ggml.c 322 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  68. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  69. #ifndef __FMA__
  70. #define __FMA__
  71. #endif
  72. #ifndef __F16C__
  73. #define __F16C__
  74. #endif
  75. #ifndef __SSE3__
  76. #define __SSE3__
  77. #endif
  78. #endif
  79. #ifdef __HAIKU__
  80. #define static_assert(cond, msg) _Static_assert(cond, msg)
  81. #endif
  82. #define GGML_MLOCK_SUPPORT 0
  83. #ifdef __has_include
  84. #if __has_include(<sys/mman.h>)
  85. #undef GGML_MLOCK_SUPPORT
  86. #define GGML_MLOCK_SUPPORT 1
  87. #include <sys/mman.h>
  88. #endif
  89. #endif
  90. /*#define GGML_PERF*/
  91. #define GGML_DEBUG 0
  92. #define GGML_GELU_FP16
  93. #define GGML_SILU_FP16
  94. #define GGML_SOFT_MAX_UNROLL 4
  95. #define GGML_VEC_DOT_UNROLL 2
  96. #ifdef GGML_USE_ACCELERATE
  97. // uncomment to use vDSP for soft max computation
  98. // note: not sure if it is actually faster
  99. //#define GGML_SOFT_MAX_ACCELERATE
  100. #endif
  101. #if UINTPTR_MAX == 0xFFFFFFFF
  102. #define GGML_MEM_ALIGN 4
  103. #else
  104. #define GGML_MEM_ALIGN 16
  105. #endif
  106. #define UNUSED(x) (void)(x)
  107. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  108. #define GGML_ASSERT(x) \
  109. do { \
  110. if (!(x)) { \
  111. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  112. abort(); \
  113. } \
  114. } while (0)
  115. #ifdef GGML_USE_ACCELERATE
  116. #include <Accelerate/Accelerate.h>
  117. #elif GGML_USE_OPENBLAS
  118. #include <cblas.h>
  119. #endif
  120. #undef MIN
  121. #undef MAX
  122. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  123. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  124. // floating point type used to accumulate sums
  125. typedef double ggml_float;
  126. // 16-bit float
  127. // on Arm, we use __fp16
  128. // on x86, we use uint16_t
  129. #ifdef __ARM_NEON
  130. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  131. //
  132. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  133. //
  134. #include <arm_neon.h>
  135. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  136. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  137. #define GGML_FP16_TO_FP32(x) ((float) (x))
  138. #define GGML_FP32_TO_FP16(x) (x)
  139. #else
  140. #ifdef __wasm_simd128__
  141. #include <wasm_simd128.h>
  142. #else
  143. #ifdef __POWER9_VECTOR__
  144. #include <altivec.h>
  145. #undef bool
  146. #define bool _Bool
  147. #else
  148. #include <immintrin.h>
  149. #endif
  150. #endif
  151. #ifdef __F16C__
  152. #ifdef _MSC_VER
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  155. #else
  156. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  157. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  158. #endif
  159. #elif defined(__POWER9_VECTOR__)
  160. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  161. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  162. /* the inline asm below is about 12% faster than the lookup method */
  163. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  164. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  165. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  166. register float f;
  167. register double d;
  168. __asm__(
  169. "mtfprd %0,%2\n"
  170. "xscvhpdp %0,%0\n"
  171. "frsp %1,%0\n" :
  172. /* temp */ "=d"(d),
  173. /* out */ "=f"(f):
  174. /* in */ "r"(h));
  175. return f;
  176. }
  177. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  178. register double d;
  179. register ggml_fp16_t r;
  180. __asm__( /* xscvdphp can work on double or single precision */
  181. "xscvdphp %0,%2\n"
  182. "mffprd %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=r"(r):
  185. /* in */ "f"(f));
  186. return r;
  187. }
  188. #else
  189. // FP16 <-> FP32
  190. // ref: https://github.com/Maratyszcza/FP16
  191. static inline float fp32_from_bits(uint32_t w) {
  192. union {
  193. uint32_t as_bits;
  194. float as_value;
  195. } fp32;
  196. fp32.as_bits = w;
  197. return fp32.as_value;
  198. }
  199. static inline uint32_t fp32_to_bits(float f) {
  200. union {
  201. float as_value;
  202. uint32_t as_bits;
  203. } fp32;
  204. fp32.as_value = f;
  205. return fp32.as_bits;
  206. }
  207. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  208. const uint32_t w = (uint32_t) h << 16;
  209. const uint32_t sign = w & UINT32_C(0x80000000);
  210. const uint32_t two_w = w + w;
  211. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  212. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  213. const float exp_scale = 0x1.0p-112f;
  214. #else
  215. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  216. #endif
  217. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  218. const uint32_t magic_mask = UINT32_C(126) << 23;
  219. const float magic_bias = 0.5f;
  220. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  221. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  222. const uint32_t result = sign |
  223. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  224. return fp32_from_bits(result);
  225. }
  226. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  227. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  228. const float scale_to_inf = 0x1.0p+112f;
  229. const float scale_to_zero = 0x1.0p-110f;
  230. #else
  231. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  232. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  233. #endif
  234. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  235. const uint32_t w = fp32_to_bits(f);
  236. const uint32_t shl1_w = w + w;
  237. const uint32_t sign = w & UINT32_C(0x80000000);
  238. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  239. if (bias < UINT32_C(0x71000000)) {
  240. bias = UINT32_C(0x71000000);
  241. }
  242. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  243. const uint32_t bits = fp32_to_bits(base);
  244. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  245. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  246. const uint32_t nonsign = exp_bits + mantissa_bits;
  247. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  248. }
  249. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  250. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  251. #endif // __F16C__
  252. #endif // __ARM_NEON
  253. //
  254. // global data
  255. //
  256. // precomputed gelu table for f16 (128 KB)
  257. static ggml_fp16_t table_gelu_f16[1 << 16];
  258. // precomputed silu table for f16 (128 KB)
  259. static ggml_fp16_t table_silu_f16[1 << 16];
  260. // precomputed exp table for f16 (128 KB)
  261. static ggml_fp16_t table_exp_f16[1 << 16];
  262. // precomputed f32 table for f16 (256 KB)
  263. static float table_f32_f16[1 << 16];
  264. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  265. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  266. // This is also true for POWER9.
  267. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  268. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  269. uint16_t s;
  270. memcpy(&s, &f, sizeof(uint16_t));
  271. return table_f32_f16[s];
  272. }
  273. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  274. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  275. #endif
  276. // note: do not use these inside ggml.c
  277. // these are meant to be used via the ggml.h API
  278. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  279. return (float) GGML_FP16_TO_FP32(x);
  280. }
  281. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. //
  285. // timing
  286. //
  287. #if defined(_MSC_VER) || defined(__MINGW32__)
  288. static int64_t timer_freq;
  289. void ggml_time_init(void) {
  290. LARGE_INTEGER frequency;
  291. QueryPerformanceFrequency(&frequency);
  292. timer_freq = frequency.QuadPart;
  293. }
  294. int64_t ggml_time_ms(void) {
  295. LARGE_INTEGER t;
  296. QueryPerformanceCounter(&t);
  297. return (t.QuadPart * 1000) / timer_freq;
  298. }
  299. int64_t ggml_time_us(void) {
  300. LARGE_INTEGER t;
  301. QueryPerformanceCounter(&t);
  302. return (t.QuadPart * 1000000) / timer_freq;
  303. }
  304. #else
  305. void ggml_time_init(void) {}
  306. int64_t ggml_time_ms(void) {
  307. struct timespec ts;
  308. clock_gettime(CLOCK_MONOTONIC, &ts);
  309. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  310. }
  311. int64_t ggml_time_us(void) {
  312. struct timespec ts;
  313. clock_gettime(CLOCK_MONOTONIC, &ts);
  314. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  315. }
  316. #endif
  317. int64_t ggml_cycles(void) {
  318. return clock();
  319. }
  320. int64_t ggml_cycles_per_ms(void) {
  321. return CLOCKS_PER_SEC/1000;
  322. }
  323. #ifdef GGML_PERF
  324. #define ggml_perf_time_ms() ggml_time_ms()
  325. #define ggml_perf_time_us() ggml_time_us()
  326. #define ggml_perf_cycles() ggml_cycles()
  327. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  328. #else
  329. #define ggml_perf_time_ms() 0
  330. #define ggml_perf_time_us() 0
  331. #define ggml_perf_cycles() 0
  332. #define ggml_perf_cycles_per_ms() 0
  333. #endif
  334. //
  335. // cache line
  336. //
  337. #if defined(__cpp_lib_hardware_interference_size)
  338. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  339. #else
  340. #if defined(__POWER9_VECTOR__)
  341. #define CACHE_LINE_SIZE 128
  342. #else
  343. #define CACHE_LINE_SIZE 64
  344. #endif
  345. #endif
  346. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  347. //
  348. // quantization
  349. //
  350. #define QK 32
  351. // AVX routines provided by GH user Const-me
  352. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  353. #if __AVX2__ || __AVX512F__
  354. // Unpack 32 4-bit fields into 32 bytes
  355. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  356. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  357. {
  358. // Load 16 bytes from memory
  359. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  360. // Expand bytes into uint16_t values
  361. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  362. // Unpack values into individual bytes
  363. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  364. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  365. __m256i low = _mm256_and_si256( lowMask, bytes );
  366. high = _mm256_slli_epi16( high, 4 );
  367. bytes = _mm256_or_si256( low, high );
  368. return bytes;
  369. }
  370. static inline __m128i packNibbles( __m256i bytes )
  371. {
  372. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  373. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  374. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  375. __m256i low = _mm256_and_si256( lowByte, bytes );
  376. high = _mm256_srli_epi16( high, 4 );
  377. bytes = _mm256_or_si256( low, high );
  378. // Compress uint16_t lanes into bytes
  379. __m128i r0 = _mm256_castsi256_si128( bytes );
  380. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  381. return _mm_packus_epi16( r0, r1 );
  382. }
  383. #elif __AVX__
  384. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  385. {
  386. // Load 8 bytes from memory
  387. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  388. // Expand bytes into uint16_t values
  389. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  390. // Unpack values into individual bytes
  391. const __m128i lowMask = _mm_set1_epi8( 0xF );
  392. __m128i high = _mm_andnot_si128( lowMask, bytes );
  393. __m128i low = _mm_and_si128( lowMask, bytes );
  394. high = _mm_slli_epi16( high, 4 );
  395. bytes = _mm_or_si128( low, high );
  396. return bytes;
  397. }
  398. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  399. {
  400. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  401. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  402. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  403. __m128i low = _mm_and_si128( lowByte, bytes1 );
  404. high = _mm_srli_epi16( high, 4 );
  405. bytes1 = _mm_or_si128( low, high );
  406. high = _mm_andnot_si128( lowByte, bytes2 );
  407. low = _mm_and_si128( lowByte, bytes2 );
  408. high = _mm_srli_epi16( high, 4 );
  409. bytes2 = _mm_or_si128( low, high );
  410. return _mm_packus_epi16( bytes1, bytes2);
  411. }
  412. #endif
  413. // method 5
  414. // blocks of QK elements
  415. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  416. typedef struct {
  417. float d; // delta
  418. uint8_t qs[QK / 2]; // nibbles / quants
  419. } block_q4_0;
  420. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  421. // method 4
  422. // blocks of QK elements
  423. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  424. typedef struct {
  425. float d;
  426. float m;
  427. uint8_t qs[QK / 2]; // nibbles / quants
  428. } block_q4_1;
  429. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  430. // reference implementation for deterministic creation of model files
  431. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  432. assert(k % QK == 0);
  433. const int nb = k / QK;
  434. uint8_t pp[QK/2];
  435. for (int i = 0; i < nb; i++) {
  436. float amax = 0.0f; // absolute max
  437. for (int l = 0; l < QK; l++) {
  438. const float v = x[i*QK + l];
  439. amax = MAX(amax, fabsf(v));
  440. }
  441. const float d = amax / ((1 << 3) - 1);
  442. const float id = d ? 1.0f/d : 0.0f;
  443. y[i].d = d;
  444. for (int l = 0; l < QK; l += 2) {
  445. const float v0 = x[i*QK + l + 0]*id;
  446. const float v1 = x[i*QK + l + 1]*id;
  447. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  448. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  449. assert(vi0 >= 0 && vi0 < 16);
  450. assert(vi1 >= 0 && vi1 < 16);
  451. pp[l/2] = vi0 | (vi1 << 4);
  452. }
  453. memcpy(y[i].qs, pp, sizeof(pp));
  454. }
  455. }
  456. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  457. assert(k % QK == 0);
  458. const int nb = k / QK;
  459. block_q4_0 * restrict y = vy;
  460. #if defined(__POWER9_VECTOR__)
  461. const vector float v85 = vec_splats(8.5f);
  462. for (int i = 0; i < nb; i++) {
  463. float amax = 0.0f; // absolute max
  464. vector float srcv [8];
  465. vector float asrcv[8];
  466. vector float amaxv[8];
  467. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  468. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  469. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  470. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  471. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  472. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  473. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  474. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  475. amax = MAX(
  476. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  477. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  478. const float d = amax / ((1 << 3) - 1);
  479. const float id = d ? 1.0/d : 0.0;
  480. y[i].d = d;
  481. const vector float vid = vec_splats(id);
  482. uint8_t * restrict pb = y[i].qs;
  483. for (int l = 0; l < 8; l++) {
  484. const vector float vf = vec_madd(srcv[l], vid, v85);
  485. const vector signed int vi = vec_signed(vf);
  486. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  487. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  488. }
  489. }
  490. #elif __ARM_NEON
  491. for (int i = 0; i < nb; i++) {
  492. float32x4_t srcv [8];
  493. float32x4_t asrcv[8];
  494. float32x4_t amaxv[8];
  495. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  496. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  497. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  498. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  499. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  500. // absolute max
  501. const float amax = MAX(
  502. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  503. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  504. const float d = amax / ((1 << 3) - 1);
  505. const float id = d ? 1.0f/d : 0.0f;
  506. y[i].d = d;
  507. for (int l = 0; l < 8; l++) {
  508. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  509. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  510. const int32x4_t vi = vcvtq_s32_f32(vf);
  511. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  512. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  513. }
  514. }
  515. #elif defined(__AVX2__)
  516. for (int i = 0; i < nb; i++) {
  517. // Load elements into 4 AVX vectors
  518. __m256 v0 = _mm256_loadu_ps( x );
  519. __m256 v1 = _mm256_loadu_ps( x + 8 );
  520. __m256 v2 = _mm256_loadu_ps( x + 16 );
  521. __m256 v3 = _mm256_loadu_ps( x + 24 );
  522. x += 32;
  523. // Compute max(abs(e)) for the block
  524. const __m256 signBit = _mm256_set1_ps( -0.0f );
  525. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  526. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  527. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  528. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  529. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  530. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  531. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  532. const float maxScalar = _mm_cvtss_f32( max4 );
  533. // Quantize these floats
  534. const float d = maxScalar / 7.0f;
  535. y[i].d = d;
  536. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  537. const __m256 mul = _mm256_set1_ps( id );
  538. // Apply the multiplier
  539. v0 = _mm256_mul_ps( v0, mul );
  540. v1 = _mm256_mul_ps( v1, mul );
  541. v2 = _mm256_mul_ps( v2, mul );
  542. v3 = _mm256_mul_ps( v3, mul );
  543. // Round to nearest integer
  544. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  545. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  546. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  547. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  548. // Convert floats to integers
  549. __m256i i0 = _mm256_cvtps_epi32( v0 );
  550. __m256i i1 = _mm256_cvtps_epi32( v1 );
  551. __m256i i2 = _mm256_cvtps_epi32( v2 );
  552. __m256i i3 = _mm256_cvtps_epi32( v3 );
  553. // Convert int32 to int16
  554. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  555. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  556. // Convert int16 to int8
  557. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  558. // We got our precious signed bytes, but the order is now wrong
  559. // These AVX2 pack instructions process 16-byte pieces independently
  560. // The following instruction is fixing the order
  561. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  562. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  563. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  564. const __m256i off = _mm256_set1_epi8( 8 );
  565. i0 = _mm256_add_epi8( i0, off );
  566. // Compress the vector into 4 bit/value, and store
  567. __m128i res = packNibbles( i0 );
  568. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  569. }
  570. #elif defined(__AVX__)
  571. for (int i = 0; i < nb; i++) {
  572. // Load elements into 4 AVX vectors
  573. __m256 v0 = _mm256_loadu_ps( x );
  574. __m256 v1 = _mm256_loadu_ps( x + 8 );
  575. __m256 v2 = _mm256_loadu_ps( x + 16 );
  576. __m256 v3 = _mm256_loadu_ps( x + 24 );
  577. x += 32;
  578. // Compute max(abs(e)) for the block
  579. const __m256 signBit = _mm256_set1_ps( -0.0f );
  580. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  581. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  582. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  583. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  584. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  585. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  586. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  587. const float maxScalar = _mm_cvtss_f32( max4 );
  588. // Quantize these floats
  589. const float d = maxScalar / 7.0f;
  590. y[i].d = d;
  591. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  592. const __m256 mul = _mm256_set1_ps( id );
  593. // Apply the multiplier
  594. v0 = _mm256_mul_ps( v0, mul );
  595. v1 = _mm256_mul_ps( v1, mul );
  596. v2 = _mm256_mul_ps( v2, mul );
  597. v3 = _mm256_mul_ps( v3, mul );
  598. // Round to nearest integer
  599. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  600. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  601. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  602. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  603. // Convert floats to integers
  604. __m256i i0 = _mm256_cvtps_epi32( v0 );
  605. __m256i i1 = _mm256_cvtps_epi32( v1 );
  606. __m256i i2 = _mm256_cvtps_epi32( v2 );
  607. __m256i i3 = _mm256_cvtps_epi32( v3 );
  608. // Since we don't have in AVX some necessary functions,
  609. // we split the registers in half and call AVX2 analogs from SSE
  610. __m128i ni0 = _mm256_castsi256_si128( i0 );
  611. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  612. __m128i ni2 = _mm256_castsi256_si128( i1 );
  613. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  614. __m128i ni4 = _mm256_castsi256_si128( i2 );
  615. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  616. __m128i ni6 = _mm256_castsi256_si128( i3 );
  617. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  618. // Convert int32 to int16
  619. ni0 = _mm_packs_epi32( ni0, ni1 );
  620. ni2 = _mm_packs_epi32( ni2, ni3 );
  621. ni4 = _mm_packs_epi32( ni4, ni5 );
  622. ni6 = _mm_packs_epi32( ni6, ni7 );
  623. // Convert int16 to int8
  624. ni0 = _mm_packs_epi16( ni0, ni2 );
  625. ni4 = _mm_packs_epi16( ni4, ni6 );
  626. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  627. const __m128i off = _mm_set1_epi8( 8);
  628. ni0 = _mm_add_epi8( ni0, off );
  629. ni4 = _mm_add_epi8( ni4, off );
  630. // Compress the vector into 4 bit/value, and store
  631. __m128i res = packNibbles( ni0, ni4 );
  632. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  633. }
  634. #elif defined(__wasm_simd128__)
  635. for (int i = 0; i < nb; i++) {
  636. float amax = 0.0f; // absolute max
  637. v128_t srcv [8];
  638. v128_t asrcv[8];
  639. v128_t amaxv[8];
  640. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  641. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  642. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  643. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  644. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  645. amax = MAX(
  646. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  647. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  648. const float d = amax / ((1 << 3) - 1);
  649. const float id = d ? 1.0/d : 0.0;
  650. y[i].d = d;
  651. for (int l = 0; l < 8; l++) {
  652. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  653. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  654. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  655. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  656. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  657. }
  658. }
  659. #else
  660. // scalar
  661. quantize_row_q4_0_reference(x, y, k);
  662. #endif
  663. }
  664. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  665. assert(k % QK == 0);
  666. const int nb = k / QK;
  667. block_q4_1 * restrict y = vy;
  668. uint8_t pp[QK/2];
  669. for (int i = 0; i < nb; i++) {
  670. float min = FLT_MAX;
  671. float max = -FLT_MAX;
  672. for (int l = 0; l < QK; l++) {
  673. const float v = x[i*QK + l];
  674. if (v < min) min = v;
  675. if (v > max) max = v;
  676. }
  677. const float d = (max - min) / ((1 << 4) - 1);
  678. const float id = d ? 1.0f/d : 0.0f;
  679. y[i].d = d;
  680. y[i].m = min;
  681. for (int l = 0; l < QK; l += 2) {
  682. const float v0 = (x[i*QK + l + 0] - min)*id;
  683. const float v1 = (x[i*QK + l + 1] - min)*id;
  684. const uint8_t vi0 = roundf(v0);
  685. const uint8_t vi1 = roundf(v1);
  686. assert(vi0 >= 0 && vi0 < 16);
  687. assert(vi1 >= 0 && vi1 < 16);
  688. pp[l/2] = vi0 | (vi1 << 4);
  689. }
  690. memcpy(y[i].qs, pp, sizeof(pp));
  691. }
  692. }
  693. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  694. assert(k % QK == 0);
  695. const int nb = k / QK;
  696. block_q4_1 * restrict y = vy;
  697. #if defined(__AVX2__)
  698. for (int i = 0; i < nb; i++) {
  699. // Load elements into 4 AVX vectors
  700. __m256 v0 = _mm256_loadu_ps( x );
  701. __m256 v1 = _mm256_loadu_ps( x + 8 );
  702. __m256 v2 = _mm256_loadu_ps( x + 16 );
  703. __m256 v3 = _mm256_loadu_ps( x + 24 );
  704. x += 32;
  705. // Compute max for the block
  706. __m256 vmax;
  707. vmax = _mm256_max_ps( v0, v1 );
  708. vmax = _mm256_max_ps( vmax, v2 );
  709. vmax = _mm256_max_ps( vmax, v3 );
  710. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  711. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  712. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  713. const float maxScalar = _mm_cvtss_f32( max4 );
  714. // Compute min for the block
  715. __m256 vmin;
  716. vmin = _mm256_min_ps( v0, v1 );
  717. vmin = _mm256_min_ps( vmin, v2 );
  718. vmin = _mm256_min_ps( vmin, v3 );
  719. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  720. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  721. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  722. const float minScalar = _mm_cvtss_f32( min4 );
  723. // Quantize these floats
  724. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  725. const float id = d ? 1.0f/d : 0.0f;
  726. y[i].m = minScalar;
  727. y[i].d = d;
  728. // x = (x-min)*id
  729. const __m256 mul = _mm256_set1_ps( id );
  730. const __m256 off = _mm256_set1_ps( minScalar );
  731. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  732. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  733. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  734. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  735. // Round to nearest integer
  736. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  737. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  738. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  739. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  740. // Convert floats to integers
  741. __m256i i0 = _mm256_cvtps_epi32( v0 );
  742. __m256i i1 = _mm256_cvtps_epi32( v1 );
  743. __m256i i2 = _mm256_cvtps_epi32( v2 );
  744. __m256i i3 = _mm256_cvtps_epi32( v3 );
  745. // Convert int32 to int16
  746. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  747. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  748. // Convert int16 to int8
  749. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  750. // We got our precious signed bytes, but the order is now wrong
  751. // These AVX2 pack instructions process 16-byte pieces independently
  752. // The following instruction is fixing the order
  753. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  754. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  755. // Compress the vector into 4 bit/value, and store
  756. __m128i res = packNibbles( i0 );
  757. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  758. }
  759. #elif __ARM_NEON
  760. for (int i = 0; i < nb; i++) {
  761. float32x4_t srcv[8];
  762. float32x4_t minv[8];
  763. float32x4_t maxv[8];
  764. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  765. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  766. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  767. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  768. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  769. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  770. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  771. const float min = vminvq_f32(minv[0]);
  772. const float max = vmaxvq_f32(maxv[0]);
  773. const float d = (max - min) / ((1 << 4) - 1);
  774. const float id = d ? 1.0f/d : 0.0f;
  775. y[i].d = d;
  776. y[i].m = min;
  777. const float32x4_t minv0 = vdupq_n_f32(min);
  778. for (int l = 0; l < 8; l++) {
  779. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  780. const int32x4_t vi = vcvtq_s32_f32(v);
  781. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  782. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  783. }
  784. }
  785. #else
  786. // scalar
  787. quantize_row_q4_1_reference(x, vy, k);
  788. #endif
  789. }
  790. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  791. assert(k % QK == 0);
  792. const int nb = k / QK;
  793. const block_q4_0 * restrict x = vx;
  794. #if defined(__AVX2__)
  795. for (int i = 0; i < nb; i++) {
  796. // scale factor
  797. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  798. const uint8_t * restrict pp = x[i].qs;
  799. for (int l = 0; l < QK; l += 32) {
  800. // Load 32x4-bit integers into 32x8-bit integers
  801. __m256i vx8 = bytesFromNibbles(pp+l/2);
  802. // Subtract 8 from the integers
  803. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  804. // Convert to 16-bit int
  805. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  806. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  807. // Convert to 32-bit int -> float 32
  808. const __m256 vf[4] = {
  809. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  810. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  811. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  812. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  813. };
  814. // Scale and store
  815. for (int j = 0; j < 4; j++) {
  816. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  817. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  818. }
  819. }
  820. }
  821. #elif defined(__ARM_NEON)
  822. for (int i = 0; i < nb; i++) {
  823. const float32x4_t vd = vdupq_n_f32(x[i].d);
  824. const uint8_t * restrict pp = x[i].qs;
  825. for (int l = 0; l < QK; l += 16) {
  826. // Load 16x4-bit integers into 8x8-bit integers
  827. const uint8x8_t v8 = vld1_u8(pp + l/2);
  828. // Expand 4-bit qs to 8-bit bytes
  829. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  830. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  831. // Convert to signed 8-bit integers
  832. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  833. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  834. // Subtract 8 from each byte
  835. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  836. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  837. // Interleave and combine
  838. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  839. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  840. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  841. // convert to 2x int16x8_t
  842. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  843. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  844. // convert to 4x float32x4_t
  845. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  846. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  847. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  848. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  849. // Multiply by d
  850. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  851. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  852. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  853. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  854. // Store
  855. vst1q_f32(y + i*QK + l + 0, r0);
  856. vst1q_f32(y + i*QK + l + 4, r1);
  857. vst1q_f32(y + i*QK + l + 8, r2);
  858. vst1q_f32(y + i*QK + l + 12, r3);
  859. }
  860. }
  861. #else
  862. // scalar
  863. for (int i = 0; i < nb; i++) {
  864. const float d = x[i].d;
  865. const uint8_t * restrict pp = x[i].qs;
  866. for (int l = 0; l < QK; l += 2) {
  867. const uint8_t vi = pp[l/2];
  868. const int8_t vi0 = vi & 0xf;
  869. const int8_t vi1 = vi >> 4;
  870. const float v0 = (vi0 - 8)*d;
  871. const float v1 = (vi1 - 8)*d;
  872. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  873. y[i*QK + l + 0] = v0;
  874. y[i*QK + l + 1] = v1;
  875. assert(!isnan(y[i*QK + l + 0]));
  876. assert(!isnan(y[i*QK + l + 1]));
  877. }
  878. }
  879. #endif
  880. }
  881. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  882. assert(k % QK == 0);
  883. const int nb = k / QK;
  884. const block_q4_1 * restrict x = vx;
  885. #if defined(__AVX2__)
  886. for (int i = 0; i < nb; i++) {
  887. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  888. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  889. const uint8_t * restrict pp = x[i].qs;
  890. for (int l = 0; l < QK; l += 32) {
  891. // Load 32x4-bit integers into 32x8-bit integers
  892. __m256i vx8 = bytesFromNibbles(pp+l/2);
  893. // Convert to 16-bit int
  894. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  895. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  896. // Convert to 32-bit int -> float 32
  897. const __m256 vf[4] = {
  898. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  899. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  900. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  901. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  902. };
  903. // Scale, add m and store
  904. for (int j = 0; j < 4; j++) {
  905. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  906. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  907. }
  908. }
  909. }
  910. #elif defined(__ARM_NEON)
  911. for (int i = 0; i < nb; i++) {
  912. const float32x4_t vd = vdupq_n_f32(x[i].d);
  913. const float32x4_t vm = vdupq_n_f32(x[i].m);
  914. const uint8_t * restrict pp = x[i].qs;
  915. for (int l = 0; l < QK; l += 16) {
  916. // Load 16x4-bit integers into 8x8-bit integers
  917. const uint8x8_t v8 = vld1_u8(pp + l/2);
  918. // Expand 4-bit qs to 8-bit bytes
  919. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  920. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  921. // Interleave and combine
  922. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  923. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  924. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  925. // convert to 2x uint16x8_t
  926. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  927. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  928. // convert to 4x float32x4_t
  929. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  930. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  931. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  932. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  933. // multiply by d and add m
  934. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  935. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  936. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  937. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  938. // Store
  939. vst1q_f32(y + i*QK + l + 0, r0);
  940. vst1q_f32(y + i*QK + l + 4, r1);
  941. vst1q_f32(y + i*QK + l + 8, r2);
  942. vst1q_f32(y + i*QK + l + 12, r3);
  943. }
  944. }
  945. #else
  946. for (int i = 0; i < nb; i++) {
  947. const float d = x[i].d;
  948. const float m = x[i].m;
  949. const uint8_t * restrict pp = x[i].qs;
  950. for (int l = 0; l < QK; l += 2) {
  951. const uint8_t vi = pp[l/2];
  952. const int8_t vi0 = vi & 0xf;
  953. const int8_t vi1 = vi >> 4;
  954. const float v0 = vi0*d + m;
  955. const float v1 = vi1*d + m;
  956. y[i*QK + l + 0] = v0;
  957. y[i*QK + l + 1] = v1;
  958. assert(!isnan(y[i*QK + l + 0]));
  959. assert(!isnan(y[i*QK + l + 1]));
  960. }
  961. }
  962. #endif
  963. }
  964. //
  965. // simd mappings
  966. //
  967. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  968. // we then implement the fundamental computation operations below using only these macros
  969. // adding support for new architectures requires to define the corresponding SIMD macros
  970. //
  971. // GGML_F32_STEP / GGML_F16_STEP
  972. // number of elements to process in a single step
  973. //
  974. // GGML_F32_EPR / GGML_F16_EPR
  975. // number of elements to fit in a single register
  976. //
  977. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  978. #define GGML_SIMD
  979. // F32 NEON
  980. #define GGML_F32_STEP 16
  981. #define GGML_F32_EPR 4
  982. #define GGML_F32x4 float32x4_t
  983. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  984. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  985. #define GGML_F32x4_LOAD vld1q_f32
  986. #define GGML_F32x4_STORE vst1q_f32
  987. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  988. #define GGML_F32x4_ADD vaddq_f32
  989. #define GGML_F32x4_MUL vmulq_f32
  990. #if defined(__ARM_FEATURE_QRDMX)
  991. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  992. #else
  993. #define GGML_F32x4_REDUCE_ONE(x) \
  994. (vgetq_lane_f32(x, 0) + \
  995. vgetq_lane_f32(x, 1) + \
  996. vgetq_lane_f32(x, 2) + \
  997. vgetq_lane_f32(x, 3))
  998. #endif
  999. #define GGML_F32x4_REDUCE(res, x) \
  1000. { \
  1001. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1002. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1003. } \
  1004. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1005. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1006. } \
  1007. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1008. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1009. } \
  1010. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1011. }
  1012. #define GGML_F32_VEC GGML_F32x4
  1013. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1014. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1015. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1016. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1017. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1018. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1019. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1020. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1021. // F16 NEON
  1022. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1023. #define GGML_F16_STEP 32
  1024. #define GGML_F16_EPR 8
  1025. #define GGML_F16x8 float16x8_t
  1026. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1027. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1028. #define GGML_F16x8_LOAD vld1q_f16
  1029. #define GGML_F16x8_STORE vst1q_f16
  1030. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1031. #define GGML_F16x8_ADD vaddq_f16
  1032. #define GGML_F16x8_MUL vmulq_f16
  1033. #define GGML_F16x8_REDUCE(res, x) \
  1034. { \
  1035. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1036. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1037. } \
  1038. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1039. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1040. } \
  1041. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1042. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1043. } \
  1044. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1045. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1046. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1047. }
  1048. #define GGML_F16_VEC GGML_F16x8
  1049. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1050. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1051. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1052. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1053. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1054. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1055. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1056. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1057. #else
  1058. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1059. // and take advantage of the vcvt_ functions to convert to/from FP16
  1060. #define GGML_F16_STEP 16
  1061. #define GGML_F16_EPR 4
  1062. #define GGML_F32Cx4 float32x4_t
  1063. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1064. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1065. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1066. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1067. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1068. #define GGML_F32Cx4_ADD vaddq_f32
  1069. #define GGML_F32Cx4_MUL vmulq_f32
  1070. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1071. #define GGML_F16_VEC GGML_F32Cx4
  1072. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1073. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1074. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1075. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1076. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1077. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1078. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1079. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1080. #endif
  1081. #elif defined(__AVX__)
  1082. #define GGML_SIMD
  1083. // F32 AVX
  1084. #define GGML_F32_STEP 32
  1085. #define GGML_F32_EPR 8
  1086. #define GGML_F32x8 __m256
  1087. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1088. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1089. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1090. #define GGML_F32x8_STORE _mm256_storeu_ps
  1091. #if defined(__FMA__)
  1092. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1093. #else
  1094. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1095. #endif
  1096. #define GGML_F32x8_ADD _mm256_add_ps
  1097. #define GGML_F32x8_MUL _mm256_mul_ps
  1098. #define GGML_F32x8_REDUCE(res, x) \
  1099. { \
  1100. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1101. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1102. } \
  1103. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1104. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1105. } \
  1106. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1107. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1108. } \
  1109. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1110. _mm256_extractf128_ps(x[0], 1)); \
  1111. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1112. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1113. }
  1114. // TODO: is this optimal ?
