (params->type == GGML_TASK_TYPE_INIT) {
  10519. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10520. if (use_blas) {
  10521. return;
  10522. }
  10523. #endif
  10524. if (ith != 0) {
  10525. return;
  10526. }
  10527. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10528. return;
  10529. }
  10530. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10531. return;
  10532. }
  10533. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10534. if (use_blas) {
  10535. if (params->ith != 0) { // All threads other than the first do no work.
  10536. return;
  10537. }
  10538. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10539. // src0: (k,n)
  10540. // src1: (k,m)
  10541. // dst: (m,n)
  10542. //
  10543. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10544. // Also expressed as (major,minor)
  10545. // a: (m,k): so src1 transposed
  10546. // b: (k,n): so src0
  10547. // c: (m,n)
  10548. //
  10549. // However, if ggml_is_transposed(src1) is true, then
  10550. // src1->data already contains a transposed version, so sgemm mustn't
  10551. // transpose it further.
  10552. int n = src0->ne[0];
  10553. int k = src0->ne[1];
  10554. int m = src1->ne[0];
  10555. int transposeA, lda;
  10556. if (!ggml_is_transposed(src1)) {
  10557. transposeA = CblasTrans;
  10558. lda = m;
  10559. } else {
  10560. transposeA = CblasNoTrans;
  10561. lda = k;
  10562. }
  10563. float * a = (float *) ((char *) src1->data);
  10564. float * b = (float *) ((char *) src0->data);
  10565. float * c = (float *) ((char *) dst->data);
  10566. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10567. return;
  10568. }
  10569. #endif
  10570. // dst[:,:,:,:] = 0
  10571. // for i2,i3:
  10572. // for i1:
  10573. // for i01:
  10574. // for i0:
  10575. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10576. // parallelize by last three dimensions
  10577. // total rows in dst
  10578. const int64_t nr = ne1*ne2*ne3;
  10579. // rows per thread
  10580. const int64_t dr = (nr + nth - 1)/nth;
  10581. // row range for this thread
  10582. const int64_t ir0 = dr*ith;
  10583. const int64_t ir1 = MIN(ir0 + dr, nr);
  10584. // block-tiling attempt
  10585. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10586. const int64_t blck_1 = 16;
  10587. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10588. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10589. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10590. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10591. for (int64_t ir = bir; ir < bir1; ++ir) {
  10592. // dst indices
  10593. const int64_t i3 = ir/(ne2*ne1);
  10594. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10595. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10596. const int64_t i02 = i2;
  10597. const int64_t i03 = i3;
  10598. //const int64_t i10 = i1;
  10599. const int64_t i12 = i2;
  10600. const int64_t i13 = i3;
  10601. #if GGML_VEC_MAD_UNROLL > 2
  10602. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10603. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10604. const int64_t i11 = i01;
  10605. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10606. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10607. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10608. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10609. }
  10610. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10611. const int64_t i11 = i01;
  10612. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10613. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10614. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10615. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10616. }
  10617. #else
  10618. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10619. const int64_t i11 = i01;
  10620. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10621. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10622. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10623. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10624. }
  10625. #endif
  10626. }
  10627. }
  10628. }
  10629. //int64_t t1 = ggml_perf_time_us();
  10630. //static int64_t acc = 0;
  10631. //acc += t1 - t0;
  10632. //if (t1 - t0 > 10) {
  10633. // printf("\n");
  10634. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10635. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10636. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10637. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10638. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10639. //}
  10640. }
  10641. static void ggml_compute_forward_out_prod_q_f32(
  10642. const struct ggml_compute_params * params,
  10643. struct ggml_tensor * dst) {
  10644. const struct ggml_tensor * src0 = dst->src[0];
  10645. const struct ggml_tensor * src1 = dst->src[1];
  10646. // int64_t t0 = ggml_perf_time_us();
  10647. // UNUSED(t0);
  10648. GGML_TENSOR_BINARY_OP_LOCALS;
  10649. const int ith = params->ith;
  10650. const int nth = params->nth;
  10651. const enum ggml_type type = src0->type;
  10652. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10653. GGML_ASSERT(ne02 == ne12);
  10654. GGML_ASSERT(ne03 == ne13);
  10655. GGML_ASSERT(ne2 == ne12);
  10656. GGML_ASSERT(ne3 == ne13);
  10657. // we don't support permuted src0 dim0
  10658. GGML_ASSERT(nb00 == ggml_type_size(type));
  10659. // dst dim0 cannot be transposed or permuted
  10660. GGML_ASSERT(nb0 == sizeof(float));
  10661. // GGML_ASSERT(nb0 <= nb1);
  10662. // GGML_ASSERT(nb1 <= nb2);
  10663. // GGML_ASSERT(nb2 <= nb3);
  10664. GGML_ASSERT(ne0 == ne00);
  10665. GGML_ASSERT(ne1 == ne10);
  10666. GGML_ASSERT(ne2 == ne02);
  10667. GGML_ASSERT(ne3 == ne03);
  10668. // nb01 >= nb00 - src0 is not transposed
  10669. // compute by src0 rows
  10670. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10671. if (params->type == GGML_TASK_TYPE_INIT) {
  10672. if (ith != 0) {
  10673. return;
  10674. }
  10675. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10676. return;
  10677. }
  10678. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10679. return;
  10680. }
  10681. // parallelize by last three dimensions
  10682. // total rows in dst
  10683. const int64_t nr = ne1*ne2*ne3;
  10684. // rows per thread
  10685. const int64_t dr = (nr + nth - 1)/nth;
  10686. // row range for this thread
  10687. const int64_t ir0 = dr*ith;
  10688. const int64_t ir1 = MIN(ir0 + dr, nr);
  10689. // dst[:,:,:,:] = 0
  10690. // for i2,i3:
  10691. // for i1:
  10692. // for i01:
  10693. // for i0:
  10694. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10695. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10696. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10697. // dst indices
  10698. const int64_t i3 = ir/(ne2*ne1);
  10699. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10700. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10701. const int64_t i02 = i2;
  10702. const int64_t i03 = i3;
  10703. //const int64_t i10 = i1;
  10704. const int64_t i12 = i2;
  10705. const int64_t i13 = i3;
  10706. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10707. const int64_t i11 = i01;
  10708. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10709. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10710. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10711. dequantize_row_q(s0, wdata, ne0);
  10712. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10713. }
  10714. }
  10715. //int64_t t1 = ggml_perf_time_us();
  10716. //static int64_t acc = 0;
  10717. //acc += t1 - t0;
  10718. //if (t1 - t0 > 10) {
  10719. // printf("\n");
  10720. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10721. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10722. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10723. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10724. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10725. //}
  10726. }
  10727. static void ggml_compute_forward_out_prod(
  10728. const struct ggml_compute_params * params,
  10729. struct ggml_tensor * dst) {
  10730. const struct ggml_tensor * src0 = dst->src[0];
  10731. switch (src0->type) {
  10732. case GGML_TYPE_Q4_0:
  10733. case GGML_TYPE_Q4_1:
  10734. case GGML_TYPE_Q5_0:
  10735. case GGML_TYPE_Q5_1:
  10736. case GGML_TYPE_Q8_0:
  10737. case GGML_TYPE_Q2_K:
  10738. case GGML_TYPE_Q3_K:
  10739. case GGML_TYPE_Q4_K:
  10740. case GGML_TYPE_Q5_K:
  10741. case GGML_TYPE_Q6_K:
  10742. case GGML_TYPE_IQ2_XXS:
  10743. case GGML_TYPE_IQ2_XS:
  10744. case GGML_TYPE_IQ3_XXS:
  10745. case GGML_TYPE_IQ1_S:
  10746. case GGML_TYPE_IQ1_M:
  10747. case GGML_TYPE_IQ4_NL:
  10748. case GGML_TYPE_IQ4_XS:
  10749. case GGML_TYPE_IQ3_S:
  10750. case GGML_TYPE_IQ2_S:
  10751. {
  10752. ggml_compute_forward_out_prod_q_f32(params, dst);
  10753. } break;
  10754. case GGML_TYPE_F16:
  10755. {
  10756. GGML_ASSERT(false); // todo
  10757. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10758. } break;
  10759. case GGML_TYPE_F32:
  10760. {
  10761. ggml_compute_forward_out_prod_f32(params, dst);
  10762. } break;
  10763. default:
  10764. {
  10765. GGML_ASSERT(false);
  10766. } break;
  10767. }
  10768. }
  10769. // ggml_compute_forward_scale
  10770. static void ggml_compute_forward_scale_f32(
  10771. const struct ggml_compute_params * params,
  10772. struct ggml_tensor * dst) {
  10773. const struct ggml_tensor * src0 = dst->src[0];
  10774. GGML_ASSERT(ggml_is_contiguous(src0));
  10775. GGML_ASSERT(ggml_is_contiguous(dst));
  10776. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10777. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10778. return;
  10779. }
  10780. // scale factor
  10781. float v;
  10782. memcpy(&v, dst->op_params, sizeof(float));
  10783. const int ith = params->ith;
  10784. const int nth = params->nth;
  10785. const int nc = src0->ne[0];
  10786. const int nr = ggml_nrows(src0);
  10787. // rows per thread
  10788. const int dr = (nr + nth - 1)/nth;
  10789. // row range for this thread
  10790. const int ir0 = dr*ith;
  10791. const int ir1 = MIN(ir0 + dr, nr);
  10792. const size_t nb01 = src0->nb[1];
  10793. const size_t nb1 = dst->nb[1];
  10794. for (int i1 = ir0; i1 < ir1; i1++) {
  10795. if (dst->data != src0->data) {
  10796. // src0 is same shape as dst => same indices
  10797. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10798. }
  10799. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10800. }
  10801. }
  10802. static void ggml_compute_forward_scale(
  10803. const struct ggml_compute_params * params,
  10804. struct ggml_tensor * dst) {
  10805. const struct ggml_tensor * src0 = dst->src[0];
  10806. switch (src0->type) {
  10807. case GGML_TYPE_F32:
  10808. {
  10809. ggml_compute_forward_scale_f32(params, dst);
  10810. } break;
  10811. default:
  10812. {
  10813. GGML_ASSERT(false);
  10814. } break;
  10815. }
  10816. }
  10817. // ggml_compute_forward_set
  10818. static void ggml_compute_forward_set_f32(
  10819. const struct ggml_compute_params * params,
  10820. struct ggml_tensor * dst) {
  10821. const struct ggml_tensor * src0 = dst->src[0];
  10822. const struct ggml_tensor * src1 = dst->src[1];
  10823. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10824. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10825. // view src0 and dst with these strides and data offset inbytes during set
  10826. // nb0 is implicitly element_size because src0 and dst are contiguous
  10827. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10828. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10829. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10830. size_t offset = ((int32_t *) dst->op_params)[3];
  10831. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10832. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10833. if (params->ith != 0) {
  10834. return;
  10835. }
  10836. // memcpy needs to be synchronized across threads to avoid race conditions.
  10837. // => do it in INIT phase
  10838. memcpy(
  10839. ((char *) dst->data),
  10840. ((char *) src0->data),
  10841. ggml_nbytes(dst));
  10842. }
  10843. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10844. return;
  10845. }
  10846. const int ith = params->ith;
  10847. const int nth = params->nth;
  10848. const int nr = ggml_nrows(src1);
  10849. const int nc = src1->ne[0];
  10850. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10851. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10852. // src0 and dst as viewed during set
  10853. const size_t nb0 = ggml_element_size(src0);
  10854. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10855. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10856. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10857. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10858. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10859. GGML_ASSERT(nb10 == sizeof(float));
  10860. // rows per thread
  10861. const int dr = (nr + nth - 1)/nth;
  10862. // row range for this thread
  10863. const int ir0 = dr*ith;
  10864. const int ir1 = MIN(ir0 + dr, nr);
  10865. for (int ir = ir0; ir < ir1; ++ir) {
  10866. // src0 and dst are viewed with shape of src1 and offset
  10867. // => same indices
  10868. const int i3 = ir/(ne12*ne11);
  10869. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10870. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10871. ggml_vec_cpy_f32(nc,
  10872. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10873. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10874. }
  10875. }
  10876. static void ggml_compute_forward_set(
  10877. const struct ggml_compute_params * params,
  10878. struct ggml_tensor * dst) {
  10879. const struct ggml_tensor * src0 = dst->src[0];
  10880. switch (src0->type) {
  10881. case GGML_TYPE_F32:
  10882. {
  10883. ggml_compute_forward_set_f32(params, dst);
  10884. } break;
  10885. case GGML_TYPE_F16:
  10886. case GGML_TYPE_BF16:
  10887. case GGML_TYPE_Q4_0:
  10888. case GGML_TYPE_Q4_1:
  10889. case GGML_TYPE_Q5_0:
  10890. case GGML_TYPE_Q5_1:
  10891. case GGML_TYPE_Q8_0:
  10892. case GGML_TYPE_Q8_1:
  10893. case GGML_TYPE_Q2_K:
  10894. case GGML_TYPE_Q3_K:
  10895. case GGML_TYPE_Q4_K:
  10896. case GGML_TYPE_Q5_K:
  10897. case GGML_TYPE_Q6_K:
  10898. case GGML_TYPE_IQ2_XXS:
  10899. case GGML_TYPE_IQ2_XS:
  10900. case GGML_TYPE_IQ3_XXS:
  10901. case GGML_TYPE_IQ1_S:
  10902. case GGML_TYPE_IQ1_M:
  10903. case GGML_TYPE_IQ4_NL:
  10904. case GGML_TYPE_IQ4_XS:
  10905. case GGML_TYPE_IQ3_S:
  10906. case GGML_TYPE_IQ2_S:
  10907. default:
  10908. {
  10909. GGML_ASSERT(false);
  10910. } break;
  10911. }
  10912. }
  10913. // ggml_compute_forward_cpy
  10914. static void ggml_compute_forward_cpy(
  10915. const struct ggml_compute_params * params,
  10916. struct ggml_tensor * dst) {
  10917. ggml_compute_forward_dup(params, dst);
  10918. }
  10919. // ggml_compute_forward_cont
  10920. static void ggml_compute_forward_cont(
  10921. const struct ggml_compute_params * params,
  10922. struct ggml_tensor * dst) {
  10923. ggml_compute_forward_dup(params, dst);
  10924. }
  10925. // ggml_compute_forward_reshape
  10926. static void ggml_compute_forward_reshape(
  10927. const struct ggml_compute_params * params,
  10928. struct ggml_tensor * dst) {
  10929. // NOP
  10930. UNUSED(params);
  10931. UNUSED(dst);
  10932. }
  10933. // ggml_compute_forward_view
  10934. static void ggml_compute_forward_view(
  10935. const struct ggml_compute_params * params,
  10936. const struct ggml_tensor * dst) {
  10937. // NOP
  10938. UNUSED(params);
  10939. UNUSED(dst);
  10940. }
  10941. // ggml_compute_forward_permute
  10942. static void ggml_compute_forward_permute(
  10943. const struct ggml_compute_params * params,
  10944. const struct ggml_tensor * dst) {
  10945. // NOP
  10946. UNUSED(params);
  10947. UNUSED(dst);
  10948. }
  10949. // ggml_compute_forward_transpose
  10950. static void ggml_compute_forward_transpose(
  10951. const struct ggml_compute_params * params,
  10952. const struct ggml_tensor * dst) {
  10953. // NOP
  10954. UNUSED(params);
  10955. UNUSED(dst);
  10956. }
  10957. // ggml_compute_forward_get_rows
  10958. static void ggml_compute_forward_get_rows_q(
  10959. const struct ggml_compute_params * params,
  10960. struct ggml_tensor * dst) {
  10961. const struct ggml_tensor * src0 = dst->src[0];
  10962. const struct ggml_tensor * src1 = dst->src[1];
  10963. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10964. return;
  10965. }
  10966. GGML_TENSOR_BINARY_OP_LOCALS
  10967. const int64_t nc = ne00;
  10968. const int64_t nr = ggml_nelements(src1);
  10969. const enum ggml_type type = src0->type;
  10970. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10971. assert(ne0 == nc);
  10972. assert(ne02 == ne11);
  10973. assert(nb00 == ggml_type_size(type));
  10974. assert(ggml_nrows(dst) == nr);
  10975. const int ith = params->ith;
  10976. const int nth = params->nth;
  10977. // rows per thread
  10978. const int dr = (nr + nth - 1)/nth;
  10979. // row range for this thread
  10980. const int ir0 = dr*ith;
  10981. const int ir1 = MIN(ir0 + dr, nr);
  10982. for (int64_t i = ir0; i < ir1; ++i) {
  10983. const int64_t i12 = i/(ne11*ne10);
  10984. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10985. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10986. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10987. dequantize_row_q(
  10988. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10989. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10990. }
  10991. }
  10992. static void ggml_compute_forward_get_rows_f16(
  10993. const struct ggml_compute_params * params,
  10994. struct ggml_tensor * dst) {
  10995. const struct ggml_tensor * src0 = dst->src[0];
  10996. const struct ggml_tensor * src1 = dst->src[1];
  10997. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10998. return;
  10999. }
  11000. GGML_TENSOR_BINARY_OP_LOCALS
  11001. const int64_t nc = ne00;
  11002. const int64_t nr = ggml_nelements(src1);
  11003. assert(ne0 == nc);
  11004. assert(ne02 == ne11);
  11005. assert(nb00 == sizeof(ggml_fp16_t));
  11006. assert(ggml_nrows(dst) == nr);
  11007. const int ith = params->ith;
  11008. const int nth = params->nth;
  11009. // rows per thread
  11010. const int dr = (nr + nth - 1)/nth;
  11011. // row range for this thread
  11012. const int ir0 = dr*ith;
  11013. const int ir1 = MIN(ir0 + dr, nr);
  11014. for (int64_t i = ir0; i < ir1; ++i) {
  11015. const int64_t i12 = i/(ne11*ne10);
  11016. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11017. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11018. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11019. ggml_fp16_to_fp32_row(
  11020. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11021. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11022. }
  11023. }
  11024. static void ggml_compute_forward_get_rows_bf16(
  11025. const struct ggml_compute_params * params,
  11026. struct ggml_tensor * dst) {
  11027. const struct ggml_tensor * src0 = dst->src[0];
  11028. const struct ggml_tensor * src1 = dst->src[1];
  11029. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11030. return;
  11031. }
  11032. GGML_TENSOR_BINARY_OP_LOCALS
  11033. const int64_t nc = ne00;
  11034. const int64_t nr = ggml_nelements(src1);
  11035. assert(ne0 == nc);
  11036. assert(ne02 == ne11);
  11037. assert(nb00 == sizeof(ggml_bf16_t));
  11038. assert(ggml_nrows(dst) == nr);
  11039. const int ith = params->ith;
  11040. const int nth = params->nth;
  11041. // rows per thread
  11042. const int dr = (nr + nth - 1)/nth;
  11043. // row range for this thread
  11044. const int ir0 = dr*ith;
  11045. const int ir1 = MIN(ir0 + dr, nr);
  11046. for (int64_t i = ir0; i < ir1; ++i) {
  11047. const int64_t i12 = i/(ne11*ne10);
  11048. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11049. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11050. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11051. ggml_bf16_to_fp32_row(
  11052. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11053. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11054. }
  11055. }
  11056. static void ggml_compute_forward_get_rows_f32(
  11057. const struct ggml_compute_params * params,
  11058. struct ggml_tensor * dst) {
  11059. const struct ggml_tensor * src0 = dst->src[0];
  11060. const struct ggml_tensor * src1 = dst->src[1];
  11061. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11062. return;
  11063. }
  11064. GGML_TENSOR_BINARY_OP_LOCALS
  11065. const int64_t nc = ne00;
  11066. const int64_t nr = ggml_nelements(src1);
  11067. assert(ne0 == nc);
  11068. assert(ne02 == ne11);
  11069. assert(nb00 == sizeof(float));
  11070. assert(ggml_nrows(dst) == nr);
  11071. const int ith = params->ith;
  11072. const int nth = params->nth;
  11073. // rows per thread
  11074. const int dr = (nr + nth - 1)/nth;
  11075. // row range for this thread
  11076. const int ir0 = dr*ith;
  11077. const int ir1 = MIN(ir0 + dr, nr);
  11078. for (int64_t i = ir0; i < ir1; ++i) {
  11079. const int64_t i12 = i/(ne11*ne10);
  11080. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11081. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11082. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11083. ggml_vec_cpy_f32(nc,
  11084. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11085. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11086. }
  11087. }
  11088. static void ggml_compute_forward_get_rows(
  11089. const struct ggml_compute_params * params,
  11090. struct ggml_tensor * dst) {
  11091. const struct ggml_tensor * src0 = dst->src[0];
  11092. switch (src0->type) {
  11093. case GGML_TYPE_Q4_0:
  11094. case GGML_TYPE_Q4_1:
  11095. case GGML_TYPE_Q5_0:
  11096. case GGML_TYPE_Q5_1:
  11097. case GGML_TYPE_Q8_0:
  11098. case GGML_TYPE_Q8_1:
  11099. case GGML_TYPE_Q2_K:
  11100. case GGML_TYPE_Q3_K:
  11101. case GGML_TYPE_Q4_K:
  11102. case GGML_TYPE_Q5_K:
  11103. case GGML_TYPE_Q6_K:
  11104. case GGML_TYPE_IQ2_XXS:
  11105. case GGML_TYPE_IQ2_XS:
  11106. case GGML_TYPE_IQ3_XXS:
  11107. case GGML_TYPE_IQ1_S:
  11108. case GGML_TYPE_IQ1_M:
  11109. case GGML_TYPE_IQ4_NL:
  11110. case GGML_TYPE_IQ4_XS:
  11111. case GGML_TYPE_IQ3_S:
  11112. case GGML_TYPE_IQ2_S:
  11113. {
  11114. ggml_compute_forward_get_rows_q(params, dst);
  11115. } break;
  11116. case GGML_TYPE_F16:
  11117. {
  11118. ggml_compute_forward_get_rows_f16(params, dst);
  11119. } break;
  11120. case GGML_TYPE_BF16:
  11121. {
  11122. ggml_compute_forward_get_rows_bf16(params, dst);
  11123. } break;
  11124. case GGML_TYPE_F32:
  11125. case GGML_TYPE_I32:
  11126. {
  11127. ggml_compute_forward_get_rows_f32(params, dst);
  11128. } break;
  11129. default:
  11130. {
  11131. GGML_ASSERT(false);
  11132. } break;
  11133. }
  11134. //static bool first = true;
  11135. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11136. //if (first) {
  11137. // first = false;
  11138. //} else {
  11139. // for (int k = 0; k < dst->ne[1]; ++k) {
  11140. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11141. // for (int i = 0; i < 16; ++i) {
  11142. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11143. // }
  11144. // printf("\n");
  11145. // }
  11146. // printf("\n");
  11147. // }
  11148. // printf("\n");
  11149. // exit(0);
  11150. //}
  11151. }
  11152. // ggml_compute_forward_get_rows_back
  11153. static void ggml_compute_forward_get_rows_back_f32_f16(
  11154. const struct ggml_compute_params * params,
  11155. struct ggml_tensor * dst) {
  11156. const struct ggml_tensor * src0 = dst->src[0];
  11157. const struct ggml_tensor * src1 = dst->src[1];
  11158. GGML_ASSERT(params->ith == 0);
  11159. GGML_ASSERT(ggml_is_contiguous(dst));
  11160. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11161. if (params->type == GGML_TASK_TYPE_INIT) {
  11162. if (params->ith != 0) {
  11163. return;
  11164. }
  11165. memset(dst->data, 0, ggml_nbytes(dst));
  11166. }
  11167. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11168. return;
  11169. }
  11170. const int nc = src0->ne[0];
  11171. const int nr = ggml_nelements(src1);
  11172. GGML_ASSERT( dst->ne[0] == nc);
  11173. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11174. for (int i = 0; i < nr; ++i) {
  11175. const int r = ((int32_t *) src1->data)[i];
  11176. for (int j = 0; j < nc; ++j) {
  11177. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11178. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11179. }
  11180. }
  11181. }
  11182. static void ggml_compute_forward_get_rows_back_f32(
  11183. const struct ggml_compute_params * params,
  11184. struct ggml_tensor * dst) {
  11185. const struct ggml_tensor * src0 = dst->src[0];
  11186. const struct ggml_tensor * src1 = dst->src[1];
  11187. GGML_ASSERT(params->ith == 0);
  11188. GGML_ASSERT(ggml_is_contiguous(dst));
  11189. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11190. if (params->type == GGML_TASK_TYPE_INIT) {
  11191. if (params->ith != 0) {
  11192. return;
  11193. }
  11194. memset(dst->data, 0, ggml_nbytes(dst));
  11195. }
  11196. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11197. return;
  11198. }
  11199. const int nc = src0->ne[0];
  11200. const int nr = ggml_nelements(src1);
  11201. GGML_ASSERT( dst->ne[0] == nc);
  11202. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11203. for (int i = 0; i < nr; ++i) {
  11204. const int r = ((int32_t *) src1->data)[i];
  11205. ggml_vec_add_f32(nc,
  11206. (float *) ((char *) dst->data + r*dst->nb[1]),
  11207. (float *) ((char *) dst->data + r*dst->nb[1]),
  11208. (float *) ((char *) src0->data + i*src0->nb[1]));
  11209. }
  11210. }
  11211. static void ggml_compute_forward_get_rows_back(
  11212. const struct ggml_compute_params * params,
  11213. struct ggml_tensor * dst) {
  11214. const struct ggml_tensor * src0 = dst->src[0];
  11215. switch (src0->type) {
  11216. case GGML_TYPE_F16:
  11217. {
  11218. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11219. } break;
  11220. case GGML_TYPE_F32:
  11221. {
  11222. ggml_compute_forward_get_rows_back_f32(params, dst);
  11223. } break;
  11224. default:
  11225. {
  11226. GGML_ASSERT(false);
  11227. } break;
  11228. }
  11229. //static bool first = true;
  11230. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11231. //if (first) {
  11232. // first = false;
  11233. //} else {
  11234. // for (int k = 0; k < dst->ne[1]; ++k) {
  11235. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11236. // for (int i = 0; i < 16; ++i) {
  11237. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11238. // }
  11239. // printf("\n");
  11240. // }
  11241. // printf("\n");
  11242. // }
  11243. // printf("\n");
  11244. // exit(0);
  11245. //}
  11246. }
  11247. // ggml_compute_forward_diag
  11248. static void ggml_compute_forward_diag_f32(
  11249. const struct ggml_compute_params * params,
  11250. struct ggml_tensor * dst) {
  11251. const struct ggml_tensor * src0 = dst->src[0];
  11252. GGML_ASSERT(params->ith == 0);
  11253. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11254. return;
  11255. }
  11256. // TODO: handle transposed/permuted matrices
  11257. GGML_TENSOR_UNARY_OP_LOCALS
  11258. GGML_ASSERT(ne00 == ne0);
  11259. GGML_ASSERT(ne00 == ne1);
  11260. GGML_ASSERT(ne01 == 1);
  11261. GGML_ASSERT(ne02 == ne2);
  11262. GGML_ASSERT(ne03 == ne3);
  11263. GGML_ASSERT(nb00 == sizeof(float));
  11264. GGML_ASSERT(nb0 == sizeof(float));
  11265. for (int i3 = 0; i3 < ne3; i3++) {
  11266. for (int i2 = 0; i2 < ne2; i2++) {
  11267. for (int i1 = 0; i1 < ne1; i1++) {
  11268. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11269. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11270. for (int i0 = 0; i0 < i1; i0++) {
  11271. d[i0] = 0;
  11272. }
  11273. d[i1] = s[i1];
  11274. for (int i0 = i1+1; i0 < ne0; i0++) {
  11275. d[i0] = 0;
  11276. }
  11277. }
  11278. }
  11279. }
  11280. }
  11281. static void ggml_compute_forward_diag(
  11282. const struct ggml_compute_params * params,
  11283. struct ggml_tensor * dst) {
  11284. const struct ggml_tensor * src0 = dst->src[0];
  11285. switch (src0->type) {
  11286. case GGML_TYPE_F32:
  11287. {
  11288. ggml_compute_forward_diag_f32(params, dst);
  11289. } break;
  11290. default:
  11291. {
  11292. GGML_ASSERT(false);
  11293. } break;
  11294. }
  11295. }
  11296. // ggml_compute_forward_diag_mask_inf
  11297. static void ggml_compute_forward_diag_mask_f32(
  11298. const struct ggml_compute_params * params,
  11299. struct ggml_tensor * dst,
  11300. const float value) {
  11301. const struct ggml_tensor * src0 = dst->src[0];
  11302. const int ith = params->ith;
  11303. const int nth = params->nth;
  11304. const int n_past = ((int32_t *) dst->op_params)[0];
  11305. const bool inplace = src0->data == dst->data;
  11306. GGML_ASSERT(n_past >= 0);
  11307. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11308. if (ith != 0) {
  11309. return;
  11310. }
  11311. // memcpy needs to be synchronized across threads to avoid race conditions.
  11312. // => do it in INIT phase
  11313. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11314. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11315. memcpy(
  11316. ((char *) dst->data),
  11317. ((char *) src0->data),
  11318. ggml_nbytes(dst));
  11319. }
  11320. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11321. return;
  11322. }
  11323. // TODO: handle transposed/permuted matrices
  11324. const int n = ggml_nrows(src0);
  11325. const int nc = src0->ne[0];
  11326. const int nr = src0->ne[1];
  11327. const int nz = n/nr;
  11328. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11329. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11330. for (int k = 0; k < nz; k++) {
  11331. for (int j = ith; j < nr; j += nth) {
  11332. for (int i = n_past; i < nc; i++) {
  11333. if (i > n_past + j) {
  11334. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11335. }
  11336. }
  11337. }
  11338. }
  11339. }
  11340. static void ggml_compute_forward_diag_mask_inf(
  11341. const struct ggml_compute_params * params,
  11342. struct ggml_tensor * dst) {
  11343. const struct ggml_tensor * src0 = dst->src[0];
  11344. switch (src0->type) {
  11345. case GGML_TYPE_F32:
  11346. {
  11347. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11348. } break;
  11349. default:
  11350. {
  11351. GGML_ASSERT(false);
  11352. } break;
  11353. }
  11354. }
  11355. static void ggml_compute_forward_diag_mask_zero(
  11356. const struct ggml_compute_params * params,
  11357. struct ggml_tensor * dst) {
  11358. const struct ggml_tensor * src0 = dst->src[0];
  11359. switch (src0->type) {
  11360. case GGML_TYPE_F32:
  11361. {
  11362. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11363. } break;
  11364. default:
  11365. {
  11366. GGML_ASSERT(false);
  11367. } break;
  11368. }
  11369. }
  11370. // ggml_compute_forward_soft_max
  11371. static void ggml_compute_forward_soft_max_f32(
  11372. const struct ggml_compute_params * params,
  11373. struct ggml_tensor * dst) {
  11374. const struct ggml_tensor * src0 = dst->src[0];
  11375. const struct ggml_tensor * src1 = dst->src[1];
  11376. assert(ggml_is_contiguous(dst));
  11377. assert(ggml_are_same_shape(src0, dst));
  11378. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11379. return;
  11380. }
  11381. float scale = 1.0f;
  11382. float max_bias = 0.0f;
  11383. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11384. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11385. // TODO: handle transposed/permuted matrices
  11386. const int ith = params->ith;
  11387. const int nth = params->nth;
  11388. GGML_TENSOR_UNARY_OP_LOCALS
  11389. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11390. // TODO: is this supposed to be ceil instead of floor?
  11391. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11392. const uint32_t n_head = ne02;
  11393. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11394. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11395. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11396. const int nc = src0->ne[0];
  11397. const int nr = ggml_nrows(src0);
  11398. // rows per thread
  11399. const int dr = (nr + nth - 1)/nth;
  11400. // row range for this thread
  11401. const int ir0 = dr*ith;
  11402. const int ir1 = MIN(ir0 + dr, nr);
  11403. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11404. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11405. for (int i1 = ir0; i1 < ir1; i1++) {
  11406. // ALiBi
  11407. const uint32_t h = (i1/ne01)%ne02; // head
  11408. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11409. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11410. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11411. // broadcast the mask across rows
  11412. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11413. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11414. ggml_vec_cpy_f32 (nc, wp, sp);
  11415. ggml_vec_scale_f32(nc, wp, scale);
  11416. if (mp_f32) {
  11417. if (use_f16) {
  11418. for (int i = 0; i < nc; ++i) {
  11419. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11420. }
  11421. } else {
  11422. for (int i = 0; i < nc; ++i) {
  11423. wp[i] += slope*mp_f32[i];
  11424. }
  11425. }
  11426. }
  11427. #ifndef NDEBUG
  11428. for (int i = 0; i < nc; ++i) {
  11429. //printf("p[%d] = %f\n", i, p[i]);
  11430. assert(!isnan(wp[i]));
  11431. }
  11432. #endif
  11433. float max = -INFINITY;
  11434. ggml_vec_max_f32(nc, &max, wp);
  11435. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11436. assert(sum > 0.0);
  11437. sum = 1.0/sum;
  11438. ggml_vec_scale_f32(nc, dp, sum);
  11439. #ifndef NDEBUG
  11440. for (int i = 0; i < nc; ++i) {
  11441. assert(!isnan(dp[i]));
  11442. assert(!isinf(dp[i]));
  11443. }
  11444. #endif
  11445. }
  11446. }
  11447. static void ggml_compute_forward_soft_max(
  11448. const struct ggml_compute_params * params,
  11449. struct ggml_tensor * dst) {
  11450. const struct ggml_tensor * src0 = dst->src[0];
  11451. switch (src0->type) {
  11452. case GGML_TYPE_F32:
  11453. {
  11454. ggml_compute_forward_soft_max_f32(params, dst);
  11455. } break;
  11456. default:
  11457. {
  11458. GGML_ASSERT(false);
  11459. } break;
  11460. }
  11461. }
  11462. // ggml_compute_forward_soft_max_back
  11463. static void ggml_compute_forward_soft_max_back_f32(
  11464. const struct ggml_compute_params * params,
  11465. struct ggml_tensor * dst) {
  11466. const struct ggml_tensor * src0 = dst->src[0];
  11467. const struct ggml_tensor * src1 = dst->src[1];
  11468. GGML_ASSERT(ggml_is_contiguous(src0));
  11469. GGML_ASSERT(ggml_is_contiguous(src1));
  11470. GGML_ASSERT(ggml_is_contiguous(dst));
  11471. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11472. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11473. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11474. return;
  11475. }
  11476. // TODO: handle transposed/permuted matrices
  11477. const int ith = params->ith;
  11478. const int nth = params->nth;
  11479. const int nc = src0->ne[0];
  11480. const int nr = ggml_nrows(src0);
  11481. // rows per thread
  11482. const int dr = (nr + nth - 1)/nth;
  11483. // row range for this thread
  11484. const int ir0 = dr*ith;
  11485. const int ir1 = MIN(ir0 + dr, nr);
  11486. for (int i1 = ir0; i1 < ir1; i1++) {
  11487. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11488. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11489. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11490. #ifndef NDEBUG
  11491. for (int i = 0; i < nc; ++i) {
  11492. //printf("p[%d] = %f\n", i, p[i]);
  11493. assert(!isnan(dy[i]));
  11494. assert(!isnan(y[i]));
  11495. }
  11496. #endif
  11497. // Jii = yi - yi*yi
  11498. // Jij = -yi*yj
  11499. // J = diag(y)-y.T*y
  11500. // dx = J * dy
  11501. // dxk = sum_i(Jki * dyi)
  11502. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11503. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11504. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11505. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11506. // dxk = -yk * dot(y, dy) + yk*dyk
  11507. // dxk = yk * (- dot(y, dy) + dyk)
  11508. // dxk = yk * (dyk - dot(y, dy))
  11509. //
  11510. // post-order:
  11511. // dot_y_dy := dot(y, dy)
  11512. // dx := dy
  11513. // dx := dx - dot_y_dy
  11514. // dx := dx * y
  11515. // linear runtime, no additional memory
  11516. float dot_y_dy = 0;
  11517. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11518. ggml_vec_cpy_f32 (nc, dx, dy);
  11519. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11520. ggml_vec_mul_f32 (nc, dx, dx, y);
  11521. #ifndef NDEBUG
  11522. for (int i = 0; i < nc; ++i) {
  11523. assert(!isnan(dx[i]));
  11524. assert(!isinf(dx[i]));
  11525. }
  11526. #endif
  11527. }
  11528. }
  11529. static void ggml_compute_forward_soft_max_back(
  11530. const struct ggml_compute_params * params,
  11531. struct ggml_tensor * dst) {
  11532. const struct ggml_tensor * src0 = dst->src[0];
  11533. switch (src0->type) {
  11534. case GGML_TYPE_F32:
  11535. {
  11536. ggml_compute_forward_soft_max_back_f32(params, dst);
  11537. } break;
  11538. default:
  11539. {
  11540. GGML_ASSERT(false);
  11541. } break;
  11542. }
  11543. }
  11544. // ggml_compute_forward_clamp
  11545. static void ggml_compute_forward_clamp_f32(
  11546. const struct ggml_compute_params * params,
  11547. struct ggml_tensor * dst) {
  11548. const struct ggml_tensor * src0 = dst->src[0];
  11549. assert(params->ith == 0);
  11550. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11551. return;
  11552. }
  11553. float min;
  11554. float max;
  11555. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11556. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11557. const int ith = params->ith;
  11558. const int nth = params->nth;
  11559. const int n = ggml_nrows(src0);
  11560. const int nc = src0->ne[0];
  11561. const size_t nb00 = src0->nb[0];
  11562. const size_t nb01 = src0->nb[1];
  11563. const size_t nb0 = dst->nb[0];
  11564. const size_t nb1 = dst->nb[1];
  11565. GGML_ASSERT( nb0 == sizeof(float));
  11566. GGML_ASSERT(nb00 == sizeof(float));
  11567. for (int j = ith; j < n; j += nth) {
  11568. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11569. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11570. for (int i = 0; i < nc; i++) {
  11571. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11572. }
  11573. }
  11574. }
  11575. static void ggml_compute_forward_clamp(
  11576. const struct ggml_compute_params * params,
  11577. struct ggml_tensor * dst) {
  11578. const struct ggml_tensor * src0 = dst->src[0];
  11579. switch (src0->type) {
  11580. case GGML_TYPE_F32:
  11581. {
  11582. ggml_compute_forward_clamp_f32(params, dst);
  11583. } break;
  11584. case GGML_TYPE_F16:
  11585. case GGML_TYPE_BF16:
  11586. case GGML_TYPE_Q4_0:
  11587. case GGML_TYPE_Q4_1:
  11588. case GGML_TYPE_Q5_0:
  11589. case GGML_TYPE_Q5_1:
  11590. case GGML_TYPE_Q8_0:
  11591. case GGML_TYPE_Q8_1:
  11592. case GGML_TYPE_Q2_K:
  11593. case GGML_TYPE_Q3_K:
  11594. case GGML_TYPE_Q4_K:
  11595. case GGML_TYPE_Q5_K:
  11596. case GGML_TYPE_Q6_K:
  11597. case GGML_TYPE_IQ2_XXS:
  11598. case GGML_TYPE_IQ2_XS:
  11599. case GGML_TYPE_IQ3_XXS:
  11600. case GGML_TYPE_IQ1_S:
  11601. case GGML_TYPE_IQ1_M:
  11602. case GGML_TYPE_IQ4_NL:
  11603. case GGML_TYPE_IQ4_XS:
  11604. case GGML_TYPE_IQ3_S:
  11605. case GGML_TYPE_IQ2_S:
  11606. case GGML_TYPE_Q8_K:
  11607. case GGML_TYPE_I8:
  11608. case GGML_TYPE_I16:
  11609. case GGML_TYPE_I32:
  11610. case GGML_TYPE_I64:
  11611. case GGML_TYPE_F64:
  11612. case GGML_TYPE_COUNT:
  11613. {
  11614. GGML_ASSERT(false);
  11615. } break;
  11616. }
  11617. }
  11618. // ggml_compute_forward_rope
  11619. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11620. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11621. return 1 - MIN(1, MAX(0, y));
  11622. }
  11623. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11624. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11625. static void rope_yarn(
  11626. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11627. float * cos_theta, float * sin_theta
  11628. ) {
  11629. // Get n-d rotational scaling corrected for extrapolation
  11630. float theta_interp = freq_scale * theta_extrap;
  11631. float theta = theta_interp;
  11632. if (ext_factor != 0.0f) {
  11633. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11634. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11635. // Get n-d magnitude scaling corrected for interpolation
  11636. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11637. }
  11638. *cos_theta = cosf(theta) * mscale;
  11639. *sin_theta = sinf(theta) * mscale;
  11640. }
  11641. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11642. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11643. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11644. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11645. }
  11646. static void ggml_rope_cache_init(
  11647. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11648. float * cache, float sin_sign, float theta_scale
  11649. ) {
  11650. float theta = theta_base;
  11651. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11652. rope_yarn(
  11653. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11654. );
  11655. cache[i0 + 1] *= sin_sign;
  11656. theta *= theta_scale;
  11657. }
  11658. }
  11659. GGML_CALL void ggml_rope_yarn_corr_dims(
  11660. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11661. ) {
  11662. // start and end correction dims
  11663. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11664. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11665. dims[0] = MAX(0, start);
  11666. dims[1] = MIN(n_dims - 1, end);
  11667. }
  11668. static void ggml_compute_forward_rope_f32(
  11669. const struct ggml_compute_params * params,
  11670. struct ggml_tensor * dst,
  11671. const bool forward) {
  11672. const struct ggml_tensor * src0 = dst->src[0];
  11673. const struct ggml_tensor * src1 = dst->src[1];
  11674. const struct ggml_tensor * src2 = dst->src[2];
  11675. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11676. return;
  11677. }
  11678. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11679. // these two only relevant for xPos RoPE:
  11680. float xpos_base;
  11681. bool xpos_down;
  11682. //const int n_past = ((int32_t *) dst->op_params)[0];
  11683. const int n_dims = ((int32_t *) dst->op_params)[1];
  11684. const int mode = ((int32_t *) dst->op_params)[2];
  11685. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11686. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11687. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11688. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11689. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11690. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11691. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11692. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11693. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11694. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11695. GGML_TENSOR_UNARY_OP_LOCALS
  11696. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11697. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11698. GGML_ASSERT(nb00 == sizeof(float));
  11699. const int ith = params->ith;
  11700. const int nth = params->nth;
  11701. const int nr = ggml_nrows(dst);
  11702. GGML_ASSERT(n_dims <= ne0);
  11703. GGML_ASSERT(n_dims % 2 == 0);
  11704. // rows per thread
  11705. const int dr = (nr + nth - 1)/nth;
  11706. // row range for this thread
  11707. const int ir0 = dr*ith;
  11708. const int ir1 = MIN(ir0 + dr, nr);
  11709. // row index used to determine which thread to use
  11710. int ir = 0;
  11711. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11712. const float inv_ndims = -1.f/n_dims;
  11713. float corr_dims[2];
  11714. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11715. const bool is_neox = mode & 2;
  11716. const bool is_glm = mode & 4;
  11717. const float * freq_factors = NULL;
  11718. if (is_neox) {
  11719. if (src2 != NULL) {
  11720. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11721. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11722. freq_factors = (const float *) src2->data;
  11723. }
  11724. } else {
  11725. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11726. }
  11727. // backward process uses inverse rotation by cos and sin.
  11728. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11729. // this essentially just switches the sign of sin.
  11730. const float sin_sign = forward ? 1.0f : -1.0f;
  11731. const int32_t * pos = (const int32_t *) src1->data;
  11732. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11733. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11734. const int64_t p = pos[i2];
  11735. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11736. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11737. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11738. }
  11739. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11740. if (ir++ < ir0) continue;
  11741. if (ir > ir1) break;
  11742. float theta_base = (float)p;
  11743. if (is_glm) {
  11744. theta_base = MIN(p, n_ctx - 2);
  11745. float block_theta = MAX(p - (n_ctx - 2), 0);
  11746. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11747. const float cos_theta = cosf(theta_base);
  11748. const float sin_theta = sinf(theta_base) * sin_sign;
  11749. const float cos_block_theta = cosf(block_theta);
  11750. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11751. theta_base *= theta_scale;
  11752. block_theta *= theta_scale;
  11753. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11754. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11755. const float x0 = src[0];
  11756. const float x1 = src[n_dims/2];
  11757. const float x2 = src[n_dims];
  11758. const float x3 = src[n_dims/2*3];
  11759. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11760. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11761. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11762. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11763. }
  11764. } else if (!is_neox) {
  11765. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11766. const float cos_theta = cache[i0 + 0];
  11767. const float sin_theta = cache[i0 + 1];
  11768. // zeta scaling for xPos only:
  11769. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11770. if (xpos_down) zeta = 1.0f / zeta;
  11771. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11772. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11773. const float x0 = src[0];
  11774. const float x1 = src[1];
  11775. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11776. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11777. }
  11778. } else {
  11779. // TODO: this might be wrong for ne0 != n_dims - need double check
  11780. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11781. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11782. theta_base *= freq_scale;
  11783. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11784. if (ic < n_dims) {
  11785. const int64_t ib = 0;
  11786. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11787. float cur_rot = inv_ndims * ic - ib;
  11788. float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
  11789. float cos_theta, sin_theta;
  11790. rope_yarn(
  11791. theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11792. &cos_theta, &sin_theta
  11793. );
  11794. sin_theta *= sin_sign;
  11795. theta_base *= theta_scale;
  11796. const int64_t i0 = ib*n_dims + ic/2;
  11797. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11798. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11799. const float x0 = src[0];
  11800. const float x1 = src[n_dims/2];
  11801. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11802. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11803. } else {
  11804. const int64_t i0 = ic;
  11805. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11806. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11807. dst_data[0] = src[0];
  11808. dst_data[1] = src[1];
  11809. }
  11810. }
  11811. }
  11812. }
  11813. }
  11814. }
  11815. }
  11816. // TODO: deduplicate f16/f32 code
  11817. static void ggml_compute_forward_rope_f16(
  11818. const struct ggml_compute_params * params,
  11819. struct ggml_tensor * dst,
  11820. const bool forward) {
  11821. const struct ggml_tensor * src0 = dst->src[0];
  11822. const struct ggml_tensor * src1 = dst->src[1];
  11823. const struct ggml_tensor * src2 = dst->src[2];
  11824. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11825. return;
  11826. }
  11827. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11828. //const int n_past = ((int32_t *) dst->op_params)[0];
  11829. const int n_dims = ((int32_t *) dst->op_params)[1];
  11830. const int mode = ((int32_t *) dst->op_params)[2];
  11831. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11832. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11833. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11834. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11835. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11836. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11837. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11838. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11839. GGML_TENSOR_UNARY_OP_LOCALS
  11840. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11841. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11842. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11843. const int ith = params->ith;
  11844. const int nth = params->nth;
  11845. const int nr = ggml_nrows(dst);
  11846. GGML_ASSERT(n_dims <= ne0);
  11847. GGML_ASSERT(n_dims % 2 == 0);
  11848. // rows per thread
  11849. const int dr = (nr + nth - 1)/nth;
  11850. // row range for this thread
  11851. const int ir0 = dr*ith;
  11852. const int ir1 = MIN(ir0 + dr, nr);
  11853. // row index used to determine which thread to use
  11854. int ir = 0;
  11855. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11856. const float inv_ndims = -1.f/n_dims;
  11857. float corr_dims[2];
  11858. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11859. const bool is_neox = mode & 2;
  11860. const bool is_glm = mode & 4;
  11861. const float * freq_factors = NULL;
  11862. if (is_neox) {
  11863. if (src2 != NULL) {
  11864. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11865. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11866. freq_factors = (const float *) src2->data;
  11867. }
  11868. } else {
  11869. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11870. }
  11871. // backward process uses inverse rotation by cos and sin.
  11872. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11873. // this essentially just switches the sign of sin.
  11874. const float sin_sign = forward ? 1.0f : -1.0f;
  11875. const int32_t * pos = (const int32_t *) src1->data;
  11876. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11877. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11878. const int64_t p = pos[i2];
  11879. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11880. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11881. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11882. }
  11883. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11884. if (ir++ < ir0) continue;
  11885. if (ir > ir1) break;
  11886. float theta_base = (float)p;
  11887. if (is_glm) {
  11888. theta_base = MIN(p, n_ctx - 2);
  11889. float block_theta = MAX(p - (n_ctx - 2), 0);
  11890. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11891. const float cos_theta = cosf(theta_base);
  11892. const float sin_theta = sinf(theta_base) * sin_sign;
  11893. const float cos_block_theta = cosf(block_theta);
  11894. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11895. theta_base *= theta_scale;
  11896. block_theta *= theta_scale;
  11897. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11898. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11899. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11900. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11901. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11902. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11903. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11904. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11905. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11906. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11907. }
  11908. } else if (!is_neox) {
  11909. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11910. const float cos_theta = cache[i0 + 0];
  11911. const float sin_theta = cache[i0 + 1];
  11912. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11913. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11914. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11915. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11916. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11917. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11918. }
  11919. } else {
  11920. // TODO: this might be wrong for ne0 != n_dims - need double check
  11921. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11922. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11923. theta_base *= freq_scale;
  11924. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11925. if (ic < n_dims) {
  11926. const int64_t ib = 0;
  11927. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11928. float cur_rot = inv_ndims * ic - ib;
  11929. float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
  11930. float cos_theta, sin_theta;
  11931. rope_yarn(
  11932. theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11933. &cos_theta, &sin_theta
  11934. );
  11935. sin_theta *= sin_sign;
  11936. theta_base *= theta_scale;
  11937. const int64_t i0 = ib*n_dims + ic/2;
  11938. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11939. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11940. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11941. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11942. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11943. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11944. } else {
  11945. const int64_t i0 = ic;
  11946. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11947. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11948. dst_data[0] = src[0];
  11949. dst_data[1] = src[1];
  11950. }
  11951. }
  11952. }
  11953. }
  11954. }
  11955. }
  11956. }
  11957. static void ggml_compute_forward_rope(
  11958. const struct ggml_compute_params * params,
  11959. struct ggml_tensor * dst) {
  11960. const struct ggml_tensor * src0 = dst->src[0];
  11961. switch (src0->type) {
  11962. case GGML_TYPE_F16:
  11963. {
  11964. ggml_compute_forward_rope_f16(params, dst, true);
  11965. } break;
  11966. case GGML_TYPE_F32:
  11967. {
  11968. ggml_compute_forward_rope_f32(params, dst, true);
  11969. } break;
  11970. default:
  11971. {
  11972. GGML_ASSERT(false);
  11973. } break;
  11974. }
  11975. }
  11976. // ggml_compute_forward_rope_back
  11977. static void ggml_compute_forward_rope_back(
  11978. const struct ggml_compute_params * params,
  11979. struct ggml_tensor * dst) {
  11980. const struct ggml_tensor * src0 = dst->src[0];
  11981. switch (src0->type) {
  11982. case GGML_TYPE_F16:
  11983. {
  11984. ggml_compute_forward_rope_f16(params, dst, false);
  11985. } break;
  11986. case GGML_TYPE_F32:
  11987. {
  11988. ggml_compute_forward_rope_f32(params, dst, false);
  11989. } break;
  11990. default:
  11991. {
  11992. GGML_ASSERT(false);
  11993. } break;
  11994. }
  11995. }
  11996. // ggml_compute_forward_conv_transpose_1d
  11997. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11998. const struct ggml_compute_params * params,
  11999. struct ggml_tensor * dst) {
  12000. const struct ggml_tensor * src0 = dst->src[0];
  12001. const struct ggml_tensor * src1 = dst->src[1];
  12002. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12003. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12004. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12005. int64_t t0 = ggml_perf_time_us();
  12006. UNUSED(t0);
  12007. GGML_TENSOR_BINARY_OP_LOCALS
  12008. const int ith = params->ith;
  12009. const int nth = params->nth;
  12010. const int nk = ne00*ne01*ne02;
  12011. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12012. GGML_ASSERT(nb10 == sizeof(float));
  12013. if (params->type == GGML_TASK_TYPE_INIT) {
  12014. if (ith != 0) {
  12015. return;
  12016. }
  12017. memset(params->wdata, 0, params->wsize);
  12018. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12019. {
  12020. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12021. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12022. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12023. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12024. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12025. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12026. dst_data[i00*ne02 + i02] = src[i00];
  12027. }
  12028. }
  12029. }
  12030. }
  12031. // permute source data (src1) from (L x Cin) to (Cin x L)
  12032. {
  12033. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12034. ggml_fp16_t * dst_data = wdata;
  12035. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12036. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12037. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12038. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12039. }
  12040. }
  12041. }
  12042. // need to zero dst since we are accumulating into it
  12043. memset(dst->data, 0, ggml_nbytes(dst));
  12044. return;
  12045. }
  12046. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12047. return;
  12048. }
  12049. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12050. // total rows in dst
  12051. const int nr = ne1;
  12052. // rows per thread
  12053. const int dr = (nr + nth - 1)/nth;
  12054. // row range for this thread
  12055. const int ir0 = dr*ith;
  12056. const int ir1 = MIN(ir0 + dr, nr);
  12057. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12058. ggml_fp16_t * const wdata_src = wdata + nk;
  12059. for (int i1 = ir0; i1 < ir1; i1++) {
  12060. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12061. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12062. for (int i10 = 0; i10 < ne10; i10++) {
  12063. const int i1n = i10*ne11;
  12064. for (int i00 = 0; i00 < ne00; i00++) {
  12065. float v = 0;
  12066. ggml_vec_dot_f16(ne02, &v, 0,
  12067. (ggml_fp16_t *) wdata_src + i1n, 0,
  12068. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12069. dst_data[i10*s0 + i00] += v;
  12070. }
  12071. }
  12072. }
  12073. }
  12074. static void ggml_compute_forward_conv_transpose_1d_f32(
  12075. const struct ggml_compute_params * params,
  12076. struct ggml_tensor * dst) {
  12077. const struct ggml_tensor * src0 = dst->src[0];
  12078. const struct ggml_tensor * src1 = dst->src[1];
  12079. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12080. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12081. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12082. int64_t t0 = ggml_perf_time_us();
  12083. UNUSED(t0);
  12084. GGML_TENSOR_BINARY_OP_LOCALS
  12085. const int ith = params->ith;
  12086. const int nth = params->nth;
  12087. const int nk = ne00*ne01*ne02;
  12088. GGML_ASSERT(nb00 == sizeof(float));
  12089. GGML_ASSERT(nb10 == sizeof(float));
  12090. if (params->type == GGML_TASK_TYPE_INIT) {
  12091. if (ith != 0) {
  12092. return;
  12093. }
  12094. memset(params->wdata, 0, params->wsize);
  12095. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12096. {
  12097. float * const wdata = (float *) params->wdata + 0;
  12098. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12099. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12100. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12101. float * dst_data = wdata + i01*ne00*ne02;
  12102. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12103. dst_data[i00*ne02 + i02] = src[i00];
  12104. }
  12105. }
  12106. }
  12107. }
  12108. // prepare source data (src1)
  12109. {
  12110. float * const wdata = (float *) params->wdata + nk;
  12111. float * dst_data = wdata;
  12112. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12113. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12114. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12115. dst_data[i10*ne11 + i11] = src[i10];
  12116. }
  12117. }
  12118. }
  12119. // need to zero dst since we are accumulating into it
  12120. memset(dst->data, 0, ggml_nbytes(dst));
  12121. return;
  12122. }
  12123. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12124. return;
  12125. }
  12126. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12127. // total rows in dst
  12128. const int nr = ne1;
  12129. // rows per thread
  12130. const int dr = (nr + nth - 1)/nth;
  12131. // row range for this thread
  12132. const int ir0 = dr*ith;
  12133. const int ir1 = MIN(ir0 + dr, nr);
  12134. float * const wdata = (float *) params->wdata + 0;
  12135. float * const wdata_src = wdata + nk;
  12136. for (int i1 = ir0; i1 < ir1; i1++) {
  12137. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12138. float * wdata_kernel = wdata + i1*ne02*ne00;
  12139. for (int i10 = 0; i10 < ne10; i10++) {
  12140. const int i1n = i10*ne11;
  12141. for (int i00 = 0; i00 < ne00; i00++) {
  12142. float v = 0;
  12143. ggml_vec_dot_f32(ne02, &v, 0,
  12144. wdata_src + i1n, 0,
  12145. wdata_kernel + i00*ne02, 0, 1);
  12146. dst_data[i10*s0 + i00] += v;
  12147. }
  12148. }
  12149. }
  12150. }
  12151. static void ggml_compute_forward_conv_transpose_1d(
  12152. const struct ggml_compute_params * params,
  12153. struct ggml_tensor * dst) {
  12154. const struct ggml_tensor * src0 = dst->src[0];
  12155. switch (src0->type) {
  12156. case GGML_TYPE_F16:
  12157. {
  12158. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12159. } break;
  12160. case GGML_TYPE_F32:
  12161. {
  12162. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12163. } break;
  12164. default:
  12165. {
  12166. GGML_ASSERT(false);
  12167. } break;
  12168. }
  12169. }
  12170. // src0: kernel [OC, IC, KH, KW]
  12171. // src1: image [N, IC, IH, IW]
  12172. // dst: result [N, OH, OW, IC*KH*KW]
  12173. static void ggml_compute_forward_im2col_f32(
  12174. const struct ggml_compute_params * params,
  12175. struct ggml_tensor * dst) {
  12176. const struct ggml_tensor * src0 = dst->src[0];
  12177. const struct ggml_tensor * src1 = dst->src[1];
  12178. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12179. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12180. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12181. int64_t t0 = ggml_perf_time_us();
  12182. UNUSED(t0);
  12183. GGML_TENSOR_BINARY_OP_LOCALS;
  12184. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12185. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12186. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12187. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12188. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12189. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12190. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12191. const int ith = params->ith;
  12192. const int nth = params->nth;
  12193. const int64_t N = is_2D ? ne13 : ne12;
  12194. const int64_t IC = is_2D ? ne12 : ne11;
  12195. const int64_t IH = is_2D ? ne11 : 1;
  12196. const int64_t IW = ne10;
  12197. const int64_t KH = is_2D ? ne01 : 1;
  12198. const int64_t KW = ne00;
  12199. const int64_t OH = is_2D ? ne2 : 1;
  12200. const int64_t OW = ne1;
  12201. int ofs0 = is_2D ? nb13 : nb12;
  12202. int ofs1 = is_2D ? nb12 : nb11;
  12203. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12204. GGML_ASSERT(nb10 == sizeof(float));
  12205. if (params->type == GGML_TASK_TYPE_INIT) {
  12206. return;
  12207. }
  12208. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12209. return;
  12210. }
  12211. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12212. {
  12213. float * const wdata = (float *) dst->data;
  12214. for (int64_t in = 0; in < N; in++) {
  12215. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12216. for (int64_t iow = 0; iow < OW; iow++) {
  12217. for (int64_t iic = ith; iic < IC; iic += nth) {
  12218. // micro kernel
  12219. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12220. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12221. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12222. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12223. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12224. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12225. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12226. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12227. } else {
  12228. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12229. }
  12230. }
  12231. }
  12232. }
  12233. }
  12234. }
  12235. }
  12236. }
  12237. }
  12238. // src0: kernel [OC, IC, KH, KW]
  12239. // src1: image [N, IC, IH, IW]
  12240. // dst: result [N, OH, OW, IC*KH*KW]
  12241. static void ggml_compute_forward_im2col_f16(
  12242. const struct ggml_compute_params * params,
  12243. struct ggml_tensor * dst) {
  12244. const struct ggml_tensor * src0 = dst->src[0];
  12245. const struct ggml_tensor * src1 = dst->src[1];
  12246. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12247. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12248. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12249. int64_t t0 = ggml_perf_time_us();
  12250. UNUSED(t0);
  12251. GGML_TENSOR_BINARY_OP_LOCALS;
  12252. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12253. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12254. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12255. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12256. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12257. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12258. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12259. const int ith = params->ith;
  12260. const int nth = params->nth;
  12261. const int64_t N = is_2D ? ne13 : ne12;
  12262. const int64_t IC = is_2D ? ne12 : ne11;
  12263. const int64_t IH = is_2D ? ne11 : 1;
  12264. const int64_t IW = ne10;
  12265. const int64_t KH = is_2D ? ne01 : 1;
  12266. const int64_t KW = ne00;
  12267. const int64_t OH = is_2D ? ne2 : 1;
  12268. const int64_t OW = ne1;
  12269. int ofs0 = is_2D ? nb13 : nb12;
  12270. int ofs1 = is_2D ? nb12 : nb11;
  12271. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12272. GGML_ASSERT(nb10 == sizeof(float));
  12273. if (params->type == GGML_TASK_TYPE_INIT) {
  12274. return;
  12275. }
  12276. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12277. return;
  12278. }
  12279. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12280. {
  12281. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12282. for (int64_t in = 0; in < N; in++) {
  12283. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12284. for (int64_t iow = 0; iow < OW; iow++) {
  12285. for (int64_t iic = ith; iic < IC; iic += nth) {
  12286. // micro kernel
  12287. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12288. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12289. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12290. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12291. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12292. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12293. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12294. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12295. } else {
  12296. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12297. }
  12298. }
  12299. }
  12300. }
  12301. }
  12302. }
  12303. }
  12304. }
  12305. }
  12306. static void ggml_compute_forward_im2col(
  12307. const struct ggml_compute_params * params,
  12308. struct ggml_tensor * dst) {
  12309. switch (dst->type) {
  12310. case GGML_TYPE_F16:
  12311. {
  12312. ggml_compute_forward_im2col_f16(params, dst);
  12313. } break;
  12314. case GGML_TYPE_F32:
  12315. {
  12316. ggml_compute_forward_im2col_f32(params, dst);
  12317. } break;
  12318. default:
  12319. {
  12320. GGML_ASSERT(false);
  12321. } break;
  12322. }
  12323. }
  12324. // ggml_compute_forward_conv_transpose_2d
  12325. static void ggml_compute_forward_conv_transpose_2d(
  12326. const struct ggml_compute_params * params,
  12327. struct ggml_tensor * dst) {
  12328. const struct ggml_tensor * src0 = dst->src[0];
  12329. const struct ggml_tensor * src1 = dst->src[1];
  12330. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12331. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12332. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12333. int64_t t0 = ggml_perf_time_us();
  12334. UNUSED(t0);
  12335. GGML_TENSOR_BINARY_OP_LOCALS
  12336. const int ith = params->ith;
  12337. const int nth = params->nth;
  12338. const int nk = ne00*ne01*ne02*ne03;
  12339. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12340. GGML_ASSERT(nb10 == sizeof(float));
  12341. if (params->type == GGML_TASK_TYPE_INIT) {
  12342. if (ith != 0) {
  12343. return;
  12344. }
  12345. memset(params->wdata, 0, params->wsize);
  12346. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12347. {
  12348. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12349. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12350. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12351. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12352. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12353. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12354. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12355. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12356. }
  12357. }
  12358. }
  12359. }
  12360. }
  12361. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12362. {
  12363. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12364. for (int i12 = 0; i12 < ne12; i12++) {
  12365. for (int i11 = 0; i11 < ne11; i11++) {
  12366. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12367. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12368. for (int i10 = 0; i10 < ne10; i10++) {
  12369. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12370. }
  12371. }
  12372. }
  12373. }