  1115. #define GGML_F32_VEC GGML_F32x8
  1116. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1117. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1118. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1119. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1120. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1121. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1122. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1123. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1124. // F16 AVX
  1125. #define GGML_F16_STEP 32
  1126. #define GGML_F16_EPR 8
  1127. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1128. #define GGML_F32Cx8 __m256
  1129. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1130. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1131. #if defined(__F16C__)
  1132. // the _mm256_cvt intrinsics require F16C
  1133. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1134. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1135. #else
  1136. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1137. float tmp[8];
  1138. for (int i = 0; i < 8; i++)
  1139. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1140. return _mm256_loadu_ps(tmp);
  1141. }
  1142. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1143. float arr[8];
  1144. _mm256_storeu_ps(arr, y);
  1145. for (int i = 0; i < 8; i++)
  1146. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1147. }
  1148. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1149. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1150. #endif
  1151. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1152. #define GGML_F32Cx8_ADD _mm256_add_ps
  1153. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1154. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1155. #define GGML_F16_VEC GGML_F32Cx8
  1156. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1157. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1158. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1159. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1160. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1161. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1162. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1163. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1164. #elif defined(__POWER9_VECTOR__)
  1165. #define GGML_SIMD
  1166. // F32 POWER9
  1167. #define GGML_F32_STEP 32
  1168. #define GGML_F32_EPR 4
  1169. #define GGML_F32x4 vector float
  1170. #define GGML_F32x4_ZERO 0.0f
  1171. #define GGML_F32x4_SET1 vec_splats
  1172. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1173. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1174. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1175. #define GGML_F32x4_ADD vec_add
  1176. #define GGML_F32x4_MUL vec_mul
  1177. #define GGML_F32x4_REDUCE(res, x) \
  1178. { \
  1179. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1180. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1181. } \
  1182. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1183. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1184. } \
  1185. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1186. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1187. } \
  1188. res = vec_extract(x[0], 0) + \
  1189. vec_extract(x[0], 1) + \
  1190. vec_extract(x[0], 2) + \
  1191. vec_extract(x[0], 3); \
  1192. }
  1193. #define GGML_F32_VEC GGML_F32x4
  1194. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1195. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1196. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1197. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1198. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1199. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1200. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1201. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1202. // F16 POWER9
  1203. #define GGML_F16_STEP GGML_F32_STEP
  1204. #define GGML_F16_EPR GGML_F32_EPR
  1205. #define GGML_F16_VEC GGML_F32x4
  1206. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1207. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1208. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1209. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1210. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1211. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1212. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1213. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1214. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1215. #define GGML_F16_VEC_STORE(p, r, i) \
  1216. if (i & 0x1) \
  1217. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1218. r[i - GGML_ENDIAN_BYTE(0)]), \
  1219. 0, p - GGML_F16_EPR)
  1220. #elif defined(__wasm_simd128__)
  1221. #define GGML_SIMD
  1222. // F32 WASM
  1223. #define GGML_F32_STEP 16
  1224. #define GGML_F32_EPR 4
  1225. #define GGML_F32x4 v128_t
  1226. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1227. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1228. #define GGML_F32x4_LOAD wasm_v128_load
  1229. #define GGML_F32x4_STORE wasm_v128_store
  1230. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1231. #define GGML_F32x4_ADD wasm_f32x4_add
  1232. #define GGML_F32x4_MUL wasm_f32x4_mul
  1233. #define GGML_F32x4_REDUCE(res, x) \
  1234. { \
  1235. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1236. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1237. } \
  1238. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1239. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1240. } \
  1241. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1242. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1243. } \
  1244. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1245. wasm_f32x4_extract_lane(x[0], 1) + \
  1246. wasm_f32x4_extract_lane(x[0], 2) + \
  1247. wasm_f32x4_extract_lane(x[0], 3); \
  1248. }
  1249. #define GGML_F32_VEC GGML_F32x4
  1250. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1251. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1252. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1253. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1254. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1255. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1256. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1257. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1258. // F16 WASM
  1259. #define GGML_F16_STEP 16
  1260. #define GGML_F16_EPR 4
  1261. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1262. float tmp[4];
  1263. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1264. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1265. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1266. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1267. return wasm_v128_load(tmp);
  1268. }
  1269. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1270. float tmp[4];
  1271. wasm_v128_store(tmp, x);
  1272. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1273. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1274. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1275. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1276. }
  1277. #define GGML_F16x4 v128_t
  1278. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1279. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1280. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1281. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1282. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1283. #define GGML_F16x4_ADD wasm_f32x4_add
  1284. #define GGML_F16x4_MUL wasm_f32x4_mul
  1285. #define GGML_F16x4_REDUCE(res, x) \
  1286. { \
  1287. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1288. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1289. } \
  1290. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1291. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1292. } \
  1293. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1294. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1295. } \
  1296. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1297. wasm_f32x4_extract_lane(x[0], 1) + \
  1298. wasm_f32x4_extract_lane(x[0], 2) + \
  1299. wasm_f32x4_extract_lane(x[0], 3); \
  1300. }
  1301. #define GGML_F16_VEC GGML_F16x4
  1302. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1303. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1304. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1305. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1306. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1307. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1308. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1309. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1310. #elif defined(__SSE3__)
  1311. #define GGML_SIMD
  1312. // F32 SSE
  1313. #define GGML_F32_STEP 32
  1314. #define GGML_F32_EPR 4
  1315. #define GGML_F32x4 __m128
  1316. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1317. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1318. #define GGML_F32x4_LOAD _mm_loadu_ps
  1319. #define GGML_F32x4_STORE _mm_storeu_ps
  1320. #if defined(__FMA__)
  1321. // TODO: Does this work?
  1322. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1323. #else
  1324. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1325. #endif
  1326. #define GGML_F32x4_ADD _mm_add_ps
  1327. #define GGML_F32x4_MUL _mm_mul_ps
  1328. #define GGML_F32x4_REDUCE(res, x) \
  1329. { \
  1330. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1331. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1332. } \
  1333. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1334. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1335. } \
  1336. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1337. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1338. } \
  1339. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1340. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1341. }
  1342. // TODO: is this optimal ?
  1343. #define GGML_F32_VEC GGML_F32x4
  1344. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1345. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1346. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1347. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1348. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1349. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1350. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1351. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1352. // F16 SSE
  1353. #define GGML_F16_STEP 32
  1354. #define GGML_F16_EPR 4
  1355. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1356. float tmp[4];
  1357. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1358. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1359. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1360. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1361. return _mm_loadu_ps(tmp);
  1362. }
  1363. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1364. float arr[4];
  1365. _mm_storeu_ps(arr, y);
  1366. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1367. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1368. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1369. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1370. }
  1371. #define GGML_F32Cx4 __m128
  1372. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1373. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1374. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1375. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1376. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1377. #define GGML_F32Cx4_ADD _mm_add_ps
  1378. #define GGML_F32Cx4_MUL _mm_mul_ps
  1379. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1380. #define GGML_F16_VEC GGML_F32Cx4
  1381. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1382. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1383. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1384. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1385. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1386. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1387. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1388. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1389. #endif
  1390. // GGML_F32_ARR / GGML_F16_ARR
  1391. // number of registers to use per step
  1392. #ifdef GGML_SIMD
  1393. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1394. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1395. #endif
  1396. //
  1397. // fundamental operations
  1398. //
  1399. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1400. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1401. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1402. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1403. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1404. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1405. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1406. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1407. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1408. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1409. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1410. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1411. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1412. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1413. #ifdef GGML_SIMD
  1414. float sumf = 0.0f;
  1415. const int np = (n & ~(GGML_F32_STEP - 1));
  1416. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1417. GGML_F32_VEC ax[GGML_F32_ARR];
  1418. GGML_F32_VEC ay[GGML_F32_ARR];
  1419. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1420. for (int j = 0; j < GGML_F32_ARR; j++) {
  1421. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1422. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1423. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1424. }
  1425. }
  1426. // reduce sum0..sum3 to sum0
  1427. GGML_F32_VEC_REDUCE(sumf, sum);
  1428. // leftovers
  1429. for (int i = np; i < n; ++i) {
  1430. sumf += x[i]*y[i];
  1431. }
  1432. #else
  1433. // scalar
  1434. ggml_float sumf = 0.0;
  1435. for (int i = 0; i < n; ++i) {
  1436. sumf += (ggml_float)(x[i]*y[i]);
  1437. }
  1438. #endif
  1439. *s = sumf;
  1440. }
  1441. #if __AVX512F__ && QK == 32
  1442. static inline __m512 dot_q4_0_oneblock_avx512(
  1443. __m512 acc,
  1444. const block_q4_0 * restrict x,
  1445. const block_q4_0 * restrict y,
  1446. int i
  1447. ) {
  1448. // Compute combined scale for the block
  1449. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1450. __m256i bx = bytesFromNibbles( x[i].qs );
  1451. __m256i by = bytesFromNibbles( y[i].qs );
  1452. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1453. const __m256i off = _mm256_set1_epi8( 8 );
  1454. bx = _mm256_sub_epi8( bx, off );
  1455. by = _mm256_sub_epi8( by, off );
  1456. // Sign-extend 16 signed bytes into int16_t
  1457. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1458. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1459. // Compute products of int16_t integers, add pairwise
  1460. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1461. // Convert int32_t to float
  1462. __m512 p = _mm512_cvtepi32_ps( i64 );
  1463. // Apply the scale, and accumulate
  1464. return _mm512_fmadd_ps( d, p, acc );
  1465. }
  1466. #endif
  1467. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1468. ggml_float sumf = 0.0;
  1469. #if defined(GGML_SIMD)
  1470. const int np = (n & ~(GGML_F16_STEP - 1));
  1471. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1472. GGML_F16_VEC ax[GGML_F16_ARR];
  1473. GGML_F16_VEC ay[GGML_F16_ARR];
  1474. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1475. for (int j = 0; j < GGML_F16_ARR; j++) {
  1476. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1477. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1478. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1479. }
  1480. }
  1481. // reduce sum0..sum3 to sum0
  1482. GGML_F16_VEC_REDUCE(sumf, sum);
  1483. // leftovers
  1484. for (int i = np; i < n; ++i) {
  1485. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1486. }
  1487. #else
  1488. for (int i = 0; i < n; ++i) {
  1489. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1490. }
  1491. #endif
  1492. *s = sumf;
  1493. }
  1494. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1495. const int nb = n / QK;
  1496. assert(n % QK == 0);
  1497. assert(nb % 2 == 0);
  1498. const block_q4_0 * restrict x = vx;
  1499. const block_q4_0 * restrict y = vy;
  1500. ggml_float sumf = 0.0;
  1501. #if defined(__ARM_NEON)
  1502. float sum0 = 0.0f;
  1503. float sum1 = 0.0f;
  1504. for (int i = 0; i < nb; i += 2) {
  1505. const block_q4_0 * restrict x0 = &x[i + 0];
  1506. const block_q4_0 * restrict y0 = &y[i + 0];
  1507. const block_q4_0 * restrict x1 = &x[i + 1];
  1508. const block_q4_0 * restrict y1 = &y[i + 1];
  1509. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1510. const int8x16_t s8b = vdupq_n_s8(0x8);
  1511. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1512. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1513. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1514. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1515. // 4-bit -> 8-bit
  1516. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1517. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1518. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1519. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1520. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1521. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1522. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1523. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1524. // sub 8
  1525. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1526. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1527. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1528. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1529. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1530. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1531. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1532. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1533. #if defined(__ARM_FEATURE_DOTPROD)
  1534. // dot product into int16x8_t
  1535. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1536. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1537. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1538. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1539. // scalar
  1540. #if defined(__ARM_FEATURE_QRDMX)
  1541. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1542. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1543. #else
  1544. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1545. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1546. #endif
  1547. #else
  1548. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1549. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1550. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1551. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1552. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1553. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1554. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1555. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1556. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1557. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1558. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1559. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1560. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1561. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1562. // scalar
  1563. #if defined(__ARM_FEATURE_QRDMX)
  1564. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1565. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1566. #else
  1567. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1568. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1569. #endif
  1570. #endif
  1571. }
  1572. sumf = (ggml_float)(sum0 + sum1);
  1573. #elif defined(__AVX512F__)
  1574. // Initialize accumulator with zeros
  1575. __m512 acc0 = _mm512_setzero_ps();
  1576. __m512 acc1 = _mm512_setzero_ps();
  1577. const int superblock_size = 8;
  1578. const int superblock_count = nb / superblock_size;
  1579. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1580. int i = superblock_ix * superblock_size;
  1581. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1582. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1583. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1584. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1585. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1586. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1587. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1588. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1589. }
  1590. // Remainders
  1591. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1592. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1593. }
  1594. // Horizontal sum of all lanes of the accumulator
  1595. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1596. #elif defined(__AVX2__)
  1597. // Initialize accumulator with zeros
  1598. __m256 acc = _mm256_setzero_ps();
  1599. // Main loop
  1600. for (int i = 0; i < nb; ++i) {
  1601. // Compute combined scale for the block
  1602. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1603. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1604. __m256i bx = bytesFromNibbles( x[i].qs );
  1605. __m256i by = bytesFromNibbles( y[i].qs );
  1606. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1607. const __m256i off = _mm256_set1_epi8( 8 );
  1608. bx = _mm256_sub_epi8( bx, off );
  1609. by = _mm256_sub_epi8( by, off );
  1610. // Sign-extend first 16 signed bytes into int16_t
  1611. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1612. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1613. // Compute products of int16_t integers, add pairwise
  1614. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1615. // Sign-extend last 16 signed bytes into int16_t vectors
  1616. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1617. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1618. // Accumulate products of int16_t integers
  1619. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1620. // Convert int32_t to float
  1621. __m256 p = _mm256_cvtepi32_ps( i32 );
  1622. // Apply the scale, and accumulate
  1623. acc = _mm256_fmadd_ps( d, p, acc );
  1624. }
  1625. // Return horizontal sum of the acc vector
  1626. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1627. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1628. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1629. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1630. sumf = _mm_cvtss_f32( res );
  1631. #elif defined(__AVX__)
  1632. // Initialize accumulator with zeros
  1633. __m256 acc = _mm256_setzero_ps();
  1634. // Main loop
  1635. for (int i = 0; i < nb; ++i) {
  1636. // Compute combined scale for the block
  1637. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1638. __m128i i32[2];
  1639. for (int j = 0; j < 2; ++j) {
  1640. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1641. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1642. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1643. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1644. const __m128i off = _mm_set1_epi8( 8 );
  1645. bx = _mm_sub_epi8( bx, off );
  1646. by = _mm_sub_epi8( by, off );
  1647. // Get absolute values of x vectors
  1648. const __m128i ax = _mm_sign_epi8(bx, bx);
  1649. // Sign the values of the y vectors
  1650. const __m128i sy = _mm_sign_epi8(by, bx);
  1651. // Perform multiplication and create 16-bit values
  1652. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1653. const __m128i ones = _mm_set1_epi16(1);
  1654. i32[j] = _mm_madd_epi16(ones, dot);
  1655. }
  1656. // Convert int32_t to float
  1657. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1658. // Apply the scale, and accumulate
  1659. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1660. }
  1661. // Return horizontal sum of the acc vector
  1662. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1663. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1664. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1665. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1666. sumf = _mm_cvtss_f32( res );
  1667. #elif defined(__wasm_simd128__)
  1668. // wasm simd
  1669. float sum0 = 0.0f;
  1670. float sum1 = 0.0f;
  1671. for (int i = 0; i < nb; i += 2) {
  1672. const block_q4_0 * restrict x0 = &px[i + 0];
  1673. const block_q4_0 * restrict y0 = &py[i + 0];
  1674. const block_q4_0 * restrict x1 = &px[i + 1];
  1675. const block_q4_0 * restrict y1 = &py[i + 1];
  1676. const v128_t m4b = wasm_u8x16_splat(0xf);
  1677. const v128_t s8b = wasm_i8x16_splat(0x8);
  1678. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1679. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1680. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1681. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1682. // 4-bit -> 8-bit
  1683. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1684. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1685. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1686. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1687. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1688. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1689. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1690. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1691. // sub 8
  1692. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1693. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1694. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1695. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1696. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1697. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1698. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1699. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1700. // dot product into int16x8_t
  1701. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1702. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1703. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1704. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1705. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1706. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1707. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1708. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1709. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1710. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1711. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1712. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1713. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1714. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1715. sum0 += x0->d * y0->d * (
  1716. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1717. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1718. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1719. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1720. sum1 += x1->d * y1->d * (
  1721. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1722. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1723. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1724. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1725. }
  1726. sumf = sum0 + sum1;
  1727. #else
  1728. // scalar
  1729. for (int i = 0; i < nb; i++) {
  1730. const float d0 = x[i].d;
  1731. const float d1 = y[i].d;
  1732. const uint8_t * restrict p0 = x[i].qs;
  1733. const uint8_t * restrict p1 = y[i].qs;
  1734. for (int j = 0; j < QK/2; j++) {
  1735. const uint8_t v0 = p0[j];
  1736. const uint8_t v1 = p1[j];
  1737. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1738. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1739. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1740. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1741. sumf += f0*f2 + f1*f3;
  1742. }
  1743. }
  1744. #endif
  1745. *s = sumf;
  1746. }
  1747. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1748. const int nb = n / QK;
  1749. const block_q4_1 * restrict x = vx;
  1750. const block_q4_1 * restrict y = vy;
  1751. float sumf = 0.0;
  1752. #if defined(__AVX2__)
  1753. // Initialize accumulator with zeros
  1754. __m256 acc = _mm256_setzero_ps();
  1755. // Accumulator for constant offsets
  1756. float acc_offset = 0.0f;
  1757. // Main loop
  1758. for (int i = 0; i < nb; ++i) {
  1759. const float * d0 = &x[i].d;
  1760. const float * d1 = &y[i].d;
  1761. const float * m0 = &x[i].m;
  1762. const float * m1 = &y[i].m;
  1763. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1764. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1765. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1766. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1767. // Compute combined scale for the block
  1768. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1769. // Compute cross scales for the block
  1770. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1771. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1772. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1773. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1774. __m256i bx = bytesFromNibbles( x[i].qs );
  1775. __m256i by = bytesFromNibbles( y[i].qs );
  1776. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1777. // Sign-extend first 16 signed bytes into int16_t
  1778. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1779. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1780. // Compute products of int16_t integers, add pairwise
  1781. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1782. // Sign-extend last 16 signed bytes into int16_t vectors
  1783. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1784. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1785. // Accumulate products of int16_t integers
  1786. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1787. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1788. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1789. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1790. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1791. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1792. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1793. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1794. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1795. // Convert int32_t to float
  1796. __m256 p = _mm256_cvtepi32_ps( i32 );
  1797. // Apply the scale, and accumulate
  1798. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1799. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1800. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1801. // acc_offset += m0*m1 (for each entry in the block)
  1802. acc_offset += (*m0)*(*m1);
  1803. }
  1804. // Return horizontal sum of the acc vector
  1805. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1806. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1807. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1808. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1809. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1810. #elif defined(__ARM_NEON)
  1811. float sum00 = 0.0f;
  1812. float sum01 = 0.0f;
  1813. float sum10 = 0.0f;
  1814. float sum11 = 0.0f;
  1815. for (int i = 0; i < nb; ++i) {
  1816. const block_q4_1 * restrict x0 = &x[i + 0];
  1817. const block_q4_1 * restrict y0 = &y[i + 0];
  1818. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1819. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1820. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1821. // and with 0xf
  1822. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1823. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1824. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1825. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1826. // dot product into uint16x8_t
  1827. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1828. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1829. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1830. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1831. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1832. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1833. sum00 += x0->m*y0->m;
  1834. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1835. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1836. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1837. }
  1838. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1839. #else
  1840. // scalar
  1841. for (int i = 0; i < nb; i++) {
  1842. const float d0 = x[i].d;
  1843. const float d1 = y[i].d;
  1844. const float m0 = x[i].m;
  1845. const float m1 = y[i].m;
  1846. const uint8_t * restrict p0 = x[i].qs;
  1847. const uint8_t * restrict p1 = y[i].qs;
  1848. for (int j = 0; j < QK/2; j++) {
  1849. const uint8_t v0 = p0[j];
  1850. const uint8_t v1 = p1[j];
  1851. const float f0 = d0*(v0 & 0xf) + m0;
  1852. const float f1 = d0*(v0 >> 4) + m0;
  1853. const float f2 = d1*(v1 & 0xf) + m1;
  1854. const float f3 = d1*(v1 >> 4) + m1;
  1855. sumf += f0*f2 + f1*f3;
  1856. }
  1857. }
  1858. #endif
  1859. *s = sumf;
  1860. }
  1861. // compute GGML_VEC_DOT_UNROLL dot products at once
  1862. // xs - x row stride in bytes
  1863. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1864. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1865. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1866. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1867. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1868. }
  1869. #if defined(GGML_SIMD)
  1870. const int np = (n & ~(GGML_F16_STEP - 1));
  1871. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1872. GGML_F16_VEC ax[GGML_F16_ARR];
  1873. GGML_F16_VEC ay[GGML_F16_ARR];
  1874. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1875. for (int j = 0; j < GGML_F16_ARR; j++) {
  1876. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1877. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1878. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1879. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1880. }
  1881. }
  1882. }
  1883. // reduce sum0..sum3 to sum0
  1884. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1885. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1886. }
  1887. // leftovers
  1888. for (int i = np; i < n; ++i) {
  1889. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1890. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1891. }
  1892. }
  1893. #else
  1894. for (int i = 0; i < n; ++i) {
  1895. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1896. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1897. }
  1898. }
  1899. #endif
  1900. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1901. s[i] = sumf[i];
  1902. }
  1903. }
  1904. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1905. #if defined(GGML_SIMD)
  1906. const int np = (n & ~(GGML_F32_STEP - 1));
  1907. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1908. GGML_F32_VEC ax[GGML_F32_ARR];
  1909. GGML_F32_VEC ay[GGML_F32_ARR];
  1910. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1911. for (int j = 0; j < GGML_F32_ARR; j++) {
  1912. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1913. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1914. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1915. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1916. }
  1917. }
  1918. // leftovers
  1919. for (int i = np; i < n; ++i) {
  1920. y[i] += x[i]*v;
  1921. }
  1922. #else
  1923. // scalar
  1924. for (int i = 0; i < n; ++i) {
  1925. y[i] += x[i]*v;
  1926. }
  1927. #endif
  1928. }
  1929. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1930. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1931. #if defined(GGML_SIMD)
  1932. const int np = (n & ~(GGML_F32_STEP - 1));
  1933. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1934. GGML_F32_VEC ay[GGML_F32_ARR];
  1935. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1936. for (int j = 0; j < GGML_F32_ARR; j++) {
  1937. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1938. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1939. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1940. }
  1941. }
  1942. // leftovers
  1943. for (int i = np; i < n; ++i) {
  1944. y[i] *= v;
  1945. }
  1946. #else
  1947. // scalar
  1948. for (int i = 0; i < n; ++i) {
  1949. y[i] *= v;
  1950. }
  1951. #endif
  1952. }
  1953. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1954. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1955. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1956. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1957. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1958. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1959. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1960. static const float GELU_COEF_A = 0.044715f;
  1961. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1962. inline static float ggml_gelu_f32(float x) {
  1963. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1964. }
  1965. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1966. const uint16_t * i16 = (const uint16_t *) x;
  1967. for (int i = 0; i < n; ++i) {
  1968. y[i] = table_gelu_f16[i16[i]];
  1969. }
  1970. }
  1971. #ifdef GGML_GELU_FP16
  1972. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1973. uint16_t t;
  1974. for (int i = 0; i < n; ++i) {
  1975. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1976. memcpy(&t, &fp16, sizeof(uint16_t));
  1977. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1978. }
  1979. }
  1980. #else
  1981. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1982. for (int i = 0; i < n; ++i) {
  1983. y[i] = ggml_gelu_f32(x[i]);
  1984. }
  1985. }
  1986. #endif
  1987. // Sigmoid Linear Unit (SiLU) function
  1988. inline static float ggml_silu_f32(float x) {
  1989. return x/(1.0f + expf(-x));
  1990. }
  1991. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1992. const uint16_t * i16 = (const uint16_t *) x;
  1993. for (int i = 0; i < n; ++i) {
  1994. y[i] = table_silu_f16[i16[i]];
  1995. }
  1996. }
  1997. #ifdef GGML_SILU_FP16
  1998. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1999. uint16_t t;
  2000. for (int i = 0; i < n; ++i) {
  2001. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2002. memcpy(&t, &fp16, sizeof(uint16_t));
  2003. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2004. }
  2005. }
  2006. #else
  2007. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2008. for (int i = 0; i < n; ++i) {
  2009. y[i] = ggml_silu_f32(x[i]);
  2010. }
  2011. }
  2012. #endif
  2013. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2014. #ifndef GGML_USE_ACCELERATE
  2015. ggml_float sum = 0.0;
  2016. for (int i = 0; i < n; ++i) {
  2017. sum += (ggml_float)x[i];
  2018. }
  2019. *s = sum;
  2020. #else
  2021. vDSP_sve(x, 1, s, n);
  2022. #endif
  2023. }
  2024. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2025. #ifndef GGML_USE_ACCELERATE
  2026. float max = -INFINITY;
  2027. for (int i = 0; i < n; ++i) {
  2028. max = MAX(max, x[i]);
  2029. }
  2030. *s = max;
  2031. #else
  2032. vDSP_maxv(x, 1, s, n);
  2033. #endif
  2034. }
  2035. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2036. ggml_vec_norm_f32(n, s, x);
  2037. *s = 1.f/(*s);
  2038. }
  2039. //
  2040. // logging
  2041. //
  2042. #if (GGML_DEBUG >= 1)
  2043. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2044. #else
  2045. #define GGML_PRINT_DEBUG(...)
  2046. #endif
  2047. #if (GGML_DEBUG >= 5)
  2048. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2049. #else
  2050. #define GGML_PRINT_DEBUG_5(...)
  2051. #endif
  2052. #if (GGML_DEBUG >= 10)
  2053. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2054. #else
  2055. #define GGML_PRINT_DEBUG_10(...)
  2056. #endif
  2057. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2058. //
  2059. // data types
  2060. //
  2061. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2062. QK,
  2063. QK,
  2064. 1,
  2065. 1,
  2066. 1,
  2067. 1,
  2068. 1,
  2069. };
  2070. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2071. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2072. sizeof(block_q4_0),
  2073. sizeof(block_q4_1),
  2074. sizeof(int8_t ),
  2075. sizeof(int16_t),
  2076. sizeof(int32_t),
  2077. sizeof(ggml_fp16_t),
  2078. sizeof(float ),
  2079. };
  2080. // don't forget to update the array above when adding new types
  2081. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2082. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2083. "NONE",
  2084. "DUP",
  2085. "ADD",
  2086. "SUB",
  2087. "MUL",
  2088. "DIV",
  2089. "SQR",
  2090. "SQRT",
  2091. "SUM",
  2092. "MEAN",
  2093. "REPEAT",
  2094. "ABS",
  2095. "SGN",
  2096. "NEG",
  2097. "STEP",
  2098. "RELU",
  2099. "GELU",
  2100. "SILU",
  2101. "NORM",
  2102. "RMS_NORM",
  2103. "MUL_MAT",
  2104. "SCALE",
  2105. "CPY",
  2106. "RESHAPE",
  2107. "VIEW",
  2108. "PERMUTE",
  2109. "TRANSPOSE",
  2110. "GET_ROWS",
  2111. "DIAG_MASK_INF",
  2112. "SOFT_MAX",
  2113. "ROPE",
  2114. "CONV_1D_1S",
  2115. "CONV_1D_2S",
  2116. "FLASH_ATTN",
  2117. "FLASH_FF",
  2118. };
  2119. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2120. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2121. "none",
  2122. "x",
  2123. "x+y",
  2124. "x-y",
  2125. "x*y",
  2126. "x/y",
  2127. "x^2",
  2128. "√x",
  2129. "Σx",
  2130. "Σx/n",
  2131. "repeat(x)",
  2132. "abs(x)",
  2133. "sgn(x)",
  2134. "-x",
  2135. "step(x)",
  2136. "relu(x)",
  2137. "gelu(x)",
  2138. "silu(x)",
  2139. "norm(x)",
  2140. "rms_norm(x)",
  2141. "X*Y",
  2142. "x*v",
  2143. "x-\\>y",
  2144. "reshape(x)",
  2145. "view(x)",
  2146. "permute(x)",
  2147. "transpose(x)",
  2148. "get_rows(x)",
  2149. "diag_mask_inf(x)",
  2150. "soft_max(x)",
  2151. "rope(x)",
  2152. "conv_1d_1s(x)",
  2153. "conv_1d_2s(x)",
  2154. "flash_attn(x)",
  2155. "flash_ff(x)",
  2156. };
  2157. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2158. //
  2159. // ggml object
  2160. //
  2161. struct ggml_object {
  2162. size_t offs;
  2163. size_t size;
  2164. struct ggml_object * next;
  2165. char padding[8];
  2166. };
  2167. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  2168. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2169. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2170. //
  2171. // ggml context
  2172. //
  2173. struct ggml_context {
  2174. size_t mem_size;
  2175. void * mem_buffer;
  2176. bool mem_buffer_owned;
  2177. bool mem_buffer_mlocked;
  2178. bool no_alloc;
  2179. int n_objects;
  2180. struct ggml_object * objects_begin;
  2181. struct ggml_object * objects_end;
  2182. struct ggml_scratch scratch;
  2183. struct ggml_scratch scratch_save;
  2184. };
  2185. struct ggml_context_container {
  2186. bool used;
  2187. struct ggml_context context;
  2188. };
  2189. //
  2190. // compute types
  2191. //
  2192. enum ggml_task_type {
  2193. GGML_TASK_INIT = 0,
  2194. GGML_TASK_COMPUTE,
  2195. GGML_TASK_FINALIZE,
  2196. };
  2197. struct ggml_compute_params {
  2198. enum ggml_task_type type;
  2199. int ith, nth;
  2200. // work buffer for all threads
  2201. size_t wsize;
  2202. void * wdata;
  2203. };
  2204. //
  2205. // ggml state
  2206. //
  2207. struct ggml_state {
  2208. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2209. };
  2210. // global state
  2211. static struct ggml_state g_state;
  2212. static atomic_int g_state_barrier = 0;
  2213. // barrier via spin lock
  2214. inline static void ggml_critical_section_start(void) {
  2215. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2216. while (processing > 0) {
  2217. // wait for other threads to finish
  2218. atomic_fetch_sub(&g_state_barrier, 1);
  2219. sched_yield(); // TODO: reconsider this
  2220. processing = atomic_fetch_add(&g_state_barrier, 1);
  2221. }
  2222. }
  2223. // TODO: make this somehow automatically executed
  2224. // some sort of "sentry" mechanism
  2225. inline static void ggml_critical_section_end(void) {
  2226. atomic_fetch_sub(&g_state_barrier, 1);
  2227. }
  2228. ////////////////////////////////////////////////////////////////////////////////
  2229. void ggml_print_object(const struct ggml_object * obj) {
  2230. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2231. obj->offs, obj->size, (const void *) obj->next);
  2232. }
  2233. void ggml_print_objects(const struct ggml_context * ctx) {
  2234. struct ggml_object * obj = ctx->objects_begin;
  2235. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2236. while (obj != NULL) {
  2237. ggml_print_object(obj);
  2238. obj = obj->next;
  2239. }
  2240. GGML_PRINT("%s: --- end ---\n", __func__);
  2241. }
  2242. int ggml_nelements(const struct ggml_tensor * tensor) {
  2243. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2244. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2245. }
  2246. int ggml_nrows(const struct ggml_tensor * tensor) {
  2247. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2248. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2249. }
  2250. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2251. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2252. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2253. }
  2254. int ggml_blck_size(enum ggml_type type) {
  2255. return GGML_BLCK_SIZE[type];
  2256. }
  2257. size_t ggml_type_size(enum ggml_type type) {
  2258. return GGML_TYPE_SIZE[type];
  2259. }
  2260. float ggml_type_sizef(enum ggml_type type) {
  2261. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2262. }
  2263. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2264. return GGML_TYPE_SIZE[tensor->type];
  2265. }
  2266. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2267. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2268. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2269. }
  2270. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2271. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2272. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2273. }
  2274. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2275. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2276. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2277. }
  2278. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2279. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2280. return
  2281. (t0->ne[0] == t1->ne[0]) &&
  2282. (t0->ne[2] == t1->ne[2]) &&
  2283. (t0->ne[3] == t1->ne[3]);
  2284. }
  2285. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2286. return tensor->nb[0] > tensor->nb[1];
  2287. }
  2288. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2289. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2290. return
  2291. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2292. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2293. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2294. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2295. }
  2296. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2297. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2298. return
  2299. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2300. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2301. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2302. }
  2303. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2304. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2305. return
  2306. (t0->ne[0] == t1->ne[0] ) &&
  2307. (t0->ne[1] == t1->ne[1] ) &&
  2308. (t0->ne[2] == t1->ne[2] ) &&
  2309. (t0->ne[3] == t1->ne[3] );
  2310. }
  2311. // check if t1 can be represented as a repeatition of t0
  2312. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2313. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2314. return
  2315. (t1->ne[0]%t0->ne[0] == 0) &&
  2316. (t1->ne[1]%t0->ne[1] == 0) &&
  2317. (t1->ne[2]%t0->ne[2] == 0) &&
  2318. (t1->ne[3]%t0->ne[3] == 0);
  2319. }
  2320. static inline int ggml_up32(int n) {
  2321. return (n + 31) & ~31;
  2322. }
  2323. static inline int ggml_up64(int n) {
  2324. return (n + 63) & ~63;
  2325. }
  2326. static inline int ggml_up(int n, int m) {
  2327. // assert m is a power of 2
  2328. GGML_ASSERT((m & (m - 1)) == 0);
  2329. return (n + m - 1) & ~(m - 1);
  2330. }
  2331. // assert that pointer is aligned to GGML_MEM_ALIGN
  2332. #define ggml_assert_aligned(ptr) \
  2333. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2334. ////////////////////////////////////////////////////////////////////////////////
  2335. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2336. // make this function thread safe
  2337. ggml_critical_section_start();
  2338. static bool is_first_call = true;
  2339. if (is_first_call) {
  2340. // initialize time system (required on Windows)
  2341. ggml_time_init();
  2342. // initialize GELU, SILU and EXP F32 tables
  2343. {
  2344. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2345. ggml_fp16_t ii;
  2346. for (int i = 0; i < (1 << 16); ++i) {
  2347. uint16_t ui = i;
  2348. memcpy(&ii, &ui, sizeof(ii));
  2349. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2350. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2351. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2352. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2353. }
  2354. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2355. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2356. }
  2357. // initialize g_state
  2358. {
  2359. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2360. g_state = (struct ggml_state) {
  2361. /*.contexts =*/ { { 0 } },
  2362. };
  2363. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2364. g_state.contexts[i].used = false;
  2365. }
  2366. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2367. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2368. }
  2369. is_first_call = false;
  2370. }
  2371. // find non-used context in g_state
  2372. struct ggml_context * ctx = NULL;
  2373. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2374. if (!g_state.contexts[i].used) {
  2375. g_state.contexts[i].used = true;
  2376. ctx = &g_state.contexts[i].context;
  2377. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2378. break;
  2379. }
  2380. }
  2381. if (ctx == NULL) {
  2382. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2383. ggml_critical_section_end();
  2384. return NULL;
  2385. }
  2386. *ctx = (struct ggml_context) {
  2387. /*.mem_size =*/ params.mem_size,
  2388. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2389. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2390. /*.mem_buffer_mlocked =*/ false,
  2391. /*.no_alloc =*/ params.no_alloc,
  2392. /*.n_objects =*/ 0,
  2393. /*.objects_begin =*/ NULL,
  2394. /*.objects_end =*/ NULL,
  2395. /*.scratch =*/ { 0, 0, NULL, },
  2396. /*.scratch_save =*/ { 0, 0, NULL, },
  2397. };
  2398. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2399. ggml_assert_aligned(ctx->mem_buffer);
  2400. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2401. ggml_critical_section_end();
  2402. return ctx;
  2403. }
  2404. void ggml_free(struct ggml_context * ctx) {
  2405. // make this function thread safe
  2406. ggml_critical_section_start();
  2407. bool found = false;
  2408. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2409. if (&g_state.contexts[i].context == ctx) {
  2410. g_state.contexts[i].used = false;
  2411. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2412. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2413. #if GGML_MLOCK_SUPPORT
  2414. if (ctx->mem_buffer_mlocked) {
  2415. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2416. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2417. }
  2418. }
  2419. #endif
  2420. if (ctx->mem_buffer_owned) {
  2421. free(ctx->mem_buffer);
  2422. }
  2423. found = true;
  2424. break;
  2425. }
  2426. }
  2427. if (!found) {
  2428. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2429. }
  2430. ggml_critical_section_end();
  2431. }
  2432. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2433. return ctx->objects_end->offs + ctx->objects_end->size;
  2434. }
  2435. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2436. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2437. ctx->scratch = scratch;
  2438. return result;
  2439. }
  2440. #ifdef __APPLE__
  2441. #define MLOCK_SUGGESTION \
  2442. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  2443. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  2444. #else
  2445. #define MLOCK_SUGGESTION \
  2446. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  2447. #endif
  2448. bool ggml_mlock_supported(void) {
  2449. return GGML_MLOCK_SUPPORT;
  2450. }
  2451. bool ggml_mlock(
  2452. struct ggml_context * ctx,
  2453. const void *opt_extra_addr,
  2454. size_t opt_extra_len,
  2455. char **err_p) {
  2456. // TODO: Use SetProcessWorkingSetSize() + VirtualLock() on WIN32
  2457. #if GGML_MLOCK_SUPPORT
  2458. if (ctx->mem_buffer_mlocked) {
  2459. return true;
  2460. }
  2461. if (mlock(ctx->mem_buffer, ctx->mem_size) ||
  2462. (opt_extra_len &&
  2463. mlock(opt_extra_addr, opt_extra_len))) {
  2464. if ((*err_p = malloc(1024))) {
  2465. snprintf(*err_p, 1024,
  2466. "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2467. ctx->mem_size + opt_extra_len,
  2468. strerror(errno));
  2469. }
  2470. return false;
  2471. }
  2472. ctx->mem_buffer_mlocked = true;
  2473. return true;
  2474. #else // GGML_MLOCK_SUPPORT
  2475. *err_p = strdup("can't mlock because it's not supported on this system");
  2476. return false;
  2477. #endif // GGML_MLOCK_SUPPORT
  2478. }
  2479. ////////////////////////////////////////////////////////////////////////////////
  2480. struct ggml_tensor * ggml_new_tensor_impl(
  2481. struct ggml_context * ctx,
  2482. enum ggml_type type,
  2483. int n_dims,
  2484. const int* ne,
  2485. void* data) {
  2486. // always insert objects at the end of the context's memory pool
  2487. struct ggml_object * obj_cur = ctx->objects_end;
  2488. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2489. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2490. const size_t cur_end = cur_offs + cur_size;
  2491. size_t size_needed = 0;
  2492. if (data == NULL && !ctx->no_alloc) {
  2493. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2494. for (int i = 1; i < n_dims; i++) {
  2495. size_needed *= ne[i];
  2496. }
  2497. // align to GGML_MEM_ALIGN
  2498. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2499. }
  2500. char * const mem_buffer = ctx->mem_buffer;
  2501. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2502. if (ctx->scratch.data == NULL || data != NULL) {
  2503. size_needed += sizeof(struct ggml_tensor);
  2504. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2505. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2506. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2507. assert(false);
  2508. return NULL;
  2509. }
  2510. *obj_new = (struct ggml_object) {
  2511. .offs = cur_end + GGML_OBJECT_SIZE,
  2512. .size = size_needed,
  2513. .next = NULL,
  2514. };
  2515. } else {
  2516. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2517. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2518. assert(false);
  2519. return NULL;
  2520. }
  2521. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2522. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2523. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2524. assert(false);
  2525. return NULL;
  2526. }
  2527. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2528. *obj_new = (struct ggml_object) {
  2529. .offs = cur_end + GGML_OBJECT_SIZE,
  2530. .size = sizeof(struct ggml_tensor),
  2531. .next = NULL,
  2532. };
  2533. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2534. ctx->scratch.offs += size_needed;
  2535. }
  2536. if (obj_cur != NULL) {
  2537. obj_cur->next = obj_new;
  2538. } else {
  2539. // this is the first object in this context
  2540. ctx->objects_begin = obj_new;
  2541. }
  2542. ctx->objects_end = obj_new;
  2543. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2544. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2545. ggml_assert_aligned(result);
  2546. *result = (struct ggml_tensor) {
  2547. /*.type =*/ type,
  2548. /*.n_dims =*/ n_dims,
  2549. /*.ne =*/ { 1, 1, 1, 1 },
  2550. /*.nb =*/ { 0, 0, 0, 0 },
  2551. /*.op =*/ GGML_OP_NONE,
  2552. /*.is_param =*/ false,
  2553. /*.grad =*/ NULL,
  2554. /*.src0 =*/ NULL,
  2555. /*.src1 =*/ NULL,
  2556. /*.opt =*/ { NULL },
  2557. /*.n_tasks =*/ 0,
  2558. /*.perf_runs =*/ 0,
  2559. /*.perf_cycles =*/ 0,
  2560. /*.perf_time_us =*/ 0,
  2561. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2562. /*.pad =*/ { 0 },
  2563. };
  2564. ggml_assert_aligned(result->data);
  2565. for (int i = 0; i < n_dims; i++) {
  2566. result->ne[i] = ne[i];
  2567. }
  2568. result->nb[0] = GGML_TYPE_SIZE[type];
  2569. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2570. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2571. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2572. }
  2573. ctx->n_objects++;
  2574. return result;
  2575. }
  2576. struct ggml_tensor * ggml_new_tensor(
  2577. struct ggml_context * ctx,
  2578. enum ggml_type type,
  2579. int n_dims,
  2580. const int * ne) {
  2581. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2582. }
  2583. struct ggml_tensor * ggml_new_tensor_1d(
  2584. struct ggml_context * ctx,
  2585. enum ggml_type type,
  2586. int ne0) {
  2587. return ggml_new_tensor(ctx, type, 1, &ne0);
  2588. }
  2589. struct ggml_tensor * ggml_new_tensor_2d(
  2590. struct ggml_context * ctx,
  2591. enum ggml_type type,
  2592. int ne0,
  2593. int ne1) {
  2594. const int ne[2] = { ne0, ne1 };
  2595. return ggml_new_tensor(ctx, type, 2, ne);
  2596. }
  2597. struct ggml_tensor * ggml_new_tensor_3d(
  2598. struct ggml_context * ctx,
  2599. enum ggml_type type,
  2600. int ne0,
  2601. int ne1,
  2602. int ne2) {
  2603. const int ne[3] = { ne0, ne1, ne2 };
  2604. return ggml_new_tensor(ctx, type, 3, ne);
  2605. }
  2606. struct ggml_tensor * ggml_new_tensor_4d(
  2607. struct ggml_context * ctx,
  2608. enum ggml_type type,
  2609. int ne0,
  2610. int ne1,
  2611. int ne2,
  2612. int ne3) {
  2613. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2614. return ggml_new_tensor(ctx, type, 4, ne);
  2615. }
  2616. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2617. ctx->scratch_save = ctx->scratch;
  2618. ctx->scratch.data = NULL;
  2619. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2620. ctx->scratch = ctx->scratch_save;
  2621. ggml_set_i32(result, value);
  2622. return result;
  2623. }
  2624. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2625. ctx->scratch_save = ctx->scratch;
  2626. ctx->scratch.data = NULL;
  2627. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2628. ctx->scratch = ctx->scratch_save;
  2629. ggml_set_f32(result, value);
  2630. return result;
  2631. }
  2632. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2633. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2634. }
  2635. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2636. memset(tensor->data, 0, ggml_nbytes(tensor));
  2637. return tensor;
  2638. }
  2639. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2640. const int n = ggml_nrows(tensor);
  2641. const int nc = tensor->ne[0];
  2642. const size_t n1 = tensor->nb[1];
  2643. char * const data = tensor->data;
  2644. switch (tensor->type) {
  2645. case GGML_TYPE_Q4_0:
  2646. {
  2647. GGML_ASSERT(false);
  2648. } break;
  2649. case GGML_TYPE_Q4_1:
  2650. {
  2651. GGML_ASSERT(false);
  2652. } break;
  2653. case GGML_TYPE_I8:
  2654. {
  2655. assert(tensor->nb[0] == sizeof(int8_t));
  2656. for (int i = 0; i < n; i++) {
  2657. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2658. }
  2659. } break;
  2660. case GGML_TYPE_I16:
  2661. {
  2662. assert(tensor->nb[0] == sizeof(int16_t));
  2663. for (int i = 0; i < n; i++) {
  2664. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2665. }
  2666. } break;
  2667. case GGML_TYPE_I32:
  2668. {
  2669. assert(tensor->nb[0] == sizeof(int32_t));
  2670. for (int i = 0; i < n; i++) {
  2671. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2672. }
  2673. } break;
  2674. case GGML_TYPE_F16:
  2675. {
  2676. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2677. for (int i = 0; i < n; i++) {
  2678. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2679. }
  2680. } break;
  2681. case GGML_TYPE_F32:
  2682. {
  2683. assert(tensor->nb[0] == sizeof(float));
  2684. for (int i = 0; i < n; i++) {
  2685. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2686. }
  2687. } break;
  2688. case GGML_TYPE_COUNT:
  2689. {
  2690. GGML_ASSERT(false);
  2691. } break;
  2692. }
  2693. return tensor;
  2694. }
  2695. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2696. const int n = ggml_nrows(tensor);
  2697. const int nc = tensor->ne[0];
  2698. const size_t n1 = tensor->nb[1];
  2699. char * const data = tensor->data;
  2700. switch (tensor->type) {
  2701. case GGML_TYPE_Q4_0:
  2702. {
  2703. GGML_ASSERT(false);
  2704. } break;
  2705. case GGML_TYPE_Q4_1:
  2706. {
  2707. GGML_ASSERT(false);
  2708. } break;
  2709. case GGML_TYPE_I8:
  2710. {
  2711. assert(tensor->nb[0] == sizeof(int8_t));
  2712. for (int i = 0; i < n; i++) {
  2713. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2714. }
  2715. } break;
  2716. case GGML_TYPE_I16:
  2717. {
  2718. assert(tensor->nb[0] == sizeof(int16_t));
  2719. for (int i = 0; i < n; i++) {
  2720. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2721. }
  2722. } break;
  2723. case GGML_TYPE_I32:
  2724. {
  2725. assert(tensor->nb[0] == sizeof(int32_t));
  2726. for (int i = 0; i < n; i++) {
  2727. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2728. }
  2729. } break;
  2730. case GGML_TYPE_F16:
  2731. {
  2732. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2733. for (int i = 0; i < n; i++) {
  2734. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2735. }
  2736. } break;
  2737. case GGML_TYPE_F32:
  2738. {
  2739. assert(tensor->nb[0] == sizeof(float));
  2740. for (int i = 0; i < n; i++) {
  2741. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2742. }
  2743. } break;
  2744. case GGML_TYPE_COUNT:
  2745. {
  2746. GGML_ASSERT(false);
  2747. } break;
  2748. }
  2749. return tensor;
  2750. }
  2751. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2752. switch (tensor->type) {
  2753. case GGML_TYPE_Q4_0:
  2754. {
  2755. GGML_ASSERT(false);
  2756. } break;
  2757. case GGML_TYPE_Q4_1:
  2758. {
  2759. GGML_ASSERT(false);
  2760. } break;
  2761. case GGML_TYPE_I8:
  2762. {
  2763. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2764. return ((int8_t *)(tensor->data))[i];
  2765. } break;
  2766. case GGML_TYPE_I16:
  2767. {
  2768. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2769. return ((int16_t *)(tensor->data))[i];
  2770. } break;
  2771. case GGML_TYPE_I32:
  2772. {
  2773. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2774. return ((int32_t *)(tensor->data))[i];
  2775. } break;
  2776. case GGML_TYPE_F16:
  2777. {
  2778. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2779. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2780. } break;
  2781. case GGML_TYPE_F32:
  2782. {
  2783. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2784. return ((float *)(tensor->data))[i];
  2785. } break;
  2786. case GGML_TYPE_COUNT:
  2787. {
  2788. GGML_ASSERT(false);
  2789. } break;
  2790. }
  2791. return 0.0f;
  2792. }
  2793. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2794. switch (tensor->type) {
  2795. case GGML_TYPE_Q4_0:
  2796. {
  2797. GGML_ASSERT(false);
  2798. } break;
  2799. case GGML_TYPE_Q4_1:
  2800. {
  2801. GGML_ASSERT(false);
  2802. } break;
  2803. case GGML_TYPE_I8:
  2804. {
  2805. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2806. ((int8_t *)(tensor->data))[i] = value;
  2807. } break;
  2808. case GGML_TYPE_I16:
  2809. {
  2810. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2811. ((int16_t *)(tensor->data))[i] = value;
  2812. } break;
  2813. case GGML_TYPE_I32:
  2814. {
  2815. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2816. ((int32_t *)(tensor->data))[i] = value;
  2817. } break;
  2818. case GGML_TYPE_F16:
  2819. {
  2820. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2821. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2822. } break;
  2823. case GGML_TYPE_F32:
  2824. {
  2825. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2826. ((float *)(tensor->data))[i] = value;
  2827. } break;
  2828. case GGML_TYPE_COUNT:
  2829. {
  2830. GGML_ASSERT(false);
  2831. } break;
  2832. }
  2833. }
  2834. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2835. switch (tensor->type) {
  2836. case GGML_TYPE_Q4_0:
  2837. {
  2838. GGML_ASSERT(false);
  2839. } break;
  2840. case GGML_TYPE_Q4_1:
  2841. {
  2842. GGML_ASSERT(false);
  2843. } break;
  2844. case GGML_TYPE_I8:
  2845. {
  2846. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2847. return ((int8_t *)(tensor->data))[i];
  2848. } break;
  2849. case GGML_TYPE_I16:
  2850. {