  12374. memset(dst->data, 0, ggml_nbytes(dst));
  12375. return;
  12376. }
  12377. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12378. return;
  12379. }
  12380. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12381. // total patches in dst
  12382. const int np = ne2;
  12383. // patches per thread
  12384. const int dp = (np + nth - 1)/nth;
  12385. // patch range for this thread
  12386. const int ip0 = dp*ith;
  12387. const int ip1 = MIN(ip0 + dp, np);
  12388. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12389. ggml_fp16_t * const wdata_src = wdata + nk;
  12390. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12391. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12392. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12393. for (int i11 = 0; i11 < ne11; i11++) {
  12394. for (int i10 = 0; i10 < ne10; i10++) {
  12395. const int i1n = i11*ne10*ne12 + i10*ne12;
  12396. for (int i01 = 0; i01 < ne01; i01++) {
  12397. for (int i00 = 0; i00 < ne00; i00++) {
  12398. float v = 0;
  12399. ggml_vec_dot_f16(ne03, &v, 0,
  12400. wdata_src + i1n, 0,
  12401. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12402. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12403. }
  12404. }
  12405. }
  12406. }
  12407. }
  12408. }
  12409. // ggml_compute_forward_pool_1d_sk_p0
  12410. static void ggml_compute_forward_pool_1d_sk_p0(
  12411. const struct ggml_compute_params * params,
  12412. const enum ggml_op_pool op,
  12413. const int k,
  12414. struct ggml_tensor * dst) {
  12415. const struct ggml_tensor * src = dst->src[0];
  12416. assert(src->type == GGML_TYPE_F32);
  12417. assert(params->ith == 0);
  12418. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12419. return;
  12420. }
  12421. const char * cdata = (const char *)src->data;
  12422. const char * const data_end = cdata + ggml_nbytes(src);
  12423. float * drow = (float *)dst->data;
  12424. const int64_t rs = dst->ne[0];
  12425. while (cdata < data_end) {
  12426. const float * const srow = (const float *)cdata;
  12427. int j = 0;
  12428. for (int64_t i = 0; i < rs; ++i) {
  12429. switch (op) {
  12430. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12431. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12432. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12433. }
  12434. for (int ki = 0; ki < k; ++ki) {
  12435. switch (op) {
  12436. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12437. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12438. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12439. }
  12440. ++j;
  12441. }
  12442. switch (op) {
  12443. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12444. case GGML_OP_POOL_MAX: break;
  12445. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12446. }
  12447. }
  12448. cdata += src->nb[1];
  12449. drow += rs;
  12450. }
  12451. }
  12452. // ggml_compute_forward_pool_1d
  12453. static void ggml_compute_forward_pool_1d(
  12454. const struct ggml_compute_params * params,
  12455. struct ggml_tensor * dst) {
  12456. const int32_t * opts = (const int32_t *)dst->op_params;
  12457. enum ggml_op_pool op = opts[0];
  12458. const int k0 = opts[1];
  12459. const int s0 = opts[2];
  12460. const int p0 = opts[3];
  12461. GGML_ASSERT(p0 == 0); // padding not supported
  12462. GGML_ASSERT(k0 == s0); // only s = k supported
  12463. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12464. }
  12465. // ggml_compute_forward_pool_2d
  12466. static void ggml_compute_forward_pool_2d(
  12467. const struct ggml_compute_params * params,
  12468. struct ggml_tensor * dst) {
  12469. const struct ggml_tensor * src = dst->src[0];
  12470. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12471. GGML_ASSERT(params->ith == 0);
  12472. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12473. return;
  12474. }
  12475. const int32_t * opts = (const int32_t *)dst->op_params;
  12476. enum ggml_op_pool op = opts[0];
  12477. const int k0 = opts[1];
  12478. const int k1 = opts[2];
  12479. const int s0 = opts[3];
  12480. const int s1 = opts[4];
  12481. const int p0 = opts[5];
  12482. const int p1 = opts[6];
  12483. const char * cdata = (const char*)src->data;
  12484. const char * const data_end = cdata + ggml_nbytes(src);
  12485. const int64_t px = dst->ne[0];
  12486. const int64_t py = dst->ne[1];
  12487. const int64_t pa = px * py;
  12488. float * dplane = (float *)dst->data;
  12489. const int ka = k0 * k1;
  12490. const int offset0 = -p0;
  12491. const int offset1 = -p1;
  12492. while (cdata < data_end) {
  12493. for (int oy = 0; oy < py; ++oy) {
  12494. float * const drow = dplane + oy * px;
  12495. for (int ox = 0; ox < px; ++ox) {
  12496. float * const out = drow + ox;
  12497. switch (op) {
  12498. case GGML_OP_POOL_AVG: *out = 0; break;
  12499. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12500. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12501. }
  12502. const int ix = offset0 + ox * s0;
  12503. const int iy = offset1 + oy * s1;
  12504. for (int ky = 0; ky < k1; ++ky) {
  12505. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12506. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12507. for (int kx = 0; kx < k0; ++kx) {
  12508. int j = ix + kx;
  12509. if (j < 0 || j >= src->ne[0]) continue;
  12510. switch (op) {
  12511. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12512. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12513. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12514. }
  12515. }
  12516. }
  12517. switch (op) {
  12518. case GGML_OP_POOL_AVG: *out /= ka; break;
  12519. case GGML_OP_POOL_MAX: break;
  12520. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12521. }
  12522. }
  12523. }
  12524. cdata += src->nb[2];
  12525. dplane += pa;
  12526. }
  12527. }
  12528. // ggml_compute_forward_upscale
  12529. static void ggml_compute_forward_upscale_f32(
  12530. const struct ggml_compute_params * params,
  12531. struct ggml_tensor * dst) {
  12532. const struct ggml_tensor * src0 = dst->src[0];
  12533. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12534. return;
  12535. }
  12536. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12537. const int ith = params->ith;
  12538. const int nth = params->nth;
  12539. GGML_TENSOR_UNARY_OP_LOCALS
  12540. const float sf0 = (float)ne0/src0->ne[0];
  12541. const float sf1 = (float)ne1/src0->ne[1];
  12542. const float sf2 = (float)ne2/src0->ne[2];
  12543. const float sf3 = (float)ne3/src0->ne[3];
  12544. // TODO: optimize
  12545. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12546. const int64_t i03 = i3 / sf3;
  12547. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12548. const int64_t i02 = i2 / sf2;
  12549. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12550. const int64_t i01 = i1 / sf1;
  12551. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12552. const int64_t i00 = i0 / sf0;
  12553. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12554. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12555. *y = *x;
  12556. }
  12557. }
  12558. }
  12559. }
  12560. }
  12561. static void ggml_compute_forward_upscale(
  12562. const struct ggml_compute_params * params,
  12563. struct ggml_tensor * dst) {
  12564. const struct ggml_tensor * src0 = dst->src[0];
  12565. switch (src0->type) {
  12566. case GGML_TYPE_F32:
  12567. {
  12568. ggml_compute_forward_upscale_f32(params, dst);
  12569. } break;
  12570. default:
  12571. {
  12572. GGML_ASSERT(false);
  12573. } break;
  12574. }
  12575. }
  12576. // ggml_compute_forward_pad
  12577. static void ggml_compute_forward_pad_f32(
  12578. const struct ggml_compute_params * params,
  12579. struct ggml_tensor * dst) {
  12580. const struct ggml_tensor * src0 = dst->src[0];
  12581. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12582. return;
  12583. }
  12584. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12585. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12586. const int ith = params->ith;
  12587. const int nth = params->nth;
  12588. GGML_TENSOR_UNARY_OP_LOCALS
  12589. float * dst_ptr = (float *) dst->data;
  12590. // TODO: optimize
  12591. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12592. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12593. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12594. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12595. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12596. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12597. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12598. dst_ptr[dst_idx] = *src_ptr;
  12599. } else {
  12600. dst_ptr[dst_idx] = 0;
  12601. }
  12602. }
  12603. }
  12604. }
  12605. }
  12606. }
  12607. static void ggml_compute_forward_pad(
  12608. const struct ggml_compute_params * params,
  12609. struct ggml_tensor * dst) {
  12610. const struct ggml_tensor * src0 = dst->src[0];
  12611. switch (src0->type) {
  12612. case GGML_TYPE_F32:
  12613. {
  12614. ggml_compute_forward_pad_f32(params, dst);
  12615. } break;
  12616. default:
  12617. {
  12618. GGML_ASSERT(false);
  12619. } break;
  12620. }
  12621. }
  12622. // ggml_compute_forward_arange
  12623. static void ggml_compute_forward_arange_f32(
  12624. const struct ggml_compute_params * params,
  12625. struct ggml_tensor * dst) {
  12626. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12627. return;
  12628. }
  12629. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12630. const int ith = params->ith;
  12631. const int nth = params->nth;
  12632. const float start = ggml_get_op_params_f32(dst, 0);
  12633. const float stop = ggml_get_op_params_f32(dst, 1);
  12634. const float step = ggml_get_op_params_f32(dst, 2);
  12635. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12636. GGML_ASSERT(ggml_nelements(dst) == steps);
  12637. for (int64_t i = ith; i < steps; i+= nth) {
  12638. float value = start + step * i;
  12639. ((float *)dst->data)[i] = value;
  12640. }
  12641. }
  12642. static void ggml_compute_forward_arange(
  12643. const struct ggml_compute_params * params,
  12644. struct ggml_tensor * dst) {
  12645. switch (dst->type) {
  12646. case GGML_TYPE_F32:
  12647. {
  12648. ggml_compute_forward_arange_f32(params, dst);
  12649. } break;
  12650. default:
  12651. {
  12652. GGML_ASSERT(false);
  12653. } break;
  12654. }
  12655. }
  12656. static void ggml_compute_forward_timestep_embedding_f32(
  12657. const struct ggml_compute_params * params,
  12658. struct ggml_tensor * dst) {
  12659. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12660. return;
  12661. }
  12662. const struct ggml_tensor * src0 = dst->src[0];
  12663. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12664. const int ith = params->ith;
  12665. const int nth = params->nth;
  12666. GGML_TENSOR_UNARY_OP_LOCALS
  12667. const int dim = ggml_get_op_params_i32(dst, 0);
  12668. const int max_period = ggml_get_op_params_i32(dst, 1);
  12669. int half = dim / 2;
  12670. for (int64_t i = 0; i < ne00; i++) {
  12671. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12672. for (int64_t j = ith; j < half; j += nth) {
  12673. float timestep = ((float *)src0->data)[i];
  12674. float freq = (float)expf(-logf(max_period) * j / half);
  12675. float arg = timestep * freq;
  12676. embed_data[j] = cosf(arg);
  12677. embed_data[j + half] = sinf(arg);
  12678. }
  12679. if (dim % 2 != 0 && ith == 0) {
  12680. embed_data[dim] = 0.f;
  12681. }
  12682. }
  12683. }
  12684. static void ggml_compute_forward_timestep_embedding(
  12685. const struct ggml_compute_params * params,
  12686. struct ggml_tensor * dst) {
  12687. const struct ggml_tensor * src0 = dst->src[0];
  12688. switch (src0->type) {
  12689. case GGML_TYPE_F32:
  12690. {
  12691. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12692. } break;
  12693. default:
  12694. {
  12695. GGML_ASSERT(false);
  12696. } break;
  12697. }
  12698. }
  12699. // ggml_compute_forward_argsort
  12700. static void ggml_compute_forward_argsort_f32(
  12701. const struct ggml_compute_params * params,
  12702. struct ggml_tensor * dst) {
  12703. const struct ggml_tensor * src0 = dst->src[0];
  12704. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12705. return;
  12706. }
  12707. GGML_TENSOR_UNARY_OP_LOCALS
  12708. GGML_ASSERT(nb0 == sizeof(float));
  12709. const int ith = params->ith;
  12710. const int nth = params->nth;
  12711. const int64_t nr = ggml_nrows(src0);
  12712. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12713. for (int64_t i = ith; i < nr; i += nth) {
  12714. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12715. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12716. for (int64_t j = 0; j < ne0; j++) {
  12717. dst_data[j] = j;
  12718. }
  12719. // C doesn't have a functional sort, so we do a bubble sort instead
  12720. for (int64_t j = 0; j < ne0; j++) {
  12721. for (int64_t k = j + 1; k < ne0; k++) {
  12722. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12723. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12724. int32_t tmp = dst_data[j];
  12725. dst_data[j] = dst_data[k];
  12726. dst_data[k] = tmp;
  12727. }
  12728. }
  12729. }
  12730. }
  12731. }
  12732. static void ggml_compute_forward_argsort(
  12733. const struct ggml_compute_params * params,
  12734. struct ggml_tensor * dst) {
  12735. const struct ggml_tensor * src0 = dst->src[0];
  12736. switch (src0->type) {
  12737. case GGML_TYPE_F32:
  12738. {
  12739. ggml_compute_forward_argsort_f32(params, dst);
  12740. } break;
  12741. default:
  12742. {
  12743. GGML_ASSERT(false);
  12744. } break;
  12745. }
  12746. }
  12747. // ggml_compute_forward_flash_attn_ext
  12748. static void ggml_compute_forward_flash_attn_ext_f16(
  12749. const struct ggml_compute_params * params,
  12750. const struct ggml_tensor * q,
  12751. const struct ggml_tensor * k,
  12752. const struct ggml_tensor * v,
  12753. const struct ggml_tensor * mask,
  12754. struct ggml_tensor * dst) {
  12755. int64_t t0 = ggml_perf_time_us();
  12756. UNUSED(t0);
  12757. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12758. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12759. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12760. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12761. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12762. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12763. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12764. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12765. const int ith = params->ith;
  12766. const int nth = params->nth;
  12767. const int64_t D = neq0;
  12768. const int64_t N = neq1;
  12769. GGML_ASSERT(ne0 == D);
  12770. GGML_ASSERT(ne2 == N);
  12771. // input tensor rows must be contiguous
  12772. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12773. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12774. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12775. GGML_ASSERT(neq0 == D);
  12776. GGML_ASSERT(nek0 == D);
  12777. GGML_ASSERT(nev0 == D);
  12778. GGML_ASSERT(neq1 == N);
  12779. GGML_ASSERT(nev0 == D);
  12780. // dst cannot be transposed or permuted
  12781. GGML_ASSERT(nb0 == sizeof(float));
  12782. GGML_ASSERT(nb0 <= nb1);
  12783. GGML_ASSERT(nb1 <= nb2);
  12784. GGML_ASSERT(nb2 <= nb3);
  12785. // broadcast factors
  12786. const int64_t rk2 = neq2/nek2;
  12787. const int64_t rk3 = neq3/nek3;
  12788. const int64_t rv2 = neq2/nev2;
  12789. const int64_t rv3 = neq3/nev3;
  12790. if (params->type == GGML_TASK_TYPE_INIT) {
  12791. return;
  12792. }
  12793. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12794. return;
  12795. }
  12796. // parallelize by q rows using ggml_vec_dot_f32
  12797. // total rows in q
  12798. const int nr = neq1*neq2*neq3;
  12799. // rows per thread
  12800. const int dr = (nr + nth - 1)/nth;
  12801. // row range for this thread
  12802. const int ir0 = dr*ith;
  12803. const int ir1 = MIN(ir0 + dr, nr);
  12804. float scale = 1.0f;
  12805. float max_bias = 0.0f;
  12806. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12807. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12808. const uint32_t n_head = neq2;
  12809. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12810. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12811. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12812. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12813. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12814. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12815. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12816. // loop over n_batch and n_head
  12817. for (int ir = ir0; ir < ir1; ++ir) {
  12818. // q indices
  12819. const int iq3 = ir/(neq2*neq1);
  12820. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12821. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12822. const uint32_t h = iq2; // head index
  12823. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12824. float S = 0.0f; // sum
  12825. float M = -INFINITY; // maximum KQ value
  12826. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12827. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12828. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12829. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12830. if (v->type == GGML_TYPE_F16) {
  12831. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12832. } else {
  12833. memset(VKQ32, 0, D*sizeof(float));
  12834. }
  12835. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12836. // k indices
  12837. const int ik3 = iq3 / rk3;
  12838. const int ik2 = iq2 / rk2;
  12839. // v indices
  12840. const int iv3 = iq3 / rv3;
  12841. const int iv2 = iq2 / rv2;
  12842. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12843. q_to_vec_dot(pq, Q_q, D);
  12844. // online softmax / attention
  12845. // loop over n_kv and n_head_kv
  12846. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12847. for (int64_t ic = 0; ic < nek1; ++ic) {
  12848. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12849. if (mv == -INFINITY) {
  12850. continue;
  12851. }
  12852. float s; // KQ value
  12853. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12854. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12855. s = s*scale + mv; // scale KQ value and apply mask
  12856. const float Mold = M;
  12857. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12858. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12859. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12860. if (v->type== GGML_TYPE_F16) {
  12861. if (s > M) {
  12862. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12863. M = s;
  12864. ms = expf(Mold - M);
  12865. // V = V*expf(Mold - M)
  12866. ggml_vec_scale_f16(D, VKQ16, ms);
  12867. } else {
  12868. // no new maximum, ms == 1.0f, vs != 1.0f
  12869. vs = expf(s - M);
  12870. }
  12871. // V += v*expf(s - M)
  12872. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12873. } else {
  12874. if (s > M) {
  12875. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12876. M = s;
  12877. ms = expf(Mold - M);
  12878. // V = V*expf(Mold - M)
  12879. ggml_vec_scale_f32(D, VKQ32, ms);
  12880. } else {
  12881. // no new maximum, ms == 1.0f, vs != 1.0f
  12882. vs = expf(s - M);
  12883. }
  12884. v_to_float(v_data, V32, D);
  12885. // V += v*expf(s - M)
  12886. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12887. }
  12888. S = S*ms + vs; // scale and increment sum with partial sum
  12889. }
  12890. if (v->type == GGML_TYPE_F16) {
  12891. for (int64_t d = 0; d < D; ++d) {
  12892. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12893. }
  12894. }
  12895. // V /= S
  12896. const float S_inv = 1.0f/S;
  12897. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12898. // dst indices
  12899. const int i1 = iq1;
  12900. const int i2 = iq2;
  12901. const int i3 = iq3;
  12902. // original
  12903. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12904. // permute(0, 2, 1, 3)
  12905. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12906. }
  12907. }
  12908. static void ggml_compute_forward_flash_attn_ext(
  12909. const struct ggml_compute_params * params,
  12910. const struct ggml_tensor * q,
  12911. const struct ggml_tensor * k,
  12912. const struct ggml_tensor * v,
  12913. const struct ggml_tensor * mask,
  12914. struct ggml_tensor * dst) {
  12915. switch (dst->op_params[2]) {
  12916. case GGML_PREC_DEFAULT:
  12917. case GGML_PREC_F32:
  12918. {
  12919. // uses F32 accumulators
  12920. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12921. } break;
  12922. default:
  12923. {
  12924. GGML_ASSERT(false);
  12925. } break;
  12926. }
  12927. }
  12928. // ggml_compute_forward_flash_attn_back
  12929. static void ggml_compute_forward_flash_attn_back_f32(
  12930. const struct ggml_compute_params * params,
  12931. const bool masked,
  12932. struct ggml_tensor * dst) {
  12933. const struct ggml_tensor * q = dst->src[0];
  12934. const struct ggml_tensor * k = dst->src[1];
  12935. const struct ggml_tensor * v = dst->src[2];
  12936. const struct ggml_tensor * d = dst->src[3];
  12937. int64_t t0 = ggml_perf_time_us();
  12938. UNUSED(t0);
  12939. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12940. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12941. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12942. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12943. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12944. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12945. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12946. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12947. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12948. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12949. const int ith = params->ith;
  12950. const int nth = params->nth;
  12951. const int64_t D = neq0;
  12952. const int64_t N = neq1;
  12953. const int64_t P = nek1 - N;
  12954. const int64_t M = P + N;
  12955. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12956. const int mxDM = MAX(D, Mup);
  12957. // GGML_ASSERT(ne0 == D);
  12958. // GGML_ASSERT(ne1 == N);
  12959. GGML_ASSERT(P >= 0);
  12960. GGML_ASSERT(nbq0 == sizeof(float));
  12961. GGML_ASSERT(nbk0 == sizeof(float));
  12962. GGML_ASSERT(nbv0 == sizeof(float));
  12963. GGML_ASSERT(neq0 == D);
  12964. GGML_ASSERT(nek0 == D);
  12965. GGML_ASSERT(nev1 == D);
  12966. GGML_ASSERT(ned0 == D);
  12967. GGML_ASSERT(neq1 == N);
  12968. GGML_ASSERT(nek1 == N + P);
  12969. GGML_ASSERT(nev1 == D);
  12970. GGML_ASSERT(ned1 == N);
  12971. // dst cannot be transposed or permuted
  12972. GGML_ASSERT(nb0 == sizeof(float));
  12973. GGML_ASSERT(nb0 <= nb1);
  12974. GGML_ASSERT(nb1 <= nb2);
  12975. GGML_ASSERT(nb2 <= nb3);
  12976. if (params->type == GGML_TASK_TYPE_INIT) {
  12977. if (ith == 0) {
  12978. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12979. }
  12980. return;
  12981. }
  12982. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12983. return;
  12984. }
  12985. const int64_t elem_q = ggml_nelements(q);
  12986. const int64_t elem_k = ggml_nelements(k);
  12987. enum ggml_type result_type = dst->type;
  12988. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12989. const size_t tsize = ggml_type_size(result_type);
  12990. const size_t offs_q = 0;
  12991. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12992. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12993. void * grad_q = (char *) dst->data;
  12994. void * grad_k = (char *) dst->data + offs_k;
  12995. void * grad_v = (char *) dst->data + offs_v;
  12996. const size_t nbgq1 = nb0*neq0;
  12997. const size_t nbgq2 = nb0*neq0*neq1;
  12998. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12999. const size_t nbgk1 = nb0*nek0;
  13000. const size_t nbgk2 = nb0*nek0*nek1;
  13001. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13002. const size_t nbgv1 = nb0*nev0;
  13003. const size_t nbgv2 = nb0*nev0*nev1;
  13004. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13005. // parallelize by k rows using ggml_vec_dot_f32
  13006. // total rows in k
  13007. const int nr = nek2*nek3;
  13008. // rows per thread
  13009. const int dr = (nr + nth - 1)/nth;
  13010. // row range for this thread
  13011. const int ir0 = dr*ith;
  13012. const int ir1 = MIN(ir0 + dr, nr);
  13013. const float scale = 1.0f/sqrtf(D);
  13014. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13015. // how often k2 (and v2) is repeated in q2
  13016. int nrep = neq2/nek2;
  13017. for (int ir = ir0; ir < ir1; ++ir) {
  13018. // q indices
  13019. const int ik3 = ir/(nek2);
  13020. const int ik2 = ir - ik3*nek2;
  13021. const int iq3 = ik3;
  13022. const int id3 = ik3;
  13023. const int iv3 = ik3;
  13024. const int iv2 = ik2;
  13025. for (int irep = 0; irep < nrep; ++irep) {
  13026. const int iq2 = ik2 + irep*nek2;
  13027. const int id2 = iq2;
  13028. // (ik2 + irep*nek2) % nek2 == ik2
  13029. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13030. const int id1 = iq1;
  13031. // not sure about CACHE_LINE_SIZE_F32..
  13032. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13033. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13034. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13035. for (int i = M; i < Mup; ++i) {
  13036. S[i] = -INFINITY;
  13037. }
  13038. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13039. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13040. // k indices
  13041. const int ik1 = ic;
  13042. // S indices
  13043. const int i1 = ik1;
  13044. ggml_vec_dot_f32(neq0,
  13045. S + i1, 0,
  13046. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13047. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13048. }
  13049. // scale
  13050. ggml_vec_scale_f32(masked_begin, S, scale);
  13051. for (int64_t i = masked_begin; i < M; i++) {
  13052. S[i] = -INFINITY;
  13053. }
  13054. // softmax
  13055. // exclude known -INF S[..] values from max and loop
  13056. // dont forget to set their SM values to zero
  13057. {
  13058. float max = -INFINITY;
  13059. ggml_vec_max_f32(masked_begin, &max, S);
  13060. ggml_float sum = 0.0;
  13061. {
  13062. #ifdef GGML_SOFT_MAX_ACCELERATE
  13063. max = -max;
  13064. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13065. vvexpf(SM, SM, &Mup);
  13066. ggml_vec_sum_f32(Mup, &sum, SM);
  13067. #else
  13068. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13069. #endif
  13070. }
  13071. assert(sum > 0.0);
  13072. sum = 1.0/sum;
  13073. ggml_vec_scale_f32(masked_begin, SM, sum);
  13074. }
  13075. // step-by-step explanation
  13076. {
  13077. // forward-process shape grads from backward process
  13078. // parallel_for ik2,ik3:
  13079. // for irep:
  13080. // iq2 = ik2 + irep*nek2
  13081. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13082. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13083. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13084. // for iq1:
  13085. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13086. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13087. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13088. // S0 = -Inf [D,1,1,1]
  13089. // ~S1[i] = dot(kcur[:D,i], qcur)
  13090. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13091. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13092. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13093. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13094. // ~S5[i] = dot(vcur[:,i], S4)
  13095. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13096. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13097. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13098. // dst backward-/ grad[dst] = d
  13099. //
  13100. // output gradients with their dependencies:
  13101. //
  13102. // grad[kcur] = grad[S1].T @ qcur
  13103. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13104. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13105. // grad[S4] = grad[S5] @ vcur
  13106. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13107. // grad[qcur] = grad[S1] @ kcur
  13108. // grad[vcur] = grad[S5].T @ S4
  13109. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13110. //
  13111. // in post-order:
  13112. //
  13113. // S1 = qcur @ kcur.T
  13114. // S2 = S1 * scale
  13115. // S3 = diag_mask_inf(S2, P)
  13116. // S4 = softmax(S3)
  13117. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13118. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13119. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13120. // grad[qcur] = grad[S1] @ kcur
  13121. // grad[kcur] = grad[S1].T @ qcur
  13122. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13123. //
  13124. // using less variables (SM=S4):
  13125. //
  13126. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13127. // SM = softmax(S)
  13128. // S = d[:D,iq1,iq2,iq3] @ vcur
  13129. // dot_SM_gradSM = dot(SM, S)
  13130. // S = SM * (S - dot(SM, S))
  13131. // S = diag_mask_zero(S, P) * scale
  13132. //
  13133. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13134. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13135. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13136. }
  13137. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13138. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13139. // for ic:
  13140. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13141. // exclude known future zero S[..] values from operation
  13142. ggml_vec_set_f32(masked_begin, S, 0);
  13143. for (int64_t ic = 0; ic < D; ++ic) {
  13144. ggml_vec_mad_f32(masked_begin,
  13145. S,
  13146. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13147. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13148. }
  13149. // S = SM * (S - dot(SM, S))
  13150. float dot_SM_gradSM = 0;
  13151. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13152. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13153. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13154. // S = diag_mask_zero(S, P) * scale
  13155. // already done by above ggml_vec_set_f32
  13156. // exclude known zero S[..] values from operation
  13157. ggml_vec_scale_f32(masked_begin, S, scale);
  13158. // S shape [M,1]
  13159. // SM shape [M,1]
  13160. // kcur shape [D,M]
  13161. // qcur shape [D,1]
  13162. // vcur shape [M,D]
  13163. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13164. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13165. // for ic:
  13166. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13167. // exclude known zero S[..] values from loop
  13168. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13169. ggml_vec_mad_f32(D,
  13170. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13171. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13172. S[ic]);
  13173. }
  13174. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13175. // for ic:
  13176. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13177. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13178. // exclude known zero S[..] values from loop
  13179. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13180. ggml_vec_mad_f32(D,
  13181. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13182. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13183. S[ic]);
  13184. }
  13185. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13186. // for ic:
  13187. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13188. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13189. // exclude known zero SM[..] values from mad
  13190. for (int64_t ic = 0; ic < D; ++ic) {
  13191. ggml_vec_mad_f32(masked_begin,
  13192. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13193. SM,
  13194. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13195. }
  13196. }
  13197. }
  13198. }
  13199. }
  13200. static void ggml_compute_forward_flash_attn_back(
  13201. const struct ggml_compute_params * params,
  13202. const bool masked,
  13203. struct ggml_tensor * dst) {
  13204. const struct ggml_tensor * q = dst->src[0];
  13205. switch (q->type) {
  13206. case GGML_TYPE_F32:
  13207. {
  13208. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13209. } break;
  13210. default:
  13211. {
  13212. GGML_ASSERT(false);
  13213. } break;
  13214. }
  13215. }
  13216. // ggml_compute_forward_ssm_conv
  13217. static void ggml_compute_forward_ssm_conv_f32(
  13218. const struct ggml_compute_params * params,
  13219. struct ggml_tensor * dst) {
  13220. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13221. return;
  13222. }
  13223. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13224. const struct ggml_tensor * src1 = dst->src[1]; // x
  13225. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13226. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13227. const int ith = params->ith;
  13228. const int nth = params->nth;
  13229. const int nc = src2->ne[0]; // d_conv
  13230. const int nr = src0->ne[1]; // d_inner
  13231. const int n_t = src1->ne[1]; // n_tokens
  13232. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13233. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13234. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13235. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13236. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13237. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13238. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13239. // for use with the destination state offset between sequences
  13240. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13241. // rows per thread
  13242. const int dr = (nr + nth - 1)/nth;
  13243. // row range for this thread
  13244. const int ir0 = dr*ith;
  13245. const int ir1 = MIN(ir0 + dr, nr);
  13246. const int ir = ir1 - ir0;
  13247. if (n_kv > 1) {
  13248. // multiple sequences means it's hard to know when it's the first time a state is read,
  13249. // so copy them all over to the destination, just to be sure.
  13250. for (int i3 = 0; i3 < n_kv; ++i3) {
  13251. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13252. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13253. // can't use memcpy because of d_conv vs d_conv - 1
  13254. for (int i1 = 0; i1 < ir; ++i1) {
  13255. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13256. // copy s0 to last (d_conv - 1) columns of s
  13257. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13258. }
  13259. }
  13260. }
  13261. }
  13262. for (int i2 = 0; i2 < n_t; ++i2) {
  13263. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13264. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13265. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13266. float * s0; // {d_conv - 1, d_inner, n_kv}
  13267. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13268. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13269. int ne0s0;
  13270. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13271. // avoid needing to copy the state for the first token
  13272. if (i2 == 0) {
  13273. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13274. ne0s0 = src0->ne[0];
  13275. } else {
  13276. // the source is the last (d_conv - 1) columns of the destination
  13277. s0 = s + 1;
  13278. ne0s0 = nc;
  13279. }
  13280. // d_inner
  13281. for (int i1 = 0; i1 < ir; ++i1) {
  13282. // shift state left
  13283. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13284. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13285. }
  13286. // insert x on the last column
  13287. s[(nc - 1) + i1*nc] = x0[i1];
  13288. }
  13289. // handle copies when there are multiple output states
  13290. for (int i3 = 1; i3 < n_kv; ++i3) {
  13291. int32_t seq = sq[i3];
  13292. if (0 <= seq && seq < n_kv) {
  13293. float * s1 = s + (seq - sq[0])*nc*nr;
  13294. memcpy(s1, s, nc*ir*sizeof(float));
  13295. } else {
  13296. // stop at negative or too big seq_ids
  13297. break;
  13298. }
  13299. }
  13300. // it seems a little faster when this is separate from the state shift
  13301. for (int i1 = 0; i1 < ir; ++i1) {
  13302. // rowwise dot product
  13303. float sumf = 0.0f;
  13304. for (int i0 = 0; i0 < nc; ++i0) {
  13305. int i = i0 + i1*nc;
  13306. sumf += s[i] * c[i];
  13307. }
  13308. x[i1] = sumf;
  13309. }
  13310. }
  13311. }
  13312. static void ggml_compute_forward_ssm_conv(
  13313. const struct ggml_compute_params * params,
  13314. struct ggml_tensor * dst) {
  13315. switch (dst->src[0]->type) {
  13316. case GGML_TYPE_F32:
  13317. {
  13318. ggml_compute_forward_ssm_conv_f32(params, dst);
  13319. } break;
  13320. default:
  13321. {
  13322. GGML_ASSERT(false);
  13323. } break;
  13324. }
  13325. }
  13326. // ggml_compute_forward_ssm_scan
  13327. static void ggml_compute_forward_ssm_scan_f32(
  13328. const struct ggml_compute_params * params,
  13329. struct ggml_tensor * dst) {
  13330. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13331. return;
  13332. }
  13333. const struct ggml_tensor * src0 = dst->src[0]; // s
  13334. const struct ggml_tensor * src1 = dst->src[1]; // x
  13335. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13336. const struct ggml_tensor * src3 = dst->src[3]; // A
  13337. const struct ggml_tensor * src4 = dst->src[4]; // B
  13338. const struct ggml_tensor * src5 = dst->src[5]; // C
  13339. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13340. const int ith = params->ith;
  13341. const int nth = params->nth;
  13342. const int64_t nc = src0->ne[0]; // d_state
  13343. const int64_t nr = src0->ne[1]; // d_inner
  13344. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13345. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13346. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13347. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13348. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13349. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13350. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13351. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13352. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13353. // required for the dot product between s and C, and when copying the states
  13354. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13355. // required for per-sequence offsets for states
  13356. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13357. // required to get correct offset for state destination (i.e. src1->nb[2])
  13358. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13359. // rows per thread
  13360. const int dr = (nr + nth - 1)/nth;
  13361. // row range for this thread
  13362. const int ir0 = dr*ith;
  13363. const int ir1 = MIN(ir0 + dr, nr);
  13364. const int ir = ir1 - ir0;
  13365. if (n_kv > 1) {
  13366. // it's hard to know if the source states have already been copied
  13367. // when there are multiple, so copy them already.