  2851. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2852. return ((int16_t *)(tensor->data))[i];
  2853. } break;
  2854. case GGML_TYPE_I32:
  2855. {
  2856. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2857. return ((int32_t *)(tensor->data))[i];
  2858. } break;
  2859. case GGML_TYPE_F16:
  2860. {
  2861. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2862. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2863. } break;
  2864. case GGML_TYPE_F32:
  2865. {
  2866. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2867. return ((float *)(tensor->data))[i];
  2868. } break;
  2869. case GGML_TYPE_COUNT:
  2870. {
  2871. GGML_ASSERT(false);
  2872. } break;
  2873. }
  2874. return 0.0f;
  2875. }
  2876. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2877. switch (tensor->type) {
  2878. case GGML_TYPE_Q4_0:
  2879. {
  2880. GGML_ASSERT(false);
  2881. } break;
  2882. case GGML_TYPE_Q4_1:
  2883. {
  2884. GGML_ASSERT(false);
  2885. } break;
  2886. case GGML_TYPE_I8:
  2887. {
  2888. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2889. ((int8_t *)(tensor->data))[i] = value;
  2890. } break;
  2891. case GGML_TYPE_I16:
  2892. {
  2893. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2894. ((int16_t *)(tensor->data))[i] = value;
  2895. } break;
  2896. case GGML_TYPE_I32:
  2897. {
  2898. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2899. ((int32_t *)(tensor->data))[i] = value;
  2900. } break;
  2901. case GGML_TYPE_F16:
  2902. {
  2903. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2904. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2905. } break;
  2906. case GGML_TYPE_F32:
  2907. {
  2908. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2909. ((float *)(tensor->data))[i] = value;
  2910. } break;
  2911. case GGML_TYPE_COUNT:
  2912. {
  2913. GGML_ASSERT(false);
  2914. } break;
  2915. }
  2916. }
  2917. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2918. return tensor->data;
  2919. }
  2920. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2921. assert(tensor->type == GGML_TYPE_F32);
  2922. return (float *)(tensor->data);
  2923. }
  2924. struct ggml_tensor * ggml_view_tensor(
  2925. struct ggml_context * ctx,
  2926. const struct ggml_tensor * src) {
  2927. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2928. }
  2929. ////////////////////////////////////////////////////////////////////////////////
  2930. // ggml_dup
  2931. struct ggml_tensor * ggml_dup_impl(
  2932. struct ggml_context * ctx,
  2933. struct ggml_tensor * a,
  2934. bool inplace) {
  2935. bool is_node = false;
  2936. if (!inplace && (a->grad)) {
  2937. is_node = true;
  2938. }
  2939. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2940. result->op = GGML_OP_DUP;
  2941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2942. result->src0 = a;
  2943. result->src1 = NULL;
  2944. return result;
  2945. }
  2946. struct ggml_tensor * ggml_dup(
  2947. struct ggml_context * ctx,
  2948. struct ggml_tensor * a) {
  2949. return ggml_dup_impl(ctx, a, false);
  2950. }
  2951. struct ggml_tensor * ggml_dup_inplace(
  2952. struct ggml_context * ctx,
  2953. struct ggml_tensor * a) {
  2954. return ggml_dup_impl(ctx, a, true);
  2955. }
  2956. // ggml_add
  2957. struct ggml_tensor * ggml_add_impl(
  2958. struct ggml_context * ctx,
  2959. struct ggml_tensor * a,
  2960. struct ggml_tensor * b,
  2961. bool inplace) {
  2962. GGML_ASSERT(ggml_are_same_shape(a, b));
  2963. bool is_node = false;
  2964. if (!inplace && (a->grad || b->grad)) {
  2965. is_node = true;
  2966. }
  2967. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2968. result->op = GGML_OP_ADD;
  2969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2970. result->src0 = a;
  2971. result->src1 = b;
  2972. return result;
  2973. }
  2974. struct ggml_tensor * ggml_add(
  2975. struct ggml_context * ctx,
  2976. struct ggml_tensor * a,
  2977. struct ggml_tensor * b) {
  2978. return ggml_add_impl(ctx, a, b, false);
  2979. }
  2980. struct ggml_tensor * ggml_add_inplace(
  2981. struct ggml_context * ctx,
  2982. struct ggml_tensor * a,
  2983. struct ggml_tensor * b) {
  2984. return ggml_add_impl(ctx, a, b, true);
  2985. }
  2986. // ggml_sub
  2987. struct ggml_tensor * ggml_sub_impl(
  2988. struct ggml_context * ctx,
  2989. struct ggml_tensor * a,
  2990. struct ggml_tensor * b,
  2991. bool inplace) {
  2992. GGML_ASSERT(ggml_are_same_shape(a, b));
  2993. bool is_node = false;
  2994. if (!inplace && (a->grad || b->grad)) {
  2995. is_node = true;
  2996. }
  2997. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2998. result->op = GGML_OP_SUB;
  2999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3000. result->src0 = a;
  3001. result->src1 = b;
  3002. return result;
  3003. }
  3004. struct ggml_tensor * ggml_sub(
  3005. struct ggml_context * ctx,
  3006. struct ggml_tensor * a,
  3007. struct ggml_tensor * b) {
  3008. return ggml_sub_impl(ctx, a, b, false);
  3009. }
  3010. struct ggml_tensor * ggml_sub_inplace(
  3011. struct ggml_context * ctx,
  3012. struct ggml_tensor * a,
  3013. struct ggml_tensor * b) {
  3014. return ggml_sub_impl(ctx, a, b, true);
  3015. }
  3016. // ggml_mul
  3017. struct ggml_tensor * ggml_mul_impl(
  3018. struct ggml_context * ctx,
  3019. struct ggml_tensor * a,
  3020. struct ggml_tensor * b,
  3021. bool inplace) {
  3022. GGML_ASSERT(ggml_are_same_shape(a, b));
  3023. bool is_node = false;
  3024. if (!inplace && (a->grad || b->grad)) {
  3025. is_node = true;
  3026. }
  3027. if (inplace) {
  3028. GGML_ASSERT(is_node == false);
  3029. }
  3030. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3031. result->op = GGML_OP_MUL;
  3032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3033. result->src0 = a;
  3034. result->src1 = b;
  3035. return result;
  3036. }
  3037. struct ggml_tensor * ggml_mul(
  3038. struct ggml_context * ctx,
  3039. struct ggml_tensor * a,
  3040. struct ggml_tensor * b) {
  3041. return ggml_mul_impl(ctx, a, b, false);
  3042. }
  3043. struct ggml_tensor * ggml_mul_inplace(
  3044. struct ggml_context * ctx,
  3045. struct ggml_tensor * a,
  3046. struct ggml_tensor * b) {
  3047. return ggml_mul_impl(ctx, a, b, true);
  3048. }
  3049. // ggml_div
  3050. struct ggml_tensor * ggml_div_impl(
  3051. struct ggml_context * ctx,
  3052. struct ggml_tensor * a,
  3053. struct ggml_tensor * b,
  3054. bool inplace) {
  3055. GGML_ASSERT(ggml_are_same_shape(a, b));
  3056. bool is_node = false;
  3057. if (!inplace && (a->grad || b->grad)) {
  3058. is_node = true;
  3059. }
  3060. if (inplace) {
  3061. GGML_ASSERT(is_node == false);
  3062. }
  3063. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3064. result->op = GGML_OP_DIV;
  3065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3066. result->src0 = a;
  3067. result->src1 = b;
  3068. return result;
  3069. }
  3070. struct ggml_tensor * ggml_div(
  3071. struct ggml_context * ctx,
  3072. struct ggml_tensor * a,
  3073. struct ggml_tensor * b) {
  3074. return ggml_div_impl(ctx, a, b, false);
  3075. }
  3076. struct ggml_tensor * ggml_div_inplace(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a,
  3079. struct ggml_tensor * b) {
  3080. return ggml_div_impl(ctx, a, b, true);
  3081. }
  3082. // ggml_sqr
  3083. struct ggml_tensor * ggml_sqr_impl(
  3084. struct ggml_context * ctx,
  3085. struct ggml_tensor * a,
  3086. bool inplace) {
  3087. bool is_node = false;
  3088. if (!inplace && (a->grad)) {
  3089. is_node = true;
  3090. }
  3091. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3092. result->op = GGML_OP_SQR;
  3093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3094. result->src0 = a;
  3095. result->src1 = NULL;
  3096. return result;
  3097. }
  3098. struct ggml_tensor * ggml_sqr(
  3099. struct ggml_context * ctx,
  3100. struct ggml_tensor * a) {
  3101. return ggml_sqr_impl(ctx, a, false);
  3102. }
  3103. struct ggml_tensor * ggml_sqr_inplace(
  3104. struct ggml_context * ctx,
  3105. struct ggml_tensor * a) {
  3106. return ggml_sqr_impl(ctx, a, true);
  3107. }
  3108. // ggml_sqrt
  3109. struct ggml_tensor * ggml_sqrt_impl(
  3110. struct ggml_context * ctx,
  3111. struct ggml_tensor * a,
  3112. bool inplace) {
  3113. bool is_node = false;
  3114. if (!inplace && (a->grad)) {
  3115. is_node = true;
  3116. }
  3117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3118. result->op = GGML_OP_SQRT;
  3119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3120. result->src0 = a;
  3121. result->src1 = NULL;
  3122. return result;
  3123. }
  3124. struct ggml_tensor * ggml_sqrt(
  3125. struct ggml_context * ctx,
  3126. struct ggml_tensor * a) {
  3127. return ggml_sqrt_impl(ctx, a, false);
  3128. }
  3129. struct ggml_tensor * ggml_sqrt_inplace(
  3130. struct ggml_context * ctx,
  3131. struct ggml_tensor * a) {
  3132. return ggml_sqrt_impl(ctx, a, true);
  3133. }
  3134. // ggml_sum
  3135. struct ggml_tensor * ggml_sum(
  3136. struct ggml_context * ctx,
  3137. struct ggml_tensor * a) {
  3138. bool is_node = false;
  3139. if (a->grad) {
  3140. is_node = true;
  3141. }
  3142. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3143. result->op = GGML_OP_SUM;
  3144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3145. result->src0 = a;
  3146. result->src1 = NULL;
  3147. return result;
  3148. }
  3149. // ggml_mean
  3150. struct ggml_tensor * ggml_mean(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. bool is_node = false;
  3154. if (a->grad) {
  3155. GGML_ASSERT(false); // TODO: implement
  3156. is_node = true;
  3157. }
  3158. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3159. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3160. result->op = GGML_OP_MEAN;
  3161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3162. result->src0 = a;
  3163. result->src1 = NULL;
  3164. return result;
  3165. }
  3166. // ggml_repeat
  3167. struct ggml_tensor * ggml_repeat(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a,
  3170. struct ggml_tensor * b) {
  3171. GGML_ASSERT(ggml_can_repeat(a, b));
  3172. bool is_node = false;
  3173. if (a->grad) {
  3174. is_node = true;
  3175. }
  3176. if (ggml_are_same_shape(a, b) && !is_node) {
  3177. return a;
  3178. }
  3179. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3180. result->op = GGML_OP_REPEAT;
  3181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3182. result->src0 = a;
  3183. result->src1 = b;
  3184. return result;
  3185. }
  3186. // ggml_abs
  3187. struct ggml_tensor * ggml_abs_impl(
  3188. struct ggml_context * ctx,
  3189. struct ggml_tensor * a,
  3190. bool inplace) {
  3191. bool is_node = false;
  3192. if (!inplace && (a->grad)) {
  3193. is_node = true;
  3194. }
  3195. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3196. result->op = GGML_OP_ABS;
  3197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3198. result->src0 = a;
  3199. result->src1 = NULL;
  3200. return result;
  3201. }
  3202. struct ggml_tensor * ggml_abs(
  3203. struct ggml_context * ctx,
  3204. struct ggml_tensor * a) {
  3205. return ggml_abs_impl(ctx, a, false);
  3206. }
  3207. struct ggml_tensor * ggml_abs_inplace(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a) {
  3210. return ggml_abs_impl(ctx, a, true);
  3211. }
  3212. // ggml_sgn
  3213. struct ggml_tensor * ggml_sgn_impl(
  3214. struct ggml_context * ctx,
  3215. struct ggml_tensor * a,
  3216. bool inplace) {
  3217. bool is_node = false;
  3218. if (!inplace && (a->grad)) {
  3219. is_node = true;
  3220. }
  3221. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3222. result->op = GGML_OP_SGN;
  3223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3224. result->src0 = a;
  3225. result->src1 = NULL;
  3226. return result;
  3227. }
  3228. struct ggml_tensor * ggml_sgn(
  3229. struct ggml_context * ctx,
  3230. struct ggml_tensor * a) {
  3231. return ggml_sgn_impl(ctx, a, false);
  3232. }
  3233. struct ggml_tensor * ggml_sgn_inplace(
  3234. struct ggml_context * ctx,
  3235. struct ggml_tensor * a) {
  3236. return ggml_sgn_impl(ctx, a, true);
  3237. }
  3238. // ggml_neg
  3239. struct ggml_tensor * ggml_neg_impl(
  3240. struct ggml_context * ctx,
  3241. struct ggml_tensor * a,
  3242. bool inplace) {
  3243. bool is_node = false;
  3244. if (!inplace && (a->grad)) {
  3245. is_node = true;
  3246. }
  3247. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3248. result->op = GGML_OP_NEG;
  3249. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3250. result->src0 = a;
  3251. result->src1 = NULL;
  3252. return result;
  3253. }
  3254. struct ggml_tensor * ggml_neg(
  3255. struct ggml_context * ctx,
  3256. struct ggml_tensor * a) {
  3257. return ggml_neg_impl(ctx, a, false);
  3258. }
  3259. struct ggml_tensor * ggml_neg_inplace(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a) {
  3262. return ggml_neg_impl(ctx, a, true);
  3263. }
  3264. // ggml_step
  3265. struct ggml_tensor * ggml_step_impl(
  3266. struct ggml_context * ctx,
  3267. struct ggml_tensor * a,
  3268. bool inplace) {
  3269. bool is_node = false;
  3270. if (!inplace && (a->grad)) {
  3271. is_node = true;
  3272. }
  3273. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3274. result->op = GGML_OP_STEP;
  3275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3276. result->src0 = a;
  3277. result->src1 = NULL;
  3278. return result;
  3279. }
  3280. struct ggml_tensor * ggml_step(
  3281. struct ggml_context * ctx,
  3282. struct ggml_tensor * a) {
  3283. return ggml_step_impl(ctx, a, false);
  3284. }
  3285. struct ggml_tensor * ggml_step_inplace(
  3286. struct ggml_context * ctx,
  3287. struct ggml_tensor * a) {
  3288. return ggml_step_impl(ctx, a, true);
  3289. }
  3290. // ggml_relu
  3291. struct ggml_tensor * ggml_relu_impl(
  3292. struct ggml_context * ctx,
  3293. struct ggml_tensor * a,
  3294. bool inplace) {
  3295. bool is_node = false;
  3296. if (!inplace && (a->grad)) {
  3297. is_node = true;
  3298. }
  3299. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3300. result->op = GGML_OP_RELU;
  3301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3302. result->src0 = a;
  3303. result->src1 = NULL;
  3304. return result;
  3305. }
  3306. struct ggml_tensor * ggml_relu(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a) {
  3309. return ggml_relu_impl(ctx, a, false);
  3310. }
  3311. struct ggml_tensor * ggml_relu_inplace(
  3312. struct ggml_context * ctx,
  3313. struct ggml_tensor * a) {
  3314. return ggml_relu_impl(ctx, a, true);
  3315. }
  3316. // ggml_gelu
  3317. struct ggml_tensor * ggml_gelu_impl(
  3318. struct ggml_context * ctx,
  3319. struct ggml_tensor * a,
  3320. bool inplace) {
  3321. bool is_node = false;
  3322. if (!inplace && (a->grad)) {
  3323. is_node = true;
  3324. }
  3325. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3326. result->op = GGML_OP_GELU;
  3327. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3328. result->src0 = a;
  3329. result->src1 = NULL;
  3330. return result;
  3331. }
  3332. struct ggml_tensor * ggml_gelu(
  3333. struct ggml_context * ctx,
  3334. struct ggml_tensor * a) {
  3335. return ggml_gelu_impl(ctx, a, false);
  3336. }
  3337. struct ggml_tensor * ggml_gelu_inplace(
  3338. struct ggml_context * ctx,
  3339. struct ggml_tensor * a) {
  3340. return ggml_gelu_impl(ctx, a, true);
  3341. }
  3342. // ggml_silu
  3343. struct ggml_tensor * ggml_silu_impl(
  3344. struct ggml_context * ctx,
  3345. struct ggml_tensor * a,
  3346. bool inplace) {
  3347. bool is_node = false;
  3348. if (!inplace && (a->grad)) {
  3349. is_node = true;
  3350. }
  3351. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3352. result->op = GGML_OP_SILU;
  3353. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3354. result->src0 = a;
  3355. result->src1 = NULL;
  3356. return result;
  3357. }
  3358. struct ggml_tensor * ggml_silu(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a) {
  3361. return ggml_silu_impl(ctx, a, false);
  3362. }
  3363. struct ggml_tensor * ggml_silu_inplace(
  3364. struct ggml_context * ctx,
  3365. struct ggml_tensor * a) {
  3366. return ggml_silu_impl(ctx, a, true);
  3367. }
  3368. // ggml_norm
  3369. struct ggml_tensor * ggml_norm_impl(
  3370. struct ggml_context * ctx,
  3371. struct ggml_tensor * a,
  3372. bool inplace) {
  3373. bool is_node = false;
  3374. if (!inplace && (a->grad)) {
  3375. GGML_ASSERT(false); // TODO: implement backward
  3376. is_node = true;
  3377. }
  3378. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3379. result->op = GGML_OP_NORM;
  3380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3381. result->src0 = a;
  3382. result->src1 = NULL; // TODO: maybe store epsilon here?
  3383. return result;
  3384. }
  3385. struct ggml_tensor * ggml_norm(
  3386. struct ggml_context * ctx,
  3387. struct ggml_tensor * a) {
  3388. return ggml_norm_impl(ctx, a, false);
  3389. }
  3390. struct ggml_tensor * ggml_norm_inplace(
  3391. struct ggml_context * ctx,
  3392. struct ggml_tensor * a) {
  3393. return ggml_norm_impl(ctx, a, true);
  3394. }
  3395. struct ggml_tensor * ggml_rms_norm_impl(
  3396. struct ggml_context * ctx,
  3397. struct ggml_tensor * a,
  3398. bool inplace) {
  3399. bool is_node = false;
  3400. if (!inplace && (a->grad)) {
  3401. GGML_ASSERT(false); // TODO: implement backward
  3402. is_node = true;
  3403. }
  3404. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3405. result->op = GGML_OP_RMS_NORM;
  3406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3407. result->src0 = a;
  3408. result->src1 = NULL; // TODO: maybe store epsilon here?
  3409. return result;
  3410. }
  3411. struct ggml_tensor * ggml_rms_norm(
  3412. struct ggml_context * ctx,
  3413. struct ggml_tensor * a) {
  3414. return ggml_rms_norm_impl(ctx, a, false);
  3415. }
  3416. struct ggml_tensor * ggml_rms_norm_inplace(
  3417. struct ggml_context * ctx,
  3418. struct ggml_tensor * a) {
  3419. return ggml_rms_norm_impl(ctx, a, true);
  3420. }
  3421. // ggml_mul_mat
  3422. struct ggml_tensor * ggml_mul_mat(
  3423. struct ggml_context * ctx,
  3424. struct ggml_tensor * a,
  3425. struct ggml_tensor * b) {
  3426. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3427. GGML_ASSERT(!ggml_is_transposed(a));
  3428. bool is_node = false;
  3429. if (a->grad || b->grad) {
  3430. is_node = true;
  3431. }
  3432. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3433. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3434. result->op = GGML_OP_MUL_MAT;
  3435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3436. result->src0 = a;
  3437. result->src1 = b;
  3438. return result;
  3439. }
  3440. // ggml_scale
  3441. struct ggml_tensor * ggml_scale_impl(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * a,
  3444. struct ggml_tensor * b,
  3445. bool inplace) {
  3446. GGML_ASSERT(ggml_is_scalar(b));
  3447. GGML_ASSERT(ggml_is_padded_1d(a));
  3448. bool is_node = false;
  3449. if (!inplace && (a->grad || b->grad)) {
  3450. GGML_ASSERT(false); // TODO: implement backward
  3451. is_node = true;
  3452. }
  3453. // TODO: when implement backward, fix this:
  3454. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3455. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3456. result->op = GGML_OP_SCALE;
  3457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3458. result->src0 = a;
  3459. result->src1 = b;
  3460. return result;
  3461. }
  3462. struct ggml_tensor * ggml_scale(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a,
  3465. struct ggml_tensor * b) {
  3466. return ggml_scale_impl(ctx, a, b, false);
  3467. }
  3468. struct ggml_tensor * ggml_scale_inplace(
  3469. struct ggml_context * ctx,
  3470. struct ggml_tensor * a,
  3471. struct ggml_tensor * b) {
  3472. return ggml_scale_impl(ctx, a, b, true);
  3473. }
  3474. // ggml_cpy
  3475. struct ggml_tensor * ggml_cpy_impl(
  3476. struct ggml_context * ctx,
  3477. struct ggml_tensor * a,
  3478. struct ggml_tensor * b,
  3479. bool inplace) {
  3480. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3481. bool is_node = false;
  3482. if (!inplace && (a->grad || b->grad)) {
  3483. GGML_ASSERT(false); // TODO: implement backward
  3484. is_node = true;
  3485. }
  3486. // make a view of the destination
  3487. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3488. result->op = GGML_OP_CPY;
  3489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3490. result->src0 = a;
  3491. result->src1 = b;
  3492. return result;
  3493. }
  3494. struct ggml_tensor * ggml_cpy(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. struct ggml_tensor * b) {
  3498. return ggml_cpy_impl(ctx, a, b, false);
  3499. }
  3500. struct ggml_tensor * ggml_cpy_inplace(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a,
  3503. struct ggml_tensor * b) {
  3504. return ggml_cpy_impl(ctx, a, b, true);
  3505. }
  3506. // ggml_reshape
  3507. struct ggml_tensor * ggml_reshape(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. struct ggml_tensor * b) {
  3511. GGML_ASSERT(ggml_is_contiguous(a));
  3512. GGML_ASSERT(ggml_is_contiguous(b));
  3513. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3514. bool is_node = false;
  3515. if (a->grad || b->grad) {
  3516. GGML_ASSERT(false); // TODO: implement backward
  3517. is_node = true;
  3518. }
  3519. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3520. result->op = GGML_OP_RESHAPE;
  3521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3522. result->src0 = a;
  3523. result->src1 = NULL;
  3524. return result;
  3525. }
  3526. struct ggml_tensor * ggml_reshape_2d(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a,
  3529. int ne0,
  3530. int ne1) {
  3531. GGML_ASSERT(ggml_is_contiguous(a));
  3532. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3533. bool is_node = false;
  3534. if (a->grad) {
  3535. GGML_ASSERT(false); // TODO: implement backward
  3536. is_node = true;
  3537. }
  3538. const int ne[2] = { ne0, ne1 };
  3539. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3540. result->op = GGML_OP_RESHAPE;
  3541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3542. result->src0 = a;
  3543. result->src1 = NULL;
  3544. return result;
  3545. }
  3546. struct ggml_tensor * ggml_reshape_3d(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. int ne0,
  3550. int ne1,
  3551. int ne2) {
  3552. GGML_ASSERT(ggml_is_contiguous(a));
  3553. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3554. bool is_node = false;
  3555. if (a->grad) {
  3556. GGML_ASSERT(false); // TODO: implement backward
  3557. is_node = true;
  3558. }
  3559. const int ne[3] = { ne0, ne1, ne2 };
  3560. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3561. result->op = GGML_OP_RESHAPE;
  3562. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3563. result->src0 = a;
  3564. result->src1 = NULL;
  3565. return result;
  3566. }
  3567. // ggml_view_1d
  3568. struct ggml_tensor * ggml_view_1d(
  3569. struct ggml_context * ctx,
  3570. struct ggml_tensor * a,
  3571. int ne0,
  3572. size_t offset) {
  3573. if (a->grad) {
  3574. GGML_ASSERT(false); // gradient propagation is not supported
  3575. }
  3576. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3577. result->op = GGML_OP_VIEW;
  3578. result->grad = NULL;
  3579. result->src0 = a;
  3580. result->src1 = NULL; // TODO: maybe store the offset here?
  3581. return result;
  3582. }
  3583. // ggml_view_2d
  3584. struct ggml_tensor * ggml_view_2d(
  3585. struct ggml_context * ctx,
  3586. struct ggml_tensor * a,
  3587. int ne0,
  3588. int ne1,
  3589. size_t nb1,
  3590. size_t offset) {
  3591. if (a->grad) {
  3592. GGML_ASSERT(false); // gradient propagation is not supported
  3593. }
  3594. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3595. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3596. result->nb[1] = nb1;
  3597. result->nb[2] = result->nb[1]*ne1;
  3598. result->nb[3] = result->nb[2];
  3599. result->op = GGML_OP_VIEW;
  3600. result->grad = NULL;
  3601. result->src0 = a;
  3602. result->src1 = NULL; // TODO: maybe store the offset here?
  3603. return result;
  3604. }
  3605. // ggml_permute
  3606. struct ggml_tensor * ggml_permute(
  3607. struct ggml_context * ctx,
  3608. struct ggml_tensor * a,
  3609. int axis0,
  3610. int axis1,
  3611. int axis2,
  3612. int axis3) {
  3613. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3614. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3615. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3616. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3617. GGML_ASSERT(axis0 != axis1);
  3618. GGML_ASSERT(axis0 != axis2);
  3619. GGML_ASSERT(axis0 != axis3);
  3620. GGML_ASSERT(axis1 != axis2);
  3621. GGML_ASSERT(axis1 != axis3);
  3622. GGML_ASSERT(axis2 != axis3);
  3623. bool is_node = false;
  3624. if (a->grad) {
  3625. GGML_ASSERT(false); // TODO: implement backward
  3626. is_node = true;
  3627. }
  3628. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3629. int ne[GGML_MAX_DIMS];
  3630. int nb[GGML_MAX_DIMS];
  3631. ne[axis0] = a->ne[0];
  3632. ne[axis1] = a->ne[1];
  3633. ne[axis2] = a->ne[2];
  3634. ne[axis3] = a->ne[3];
  3635. nb[axis0] = a->nb[0];
  3636. nb[axis1] = a->nb[1];
  3637. nb[axis2] = a->nb[2];
  3638. nb[axis3] = a->nb[3];
  3639. result->ne[0] = ne[0];
  3640. result->ne[1] = ne[1];
  3641. result->ne[2] = ne[2];
  3642. result->ne[3] = ne[3];
  3643. result->nb[0] = nb[0];
  3644. result->nb[1] = nb[1];
  3645. result->nb[2] = nb[2];
  3646. result->nb[3] = nb[3];
  3647. result->op = GGML_OP_PERMUTE;
  3648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3649. result->src0 = a;
  3650. result->src1 = NULL; // TODO: maybe store the permutation here?