  13368. for (int i3 = 0; i3 < n_kv; ++i3) {
  13369. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13370. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13371. memcpy(s, s0, nc*ir*sizeof(float));
  13372. }
  13373. }
  13374. for (int i2 = 0; i2 < n_t; ++i2) {
  13375. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13376. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13377. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13378. float * s0;
  13379. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13380. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13381. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13382. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13383. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13384. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13385. // avoid needing to copy the state for the first token
  13386. if (i2 == 0) {
  13387. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13388. } else {
  13389. // otherwise the source is the same as the destination
  13390. s0 = s;
  13391. }
  13392. // d_inner
  13393. for (int i1 = 0; i1 < ir; ++i1) {
  13394. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13395. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13396. float x_dt = x[i1] * dt_soft_plus;
  13397. float sumf = 0.0f;
  13398. // d_state
  13399. for (int i0 = 0; i0 < nc; ++i0) {
  13400. int i = i0 + i1*nc;
  13401. // state = prev_state * dA + dB * x
  13402. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13403. // y = rowwise_dotprod(state, C)
  13404. sumf += state * C[i0];
  13405. s[i] = state;
  13406. }
  13407. y[i1] = sumf;
  13408. }
  13409. // handle copies when there are multiple output states
  13410. for (int i3 = 1; i3 < n_kv; ++i3) {
  13411. int32_t seq = sq[i3];
  13412. if (0 <= seq && seq < n_kv) {
  13413. float * s1 = s + (seq - sq[0])*nc*nr;
  13414. memcpy(s1, s, nc*ir*sizeof(float));
  13415. } else {
  13416. // stop at negative or too big seq_ids
  13417. break;
  13418. }
  13419. }
  13420. }
  13421. }
  13422. static void ggml_compute_forward_ssm_scan(
  13423. const struct ggml_compute_params * params,
  13424. struct ggml_tensor * dst) {
  13425. switch (dst->src[0]->type) {
  13426. case GGML_TYPE_F32:
  13427. {
  13428. ggml_compute_forward_ssm_scan_f32(params, dst);
  13429. } break;
  13430. default:
  13431. {
  13432. GGML_ASSERT(false);
  13433. } break;
  13434. }
  13435. }
  13436. // ggml_compute_forward_win_part
  13437. static void ggml_compute_forward_win_part_f32(
  13438. const struct ggml_compute_params * params,
  13439. struct ggml_tensor * dst) {
  13440. const struct ggml_tensor * src0 = dst->src[0];
  13441. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13442. return;
  13443. }
  13444. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13445. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13446. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13447. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13448. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13449. assert(ne00 == ne0);
  13450. assert(ne3 == nep0*nep1);
  13451. // TODO: optimize / multi-thread
  13452. for (int py = 0; py < nep1; ++py) {
  13453. for (int px = 0; px < nep0; ++px) {
  13454. const int64_t i3 = py*nep0 + px;
  13455. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13456. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13457. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13458. const int64_t i02 = py*w + i2;
  13459. const int64_t i01 = px*w + i1;
  13460. const int64_t i00 = i0;
  13461. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13462. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13463. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13464. ((float *) dst->data)[i] = 0.0f;
  13465. } else {
  13466. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13467. }
  13468. }
  13469. }
  13470. }
  13471. }
  13472. }
  13473. }
  13474. static void ggml_compute_forward_win_part(
  13475. const struct ggml_compute_params * params,
  13476. struct ggml_tensor * dst) {
  13477. const struct ggml_tensor * src0 = dst->src[0];
  13478. switch (src0->type) {
  13479. case GGML_TYPE_F32:
  13480. {
  13481. ggml_compute_forward_win_part_f32(params, dst);
  13482. } break;
  13483. default:
  13484. {
  13485. GGML_ASSERT(false);
  13486. } break;
  13487. }
  13488. }
  13489. // ggml_compute_forward_win_unpart
  13490. static void ggml_compute_forward_win_unpart_f32(
  13491. const struct ggml_compute_params * params,
  13492. struct ggml_tensor * dst) {
  13493. const struct ggml_tensor * src0 = dst->src[0];
  13494. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13495. return;
  13496. }
  13497. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13498. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13499. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13500. // padding
  13501. const int px = (w - ne1%w)%w;
  13502. //const int py = (w - ne2%w)%w;
  13503. const int npx = (px + ne1)/w;
  13504. //const int npy = (py + ne2)/w;
  13505. assert(ne0 == ne00);
  13506. // TODO: optimize / multi-thread
  13507. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13508. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13509. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13510. const int ip2 = i2/w;
  13511. const int ip1 = i1/w;
  13512. const int64_t i02 = i2%w;
  13513. const int64_t i01 = i1%w;
  13514. const int64_t i00 = i0;
  13515. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13516. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13517. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13518. }
  13519. }
  13520. }
  13521. }
  13522. static void ggml_compute_forward_win_unpart(
  13523. const struct ggml_compute_params * params,
  13524. struct ggml_tensor * dst) {
  13525. const struct ggml_tensor * src0 = dst->src[0];
  13526. switch (src0->type) {
  13527. case GGML_TYPE_F32:
  13528. {
  13529. ggml_compute_forward_win_unpart_f32(params, dst);
  13530. } break;
  13531. default:
  13532. {
  13533. GGML_ASSERT(false);
  13534. } break;
  13535. }
  13536. }
  13537. //gmml_compute_forward_unary
  13538. static void ggml_compute_forward_unary(
  13539. const struct ggml_compute_params * params,
  13540. struct ggml_tensor * dst) {
  13541. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13542. switch (op) {
  13543. case GGML_UNARY_OP_ABS:
  13544. {
  13545. ggml_compute_forward_abs(params, dst);
  13546. } break;
  13547. case GGML_UNARY_OP_SGN:
  13548. {
  13549. ggml_compute_forward_sgn(params, dst);
  13550. } break;
  13551. case GGML_UNARY_OP_NEG:
  13552. {
  13553. ggml_compute_forward_neg(params, dst);
  13554. } break;
  13555. case GGML_UNARY_OP_STEP:
  13556. {
  13557. ggml_compute_forward_step(params, dst);
  13558. } break;
  13559. case GGML_UNARY_OP_TANH:
  13560. {
  13561. ggml_compute_forward_tanh(params, dst);
  13562. } break;
  13563. case GGML_UNARY_OP_ELU:
  13564. {
  13565. ggml_compute_forward_elu(params, dst);
  13566. } break;
  13567. case GGML_UNARY_OP_RELU:
  13568. {
  13569. ggml_compute_forward_relu(params, dst);
  13570. } break;
  13571. case GGML_UNARY_OP_SIGMOID:
  13572. {
  13573. ggml_compute_forward_sigmoid(params, dst);
  13574. } break;
  13575. case GGML_UNARY_OP_GELU:
  13576. {
  13577. ggml_compute_forward_gelu(params, dst);
  13578. } break;
  13579. case GGML_UNARY_OP_GELU_QUICK:
  13580. {
  13581. ggml_compute_forward_gelu_quick(params, dst);
  13582. } break;
  13583. case GGML_UNARY_OP_SILU:
  13584. {
  13585. ggml_compute_forward_silu(params, dst);
  13586. } break;
  13587. case GGML_UNARY_OP_HARDSWISH:
  13588. {
  13589. ggml_compute_forward_hardswish(params, dst);
  13590. } break;
  13591. case GGML_UNARY_OP_HARDSIGMOID:
  13592. {
  13593. ggml_compute_forward_hardsigmoid(params, dst);
  13594. } break;
  13595. default:
  13596. {
  13597. GGML_ASSERT(false);
  13598. } break;
  13599. }
  13600. }
  13601. // ggml_compute_forward_get_rel_pos
  13602. static void ggml_compute_forward_get_rel_pos_f16(
  13603. const struct ggml_compute_params * params,
  13604. struct ggml_tensor * dst) {
  13605. const struct ggml_tensor * src0 = dst->src[0];
  13606. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13607. return;
  13608. }
  13609. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13610. GGML_TENSOR_UNARY_OP_LOCALS
  13611. const int64_t w = ne1;
  13612. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13613. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13614. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13615. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13616. const int64_t pos = (w - i1 - 1) + i2;
  13617. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13618. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13619. }
  13620. }
  13621. }
  13622. }
  13623. static void ggml_compute_forward_get_rel_pos(
  13624. const struct ggml_compute_params * params,
  13625. struct ggml_tensor * dst) {
  13626. const struct ggml_tensor * src0 = dst->src[0];
  13627. switch (src0->type) {
  13628. case GGML_TYPE_F16:
  13629. case GGML_TYPE_BF16:
  13630. {
  13631. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13632. } break;
  13633. default:
  13634. {
  13635. GGML_ASSERT(false);
  13636. } break;
  13637. }
  13638. }
  13639. // ggml_compute_forward_add_rel_pos
  13640. static void ggml_compute_forward_add_rel_pos_f32(
  13641. const struct ggml_compute_params * params,
  13642. struct ggml_tensor * dst) {
  13643. const struct ggml_tensor * src0 = dst->src[0];
  13644. const struct ggml_tensor * src1 = dst->src[1];
  13645. const struct ggml_tensor * src2 = dst->src[2];
  13646. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13647. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13648. if (params->ith != 0) {
  13649. return;
  13650. }
  13651. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13652. return;
  13653. }
  13654. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13655. return;
  13656. }
  13657. int64_t t0 = ggml_perf_time_us();
  13658. UNUSED(t0);
  13659. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13660. float * src1_data = (float *) src1->data;
  13661. float * src2_data = (float *) src2->data;
  13662. float * dst_data = (float *) dst->data;
  13663. const int64_t ne10 = src1->ne[0];
  13664. const int64_t ne11 = src1->ne[1];
  13665. const int64_t ne12 = src1->ne[2];
  13666. const int64_t ne13 = src1->ne[3];
  13667. const int ith = params->ith;
  13668. const int nth = params->nth;
  13669. // total patches in dst
  13670. const int np = ne13;
  13671. // patches per thread
  13672. const int dp = (np + nth - 1)/nth;
  13673. // patch range for this thread
  13674. const int ip0 = dp*ith;
  13675. const int ip1 = MIN(ip0 + dp, np);
  13676. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13677. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13678. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13679. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13680. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13681. const int64_t jp0 = jp1 + i10;
  13682. const float src1_e = src1_data[jp0];
  13683. const float src2_e = src2_data[jp0];
  13684. const int64_t jdh = jp0 * ne10;
  13685. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13686. for (int64_t j = 0; j < ne10; ++j) {
  13687. dst_data[jdh + j ] += src2_e;
  13688. dst_data[jdw + j*ne10] += src1_e;
  13689. }
  13690. }
  13691. }
  13692. }
  13693. }
  13694. }
  13695. static void ggml_compute_forward_add_rel_pos(
  13696. const struct ggml_compute_params * params,
  13697. struct ggml_tensor * dst) {
  13698. const struct ggml_tensor * src0 = dst->src[0];
  13699. switch (src0->type) {
  13700. case GGML_TYPE_F32:
  13701. {
  13702. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13703. } break;
  13704. default:
  13705. {
  13706. GGML_ASSERT(false);
  13707. } break;
  13708. }
  13709. }
  13710. // ggml_compute_forward_map_unary
  13711. static void ggml_compute_forward_map_unary_f32(
  13712. const struct ggml_compute_params * params,
  13713. struct ggml_tensor * dst,
  13714. const ggml_unary_op_f32_t fun) {
  13715. const struct ggml_tensor * src0 = dst->src[0];
  13716. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13717. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13718. return;
  13719. }
  13720. const int n = ggml_nrows(src0);
  13721. const int nc = src0->ne[0];
  13722. assert( dst->nb[0] == sizeof(float));
  13723. assert(src0->nb[0] == sizeof(float));
  13724. for (int i = 0; i < n; i++) {
  13725. fun(nc,
  13726. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13727. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13728. }
  13729. }
  13730. static void ggml_compute_forward_map_unary(
  13731. const struct ggml_compute_params * params,
  13732. struct ggml_tensor * dst,
  13733. const ggml_unary_op_f32_t fun) {
  13734. const struct ggml_tensor * src0 = dst->src[0];
  13735. switch (src0->type) {
  13736. case GGML_TYPE_F32:
  13737. {
  13738. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13739. } break;
  13740. default:
  13741. {
  13742. GGML_ASSERT(false);
  13743. } break;
  13744. }
  13745. }
  13746. // ggml_compute_forward_map_binary
  13747. static void ggml_compute_forward_map_binary_f32(
  13748. const struct ggml_compute_params * params,
  13749. struct ggml_tensor * dst,
  13750. const ggml_binary_op_f32_t fun) {
  13751. const struct ggml_tensor * src0 = dst->src[0];
  13752. const struct ggml_tensor * src1 = dst->src[1];
  13753. assert(params->ith == 0);
  13754. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13755. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13756. return;
  13757. }
  13758. const int n = ggml_nrows(src0);
  13759. const int nc = src0->ne[0];
  13760. assert( dst->nb[0] == sizeof(float));
  13761. assert(src0->nb[0] == sizeof(float));
  13762. assert(src1->nb[0] == sizeof(float));
  13763. for (int i = 0; i < n; i++) {
  13764. fun(nc,
  13765. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13766. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13767. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13768. }
  13769. }
  13770. static void ggml_compute_forward_map_binary(
  13771. const struct ggml_compute_params * params,
  13772. struct ggml_tensor * dst,
  13773. const ggml_binary_op_f32_t fun) {
  13774. const struct ggml_tensor * src0 = dst->src[0];
  13775. switch (src0->type) {
  13776. case GGML_TYPE_F32:
  13777. {
  13778. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13779. } break;
  13780. default:
  13781. {
  13782. GGML_ASSERT(false);
  13783. } break;
  13784. }
  13785. }
  13786. // ggml_compute_forward_map_custom1
  13787. static void ggml_compute_forward_map_custom1_f32(
  13788. const struct ggml_compute_params * params,
  13789. struct ggml_tensor * dst,
  13790. const ggml_custom1_op_f32_t fun) {
  13791. const struct ggml_tensor * a = dst->src[0];
  13792. assert(params->ith == 0);
  13793. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13794. return;
  13795. }
  13796. fun(dst, a);
  13797. }
  13798. // ggml_compute_forward_map_custom2
  13799. static void ggml_compute_forward_map_custom2_f32(
  13800. const struct ggml_compute_params * params,
  13801. struct ggml_tensor * dst,
  13802. const ggml_custom2_op_f32_t fun) {
  13803. const struct ggml_tensor * a = dst->src[0];
  13804. const struct ggml_tensor * b = dst->src[1];
  13805. assert(params->ith == 0);
  13806. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13807. return;
  13808. }
  13809. fun(dst, a, b);
  13810. }
  13811. // ggml_compute_forward_map_custom3
  13812. static void ggml_compute_forward_map_custom3_f32(
  13813. const struct ggml_compute_params * params,
  13814. struct ggml_tensor * dst,
  13815. const ggml_custom3_op_f32_t fun) {
  13816. const struct ggml_tensor * a = dst->src[0];
  13817. const struct ggml_tensor * b = dst->src[1];
  13818. const struct ggml_tensor * c = dst->src[1];
  13819. assert(params->ith == 0);
  13820. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13821. return;
  13822. }
  13823. fun(dst, a, b, c);
  13824. }
  13825. // ggml_compute_forward_map_custom1
  13826. static void ggml_compute_forward_map_custom1(
  13827. const struct ggml_compute_params * params,
  13828. struct ggml_tensor * dst) {
  13829. const struct ggml_tensor * a = dst->src[0];
  13830. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13831. return;
  13832. }
  13833. struct ggml_map_custom1_op_params p;
  13834. memcpy(&p, dst->op_params, sizeof(p));
  13835. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13836. }
  13837. // ggml_compute_forward_map_custom2
  13838. static void ggml_compute_forward_map_custom2(
  13839. const struct ggml_compute_params * params,
  13840. struct ggml_tensor * dst) {
  13841. const struct ggml_tensor * a = dst->src[0];
  13842. const struct ggml_tensor * b = dst->src[1];
  13843. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13844. return;
  13845. }
  13846. struct ggml_map_custom2_op_params p;
  13847. memcpy(&p, dst->op_params, sizeof(p));
  13848. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13849. }
  13850. // ggml_compute_forward_map_custom3
  13851. static void ggml_compute_forward_map_custom3(
  13852. const struct ggml_compute_params * params,
  13853. struct ggml_tensor * dst) {
  13854. const struct ggml_tensor * a = dst->src[0];
  13855. const struct ggml_tensor * b = dst->src[1];
  13856. const struct ggml_tensor * c = dst->src[2];
  13857. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13858. return;
  13859. }
  13860. struct ggml_map_custom3_op_params p;
  13861. memcpy(&p, dst->op_params, sizeof(p));
  13862. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13863. }
  13864. // ggml_compute_forward_cross_entropy_loss
  13865. static void ggml_compute_forward_cross_entropy_loss_f32(
  13866. const struct ggml_compute_params * params,
  13867. struct ggml_tensor * dst) {
  13868. const struct ggml_tensor * src0 = dst->src[0];
  13869. const struct ggml_tensor * src1 = dst->src[1];
  13870. GGML_ASSERT(ggml_is_contiguous(src0));
  13871. GGML_ASSERT(ggml_is_contiguous(src1));
  13872. GGML_ASSERT(ggml_is_scalar(dst));
  13873. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13874. const int ith = params->ith;
  13875. const int nth = params->nth;
  13876. float * sums = (float *) params->wdata;
  13877. // TODO: handle transposed/permuted matrices
  13878. const int nc = src0->ne[0];
  13879. const int nr = ggml_nrows(src0);
  13880. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13881. if (params->type == GGML_TASK_TYPE_INIT) {
  13882. if (ith == 0) {
  13883. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13884. }
  13885. return;
  13886. }
  13887. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13888. if (ith == 0) {
  13889. float * dp = (float *) dst->data;
  13890. ggml_vec_sum_f32(nth, dp, sums);
  13891. dp[0] *= -1.0f / (float) nr;
  13892. }
  13893. return;
  13894. }
  13895. const double eps = 1e-9;
  13896. // rows per thread
  13897. const int dr = (nr + nth - 1)/nth;
  13898. // row range for this thread
  13899. const int ir0 = dr*ith;
  13900. const int ir1 = MIN(ir0 + dr, nr);
  13901. for (int i1 = ir0; i1 < ir1; i1++) {
  13902. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13903. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13904. float * st = ((float *) params->wdata) + nth + ith*nc;
  13905. #ifndef NDEBUG
  13906. for (int i = 0; i < nc; ++i) {
  13907. //printf("p[%d] = %f\n", i, p[i]);
  13908. assert(!isnan(s0[i]));
  13909. assert(!isnan(s1[i]));
  13910. }
  13911. #endif
  13912. // soft_max
  13913. float max = -INFINITY;
  13914. ggml_vec_max_f32(nc, &max, s0);
  13915. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13916. assert(sum > 0.0);
  13917. sum = (1.0 - eps) / sum;
  13918. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13919. ggml_vec_scale_f32(nc, st, sum);
  13920. ggml_vec_add1_f32(nc, st, st, eps);
  13921. ggml_vec_log_f32(nc, st, st);
  13922. ggml_vec_mul_f32(nc, st, st, s1);
  13923. float st_sum = 0;
  13924. ggml_vec_sum_f32(nc, &st_sum, st);
  13925. sums[ith] += st_sum;
  13926. #ifndef NDEBUG
  13927. for (int i = 0; i < nc; ++i) {
  13928. assert(!isnan(st[i]));
  13929. assert(!isinf(st[i]));
  13930. }
  13931. #endif
  13932. }
  13933. }
  13934. static void ggml_compute_forward_cross_entropy_loss(
  13935. const struct ggml_compute_params * params,
  13936. struct ggml_tensor * dst) {
  13937. const struct ggml_tensor * src0 = dst->src[0];
  13938. switch (src0->type) {
  13939. case GGML_TYPE_F32:
  13940. {
  13941. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13942. } break;
  13943. default:
  13944. {
  13945. GGML_ASSERT(false);
  13946. } break;
  13947. }
  13948. }
  13949. // ggml_compute_forward_cross_entropy_loss_back
  13950. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13951. const struct ggml_compute_params * params,
  13952. struct ggml_tensor * dst) {
  13953. const struct ggml_tensor * src0 = dst->src[0];
  13954. const struct ggml_tensor * src1 = dst->src[1];
  13955. const struct ggml_tensor * opt0 = dst->src[2];
  13956. GGML_ASSERT(ggml_is_contiguous(dst));
  13957. GGML_ASSERT(ggml_is_contiguous(src0));
  13958. GGML_ASSERT(ggml_is_contiguous(src1));
  13959. GGML_ASSERT(ggml_is_contiguous(opt0));
  13960. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13961. const int64_t ith = params->ith;
  13962. const int64_t nth = params->nth;
  13963. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13964. return;
  13965. }
  13966. const double eps = 1e-9;
  13967. // TODO: handle transposed/permuted matrices
  13968. const int64_t nc = src0->ne[0];
  13969. const int64_t nr = ggml_nrows(src0);
  13970. // rows per thread
  13971. const int64_t dr = (nr + nth - 1)/nth;
  13972. // row range for this thread
  13973. const int64_t ir0 = dr*ith;
  13974. const int64_t ir1 = MIN(ir0 + dr, nr);
  13975. float * d = (float *) opt0->data;
  13976. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13977. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13978. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13979. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13980. #ifndef NDEBUG
  13981. for (int i = 0; i < nc; ++i) {
  13982. //printf("p[%d] = %f\n", i, p[i]);
  13983. assert(!isnan(s0[i]));
  13984. assert(!isnan(s1[i]));
  13985. }
  13986. #endif
  13987. // soft_max
  13988. float max = -INFINITY;
  13989. ggml_vec_max_f32(nc, &max, s0);
  13990. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13991. assert(sum > 0.0);
  13992. sum = (1.0 - eps) / sum;
  13993. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13994. ggml_vec_scale_f32(nc, ds0, sum);
  13995. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13996. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13997. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13998. #ifndef NDEBUG
  13999. for (int i = 0; i < nc; ++i) {
  14000. assert(!isnan(ds0[i]));
  14001. assert(!isinf(ds0[i]));
  14002. }
  14003. #endif
  14004. }
  14005. }
  14006. static void ggml_compute_forward_cross_entropy_loss_back(
  14007. const struct ggml_compute_params * params,
  14008. struct ggml_tensor * dst) {
  14009. const struct ggml_tensor * src0 = dst->src[0];
  14010. switch (src0->type) {
  14011. case GGML_TYPE_F32:
  14012. {
  14013. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14014. } break;
  14015. default:
  14016. {
  14017. GGML_ASSERT(false);
  14018. } break;
  14019. }
  14020. }
  14021. /////////////////////////////////
  14022. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14023. GGML_ASSERT(params);
  14024. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14025. return;
  14026. }
  14027. switch (tensor->op) {
  14028. case GGML_OP_DUP:
  14029. {
  14030. ggml_compute_forward_dup(params, tensor);
  14031. } break;
  14032. case GGML_OP_ADD:
  14033. {
  14034. ggml_compute_forward_add(params, tensor);
  14035. } break;
  14036. case GGML_OP_ADD1:
  14037. {
  14038. ggml_compute_forward_add1(params, tensor);
  14039. } break;
  14040. case GGML_OP_ACC:
  14041. {
  14042. ggml_compute_forward_acc(params, tensor);
  14043. } break;
  14044. case GGML_OP_SUB:
  14045. {
  14046. ggml_compute_forward_sub(params, tensor);
  14047. } break;
  14048. case GGML_OP_MUL:
  14049. {
  14050. ggml_compute_forward_mul(params, tensor);
  14051. } break;
  14052. case GGML_OP_DIV:
  14053. {
  14054. ggml_compute_forward_div(params, tensor);
  14055. } break;
  14056. case GGML_OP_SQR:
  14057. {
  14058. ggml_compute_forward_sqr(params, tensor);
  14059. } break;
  14060. case GGML_OP_SQRT:
  14061. {
  14062. ggml_compute_forward_sqrt(params, tensor);
  14063. } break;
  14064. case GGML_OP_LOG:
  14065. {
  14066. ggml_compute_forward_log(params, tensor);
  14067. } break;
  14068. case GGML_OP_SUM:
  14069. {
  14070. ggml_compute_forward_sum(params, tensor);
  14071. } break;
  14072. case GGML_OP_SUM_ROWS:
  14073. {
  14074. ggml_compute_forward_sum_rows(params, tensor);
  14075. } break;
  14076. case GGML_OP_MEAN:
  14077. {
  14078. ggml_compute_forward_mean(params, tensor);
  14079. } break;
  14080. case GGML_OP_ARGMAX:
  14081. {
  14082. ggml_compute_forward_argmax(params, tensor);
  14083. } break;
  14084. case GGML_OP_REPEAT:
  14085. {
  14086. ggml_compute_forward_repeat(params, tensor);
  14087. } break;
  14088. case GGML_OP_REPEAT_BACK:
  14089. {
  14090. ggml_compute_forward_repeat_back(params, tensor);
  14091. } break;
  14092. case GGML_OP_CONCAT:
  14093. {
  14094. ggml_compute_forward_concat(params, tensor);
  14095. } break;
  14096. case GGML_OP_SILU_BACK:
  14097. {
  14098. ggml_compute_forward_silu_back(params, tensor);
  14099. } break;
  14100. case GGML_OP_NORM:
  14101. {
  14102. ggml_compute_forward_norm(params, tensor);
  14103. } break;
  14104. case GGML_OP_RMS_NORM:
  14105. {
  14106. ggml_compute_forward_rms_norm(params, tensor);
  14107. } break;
  14108. case GGML_OP_RMS_NORM_BACK:
  14109. {
  14110. ggml_compute_forward_rms_norm_back(params, tensor);
  14111. } break;
  14112. case GGML_OP_GROUP_NORM:
  14113. {
  14114. ggml_compute_forward_group_norm(params, tensor);
  14115. } break;
  14116. case GGML_OP_MUL_MAT:
  14117. {
  14118. ggml_compute_forward_mul_mat(params, tensor, state);
  14119. } break;
  14120. case GGML_OP_MUL_MAT_ID:
  14121. {
  14122. ggml_compute_forward_mul_mat_id(params, tensor);
  14123. } break;
  14124. case GGML_OP_OUT_PROD:
  14125. {
  14126. ggml_compute_forward_out_prod(params, tensor);
  14127. } break;
  14128. case GGML_OP_SCALE:
  14129. {
  14130. ggml_compute_forward_scale(params, tensor);
  14131. } break;
  14132. case GGML_OP_SET:
  14133. {
  14134. ggml_compute_forward_set(params, tensor);
  14135. } break;
  14136. case GGML_OP_CPY:
  14137. {
  14138. ggml_compute_forward_cpy(params, tensor);
  14139. } break;
  14140. case GGML_OP_CONT:
  14141. {
  14142. ggml_compute_forward_cont(params, tensor);
  14143. } break;
  14144. case GGML_OP_RESHAPE:
  14145. {
  14146. ggml_compute_forward_reshape(params, tensor);
  14147. } break;
  14148. case GGML_OP_VIEW:
  14149. {
  14150. ggml_compute_forward_view(params, tensor);
  14151. } break;
  14152. case GGML_OP_PERMUTE:
  14153. {
  14154. ggml_compute_forward_permute(params, tensor);
  14155. } break;
  14156. case GGML_OP_TRANSPOSE:
  14157. {
  14158. ggml_compute_forward_transpose(params, tensor);
  14159. } break;
  14160. case GGML_OP_GET_ROWS:
  14161. {
  14162. ggml_compute_forward_get_rows(params, tensor);
  14163. } break;
  14164. case GGML_OP_GET_ROWS_BACK:
  14165. {
  14166. ggml_compute_forward_get_rows_back(params, tensor);
  14167. } break;
  14168. case GGML_OP_DIAG:
  14169. {
  14170. ggml_compute_forward_diag(params, tensor);
  14171. } break;
  14172. case GGML_OP_DIAG_MASK_INF:
  14173. {
  14174. ggml_compute_forward_diag_mask_inf(params, tensor);
  14175. } break;
  14176. case GGML_OP_DIAG_MASK_ZERO:
  14177. {
  14178. ggml_compute_forward_diag_mask_zero(params, tensor);
  14179. } break;
  14180. case GGML_OP_SOFT_MAX:
  14181. {
  14182. ggml_compute_forward_soft_max(params, tensor);
  14183. } break;
  14184. case GGML_OP_SOFT_MAX_BACK:
  14185. {
  14186. ggml_compute_forward_soft_max_back(params, tensor);
  14187. } break;
  14188. case GGML_OP_ROPE:
  14189. {
  14190. ggml_compute_forward_rope(params, tensor);
  14191. } break;
  14192. case GGML_OP_ROPE_BACK:
  14193. {
  14194. ggml_compute_forward_rope_back(params, tensor);
  14195. } break;
  14196. case GGML_OP_CLAMP:
  14197. {
  14198. ggml_compute_forward_clamp(params, tensor);
  14199. } break;
  14200. case GGML_OP_CONV_TRANSPOSE_1D:
  14201. {
  14202. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14203. } break;
  14204. case GGML_OP_IM2COL:
  14205. {
  14206. ggml_compute_forward_im2col(params, tensor);
  14207. } break;
  14208. case GGML_OP_CONV_TRANSPOSE_2D:
  14209. {
  14210. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14211. } break;
  14212. case GGML_OP_POOL_1D:
  14213. {
  14214. ggml_compute_forward_pool_1d(params, tensor);
  14215. } break;
  14216. case GGML_OP_POOL_2D:
  14217. {
  14218. ggml_compute_forward_pool_2d(params, tensor);
  14219. } break;
  14220. case GGML_OP_UPSCALE:
  14221. {
  14222. ggml_compute_forward_upscale(params, tensor);
  14223. } break;
  14224. case GGML_OP_PAD:
  14225. {
  14226. ggml_compute_forward_pad(params, tensor);
  14227. } break;
  14228. case GGML_OP_ARANGE:
  14229. {
  14230. ggml_compute_forward_arange(params, tensor);
  14231. } break;
  14232. case GGML_OP_TIMESTEP_EMBEDDING:
  14233. {
  14234. ggml_compute_forward_timestep_embedding(params, tensor);
  14235. } break;
  14236. case GGML_OP_ARGSORT:
  14237. {
  14238. ggml_compute_forward_argsort(params, tensor);
  14239. } break;
  14240. case GGML_OP_LEAKY_RELU:
  14241. {
  14242. ggml_compute_forward_leaky_relu(params, tensor);
  14243. } break;
  14244. case GGML_OP_FLASH_ATTN_EXT:
  14245. {
  14246. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14247. } break;
  14248. case GGML_OP_FLASH_ATTN_BACK:
  14249. {
  14250. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14251. GGML_ASSERT(t == 0 || t == 1);
  14252. bool masked = t != 0;
  14253. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14254. } break;
  14255. case GGML_OP_SSM_CONV:
  14256. {
  14257. ggml_compute_forward_ssm_conv(params, tensor);
  14258. } break;
  14259. case GGML_OP_SSM_SCAN:
  14260. {
  14261. ggml_compute_forward_ssm_scan(params, tensor);
  14262. } break;
  14263. case GGML_OP_WIN_PART:
  14264. {
  14265. ggml_compute_forward_win_part(params, tensor);
  14266. } break;
  14267. case GGML_OP_WIN_UNPART:
  14268. {
  14269. ggml_compute_forward_win_unpart(params, tensor);
  14270. } break;
  14271. case GGML_OP_UNARY:
  14272. {
  14273. ggml_compute_forward_unary(params, tensor);
  14274. } break;
  14275. case GGML_OP_GET_REL_POS:
  14276. {
  14277. ggml_compute_forward_get_rel_pos(params, tensor);
  14278. } break;
  14279. case GGML_OP_ADD_REL_POS:
  14280. {
  14281. ggml_compute_forward_add_rel_pos(params, tensor);
  14282. } break;
  14283. case GGML_OP_MAP_UNARY:
  14284. {
  14285. ggml_unary_op_f32_t fun;
  14286. memcpy(&fun, tensor->op_params, sizeof(fun));
  14287. ggml_compute_forward_map_unary(params, tensor, fun);
  14288. }
  14289. break;
  14290. case GGML_OP_MAP_BINARY:
  14291. {
  14292. ggml_binary_op_f32_t fun;
  14293. memcpy(&fun, tensor->op_params, sizeof(fun));
  14294. ggml_compute_forward_map_binary(params, tensor, fun);
  14295. }
  14296. break;
  14297. case GGML_OP_MAP_CUSTOM1_F32:
  14298. {
  14299. ggml_custom1_op_f32_t fun;
  14300. memcpy(&fun, tensor->op_params, sizeof(fun));
  14301. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14302. }
  14303. break;
  14304. case GGML_OP_MAP_CUSTOM2_F32:
  14305. {
  14306. ggml_custom2_op_f32_t fun;
  14307. memcpy(&fun, tensor->op_params, sizeof(fun));
  14308. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14309. }
  14310. break;
  14311. case GGML_OP_MAP_CUSTOM3_F32:
  14312. {
  14313. ggml_custom3_op_f32_t fun;
  14314. memcpy(&fun, tensor->op_params, sizeof(fun));
  14315. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14316. }
  14317. break;
  14318. case GGML_OP_MAP_CUSTOM1:
  14319. {
  14320. ggml_compute_forward_map_custom1(params, tensor);
  14321. }
  14322. break;
  14323. case GGML_OP_MAP_CUSTOM2:
  14324. {
  14325. ggml_compute_forward_map_custom2(params, tensor);
  14326. }
  14327. break;
  14328. case GGML_OP_MAP_CUSTOM3:
  14329. {
  14330. ggml_compute_forward_map_custom3(params, tensor);
  14331. }
  14332. break;
  14333. case GGML_OP_CROSS_ENTROPY_LOSS:
  14334. {
  14335. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14336. }
  14337. break;
  14338. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14339. {
  14340. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14341. }
  14342. break;
  14343. case GGML_OP_NONE:
  14344. {
  14345. // nop
  14346. } break;
  14347. case GGML_OP_COUNT:
  14348. {
  14349. GGML_ASSERT(false);
  14350. } break;
  14351. }
  14352. }
  14353. ////////////////////////////////////////////////////////////////////////////////
  14354. static size_t ggml_hash_size(size_t min_sz) {
  14355. // next primes after powers of two
  14356. static const size_t primes[] = {
  14357. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14358. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14359. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14360. 16777259, 33554467, 67108879, 134217757, 268435459,
  14361. 536870923, 1073741827, 2147483659
  14362. };
  14363. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14364. // find the smallest prime that is larger or equal to min_sz
  14365. size_t l = 0;
  14366. size_t r = n_primes;
  14367. while (l < r) {
  14368. size_t m = (l + r)/2;
  14369. if (primes[m] < min_sz) {
  14370. l = m + 1;
  14371. } else {
  14372. r = m;
  14373. }
  14374. }
  14375. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14376. return sz;
  14377. }
  14378. static size_t ggml_hash(const void * p) {
  14379. return (size_t)p;
  14380. }
  14381. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14382. size_t h = ggml_hash(key) % hash_set.size;
  14383. // linear probing
  14384. size_t i = h;
  14385. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14386. i = (i + 1) % hash_set.size;
  14387. if (i == h) {
  14388. // visited all hash table entries -> not found
  14389. return GGML_HASHTABLE_FULL;
  14390. }
  14391. }
  14392. return i;
  14393. }
  14394. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14395. size_t i = ggml_hash_find(hash_set, key);
  14396. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14397. }
  14398. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14399. size_t i = ggml_hash_find(hash_set, key);
  14400. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14401. if (hash_set.keys[i] == key) {
  14402. return GGML_HASHTABLE_ALREADY_EXISTS;
  14403. }
  14404. // insert
  14405. GGML_ASSERT(hash_set.keys[i] == NULL);
  14406. hash_set.keys[i] = key;
  14407. return i;
  14408. }
  14409. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14410. size_t i = ggml_hash_find(hash_set, key);
  14411. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14412. hash_set.keys[i] = key;
  14413. return i;
  14414. }
  14415. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14416. size = ggml_hash_size(size);
  14417. struct ggml_hash_set result;
  14418. result.size = size;
  14419. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14420. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14421. return result;
  14422. }
  14423. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14424. GGML_FREE(hash_set.keys);
  14425. }
  14426. struct hash_map {
  14427. struct ggml_hash_set set;
  14428. struct ggml_tensor ** vals;
  14429. };
  14430. static struct hash_map * ggml_new_hash_map(size_t size) {
  14431. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14432. result->set = ggml_hash_set_new(size);
  14433. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14434. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14435. return result;
  14436. }
  14437. static void ggml_hash_map_free(struct hash_map * map) {
  14438. ggml_hash_set_free(map->set);
  14439. GGML_FREE(map->vals);
  14440. GGML_FREE(map);
  14441. }
  14442. // gradient checkpointing
  14443. static struct ggml_tensor * ggml_recompute_graph_node(
  14444. struct ggml_context * ctx,
  14445. struct ggml_cgraph * graph,
  14446. struct hash_map * replacements,
  14447. struct ggml_tensor * node) {
  14448. if (node == NULL) {
  14449. return NULL;
  14450. }
  14451. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14452. return node;
  14453. }
  14454. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14455. return node;
  14456. }
  14457. int count_children = 0;
  14458. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14459. if (node->src[k]) {
  14460. ++count_children;
  14461. }
  14462. }
  14463. if (count_children == 0) {
  14464. return node;
  14465. }
  14466. size_t i = ggml_hash_find(replacements->set, node);
  14467. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14468. if (replacements->set.keys[i] == node) {
  14469. return replacements->vals[i];
  14470. }
  14471. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14472. // insert clone into replacements
  14473. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14474. replacements->set.keys[i] = node;
  14475. replacements->vals[i] = clone;
  14476. clone->op = node->op;
  14477. clone->grad = node->grad;
  14478. clone->flags = node->flags;
  14479. clone->extra = node->extra;
  14480. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14481. clone->nb[k] = node->nb[k];
  14482. }
  14483. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14484. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14485. }
  14486. if (node->view_src != NULL) {
  14487. clone->data = (node->view_src->data == NULL)
  14488. ? NULL // view_src not yet allocated
  14489. : (char *) node->view_src->data // view_src already allocated
  14490. + node->view_offs;
  14491. clone->view_src = node->view_src;
  14492. clone->view_offs = node->view_offs;
  14493. }
  14494. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14495. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14496. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14497. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14498. return clone;
  14499. }
  14500. void ggml_build_backward_gradient_checkpointing(
  14501. struct ggml_context * ctx,
  14502. struct ggml_cgraph * gf,
  14503. struct ggml_cgraph * gb,
  14504. struct ggml_cgraph * gb_tmp,
  14505. struct ggml_tensor * * checkpoints,
  14506. int n_checkpoints) {
  14507. ggml_graph_cpy(gf, gb_tmp);
  14508. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14509. if (n_checkpoints <= 0) {
  14510. ggml_graph_cpy(gb_tmp, gb);
  14511. return;
  14512. }
  14513. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14514. // insert checkpoints in replacements
  14515. for (int i = 0; i < n_checkpoints; ++i) {
  14516. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14517. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14518. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14519. replacements->set.keys[k] = checkpoints[i];
  14520. replacements->vals[k] = checkpoints[i];
  14521. }
  14522. ggml_graph_cpy(gf, gb);
  14523. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14524. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14525. // by recomputing them from checkpoints
  14526. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14527. struct ggml_tensor * node = gb_tmp->nodes[i];
  14528. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14529. // insert new tensors recomputing src, reusing already made replacements,
  14530. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14531. // recurse for input tensors,
  14532. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14533. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14534. }
  14535. // insert rewritten backward node with replacements made into resulting backward graph gb
  14536. ggml_build_forward_expand(gb, node);
  14537. }
  14538. ggml_hash_map_free(replacements);
  14539. }
  14540. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14541. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14542. if (ggml_hash_contains(zero_table, a)) {
  14543. return b;
  14544. } else {
  14545. return ggml_add_impl(ctx, a, b, false);
  14546. }
  14547. }
  14548. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14549. if (ggml_hash_contains(zero_table, a)) {
  14550. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14551. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14552. } else {
  14553. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14554. }
  14555. }
  14556. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14557. if (ggml_hash_contains(zero_table, a)) {
  14558. return ggml_repeat(ctx, b, a);
  14559. } else {
  14560. return ggml_add1_impl(ctx, a, b, false);
  14561. }
  14562. }
  14563. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14564. if (ggml_hash_contains(zero_table, a)) {
  14565. return ggml_neg(ctx, b);
  14566. } else {
  14567. return ggml_sub_impl(ctx, a, b, false);
  14568. }
  14569. }
  14570. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14571. struct ggml_tensor * src0 = tensor->src[0];
  14572. struct ggml_tensor * src1 = tensor->src[1];
  14573. struct ggml_tensor * src2 = tensor->src[2];
  14574. switch (tensor->op) {
  14575. case GGML_OP_DUP:
  14576. {
  14577. if (src0->grad) {
  14578. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14579. }
  14580. } break;
  14581. case GGML_OP_ADD:
  14582. {
  14583. if (src0->grad) {
  14584. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14585. }
  14586. if (src1->grad) {
  14587. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14588. }
  14589. } break;
  14590. case GGML_OP_ADD1:
  14591. {
  14592. if (src0->grad) {
  14593. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14594. }
  14595. if (src1->grad) {
  14596. src1->grad = ggml_add_or_set(ctx,
  14597. src1->grad,
  14598. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14599. zero_table);
  14600. }
  14601. } break;
  14602. case GGML_OP_ACC:
  14603. {
  14604. if (src0->grad) {
  14605. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14606. }
  14607. if (src1->grad) {
  14608. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14609. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14610. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14611. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14612. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14613. tensor->grad,
  14614. src1->grad->ne[0],
  14615. src1->grad->ne[1],
  14616. src1->grad->ne[2],
  14617. src1->grad->ne[3],
  14618. nb1, nb2, nb3, offset);
  14619. src1->grad =
  14620. ggml_add_or_set(ctx,
  14621. src1->grad,
  14622. ggml_reshape(ctx,
  14623. ggml_cont(ctx, tensor_grad_view),
  14624. src1->grad),
  14625. zero_table);
  14626. }
  14627. } break;
  14628. case GGML_OP_SUB:
  14629. {
  14630. if (src0->grad) {
  14631. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14632. }
  14633. if (src1->grad) {
  14634. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14635. }
  14636. } break;
  14637. case GGML_OP_MUL:
  14638. {
  14639. if (src0->grad) {
  14640. src0->grad =
  14641. ggml_add_or_set(ctx,
  14642. src0->grad,
  14643. ggml_mul(ctx, src1, tensor->grad),
  14644. zero_table);
  14645. }
  14646. if (src1->grad) {
  14647. src1->grad =
  14648. ggml_add_or_set(ctx,
  14649. src1->grad,
  14650. ggml_mul(ctx, src0, tensor->grad),
  14651. zero_table);
  14652. }
  14653. } break;
  14654. case GGML_OP_DIV:
  14655. {
  14656. if (src0->grad) {
  14657. src0->grad =
  14658. ggml_add_or_set(ctx,
  14659. src0->grad,
  14660. ggml_div(ctx, tensor->grad, src1),
  14661. zero_table);
  14662. }
  14663. if (src1->grad) {
  14664. src1->grad =
  14665. ggml_sub_or_set(ctx,
  14666. src1->grad,
  14667. ggml_mul(ctx,
  14668. tensor->grad,
  14669. ggml_div(ctx, tensor, src1)),
  14670. zero_table);
  14671. }
  14672. } break;
  14673. case GGML_OP_SQR:
  14674. {
  14675. if (src0->grad) {
  14676. src0->grad =
  14677. ggml_add_or_set(ctx,
  14678. src0->grad,
  14679. ggml_scale(ctx,
  14680. ggml_mul(ctx, src0, tensor->grad),
  14681. 2.0f),
  14682. zero_table);
  14683. }
  14684. } break;
  14685. case GGML_OP_SQRT:
  14686. {
  14687. if (src0->grad) {
  14688. src0->grad =
  14689. ggml_add_or_set(ctx,
  14690. src0->grad,
  14691. ggml_scale(ctx,
  14692. ggml_div(ctx,
  14693. tensor->grad,
  14694. tensor),
  14695. 0.5f),
  14696. zero_table);
  14697. }
  14698. } break;
  14699. case GGML_OP_LOG:
  14700. {
  14701. if (src0->grad) {
  14702. src0->grad =
  14703. ggml_add_or_set(ctx,
  14704. src0->grad,
  14705. ggml_div(ctx,
  14706. tensor->grad,
  14707. src0),
  14708. zero_table);
  14709. }
  14710. } break;
  14711. case GGML_OP_SUM:
  14712. {
  14713. if (src0->grad) {
  14714. src0->grad =
  14715. ggml_add1_or_set(ctx,
  14716. src0->grad,
  14717. tensor->grad,
  14718. zero_table);
  14719. }
  14720. } break;
  14721. case GGML_OP_SUM_ROWS:
  14722. {
  14723. if (src0->grad) {
  14724. src0->grad =
  14725. ggml_add_or_set(ctx,
  14726. src0->grad,
  14727. ggml_repeat(ctx,
  14728. tensor->grad,
  14729. src0->grad),
  14730. zero_table);
  14731. }
  14732. } break;
  14733. case GGML_OP_MEAN:
  14734. case GGML_OP_ARGMAX:
  14735. {
  14736. GGML_ASSERT(false); // TODO: implement
  14737. } break;
  14738. case GGML_OP_REPEAT:
  14739. {
  14740. // necessary for llama
  14741. if (src0->grad) {
  14742. src0->grad = ggml_add_or_set(ctx,
  14743. src0->grad,
  14744. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14745. zero_table);
  14746. }
  14747. } break;
  14748. case GGML_OP_REPEAT_BACK:
  14749. {
  14750. if (src0->grad) {
  14751. // TODO: test this
  14752. src0->grad = ggml_add_or_set(ctx,
  14753. src0->grad,
  14754. ggml_repeat(ctx, tensor->grad, src0->grad),
  14755. zero_table);
  14756. }
  14757. } break;
  14758. case GGML_OP_CONCAT:
  14759. {
  14760. GGML_ASSERT(false); // TODO: implement
  14761. } break;
  14762. case GGML_OP_SILU_BACK:
  14763. {
  14764. GGML_ASSERT(false); // TODO: not implemented
  14765. } break;
  14766. case GGML_OP_NORM:
  14767. {
  14768. GGML_ASSERT(false); // TODO: not implemented
  14769. } break;
  14770. case GGML_OP_RMS_NORM:
  14771. {
  14772. // necessary for llama
  14773. if (src0->grad) {
  14774. float eps;
  14775. memcpy(&eps, tensor->op_params, sizeof(float));
  14776. src0->grad = ggml_add_or_set(ctx,
  14777. src0->grad,
  14778. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14779. zero_table);
  14780. }
  14781. } break;
  14782. case GGML_OP_RMS_NORM_BACK:
  14783. {
  14784. GGML_ASSERT(false); // TODO: not implemented
  14785. } break;
  14786. case GGML_OP_GROUP_NORM:
  14787. {
  14788. GGML_ASSERT(false); // TODO: not implemented
  14789. } break;
  14790. case GGML_OP_MUL_MAT:
  14791. {
  14792. // https://cs231n.github.io/optimization-2/#staged
  14793. // # forward pass
  14794. // s0 = np.random.randn(5, 10)
  14795. // s1 = np.random.randn(10, 3)
  14796. // t = s0.dot(s1)
  14797. // # now suppose we had the gradient on t from above in the circuit
  14798. // dt = np.random.randn(*t.shape) # same shape as t
  14799. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14800. // ds1 = t.T.dot(dt)
  14801. // tensor.shape [m,p,qq,rr]
  14802. // src0.shape [n,m,q1,r1]
  14803. // src1.shape [n,p,qq,rr]
  14804. // necessary for llama
  14805. if (src0->grad) {
  14806. struct ggml_tensor * s1_tg =
  14807. ggml_out_prod(ctx, // [n,m,qq,rr]
  14808. src1, // [n,p,qq,rr]
  14809. tensor->grad); // [m,p,qq,rr]
  14810. const int64_t qq = s1_tg->ne[2];
  14811. const int64_t rr = s1_tg->ne[3];
  14812. const int64_t q1 = src0->ne[2];
  14813. const int64_t r1 = src0->ne[3];
  14814. const bool ne2_broadcasted = qq > q1;
  14815. const bool ne3_broadcasted = rr > r1;
  14816. if (ne2_broadcasted || ne3_broadcasted) {
  14817. // sum broadcast repetitions of s1_tg into shape of src0
  14818. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14819. }
  14820. src0->grad =
  14821. ggml_add_or_set(ctx,
  14822. src0->grad, // [n,m,q1,r1]
  14823. s1_tg, // [n,m,q1,r1]
  14824. zero_table);
  14825. }
  14826. if (src1->grad) {
  14827. src1->grad =
  14828. ggml_add_or_set(ctx,
  14829. src1->grad, // [n,p,qq,rr]
  14830. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14831. // ggml_cont(ctx, // [m,n,q1,r1]
  14832. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14833. // tensor->grad), // [m,p,qq,rr]
  14834. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14835. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14836. // // and then use ggml_out_prod
  14837. ggml_out_prod(ctx, // [n,p,qq,rr]
  14838. src0, // [n,m,q1,r1]
  14839. ggml_transpose(ctx, // [p,m,qq,rr]
  14840. tensor->grad)), // [m,p,qq,rr]
  14841. zero_table);
  14842. }
  14843. } break;
  14844. case GGML_OP_MUL_MAT_ID:
  14845. {
  14846. GGML_ASSERT(false); // TODO: not implemented
  14847. } break;
  14848. case GGML_OP_OUT_PROD:
  14849. {
  14850. GGML_ASSERT(false); // TODO: not implemented
  14851. } break;
  14852. case GGML_OP_SCALE:
  14853. {
  14854. // necessary for llama
  14855. if (src0->grad) {
  14856. float s;
  14857. memcpy(&s, tensor->op_params, sizeof(float));
  14858. src0->grad =
  14859. ggml_add_or_set(ctx,
  14860. src0->grad,
  14861. ggml_scale_impl(ctx, tensor->grad, s, false),
  14862. zero_table);
  14863. }
  14864. } break;
  14865. case GGML_OP_SET:
  14866. {
  14867. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14868. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14869. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14870. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14871. struct ggml_tensor * tensor_grad_view = NULL;
  14872. if (src0->grad || src1->grad) {
  14873. GGML_ASSERT(src0->type == tensor->type);
  14874. GGML_ASSERT(tensor->grad->type == tensor->type);
  14875. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14876. tensor_grad_view = ggml_view_4d(ctx,
  14877. tensor->grad,
  14878. src1->grad->ne[0],
  14879. src1->grad->ne[1],
  14880. src1->grad->ne[2],
  14881. src1->grad->ne[3],
  14882. nb1, nb2, nb3, offset);
  14883. }
  14884. if (src0->grad) {
  14885. src0->grad = ggml_add_or_set(ctx,
  14886. src0->grad,
  14887. ggml_acc_impl(ctx,
  14888. tensor->grad,
  14889. ggml_neg(ctx, tensor_grad_view),
  14890. nb1, nb2, nb3, offset, false),
  14891. zero_table);
  14892. }
  14893. if (src1->grad) {
  14894. src1->grad =
  14895. ggml_add_or_set(ctx,
  14896. src1->grad,
  14897. ggml_reshape(ctx,
  14898. ggml_cont(ctx, tensor_grad_view),
  14899. src1->grad),
  14900. zero_table);
  14901. }
  14902. } break;
  14903. case GGML_OP_CPY:
  14904. {
  14905. // necessary for llama
  14906. // cpy overwrites value of src1 by src0 and returns view(src1)
  14907. // the overwriting is mathematically equivalent to:
  14908. // tensor = src0 * 1 + src1 * 0
  14909. if (src0->grad) {
  14910. // dsrc0 = dtensor * 1
  14911. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14912. }
  14913. if (src1->grad) {
  14914. // dsrc1 = dtensor * 0 -> noop
  14915. }
  14916. } break;
  14917. case GGML_OP_CONT:
  14918. {
  14919. // same as cpy
  14920. if (src0->grad) {
  14921. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14922. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14923. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14924. }
  14925. } break;
  14926. case GGML_OP_RESHAPE:
  14927. {
  14928. // necessary for llama
  14929. if (src0->grad) {
  14930. src0->grad =
  14931. ggml_add_or_set(ctx, src0->grad,
  14932. ggml_reshape(ctx,
  14933. ggml_is_contiguous(tensor->grad)
  14934. ? tensor->grad
  14935. : ggml_cont(ctx, tensor->grad),
  14936. src0->grad),
  14937. zero_table);
  14938. }
  14939. } break;
  14940. case GGML_OP_VIEW:
  14941. {
  14942. // necessary for llama
  14943. if (src0->grad) {
  14944. size_t offset;
  14945. memcpy(&offset, tensor->op_params, sizeof(offset));
  14946. size_t nb1 = tensor->nb[1];
  14947. size_t nb2 = tensor->nb[2];
  14948. size_t nb3 = tensor->nb[3];
  14949. if (src0->type != src0->grad->type) {
  14950. // gradient is typically F32, but src0 could be other type
  14951. size_t ng = ggml_element_size(src0->grad);
  14952. size_t n0 = ggml_element_size(src0);
  14953. GGML_ASSERT(offset % n0 == 0);
  14954. GGML_ASSERT(nb1 % n0 == 0);
  14955. GGML_ASSERT(nb2 % n0 == 0);
  14956. GGML_ASSERT(nb3 % n0 == 0);
  14957. offset = (offset / n0) * ng;
  14958. nb1 = (nb1 / n0) * ng;
  14959. nb2 = (nb2 / n0) * ng;
  14960. nb3 = (nb3 / n0) * ng;
  14961. }
  14962. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14963. }
  14964. } break;
  14965. case GGML_OP_PERMUTE:
  14966. {
  14967. // necessary for llama
  14968. if (src0->grad) {
  14969. int32_t * axes = (int32_t *) tensor->op_params;
  14970. int axis0 = axes[0] & 0x3;
  14971. int axis1 = axes[1] & 0x3;
  14972. int axis2 = axes[2] & 0x3;
  14973. int axis3 = axes[3] & 0x3;
  14974. int axes_backward[4] = {0,0,0,0};
  14975. axes_backward[axis0] = 0;
  14976. axes_backward[axis1] = 1;
  14977. axes_backward[axis2] = 2;
  14978. axes_backward[axis3] = 3;
  14979. src0->grad =
  14980. ggml_add_or_set(ctx, src0->grad,
  14981. ggml_permute(ctx,
  14982. tensor->grad,
  14983. axes_backward[0],
  14984. axes_backward[1],
  14985. axes_backward[2],
  14986. axes_backward[3]),
  14987. zero_table);
  14988. }
  14989. } break;
  14990. case GGML_OP_TRANSPOSE:
  14991. {
  14992. // necessary for llama
  14993. if (src0->grad) {
  14994. src0->grad =
  14995. ggml_add_or_set(ctx, src0->grad,
  14996. ggml_transpose(ctx, tensor->grad),
  14997. zero_table);
  14998. }
  14999. } break;
  15000. case GGML_OP_GET_ROWS:
  15001. {
  15002. // necessary for llama (only for tokenizer)
  15003. if (src0->grad) {
  15004. src0->grad =
  15005. ggml_add_or_set(ctx, src0->grad,
  15006. // last ggml_get_rows_back argument src0->grad is only
  15007. // necessary to setup correct output shape
  15008. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15009. zero_table);
  15010. }
  15011. if (src1->grad) {
  15012. // noop
  15013. }
  15014. } break;
  15015. case GGML_OP_GET_ROWS_BACK:
  15016. {
  15017. GGML_ASSERT(false); // TODO: not implemented
  15018. } break;
  15019. case GGML_OP_DIAG:
  15020. {
  15021. GGML_ASSERT(false); // TODO: not implemented
  15022. } break;
  15023. case GGML_OP_DIAG_MASK_INF:
  15024. {
  15025. // necessary for llama
  15026. if (src0->grad) {
  15027. const int n_past = ((int32_t *) tensor->op_params)[0];
  15028. src0->grad =
  15029. ggml_add_or_set(ctx, src0->grad,
  15030. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15031. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15032. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15033. zero_table);
  15034. }
  15035. } break;
  15036. case GGML_OP_DIAG_MASK_ZERO:
  15037. {
  15038. // necessary for llama
  15039. if (src0->grad) {
  15040. const int n_past = ((int32_t *) tensor->op_params)[0];
  15041. src0->grad =
  15042. ggml_add_or_set(ctx, src0->grad,
  15043. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15044. zero_table);
  15045. }
  15046. } break;
  15047. case GGML_OP_SOFT_MAX:
  15048. {
  15049. // necessary for llama
  15050. if (src0->grad) {
  15051. src0->grad =
  15052. ggml_add_or_set(ctx, src0->grad,
  15053. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15054. zero_table);
  15055. }
  15056. } break;
  15057. case GGML_OP_SOFT_MAX_BACK:
  15058. {
  15059. GGML_ASSERT(false); // TODO: not implemented
  15060. } break;
  15061. case GGML_OP_ROPE:
  15062. {
  15063. // necessary for llama
  15064. if (src0->grad) {
  15065. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15066. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15067. const int mode = ((int32_t *) tensor->op_params)[2];
  15068. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15069. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15070. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15071. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15072. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15073. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15074. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15075. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15076. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15077. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15078. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15079. src0->grad = ggml_add_or_set(ctx,
  15080. src0->grad,
  15081. ggml_rope_back(ctx,
  15082. tensor->grad,
  15083. src1,
  15084. src2,
  15085. n_dims,
  15086. mode,
  15087. n_ctx,
  15088. n_orig_ctx,
  15089. freq_base,
  15090. freq_scale,
  15091. ext_factor,
  15092. attn_factor,
  15093. beta_fast,
  15094. beta_slow,
  15095. xpos_base,
  15096. xpos_down),
  15097. zero_table);
  15098. }
  15099. } break;
  15100. case GGML_OP_ROPE_BACK:
  15101. {
  15102. if (src0->grad) {
  15103. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15104. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15105. const int mode = ((int32_t *) tensor->op_params)[2];
  15106. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15107. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15108. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15109. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15110. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15111. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15112. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15113. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15114. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15115. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15116. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15117. src0->grad = ggml_add_or_set(ctx,
  15118. src0->grad,
  15119. ggml_rope_impl(ctx,
  15120. tensor->grad,
  15121. src1,
  15122. src2,
  15123. n_dims,
  15124. mode,
  15125. n_ctx,
  15126. n_orig_ctx,
  15127. freq_base,
  15128. freq_scale,
  15129. ext_factor,
  15130. attn_factor,
  15131. beta_fast,
  15132. beta_slow,
  15133. xpos_base,
  15134. xpos_down,
  15135. false),
  15136. zero_table);
  15137. }
  15138. } break;
  15139. case GGML_OP_CLAMP:
  15140. {
  15141. GGML_ASSERT(false); // TODO: not implemented
  15142. } break;
  15143. case GGML_OP_CONV_TRANSPOSE_1D:
  15144. {
  15145. GGML_ASSERT(false); // TODO: not implemented
  15146. } break;
  15147. case GGML_OP_IM2COL:
  15148. {
  15149. GGML_ASSERT(false); // TODO: not implemented
  15150. } break;
  15151. case GGML_OP_CONV_TRANSPOSE_2D:
  15152. {
  15153. GGML_ASSERT(false); // TODO: not implemented
  15154. } break;
  15155. case GGML_OP_POOL_1D:
  15156. {
  15157. GGML_ASSERT(false); // TODO: not implemented
  15158. } break;
  15159. case GGML_OP_POOL_2D:
  15160. {
  15161. GGML_ASSERT(false); // TODO: not implemented
  15162. } break;
  15163. case GGML_OP_UPSCALE:
  15164. {
  15165. GGML_ASSERT(false); // TODO: not implemented
  15166. } break;
  15167. case GGML_OP_PAD:
  15168. {
  15169. GGML_ASSERT(false); // TODO: not implemented
  15170. } break;
  15171. case GGML_OP_ARANGE:
  15172. {
  15173. GGML_ASSERT(false); // TODO: not implemented
  15174. } break;
  15175. case GGML_OP_TIMESTEP_EMBEDDING:
  15176. {
  15177. GGML_ASSERT(false); // TODO: not implemented
  15178. } break;
  15179. case GGML_OP_ARGSORT:
  15180. {
  15181. GGML_ASSERT(false); // TODO: not implemented
  15182. } break;
  15183. case GGML_OP_LEAKY_RELU:
  15184. {
  15185. GGML_ASSERT(false); // TODO: not implemented
  15186. } break;
  15187. case GGML_OP_FLASH_ATTN_EXT:
  15188. {
  15189. struct ggml_tensor * flash_grad = NULL;
  15190. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15191. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15192. GGML_ASSERT(t == 0 || t == 1);
  15193. bool masked = t != 0;
  15194. flash_grad =
  15195. ggml_flash_attn_back(ctx,
  15196. src0,
  15197. src1,
  15198. tensor->src[2],
  15199. tensor->grad,
  15200. masked);
  15201. }
  15202. const int64_t elem_q = ggml_nelements(src0);
  15203. const int64_t elem_k = ggml_nelements(src1);
  15204. const int64_t elem_v = ggml_nelements(src2);
  15205. enum ggml_type result_type = flash_grad->type;
  15206. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15207. const size_t tsize = ggml_type_size(result_type);
  15208. const size_t offs_q = 0;
  15209. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15210. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15211. if (src0->grad) {
  15212. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15213. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15214. src0->grad = ggml_add_or_set(ctx,
  15215. src0->grad,
  15216. grad_q,
  15217. zero_table);
  15218. }
  15219. if (src1->grad) {
  15220. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15221. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15222. src1->grad = ggml_add_or_set(ctx,
  15223. src1->grad,
  15224. grad_k,
  15225. zero_table);
  15226. }
  15227. if (src2->grad) {
  15228. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15229. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15230. src2->grad = ggml_add_or_set(ctx,
  15231. src2->grad,
  15232. grad_v,
  15233. zero_table);
  15234. }
  15235. } break;
  15236. case GGML_OP_FLASH_ATTN_BACK:
  15237. {
  15238. GGML_ASSERT(false); // not supported
  15239. } break;
  15240. case GGML_OP_SSM_CONV:
  15241. case GGML_OP_SSM_SCAN:
  15242. {
  15243. GGML_ASSERT(false); // TODO: not implemented
  15244. } break;
  15245. case GGML_OP_WIN_PART:
  15246. case GGML_OP_WIN_UNPART:
  15247. case GGML_OP_UNARY:
  15248. {
  15249. switch (ggml_get_unary_op(tensor)) {
  15250. case GGML_UNARY_OP_ABS:
  15251. {
  15252. if (src0->grad) {
  15253. src0->grad =
  15254. ggml_add_or_set(ctx,
  15255. src0->grad,
  15256. ggml_mul(ctx,
  15257. ggml_sgn(ctx, src0),
  15258. tensor->grad),
  15259. zero_table);
  15260. }
  15261. } break;
  15262. case GGML_UNARY_OP_SGN:
  15263. {
  15264. if (src0->grad) {
  15265. // noop
  15266. }
  15267. } break;
  15268. case GGML_UNARY_OP_NEG:
  15269. {
  15270. if (src0->grad) {
  15271. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15272. }
  15273. } break;
  15274. case GGML_UNARY_OP_STEP:
  15275. {
  15276. if (src0->grad) {
  15277. // noop
  15278. }
  15279. } break;
  15280. case GGML_UNARY_OP_TANH:
  15281. {
  15282. GGML_ASSERT(false); // TODO: not implemented
  15283. } break;
  15284. case GGML_UNARY_OP_ELU:
  15285. {
  15286. GGML_ASSERT(false); // TODO: not implemented
  15287. } break;
  15288. case GGML_UNARY_OP_RELU:
  15289. {
  15290. if (src0->grad) {
  15291. src0->grad = ggml_add_or_set(ctx,
  15292. src0->grad,
  15293. ggml_mul(ctx,
  15294. ggml_step(ctx, src0),
  15295. tensor->grad),
  15296. zero_table);
  15297. }
  15298. } break;
  15299. case GGML_UNARY_OP_SIGMOID:
  15300. {
  15301. GGML_ASSERT(false); // TODO: not implemented
  15302. } break;
  15303. case GGML_UNARY_OP_GELU:
  15304. {
  15305. GGML_ASSERT(false); // TODO: not implemented
  15306. } break;
  15307. case GGML_UNARY_OP_GELU_QUICK:
  15308. {
  15309. GGML_ASSERT(false); // TODO: not implemented
  15310. } break;
  15311. case GGML_UNARY_OP_SILU:
  15312. {
  15313. // necessary for llama
  15314. if (src0->grad) {
  15315. src0->grad = ggml_add_or_set(ctx,
  15316. src0->grad,
  15317. ggml_silu_back(ctx, src0, tensor->grad),
  15318. zero_table);
  15319. }
  15320. } break;
  15321. default:
  15322. GGML_ASSERT(false);
  15323. }
  15324. } break;
  15325. case GGML_OP_GET_REL_POS:
  15326. case GGML_OP_ADD_REL_POS:
  15327. case GGML_OP_MAP_UNARY:
  15328. case GGML_OP_MAP_BINARY:
  15329. case GGML_OP_MAP_CUSTOM1_F32:
  15330. case GGML_OP_MAP_CUSTOM2_F32:
  15331. case GGML_OP_MAP_CUSTOM3_F32:
  15332. case GGML_OP_MAP_CUSTOM1:
  15333. case GGML_OP_MAP_CUSTOM2:
  15334. case GGML_OP_MAP_CUSTOM3:
  15335. {
  15336. GGML_ASSERT(false); // not supported
  15337. } break;
  15338. case GGML_OP_CROSS_ENTROPY_LOSS:
  15339. {
  15340. if (src0->grad) {
  15341. src0->grad = ggml_add_or_set(ctx,
  15342. src0->grad,
  15343. ggml_cross_entropy_loss_back(ctx,
  15344. src0,
  15345. src1,
  15346. tensor->grad),
  15347. zero_table);
  15348. }
  15349. } break;
  15350. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15351. {
  15352. GGML_ASSERT(false); // not supported
  15353. } break;
  15354. case GGML_OP_NONE:
  15355. {
  15356. // nop
  15357. } break;
  15358. case GGML_OP_COUNT:
  15359. {
  15360. GGML_ASSERT(false);
  15361. } break;
  15362. }
  15363. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15364. if (tensor->src[i] && tensor->src[i]->grad) {
  15365. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15366. }
  15367. }
  15368. }
  15369. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15370. if (node->grad == NULL) {
  15371. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15372. // it can also happen during forward pass, if the user performs computations with constants
  15373. if (node->op != GGML_OP_NONE) {
  15374. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15375. }
  15376. }
  15377. // check if already visited
  15378. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15379. return;
  15380. }
  15381. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15382. const int k =
  15383. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15384. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15385. /* unknown order, just fall back to using i*/ i;
  15386. if (node->src[k]) {
  15387. ggml_visit_parents(cgraph, node->src[k]);
  15388. }
  15389. }
  15390. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15391. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15392. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15393. if (strlen(node->name) == 0) {
  15394. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15395. }
  15396. cgraph->leafs[cgraph->n_leafs] = node;
  15397. cgraph->n_leafs++;
  15398. } else {
  15399. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15400. if (strlen(node->name) == 0) {
  15401. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15402. }
  15403. cgraph->nodes[cgraph->n_nodes] = node;
  15404. if (cgraph->grads) {
  15405. cgraph->grads[cgraph->n_nodes] = node->grad;
  15406. }
  15407. cgraph->n_nodes++;
  15408. }
  15409. }
  15410. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15411. if (!expand) {
  15412. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15413. ggml_graph_clear(cgraph);
  15414. }
  15415. const int n0 = cgraph->n_nodes;
  15416. UNUSED(n0);
  15417. ggml_visit_parents(cgraph, tensor);
  15418. const int n_new = cgraph->n_nodes - n0;
  15419. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15420. if (n_new > 0) {
  15421. // the last added node should always be starting point
  15422. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15423. }
  15424. }
  15425. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15426. ggml_build_forward_impl(cgraph, tensor, true);
  15427. }
  15428. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15429. GGML_ASSERT(gf->n_nodes > 0);
  15430. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15431. if (keep) {
  15432. for (int i = 0; i < gf->n_nodes; i++) {
  15433. struct ggml_tensor * node = gf->nodes[i];
  15434. if (node->grad) {
  15435. node->grad = ggml_dup_tensor(ctx, node);
  15436. gf->grads[i] = node->grad;
  15437. }
  15438. }
  15439. }
  15440. // remember original gradients which start with zero values
  15441. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15442. for (int i = 0; i < gf->n_nodes; i++) {
  15443. if (gf->grads[i]) {
  15444. ggml_hash_insert(zero_table, gf->grads[i]);
  15445. }
  15446. }
  15447. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15448. struct ggml_tensor * node = gf->nodes[i];
  15449. // inplace operations to add gradients are not created by ggml_compute_backward
  15450. // use allocator to automatically make inplace operations
  15451. if (node->grad) {
  15452. ggml_compute_backward(ctx, node, zero_table);
  15453. }
  15454. }
  15455. for (int i = 0; i < gf->n_nodes; i++) {
  15456. struct ggml_tensor * node = gf->nodes[i];
  15457. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15458. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15459. ggml_build_forward_expand(gb, node->grad);
  15460. }
  15461. }
  15462. ggml_hash_set_free(zero_table);
  15463. }
  15464. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15465. size_t nbytes = sizeof(struct ggml_cgraph);
  15466. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15467. if (grads) {
  15468. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15469. }
  15470. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15471. return nbytes;
  15472. }
  15473. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15474. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15475. }
  15476. size_t ggml_graph_overhead(void) {
  15477. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15478. }
  15479. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15480. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15481. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15482. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15483. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15484. size_t hash_size = ggml_hash_size(size * 2);
  15485. struct ggml_tensor ** nodes_ptr = data_start;
  15486. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15487. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15488. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15489. // check that we allocated the correct amount of memory
  15490. assert(obj_size == (size_t) (
  15491. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15492. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15493. *cgraph = (struct ggml_cgraph) {
  15494. /*.size =*/ size,
  15495. /*.n_nodes =*/ 0,
  15496. /*.n_leafs =*/ 0,
  15497. /*.nodes =*/ nodes_ptr,
  15498. /*.grads =*/ grads_ptr,
  15499. /*.leafs =*/ leafs_ptr,
  15500. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15501. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15502. /*.perf_runs =*/ 0,
  15503. /*.perf_cycles =*/ 0,
  15504. /*.perf_time_us =*/ 0,
  15505. };
  15506. return cgraph;
  15507. }
  15508. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15509. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15510. }
  15511. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15512. struct ggml_cgraph cgraph = {
  15513. /*.size =*/ 0,
  15514. /*.n_nodes =*/ i1 - i0,
  15515. /*.n_leafs =*/ 0,
  15516. /*.nodes =*/ cgraph0->nodes + i0,
  15517. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15518. /*.leafs =*/ NULL,
  15519. /*.hash_table =*/ { 0, NULL },
  15520. /*.order =*/ cgraph0->order,
  15521. /*.perf_runs =*/ 0,
  15522. /*.perf_cycles =*/ 0,
  15523. /*.perf_time_us =*/ 0,
  15524. };
  15525. return cgraph;
  15526. }
  15527. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15528. GGML_ASSERT(dst->size >= src->n_leafs);
  15529. GGML_ASSERT(dst->size >= src->n_nodes);
  15530. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15531. dst->n_leafs = src->n_leafs;
  15532. dst->n_nodes = src->n_nodes;
  15533. dst->order = src->order;
  15534. for (int i = 0; i < src->n_leafs; ++i) {
  15535. dst->leafs[i] = src->leafs[i];
  15536. }
  15537. for (int i = 0; i < src->n_nodes; ++i) {
  15538. dst->nodes[i] = src->nodes[i];
  15539. }
  15540. if (src->grads) {
  15541. GGML_ASSERT(dst->grads != NULL);
  15542. for (int i = 0; i < src->n_nodes; ++i) {
  15543. dst->grads[i] = src->grads[i];
  15544. }
  15545. }
  15546. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15547. if (src->visited_hash_table.keys[i]) {
  15548. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15549. }
  15550. }
  15551. }
  15552. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15553. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15554. ggml_graph_cpy(cgraph, result);
  15555. return result;
  15556. }
  15557. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15558. GGML_ASSERT(cgraph->grads != NULL);
  15559. for (int i = 0; i < cgraph->n_nodes; i++) {
  15560. struct ggml_tensor * grad = cgraph->grads[i];
  15561. if (grad) {
  15562. ggml_set_zero(grad);
  15563. }
  15564. }
  15565. }
  15566. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15567. cgraph->n_leafs = 0;
  15568. cgraph->n_nodes = 0;
  15569. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15570. }
  15571. //
  15572. // thread data
  15573. //
  15574. // synchronization is done via busy loops
  15575. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15576. //
  15577. #ifdef __APPLE__
  15578. //#include <os/lock.h>
  15579. //
  15580. //typedef os_unfair_lock ggml_lock_t;
  15581. //
  15582. //#define ggml_lock_init(x) UNUSED(x)
  15583. //#define ggml_lock_destroy(x) UNUSED(x)
  15584. //#define ggml_lock_lock os_unfair_lock_lock
  15585. //#define ggml_lock_unlock os_unfair_lock_unlock
  15586. //
  15587. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15588. typedef int ggml_lock_t;
  15589. #define ggml_lock_init(x) UNUSED(x)
  15590. #define ggml_lock_destroy(x) UNUSED(x)
  15591. #define ggml_lock_lock(x) UNUSED(x)
  15592. #define ggml_lock_unlock(x) UNUSED(x)
  15593. #define GGML_LOCK_INITIALIZER 0
  15594. #define ggml_thread_create pthread_create
  15595. #define ggml_thread_join pthread_join
  15596. #else
  15597. //typedef pthread_spinlock_t ggml_lock_t;
  15598. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15599. //#define ggml_lock_destroy pthread_spin_destroy
  15600. //#define ggml_lock_lock pthread_spin_lock
  15601. //#define ggml_lock_unlock pthread_spin_unlock
  15602. typedef int ggml_lock_t;
  15603. #define ggml_lock_init(x) UNUSED(x)
  15604. #define ggml_lock_destroy(x) UNUSED(x)
  15605. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15606. #define ggml_lock_lock(x) _mm_pause()
  15607. #else
  15608. #define ggml_lock_lock(x) UNUSED(x)
  15609. #endif
  15610. #define ggml_lock_unlock(x) UNUSED(x)
  15611. #define GGML_LOCK_INITIALIZER 0
  15612. #define ggml_thread_create pthread_create
  15613. #define ggml_thread_join pthread_join
  15614. #endif
  15615. // Android's libc implementation "bionic" does not support setting affinity
  15616. #if defined(__gnu_linux__)
  15617. static void set_numa_thread_affinity(int thread_n) {
  15618. if (!ggml_is_numa()) {
  15619. return;
  15620. }
  15621. int node_num;
  15622. int rv;
  15623. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15624. switch(g_state.numa.numa_strategy) {
  15625. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15626. // run thread on node_num thread_n / (threads per node)
  15627. node_num = thread_n % g_state.numa.n_nodes;
  15628. break;
  15629. case GGML_NUMA_STRATEGY_ISOLATE:
  15630. // run thread on current_node
  15631. node_num = g_state.numa.current_node;
  15632. break;
  15633. case GGML_NUMA_STRATEGY_NUMACTL:
  15634. // use the cpuset that numactl gave us
  15635. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15636. if (rv) {
  15637. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15638. }
  15639. return;
  15640. default:
  15641. return;
  15642. }
  15643. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15644. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15645. CPU_ZERO_S(setsize, cpus);
  15646. for (size_t i = 0; i < node->n_cpus; ++i) {
  15647. CPU_SET_S(node->cpus[i], setsize, cpus);
  15648. }
  15649. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15650. if (rv) {
  15651. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15652. }
  15653. CPU_FREE(cpus);
  15654. }
  15655. static void clear_numa_thread_affinity(void) {
  15656. if (!ggml_is_numa()) {
  15657. return;
  15658. }
  15659. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15660. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15661. CPU_ZERO_S(setsize, cpus);
  15662. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15663. CPU_SET_S(i, setsize, cpus);
  15664. }
  15665. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15666. if (rv) {
  15667. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15668. }
  15669. CPU_FREE(cpus);
  15670. }
  15671. #else
  15672. // TODO: Windows etc.