  3651. return result;
  3652. }
  3653. // ggml_transpose
  3654. struct ggml_tensor * ggml_transpose(
  3655. struct ggml_context * ctx,
  3656. struct ggml_tensor * a) {
  3657. bool is_node = false;
  3658. if (a->grad) {
  3659. GGML_ASSERT(false); // TODO: implement backward
  3660. is_node = true;
  3661. }
  3662. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3663. result->ne[0] = a->ne[1];
  3664. result->ne[1] = a->ne[0];
  3665. result->nb[0] = a->nb[1];
  3666. result->nb[1] = a->nb[0];
  3667. result->op = GGML_OP_TRANSPOSE;
  3668. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3669. result->src0 = a;
  3670. result->src1 = NULL;
  3671. return result;
  3672. }
  3673. // ggml_get_rows
  3674. struct ggml_tensor * ggml_get_rows(
  3675. struct ggml_context * ctx,
  3676. struct ggml_tensor * a,
  3677. struct ggml_tensor * b) {
  3678. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3679. bool is_node = false;
  3680. if (a->grad || b->grad) {
  3681. GGML_ASSERT(false); // TODO: implement backward
  3682. is_node = true;
  3683. }
  3684. // TODO: implement non F32 return
  3685. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3686. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3687. result->op = GGML_OP_GET_ROWS;
  3688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3689. result->src0 = a;
  3690. result->src1 = b;
  3691. return result;
  3692. }
  3693. // ggml_diag_mask_inf
  3694. struct ggml_tensor * ggml_diag_mask_inf(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. int n_past) {
  3698. bool is_node = false;
  3699. if (a->grad) {
  3700. GGML_ASSERT(false); // TODO: implement backward
  3701. is_node = true;
  3702. }
  3703. // TODO: when implement backward, fix this:
  3704. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3705. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3706. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3707. result->op = GGML_OP_DIAG_MASK_INF;
  3708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3709. result->src0 = a;
  3710. result->src1 = b;
  3711. return result;
  3712. }
  3713. // ggml_soft_max
  3714. struct ggml_tensor * ggml_soft_max(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a) {
  3717. bool is_node = false;
  3718. if (a->grad) {
  3719. GGML_ASSERT(false); // TODO: implement backward
  3720. is_node = true;
  3721. }
  3722. // TODO: when implement backward, fix this:
  3723. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3724. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3725. result->op = GGML_OP_SOFT_MAX;
  3726. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3727. result->src0 = a;
  3728. result->src1 = NULL;
  3729. return result;
  3730. }
  3731. // ggml_rope
  3732. struct ggml_tensor * ggml_rope(
  3733. struct ggml_context * ctx,
  3734. struct ggml_tensor * a,
  3735. int n_past,
  3736. int n_dims,
  3737. int mode) {
  3738. GGML_ASSERT(n_past >= 0);
  3739. bool is_node = false;
  3740. if (a->grad) {
  3741. GGML_ASSERT(false); // TODO: implement backward
  3742. is_node = true;
  3743. }
  3744. // TODO: when implement backward, fix this:
  3745. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3746. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3747. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3748. ((int32_t *) b->data)[0] = n_past;
  3749. ((int32_t *) b->data)[1] = n_dims;
  3750. ((int32_t *) b->data)[2] = mode;
  3751. result->op = GGML_OP_ROPE;
  3752. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3753. result->src0 = a;
  3754. result->src1 = b;
  3755. return result;
  3756. }
  3757. // ggml_conv_1d_1s
  3758. struct ggml_tensor * ggml_conv_1d_1s(
  3759. struct ggml_context * ctx,
  3760. struct ggml_tensor * a,
  3761. struct ggml_tensor * b) {
  3762. GGML_ASSERT(ggml_is_matrix(b));
  3763. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3764. GGML_ASSERT(a->ne[3] == 1);
  3765. bool is_node = false;
  3766. if (a->grad || b->grad) {
  3767. GGML_ASSERT(false); // TODO: implement backward
  3768. is_node = true;
  3769. }
  3770. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3771. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3772. result->op = GGML_OP_CONV_1D_1S;
  3773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3774. result->src0 = a;
  3775. result->src1 = b;
  3776. return result;
  3777. }
  3778. // ggml_conv_1d_2s
  3779. struct ggml_tensor * ggml_conv_1d_2s(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. struct ggml_tensor * b) {
  3783. GGML_ASSERT(ggml_is_matrix(b));
  3784. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3785. GGML_ASSERT(a->ne[3] == 1);
  3786. bool is_node = false;
  3787. if (a->grad || b->grad) {
  3788. GGML_ASSERT(false); // TODO: implement backward
  3789. is_node = true;
  3790. }
  3791. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3792. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3793. result->op = GGML_OP_CONV_1D_2S;
  3794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3795. result->src0 = a;
  3796. result->src1 = b;
  3797. return result;
  3798. }
  3799. // ggml_flash_attn
  3800. struct ggml_tensor * ggml_flash_attn(
  3801. struct ggml_context * ctx,
  3802. struct ggml_tensor * q,
  3803. struct ggml_tensor * k,
  3804. struct ggml_tensor * v,
  3805. bool masked) {
  3806. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3807. // TODO: check if vT can be multiplied by (k*qT)
  3808. bool is_node = false;
  3809. if (q->grad || k->grad || v->grad) {
  3810. GGML_ASSERT(false); // TODO: implement backward
  3811. is_node = true;
  3812. }
  3813. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3814. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3815. result->op = GGML_OP_FLASH_ATTN;
  3816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3817. result->src0 = q;
  3818. result->src1 = k;
  3819. result->opt[0] = v;
  3820. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3821. return result;
  3822. }
  3823. // ggml_flash_ff
  3824. struct ggml_tensor * ggml_flash_ff(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a,
  3827. struct ggml_tensor * b0,
  3828. struct ggml_tensor * b1,
  3829. struct ggml_tensor * c0,
  3830. struct ggml_tensor * c1) {
  3831. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3832. // TODO: more checks
  3833. bool is_node = false;
  3834. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3835. GGML_ASSERT(false); // TODO: implement backward
  3836. is_node = true;
  3837. }
  3838. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3839. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3840. result->op = GGML_OP_FLASH_FF;
  3841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3842. result->src0 = a;
  3843. result->src1 = b0;
  3844. result->opt[0] = b1;
  3845. result->opt[1] = c0;
  3846. result->opt[2] = c1;
  3847. return result;
  3848. }
  3849. ////////////////////////////////////////////////////////////////////////////////
  3850. void ggml_set_param(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * tensor) {
  3853. tensor->is_param = true;
  3854. GGML_ASSERT(tensor->grad == NULL);
  3855. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3856. }
  3857. // ggml_compute_forward_dup
  3858. static void ggml_compute_forward_dup_f16(
  3859. const struct ggml_compute_params * params,
  3860. const struct ggml_tensor * src0,
  3861. struct ggml_tensor * dst) {
  3862. GGML_ASSERT(params->ith == 0);
  3863. GGML_ASSERT(ggml_is_contiguous(dst));
  3864. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3865. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3866. return;
  3867. }
  3868. const int ne00 = src0->ne[0];
  3869. const int ne01 = src0->ne[1];
  3870. const int ne02 = src0->ne[2];
  3871. const int ne03 = src0->ne[3];
  3872. const size_t nb00 = src0->nb[0];
  3873. const size_t nb01 = src0->nb[1];
  3874. const size_t nb02 = src0->nb[2];
  3875. const size_t nb03 = src0->nb[3];
  3876. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3877. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3878. return;
  3879. }
  3880. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3881. if (dst->type == GGML_TYPE_F16) {
  3882. size_t id = 0;
  3883. const size_t rs = ne00*nb00;
  3884. for (int i03 = 0; i03 < ne03; i03++) {
  3885. for (int i02 = 0; i02 < ne02; i02++) {
  3886. for (int i01 = 0; i01 < ne01; i01++) {
  3887. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3888. char * dst_ptr = (char *) dst->data + id*rs;
  3889. memcpy(dst_ptr, src0_ptr, rs);
  3890. id++;
  3891. }
  3892. }
  3893. }
  3894. } else if (dst->type == GGML_TYPE_F32) {
  3895. size_t id = 0;
  3896. float * dst_ptr = (float *) dst->data;
  3897. for (int i03 = 0; i03 < ne03; i03++) {
  3898. for (int i02 = 0; i02 < ne02; i02++) {
  3899. for (int i01 = 0; i01 < ne01; i01++) {
  3900. for (int i00 = 0; i00 < ne00; i00++) {
  3901. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3902. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3903. id++;
  3904. }
  3905. }
  3906. }
  3907. }
  3908. } else {
  3909. GGML_ASSERT(false); // TODO: implement
  3910. }
  3911. } else {
  3912. //printf("%s: this is not optimal - fix me\n", __func__);
  3913. if (dst->type == GGML_TYPE_F32) {
  3914. size_t id = 0;
  3915. float * dst_ptr = (float *) dst->data;
  3916. for (int i03 = 0; i03 < ne03; i03++) {
  3917. for (int i02 = 0; i02 < ne02; i02++) {
  3918. for (int i01 = 0; i01 < ne01; i01++) {
  3919. for (int i00 = 0; i00 < ne00; i00++) {
  3920. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3921. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3922. id++;
  3923. }
  3924. }
  3925. }
  3926. }
  3927. } else if (dst->type == GGML_TYPE_F16) {
  3928. size_t id = 0;
  3929. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3930. for (int i03 = 0; i03 < ne03; i03++) {
  3931. for (int i02 = 0; i02 < ne02; i02++) {
  3932. for (int i01 = 0; i01 < ne01; i01++) {
  3933. for (int i00 = 0; i00 < ne00; i00++) {
  3934. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3935. dst_ptr[id] = *src0_ptr;
  3936. id++;
  3937. }
  3938. }
  3939. }
  3940. }
  3941. } else {
  3942. GGML_ASSERT(false); // TODO: implement
  3943. }
  3944. }
  3945. }
  3946. static void ggml_compute_forward_dup_f32(
  3947. const struct ggml_compute_params * params,
  3948. const struct ggml_tensor * src0,
  3949. struct ggml_tensor * dst) {
  3950. GGML_ASSERT(params->ith == 0);
  3951. GGML_ASSERT(ggml_is_contiguous(dst));
  3952. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3953. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3954. return;
  3955. }
  3956. const int ne00 = src0->ne[0];
  3957. const int ne01 = src0->ne[1];
  3958. const int ne02 = src0->ne[2];
  3959. const int ne03 = src0->ne[3];
  3960. const size_t nb00 = src0->nb[0];
  3961. const size_t nb01 = src0->nb[1];
  3962. const size_t nb02 = src0->nb[2];
  3963. const size_t nb03 = src0->nb[3];
  3964. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3965. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3966. return;
  3967. }
  3968. if (src0->nb[0] == sizeof(float)) {
  3969. if (dst->type == GGML_TYPE_F32) {
  3970. size_t id = 0;
  3971. const size_t rs = ne00*nb00;
  3972. for (int i03 = 0; i03 < ne03; i03++) {
  3973. for (int i02 = 0; i02 < ne02; i02++) {
  3974. for (int i01 = 0; i01 < ne01; i01++) {
  3975. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3976. char * dst_ptr = (char *) dst->data + id*rs;
  3977. memcpy(dst_ptr, src0_ptr, rs);
  3978. id++;
  3979. }
  3980. }
  3981. }
  3982. } else if (dst->type == GGML_TYPE_F16) {
  3983. size_t id = 0;
  3984. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3985. for (int i03 = 0; i03 < ne03; i03++) {
  3986. for (int i02 = 0; i02 < ne02; i02++) {
  3987. for (int i01 = 0; i01 < ne01; i01++) {
  3988. for (int i00 = 0; i00 < ne00; i00++) {
  3989. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3990. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3991. id++;
  3992. }
  3993. }
  3994. }
  3995. }
  3996. } else {
  3997. GGML_ASSERT(false); // TODO: implement
  3998. }
  3999. } else {
  4000. //printf("%s: this is not optimal - fix me\n", __func__);
  4001. if (dst->type == GGML_TYPE_F32) {
  4002. size_t id = 0;
  4003. float * dst_ptr = (float *) dst->data;
  4004. for (int i03 = 0; i03 < ne03; i03++) {
  4005. for (int i02 = 0; i02 < ne02; i02++) {
  4006. for (int i01 = 0; i01 < ne01; i01++) {
  4007. for (int i00 = 0; i00 < ne00; i00++) {
  4008. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4009. dst_ptr[id] = *src0_ptr;
  4010. id++;
  4011. }
  4012. }
  4013. }
  4014. }
  4015. } else if (dst->type == GGML_TYPE_F16) {
  4016. size_t id = 0;
  4017. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4018. for (int i03 = 0; i03 < ne03; i03++) {
  4019. for (int i02 = 0; i02 < ne02; i02++) {
  4020. for (int i01 = 0; i01 < ne01; i01++) {
  4021. for (int i00 = 0; i00 < ne00; i00++) {
  4022. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4023. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4024. id++;
  4025. }
  4026. }
  4027. }
  4028. }
  4029. } else {
  4030. GGML_ASSERT(false); // TODO: implement
  4031. }
  4032. }
  4033. }
  4034. static void ggml_compute_forward_dup(
  4035. const struct ggml_compute_params * params,
  4036. const struct ggml_tensor * src0,
  4037. struct ggml_tensor * dst) {
  4038. switch (src0->type) {
  4039. case GGML_TYPE_F16:
  4040. {
  4041. ggml_compute_forward_dup_f16(params, src0, dst);
  4042. } break;
  4043. case GGML_TYPE_F32:
  4044. {
  4045. ggml_compute_forward_dup_f32(params, src0, dst);
  4046. } break;
  4047. case GGML_TYPE_Q4_0:
  4048. case GGML_TYPE_Q4_1:
  4049. case GGML_TYPE_I8:
  4050. case GGML_TYPE_I16:
  4051. case GGML_TYPE_I32:
  4052. case GGML_TYPE_COUNT:
  4053. {
  4054. GGML_ASSERT(false);
  4055. } break;
  4056. }
  4057. }
  4058. // ggml_compute_forward_add
  4059. static void ggml_compute_forward_add_f32(
  4060. const struct ggml_compute_params * params,
  4061. const struct ggml_tensor * src0,
  4062. const struct ggml_tensor * src1,
  4063. struct ggml_tensor * dst) {
  4064. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4065. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4066. return;
  4067. }
  4068. const int ith = params->ith;
  4069. const int nth = params->nth;
  4070. const int n = ggml_nrows(src0);
  4071. const int nc = src0->ne[0];
  4072. const size_t nb00 = src0->nb[0];
  4073. const size_t nb01 = src0->nb[1];
  4074. const size_t nb10 = src1->nb[0];
  4075. const size_t nb11 = src1->nb[1];
  4076. const size_t nb0 = dst->nb[0];
  4077. const size_t nb1 = dst->nb[1];
  4078. GGML_ASSERT( nb0 == sizeof(float));
  4079. GGML_ASSERT(nb00 == sizeof(float));
  4080. if (nb10 == sizeof(float)) {
  4081. const int j0 = (n/nth)*ith;
  4082. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  4083. for (int j = j0; j < j1; j++) {
  4084. ggml_vec_add_f32(nc,
  4085. (float *) ((char *) dst->data + j*nb1),
  4086. (float *) ((char *) src0->data + j*nb01),
  4087. (float *) ((char *) src1->data + j*nb11));
  4088. }
  4089. } else {
  4090. // src1 is not contiguous
  4091. for (int j = ith; j < n; j += nth) {
  4092. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4093. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4094. for (int i = 0; i < nc; i++) {
  4095. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4096. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4097. }
  4098. }
  4099. }
  4100. }
  4101. static void ggml_compute_forward_add(
  4102. const struct ggml_compute_params * params,
  4103. const struct ggml_tensor * src0,
  4104. const struct ggml_tensor * src1,
  4105. struct ggml_tensor * dst) {
  4106. switch (src0->type) {
  4107. case GGML_TYPE_F32:
  4108. {
  4109. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4110. } break;
  4111. case GGML_TYPE_Q4_0:
  4112. case GGML_TYPE_Q4_1:
  4113. case GGML_TYPE_I8:
  4114. case GGML_TYPE_I16:
  4115. case GGML_TYPE_I32:
  4116. case GGML_TYPE_F16:
  4117. case GGML_TYPE_COUNT:
  4118. {
  4119. GGML_ASSERT(false);
  4120. } break;
  4121. }
  4122. }
  4123. // ggml_compute_forward_sub
  4124. static void ggml_compute_forward_sub_f32(
  4125. const struct ggml_compute_params * params,
  4126. const struct ggml_tensor * src0,
  4127. const struct ggml_tensor * src1,
  4128. struct ggml_tensor * dst) {
  4129. assert(params->ith == 0);
  4130. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4131. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4132. return;
  4133. }
  4134. const int n = ggml_nrows(src0);
  4135. const int nc = src0->ne[0];
  4136. assert( dst->nb[0] == sizeof(float));
  4137. assert(src0->nb[0] == sizeof(float));
  4138. assert(src1->nb[0] == sizeof(float));
  4139. for (int i = 0; i < n; i++) {
  4140. ggml_vec_sub_f32(nc,
  4141. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4142. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4143. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4144. }
  4145. }
  4146. static void ggml_compute_forward_sub(
  4147. const struct ggml_compute_params * params,
  4148. const struct ggml_tensor * src0,
  4149. const struct ggml_tensor * src1,
  4150. struct ggml_tensor * dst) {
  4151. switch (src0->type) {
  4152. case GGML_TYPE_F32:
  4153. {
  4154. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4155. } break;
  4156. case GGML_TYPE_Q4_0:
  4157. case GGML_TYPE_Q4_1:
  4158. case GGML_TYPE_I8:
  4159. case GGML_TYPE_I16:
  4160. case GGML_TYPE_I32:
  4161. case GGML_TYPE_F16:
  4162. case GGML_TYPE_COUNT:
  4163. {
  4164. GGML_ASSERT(false);
  4165. } break;
  4166. }
  4167. }
  4168. // ggml_compute_forward_mul
  4169. static void ggml_compute_forward_mul_f32(
  4170. const struct ggml_compute_params * params,
  4171. const struct ggml_tensor * src0,
  4172. const struct ggml_tensor * src1,
  4173. struct ggml_tensor * dst) {
  4174. assert(params->ith == 0);
  4175. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4176. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4177. return;
  4178. }
  4179. const int n = ggml_nrows(src0);
  4180. const int nc = src0->ne[0];
  4181. assert( dst->nb[0] == sizeof(float));
  4182. assert(src0->nb[0] == sizeof(float));
  4183. assert(src1->nb[0] == sizeof(float));
  4184. for (int i = 0; i < n; i++) {
  4185. ggml_vec_mul_f32(nc,
  4186. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4187. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4188. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4189. }
  4190. }
  4191. static void ggml_compute_forward_mul(
  4192. const struct ggml_compute_params * params,
  4193. const struct ggml_tensor * src0,
  4194. const struct ggml_tensor * src1,
  4195. struct ggml_tensor * dst) {
  4196. switch (src0->type) {
  4197. case GGML_TYPE_F32:
  4198. {
  4199. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4200. } break;
  4201. case GGML_TYPE_Q4_0:
  4202. case GGML_TYPE_Q4_1:
  4203. case GGML_TYPE_I8:
  4204. case GGML_TYPE_I16:
  4205. case GGML_TYPE_I32:
  4206. case GGML_TYPE_F16:
  4207. case GGML_TYPE_COUNT:
  4208. {
  4209. GGML_ASSERT(false);
  4210. } break;
  4211. }
  4212. }
  4213. // ggml_compute_forward_div
  4214. static void ggml_compute_forward_div_f32(
  4215. const struct ggml_compute_params * params,
  4216. const struct ggml_tensor * src0,
  4217. const struct ggml_tensor * src1,
  4218. struct ggml_tensor * dst) {
  4219. assert(params->ith == 0);
  4220. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4221. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4222. return;
  4223. }
  4224. const int n = ggml_nrows(src0);
  4225. const int nc = src0->ne[0];
  4226. assert( dst->nb[0] == sizeof(float));
  4227. assert(src0->nb[0] == sizeof(float));
  4228. assert(src1->nb[0] == sizeof(float));
  4229. for (int i = 0; i < n; i++) {
  4230. ggml_vec_div_f32(nc,
  4231. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4232. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4233. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4234. }
  4235. }
  4236. static void ggml_compute_forward_div(
  4237. const struct ggml_compute_params * params,
  4238. const struct ggml_tensor * src0,
  4239. const struct ggml_tensor * src1,
  4240. struct ggml_tensor * dst) {
  4241. switch (src0->type) {
  4242. case GGML_TYPE_F32:
  4243. {
  4244. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4245. } break;
  4246. case GGML_TYPE_Q4_0:
  4247. case GGML_TYPE_Q4_1:
  4248. case GGML_TYPE_I8:
  4249. case GGML_TYPE_I16:
  4250. case GGML_TYPE_I32:
  4251. case GGML_TYPE_F16:
  4252. case GGML_TYPE_COUNT:
  4253. {
  4254. GGML_ASSERT(false);
  4255. } break;
  4256. }
  4257. }
  4258. // ggml_compute_forward_sqr
  4259. static void ggml_compute_forward_sqr_f32(
  4260. const struct ggml_compute_params * params,
  4261. const struct ggml_tensor * src0,
  4262. struct ggml_tensor * dst) {
  4263. assert(params->ith == 0);
  4264. assert(ggml_are_same_shape(src0, dst));
  4265. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4266. return;
  4267. }
  4268. const int n = ggml_nrows(src0);
  4269. const int nc = src0->ne[0];
  4270. assert( dst->nb[0] == sizeof(float));
  4271. assert(src0->nb[0] == sizeof(float));
  4272. for (int i = 0; i < n; i++) {
  4273. ggml_vec_sqr_f32(nc,
  4274. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4275. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4276. }
  4277. }
  4278. static void ggml_compute_forward_sqr(
  4279. const struct ggml_compute_params * params,
  4280. const struct ggml_tensor * src0,
  4281. struct ggml_tensor * dst) {
  4282. switch (src0->type) {
  4283. case GGML_TYPE_F32:
  4284. {
  4285. ggml_compute_forward_sqr_f32(params, src0, dst);
  4286. } break;
  4287. case GGML_TYPE_Q4_0:
  4288. case GGML_TYPE_Q4_1:
  4289. case GGML_TYPE_I8:
  4290. case GGML_TYPE_I16:
  4291. case GGML_TYPE_I32:
  4292. case GGML_TYPE_F16:
  4293. case GGML_TYPE_COUNT:
  4294. {
  4295. GGML_ASSERT(false);
  4296. } break;
  4297. }
  4298. }
  4299. // ggml_compute_forward_sqrt
  4300. static void ggml_compute_forward_sqrt_f32(
  4301. const struct ggml_compute_params * params,
  4302. const struct ggml_tensor * src0,
  4303. struct ggml_tensor * dst) {
  4304. assert(params->ith == 0);
  4305. assert(ggml_are_same_shape(src0, dst));
  4306. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4307. return;
  4308. }
  4309. const int n = ggml_nrows(src0);
  4310. const int nc = src0->ne[0];
  4311. assert( dst->nb[0] == sizeof(float));
  4312. assert(src0->nb[0] == sizeof(float));
  4313. for (int i = 0; i < n; i++) {
  4314. ggml_vec_sqrt_f32(nc,
  4315. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4316. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4317. }
  4318. }
  4319. static void ggml_compute_forward_sqrt(
  4320. const struct ggml_compute_params * params,
  4321. const struct ggml_tensor * src0,
  4322. struct ggml_tensor * dst) {
  4323. switch (src0->type) {
  4324. case GGML_TYPE_F32:
  4325. {
  4326. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4327. } break;
  4328. case GGML_TYPE_Q4_0:
  4329. case GGML_TYPE_Q4_1:
  4330. case GGML_TYPE_I8:
  4331. case GGML_TYPE_I16:
  4332. case GGML_TYPE_I32:
  4333. case GGML_TYPE_F16:
  4334. case GGML_TYPE_COUNT:
  4335. {
  4336. GGML_ASSERT(false);
  4337. } break;
  4338. }
  4339. }
  4340. // ggml_compute_forward_sum
  4341. static void ggml_compute_forward_sum_f32(
  4342. const struct ggml_compute_params * params,
  4343. const struct ggml_tensor * src0,
  4344. struct ggml_tensor * dst) {
  4345. assert(params->ith == 0);
  4346. assert(ggml_is_scalar(dst));
  4347. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4348. return;
  4349. }
  4350. assert(ggml_is_scalar(dst));
  4351. assert(src0->nb[0] == sizeof(float));
  4352. const int ne00 = src0->ne[0];
  4353. const int ne01 = src0->ne[1];
  4354. const int ne02 = src0->ne[2];
  4355. const int ne03 = src0->ne[3];
  4356. const size_t nb01 = src0->nb[1];
  4357. const size_t nb02 = src0->nb[2];
  4358. const size_t nb03 = src0->nb[3];
  4359. for (int i03 = 0; i03 < ne03; i03++) {
  4360. for (int i02 = 0; i02 < ne02; i02++) {
  4361. for (int i01 = 0; i01 < ne01; i01++) {
  4362. ggml_vec_sum_f32(ne00,
  4363. (float *) (dst->data),
  4364. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4365. }
  4366. }
  4367. }
  4368. }
  4369. static void ggml_compute_forward_sum(
  4370. const struct ggml_compute_params * params,
  4371. const struct ggml_tensor * src0,
  4372. struct ggml_tensor * dst) {
  4373. switch (src0->type) {
  4374. case GGML_TYPE_F32:
  4375. {
  4376. ggml_compute_forward_sum_f32(params, src0, dst);
  4377. } break;
  4378. case GGML_TYPE_Q4_0:
  4379. case GGML_TYPE_Q4_1:
  4380. case GGML_TYPE_I8:
  4381. case GGML_TYPE_I16:
  4382. case GGML_TYPE_I32:
  4383. case GGML_TYPE_F16:
  4384. case GGML_TYPE_COUNT:
  4385. {
  4386. GGML_ASSERT(false);
  4387. } break;
  4388. }
  4389. }
  4390. // ggml_compute_forward_mean
  4391. static void ggml_compute_forward_mean_f32(
  4392. const struct ggml_compute_params * params,
  4393. const struct ggml_tensor * src0,
  4394. struct ggml_tensor * dst) {
  4395. assert(params->ith == 0);
  4396. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4397. return;
  4398. }
  4399. assert(src0->nb[0] == sizeof(float));
  4400. const int ne00 = src0->ne[0];
  4401. const int ne01 = src0->ne[1];
  4402. const int ne02 = src0->ne[2];
  4403. const int ne03 = src0->ne[3];
  4404. const size_t nb01 = src0->nb[1];
  4405. const size_t nb02 = src0->nb[2];
  4406. const size_t nb03 = src0->nb[3];
  4407. const int ne0 = dst->ne[0];
  4408. const int ne1 = dst->ne[1];
  4409. const int ne2 = dst->ne[2];
  4410. const int ne3 = dst->ne[3];
  4411. assert(ne0 == 1);
  4412. assert(ne1 == ne01);
  4413. assert(ne2 == ne02);
  4414. assert(ne3 == ne03);
  4415. UNUSED(ne0);
  4416. UNUSED(ne1);
  4417. UNUSED(ne2);
  4418. UNUSED(ne3);
  4419. const size_t nb1 = dst->nb[1];
  4420. const size_t nb2 = dst->nb[2];
  4421. const size_t nb3 = dst->nb[3];
  4422. for (int i03 = 0; i03 < ne03; i03++) {
  4423. for (int i02 = 0; i02 < ne02; i02++) {
  4424. for (int i01 = 0; i01 < ne01; i01++) {
  4425. ggml_vec_sum_f32(ne00,
  4426. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4427. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4428. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4429. }
  4430. }
  4431. }
  4432. }
  4433. static void ggml_compute_forward_mean(
  4434. const struct ggml_compute_params * params,
  4435. const struct ggml_tensor * src0,
  4436. struct ggml_tensor * dst) {
  4437. switch (src0->type) {
  4438. case GGML_TYPE_F32:
  4439. {
  4440. ggml_compute_forward_mean_f32(params, src0, dst);
  4441. } break;
  4442. case GGML_TYPE_Q4_0:
  4443. case GGML_TYPE_Q4_1:
  4444. case GGML_TYPE_I8:
  4445. case GGML_TYPE_I16:
  4446. case GGML_TYPE_I32:
  4447. case GGML_TYPE_F16:
  4448. case GGML_TYPE_COUNT:
  4449. {
  4450. GGML_ASSERT(false);
  4451. } break;
  4452. }
  4453. }
  4454. // ggml_compute_forward_repeat
  4455. static void ggml_compute_forward_repeat_f32(
  4456. const struct ggml_compute_params * params,
  4457. const struct ggml_tensor * src0,
  4458. struct ggml_tensor * dst) {
  4459. assert(params->ith == 0);
  4460. assert(ggml_can_repeat(src0, dst));
  4461. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4462. return;
  4463. }
  4464. // TODO: implement support for rank > 2 tensors
  4465. assert(src0->ne[2] == 1);
  4466. assert(src0->ne[3] == 1);
  4467. assert( dst->ne[2] == 1);
  4468. assert( dst->ne[3] == 1);
  4469. const int nc = dst->ne[0];
  4470. const int nr = dst->ne[1];
  4471. const int nc0 = src0->ne[0];
  4472. const int nr0 = src0->ne[1];
  4473. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4474. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4475. // TODO: support for transposed / permuted tensors
  4476. assert( dst->nb[0] == sizeof(float));
  4477. assert(src0->nb[0] == sizeof(float));
  4478. // TODO: maybe this is not optimal?