  15673. // (the linux implementation may also work on BSD, someone should test)
  15674. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15675. static void clear_numa_thread_affinity(void) {}
  15676. #endif
  15677. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15678. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15679. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15680. node->perf_runs++;
  15681. node->perf_cycles += cycles_cur;
  15682. node->perf_time_us += time_us_cur;
  15683. }
  15684. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15685. int n_tasks = 0;
  15686. if (ggml_is_empty(node)) {
  15687. // no need to multi-thread a no-op
  15688. n_tasks = 1;
  15689. return n_tasks;
  15690. }
  15691. switch (node->op) {
  15692. case GGML_OP_CPY:
  15693. case GGML_OP_DUP:
  15694. case GGML_OP_ADD:
  15695. case GGML_OP_ADD1:
  15696. case GGML_OP_ACC:
  15697. {
  15698. n_tasks = n_threads;
  15699. } break;
  15700. case GGML_OP_SUB:
  15701. case GGML_OP_SQR:
  15702. case GGML_OP_SQRT:
  15703. case GGML_OP_LOG:
  15704. case GGML_OP_SUM:
  15705. case GGML_OP_SUM_ROWS:
  15706. case GGML_OP_MEAN:
  15707. case GGML_OP_ARGMAX:
  15708. case GGML_OP_REPEAT:
  15709. case GGML_OP_REPEAT_BACK:
  15710. case GGML_OP_LEAKY_RELU:
  15711. {
  15712. n_tasks = 1;
  15713. } break;
  15714. case GGML_OP_UNARY:
  15715. switch (ggml_get_unary_op(node)) {
  15716. case GGML_UNARY_OP_ABS:
  15717. case GGML_UNARY_OP_SGN:
  15718. case GGML_UNARY_OP_NEG:
  15719. case GGML_UNARY_OP_STEP:
  15720. case GGML_UNARY_OP_TANH:
  15721. case GGML_UNARY_OP_ELU:
  15722. case GGML_UNARY_OP_RELU:
  15723. case GGML_UNARY_OP_SIGMOID:
  15724. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15725. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15726. {
  15727. n_tasks = 1;
  15728. } break;
  15729. case GGML_UNARY_OP_GELU:
  15730. case GGML_UNARY_OP_GELU_QUICK:
  15731. case GGML_UNARY_OP_SILU:
  15732. {
  15733. n_tasks = n_threads;
  15734. } break;
  15735. default:
  15736. GGML_ASSERT(false);
  15737. }
  15738. break;
  15739. case GGML_OP_SILU_BACK:
  15740. case GGML_OP_MUL:
  15741. case GGML_OP_DIV:
  15742. case GGML_OP_NORM:
  15743. case GGML_OP_RMS_NORM:
  15744. case GGML_OP_RMS_NORM_BACK:
  15745. case GGML_OP_GROUP_NORM:
  15746. case GGML_OP_CONCAT:
  15747. {
  15748. n_tasks = n_threads;
  15749. } break;
  15750. case GGML_OP_MUL_MAT:
  15751. {
  15752. n_tasks = n_threads;
  15753. // TODO: use different scheduling for different matrix sizes
  15754. //const int nr0 = ggml_nrows(node->src[0]);
  15755. //const int nr1 = ggml_nrows(node->src[1]);
  15756. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15757. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15758. } break;
  15759. case GGML_OP_MUL_MAT_ID:
  15760. {
  15761. n_tasks = n_threads;
  15762. } break;
  15763. case GGML_OP_OUT_PROD:
  15764. {
  15765. n_tasks = n_threads;
  15766. } break;
  15767. case GGML_OP_GET_ROWS:
  15768. {
  15769. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15770. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15771. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15772. } break;
  15773. case GGML_OP_SCALE:
  15774. case GGML_OP_SET:
  15775. case GGML_OP_CONT:
  15776. case GGML_OP_RESHAPE:
  15777. case GGML_OP_VIEW:
  15778. case GGML_OP_PERMUTE:
  15779. case GGML_OP_TRANSPOSE:
  15780. case GGML_OP_GET_ROWS_BACK:
  15781. case GGML_OP_DIAG:
  15782. {
  15783. n_tasks = 1;
  15784. } break;
  15785. case GGML_OP_DIAG_MASK_ZERO:
  15786. case GGML_OP_DIAG_MASK_INF:
  15787. case GGML_OP_SOFT_MAX_BACK:
  15788. case GGML_OP_ROPE:
  15789. case GGML_OP_ROPE_BACK:
  15790. case GGML_OP_ADD_REL_POS:
  15791. {
  15792. n_tasks = n_threads;
  15793. } break;
  15794. case GGML_OP_CLAMP:
  15795. {
  15796. n_tasks = 1; //TODO
  15797. } break;
  15798. case GGML_OP_SOFT_MAX:
  15799. {
  15800. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15801. } break;
  15802. case GGML_OP_CONV_TRANSPOSE_1D:
  15803. {
  15804. n_tasks = n_threads;
  15805. } break;
  15806. case GGML_OP_IM2COL:
  15807. {
  15808. n_tasks = n_threads;
  15809. } break;
  15810. case GGML_OP_CONV_TRANSPOSE_2D:
  15811. {
  15812. n_tasks = n_threads;
  15813. } break;
  15814. case GGML_OP_POOL_1D:
  15815. case GGML_OP_POOL_2D:
  15816. {
  15817. n_tasks = 1;
  15818. } break;
  15819. case GGML_OP_UPSCALE:
  15820. {
  15821. n_tasks = n_threads;
  15822. } break;
  15823. case GGML_OP_PAD:
  15824. {
  15825. n_tasks = n_threads;
  15826. } break;
  15827. case GGML_OP_ARANGE:
  15828. {
  15829. n_tasks = n_threads;
  15830. } break;
  15831. case GGML_OP_TIMESTEP_EMBEDDING:
  15832. {
  15833. n_tasks = n_threads;
  15834. } break;
  15835. case GGML_OP_ARGSORT:
  15836. {
  15837. n_tasks = n_threads;
  15838. } break;
  15839. case GGML_OP_FLASH_ATTN_EXT:
  15840. {
  15841. n_tasks = n_threads;
  15842. } break;
  15843. case GGML_OP_FLASH_ATTN_BACK:
  15844. {
  15845. n_tasks = n_threads;
  15846. } break;
  15847. case GGML_OP_SSM_CONV:
  15848. case GGML_OP_SSM_SCAN:
  15849. {
  15850. n_tasks = n_threads;
  15851. } break;
  15852. case GGML_OP_WIN_PART:
  15853. case GGML_OP_WIN_UNPART:
  15854. case GGML_OP_GET_REL_POS:
  15855. case GGML_OP_MAP_UNARY:
  15856. case GGML_OP_MAP_BINARY:
  15857. case GGML_OP_MAP_CUSTOM1_F32:
  15858. case GGML_OP_MAP_CUSTOM2_F32:
  15859. case GGML_OP_MAP_CUSTOM3_F32:
  15860. {
  15861. n_tasks = 1;
  15862. } break;
  15863. case GGML_OP_MAP_CUSTOM1:
  15864. {
  15865. struct ggml_map_custom1_op_params p;
  15866. memcpy(&p, node->op_params, sizeof(p));
  15867. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15868. n_tasks = n_threads;
  15869. } else {
  15870. n_tasks = MIN(p.n_tasks, n_threads);
  15871. }
  15872. } break;
  15873. case GGML_OP_MAP_CUSTOM2:
  15874. {
  15875. struct ggml_map_custom2_op_params p;
  15876. memcpy(&p, node->op_params, sizeof(p));
  15877. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15878. n_tasks = n_threads;
  15879. } else {
  15880. n_tasks = MIN(p.n_tasks, n_threads);
  15881. }
  15882. } break;
  15883. case GGML_OP_MAP_CUSTOM3:
  15884. {
  15885. struct ggml_map_custom3_op_params p;
  15886. memcpy(&p, node->op_params, sizeof(p));
  15887. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15888. n_tasks = n_threads;
  15889. } else {
  15890. n_tasks = MIN(p.n_tasks, n_threads);
  15891. }
  15892. } break;
  15893. case GGML_OP_CROSS_ENTROPY_LOSS:
  15894. {
  15895. n_tasks = n_threads;
  15896. } break;
  15897. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15898. {
  15899. n_tasks = n_threads;
  15900. } break;
  15901. case GGML_OP_NONE:
  15902. {
  15903. n_tasks = 1;
  15904. } break;
  15905. case GGML_OP_COUNT:
  15906. {
  15907. GGML_ASSERT(false);
  15908. } break;
  15909. default:
  15910. {
  15911. fprintf(stderr, "%s: op not implemented: ", __func__);
  15912. if (node->op < GGML_OP_COUNT) {
  15913. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15914. } else {
  15915. fprintf(stderr, "%d\n", node->op);
  15916. }
  15917. GGML_ASSERT(false);
  15918. } break;
  15919. }
  15920. assert(n_tasks > 0);
  15921. return n_tasks;
  15922. }
  15923. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15924. // wait for other threads to finish
  15925. const int last_node_n = * node_n;
  15926. while (true) {
  15927. if (do_yield) {
  15928. sched_yield();
  15929. }
  15930. * node_n = atomic_load(&state->shared->node_n);
  15931. if (* node_n != last_node_n) break;
  15932. #if defined(__SSE3__)
  15933. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15934. _mm_pause();
  15935. #endif
  15936. }
  15937. }
  15938. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15939. // wait for other threads to finish
  15940. const int last_task_phase = * task_phase;
  15941. while (true) {
  15942. if (do_yield) {
  15943. sched_yield();
  15944. }
  15945. * task_phase = atomic_load(&state->shared->node_task);
  15946. if (* task_phase != last_task_phase) break;
  15947. #if defined(__SSE3__)
  15948. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15949. _mm_pause();
  15950. #endif
  15951. }
  15952. }
  15953. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15954. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15955. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15956. const struct ggml_cplan * cplan = state->shared->cplan;
  15957. const int n_threads = state->shared->n_threads;
  15958. set_numa_thread_affinity(state->ith);
  15959. int node_n = -1;
  15960. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15961. while (true) {
  15962. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15963. state->shared->node_n += 1;
  15964. state->ec = GGML_STATUS_ABORTED;
  15965. return 0;
  15966. }
  15967. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15968. // all other threads are finished and spinning
  15969. // do finalize and init here so we don't have synchronize again
  15970. struct ggml_compute_params params = {
  15971. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15972. /*.ith =*/ 0,
  15973. /*.nth =*/ 0,
  15974. /*.wsize =*/ cplan->work_size,
  15975. /*.wdata =*/ cplan->work_data,
  15976. };
  15977. if (node_n != -1) {
  15978. /* FINALIZE */
  15979. struct ggml_tensor * node = cgraph->nodes[node_n];
  15980. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15981. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15982. ggml_compute_forward(&params, node, state);
  15983. }
  15984. ggml_graph_compute_perf_stats_node(node, state->shared);
  15985. }
  15986. // distribute new work or execute it direct if 1T
  15987. while (++node_n < cgraph->n_nodes) {
  15988. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15989. struct ggml_tensor * node = cgraph->nodes[node_n];
  15990. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15991. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15992. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15993. params.nth = n_tasks;
  15994. if (n_tasks == 1) {
  15995. /* INIT */
  15996. if (GGML_OP_HAS_INIT[node->op]) {
  15997. params.type = GGML_TASK_TYPE_INIT;
  15998. ggml_compute_forward(&params, node, state);
  15999. }
  16000. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16001. // they do something more efficient than spinning (?)
  16002. params.type = GGML_TASK_TYPE_COMPUTE;
  16003. ggml_compute_forward(&params, node, state);
  16004. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16005. params.type = GGML_TASK_TYPE_FINALIZE;
  16006. ggml_compute_forward(&params, node, state);
  16007. }
  16008. ggml_graph_compute_perf_stats_node(node, state->shared);
  16009. } else {
  16010. break;
  16011. }
  16012. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16013. break;
  16014. }
  16015. }
  16016. task_phase = GGML_TASK_TYPE_INIT;
  16017. atomic_store(&state->shared->n_active, n_threads);
  16018. atomic_store(&state->shared->node_n, node_n);
  16019. atomic_store(&state->shared->node_task, task_phase);
  16020. } else {
  16021. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16022. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16023. }
  16024. // check if we should stop
  16025. if (node_n >= cgraph->n_nodes) break;
  16026. /* INIT & COMPUTE */
  16027. struct ggml_tensor * node = cgraph->nodes[node_n];
  16028. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16029. struct ggml_compute_params params = {
  16030. /*.type =*/ GGML_TASK_TYPE_INIT,
  16031. /*.ith =*/ state->ith,
  16032. /*.nth =*/ n_tasks,
  16033. /*.wsize =*/ cplan->work_size,
  16034. /*.wdata =*/ cplan->work_data,
  16035. };
  16036. if (state->ith < n_tasks) {
  16037. if (GGML_OP_HAS_INIT[node->op]) {
  16038. ggml_compute_forward(&params, node, state);
  16039. }
  16040. }
  16041. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16042. task_phase = GGML_TASK_TYPE_COMPUTE;
  16043. atomic_store(&state->shared->n_active, n_threads);
  16044. atomic_store(&state->shared->node_task, task_phase);
  16045. }
  16046. else {
  16047. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16048. // depending on the workload and the operating system.
  16049. // since it is not clear what is the best approach, it should potentially become user-configurable
  16050. // ref: https://github.com/ggerganov/ggml/issues/291
  16051. // UPD: adding the do_yield flag seems to resolve the issue universally
  16052. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16053. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16054. }
  16055. if (state->ith < n_tasks) {
  16056. params.type = GGML_TASK_TYPE_COMPUTE;
  16057. ggml_compute_forward(&params, node, state);
  16058. }
  16059. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16060. task_phase = GGML_TASK_TYPE_FINALIZE;
  16061. atomic_store(&state->shared->n_active, n_threads);
  16062. atomic_store(&state->shared->node_task, task_phase);
  16063. }
  16064. else {
  16065. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16066. }
  16067. }
  16068. return 0;
  16069. }
  16070. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16071. if (n_threads <= 0) {
  16072. n_threads = GGML_DEFAULT_N_THREADS;
  16073. }
  16074. size_t work_size = 0;
  16075. struct ggml_cplan cplan;
  16076. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16077. int max_tasks = 1;
  16078. // thread scheduling for the different operations + work buffer size estimation
  16079. for (int i = 0; i < cgraph->n_nodes; i++) {
  16080. struct ggml_tensor * node = cgraph->nodes[i];
  16081. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16082. max_tasks = MAX(max_tasks, n_tasks);
  16083. size_t cur = 0;
  16084. switch (node->op) {
  16085. case GGML_OP_CPY:
  16086. case GGML_OP_DUP:
  16087. {
  16088. if (ggml_is_quantized(node->type) ||
  16089. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16090. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16091. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16092. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16093. }
  16094. } break;
  16095. case GGML_OP_ADD:
  16096. case GGML_OP_ADD1:
  16097. {
  16098. if (ggml_is_quantized(node->src[0]->type)) {
  16099. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16100. }
  16101. } break;
  16102. case GGML_OP_ACC:
  16103. {
  16104. if (ggml_is_quantized(node->src[0]->type)) {
  16105. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16106. }
  16107. } break;
  16108. case GGML_OP_MUL_MAT:
  16109. {
  16110. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16111. #if defined(GGML_USE_CLBLAST)
  16112. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16113. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16114. } else
  16115. #endif
  16116. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16117. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16118. if (node->src[0]->type != GGML_TYPE_F32) {
  16119. // here we need memory for fully dequantized matrix from src0
  16120. // take into account that src0 can be broadcasted into src1[2,3]
  16121. cur = ggml_type_size(GGML_TYPE_F32)
  16122. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16123. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16124. }
  16125. } else
  16126. #endif
  16127. if (node->src[1]->type != vec_dot_type) {
  16128. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16129. }
  16130. } break;
  16131. case GGML_OP_MUL_MAT_ID:
  16132. {
  16133. cur = 0;
  16134. const struct ggml_tensor * src0 = node->src[0];
  16135. const struct ggml_tensor * src1 = node->src[1];
  16136. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16137. if (src1->type != vec_dot_type) {
  16138. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16139. }
  16140. const int n_as = src0->ne[2];
  16141. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16142. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16143. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16144. } break;
  16145. case GGML_OP_OUT_PROD:
  16146. {
  16147. if (ggml_is_quantized(node->src[0]->type)) {
  16148. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16149. }
  16150. } break;
  16151. case GGML_OP_SOFT_MAX:
  16152. case GGML_OP_ROPE:
  16153. {
  16154. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16155. } break;
  16156. case GGML_OP_CONV_TRANSPOSE_1D:
  16157. {
  16158. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16159. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16160. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16161. const int64_t ne00 = node->src[0]->ne[0]; // K
  16162. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16163. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16164. const int64_t ne10 = node->src[1]->ne[0]; // L
  16165. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16166. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16167. node->src[0]->type == GGML_TYPE_BF16) &&
  16168. node->src[1]->type == GGML_TYPE_F32) {
  16169. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16170. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16171. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16172. node->src[1]->type == GGML_TYPE_F32) {
  16173. cur += sizeof(float)*ne00*ne01*ne02;
  16174. cur += sizeof(float)*ne10*ne11;
  16175. } else {
  16176. GGML_ASSERT(false);
  16177. }
  16178. } break;
  16179. case GGML_OP_CONV_TRANSPOSE_2D:
  16180. {
  16181. const int64_t ne00 = node->src[0]->ne[0]; // W
  16182. const int64_t ne01 = node->src[0]->ne[1]; // H
  16183. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16184. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16185. const int64_t ne10 = node->src[1]->ne[0]; // W
  16186. const int64_t ne11 = node->src[1]->ne[1]; // H
  16187. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16188. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16189. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16190. } break;
  16191. case GGML_OP_FLASH_ATTN_EXT:
  16192. {
  16193. const int64_t ne00 = node->src[0]->ne[0]; // D
  16194. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16195. } break;
  16196. case GGML_OP_FLASH_ATTN_BACK:
  16197. {
  16198. const int64_t D = node->src[0]->ne[0];
  16199. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16200. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16201. if (node->src[1]->type == GGML_TYPE_F32) {
  16202. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16203. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16204. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16205. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16206. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16207. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16208. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16209. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16210. }
  16211. } break;
  16212. case GGML_OP_CROSS_ENTROPY_LOSS:
  16213. {
  16214. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16215. } break;
  16216. case GGML_OP_COUNT:
  16217. {
  16218. GGML_ASSERT(false);
  16219. } break;
  16220. default:
  16221. break;
  16222. }
  16223. work_size = MAX(work_size, cur);
  16224. }
  16225. if (work_size > 0) {
  16226. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16227. }
  16228. cplan.n_threads = MIN(max_tasks, n_threads);
  16229. cplan.work_size = work_size;
  16230. cplan.work_data = NULL;
  16231. return cplan;
  16232. }
  16233. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16234. {
  16235. GGML_ASSERT(cplan);
  16236. GGML_ASSERT(cplan->n_threads > 0);
  16237. if (cplan->work_size > 0) {
  16238. GGML_ASSERT(cplan->work_data);
  16239. }
  16240. }
  16241. const int n_threads = cplan->n_threads;
  16242. struct ggml_compute_state_shared state_shared = {
  16243. /*.cgraph =*/ cgraph,
  16244. /*.cgraph_plan =*/ cplan,
  16245. /*.perf_node_start_cycles =*/ 0,
  16246. /*.perf_node_start_time_us =*/ 0,
  16247. /*.n_threads =*/ n_threads,
  16248. /*.n_active =*/ n_threads,
  16249. /*.node_n =*/ -1,
  16250. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16251. /*.abort_callback =*/ NULL,
  16252. /*.abort_callback_data =*/ NULL,
  16253. /*.current_chunk; =*/ 0,
  16254. };
  16255. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16256. // create thread pool
  16257. if (n_threads > 1) {
  16258. for (int j = 1; j < n_threads; ++j) {
  16259. workers[j] = (struct ggml_compute_state) {
  16260. .thrd = 0,
  16261. .ith = j,
  16262. .shared = &state_shared,
  16263. .ec = GGML_STATUS_SUCCESS,
  16264. };
  16265. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16266. GGML_ASSERT(rc == 0);
  16267. UNUSED(rc);
  16268. }
  16269. }
  16270. workers[0].ith = 0;
  16271. workers[0].shared = &state_shared;
  16272. workers[0].ec = GGML_STATUS_SUCCESS;
  16273. const int64_t perf_start_cycles = ggml_perf_cycles();
  16274. const int64_t perf_start_time_us = ggml_perf_time_us();
  16275. // this is a work thread too
  16276. ggml_graph_compute_thread(&workers[0]);
  16277. enum ggml_status compute_status = workers[0].ec;
  16278. // don't leave affinity set on the main thread
  16279. clear_numa_thread_affinity();
  16280. // join or kill thread pool
  16281. if (n_threads > 1) {
  16282. for (int j = 1; j < n_threads; j++) {
  16283. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16284. GGML_ASSERT(rc == 0);
  16285. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16286. compute_status = workers[j].ec;
  16287. }
  16288. }
  16289. // performance stats (graph)
  16290. {
  16291. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16292. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16293. cgraph->perf_runs++;
  16294. cgraph->perf_cycles += perf_cycles_cur;
  16295. cgraph->perf_time_us += perf_time_us_cur;
  16296. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16297. __func__, cgraph->perf_runs,
  16298. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16299. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16300. (double) perf_time_us_cur / 1000.0,
  16301. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16302. }
  16303. return compute_status;
  16304. }
  16305. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16306. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16307. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16308. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16309. return ggml_graph_compute(cgraph, &cplan);
  16310. }
  16311. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16312. for (int i = 0; i < cgraph->n_leafs; i++) {
  16313. struct ggml_tensor * leaf = cgraph->leafs[i];
  16314. if (strcmp(leaf->name, name) == 0) {
  16315. return leaf;
  16316. }
  16317. }
  16318. for (int i = 0; i < cgraph->n_nodes; i++) {
  16319. struct ggml_tensor * node = cgraph->nodes[i];
  16320. if (strcmp(node->name, name) == 0) {
  16321. return node;
  16322. }
  16323. }
  16324. return NULL;
  16325. }
  16326. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16327. const int64_t * ne = tensor->ne;
  16328. const size_t * nb = tensor->nb;
  16329. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16330. ggml_type_name(tensor->type),
  16331. ggml_op_name (tensor->op),
  16332. ggml_n_dims(tensor),
  16333. ne[0], ne[1], ne[2], ne[3],
  16334. nb[0], nb[1], nb[2], nb[3],
  16335. tensor->data,
  16336. tensor->name);
  16337. }
  16338. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16339. const int64_t * ne = tensor->ne;
  16340. const size_t * nb = tensor->nb;
  16341. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16342. arg,
  16343. ggml_type_name(tensor->type),
  16344. ggml_op_name (tensor->op),
  16345. ggml_n_dims(tensor),
  16346. ne[0], ne[1], ne[2], ne[3],
  16347. nb[0], nb[1], nb[2], nb[3],
  16348. tensor->data,
  16349. tensor->name);
  16350. }
  16351. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16352. uint64_t size_eval = 0;
  16353. // compute size of intermediate results
  16354. // TODO: does not take into account scratch buffers !!!!
  16355. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16356. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16357. }
  16358. // print
  16359. {
  16360. FILE * fout = stdout;
  16361. fprintf(fout, "\n");
  16362. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16363. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16364. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16365. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16366. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16367. // header
  16368. fprintf(fout, "\n");
  16369. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16370. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16371. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16372. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16373. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16374. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16375. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16376. }
  16377. // header
  16378. fprintf(fout, "\n");
  16379. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16380. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16381. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16382. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16383. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16384. if (cgraph->nodes[i]->src[j]) {
  16385. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16386. }
  16387. }
  16388. fprintf(fout, "\n");
  16389. }
  16390. fprintf(fout, "\n");
  16391. }
  16392. // write binary data
  16393. {
  16394. FILE * fout = ggml_fopen(fname, "wb");
  16395. if (!fout) {
  16396. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16397. return;
  16398. }
  16399. // header
  16400. {
  16401. const uint32_t magic = GGML_FILE_MAGIC;
  16402. const uint32_t version = GGML_FILE_VERSION;
  16403. const uint32_t n_leafs = cgraph->n_leafs;
  16404. const uint32_t n_nodes = cgraph->n_nodes;
  16405. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16406. fwrite(&version, sizeof(uint32_t), 1, fout);
  16407. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16408. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16409. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16410. }
  16411. // leafs
  16412. {
  16413. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16414. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16415. const uint32_t type = tensor->type;
  16416. const uint32_t op = tensor->op;
  16417. fwrite(&type, sizeof(uint32_t), 1, fout);
  16418. fwrite(&op, sizeof(uint32_t), 1, fout);
  16419. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16420. const uint64_t ne = tensor->ne[j];
  16421. const uint64_t nb = tensor->nb[j];
  16422. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16423. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16424. }
  16425. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16426. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16427. // dump the data
  16428. // TODO: pad this to 32 byte boundary
  16429. {
  16430. const size_t size = ggml_nbytes(tensor);
  16431. fwrite(tensor->data, sizeof(char), size, fout);
  16432. }
  16433. }
  16434. }
  16435. // nodes
  16436. {
  16437. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16438. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16439. const uint32_t type = tensor->type;
  16440. const uint32_t op = tensor->op;
  16441. fwrite(&type, sizeof(uint32_t), 1, fout);
  16442. fwrite(&op, sizeof(uint32_t), 1, fout);
  16443. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16444. const uint64_t ne = tensor->ne[j];
  16445. const uint64_t nb = tensor->nb[j];
  16446. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16447. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16448. }
  16449. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16450. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16451. // output the op arguments
  16452. {
  16453. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16454. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16455. args[j] = tensor->src[j];
  16456. }
  16457. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16458. if (args[j]) {
  16459. int32_t idx = -1;
  16460. // check if leaf
  16461. {
  16462. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16463. if (args[j] == cgraph->leafs[k]) {
  16464. idx = k;
  16465. break;
  16466. }
  16467. }
  16468. }
  16469. // check if node
  16470. if (idx == -1) {
  16471. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16472. if (args[j] == cgraph->nodes[k]) {
  16473. idx = cgraph->n_leafs + k;
  16474. break;
  16475. }
  16476. }
  16477. }
  16478. if (idx == -1) {
  16479. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16480. fclose(fout);
  16481. return;
  16482. }
  16483. fwrite(&idx, sizeof(int32_t), 1, fout);
  16484. } else {
  16485. const int32_t nul = -1;
  16486. fwrite(&nul, sizeof(int32_t), 1, fout);
  16487. }
  16488. }
  16489. }
  16490. }
  16491. }
  16492. fclose(fout);
  16493. }
  16494. }
  16495. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16496. assert(*ctx_data == NULL);
  16497. assert(*ctx_eval == NULL);
  16498. struct ggml_cgraph * result = NULL;
  16499. struct ggml_tensor * data = NULL;
  16500. // read file into data
  16501. {
  16502. FILE * fin = ggml_fopen(fname, "rb");
  16503. if (!fin) {
  16504. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16505. return result;
  16506. }
  16507. size_t fsize = 0;
  16508. fseek(fin, 0, SEEK_END);
  16509. fsize = ftell(fin);
  16510. fseek(fin, 0, SEEK_SET);
  16511. // create the data context
  16512. {
  16513. const size_t overhead = 1*ggml_tensor_overhead();
  16514. struct ggml_init_params params = {
  16515. .mem_size = fsize + overhead,
  16516. .mem_buffer = NULL,
  16517. .no_alloc = false,
  16518. };
  16519. *ctx_data = ggml_init(params);
  16520. if (!*ctx_data) {
  16521. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16522. fclose(fin);
  16523. return result;
  16524. }
  16525. }
  16526. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16527. {
  16528. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16529. if (ret != fsize) {
  16530. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16531. fclose(fin);
  16532. return result;
  16533. }
  16534. }
  16535. fclose(fin);
  16536. }
  16537. // populate result
  16538. {
  16539. char * ptr = (char *) data->data;
  16540. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16541. if (magic != GGML_FILE_MAGIC) {
  16542. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16543. return result;
  16544. }
  16545. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16546. if (version != GGML_FILE_VERSION) {
  16547. fprintf(stderr, "%s: invalid version number\n", __func__);
  16548. return result;
  16549. }
  16550. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16551. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16552. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16553. const int graph_size = MAX(n_leafs, n_nodes);
  16554. // create the data context
  16555. {
  16556. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16557. struct ggml_init_params params = {
  16558. .mem_size = size_eval + overhead,
  16559. .mem_buffer = NULL,
  16560. .no_alloc = true,
  16561. };
  16562. *ctx_eval = ggml_init(params);
  16563. if (!*ctx_eval) {
  16564. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16565. return result;
  16566. }
  16567. }
  16568. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16569. result->n_leafs = n_leafs;
  16570. result->n_nodes = n_nodes;
  16571. // leafs
  16572. {
  16573. uint32_t type;
  16574. uint32_t op;
  16575. for (uint32_t i = 0; i < n_leafs; ++i) {
  16576. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16577. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16578. int64_t ne[GGML_MAX_DIMS];
  16579. size_t nb[GGML_MAX_DIMS];
  16580. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16581. uint64_t ne_cur;
  16582. uint64_t nb_cur;
  16583. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16584. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16585. ne[j] = ne_cur;
  16586. nb[j] = nb_cur;
  16587. }
  16588. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16589. tensor->op = (enum ggml_op) op;
  16590. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16591. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16592. tensor->data = (void *) ptr;
  16593. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16594. tensor->nb[j] = nb[j];
  16595. }
  16596. result->leafs[i] = tensor;
  16597. ptr += ggml_nbytes(tensor);
  16598. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16599. }
  16600. }
  16601. ggml_set_no_alloc(*ctx_eval, false);
  16602. // nodes
  16603. {
  16604. uint32_t type;
  16605. uint32_t op;
  16606. for (uint32_t i = 0; i < n_nodes; ++i) {
  16607. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16608. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16609. enum ggml_op eop = (enum ggml_op) op;
  16610. int64_t ne[GGML_MAX_DIMS];
  16611. size_t nb[GGML_MAX_DIMS];
  16612. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16613. uint64_t ne_cur;
  16614. uint64_t nb_cur;
  16615. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16616. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16617. ne[j] = ne_cur;
  16618. nb[j] = nb_cur;
  16619. }
  16620. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16621. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16622. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16623. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16624. // parse args
  16625. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16626. const int32_t arg_idx = ptr_arg_idx[j];
  16627. if (arg_idx == -1) {
  16628. continue;
  16629. }
  16630. if (arg_idx < result->n_leafs) {
  16631. args[j] = result->leafs[arg_idx];
  16632. } else {
  16633. args[j] = result->nodes[arg_idx - result->n_leafs];
  16634. }
  16635. }
  16636. // create the tensor
  16637. // "view" operations are handled differently
  16638. // TODO: handle inplace ops - currently a copy is always made
  16639. struct ggml_tensor * tensor = NULL;
  16640. switch (eop) {
  16641. // TODO: implement other view ops
  16642. case GGML_OP_RESHAPE:
  16643. {
  16644. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16645. } break;
  16646. case GGML_OP_VIEW:
  16647. {
  16648. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16649. size_t offs;
  16650. memcpy(&offs, ptr_op_params, sizeof(offs));
  16651. tensor->data = ((char *) tensor->data) + offs;
  16652. } break;
  16653. case GGML_OP_TRANSPOSE:
  16654. {
  16655. tensor = ggml_transpose(*ctx_eval, args[0]);
  16656. } break;
  16657. case GGML_OP_PERMUTE:
  16658. {
  16659. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16660. } break;
  16661. default:
  16662. {
  16663. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16664. tensor->op = eop;
  16665. } break;
  16666. }
  16667. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16668. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16669. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16670. tensor->nb[j] = nb[j];
  16671. }
  16672. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16673. tensor->src[j] = args[j];
  16674. }
  16675. result->nodes[i] = tensor;
  16676. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16677. }
  16678. }
  16679. }
  16680. return result;
  16681. }
  16682. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16683. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16684. GGML_PRINT("=== GRAPH ===\n");
  16685. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16686. for (int i = 0; i < cgraph->n_nodes; i++) {
  16687. struct ggml_tensor * node = cgraph->nodes[i];
  16688. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16689. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16690. i,
  16691. node->ne[0], node->ne[1], node->ne[2],
  16692. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16693. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16694. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16695. (double) node->perf_time_us / 1000.0,
  16696. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16697. }
  16698. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16699. for (int i = 0; i < cgraph->n_leafs; i++) {
  16700. struct ggml_tensor * node = cgraph->leafs[i];
  16701. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16702. i,
  16703. node->ne[0], node->ne[1],
  16704. ggml_op_name(node->op),
  16705. ggml_get_name(node));
  16706. }
  16707. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16708. if (perf_total_per_op_us[i] == 0) {
  16709. continue;
  16710. }
  16711. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16712. }
  16713. GGML_PRINT("========================================\n");
  16714. }
  16715. // check if node is part of the graph
  16716. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16717. if (cgraph == NULL) {
  16718. return true;
  16719. }
  16720. for (int i = 0; i < cgraph->n_nodes; i++) {
  16721. if (cgraph->nodes[i] == node) {
  16722. return true;
  16723. }
  16724. }
  16725. return false;
  16726. }
  16727. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16728. for (int i = 0; i < cgraph->n_nodes; i++) {
  16729. struct ggml_tensor * parent = cgraph->nodes[i];
  16730. if (parent->grad == node) {
  16731. return parent;
  16732. }
  16733. }
  16734. return NULL;
  16735. }
  16736. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16737. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16738. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16739. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16740. gparent0 ? (void *) gparent0 : (void *) parent,
  16741. gparent0 ? "g" : "x",
  16742. gparent ? (void *) gparent : (void *) node,
  16743. gparent ? "g" : "x",
  16744. gparent ? "empty" : "vee",
  16745. gparent ? "dashed" : "solid",
  16746. label);
  16747. }
  16748. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16749. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16750. (void *) parent, "x",
  16751. (void *) node, "x",
  16752. label);
  16753. }
  16754. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16755. char color[16];
  16756. FILE * fp = ggml_fopen(filename, "w");
  16757. GGML_ASSERT(fp);
  16758. fprintf(fp, "digraph G {\n");
  16759. fprintf(fp, " newrank = true;\n");
  16760. fprintf(fp, " rankdir = LR;\n");
  16761. for (int i = 0; i < gb->n_nodes; i++) {
  16762. struct ggml_tensor * node = gb->nodes[i];
  16763. if (ggml_graph_get_parent(gb, node) != NULL) {
  16764. continue;
  16765. }
  16766. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16767. snprintf(color, sizeof(color), "yellow");
  16768. } else if (node->grad) {
  16769. if (ggml_graph_find(gf, node)) {
  16770. snprintf(color, sizeof(color), "green");
  16771. } else {
  16772. snprintf(color, sizeof(color), "lightblue");
  16773. }
  16774. } else {
  16775. snprintf(color, sizeof(color), "white");
  16776. }
  16777. fprintf(fp, " \"%p\" [ "
  16778. "style = filled; fillcolor = %s; shape = record; "
  16779. "label=\"",
  16780. (void *) node, color);
  16781. if (strlen(node->name) > 0) {
  16782. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16783. } else {
  16784. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16785. }
  16786. if (ggml_is_matrix(node)) {
  16787. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16788. } else {
  16789. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16790. }
  16791. if (node->grad) {
  16792. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16793. } else {
  16794. fprintf(fp, "\"; ]\n");
  16795. }
  16796. }
  16797. for (int i = 0; i < gb->n_leafs; i++) {
  16798. struct ggml_tensor * node = gb->leafs[i];
  16799. snprintf(color, sizeof(color), "pink");
  16800. fprintf(fp, " \"%p\" [ "
  16801. "style = filled; fillcolor = %s; shape = record; "
  16802. "label=\"<x>",
  16803. (void *) node, color);
  16804. if (strlen(node->name) > 0) {
  16805. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16806. } else {
  16807. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16808. }
  16809. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16810. if (ggml_nelements(node) < 5) {
  16811. fprintf(fp, " | (");
  16812. for (int j = 0; j < ggml_nelements(node); j++) {
  16813. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16814. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16815. }
  16816. else if (node->type == GGML_TYPE_F32 ||
  16817. node->type == GGML_TYPE_F16 ||
  16818. node->type == GGML_TYPE_BF16) {
  16819. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16820. }
  16821. else {
  16822. fprintf(fp, "#");
  16823. }
  16824. if (j < ggml_nelements(node) - 1) {
  16825. fprintf(fp, ", ");
  16826. }
  16827. }
  16828. fprintf(fp, ")");
  16829. }
  16830. fprintf(fp, "\"; ]\n");
  16831. }
  16832. for (int i = 0; i < gb->n_nodes; i++) {
  16833. struct ggml_tensor * node = gb->nodes[i];
  16834. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16835. if (node->src[j]) {
  16836. char label[16];
  16837. snprintf(label, sizeof(label), "src %d", j);
  16838. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16839. }
  16840. }
  16841. }
  16842. for (int i = 0; i < gb->n_leafs; i++) {
  16843. struct ggml_tensor * node = gb->leafs[i];
  16844. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16845. if (node->src[j]) {
  16846. char label[16];
  16847. snprintf(label, sizeof(label), "src %d", j);
  16848. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16849. }
  16850. }
  16851. }
  16852. fprintf(fp, "}\n");
  16853. fclose(fp);
  16854. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16855. }
  16856. ////////////////////////////////////////////////////////////////////////////////
  16857. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16858. int i = 0;
  16859. for (int p = 0; p < np; ++p) {
  16860. const int64_t ne = ggml_nelements(ps[p]) ;
  16861. // TODO: add function to set tensor from array
  16862. for (int64_t j = 0; j < ne; ++j) {
  16863. ggml_set_f32_1d(ps[p], j, x[i++]);
  16864. }
  16865. }
  16866. }
  16867. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16868. int i = 0;
  16869. for (int p = 0; p < np; ++p) {
  16870. const int64_t ne = ggml_nelements(ps[p]) ;
  16871. // TODO: add function to get all elements at once
  16872. for (int64_t j = 0; j < ne; ++j) {
  16873. x[i++] = ggml_get_f32_1d(ps[p], j);
  16874. }
  16875. }
  16876. }
  16877. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16878. int64_t i = 0;
  16879. for (int p = 0; p < np; ++p) {
  16880. const int64_t ne = ggml_nelements(ps[p]) ;
  16881. // TODO: add function to get all elements at once
  16882. for (int64_t j = 0; j < ne; ++j) {
  16883. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16884. }
  16885. }
  16886. }
  16887. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16888. int64_t i = 0;
  16889. for (int p = 0; p < np; ++p) {
  16890. const int64_t ne = ggml_nelements(ps[p]) ;
  16891. // TODO: add function to get all elements at once
  16892. for (int64_t j = 0; j < ne; ++j) {
  16893. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16894. }
  16895. }
  16896. }
  16897. //
  16898. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16899. //
  16900. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16901. //
  16902. static enum ggml_opt_result ggml_opt_adam(
  16903. struct ggml_context * ctx,
  16904. struct ggml_opt_context * opt,
  16905. struct ggml_opt_params params,
  16906. struct ggml_tensor * f,
  16907. struct ggml_cgraph * gf,
  16908. struct ggml_cgraph * gb,
  16909. ggml_opt_callback callback,
  16910. void * callback_data) {
  16911. GGML_ASSERT(ggml_is_scalar(f));
  16912. // these will store the parameters we want to optimize
  16913. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16914. int np = 0;
  16915. int64_t nx = 0;
  16916. for (int i = 0; i < gf->n_nodes; ++i) {
  16917. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16918. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16919. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16920. ps[np++] = gf->nodes[i];
  16921. nx += ggml_nelements(gf->nodes[i]);
  16922. }
  16923. }
  16924. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16925. int iter = opt->iter;
  16926. ggml_opt_init(opt->ctx, opt, params, nx);
  16927. opt->iter = iter;
  16928. }
  16929. // constants
  16930. float sched = params.adam.sched;
  16931. const float alpha = params.adam.alpha;
  16932. const float decay = params.adam.decay * alpha;
  16933. const float beta1 = params.adam.beta1;
  16934. const float beta2 = params.adam.beta2;
  16935. const float eps = params.adam.eps;
  16936. const float gclip = params.adam.gclip;
  16937. const int decay_min_ndim = params.adam.decay_min_ndim;
  16938. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16939. const float accum_norm = 1.0f / (float) n_accum;
  16940. float * g = opt->adam.g->data; // gradients
  16941. float * m = opt->adam.m->data; // first moment
  16942. float * v = opt->adam.v->data; // second moment
  16943. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16944. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16945. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16946. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16947. bool cancel = false;
  16948. // compute the function value
  16949. float fx = 0;
  16950. ggml_set_zero(opt->adam.g);
  16951. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16952. if (callback) {
  16953. callback(callback_data, accum_step, &sched, &cancel);
  16954. if (cancel) {
  16955. return GGML_OPT_RESULT_CANCEL;
  16956. }
  16957. }
  16958. // ggml_graph_reset (gf);
  16959. ggml_set_f32 (f->grad, 1.0f);
  16960. ggml_graph_compute(gb, &cplan);
  16961. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16962. fx += ggml_get_f32_1d(f, 0);
  16963. }
  16964. fx *= accum_norm;
  16965. opt->adam.fx_prev = fx;
  16966. opt->adam.fx_best = opt->adam.fx_prev;
  16967. if (pf) {
  16968. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16969. }
  16970. opt->loss_before = opt->adam.fx_prev;
  16971. opt->loss_after = opt->adam.fx_prev;
  16972. // initialize
  16973. if (opt->just_initialized) {
  16974. opt->adam.n_no_improvement = 0;
  16975. opt->just_initialized = false;
  16976. }
  16977. float * fx_best = &opt->adam.fx_best;
  16978. float * fx_prev = &opt->adam.fx_prev;
  16979. int * n_no_improvement = &opt->adam.n_no_improvement;
  16980. int iter0 = opt->iter;
  16981. // run the optimizer
  16982. for (int t = 0; t < params.adam.n_iter; ++t) {
  16983. opt->iter = iter0 + t + 1;
  16984. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16985. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16986. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16987. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16988. for (int i = 0; i < np; ++i) {
  16989. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16990. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16991. }
  16992. const int64_t t_start_wall = ggml_time_us();
  16993. const int64_t t_start_cpu = ggml_cycles();
  16994. UNUSED(t_start_wall);
  16995. UNUSED(t_start_cpu);
  16996. {
  16997. float gnorm = 1.0f;
  16998. if (gclip > 0.0f) {
  16999. // gradient clipping
  17000. ggml_float sum = 0.0;
  17001. for (int64_t i = 0; i < nx; ++i) {
  17002. sum += (ggml_float)(g[i]*g[i]);
  17003. }
  17004. ggml_float norm = sqrt(sum);
  17005. if (norm > (ggml_float) gclip) {
  17006. gnorm = (float) ((ggml_float) gclip / norm);
  17007. }
  17008. }
  17009. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17010. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17011. int64_t i = 0;
  17012. for (int p = 0; p < np; ++p) {
  17013. const int64_t ne = ggml_nelements(ps[p]);
  17014. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17015. for (int64_t j = 0; j < ne; ++j) {
  17016. float x = ggml_get_f32_1d(ps[p], j);
  17017. float g_ = g[i]*gnorm;
  17018. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17019. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17020. float mh = m[i]*beta1h;
  17021. float vh = v[i]*beta2h;
  17022. vh = sqrtf(vh) + eps;
  17023. x = x*(1.0f - p_decay) - mh/vh;
  17024. ggml_set_f32_1d(ps[p], j, x);
  17025. ++i;
  17026. }
  17027. }
  17028. }
  17029. fx = 0;
  17030. ggml_set_zero(opt->adam.g);
  17031. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17032. if (callback) {
  17033. callback(callback_data, accum_step, &sched, &cancel);
  17034. if (cancel) {
  17035. return GGML_OPT_RESULT_CANCEL;;
  17036. }
  17037. }
  17038. // ggml_graph_reset (gf);
  17039. ggml_set_f32 (f->grad, 1.0f);
  17040. ggml_graph_compute(gb, &cplan);
  17041. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17042. fx += ggml_get_f32_1d(f, 0);
  17043. }
  17044. fx *= accum_norm;
  17045. opt->loss_after = fx;
  17046. // check convergence
  17047. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17048. GGML_PRINT_DEBUG("converged\n");
  17049. return GGML_OPT_RESULT_OK;
  17050. }
  17051. // delta-based convergence test
  17052. if (pf != NULL) {
  17053. // need at least params.past iterations to start checking for convergence
  17054. if (params.past <= iter0 + t) {
  17055. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17056. if (fabsf(rate) < params.delta) {
  17057. return GGML_OPT_RESULT_OK;
  17058. }
  17059. }
  17060. pf[(iter0 + t)%params.past] = fx;
  17061. }
  17062. // check for improvement
  17063. if (params.max_no_improvement > 0) {
  17064. if (fx_best[0] > fx) {
  17065. fx_best[0] = fx;
  17066. n_no_improvement[0] = 0;
  17067. } else {
  17068. ++n_no_improvement[0];
  17069. if (n_no_improvement[0] >= params.max_no_improvement) {
  17070. return GGML_OPT_RESULT_OK;
  17071. }
  17072. }
  17073. }
  17074. fx_prev[0] = fx;
  17075. {
  17076. const int64_t t_end_cpu = ggml_cycles();
  17077. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17078. UNUSED(t_end_cpu);
  17079. const int64_t t_end_wall = ggml_time_us();
  17080. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17081. UNUSED(t_end_wall);
  17082. }
  17083. }
  17084. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17085. }
  17086. //
  17087. // L-BFGS
  17088. //
  17089. // the L-BFGS implementation below is based on the following implementation:
  17090. //
  17091. // https://github.com/chokkan/liblbfgs
  17092. //
  17093. struct ggml_lbfgs_iteration_data {
  17094. float alpha;
  17095. float ys;
  17096. float * s;
  17097. float * y;
  17098. };
  17099. static enum ggml_opt_result linesearch_backtracking(
  17100. const struct ggml_opt_params * params,
  17101. int nx,
  17102. float * x,
  17103. float * fx,
  17104. float * g,
  17105. float * d,
  17106. float * step,
  17107. const float * xp,
  17108. struct ggml_tensor * f,
  17109. struct ggml_cgraph * gb,
  17110. struct ggml_cplan * cplan,
  17111. const int np,
  17112. struct ggml_tensor * ps[],
  17113. bool * cancel,
  17114. ggml_opt_callback callback,
  17115. void * callback_data) {
  17116. int count = 0;
  17117. float width = 0.0f;
  17118. float dg = 0.0f;
  17119. float finit = 0.0f;
  17120. float dginit = 0.0f;
  17121. float dgtest = 0.0f;
  17122. const float dec = 0.5f;
  17123. const float inc = 2.1f;
  17124. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17125. const float accum_norm = 1.0f / (float) n_accum;
  17126. if (*step <= 0.f) {
  17127. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17128. }
  17129. // compute the initial gradient in the search direction
  17130. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17131. // make sure that d points to a descent direction
  17132. if (0 < dginit) {
  17133. return GGML_LINESEARCH_FAIL;
  17134. }
  17135. // initialize local variables
  17136. finit = *fx;
  17137. dgtest = params->lbfgs.ftol*dginit;
  17138. while (true) {
  17139. ggml_vec_cpy_f32(nx, x, xp);
  17140. ggml_vec_mad_f32(nx, x, d, *step);
  17141. // evaluate the function and gradient values
  17142. {
  17143. ggml_opt_set_params(np, ps, x);
  17144. *fx = 0;
  17145. memset(g, 0, sizeof(float)*nx);
  17146. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17147. if (callback) {
  17148. // LBFG-S does not support learning rate -> ignore learning schedule
  17149. float sched = 0;
  17150. callback(callback_data, accum_step, &sched, cancel);
  17151. if (*cancel) {
  17152. return GGML_OPT_RESULT_CANCEL;
  17153. }
  17154. }
  17155. // ggml_graph_reset (gf);
  17156. ggml_set_f32 (f->grad, 1.0f);
  17157. ggml_graph_compute(gb, cplan);
  17158. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17159. *fx += ggml_get_f32_1d(f, 0);
  17160. }
  17161. *fx *= accum_norm;
  17162. }
  17163. ++count;
  17164. if (*fx > finit + (*step)*dgtest) {
  17165. width = dec;
  17166. } else {
  17167. // Armijo condition is satisfied
  17168. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17169. return count;
  17170. }
  17171. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17172. // check the Wolfe condition
  17173. if (dg < params->lbfgs.wolfe * dginit) {
  17174. width = inc;
  17175. } else {
  17176. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17177. // regular Wolfe conditions
  17178. return count;
  17179. }
  17180. if(dg > -params->lbfgs.wolfe*dginit) {
  17181. width = dec;
  17182. } else {
  17183. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17184. return count;
  17185. }
  17186. }
  17187. }
  17188. if (*step < params->lbfgs.min_step) {
  17189. return GGML_LINESEARCH_MINIMUM_STEP;
  17190. }
  17191. if (*step > params->lbfgs.max_step) {
  17192. return GGML_LINESEARCH_MAXIMUM_STEP;
  17193. }
  17194. if (params->lbfgs.max_linesearch <= count) {
  17195. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17196. }
  17197. (*step) *= width;
  17198. }
  17199. GGML_ASSERT(false && "line search failed");
  17200. return GGML_LINESEARCH_FAIL;
  17201. }
  17202. static enum ggml_opt_result ggml_opt_lbfgs(
  17203. struct ggml_context * ctx,
  17204. struct ggml_opt_context * opt,
  17205. struct ggml_opt_params params,
  17206. struct ggml_tensor * f,
  17207. struct ggml_cgraph * gf,
  17208. struct ggml_cgraph * gb,
  17209. ggml_opt_callback callback,
  17210. void * callback_data) {
  17211. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17212. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17213. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17214. return GGML_OPT_RESULT_INVALID_WOLFE;
  17215. }
  17216. }
  17217. const int m = params.lbfgs.m;
  17218. // these will store the parameters we want to optimize
  17219. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17220. int np = 0;
  17221. int nx = 0;
  17222. for (int i = 0; i < gf->n_nodes; ++i) {
  17223. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17224. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17225. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17226. ps[np++] = gf->nodes[i];
  17227. nx += ggml_nelements(gf->nodes[i]);
  17228. }
  17229. }
  17230. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17231. int iter = opt->iter;
  17232. ggml_opt_init(ctx, opt, params, nx);
  17233. opt->iter = iter;
  17234. }
  17235. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17236. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17237. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17238. float * x = opt->lbfgs.x->data; // current parameters
  17239. float * xp = opt->lbfgs.xp->data; // previous parameters
  17240. float * g = opt->lbfgs.g->data; // current gradient
  17241. float * gp = opt->lbfgs.gp->data; // previous gradient
  17242. float * d = opt->lbfgs.d->data; // search direction
  17243. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17244. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17245. const float accum_norm = 1.0f / (float) n_accum;
  17246. float fx = 0.0f; // cost function value
  17247. float xnorm = 0.0f; // ||x||
  17248. float gnorm = 0.0f; // ||g||
  17249. // initialize x from the graph nodes
  17250. ggml_opt_get_params(np, ps, x);
  17251. // the L-BFGS memory
  17252. float * lm_alpha = opt->lbfgs.lmal->data;
  17253. float * lm_ys = opt->lbfgs.lmys->data;
  17254. float * lm_s = opt->lbfgs.lms->data;
  17255. float * lm_y = opt->lbfgs.lmy->data;
  17256. bool cancel = false;
  17257. // evaluate the function value and its gradient
  17258. {
  17259. ggml_opt_set_params(np, ps, x);
  17260. fx = 0;
  17261. memset(g, 0, sizeof(float)*nx);
  17262. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17263. if (callback) {
  17264. // LBFG-S does not support learning rate -> ignore learning schedule
  17265. float sched = 0;
  17266. callback(callback_data, accum_step, &sched, &cancel);
  17267. if (cancel) {
  17268. return GGML_OPT_RESULT_CANCEL;
  17269. }
  17270. }
  17271. // ggml_graph_reset (gf);
  17272. ggml_set_f32 (f->grad, 1.0f);
  17273. ggml_graph_compute(gb, &cplan);
  17274. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17275. fx += ggml_get_f32_1d(f, 0);
  17276. }
  17277. fx *= accum_norm;
  17278. opt->loss_before = fx;
  17279. opt->loss_after = fx;
  17280. }
  17281. // search direction = -gradient
  17282. ggml_vec_neg_f32(nx, d, g);
  17283. // ||x||, ||g||
  17284. ggml_vec_norm_f32(nx, &xnorm, x);
  17285. ggml_vec_norm_f32(nx, &gnorm, g);
  17286. if (xnorm < 1.0f) {
  17287. xnorm = 1.0f;
  17288. }
  17289. // already optimized
  17290. if (gnorm/xnorm <= params.lbfgs.eps) {
  17291. return GGML_OPT_RESULT_OK;
  17292. }
  17293. if (opt->just_initialized) {
  17294. if (pf) {
  17295. pf[0] = fx;
  17296. }
  17297. opt->lbfgs.fx_best = fx;
  17298. // initial step
  17299. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17300. opt->lbfgs.j = 0;
  17301. opt->lbfgs.k = 1;
  17302. opt->lbfgs.end = 0;
  17303. opt->lbfgs.n_no_improvement = 0;
  17304. opt->just_initialized = false;
  17305. }
  17306. float * fx_best = &opt->lbfgs.fx_best;
  17307. float * step = &opt->lbfgs.step;
  17308. int * j = &opt->lbfgs.j;
  17309. int * k = &opt->lbfgs.k;
  17310. int * end = &opt->lbfgs.end;
  17311. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17312. int ls = 0;
  17313. int bound = 0;
  17314. float ys = 0.0f;
  17315. float yy = 0.0f;
  17316. float beta = 0.0f;
  17317. int it = 0;
  17318. while (true) {
  17319. // store the current position and gradient vectors
  17320. ggml_vec_cpy_f32(nx, xp, x);
  17321. ggml_vec_cpy_f32(nx, gp, g);
  17322. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17323. // to determine if the optimization should be cancelled
  17324. // this is a simple change, but not doing this atm, since I don't have a nice
  17325. // way to test and don't want to break something with so many changes lined up
  17326. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17327. if (cancel) {
  17328. return GGML_OPT_RESULT_CANCEL;
  17329. }
  17330. if (ls < 0) {
  17331. // linesearch failed - go back to the previous point and return
  17332. ggml_vec_cpy_f32(nx, x, xp);
  17333. ggml_vec_cpy_f32(nx, g, gp);
  17334. return ls;
  17335. }
  17336. opt->loss_after = fx;
  17337. ggml_vec_norm_f32(nx, &xnorm, x);
  17338. ggml_vec_norm_f32(nx, &gnorm, g);
  17339. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17340. if (xnorm < 1.0f) {
  17341. xnorm = 1.0f;
  17342. }
  17343. if (gnorm/xnorm <= params.lbfgs.eps) {
  17344. // converged
  17345. return GGML_OPT_RESULT_OK;
  17346. }
  17347. // delta-based convergence test
  17348. if (pf != NULL) {
  17349. // need at least params.past iterations to start checking for convergence
  17350. if (params.past <= k[0]) {
  17351. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17352. if (fabsf(rate) < params.delta) {
  17353. return GGML_OPT_RESULT_OK;
  17354. }
  17355. }
  17356. pf[k[0]%params.past] = fx;
  17357. }
  17358. // check for improvement
  17359. if (params.max_no_improvement > 0) {
  17360. if (fx < fx_best[0]) {
  17361. fx_best[0] = fx;
  17362. n_no_improvement[0] = 0;
  17363. } else {
  17364. n_no_improvement[0]++;
  17365. if (n_no_improvement[0] >= params.max_no_improvement) {
  17366. return GGML_OPT_RESULT_OK;
  17367. }
  17368. }
  17369. }
  17370. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17371. // reached the maximum number of iterations
  17372. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17373. }
  17374. // update vectors s and y:
  17375. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17376. // y_{k+1} = g_{k+1} - g_{k}.
  17377. //
  17378. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17379. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17380. // compute scalars ys and yy:
  17381. // ys = y^t \cdot s -> 1 / \rho.
  17382. // yy = y^t \cdot y.