  4479. for (int i = 0; i < nrr; i++) {
  4480. for (int j = 0; j < ncr; j++) {
  4481. for (int k = 0; k < nr0; k++) {
  4482. ggml_vec_cpy_f32(nc0,
  4483. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4484. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4485. }
  4486. }
  4487. }
  4488. }
  4489. static void ggml_compute_forward_repeat(
  4490. const struct ggml_compute_params * params,
  4491. const struct ggml_tensor * src0,
  4492. struct ggml_tensor * dst) {
  4493. switch (src0->type) {
  4494. case GGML_TYPE_F32:
  4495. {
  4496. ggml_compute_forward_repeat_f32(params, src0, dst);
  4497. } break;
  4498. case GGML_TYPE_Q4_0:
  4499. case GGML_TYPE_Q4_1:
  4500. case GGML_TYPE_I8:
  4501. case GGML_TYPE_I16:
  4502. case GGML_TYPE_I32:
  4503. case GGML_TYPE_F16:
  4504. case GGML_TYPE_COUNT:
  4505. {
  4506. GGML_ASSERT(false);
  4507. } break;
  4508. }
  4509. }
  4510. // ggml_compute_forward_abs
  4511. static void ggml_compute_forward_abs_f32(
  4512. const struct ggml_compute_params * params,
  4513. const struct ggml_tensor * src0,
  4514. struct ggml_tensor * dst) {
  4515. assert(params->ith == 0);
  4516. assert(ggml_are_same_shape(src0, dst));
  4517. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4518. return;
  4519. }
  4520. const int n = ggml_nrows(src0);
  4521. const int nc = src0->ne[0];
  4522. assert(dst->nb[0] == sizeof(float));
  4523. assert(src0->nb[0] == sizeof(float));
  4524. for (int i = 0; i < n; i++) {
  4525. ggml_vec_abs_f32(nc,
  4526. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4527. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4528. }
  4529. }
  4530. static void ggml_compute_forward_abs(
  4531. const struct ggml_compute_params * params,
  4532. const struct ggml_tensor * src0,
  4533. struct ggml_tensor * dst) {
  4534. switch (src0->type) {
  4535. case GGML_TYPE_F32:
  4536. {
  4537. ggml_compute_forward_abs_f32(params, src0, dst);
  4538. } break;
  4539. case GGML_TYPE_Q4_0:
  4540. case GGML_TYPE_Q4_1:
  4541. case GGML_TYPE_I8:
  4542. case GGML_TYPE_I16:
  4543. case GGML_TYPE_I32:
  4544. case GGML_TYPE_F16:
  4545. case GGML_TYPE_COUNT:
  4546. {
  4547. GGML_ASSERT(false);
  4548. } break;
  4549. }
  4550. }
  4551. // ggml_compute_forward_sgn
  4552. static void ggml_compute_forward_sgn_f32(
  4553. const struct ggml_compute_params * params,
  4554. const struct ggml_tensor * src0,
  4555. struct ggml_tensor * dst) {
  4556. assert(params->ith == 0);
  4557. assert(ggml_are_same_shape(src0, dst));
  4558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4559. return;
  4560. }
  4561. const int n = ggml_nrows(src0);
  4562. const int nc = src0->ne[0];
  4563. assert(dst->nb[0] == sizeof(float));
  4564. assert(src0->nb[0] == sizeof(float));
  4565. for (int i = 0; i < n; i++) {
  4566. ggml_vec_sgn_f32(nc,
  4567. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4568. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4569. }
  4570. }
  4571. static void ggml_compute_forward_sgn(
  4572. const struct ggml_compute_params * params,
  4573. const struct ggml_tensor * src0,
  4574. struct ggml_tensor * dst) {
  4575. switch (src0->type) {
  4576. case GGML_TYPE_F32:
  4577. {
  4578. ggml_compute_forward_sgn_f32(params, src0, dst);
  4579. } break;
  4580. case GGML_TYPE_Q4_0:
  4581. case GGML_TYPE_Q4_1:
  4582. case GGML_TYPE_I8:
  4583. case GGML_TYPE_I16:
  4584. case GGML_TYPE_I32:
  4585. case GGML_TYPE_F16:
  4586. case GGML_TYPE_COUNT:
  4587. {
  4588. GGML_ASSERT(false);
  4589. } break;
  4590. }
  4591. }
  4592. // ggml_compute_forward_neg
  4593. static void ggml_compute_forward_neg_f32(
  4594. const struct ggml_compute_params * params,
  4595. const struct ggml_tensor * src0,
  4596. struct ggml_tensor * dst) {
  4597. assert(params->ith == 0);
  4598. assert(ggml_are_same_shape(src0, dst));
  4599. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4600. return;
  4601. }
  4602. const int n = ggml_nrows(src0);
  4603. const int nc = src0->ne[0];
  4604. assert(dst->nb[0] == sizeof(float));
  4605. assert(src0->nb[0] == sizeof(float));
  4606. for (int i = 0; i < n; i++) {
  4607. ggml_vec_neg_f32(nc,
  4608. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4609. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4610. }
  4611. }
  4612. static void ggml_compute_forward_neg(
  4613. const struct ggml_compute_params * params,
  4614. const struct ggml_tensor * src0,
  4615. struct ggml_tensor * dst) {
  4616. switch (src0->type) {
  4617. case GGML_TYPE_F32:
  4618. {
  4619. ggml_compute_forward_neg_f32(params, src0, dst);
  4620. } break;
  4621. case GGML_TYPE_Q4_0:
  4622. case GGML_TYPE_Q4_1:
  4623. case GGML_TYPE_I8:
  4624. case GGML_TYPE_I16:
  4625. case GGML_TYPE_I32:
  4626. case GGML_TYPE_F16:
  4627. case GGML_TYPE_COUNT:
  4628. {
  4629. GGML_ASSERT(false);
  4630. } break;
  4631. }
  4632. }
  4633. // ggml_compute_forward_step
  4634. static void ggml_compute_forward_step_f32(
  4635. const struct ggml_compute_params * params,
  4636. const struct ggml_tensor * src0,
  4637. struct ggml_tensor * dst) {
  4638. assert(params->ith == 0);
  4639. assert(ggml_are_same_shape(src0, dst));
  4640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4641. return;
  4642. }
  4643. const int n = ggml_nrows(src0);
  4644. const int nc = src0->ne[0];
  4645. assert(dst->nb[0] == sizeof(float));
  4646. assert(src0->nb[0] == sizeof(float));
  4647. for (int i = 0; i < n; i++) {
  4648. ggml_vec_step_f32(nc,
  4649. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4650. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4651. }
  4652. }
  4653. static void ggml_compute_forward_step(
  4654. const struct ggml_compute_params * params,
  4655. const struct ggml_tensor * src0,
  4656. struct ggml_tensor * dst) {
  4657. switch (src0->type) {
  4658. case GGML_TYPE_F32:
  4659. {
  4660. ggml_compute_forward_step_f32(params, src0, dst);
  4661. } break;
  4662. case GGML_TYPE_Q4_0:
  4663. case GGML_TYPE_Q4_1:
  4664. case GGML_TYPE_I8:
  4665. case GGML_TYPE_I16:
  4666. case GGML_TYPE_I32:
  4667. case GGML_TYPE_F16:
  4668. case GGML_TYPE_COUNT:
  4669. {
  4670. GGML_ASSERT(false);
  4671. } break;
  4672. }
  4673. }
  4674. // ggml_compute_forward_relu
  4675. static void ggml_compute_forward_relu_f32(
  4676. const struct ggml_compute_params * params,
  4677. const struct ggml_tensor * src0,
  4678. struct ggml_tensor * dst) {
  4679. assert(params->ith == 0);
  4680. assert(ggml_are_same_shape(src0, dst));
  4681. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4682. return;
  4683. }
  4684. const int n = ggml_nrows(src0);
  4685. const int nc = src0->ne[0];
  4686. assert(dst->nb[0] == sizeof(float));
  4687. assert(src0->nb[0] == sizeof(float));
  4688. for (int i = 0; i < n; i++) {
  4689. ggml_vec_relu_f32(nc,
  4690. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4691. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4692. }
  4693. }
  4694. static void ggml_compute_forward_relu(
  4695. const struct ggml_compute_params * params,
  4696. const struct ggml_tensor * src0,
  4697. struct ggml_tensor * dst) {
  4698. switch (src0->type) {
  4699. case GGML_TYPE_F32:
  4700. {
  4701. ggml_compute_forward_relu_f32(params, src0, dst);
  4702. } break;
  4703. case GGML_TYPE_Q4_0:
  4704. case GGML_TYPE_Q4_1:
  4705. case GGML_TYPE_I8:
  4706. case GGML_TYPE_I16:
  4707. case GGML_TYPE_I32:
  4708. case GGML_TYPE_F16:
  4709. case GGML_TYPE_COUNT:
  4710. {
  4711. GGML_ASSERT(false);
  4712. } break;
  4713. }
  4714. }
  4715. // ggml_compute_forward_gelu
  4716. static void ggml_compute_forward_gelu_f32(
  4717. const struct ggml_compute_params * params,
  4718. const struct ggml_tensor * src0,
  4719. struct ggml_tensor * dst) {
  4720. GGML_ASSERT(ggml_is_contiguous(src0));
  4721. GGML_ASSERT(ggml_is_contiguous(dst));
  4722. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4723. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4724. return;
  4725. }
  4726. const int ith = params->ith;
  4727. const int nth = params->nth;
  4728. const int nc = src0->ne[0];
  4729. const int nr = ggml_nrows(src0);
  4730. // rows per thread
  4731. const int dr = (nr + nth - 1)/nth;
  4732. // row range for this thread
  4733. const int ir0 = dr*ith;
  4734. const int ir1 = MIN(ir0 + dr, nr);
  4735. for (int i1 = ir0; i1 < ir1; i1++) {
  4736. ggml_vec_gelu_f32(nc,
  4737. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4738. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4739. #ifndef NDEBUG
  4740. for (int k = 0; k < nc; k++) {
  4741. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4742. UNUSED(x);
  4743. assert(!isnan(x));
  4744. assert(!isinf(x));
  4745. }
  4746. #endif
  4747. }
  4748. }
  4749. static void ggml_compute_forward_gelu(
  4750. const struct ggml_compute_params * params,
  4751. const struct ggml_tensor * src0,
  4752. struct ggml_tensor * dst) {
  4753. switch (src0->type) {
  4754. case GGML_TYPE_F32:
  4755. {
  4756. ggml_compute_forward_gelu_f32(params, src0, dst);
  4757. } break;
  4758. case GGML_TYPE_Q4_0:
  4759. case GGML_TYPE_Q4_1:
  4760. case GGML_TYPE_I8:
  4761. case GGML_TYPE_I16:
  4762. case GGML_TYPE_I32:
  4763. case GGML_TYPE_F16:
  4764. case GGML_TYPE_COUNT:
  4765. {
  4766. GGML_ASSERT(false);
  4767. } break;
  4768. }
  4769. //printf("XXXXXXXX gelu\n");
  4770. }
  4771. // ggml_compute_forward_silu
  4772. static void ggml_compute_forward_silu_f32(
  4773. const struct ggml_compute_params * params,
  4774. const struct ggml_tensor * src0,
  4775. struct ggml_tensor * dst) {
  4776. GGML_ASSERT(ggml_is_contiguous(src0));
  4777. GGML_ASSERT(ggml_is_contiguous(dst));
  4778. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4779. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4780. return;
  4781. }
  4782. const int ith = params->ith;
  4783. const int nth = params->nth;
  4784. const int nc = src0->ne[0];
  4785. const int nr = ggml_nrows(src0);
  4786. // rows per thread
  4787. const int dr = (nr + nth - 1)/nth;
  4788. // row range for this thread
  4789. const int ir0 = dr*ith;
  4790. const int ir1 = MIN(ir0 + dr, nr);
  4791. for (int i1 = ir0; i1 < ir1; i1++) {
  4792. ggml_vec_silu_f32(nc,
  4793. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4794. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4795. #ifndef NDEBUG
  4796. for (int k = 0; k < nc; k++) {
  4797. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4798. UNUSED(x);
  4799. assert(!isnan(x));
  4800. assert(!isinf(x));
  4801. }
  4802. #endif
  4803. }
  4804. }
  4805. static void ggml_compute_forward_silu(
  4806. const struct ggml_compute_params * params,
  4807. const struct ggml_tensor * src0,
  4808. struct ggml_tensor * dst) {
  4809. switch (src0->type) {
  4810. case GGML_TYPE_F32:
  4811. {
  4812. ggml_compute_forward_silu_f32(params, src0, dst);
  4813. } break;
  4814. case GGML_TYPE_Q4_0:
  4815. case GGML_TYPE_Q4_1:
  4816. case GGML_TYPE_I8:
  4817. case GGML_TYPE_I16:
  4818. case GGML_TYPE_I32:
  4819. case GGML_TYPE_F16:
  4820. case GGML_TYPE_COUNT:
  4821. {
  4822. GGML_ASSERT(false);
  4823. } break;
  4824. }
  4825. }
  4826. // ggml_compute_forward_norm
  4827. static void ggml_compute_forward_norm_f32(
  4828. const struct ggml_compute_params * params,
  4829. const struct ggml_tensor * src0,
  4830. struct ggml_tensor * dst) {
  4831. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4833. return;
  4834. }
  4835. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4836. const int ith = params->ith;
  4837. const int nth = params->nth;
  4838. const int ne00 = src0->ne[0];
  4839. const int ne01 = src0->ne[1];
  4840. const int ne02 = src0->ne[2];
  4841. const int ne03 = src0->ne[3];
  4842. const size_t nb01 = src0->nb[1];
  4843. const size_t nb02 = src0->nb[2];
  4844. const size_t nb03 = src0->nb[3];
  4845. const size_t nb1 = dst->nb[1];
  4846. const size_t nb2 = dst->nb[2];
  4847. const size_t nb3 = dst->nb[3];
  4848. const float eps = 1e-5f; // TODO: make this a parameter
  4849. // TODO: optimize
  4850. for (int i03 = 0; i03 < ne03; i03++) {
  4851. for (int i02 = 0; i02 < ne02; i02++) {
  4852. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4853. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4854. ggml_float sum = 0.0;
  4855. for (int i00 = 0; i00 < ne00; i00++) {
  4856. sum += (ggml_float)x[i00];
  4857. }
  4858. float mean = sum/ne00;
  4859. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4860. ggml_float sum2 = 0.0;
  4861. for (int i00 = 0; i00 < ne00; i00++) {
  4862. float v = x[i00] - mean;
  4863. y[i00] = v;
  4864. sum2 += (ggml_float)(v*v);
  4865. }
  4866. float variance = sum2/ne00;
  4867. const float scale = 1.0f/sqrtf(variance + eps);
  4868. ggml_vec_scale_f32(ne00, y, scale);
  4869. }
  4870. }
  4871. }
  4872. }
  4873. static void ggml_compute_forward_norm(
  4874. const struct ggml_compute_params * params,
  4875. const struct ggml_tensor * src0,
  4876. struct ggml_tensor * dst) {
  4877. switch (src0->type) {
  4878. case GGML_TYPE_F32:
  4879. {
  4880. ggml_compute_forward_norm_f32(params, src0, dst);
  4881. } break;
  4882. case GGML_TYPE_Q4_0:
  4883. case GGML_TYPE_Q4_1:
  4884. case GGML_TYPE_I8:
  4885. case GGML_TYPE_I16:
  4886. case GGML_TYPE_I32:
  4887. case GGML_TYPE_F16:
  4888. case GGML_TYPE_COUNT:
  4889. {
  4890. GGML_ASSERT(false);
  4891. } break;
  4892. }
  4893. }
  4894. static void ggml_compute_forward_rms_norm_f32(
  4895. const struct ggml_compute_params * params,
  4896. const struct ggml_tensor * src0,
  4897. struct ggml_tensor * dst) {
  4898. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4900. return;
  4901. }
  4902. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4903. const int ith = params->ith;
  4904. const int nth = params->nth;
  4905. const int ne00 = src0->ne[0];
  4906. const int ne01 = src0->ne[1];
  4907. const int ne02 = src0->ne[2];
  4908. const int ne03 = src0->ne[3];
  4909. const size_t nb01 = src0->nb[1];
  4910. const size_t nb02 = src0->nb[2];
  4911. const size_t nb03 = src0->nb[3];
  4912. const size_t nb1 = dst->nb[1];
  4913. const size_t nb2 = dst->nb[2];
  4914. const size_t nb3 = dst->nb[3];
  4915. const float eps = 1e-6f; // TODO: make this a parameter
  4916. // TODO: optimize
  4917. for (int i03 = 0; i03 < ne03; i03++) {
  4918. for (int i02 = 0; i02 < ne02; i02++) {
  4919. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4920. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4921. ggml_float sum = 0.0;
  4922. for (int i00 = 0; i00 < ne00; i00++) {
  4923. sum += (ggml_float)(x[i00] * x[i00]);
  4924. }
  4925. float mean = sum/ne00;
  4926. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4927. memcpy(y, x, ne00 * sizeof(float));
  4928. // for (int i00 = 0; i00 < ne00; i00++) {
  4929. // y[i00] = x[i00];
  4930. // }
  4931. const float scale = 1.0f/sqrtf(mean + eps);
  4932. ggml_vec_scale_f32(ne00, y, scale);
  4933. }
  4934. }
  4935. }
  4936. }
  4937. static void ggml_compute_forward_rms_norm(
  4938. const struct ggml_compute_params * params,
  4939. const struct ggml_tensor * src0,
  4940. struct ggml_tensor * dst) {
  4941. switch (src0->type) {
  4942. case GGML_TYPE_F32:
  4943. {
  4944. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4945. } break;
  4946. case GGML_TYPE_Q4_0:
  4947. case GGML_TYPE_Q4_1:
  4948. case GGML_TYPE_I8:
  4949. case GGML_TYPE_I16:
  4950. case GGML_TYPE_I32:
  4951. case GGML_TYPE_F16:
  4952. case GGML_TYPE_COUNT:
  4953. {
  4954. GGML_ASSERT(false);
  4955. } break;
  4956. }
  4957. }
  4958. // ggml_compute_forward_mul_mat
  4959. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4960. // helper function to determine if it is better to use BLAS or not
  4961. // for large matrices, BLAS is faster
  4962. static bool ggml_compute_forward_mul_mat_use_blas(
  4963. const struct ggml_tensor * src0,
  4964. const struct ggml_tensor * src1,
  4965. struct ggml_tensor * dst) {
  4966. //const int ne00 = src0->ne[0];
  4967. //const int ne01 = src0->ne[1];
  4968. const int ne10 = src1->ne[0];
  4969. const int ne0 = dst->ne[0];
  4970. const int ne1 = dst->ne[1];
  4971. // TODO: find the optimal values for these
  4972. if (ggml_is_contiguous(src0) &&
  4973. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4974. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4975. return true;
  4976. }
  4977. return false;
  4978. }
  4979. #endif
  4980. static void ggml_compute_forward_mul_mat_f32(
  4981. const struct ggml_compute_params * params,
  4982. const struct ggml_tensor * src0,
  4983. const struct ggml_tensor * src1,
  4984. struct ggml_tensor * dst) {
  4985. int64_t t0 = ggml_perf_time_us();
  4986. UNUSED(t0);
  4987. const int ne00 = src0->ne[0];
  4988. const int ne01 = src0->ne[1];
  4989. const int ne02 = src0->ne[2];
  4990. const int ne03 = src0->ne[3];
  4991. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4992. const int ne10 = src1->ne[0];
  4993. #endif
  4994. const int ne11 = src1->ne[1];
  4995. #ifndef NDEBUG
  4996. const int ne12 = src1->ne[2];
  4997. const int ne13 = src1->ne[3];
  4998. const int ne0 = dst->ne[0];
  4999. const int ne1 = dst->ne[1];
  5000. const int ne2 = dst->ne[2];
  5001. const int ne3 = dst->ne[3];
  5002. const int nb00 = src0->nb[0];
  5003. #endif
  5004. const int nb01 = src0->nb[1];
  5005. const int nb02 = src0->nb[2];
  5006. const int nb03 = src0->nb[3];
  5007. #ifndef NDEBUG
  5008. const int nb10 = src1->nb[0];
  5009. #endif
  5010. const int nb11 = src1->nb[1];
  5011. const int nb12 = src1->nb[2];
  5012. const int nb13 = src1->nb[3];
  5013. const int nb0 = dst->nb[0];
  5014. const int nb1 = dst->nb[1];
  5015. const int nb2 = dst->nb[2];
  5016. const int nb3 = dst->nb[3];
  5017. const int ith = params->ith;
  5018. const int nth = params->nth;
  5019. assert(ne02 == ne12);
  5020. assert(ne03 == ne13);
  5021. assert(ne2 == ne12);
  5022. assert(ne3 == ne13);
  5023. // we don't support permuted src0 or src1
  5024. assert(nb00 == sizeof(float));
  5025. assert(nb10 == sizeof(float));
  5026. // dst cannot be transposed or permuted
  5027. assert(nb0 == sizeof(float));
  5028. assert(nb0 <= nb1);
  5029. assert(nb1 <= nb2);
  5030. assert(nb2 <= nb3);
  5031. assert(ne0 == ne01);
  5032. assert(ne1 == ne11);
  5033. assert(ne2 == ne02);
  5034. assert(ne3 == ne03);
  5035. // nb01 >= nb00 - src0 is not transposed
  5036. // compute by src0 rows
  5037. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5038. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5039. if (params->ith != 0) {
  5040. return;
  5041. }
  5042. if (params->type == GGML_TASK_INIT) {
  5043. return;
  5044. }
  5045. if (params->type == GGML_TASK_FINALIZE) {
  5046. return;
  5047. }
  5048. for (int i03 = 0; i03 < ne03; i03++) {
  5049. for (int i02 = 0; i02 < ne02; i02++) {
  5050. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5051. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5052. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5053. // zT = y * xT
  5054. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5055. ne11, ne01, ne10,
  5056. 1.0f, y, ne10,
  5057. x, ne10,
  5058. 0.0f, d, ne01);
  5059. }
  5060. }
  5061. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5062. return;
  5063. }
  5064. #endif
  5065. if (params->type == GGML_TASK_INIT) {
  5066. return;
  5067. }
  5068. if (params->type == GGML_TASK_FINALIZE) {
  5069. return;
  5070. }
  5071. // parallelize by src0 rows using ggml_vec_dot_f32
  5072. // total rows in src0
  5073. const int nr = ne01*ne02*ne03;
  5074. // rows per thread
  5075. const int dr = (nr + nth - 1)/nth;
  5076. // row range for this thread
  5077. const int ir0 = dr*ith;
  5078. const int ir1 = MIN(ir0 + dr, nr);
  5079. for (int ir = ir0; ir < ir1; ++ir) {
  5080. // src0 indices
  5081. const int i03 = ir/(ne02*ne01);
  5082. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5083. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5084. for (int ic = 0; ic < ne11; ++ic) {
  5085. // src1 indices
  5086. const int i13 = i03;
  5087. const int i12 = i02;
  5088. const int i11 = ic;
  5089. // dst indices
  5090. const int i0 = i01;
  5091. const int i1 = i11;
  5092. const int i2 = i02;
  5093. const int i3 = i03;
  5094. ggml_vec_dot_f32(ne00,
  5095. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5096. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5097. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5098. }
  5099. }
  5100. //int64_t t1 = ggml_perf_time_us();
  5101. //static int64_t acc = 0;
  5102. //acc += t1 - t0;
  5103. //if (t1 - t0 > 10) {
  5104. // printf("\n");
  5105. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5106. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5107. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5108. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5109. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5110. //}
  5111. }
  5112. static void ggml_compute_forward_mul_mat_f16_f32(
  5113. const struct ggml_compute_params * params,
  5114. const struct ggml_tensor * src0,
  5115. const struct ggml_tensor * src1,
  5116. struct ggml_tensor * dst) {
  5117. int64_t t0 = ggml_perf_time_us();
  5118. UNUSED(t0);
  5119. const int ne00 = src0->ne[0];
  5120. const int ne01 = src0->ne[1];
  5121. const int ne02 = src0->ne[2];
  5122. const int ne03 = src0->ne[3];
  5123. const int ne10 = src1->ne[0];
  5124. const int ne11 = src1->ne[1];
  5125. const int ne12 = src1->ne[2];
  5126. const int ne13 = src1->ne[3];
  5127. const int ne0 = dst->ne[0];
  5128. const int ne1 = dst->ne[1];
  5129. const int ne2 = dst->ne[2];
  5130. const int ne3 = dst->ne[3];
  5131. //const int ne = ne0*ne1*ne2*ne3;
  5132. const int nb00 = src0->nb[0];
  5133. const int nb01 = src0->nb[1];
  5134. const int nb02 = src0->nb[2];
  5135. const int nb03 = src0->nb[3];
  5136. const int nb10 = src1->nb[0];
  5137. const int nb11 = src1->nb[1];
  5138. const int nb12 = src1->nb[2];
  5139. const int nb13 = src1->nb[3];
  5140. const int nb0 = dst->nb[0];
  5141. const int nb1 = dst->nb[1];
  5142. const int nb2 = dst->nb[2];
  5143. const int nb3 = dst->nb[3];
  5144. const int ith = params->ith;
  5145. const int nth = params->nth;
  5146. GGML_ASSERT(ne02 == ne12);
  5147. GGML_ASSERT(ne03 == ne13);
  5148. GGML_ASSERT(ne2 == ne12);
  5149. GGML_ASSERT(ne3 == ne13);
  5150. // TODO: we don't support permuted src0
  5151. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5152. // dst cannot be transposed or permuted
  5153. GGML_ASSERT(nb0 == sizeof(float));
  5154. GGML_ASSERT(nb0 <= nb1);
  5155. GGML_ASSERT(nb1 <= nb2);
  5156. GGML_ASSERT(nb2 <= nb3);
  5157. GGML_ASSERT(ne0 == ne01);
  5158. GGML_ASSERT(ne1 == ne11);
  5159. GGML_ASSERT(ne2 == ne02);
  5160. GGML_ASSERT(ne3 == ne03);
  5161. // nb01 >= nb00 - src0 is not transposed
  5162. // compute by src0 rows
  5163. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5164. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5165. GGML_ASSERT(nb10 == sizeof(float));
  5166. if (params->ith != 0) {
  5167. return;
  5168. }
  5169. if (params->type == GGML_TASK_INIT) {
  5170. return;
  5171. }
  5172. if (params->type == GGML_TASK_FINALIZE) {
  5173. return;
  5174. }
  5175. float * const wdata = params->wdata;
  5176. for (int i03 = 0; i03 < ne03; i03++) {
  5177. for (int i02 = 0; i02 < ne02; i02++) {
  5178. {
  5179. size_t id = 0;
  5180. for (int i01 = 0; i01 < ne01; ++i01) {
  5181. for (int i00 = 0; i00 < ne00; ++i00) {
  5182. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5183. }
  5184. }
  5185. }
  5186. const float * x = wdata;
  5187. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5188. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5189. // zT = y * xT
  5190. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5191. ne11, ne01, ne10,
  5192. 1.0f, y, ne10,
  5193. x, ne10,
  5194. 0.0f, d, ne01);
  5195. }
  5196. }
  5197. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5198. return;
  5199. }
  5200. #endif
  5201. if (params->type == GGML_TASK_INIT) {
  5202. ggml_fp16_t * const wdata = params->wdata;
  5203. size_t id = 0;
  5204. for (int i13 = 0; i13 < ne13; ++i13) {
  5205. for (int i12 = 0; i12 < ne12; ++i12) {
  5206. for (int i11 = 0; i11 < ne11; ++i11) {
  5207. for (int i10 = 0; i10 < ne10; ++i10) {
  5208. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5209. }
  5210. }
  5211. }
  5212. }
  5213. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5214. return;
  5215. }
  5216. if (params->type == GGML_TASK_FINALIZE) {
  5217. return;
  5218. }
  5219. // fp16 -> half the size, so divide by 2
  5220. // TODO: do not support transposed src1
  5221. assert(nb10/2 == sizeof(ggml_fp16_t));
  5222. // parallelize by src0 rows using ggml_vec_dot_f16
  5223. // total rows in src0
  5224. const int nr = ne01*ne02*ne03;
  5225. // rows per thread
  5226. const int dr = (nr + nth - 1)/nth;
  5227. // row range for this thread
  5228. const int ir0 = dr*ith;
  5229. const int ir1 = MIN(ir0 + dr, nr);
  5230. ggml_fp16_t * wdata = params->wdata;
  5231. for (int ir = ir0; ir < ir1; ++ir) {
  5232. // src0 indices
  5233. const int i03 = ir/(ne02*ne01);
  5234. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5235. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5236. const int i13 = i03;
  5237. const int i12 = i02;
  5238. const int i0 = i01;
  5239. const int i2 = i02;
  5240. const int i3 = i03;
  5241. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5242. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5243. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5244. for (int ic = 0; ic < ne11; ++ic) {
  5245. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5246. }
  5247. }
  5248. //int64_t t1 = ggml_time_us();
  5249. //static int64_t acc = 0;
  5250. //acc += t1 - t0;
  5251. //if (t1 - t0 > 10) {
  5252. // printf("\n");
  5253. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5254. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5255. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5256. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5257. //}