  17383. //
  17384. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17385. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17386. lm_ys[end[0]] = ys;
  17387. // find new search direction
  17388. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17389. bound = (m <= k[0]) ? m : k[0];
  17390. k[0]++;
  17391. it++;
  17392. end[0] = (end[0] + 1)%m;
  17393. // initialize search direction with -g
  17394. ggml_vec_neg_f32(nx, d, g);
  17395. j[0] = end[0];
  17396. for (int i = 0; i < bound; ++i) {
  17397. j[0] = (j[0] + m - 1) % m;
  17398. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17399. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17400. lm_alpha[j[0]] /= lm_ys[j[0]];
  17401. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17402. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17403. }
  17404. ggml_vec_scale_f32(nx, d, ys/yy);
  17405. for (int i = 0; i < bound; ++i) {
  17406. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17407. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17408. beta /= lm_ys[j[0]];
  17409. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17410. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17411. j[0] = (j[0] + 1)%m;
  17412. }
  17413. step[0] = 1.0;
  17414. }
  17415. GGML_ASSERT(false && "lbfgs failed");
  17416. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17417. }
  17418. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17419. struct ggml_opt_params result;
  17420. switch (type) {
  17421. case GGML_OPT_TYPE_ADAM:
  17422. {
  17423. result = (struct ggml_opt_params) {
  17424. .type = GGML_OPT_TYPE_ADAM,
  17425. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17426. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17427. .past = 0,
  17428. .delta = 1e-5f,
  17429. .max_no_improvement = 100,
  17430. .print_forward_graph = true,
  17431. .print_backward_graph = true,
  17432. .n_gradient_accumulation = 1,
  17433. .adam = {
  17434. .n_iter = 10000,
  17435. .sched = 1.000f,
  17436. .decay = 0.0f,
  17437. .decay_min_ndim = 2,
  17438. .alpha = 0.001f,
  17439. .beta1 = 0.9f,
  17440. .beta2 = 0.999f,
  17441. .eps = 1e-8f,
  17442. .eps_f = 1e-5f,
  17443. .eps_g = 1e-3f,
  17444. .gclip = 0.0f,
  17445. },
  17446. };
  17447. } break;
  17448. case GGML_OPT_TYPE_LBFGS:
  17449. {
  17450. result = (struct ggml_opt_params) {
  17451. .type = GGML_OPT_TYPE_LBFGS,
  17452. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17453. .n_threads = 1,
  17454. .past = 0,
  17455. .delta = 1e-5f,
  17456. .max_no_improvement = 0,
  17457. .print_forward_graph = true,
  17458. .print_backward_graph = true,
  17459. .n_gradient_accumulation = 1,
  17460. .lbfgs = {
  17461. .m = 6,
  17462. .n_iter = 100,
  17463. .max_linesearch = 20,
  17464. .eps = 1e-5f,
  17465. .ftol = 1e-4f,
  17466. .wolfe = 0.9f,
  17467. .min_step = 1e-20f,
  17468. .max_step = 1e+20f,
  17469. .linesearch = GGML_LINESEARCH_DEFAULT,
  17470. },
  17471. };
  17472. } break;
  17473. }
  17474. return result;
  17475. }
  17476. GGML_API void ggml_opt_init(
  17477. struct ggml_context * ctx,
  17478. struct ggml_opt_context * opt,
  17479. struct ggml_opt_params params,
  17480. int64_t nx) {
  17481. opt->ctx = ctx;
  17482. opt->params = params;
  17483. opt->iter = 0;
  17484. opt->nx = nx;
  17485. opt->just_initialized = true;
  17486. if (opt->ctx == NULL) {
  17487. struct ggml_init_params ctx_opt_params;
  17488. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17489. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17490. if (opt->params.past > 0) {
  17491. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17492. }
  17493. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17494. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17495. if (opt->params.past > 0) {
  17496. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17497. }
  17498. }
  17499. ctx_opt_params.mem_buffer = NULL;
  17500. ctx_opt_params.no_alloc = false;
  17501. opt->ctx = ggml_init(ctx_opt_params);
  17502. }
  17503. switch (opt->params.type) {
  17504. case GGML_OPT_TYPE_ADAM:
  17505. {
  17506. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17507. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17508. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17509. opt->adam.pf = params.past > 0
  17510. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17511. : NULL;
  17512. ggml_set_zero(opt->adam.m);
  17513. ggml_set_zero(opt->adam.v);
  17514. if (opt->adam.pf) {
  17515. ggml_set_zero(opt->adam.pf);
  17516. }
  17517. } break;
  17518. case GGML_OPT_TYPE_LBFGS:
  17519. {
  17520. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17521. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17522. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17523. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17524. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17525. opt->lbfgs.pf = params.past > 0
  17526. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17527. : NULL;
  17528. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17529. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17530. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17531. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17532. ggml_set_zero(opt->lbfgs.x);
  17533. ggml_set_zero(opt->lbfgs.xp);
  17534. ggml_set_zero(opt->lbfgs.g);
  17535. ggml_set_zero(opt->lbfgs.gp);
  17536. ggml_set_zero(opt->lbfgs.d);
  17537. if (opt->lbfgs.pf) {
  17538. ggml_set_zero(opt->lbfgs.pf);
  17539. }
  17540. ggml_set_zero(opt->lbfgs.lmal);
  17541. ggml_set_zero(opt->lbfgs.lmys);
  17542. ggml_set_zero(opt->lbfgs.lms);
  17543. ggml_set_zero(opt->lbfgs.lmy);
  17544. } break;
  17545. }
  17546. }
  17547. enum ggml_opt_result ggml_opt(
  17548. struct ggml_context * ctx,
  17549. struct ggml_opt_params params,
  17550. struct ggml_tensor * f) {
  17551. bool free_ctx = false;
  17552. if (ctx == NULL) {
  17553. struct ggml_init_params params_ctx = {
  17554. .mem_size = 16*1024*1024,
  17555. .mem_buffer = NULL,
  17556. .no_alloc = false,
  17557. };
  17558. ctx = ggml_init(params_ctx);
  17559. if (ctx == NULL) {
  17560. return GGML_OPT_RESULT_NO_CONTEXT;
  17561. }
  17562. free_ctx = true;
  17563. }
  17564. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17565. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17566. ggml_opt_init(ctx, opt, params, 0);
  17567. result = ggml_opt_resume(ctx, opt, f);
  17568. if (free_ctx) {
  17569. ggml_free(ctx);
  17570. }
  17571. return result;
  17572. }
  17573. enum ggml_opt_result ggml_opt_resume(
  17574. struct ggml_context * ctx,
  17575. struct ggml_opt_context * opt,
  17576. struct ggml_tensor * f) {
  17577. // build forward + backward compute graphs
  17578. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17579. ggml_build_forward_expand(gf, f);
  17580. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17581. ggml_build_backward_expand(ctx, gf, gb, true);
  17582. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17583. }
  17584. enum ggml_opt_result ggml_opt_resume_g(
  17585. struct ggml_context * ctx,
  17586. struct ggml_opt_context * opt,
  17587. struct ggml_tensor * f,
  17588. struct ggml_cgraph * gf,
  17589. struct ggml_cgraph * gb,
  17590. ggml_opt_callback callback,
  17591. void * callback_data) {
  17592. // build forward + backward compute graphs
  17593. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17594. switch (opt->params.type) {
  17595. case GGML_OPT_TYPE_ADAM:
  17596. {
  17597. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17598. } break;
  17599. case GGML_OPT_TYPE_LBFGS:
  17600. {
  17601. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17602. } break;
  17603. }
  17604. if (opt->params.print_forward_graph) {
  17605. ggml_graph_print (gf);
  17606. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17607. }
  17608. if (opt->params.print_backward_graph) {
  17609. ggml_graph_print (gb);
  17610. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17611. }
  17612. return result;
  17613. }
  17614. ////////////////////////////////////////////////////////////////////////////////
  17615. void ggml_set_input(struct ggml_tensor * tensor) {
  17616. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17617. }
  17618. void ggml_set_output(struct ggml_tensor * tensor) {
  17619. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17620. }
  17621. ////////////////////////////////////////////////////////////////////////////////
  17622. void ggml_quantize_init(enum ggml_type type) {
  17623. ggml_critical_section_start();
  17624. switch (type) {
  17625. case GGML_TYPE_IQ2_XXS:
  17626. case GGML_TYPE_IQ2_XS:
  17627. case GGML_TYPE_IQ2_S:
  17628. case GGML_TYPE_IQ1_S:
  17629. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17630. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17631. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17632. default: // nothing
  17633. break;
  17634. }
  17635. ggml_critical_section_end();
  17636. }
  17637. void ggml_quantize_free(void) {
  17638. ggml_critical_section_start();
  17639. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17640. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17641. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17642. iq3xs_free_impl(256);
  17643. ggml_critical_section_end();
  17644. }
  17645. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17646. return
  17647. type == GGML_TYPE_IQ2_XXS ||
  17648. type == GGML_TYPE_IQ2_XS ||
  17649. type == GGML_TYPE_IQ1_S;// ||
  17650. //type == GGML_TYPE_IQ1_M;
  17651. }
  17652. size_t ggml_quantize_chunk(
  17653. enum ggml_type type,
  17654. const float * src,
  17655. void * dst,
  17656. int64_t start,
  17657. int64_t nrows,
  17658. int64_t n_per_row,
  17659. const float * imatrix) {
  17660. const int64_t n = (int64_t) nrows * n_per_row;
  17661. if (ggml_quantize_requires_imatrix(type)) {
  17662. GGML_ASSERT(imatrix != NULL);
  17663. }
  17664. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17665. GGML_ASSERT(start % n_per_row == 0);
  17666. ggml_quantize_init(type); // this is noop if already initialized
  17667. const size_t start_row = start / n_per_row;
  17668. const size_t row_size = ggml_row_size(type, n_per_row);
  17669. size_t result = 0;
  17670. switch (type) {
  17671. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17672. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17673. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17674. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17675. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17676. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17677. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17678. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17679. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17680. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17681. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17682. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17683. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17684. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17685. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17686. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17687. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17688. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17689. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17690. case GGML_TYPE_F16:
  17691. {
  17692. size_t elemsize = sizeof(ggml_fp16_t);
  17693. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17694. result = n * elemsize;
  17695. } break;
  17696. case GGML_TYPE_BF16:
  17697. {
  17698. size_t elemsize = sizeof(ggml_bf16_t);
  17699. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17700. result = n * elemsize;
  17701. } break;
  17702. case GGML_TYPE_F32:
  17703. {
  17704. size_t elemsize = sizeof(float);
  17705. result = n * elemsize;
  17706. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17707. } break;
  17708. default:
  17709. assert(false);
  17710. }
  17711. GGML_ASSERT(result == nrows * row_size);
  17712. return result;
  17713. }
  17714. ////////////////////////////////////////////////////////////////////////////////
  17715. struct gguf_str {
  17716. uint64_t n; // GGUFv2
  17717. char * data;
  17718. };
  17719. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17720. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17721. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17722. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17723. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17724. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17725. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17726. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17727. [GGUF_TYPE_BOOL] = sizeof(bool),
  17728. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17729. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17730. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17731. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17732. [GGUF_TYPE_ARRAY] = 0, // undefined
  17733. };
  17734. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17735. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17736. [GGUF_TYPE_UINT8] = "u8",
  17737. [GGUF_TYPE_INT8] = "i8",
  17738. [GGUF_TYPE_UINT16] = "u16",
  17739. [GGUF_TYPE_INT16] = "i16",
  17740. [GGUF_TYPE_UINT32] = "u32",
  17741. [GGUF_TYPE_INT32] = "i32",
  17742. [GGUF_TYPE_FLOAT32] = "f32",
  17743. [GGUF_TYPE_BOOL] = "bool",
  17744. [GGUF_TYPE_STRING] = "str",
  17745. [GGUF_TYPE_ARRAY] = "arr",
  17746. [GGUF_TYPE_UINT64] = "u64",
  17747. [GGUF_TYPE_INT64] = "i64",
  17748. [GGUF_TYPE_FLOAT64] = "f64",
  17749. };
  17750. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17751. union gguf_value {
  17752. uint8_t uint8;
  17753. int8_t int8;
  17754. uint16_t uint16;
  17755. int16_t int16;
  17756. uint32_t uint32;
  17757. int32_t int32;
  17758. float float32;
  17759. uint64_t uint64;
  17760. int64_t int64;
  17761. double float64;
  17762. bool bool_;
  17763. struct gguf_str str;
  17764. struct {
  17765. enum gguf_type type;
  17766. uint64_t n; // GGUFv2
  17767. void * data;
  17768. } arr;
  17769. };
  17770. struct gguf_kv {
  17771. struct gguf_str key;
  17772. enum gguf_type type;
  17773. union gguf_value value;
  17774. };
  17775. struct gguf_header {
  17776. char magic[4];
  17777. uint32_t version;
  17778. uint64_t n_tensors; // GGUFv2
  17779. uint64_t n_kv; // GGUFv2
  17780. };
  17781. struct gguf_tensor_info {
  17782. struct gguf_str name;
  17783. uint32_t n_dims;
  17784. uint64_t ne[GGML_MAX_DIMS];
  17785. enum ggml_type type;
  17786. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17787. // for writing API
  17788. const void * data;
  17789. size_t size;
  17790. };
  17791. struct gguf_context {
  17792. struct gguf_header header;
  17793. struct gguf_kv * kv;
  17794. struct gguf_tensor_info * infos;
  17795. size_t alignment;
  17796. size_t offset; // offset of `data` from beginning of file
  17797. size_t size; // size of `data` in bytes
  17798. //uint8_t * padding;
  17799. void * data;
  17800. };
  17801. static size_t gguf_type_size(enum gguf_type type) {
  17802. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17803. return GGUF_TYPE_SIZE[type];
  17804. }
  17805. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17806. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17807. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17808. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17809. GGML_ASSERT(info->ne[i] > 0);
  17810. }
  17811. // prevent overflow for total number of elements
  17812. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17813. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17814. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17815. }
  17816. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17817. const size_t n = fread(dst, 1, size, file);
  17818. *offset += n;
  17819. return n == size;
  17820. }
  17821. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17822. p->n = 0;
  17823. p->data = NULL;
  17824. bool ok = true;
  17825. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17826. // early exit if string length is invalid, prevents from integer overflow
  17827. if (p->n == SIZE_MAX) {
  17828. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17829. return false;
  17830. }
  17831. p->data = GGML_CALLOC(p->n + 1, 1);
  17832. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17833. return ok;
  17834. }
  17835. static void gguf_free_kv(struct gguf_kv * kv) {
  17836. if (kv->key.data) {
  17837. GGML_FREE(kv->key.data);
  17838. }
  17839. if (kv->type == GGUF_TYPE_STRING) {
  17840. if (kv->value.str.data) {
  17841. GGML_FREE(kv->value.str.data);
  17842. }
  17843. }
  17844. if (kv->type == GGUF_TYPE_ARRAY) {
  17845. if (kv->value.arr.data) {
  17846. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17847. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17848. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17849. if (str->data) {
  17850. GGML_FREE(str->data);
  17851. }
  17852. }
  17853. }
  17854. GGML_FREE(kv->value.arr.data);
  17855. }
  17856. }
  17857. }
  17858. struct gguf_context * gguf_init_empty(void) {
  17859. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17860. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17861. ctx->header.version = GGUF_VERSION;
  17862. ctx->header.n_tensors = 0;
  17863. ctx->header.n_kv = 0;
  17864. ctx->kv = NULL;
  17865. ctx->infos = NULL;
  17866. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17867. ctx->offset = 0;
  17868. ctx->size = 0;
  17869. ctx->data = NULL;
  17870. return ctx;
  17871. }
  17872. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17873. FILE * file = ggml_fopen(fname, "rb");
  17874. if (!file) {
  17875. return NULL;
  17876. }
  17877. // offset from start of file
  17878. size_t offset = 0;
  17879. char magic[4];
  17880. // check the magic before making allocations
  17881. {
  17882. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17883. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17884. if (magic[i] != GGUF_MAGIC[i]) {
  17885. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17886. fclose(file);
  17887. return NULL;
  17888. }
  17889. }
  17890. }
  17891. bool ok = true;
  17892. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17893. // read the header
  17894. {
  17895. strncpy(ctx->header.magic, magic, 4);
  17896. ctx->kv = NULL;
  17897. ctx->infos = NULL;
  17898. ctx->data = NULL;
  17899. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17900. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17901. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17902. if (ctx->header.version == 1) {
  17903. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17904. fclose(file);
  17905. gguf_free(ctx);
  17906. return NULL;
  17907. }
  17908. // sanity-checks to prevent from integer/buffer overflows
  17909. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17910. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17911. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17912. if (!ok) {
  17913. fprintf(stderr, "%s: failed to read header\n", __func__);
  17914. fclose(file);
  17915. gguf_free(ctx);
  17916. return NULL;
  17917. }
  17918. }
  17919. // read the kv pairs
  17920. {
  17921. const uint64_t n_kv = ctx->header.n_kv;
  17922. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17923. ctx->header.n_kv = 0;
  17924. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17925. for (uint64_t i = 0; i < n_kv; ++i) {
  17926. struct gguf_kv * kv = &ctx->kv[i];
  17927. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17928. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17929. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17930. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17931. switch (kv->type) {
  17932. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17933. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17934. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17935. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17936. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17937. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17938. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17939. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17940. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17941. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17942. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17943. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17944. case GGUF_TYPE_ARRAY:
  17945. {
  17946. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17947. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17948. switch (kv->value.arr.type) {
  17949. case GGUF_TYPE_UINT8:
  17950. case GGUF_TYPE_INT8:
  17951. case GGUF_TYPE_UINT16:
  17952. case GGUF_TYPE_INT16:
  17953. case GGUF_TYPE_UINT32:
  17954. case GGUF_TYPE_INT32:
  17955. case GGUF_TYPE_FLOAT32:
  17956. case GGUF_TYPE_UINT64:
  17957. case GGUF_TYPE_INT64:
  17958. case GGUF_TYPE_FLOAT64:
  17959. case GGUF_TYPE_BOOL:
  17960. {
  17961. // prevent from integer overflow in the malloc below
  17962. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17963. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17964. fclose(file);
  17965. gguf_free(ctx);
  17966. return NULL;
  17967. }
  17968. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17969. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17970. } break;
  17971. case GGUF_TYPE_STRING:
  17972. {
  17973. // prevent from integer overflow in the malloc below
  17974. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17975. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17976. fclose(file);
  17977. gguf_free(ctx);
  17978. return NULL;
  17979. }
  17980. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17981. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17982. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17983. }
  17984. } break;
  17985. case GGUF_TYPE_ARRAY:
  17986. default: GGML_ASSERT(false && "invalid type"); break;
  17987. }
  17988. } break;
  17989. default: GGML_ASSERT(false && "invalid type");
  17990. }
  17991. if (!ok) {
  17992. break;
  17993. }
  17994. ctx->header.n_kv++;
  17995. }
  17996. if (!ok) {
  17997. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17998. fclose(file);
  17999. gguf_free(ctx);
  18000. return NULL;
  18001. }
  18002. }
  18003. // read the tensor infos
  18004. if (ctx->header.n_tensors > 0) {
  18005. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18006. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18007. struct gguf_tensor_info * info = &ctx->infos[i];
  18008. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18009. info->ne[j] = 1;
  18010. }
  18011. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18012. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18013. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18014. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18015. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18016. }
  18017. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18018. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18019. // TODO: return an error instead of crashing with GGML_ASSERT
  18020. gguf_tensor_info_sanitize(info);
  18021. // make sure there is no duplicated tensor names
  18022. for (uint64_t j = 0; j < i; ++j) {
  18023. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18024. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18025. ok = false;
  18026. }
  18027. }
  18028. if (!ok) {
  18029. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18030. fclose(file);
  18031. gguf_free(ctx);
  18032. return NULL;
  18033. }
  18034. }
  18035. }
  18036. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18037. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18038. if (alignment_idx != -1) {
  18039. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18040. }
  18041. // we require the data section to be aligned, so take into account any padding
  18042. {
  18043. const size_t offset_pad = offset % ctx->alignment;
  18044. if (offset_pad != 0) {
  18045. offset += ctx->alignment - offset_pad;
  18046. fseek(file, offset, SEEK_SET);
  18047. }
  18048. }
  18049. // store the current file offset - this is where the data section starts
  18050. ctx->offset = offset;
  18051. // compute the total size of the data section, taking into account the alignment
  18052. {
  18053. ctx->size = 0;
  18054. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18055. struct gguf_tensor_info * info = &ctx->infos[i];
  18056. const int64_t ne =
  18057. (int64_t) info->ne[0] *
  18058. (int64_t) info->ne[1] *
  18059. (int64_t) info->ne[2] *
  18060. (int64_t) info->ne[3];
  18061. if (ne % ggml_blck_size(info->type) != 0) {
  18062. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18063. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18064. fclose(file);
  18065. gguf_free(ctx);
  18066. return NULL;
  18067. }
  18068. const size_t size_cur = ggml_row_size(info->type, ne);
  18069. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18070. }
  18071. }
  18072. // load the tensor data only if requested
  18073. if (params.ctx != NULL) {
  18074. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18075. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18076. // the ggml_tensor structs to the appropriate locations in the binary blob
  18077. // compute the exact size needed for the new ggml_context
  18078. const size_t mem_size =
  18079. params.no_alloc ?
  18080. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18081. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18082. struct ggml_init_params pdata = {
  18083. .mem_size = mem_size,
  18084. .mem_buffer = NULL,
  18085. .no_alloc = params.no_alloc,
  18086. };
  18087. *params.ctx = ggml_init(pdata);
  18088. struct ggml_context * ctx_data = *params.ctx;
  18089. struct ggml_tensor * data = NULL;
  18090. if (!params.no_alloc) {
  18091. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18092. ok = ok && data != NULL;
  18093. // read the binary blob with the tensor data
  18094. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18095. if (!ok) {
  18096. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18097. fclose(file);
  18098. ggml_free(ctx_data);
  18099. gguf_free(ctx);
  18100. return NULL;
  18101. }
  18102. ctx->data = data->data;
  18103. }
  18104. ggml_set_no_alloc(ctx_data, true);
  18105. // create the tensors
  18106. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18107. const int64_t ne[GGML_MAX_DIMS] = {
  18108. ctx->infos[i].ne[0],
  18109. ctx->infos[i].ne[1],
  18110. ctx->infos[i].ne[2],
  18111. ctx->infos[i].ne[3],
  18112. };
  18113. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18114. ok = ok && cur != NULL;
  18115. if (!ok) {
  18116. break;
  18117. }
  18118. ggml_set_name(cur, ctx->infos[i].name.data);
  18119. // point the data member to the appropriate location in the binary blob using the tensor infos
  18120. if (!params.no_alloc) {
  18121. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18122. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18123. }
  18124. }
  18125. if (!ok) {
  18126. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18127. fclose(file);
  18128. ggml_free(ctx_data);
  18129. gguf_free(ctx);
  18130. return NULL;
  18131. }
  18132. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18133. }
  18134. fclose(file);
  18135. return ctx;
  18136. }
  18137. void gguf_free(struct gguf_context * ctx) {
  18138. if (ctx == NULL) {
  18139. return;
  18140. }
  18141. if (ctx->kv) {
  18142. // free string memory - not great..
  18143. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18144. gguf_free_kv(&ctx->kv[i]);
  18145. }
  18146. GGML_FREE(ctx->kv);
  18147. }
  18148. if (ctx->infos) {
  18149. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18150. struct gguf_tensor_info * info = &ctx->infos[i];
  18151. if (info->name.data) {
  18152. GGML_FREE(info->name.data);
  18153. }
  18154. }
  18155. GGML_FREE(ctx->infos);
  18156. }
  18157. GGML_FREE(ctx);
  18158. }
  18159. const char * gguf_type_name(enum gguf_type type) {
  18160. return GGUF_TYPE_NAME[type];
  18161. }
  18162. int gguf_get_version(const struct gguf_context * ctx) {
  18163. return ctx->header.version;
  18164. }
  18165. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18166. return ctx->alignment;
  18167. }
  18168. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18169. return ctx->offset;
  18170. }
  18171. void * gguf_get_data(const struct gguf_context * ctx) {
  18172. return ctx->data;
  18173. }
  18174. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18175. return ctx->header.n_kv;
  18176. }
  18177. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18178. // return -1 if key not found
  18179. int keyfound = -1;
  18180. const int n_kv = gguf_get_n_kv(ctx);
  18181. for (int i = 0; i < n_kv; ++i) {
  18182. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18183. keyfound = i;
  18184. break;
  18185. }
  18186. }
  18187. return keyfound;
  18188. }
  18189. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18190. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18191. return ctx->kv[key_id].key.data;
  18192. }
  18193. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18194. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18195. return ctx->kv[key_id].type;
  18196. }
  18197. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18198. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18199. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18200. return ctx->kv[key_id].value.arr.type;
  18201. }
  18202. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18203. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18204. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18205. return ctx->kv[key_id].value.arr.data;
  18206. }
  18207. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18208. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18209. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18210. struct gguf_kv * kv = &ctx->kv[key_id];
  18211. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18212. return str->data;
  18213. }
  18214. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18215. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18216. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18217. return ctx->kv[key_id].value.arr.n;
  18218. }
  18219. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18220. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18221. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18222. return ctx->kv[key_id].value.uint8;
  18223. }
  18224. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18225. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18226. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18227. return ctx->kv[key_id].value.int8;
  18228. }
  18229. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18230. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18231. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18232. return ctx->kv[key_id].value.uint16;
  18233. }
  18234. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18235. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18236. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18237. return ctx->kv[key_id].value.int16;
  18238. }
  18239. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18240. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18241. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18242. return ctx->kv[key_id].value.uint32;
  18243. }
  18244. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18245. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18246. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18247. return ctx->kv[key_id].value.int32;
  18248. }
  18249. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18250. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18251. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18252. return ctx->kv[key_id].value.float32;
  18253. }
  18254. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18255. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18256. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18257. return ctx->kv[key_id].value.uint64;
  18258. }
  18259. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18260. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18261. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18262. return ctx->kv[key_id].value.int64;
  18263. }
  18264. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18265. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18266. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18267. return ctx->kv[key_id].value.float64;
  18268. }
  18269. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18270. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18271. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18272. return ctx->kv[key_id].value.bool_;
  18273. }
  18274. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18275. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18276. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18277. return ctx->kv[key_id].value.str.data;
  18278. }
  18279. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18280. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18281. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18282. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18283. return &ctx->kv[key_id].value;
  18284. }
  18285. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18286. return ctx->header.n_tensors;
  18287. }
  18288. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18289. // return -1 if tensor not found
  18290. int tensorfound = -1;
  18291. const int n_tensors = gguf_get_n_tensors(ctx);
  18292. for (int i = 0; i < n_tensors; ++i) {
  18293. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18294. tensorfound = i;
  18295. break;
  18296. }
  18297. }
  18298. return tensorfound;
  18299. }
  18300. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18301. return ctx->infos[i].offset;
  18302. }
  18303. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18304. return ctx->infos[i].name.data;
  18305. }
  18306. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18307. return ctx->infos[i].type;
  18308. }
  18309. // returns the index
  18310. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18311. const int idx = gguf_find_key(ctx, key);
  18312. if (idx >= 0) {
  18313. return idx;
  18314. }
  18315. const int n_kv = gguf_get_n_kv(ctx);
  18316. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18317. ctx->kv[n_kv].key.n = strlen(key);
  18318. ctx->kv[n_kv].key.data = strdup(key);
  18319. ctx->header.n_kv++;
  18320. return n_kv;
  18321. }
  18322. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18323. const int idx = gguf_find_key(ctx, key);
  18324. if (idx >= 0) {
  18325. const int n_kv = gguf_get_n_kv(ctx);
  18326. gguf_free_kv(&ctx->kv[idx]);
  18327. for (int i = idx; i < n_kv-1; ++i) {
  18328. ctx->kv[i] = ctx->kv[i+1];
  18329. }
  18330. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18331. ctx->header.n_kv--;
  18332. }
  18333. }
  18334. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18335. const int idx = gguf_get_or_add_key(ctx, key);
  18336. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18337. ctx->kv[idx].value.uint8 = val;
  18338. }
  18339. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18340. const int idx = gguf_get_or_add_key(ctx, key);
  18341. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18342. ctx->kv[idx].value.int8 = val;
  18343. }
  18344. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18345. const int idx = gguf_get_or_add_key(ctx, key);
  18346. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18347. ctx->kv[idx].value.uint16 = val;
  18348. }
  18349. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18350. const int idx = gguf_get_or_add_key(ctx, key);
  18351. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18352. ctx->kv[idx].value.int16 = val;
  18353. }
  18354. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18355. const int idx = gguf_get_or_add_key(ctx, key);
  18356. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18357. ctx->kv[idx].value.uint32 = val;
  18358. }
  18359. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18360. const int idx = gguf_get_or_add_key(ctx, key);
  18361. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18362. ctx->kv[idx].value.int32 = val;
  18363. }
  18364. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18365. const int idx = gguf_get_or_add_key(ctx, key);
  18366. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18367. ctx->kv[idx].value.float32 = val;
  18368. }
  18369. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18370. const int idx = gguf_get_or_add_key(ctx, key);
  18371. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18372. ctx->kv[idx].value.uint64 = val;
  18373. }
  18374. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18375. const int idx = gguf_get_or_add_key(ctx, key);
  18376. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18377. ctx->kv[idx].value.int64 = val;
  18378. }
  18379. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18380. const int idx = gguf_get_or_add_key(ctx, key);
  18381. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18382. ctx->kv[idx].value.float64 = val;
  18383. }
  18384. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18385. const int idx = gguf_get_or_add_key(ctx, key);
  18386. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18387. ctx->kv[idx].value.bool_ = val;
  18388. }
  18389. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18390. const int idx = gguf_get_or_add_key(ctx, key);
  18391. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18392. ctx->kv[idx].value.str.n = strlen(val);
  18393. ctx->kv[idx].value.str.data = strdup(val);
  18394. }
  18395. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18396. const int idx = gguf_get_or_add_key(ctx, key);
  18397. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18398. ctx->kv[idx].value.arr.type = type;
  18399. ctx->kv[idx].value.arr.n = n;
  18400. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18401. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18402. }
  18403. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18404. const int idx = gguf_get_or_add_key(ctx, key);
  18405. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18406. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18407. ctx->kv[idx].value.arr.n = n;
  18408. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18409. for (int i = 0; i < n; i++) {
  18410. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18411. str->n = strlen(data[i]);
  18412. str->data = strdup(data[i]);
  18413. }
  18414. }
  18415. // set or add KV pairs from another context
  18416. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18417. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18418. switch (src->kv[i].type) {
  18419. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18420. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18421. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18422. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18423. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18424. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18425. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18426. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18427. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18428. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18429. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18430. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18431. case GGUF_TYPE_ARRAY:
  18432. {
  18433. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18434. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18435. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18436. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18437. }
  18438. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18439. GGML_FREE((void *)data);
  18440. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18441. GGML_ASSERT(false && "nested arrays not supported");
  18442. } else {
  18443. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18444. }
  18445. } break;
  18446. default: GGML_ASSERT(false && "invalid type"); break;
  18447. }
  18448. }
  18449. }
  18450. void gguf_add_tensor(
  18451. struct gguf_context * ctx,
  18452. const struct ggml_tensor * tensor) {
  18453. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18454. GGML_ASSERT(false && "duplicated tensor name");
  18455. }
  18456. const int idx = ctx->header.n_tensors;
  18457. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18458. ctx->infos[idx].name.n = strlen(tensor->name);
  18459. ctx->infos[idx].name.data = strdup(tensor->name);
  18460. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18461. ctx->infos[idx].ne[i] = 1;
  18462. }
  18463. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18464. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18465. ctx->infos[idx].ne[i] = tensor->ne[i];
  18466. }
  18467. ctx->infos[idx].type = tensor->type;
  18468. ctx->infos[idx].offset = 0;
  18469. ctx->infos[idx].data = tensor->data;
  18470. ctx->infos[idx].size = ggml_nbytes(tensor);
  18471. if (ctx->header.n_tensors > 0) {
  18472. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18473. }
  18474. ctx->header.n_tensors++;
  18475. }
  18476. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18477. const int idx = gguf_find_tensor(ctx, name);
  18478. if (idx < 0) {
  18479. GGML_ASSERT(false && "tensor not found");
  18480. }
  18481. ctx->infos[idx].type = type;
  18482. }
  18483. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18484. const int idx = gguf_find_tensor(ctx, name);
  18485. if (idx < 0) {
  18486. GGML_ASSERT(false && "tensor not found");
  18487. }
  18488. ctx->infos[idx].data = data;
  18489. ctx->infos[idx].size = size;
  18490. // update offsets
  18491. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18492. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18493. }
  18494. }
  18495. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18496. // fwrite(&val->n, sizeof(val->n), 1, file);
  18497. // fwrite(val->data, sizeof(char), val->n, file);
  18498. //}
  18499. //
  18500. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18501. // fwrite(val, sizeof(char), size, file);
  18502. //}
  18503. struct gguf_buf {
  18504. void * data;
  18505. size_t size;
  18506. size_t offset;
  18507. };
  18508. static struct gguf_buf gguf_buf_init(size_t size) {
  18509. struct gguf_buf buf = {
  18510. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18511. /*buf.size =*/ size,
  18512. /*buf.offset =*/ 0,
  18513. };
  18514. return buf;
  18515. }
  18516. static void gguf_buf_free(struct gguf_buf buf) {
  18517. if (buf.data) {
  18518. GGML_FREE(buf.data);
  18519. }
  18520. }
  18521. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18522. if (buf->offset + size > buf->size) {
  18523. buf->size = 1.5*(buf->offset + size);
  18524. if (buf->data) {
  18525. buf->data = realloc(buf->data, buf->size);
  18526. }
  18527. }
  18528. }
  18529. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18530. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18531. if (buf->data) {
  18532. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18533. }
  18534. buf->offset += sizeof(val->n);
  18535. if (buf->data) {
  18536. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18537. }
  18538. buf->offset += val->n;
  18539. }
  18540. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18541. gguf_buf_grow(buf, el_size);
  18542. if (buf->data) {
  18543. memcpy((char *) buf->data + buf->offset, val, el_size);
  18544. }
  18545. buf->offset += el_size;
  18546. }
  18547. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18548. // write header
  18549. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18550. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18551. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18552. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18553. // write key-value pairs
  18554. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18555. struct gguf_kv * kv = &ctx->kv[i];
  18556. gguf_bwrite_str(buf, &kv->key);
  18557. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18558. switch (kv->type) {
  18559. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18560. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18561. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18562. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18563. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18564. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18565. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18566. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18567. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18568. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18569. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18570. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18571. case GGUF_TYPE_ARRAY:
  18572. {
  18573. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18574. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18575. switch (kv->value.arr.type) {
  18576. case GGUF_TYPE_UINT8:
  18577. case GGUF_TYPE_INT8:
  18578. case GGUF_TYPE_UINT16:
  18579. case GGUF_TYPE_INT16:
  18580. case GGUF_TYPE_UINT32:
  18581. case GGUF_TYPE_INT32:
  18582. case GGUF_TYPE_FLOAT32:
  18583. case GGUF_TYPE_UINT64:
  18584. case GGUF_TYPE_INT64:
  18585. case GGUF_TYPE_FLOAT64:
  18586. case GGUF_TYPE_BOOL:
  18587. {
  18588. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18589. } break;
  18590. case GGUF_TYPE_STRING:
  18591. {
  18592. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18593. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18594. }
  18595. } break;
  18596. case GGUF_TYPE_ARRAY:
  18597. default: GGML_ASSERT(false && "invalid type"); break;
  18598. }
  18599. } break;
  18600. default: GGML_ASSERT(false && "invalid type");
  18601. }
  18602. }
  18603. // write tensor infos
  18604. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18605. struct gguf_tensor_info * info = &ctx->infos[i];
  18606. gguf_bwrite_str(buf, &info->name);
  18607. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18608. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18609. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18610. }
  18611. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18612. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18613. }
  18614. // we require the data section to be aligned, so take into account any padding
  18615. {
  18616. const size_t offset = buf->offset;
  18617. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18618. if (offset_pad != offset) {
  18619. uint8_t pad = 0;
  18620. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18621. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18622. }
  18623. }
  18624. }
  18625. if (only_meta) {
  18626. return;
  18627. }
  18628. size_t offset = 0;
  18629. // write tensor data
  18630. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18631. struct gguf_tensor_info * info = &ctx->infos[i];
  18632. const size_t size = info->size;
  18633. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18634. gguf_bwrite_el(buf, info->data, size);
  18635. if (size_pad != size) {
  18636. uint8_t pad = 0;
  18637. for (size_t j = 0; j < size_pad - size; ++j) {
  18638. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18639. }
  18640. }
  18641. GGML_ASSERT(offset == info->offset);
  18642. offset += size_pad;
  18643. }
  18644. }
  18645. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18646. FILE * file = ggml_fopen(fname, "wb");
  18647. if (!file) {
  18648. GGML_ASSERT(false && "failed to open file for writing");
  18649. }
  18650. struct gguf_buf buf = gguf_buf_init(16*1024);
  18651. gguf_write_to_buf(ctx, &buf, only_meta);
  18652. fwrite(buf.data, 1, buf.offset, file);
  18653. gguf_buf_free(buf);
  18654. fclose(file);
  18655. }
  18656. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18657. // no allocs - only compute size
  18658. struct gguf_buf buf = gguf_buf_init(0);
  18659. gguf_write_to_buf(ctx, &buf, true);
  18660. return buf.offset;
  18661. }
  18662. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18663. struct gguf_buf buf = gguf_buf_init(16*1024);
  18664. gguf_write_to_buf(ctx, &buf, true);
  18665. memcpy(data, buf.data, buf.offset);
  18666. gguf_buf_free(buf);
  18667. }
  18668. ////////////////////////////////////////////////////////////////////////////////
  18669. int ggml_cpu_has_avx(void) {
  18670. #if defined(__AVX__)
  18671. return 1;
  18672. #else
  18673. return 0;
  18674. #endif
  18675. }
  18676. int ggml_cpu_has_avx_vnni(void) {
  18677. #if defined(__AVXVNNI__)
  18678. return 1;
  18679. #else
  18680. return 0;
  18681. #endif
  18682. }
  18683. int ggml_cpu_has_avx2(void) {
  18684. #if defined(__AVX2__)
  18685. return 1;
  18686. #else
  18687. return 0;
  18688. #endif
  18689. }
  18690. int ggml_cpu_has_avx512(void) {
  18691. #if defined(__AVX512F__)
  18692. return 1;
  18693. #else
  18694. return 0;
  18695. #endif
  18696. }
  18697. int ggml_cpu_has_avx512_vbmi(void) {
  18698. #if defined(__AVX512VBMI__)
  18699. return 1;
  18700. #else
  18701. return 0;
  18702. #endif
  18703. }
  18704. int ggml_cpu_has_avx512_vnni(void) {
  18705. #if defined(__AVX512VNNI__)
  18706. return 1;
  18707. #else
  18708. return 0;
  18709. #endif
  18710. }
  18711. int ggml_cpu_has_avx512_bf16(void) {
  18712. #if defined(__AVX512BF16__)
  18713. return 1;
  18714. #else
  18715. return 0;
  18716. #endif
  18717. }
  18718. int ggml_cpu_has_fma(void) {
  18719. #if defined(__FMA__)
  18720. return 1;
  18721. #else
  18722. return 0;
  18723. #endif
  18724. }
  18725. int ggml_cpu_has_neon(void) {
  18726. #if defined(__ARM_NEON)
  18727. return 1;
  18728. #else
  18729. return 0;
  18730. #endif
  18731. }
  18732. int ggml_cpu_has_sve(void) {
  18733. #if defined(__ARM_FEATURE_SVE)
  18734. // TODO: Currently, SVE 256 bit is only supported.
  18735. GGML_ASSERT(svcntb() == QK8_0);
  18736. return 1;
  18737. #else
  18738. return 0;
  18739. #endif
  18740. }
  18741. int ggml_cpu_has_arm_fma(void) {
  18742. #if defined(__ARM_FEATURE_FMA)
  18743. return 1;
  18744. #else
  18745. return 0;
  18746. #endif
  18747. }
  18748. int ggml_cpu_has_metal(void) {
  18749. #if defined(GGML_USE_METAL)
  18750. return 1;
  18751. #else
  18752. return 0;
  18753. #endif
  18754. }
  18755. int ggml_cpu_has_f16c(void) {
  18756. #if defined(__F16C__)
  18757. return 1;
  18758. #else
  18759. return 0;
  18760. #endif
  18761. }
  18762. int ggml_cpu_has_fp16_va(void) {
  18763. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18764. return 1;
  18765. #else
  18766. return 0;
  18767. #endif
  18768. }
  18769. int ggml_cpu_has_wasm_simd(void) {
  18770. #if defined(__wasm_simd128__)
  18771. return 1;
  18772. #else
  18773. return 0;
  18774. #endif
  18775. }
  18776. int ggml_cpu_has_blas(void) {
  18777. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18778. return 1;
  18779. #else
  18780. return 0;
  18781. #endif
  18782. }
  18783. int ggml_cpu_has_cuda(void) {
  18784. #if defined(GGML_USE_CUDA)
  18785. return 1;
  18786. #else
  18787. return 0;
  18788. #endif
  18789. }
  18790. int ggml_cpu_has_clblast(void) {
  18791. #if defined(GGML_USE_CLBLAST)
  18792. return 1;
  18793. #else
  18794. return 0;
  18795. #endif
  18796. }
  18797. int ggml_cpu_has_vulkan(void) {
  18798. #if defined(GGML_USE_VULKAN)
  18799. return 1;
  18800. #else
  18801. return 0;
  18802. #endif
  18803. }
  18804. int ggml_cpu_has_kompute(void) {
  18805. #if defined(GGML_USE_KOMPUTE)
  18806. return 1;
  18807. #else
  18808. return 0;
  18809. #endif
  18810. }
  18811. int ggml_cpu_has_sycl(void) {
  18812. #if defined(GGML_USE_SYCL)
  18813. return 1;
  18814. #else
  18815. return 0;
  18816. #endif
  18817. }
  18818. int ggml_cpu_has_gpublas(void) {
  18819. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18820. ggml_cpu_has_sycl();
  18821. }
  18822. int ggml_cpu_has_sse3(void) {
  18823. #if defined(__SSE3__)
  18824. return 1;
  18825. #else
  18826. return 0;
  18827. #endif
  18828. }
  18829. int ggml_cpu_has_ssse3(void) {
  18830. #if defined(__SSSE3__)
  18831. return 1;
  18832. #else
  18833. return 0;
  18834. #endif
  18835. }
  18836. int ggml_cpu_has_vsx(void) {
  18837. #if defined(__POWER9_VECTOR__)
  18838. return 1;
  18839. #else
  18840. return 0;
  18841. #endif
  18842. }
  18843. int ggml_cpu_has_matmul_int8(void) {
  18844. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18845. return 1;
  18846. #else
  18847. return 0;
  18848. #endif
  18849. }
  18850. ////////////////////////////////////////////////////////////////////////////////