  5258. }
  5259. typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
  5260. typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
  5261. typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
  5262. typedef struct {
  5263. dequantize_row_q_t dequantize_row_q;
  5264. quantize_row_q_t quantize_row_q;
  5265. vec_dot_q_t vec_dot_q;
  5266. } quantize_fns_t;
  5267. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5268. [GGML_TYPE_Q4_0] = {
  5269. .dequantize_row_q = dequantize_row_q4_0,
  5270. .quantize_row_q = quantize_row_q4_0,
  5271. .vec_dot_q = ggml_vec_dot_q4_0,
  5272. },
  5273. [GGML_TYPE_Q4_1] = {
  5274. .dequantize_row_q = dequantize_row_q4_1,
  5275. .quantize_row_q = quantize_row_q4_1,
  5276. .vec_dot_q = ggml_vec_dot_q4_1,
  5277. },
  5278. };
  5279. static void ggml_compute_forward_mul_mat_q_f32(
  5280. const struct ggml_compute_params * params,
  5281. const struct ggml_tensor * src0,
  5282. const struct ggml_tensor * src1,
  5283. struct ggml_tensor * dst) {
  5284. int64_t t0 = ggml_perf_time_us();
  5285. UNUSED(t0);
  5286. const int ne00 = src0->ne[0];
  5287. const int ne01 = src0->ne[1];
  5288. const int ne02 = src0->ne[2];
  5289. const int ne03 = src0->ne[3];
  5290. const int ne10 = src1->ne[0];
  5291. const int ne11 = src1->ne[1];
  5292. const int ne12 = src1->ne[2];
  5293. const int ne13 = src1->ne[3];
  5294. const int ne0 = dst->ne[0];
  5295. const int ne1 = dst->ne[1];
  5296. const int ne2 = dst->ne[2];
  5297. const int ne3 = dst->ne[3];
  5298. const int nb00 = src0->nb[0];
  5299. const int nb01 = src0->nb[1];
  5300. const int nb02 = src0->nb[2];
  5301. const int nb03 = src0->nb[3];
  5302. const int nb10 = src1->nb[0];
  5303. const int nb11 = src1->nb[1];
  5304. const int nb12 = src1->nb[2];
  5305. const int nb13 = src1->nb[3];
  5306. const int nb0 = dst->nb[0];
  5307. const int nb1 = dst->nb[1];
  5308. const int nb2 = dst->nb[2];
  5309. const int nb3 = dst->nb[3];
  5310. const int ith = params->ith;
  5311. const int nth = params->nth;
  5312. GGML_ASSERT(ne02 == ne12);
  5313. GGML_ASSERT(ne03 == ne13);
  5314. GGML_ASSERT(ne2 == ne12);
  5315. GGML_ASSERT(ne3 == ne13);
  5316. const enum ggml_type type = src0->type;
  5317. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5318. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5319. // we don't support permuted src0 or src1
  5320. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5321. GGML_ASSERT(nb10 == sizeof(float));
  5322. // dst cannot be transposed or permuted
  5323. GGML_ASSERT(nb0 == sizeof(float));
  5324. GGML_ASSERT(nb0 <= nb1);
  5325. GGML_ASSERT(nb1 <= nb2);
  5326. GGML_ASSERT(nb2 <= nb3);
  5327. GGML_ASSERT(ne0 == ne01);
  5328. GGML_ASSERT(ne1 == ne11);
  5329. GGML_ASSERT(ne2 == ne02);
  5330. GGML_ASSERT(ne3 == ne03);
  5331. // nb01 >= nb00 - src0 is not transposed
  5332. // compute by src0 rows
  5333. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5334. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5335. if (params->ith != 0) {
  5336. return;
  5337. }
  5338. if (params->type == GGML_TASK_INIT) {
  5339. return;
  5340. }
  5341. if (params->type == GGML_TASK_FINALIZE) {
  5342. return;
  5343. }
  5344. float * const wdata = params->wdata;
  5345. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5346. for (int i03 = 0; i03 < ne03; i03++) {
  5347. for (int i02 = 0; i02 < ne02; i02++) {
  5348. {
  5349. size_t id = 0;
  5350. for (int i01 = 0; i01 < ne01; ++i01) {
  5351. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5352. id += ne00;
  5353. }
  5354. }
  5355. const float * x = wdata;
  5356. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5357. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5358. // zT = y * xT
  5359. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5360. ne11, ne01, ne10,
  5361. 1.0f, y, ne10,
  5362. x, ne10,
  5363. 0.0f, d, ne01);
  5364. }
  5365. }
  5366. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5367. return;
  5368. }
  5369. #endif
  5370. if (params->type == GGML_TASK_INIT) {
  5371. char * wdata = params->wdata;
  5372. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5373. for (int i13 = 0; i13 < ne13; ++i13) {
  5374. for (int i12 = 0; i12 < ne12; ++i12) {
  5375. for (int i11 = 0; i11 < ne11; ++i11) {
  5376. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5377. wdata += row_size;
  5378. }
  5379. }
  5380. }
  5381. return;
  5382. }
  5383. if (params->type == GGML_TASK_FINALIZE) {
  5384. return;
  5385. }
  5386. // parallelize by src0 rows using ggml_vec_dot_q
  5387. // total rows in src0
  5388. const int nr = ne01*ne02*ne03;
  5389. // rows per thread
  5390. const int dr = (nr + nth - 1)/nth;
  5391. // row range for this thread
  5392. const int ir0 = dr*ith;
  5393. const int ir1 = MIN(ir0 + dr, nr);
  5394. void * wdata = params->wdata;
  5395. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5396. for (int ir = ir0; ir < ir1; ++ir) {
  5397. // src0 indices
  5398. const int i03 = ir/(ne02*ne01);
  5399. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5400. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5401. const int i13 = i03;
  5402. const int i12 = i02;
  5403. const int i0 = i01;
  5404. const int i2 = i02;
  5405. const int i3 = i03;
  5406. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5407. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5408. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5409. assert(ne00 % 32 == 0);
  5410. for (int ic = 0; ic < ne11; ++ic) {
  5411. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5412. }
  5413. }
  5414. //int64_t t1 = ggml_time_us();
  5415. //static int64_t acc = 0;
  5416. //acc += t1 - t0;
  5417. //if (t1 - t0 > 10) {
  5418. // printf("\n");
  5419. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5420. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5421. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5422. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5423. //}
  5424. }
  5425. static void ggml_compute_forward_mul_mat(
  5426. const struct ggml_compute_params * params,
  5427. const struct ggml_tensor * src0,
  5428. const struct ggml_tensor * src1,
  5429. struct ggml_tensor * dst) {
  5430. switch (src0->type) {
  5431. case GGML_TYPE_Q4_0:
  5432. case GGML_TYPE_Q4_1:
  5433. {
  5434. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5435. } break;
  5436. case GGML_TYPE_F16:
  5437. {
  5438. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5439. } break;
  5440. case GGML_TYPE_F32:
  5441. {
  5442. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5443. } break;
  5444. case GGML_TYPE_I8:
  5445. case GGML_TYPE_I16:
  5446. case GGML_TYPE_I32:
  5447. case GGML_TYPE_COUNT:
  5448. {
  5449. GGML_ASSERT(false);
  5450. } break;
  5451. }
  5452. #if 0
  5453. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5454. static int first = 8;
  5455. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5456. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5457. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5458. if (first) {
  5459. --first;
  5460. } else {
  5461. for (int k = 0; k < dst->ne[1]; ++k) {
  5462. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5463. for (int i = 0; i < 16; ++i) {
  5464. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5465. }
  5466. printf("\n");
  5467. }
  5468. printf("\n");
  5469. }
  5470. printf("\n");
  5471. exit(0);
  5472. }
  5473. } else {
  5474. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5475. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5476. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5477. }
  5478. #endif
  5479. }
  5480. // ggml_compute_forward_scale
  5481. static void ggml_compute_forward_scale_f32(
  5482. const struct ggml_compute_params * params,
  5483. const struct ggml_tensor * src0,
  5484. const struct ggml_tensor * src1,
  5485. struct ggml_tensor * dst) {
  5486. GGML_ASSERT(ggml_is_contiguous(src0));
  5487. GGML_ASSERT(ggml_is_contiguous(dst));
  5488. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5489. GGML_ASSERT(ggml_is_scalar(src1));
  5490. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5491. return;
  5492. }
  5493. // scale factor
  5494. const float v = *(float *) src1->data;
  5495. const int ith = params->ith;
  5496. const int nth = params->nth;
  5497. const int nc = src0->ne[0];
  5498. const int nr = ggml_nrows(src0);
  5499. // rows per thread
  5500. const int dr = (nr + nth - 1)/nth;
  5501. // row range for this thread
  5502. const int ir0 = dr*ith;
  5503. const int ir1 = MIN(ir0 + dr, nr);
  5504. for (int i1 = ir0; i1 < ir1; i1++) {
  5505. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5506. }
  5507. }
  5508. static void ggml_compute_forward_scale(
  5509. const struct ggml_compute_params * params,
  5510. const struct ggml_tensor * src0,
  5511. const struct ggml_tensor * src1,
  5512. struct ggml_tensor * dst) {
  5513. switch (src0->type) {
  5514. case GGML_TYPE_F32:
  5515. {
  5516. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5517. } break;
  5518. case GGML_TYPE_Q4_0:
  5519. case GGML_TYPE_Q4_1:
  5520. case GGML_TYPE_I8:
  5521. case GGML_TYPE_I16:
  5522. case GGML_TYPE_I32:
  5523. case GGML_TYPE_F16:
  5524. case GGML_TYPE_COUNT:
  5525. {
  5526. GGML_ASSERT(false);
  5527. } break;
  5528. }
  5529. }
  5530. // ggml_compute_forward_cpy
  5531. static void ggml_compute_forward_cpy(
  5532. const struct ggml_compute_params * params,
  5533. const struct ggml_tensor * src0,
  5534. struct ggml_tensor * dst) {
  5535. ggml_compute_forward_dup(params, src0, dst);
  5536. }
  5537. // ggml_compute_forward_reshape
  5538. static void ggml_compute_forward_reshape(
  5539. const struct ggml_compute_params * params,
  5540. const struct ggml_tensor * src0,
  5541. struct ggml_tensor * dst) {
  5542. // NOP
  5543. UNUSED(params);
  5544. UNUSED(src0);
  5545. UNUSED(dst);
  5546. }
  5547. // ggml_compute_forward_view
  5548. static void ggml_compute_forward_view(
  5549. const struct ggml_compute_params * params,
  5550. const struct ggml_tensor * src0) {
  5551. // NOP
  5552. UNUSED(params);
  5553. UNUSED(src0);
  5554. }
  5555. // ggml_compute_forward_permute
  5556. static void ggml_compute_forward_permute(
  5557. const struct ggml_compute_params * params,
  5558. const struct ggml_tensor * src0) {
  5559. // NOP
  5560. UNUSED(params);
  5561. UNUSED(src0);
  5562. }
  5563. // ggml_compute_forward_transpose
  5564. static void ggml_compute_forward_transpose(
  5565. const struct ggml_compute_params * params,
  5566. const struct ggml_tensor * src0) {
  5567. // NOP
  5568. UNUSED(params);
  5569. UNUSED(src0);
  5570. }
  5571. // ggml_compute_forward_get_rows
  5572. static void ggml_compute_forward_get_rows_q(
  5573. const struct ggml_compute_params * params,
  5574. const struct ggml_tensor * src0,
  5575. const struct ggml_tensor * src1,
  5576. struct ggml_tensor * dst) {
  5577. assert(params->ith == 0);
  5578. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5579. return;
  5580. }
  5581. const int nc = src0->ne[0];
  5582. const int nr = ggml_nelements(src1);
  5583. const enum ggml_type type = src0->type;
  5584. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5585. assert( dst->ne[0] == nc);
  5586. assert( dst->ne[1] == nr);
  5587. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5588. for (int i = 0; i < nr; ++i) {
  5589. const int r = ((int32_t *) src1->data)[i];
  5590. dequantize_row_q(
  5591. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5592. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5593. }
  5594. }
  5595. static void ggml_compute_forward_get_rows_f16(
  5596. const struct ggml_compute_params * params,
  5597. const struct ggml_tensor * src0,
  5598. const struct ggml_tensor * src1,
  5599. struct ggml_tensor * dst) {
  5600. assert(params->ith == 0);
  5601. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5602. return;
  5603. }
  5604. const int nc = src0->ne[0];
  5605. const int nr = ggml_nelements(src1);
  5606. assert( dst->ne[0] == nc);
  5607. assert( dst->ne[1] == nr);
  5608. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5609. for (int i = 0; i < nr; ++i) {
  5610. const int r = ((int32_t *) src1->data)[i];
  5611. for (int j = 0; j < nc; ++j) {
  5612. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5613. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5614. }
  5615. }
  5616. }
  5617. static void ggml_compute_forward_get_rows_f32(
  5618. const struct ggml_compute_params * params,
  5619. const struct ggml_tensor * src0,
  5620. const struct ggml_tensor * src1,
  5621. struct ggml_tensor * dst) {
  5622. assert(params->ith == 0);
  5623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5624. return;
  5625. }
  5626. const int nc = src0->ne[0];
  5627. const int nr = ggml_nelements(src1);
  5628. assert( dst->ne[0] == nc);
  5629. assert( dst->ne[1] == nr);
  5630. assert(src0->nb[0] == sizeof(float));
  5631. for (int i = 0; i < nr; ++i) {
  5632. const int r = ((int32_t *) src1->data)[i];
  5633. ggml_vec_cpy_f32(nc,
  5634. (float *) ((char *) dst->data + i*dst->nb[1]),
  5635. (float *) ((char *) src0->data + r*src0->nb[1]));
  5636. }
  5637. }
  5638. static void ggml_compute_forward_get_rows(
  5639. const struct ggml_compute_params * params,
  5640. const struct ggml_tensor * src0,
  5641. const struct ggml_tensor * src1,
  5642. struct ggml_tensor * dst) {
  5643. switch (src0->type) {
  5644. case GGML_TYPE_Q4_0:
  5645. case GGML_TYPE_Q4_1:
  5646. {
  5647. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5648. } break;
  5649. case GGML_TYPE_F16:
  5650. {
  5651. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5652. } break;
  5653. case GGML_TYPE_F32:
  5654. {
  5655. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5656. } break;
  5657. case GGML_TYPE_I8:
  5658. case GGML_TYPE_I16:
  5659. case GGML_TYPE_I32:
  5660. case GGML_TYPE_COUNT:
  5661. {
  5662. GGML_ASSERT(false);
  5663. } break;
  5664. }
  5665. //static bool first = true;
  5666. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5667. //if (first) {
  5668. // first = false;
  5669. //} else {
  5670. // for (int k = 0; k < dst->ne[1]; ++k) {
  5671. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5672. // for (int i = 0; i < 16; ++i) {
  5673. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5674. // }
  5675. // printf("\n");
  5676. // }
  5677. // printf("\n");
  5678. // }
  5679. // printf("\n");
  5680. // exit(0);
  5681. //}
  5682. }
  5683. // ggml_compute_forward_diag_mask_inf
  5684. static void ggml_compute_forward_diag_mask_inf_f32(
  5685. const struct ggml_compute_params * params,
  5686. const struct ggml_tensor * src0,
  5687. const struct ggml_tensor * src1,
  5688. struct ggml_tensor * dst) {
  5689. assert(params->ith == 0);
  5690. assert(src1->type == GGML_TYPE_I32);
  5691. assert(ggml_nelements(src1) == 1);
  5692. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5693. return;
  5694. }
  5695. const int n_past = ((int32_t *) src1->data)[0];
  5696. // TODO: handle transposed/permuted matrices
  5697. const int n = ggml_nrows(src0);
  5698. const int nc = src0->ne[0];
  5699. const int nr = src0->ne[1];
  5700. const int nz = n/nr;
  5701. assert( dst->nb[0] == sizeof(float));
  5702. assert(src0->nb[0] == sizeof(float));
  5703. for (int k = 0; k < nz; k++) {
  5704. for (int j = 0; j < nr; j++) {
  5705. for (int i = n_past; i < nc; i++) {
  5706. if (i > n_past + j) {
  5707. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5708. }
  5709. }
  5710. }
  5711. }
  5712. }
  5713. static void ggml_compute_forward_diag_mask_inf(
  5714. const struct ggml_compute_params * params,
  5715. const struct ggml_tensor * src0,
  5716. const struct ggml_tensor * src1,
  5717. struct ggml_tensor * dst) {
  5718. switch (src0->type) {
  5719. case GGML_TYPE_F32:
  5720. {
  5721. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5722. } break;
  5723. case GGML_TYPE_Q4_0:
  5724. case GGML_TYPE_Q4_1:
  5725. case GGML_TYPE_I8:
  5726. case GGML_TYPE_I16:
  5727. case GGML_TYPE_I32:
  5728. case GGML_TYPE_F16:
  5729. case GGML_TYPE_COUNT:
  5730. {
  5731. GGML_ASSERT(false);
  5732. } break;
  5733. }
  5734. }
  5735. // ggml_compute_forward_soft_max
  5736. static void ggml_compute_forward_soft_max_f32(
  5737. const struct ggml_compute_params * params,
  5738. const struct ggml_tensor * src0,
  5739. struct ggml_tensor * dst) {
  5740. GGML_ASSERT(ggml_is_contiguous(src0));
  5741. GGML_ASSERT(ggml_is_contiguous(dst));
  5742. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5743. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5744. return;
  5745. }
  5746. // TODO: handle transposed/permuted matrices
  5747. const int ith = params->ith;
  5748. const int nth = params->nth;
  5749. const int nc = src0->ne[0];
  5750. const int nr = ggml_nrows(src0);
  5751. // rows per thread
  5752. const int dr = (nr + nth - 1)/nth;
  5753. // row range for this thread
  5754. const int ir0 = dr*ith;
  5755. const int ir1 = MIN(ir0 + dr, nr);
  5756. for (int i1 = ir0; i1 < ir1; i1++) {
  5757. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5758. #ifndef NDEBUG
  5759. for (int i = 0; i < nc; ++i) {
  5760. //printf("p[%d] = %f\n", i, p[i]);
  5761. assert(!isnan(p[i]));
  5762. }
  5763. #endif
  5764. float max = -INFINITY;
  5765. ggml_vec_max_f32(nc, &max, p);
  5766. ggml_float sum = 0.0;
  5767. uint16_t scvt;
  5768. for (int i = 0; i < nc; i++) {
  5769. if (p[i] == -INFINITY) {
  5770. p[i] = 0.0f;
  5771. } else {
  5772. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5773. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5774. memcpy(&scvt, &s, sizeof(scvt));
  5775. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5776. sum += (ggml_float)val;
  5777. p[i] = val;
  5778. }
  5779. }
  5780. assert(sum > 0.0);
  5781. sum = 1.0/sum;
  5782. ggml_vec_scale_f32(nc, p, sum);
  5783. #ifndef NDEBUG
  5784. for (int i = 0; i < nc; ++i) {
  5785. assert(!isnan(p[i]));
  5786. assert(!isinf(p[i]));
  5787. }
  5788. #endif
  5789. }
  5790. }
  5791. static void ggml_compute_forward_soft_max(
  5792. const struct ggml_compute_params * params,
  5793. const struct ggml_tensor * src0,
  5794. struct ggml_tensor * dst) {
  5795. switch (src0->type) {
  5796. case GGML_TYPE_F32:
  5797. {
  5798. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5799. } break;
  5800. case GGML_TYPE_Q4_0:
  5801. case GGML_TYPE_Q4_1:
  5802. case GGML_TYPE_I8:
  5803. case GGML_TYPE_I16:
  5804. case GGML_TYPE_I32:
  5805. case GGML_TYPE_F16:
  5806. case GGML_TYPE_COUNT:
  5807. {
  5808. GGML_ASSERT(false);
  5809. } break;
  5810. }
  5811. }
  5812. // ggml_compute_forward_rope
  5813. static void ggml_compute_forward_rope_f32(
  5814. const struct ggml_compute_params * params,
  5815. const struct ggml_tensor * src0,
  5816. const struct ggml_tensor * src1,
  5817. struct ggml_tensor * dst) {
  5818. assert(params->ith == 0);
  5819. assert(src1->type == GGML_TYPE_I32);
  5820. assert(ggml_nelements(src1) == 3);
  5821. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5822. return;
  5823. }
  5824. const int n_past = ((int32_t *) src1->data)[0];
  5825. const int n_dims = ((int32_t *) src1->data)[1];
  5826. const int mode = ((int32_t *) src1->data)[2];
  5827. //const int ne0 = src0->ne[0];
  5828. const int ne1 = src0->ne[1];
  5829. const int ne2 = src0->ne[2];
  5830. const int ne3 = src0->ne[3];
  5831. const int nb0 = src0->nb[0];
  5832. const int nb1 = src0->nb[1];
  5833. const int nb2 = src0->nb[2];
  5834. const int nb3 = src0->nb[3];
  5835. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5836. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5837. assert(nb0 == sizeof(float));
  5838. // TODO: optimize
  5839. for (int i3 = 0; i3 < ne3; i3++) {
  5840. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5841. const int p = (mode == 0 ? n_past + i2 : i2);
  5842. for (int i1 = 0; i1 < ne1; i1++) {
  5843. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5844. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5845. const float cos_theta = cosf(p*theta);
  5846. const float sin_theta = sinf(p*theta);
  5847. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5848. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5849. const float x0 = src[0];
  5850. const float x1 = src[1];
  5851. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5852. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5853. }
  5854. }
  5855. }
  5856. }
  5857. }
  5858. static void ggml_compute_forward_rope_f16(
  5859. const struct ggml_compute_params * params,
  5860. const struct ggml_tensor * src0,
  5861. const struct ggml_tensor * src1,
  5862. struct ggml_tensor * dst) {
  5863. assert(params->ith == 0);
  5864. assert(src1->type == GGML_TYPE_I32);
  5865. assert(ggml_nelements(src1) == 3);
  5866. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5867. return;
  5868. }
  5869. const int n_past = ((int32_t *) src1->data)[0];
  5870. const int n_dims = ((int32_t *) src1->data)[1];
  5871. const int mode = ((int32_t *) src1->data)[2];
  5872. //const int ne0 = src0->ne[0];
  5873. const int ne1 = src0->ne[1];
  5874. const int ne2 = src0->ne[2];
  5875. const int ne3 = src0->ne[3];
  5876. const int nb0 = src0->nb[0];
  5877. const int nb1 = src0->nb[1];
  5878. const int nb2 = src0->nb[2];
  5879. const int nb3 = src0->nb[3];
  5880. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5881. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5882. assert(nb0 == sizeof(ggml_fp16_t));
  5883. for (int i3 = 0; i3 < ne3; i3++) {
  5884. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5885. const int p = (mode == 0 ? n_past + i2 : i2);
  5886. for (int i1 = 0; i1 < ne1; i1++) {
  5887. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5888. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5889. const float cos_theta = cosf(p*theta);
  5890. const float sin_theta = sinf(p*theta);
  5891. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5892. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5893. const float x0 = ggml_fp16_to_fp32(src[0]);
  5894. const float x1 = ggml_fp16_to_fp32(src[1]);
  5895. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5896. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5897. }
  5898. }
  5899. }
  5900. }
  5901. }
  5902. static void ggml_compute_forward_rope(
  5903. const struct ggml_compute_params * params,
  5904. const struct ggml_tensor * src0,
  5905. const struct ggml_tensor * src1,
  5906. struct ggml_tensor * dst) {
  5907. switch (src0->type) {
  5908. case GGML_TYPE_F16:
  5909. {
  5910. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5911. } break;
  5912. case GGML_TYPE_F32:
  5913. {
  5914. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5915. } break;
  5916. case GGML_TYPE_Q4_0:
  5917. case GGML_TYPE_Q4_1:
  5918. case GGML_TYPE_I8:
  5919. case GGML_TYPE_I16:
  5920. case GGML_TYPE_I32:
  5921. case GGML_TYPE_COUNT:
  5922. {
  5923. GGML_ASSERT(false);
  5924. } break;
  5925. }
  5926. }
  5927. // ggml_compute_forward_conv_1d_1s
  5928. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5929. const struct ggml_compute_params * params,
  5930. const struct ggml_tensor * src0,
  5931. const struct ggml_tensor * src1,
  5932. struct ggml_tensor * dst) {
  5933. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5934. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5935. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5936. int64_t t0 = ggml_perf_time_us();
  5937. UNUSED(t0);
  5938. const int ne00 = src0->ne[0];
  5939. const int ne01 = src0->ne[1];
  5940. const int ne02 = src0->ne[2];
  5941. //const int ne03 = src0->ne[3];
  5942. const int ne10 = src1->ne[0];
  5943. const int ne11 = src1->ne[1];
  5944. //const int ne12 = src1->ne[2];
  5945. //const int ne13 = src1->ne[3];
  5946. //const int ne0 = dst->ne[0];
  5947. //const int ne1 = dst->ne[1];
  5948. //const int ne2 = dst->ne[2];
  5949. //const int ne3 = dst->ne[3];
  5950. //const int ne = ne0*ne1*ne2*ne3;
  5951. const int nb00 = src0->nb[0];
  5952. const int nb01 = src0->nb[1];
  5953. const int nb02 = src0->nb[2];
  5954. //const int nb03 = src0->nb[3];
  5955. const int nb10 = src1->nb[0];
  5956. const int nb11 = src1->nb[1];
  5957. //const int nb12 = src1->nb[2];
  5958. //const int nb13 = src1->nb[3];
  5959. //const int nb0 = dst->nb[0];
  5960. const int nb1 = dst->nb[1];
  5961. //const int nb2 = dst->nb[2];
  5962. //const int nb3 = dst->nb[3];
  5963. const int ith = params->ith;
  5964. const int nth = params->nth;
  5965. const int nk = ne00;
  5966. const int nh = nk/2;
  5967. const int ew0 = ggml_up32(ne01);
  5968. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5969. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5970. GGML_ASSERT(nb10 == sizeof(float));
  5971. if (params->type == GGML_TASK_INIT) {
  5972. // TODO: fix this memset (wsize is overestimated)
  5973. memset(params->wdata, 0, params->wsize);
  5974. // prepare kernel data (src0)
  5975. {
  5976. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5977. for (int i02 = 0; i02 < ne02; i02++) {
  5978. for (int i01 = 0; i01 < ne01; i01++) {
  5979. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5980. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5981. for (int i00 = 0; i00 < ne00; i00++) {
  5982. dst_data[i00*ew0 + i01] = src[i00];
  5983. }
  5984. }
  5985. }
  5986. }
  5987. // prepare source data (src1)
  5988. {
  5989. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5990. for (int i11 = 0; i11 < ne11; i11++) {
  5991. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5992. ggml_fp16_t * dst_data = wdata;
  5993. for (int i10 = 0; i10 < ne10; i10++) {
  5994. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5995. }
  5996. }
  5997. }
  5998. return;
  5999. }
  6000. if (params->type == GGML_TASK_FINALIZE) {
  6001. return;
  6002. }
  6003. // total rows in dst
  6004. const int nr = ne02;
  6005. // rows per thread
  6006. const int dr = (nr + nth - 1)/nth;
  6007. // row range for this thread
  6008. const int ir0 = dr*ith;
  6009. const int ir1 = MIN(ir0 + dr, nr);
  6010. for (int i1 = ir0; i1 < ir1; i1++) {
  6011. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6012. for (int i0 = 0; i0 < ne10; ++i0) {
  6013. dst_data[i0] = 0;
  6014. for (int k = -nh; k <= nh; k++) {
  6015. float v = 0.0f;
  6016. ggml_vec_dot_f16(ew0, &v,
  6017. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6018. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6019. dst_data[i0] += v;
  6020. }
  6021. }
  6022. }
  6023. }
  6024. static void ggml_compute_forward_conv_1d_1s_f32(
  6025. const struct ggml_compute_params * params,
  6026. const struct ggml_tensor * src0,
  6027. const struct ggml_tensor * src1,
  6028. struct ggml_tensor * dst) {
  6029. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6030. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6031. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6032. int64_t t0 = ggml_perf_time_us();
  6033. UNUSED(t0);
  6034. const int ne00 = src0->ne[0];
  6035. const int ne01 = src0->ne[1];
  6036. const int ne02 = src0->ne[2];
  6037. //const int ne03 = src0->ne[3];
  6038. const int ne10 = src1->ne[0];
  6039. const int ne11 = src1->ne[1];
  6040. //const int ne12 = src1->ne[2];
  6041. //const int ne13 = src1->ne[3];
  6042. //const int ne0 = dst->ne[0];
  6043. //const int ne1 = dst->ne[1];
  6044. //const int ne2 = dst->ne[2];
  6045. //const int ne3 = dst->ne[3];
  6046. //const int ne = ne0*ne1*ne2*ne3;
  6047. const int nb00 = src0->nb[0];
  6048. const int nb01 = src0->nb[1];
  6049. const int nb02 = src0->nb[2];
  6050. //const int nb03 = src0->nb[3];
  6051. const int nb10 = src1->nb[0];
  6052. const int nb11 = src1->nb[1];
  6053. //const int nb12 = src1->nb[2];
  6054. //const int nb13 = src1->nb[3];
  6055. //const int nb0 = dst->nb[0];
  6056. const int nb1 = dst->nb[1];
  6057. //const int nb2 = dst->nb[2];
  6058. //const int nb3 = dst->nb[3];
  6059. const int ith = params->ith;
  6060. const int nth = params->nth;
  6061. const int nk = ne00;
  6062. const int nh = nk/2;
  6063. const int ew0 = ggml_up32(ne01);
  6064. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6065. GGML_ASSERT(nb00 == sizeof(float));
  6066. GGML_ASSERT(nb10 == sizeof(float));
  6067. if (params->type == GGML_TASK_INIT) {
  6068. // TODO: fix this memset (wsize is overestimated)
  6069. memset(params->wdata, 0, params->wsize);
  6070. // prepare kernel data (src0)
  6071. {
  6072. float * const wdata = (float *) params->wdata + 0;
  6073. for (int i02 = 0; i02 < ne02; i02++) {
  6074. for (int i01 = 0; i01 < ne01; i01++) {
  6075. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6076. float * dst_data = wdata + i02*ew0*ne00;
  6077. for (int i00 = 0; i00 < ne00; i00++) {
  6078. dst_data[i00*ew0 + i01] = src[i00];
  6079. }
  6080. }
  6081. }
  6082. }
  6083. // prepare source data (src1)
  6084. {
  6085. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6086. for (int i11 = 0; i11 < ne11; i11++) {
  6087. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6088. float * dst_data = wdata;
  6089. for (int i10 = 0; i10 < ne10; i10++) {
  6090. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6091. }
  6092. }
  6093. }
  6094. return;
  6095. }
  6096. if (params->type == GGML_TASK_FINALIZE) {
  6097. return;
  6098. }
  6099. // total rows in dst
  6100. const int nr = ne02;
  6101. // rows per thread
  6102. const int dr = (nr + nth - 1)/nth;
  6103. // row range for this thread
  6104. const int ir0 = dr*ith;
  6105. const int ir1 = MIN(ir0 + dr, nr);
  6106. for (int i1 = ir0; i1 < ir1; i1++) {
  6107. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6108. for (int i0 = 0; i0 < ne10; ++i0) {
  6109. dst_data[i0] = 0;
  6110. for (int k = -nh; k <= nh; k++) {
  6111. float v = 0.0f;
  6112. ggml_vec_dot_f32(ew0, &v,
  6113. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6114. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6115. dst_data[i0] += v;
  6116. }
  6117. }
  6118. }
  6119. }
  6120. static void ggml_compute_forward_conv_1d_1s(
  6121. const struct ggml_compute_params * params,
  6122. const struct ggml_tensor * src0,
  6123. const struct ggml_tensor * src1,
  6124. struct ggml_tensor * dst) {
  6125. switch (src0->type) {
  6126. case GGML_TYPE_F16:
  6127. {
  6128. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6129. } break;
  6130. case GGML_TYPE_F32:
  6131. {
  6132. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6133. } break;
  6134. case GGML_TYPE_Q4_0:
  6135. case GGML_TYPE_Q4_1:
  6136. case GGML_TYPE_I8:
  6137. case GGML_TYPE_I16:
  6138. case GGML_TYPE_I32:
  6139. case GGML_TYPE_COUNT:
  6140. {
  6141. GGML_ASSERT(false);
  6142. } break;
  6143. }
  6144. }
  6145. // ggml_compute_forward_conv_1d_2s
  6146. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6147. const struct ggml_compute_params * params,
  6148. const struct ggml_tensor * src0,
  6149. const struct ggml_tensor * src1,
  6150. struct ggml_tensor * dst) {
  6151. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6152. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6153. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6154. int64_t t0 = ggml_perf_time_us();
  6155. UNUSED(t0);
  6156. const int ne00 = src0->ne[0];
  6157. const int ne01 = src0->ne[1];
  6158. const int ne02 = src0->ne[2];
  6159. //const int ne03 = src0->ne[3];
  6160. const int ne10 = src1->ne[0];
  6161. const int ne11 = src1->ne[1];
  6162. //const int ne12 = src1->ne[2];
  6163. //const int ne13 = src1->ne[3];
  6164. //const int ne0 = dst->ne[0];
  6165. //const int ne1 = dst->ne[1];
  6166. //const int ne2 = dst->ne[2];
  6167. //const int ne3 = dst->ne[3];
  6168. //const int ne = ne0*ne1*ne2*ne3;
  6169. const int nb00 = src0->nb[0];
  6170. const int nb01 = src0->nb[1];
  6171. const int nb02 = src0->nb[2];
  6172. //const int nb03 = src0->nb[3];
  6173. const int nb10 = src1->nb[0];
  6174. const int nb11 = src1->nb[1];
  6175. //const int nb12 = src1->nb[2];
  6176. //const int nb13 = src1->nb[3];
  6177. //const int nb0 = dst->nb[0];
  6178. const int nb1 = dst->nb[1];
  6179. //const int nb2 = dst->nb[2];
  6180. //const int nb3 = dst->nb[3];
  6181. const int ith = params->ith;
  6182. const int nth = params->nth;
  6183. const int nk = ne00;
  6184. const int nh = nk/2;
  6185. const int ew0 = ggml_up32(ne01);
  6186. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6187. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6188. GGML_ASSERT(nb10 == sizeof(float));
  6189. if (params->type == GGML_TASK_INIT) {
  6190. // TODO: fix this memset (wsize is overestimated)
  6191. memset(params->wdata, 0, params->wsize);
  6192. // prepare kernel data (src0)
  6193. {
  6194. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6195. for (int i02 = 0; i02 < ne02; i02++) {
  6196. for (int i01 = 0; i01 < ne01; i01++) {
  6197. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6198. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6199. for (int i00 = 0; i00 < ne00; i00++) {
  6200. dst_data[i00*ew0 + i01] = src[i00];
  6201. }
  6202. }
  6203. }
  6204. }
  6205. // prepare source data (src1)
  6206. {
  6207. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6208. for (int i11 = 0; i11 < ne11; i11++) {
  6209. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6210. ggml_fp16_t * dst_data = wdata;
  6211. for (int i10 = 0; i10 < ne10; i10++) {
  6212. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6213. }
  6214. }
  6215. }
  6216. return;
  6217. }
  6218. if (params->type == GGML_TASK_FINALIZE) {
  6219. return;
  6220. }
  6221. // total rows in dst
  6222. const int nr = ne02;
  6223. // rows per thread
  6224. const int dr = (nr + nth - 1)/nth;
  6225. // row range for this thread
  6226. const int ir0 = dr*ith;
  6227. const int ir1 = MIN(ir0 + dr, nr);
  6228. for (int i1 = ir0; i1 < ir1; i1++) {
  6229. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6230. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6231. dst_data[i0/2] = 0;
  6232. for (int k = -nh; k <= nh; k++) {
  6233. float v = 0.0f;
  6234. ggml_vec_dot_f16(ew0, &v,
  6235. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6236. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6237. dst_data[i0/2] += v;
  6238. }
  6239. }
  6240. }
  6241. }
  6242. static void ggml_compute_forward_conv_1d_2s_f32(
  6243. const struct ggml_compute_params * params,
  6244. const struct ggml_tensor * src0,
  6245. const struct ggml_tensor * src1,
  6246. struct ggml_tensor * dst) {
  6247. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6248. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6249. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6250. int64_t t0 = ggml_perf_time_us();
  6251. UNUSED(t0);
  6252. const int ne00 = src0->ne[0];
  6253. const int ne01 = src0->ne[1];
  6254. const int ne02 = src0->ne[2];
  6255. //const int ne03 = src0->ne[3];
  6256. const int ne10 = src1->ne[0];
  6257. const int ne11 = src1->ne[1];
  6258. //const int ne12 = src1->ne[2];
  6259. //const int ne13 = src1->ne[3];
  6260. //const int ne0 = dst->ne[0];
  6261. //const int ne1 = dst->ne[1];
  6262. //const int ne2 = dst->ne[2];
  6263. //const int ne3 = dst->ne[3];
  6264. //const int ne = ne0*ne1*ne2*ne3;
  6265. const int nb00 = src0->nb[0];
  6266. const int nb01 = src0->nb[1];
  6267. const int nb02 = src0->nb[2];
  6268. //const int nb03 = src0->nb[3];
  6269. const int nb10 = src1->nb[0];
  6270. const int nb11 = src1->nb[1];
  6271. //const int nb12 = src1->nb[2];
  6272. //const int nb13 = src1->nb[3];
  6273. //const int nb0 = dst->nb[0];
  6274. const int nb1 = dst->nb[1];
  6275. //const int nb2 = dst->nb[2];
  6276. //const int nb3 = dst->nb[3];
  6277. const int ith = params->ith;
  6278. const int nth = params->nth;
  6279. const int nk = ne00;
  6280. const int nh = nk/2;
  6281. const int ew0 = ggml_up32(ne01);
  6282. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6283. GGML_ASSERT(nb00 == sizeof(float));
  6284. GGML_ASSERT(nb10 == sizeof(float));
  6285. if (params->type == GGML_TASK_INIT) {
  6286. // TODO: fix this memset (wsize is overestimated)
  6287. memset(params->wdata, 0, params->wsize);
  6288. // prepare kernel data (src0)
  6289. {
  6290. float * const wdata = (float *) params->wdata + 0;
  6291. for (int i02 = 0; i02 < ne02; i02++) {
  6292. for (int i01 = 0; i01 < ne01; i01++) {
  6293. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6294. float * dst_data = wdata + i02*ew0*ne00;
  6295. for (int i00 = 0; i00 < ne00; i00++) {
  6296. dst_data[i00*ew0 + i01] = src[i00];
  6297. }
  6298. }
  6299. }
  6300. }
  6301. // prepare source data (src1)
  6302. {
  6303. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6304. for (int i11 = 0; i11 < ne11; i11++) {
  6305. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6306. float * dst_data = wdata;
  6307. for (int i10 = 0; i10 < ne10; i10++) {
  6308. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6309. }
  6310. }
  6311. }
  6312. return;
  6313. }
  6314. if (params->type == GGML_TASK_FINALIZE) {
  6315. return;
  6316. }
  6317. // total rows in dst
  6318. const int nr = ne02;
  6319. // rows per thread
  6320. const int dr = (nr + nth - 1)/nth;
  6321. // row range for this thread
  6322. const int ir0 = dr*ith;
  6323. const int ir1 = MIN(ir0 + dr, nr);
  6324. for (int i1 = ir0; i1 < ir1; i1++) {
  6325. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6326. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6327. dst_data[i0/2] = 0;
  6328. for (int k = -nh; k <= nh; k++) {
  6329. float v = 0.0f;
  6330. ggml_vec_dot_f32(ew0, &v,
  6331. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6332. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6333. dst_data[i0/2] += v;
  6334. }
  6335. }
  6336. }
  6337. }
  6338. static void ggml_compute_forward_conv_1d_2s(
  6339. const struct ggml_compute_params * params,
  6340. const struct ggml_tensor * src0,
  6341. const struct ggml_tensor * src1,
  6342. struct ggml_tensor * dst) {
  6343. switch (src0->type) {
  6344. case GGML_TYPE_F16:
  6345. {
  6346. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6347. } break;
  6348. case GGML_TYPE_F32:
  6349. {
  6350. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6351. } break;
  6352. case GGML_TYPE_Q4_0:
  6353. case GGML_TYPE_Q4_1:
  6354. case GGML_TYPE_I8:
  6355. case GGML_TYPE_I16:
  6356. case GGML_TYPE_I32:
  6357. case GGML_TYPE_COUNT:
  6358. {
  6359. GGML_ASSERT(false);
  6360. } break;
  6361. }
  6362. }
  6363. // ggml_compute_forward_flash_attn
  6364. static void ggml_compute_forward_flash_attn_f32(
  6365. const struct ggml_compute_params * params,
  6366. const struct ggml_tensor * q,
  6367. const struct ggml_tensor * k,
  6368. const struct ggml_tensor * v,
  6369. const bool masked,
  6370. struct ggml_tensor * dst) {
  6371. int64_t t0 = ggml_perf_time_us();
  6372. UNUSED(t0);
  6373. const int neq0 = q->ne[0];
  6374. const int neq1 = q->ne[1];
  6375. const int neq2 = q->ne[2];
  6376. const int neq3 = q->ne[3];
  6377. const int nek0 = k->ne[0];
  6378. const int nek1 = k->ne[1];
  6379. //const int nek2 = k->ne[2];
  6380. //const int nek3 = k->ne[3];
  6381. //const int nev0 = v->ne[0];
  6382. const int nev1 = v->ne[1];
  6383. //const int nev2 = v->ne[2];
  6384. //const int nev3 = v->ne[3];
  6385. const int ne0 = dst->ne[0];
  6386. const int ne1 = dst->ne[1];
  6387. //const int ne2 = dst->ne[2];
  6388. //const int ne3 = dst->ne[3];
  6389. const int nbk0 = k->nb[0];
  6390. const int nbk1 = k->nb[1];
  6391. const int nbk2 = k->nb[2];
  6392. const int nbk3 = k->nb[3];
  6393. const int nbq0 = q->nb[0];
  6394. const int nbq1 = q->nb[1];
  6395. const int nbq2 = q->nb[2];
  6396. const int nbq3 = q->nb[3];
  6397. const int nbv0 = v->nb[0];
  6398. const int nbv1 = v->nb[1];
  6399. const int nbv2 = v->nb[2];
  6400. const int nbv3 = v->nb[3];
  6401. const int nb0 = dst->nb[0];
  6402. const int nb1 = dst->nb[1];
  6403. const int nb2 = dst->nb[2];
  6404. const int nb3 = dst->nb[3];
  6405. const int ith = params->ith;
  6406. const int nth = params->nth;
  6407. const int D = neq0;
  6408. const int N = neq1;
  6409. const int P = nek1 - N;
  6410. const int M = P + N;
  6411. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6412. GGML_ASSERT(ne0 == D);
  6413. GGML_ASSERT(ne1 == N);
  6414. GGML_ASSERT(P >= 0);
  6415. GGML_ASSERT(nbq0 == sizeof(float));
  6416. GGML_ASSERT(nbk0 == sizeof(float));
  6417. GGML_ASSERT(nbv0 == sizeof(float));
  6418. GGML_ASSERT(neq0 == D);
  6419. GGML_ASSERT(nek0 == D);
  6420. GGML_ASSERT(nev1 == D);
  6421. GGML_ASSERT(neq1 == N);
  6422. GGML_ASSERT(nek1 == N + P);
  6423. GGML_ASSERT(nev1 == D);
  6424. // dst cannot be transposed or permuted
  6425. GGML_ASSERT(nb0 == sizeof(float));
  6426. GGML_ASSERT(nb0 <= nb1);
  6427. GGML_ASSERT(nb1 <= nb2);
  6428. GGML_ASSERT(nb2 <= nb3);
  6429. if (params->type == GGML_TASK_INIT) {
  6430. return;
  6431. }
  6432. if (params->type == GGML_TASK_FINALIZE) {
  6433. return;
  6434. }
  6435. // parallelize by q rows using ggml_vec_dot_f32
  6436. // total rows in q
  6437. const int nr = neq1*neq2*neq3;
  6438. // rows per thread
  6439. const int dr = (nr + nth - 1)/nth;
  6440. // row range for this thread
  6441. const int ir0 = dr*ith;
  6442. const int ir1 = MIN(ir0 + dr, nr);
  6443. const float scale = 1.0f/sqrtf(D);
  6444. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6445. for (int ir = ir0; ir < ir1; ++ir) {
  6446. // q indices
  6447. const int iq3 = ir/(neq2*neq1);
  6448. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6449. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6450. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6451. for (int i = M; i < Mup; ++i) {
  6452. S[i] = -INFINITY;
  6453. }
  6454. for (int ic = 0; ic < nek1; ++ic) {
  6455. // k indices
  6456. const int ik3 = iq3;
  6457. const int ik2 = iq2;
  6458. const int ik1 = ic;
  6459. // S indices
  6460. const int i1 = ik1;
  6461. ggml_vec_dot_f32(neq0,
  6462. S + i1,
  6463. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6464. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6465. }
  6466. // scale
  6467. ggml_vec_scale_f32(nek1, S, scale);
  6468. if (masked) {
  6469. for (int i = P; i < M; i++) {
  6470. if (i > P + iq1) {
  6471. S[i] = -INFINITY;
  6472. }
  6473. }
  6474. }
  6475. // softmax
  6476. {
  6477. float max = -INFINITY;
  6478. ggml_vec_max_f32(M, &max, S);
  6479. ggml_float sum = 0.0;
  6480. {
  6481. #ifdef GGML_SOFT_MAX_ACCELERATE
  6482. max = -max;
  6483. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6484. vvexpf(S, S, &Mup);
  6485. ggml_vec_sum_f32(Mup, &sum, S);
  6486. #else
  6487. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6488. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6489. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6490. float * SS = S + i;
  6491. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6492. if (SS[j] == -INFINITY) {
  6493. SS[j] = 0.0f;
  6494. } else {
  6495. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6496. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6497. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6498. sump[j] += (ggml_float)val;
  6499. SS[j] = val;
  6500. }
  6501. }
  6502. }
  6503. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6504. sum += sump[i];
  6505. }
  6506. #endif
  6507. }
  6508. assert(sum > 0.0);
  6509. sum = 1.0/sum;
  6510. ggml_vec_scale_f32(M, S, sum);
  6511. #ifndef NDEBUG
  6512. for (int i = 0; i < M; ++i) {
  6513. assert(!isnan(S[i]));
  6514. assert(!isinf(S[i]));
  6515. }
  6516. #endif
  6517. }
  6518. for (int ic = 0; ic < nev1; ++ic) {
  6519. // dst indices
  6520. const int i1 = iq1;
  6521. const int i2 = iq2;
  6522. const int i3 = iq3;
  6523. ggml_vec_dot_f32(nek1,
  6524. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6525. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6526. S);
  6527. }
  6528. }
  6529. }
  6530. static void ggml_compute_forward_flash_attn_f16(
  6531. const struct ggml_compute_params * params,
  6532. const struct ggml_tensor * q,
  6533. const struct ggml_tensor * k,
  6534. const struct ggml_tensor * v,
  6535. const bool masked,
  6536. struct ggml_tensor * dst) {
  6537. int64_t t0 = ggml_perf_time_us();
  6538. UNUSED(t0);
  6539. const int neq0 = q->ne[0];
  6540. const int neq1 = q->ne[1];
  6541. const int neq2 = q->ne[2];
  6542. const int neq3 = q->ne[3];
  6543. const int nek0 = k->ne[0];
  6544. const int nek1 = k->ne[1];
  6545. //const int nek2 = k->ne[2];
  6546. //const int nek3 = k->ne[3];
  6547. //const int nev0 = v->ne[0];
  6548. const int nev1 = v->ne[1];
  6549. //const int nev2 = v->ne[2];
  6550. //const int nev3 = v->ne[3];
  6551. const int ne0 = dst->ne[0];
  6552. const int ne1 = dst->ne[1];
  6553. //const int ne2 = dst->ne[2];
  6554. //const int ne3 = dst->ne[3];
  6555. const int nbk0 = k->nb[0];
  6556. const int nbk1 = k->nb[1];
  6557. const int nbk2 = k->nb[2];
  6558. const int nbk3 = k->nb[3];
  6559. const int nbq0 = q->nb[0];
  6560. const int nbq1 = q->nb[1];
  6561. const int nbq2 = q->nb[2];
  6562. const int nbq3 = q->nb[3];
  6563. const int nbv0 = v->nb[0];
  6564. const int nbv1 = v->nb[1];
  6565. const int nbv2 = v->nb[2];
  6566. const int nbv3 = v->nb[3];
  6567. const int nb0 = dst->nb[0];
  6568. const int nb1 = dst->nb[1];
  6569. const int nb2 = dst->nb[2];
  6570. const int nb3 = dst->nb[3];
  6571. const int ith = params->ith;
  6572. const int nth = params->nth;
  6573. const int D = neq0;
  6574. const int N = neq1;
  6575. const int P = nek1 - N;
  6576. const int M = P + N;
  6577. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6578. GGML_ASSERT(ne0 == D);
  6579. GGML_ASSERT(ne1 == N);
  6580. GGML_ASSERT(P >= 0);
  6581. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6582. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6583. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6584. GGML_ASSERT(neq0 == D);
  6585. GGML_ASSERT(nek0 == D);
  6586. GGML_ASSERT(nev1 == D);
  6587. GGML_ASSERT(neq1 == N);
  6588. GGML_ASSERT(nek1 == N + P);
  6589. GGML_ASSERT(nev1 == D);
  6590. // dst cannot be transposed or permuted
  6591. GGML_ASSERT(nb0 == sizeof(float));
  6592. GGML_ASSERT(nb0 <= nb1);
  6593. GGML_ASSERT(nb1 <= nb2);
  6594. GGML_ASSERT(nb2 <= nb3);
  6595. if (params->type == GGML_TASK_INIT) {
  6596. return;
  6597. }
  6598. if (params->type == GGML_TASK_FINALIZE) {
  6599. return;
  6600. }
  6601. // parallelize by q rows using ggml_vec_dot_f32
  6602. // total rows in q
  6603. const int nr = neq1*neq2*neq3;
  6604. // rows per thread
  6605. const int dr = (nr + nth - 1)/nth;
  6606. // row range for this thread
  6607. const int ir0 = dr*ith;
  6608. const int ir1 = MIN(ir0 + dr, nr);
  6609. const float scale = 1.0f/sqrtf(D);
  6610. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6611. for (int ir = ir0; ir < ir1; ++ir) {
  6612. // q indices
  6613. const int iq3 = ir/(neq2*neq1);
  6614. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6615. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6616. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6617. for (int i = M; i < Mup; ++i) {
  6618. S[i] = -INFINITY;
  6619. }
  6620. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6621. for (int ic = 0; ic < nek1; ++ic) {
  6622. // k indices
  6623. const int ik3 = iq3;
  6624. const int ik2 = iq2;
  6625. const int ik1 = ic;
  6626. // S indices
  6627. const int i1 = ik1;
  6628. ggml_vec_dot_f16(neq0,
  6629. S + i1,
  6630. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6631. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6632. }
  6633. } else {
  6634. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6635. // k indices
  6636. const int ik3 = iq3;
  6637. const int ik2 = iq2;
  6638. const int ik1 = ic;
  6639. // S indices
  6640. const int i1 = ik1;
  6641. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6642. S + i1,
  6643. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6644. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6645. }
  6646. }
  6647. // scale
  6648. ggml_vec_scale_f32(nek1, S, scale);
  6649. if (masked) {
  6650. for (int i = P; i < M; i++) {
  6651. if (i > P + iq1) {
  6652. S[i] = -INFINITY;
  6653. }
  6654. }
  6655. }
  6656. // softmax
  6657. {
  6658. float max = -INFINITY;
  6659. ggml_vec_max_f32(M, &max, S);
  6660. ggml_float sum = 0.0;
  6661. {
  6662. #ifdef GGML_SOFT_MAX_ACCELERATE
  6663. max = -max;
  6664. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6665. vvexpf(S, S, &Mup);
  6666. ggml_vec_sum_f32(Mup, &sum, S);
  6667. #else
  6668. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6669. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6670. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6671. float * SS = S + i;
  6672. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6673. if (SS[j] == -INFINITY) {
  6674. SS[j] = 0.0f;
  6675. } else {
  6676. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6677. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6678. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6679. sump[j] += (ggml_float)val;
  6680. SS[j] = val;
  6681. }
  6682. }
  6683. }
  6684. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6685. sum += sump[i];
  6686. }
  6687. #endif
  6688. }
  6689. assert(sum > 0.0);
  6690. sum = 1.0/sum;
  6691. ggml_vec_scale_f32(M, S, sum);
  6692. #ifndef NDEBUG
  6693. for (int i = 0; i < M; ++i) {
  6694. assert(!isnan(S[i]));
  6695. assert(!isinf(S[i]));
  6696. }
  6697. #endif
  6698. }
  6699. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6700. for (int i = 0; i < M; i++) {
  6701. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6702. }
  6703. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6704. for (int ic = 0; ic < nev1; ++ic) {
  6705. // dst indices
  6706. const int i1 = iq1;
  6707. const int i2 = iq2;
  6708. const int i3 = iq3;
  6709. ggml_vec_dot_f16(nek1,
  6710. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6711. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6712. S16);
  6713. }
  6714. } else {
  6715. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6716. // dst indices
  6717. const int i1 = iq1;
  6718. const int i2 = iq2;
  6719. const int i3 = iq3;
  6720. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6721. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6722. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6723. S16);
  6724. }
  6725. }
  6726. }
  6727. }
  6728. static void ggml_compute_forward_flash_attn(
  6729. const struct ggml_compute_params * params,
  6730. const struct ggml_tensor * q,
  6731. const struct ggml_tensor * k,
  6732. const struct ggml_tensor * v,
  6733. const bool masked,
  6734. struct ggml_tensor * dst) {
  6735. switch (q->type) {
  6736. case GGML_TYPE_F16:
  6737. {
  6738. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6739. } break;
  6740. case GGML_TYPE_F32:
  6741. {
  6742. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6743. } break;
  6744. case GGML_TYPE_Q4_0:
  6745. case GGML_TYPE_Q4_1:
  6746. case GGML_TYPE_I8:
  6747. case GGML_TYPE_I16:
  6748. case GGML_TYPE_I32:
  6749. case GGML_TYPE_COUNT:
  6750. {
  6751. GGML_ASSERT(false);
  6752. } break;
  6753. }
  6754. }
  6755. // ggml_compute_forward_flash_ff
  6756. static void ggml_compute_forward_flash_ff_f16(
  6757. const struct ggml_compute_params * params,
  6758. const struct ggml_tensor * a, // F16
  6759. const struct ggml_tensor * b0, // F16 fc_w
  6760. const struct ggml_tensor * b1, // F32 fc_b
  6761. const struct ggml_tensor * c0, // F16 proj_w
  6762. const struct ggml_tensor * c1, // F32 proj_b
  6763. struct ggml_tensor * dst) {
  6764. int64_t t0 = ggml_perf_time_us();
  6765. UNUSED(t0);
  6766. const int nea0 = a->ne[0];
  6767. const int nea1 = a->ne[1];
  6768. const int nea2 = a->ne[2];
  6769. const int nea3 = a->ne[3];
  6770. const int neb00 = b0->ne[0];
  6771. const int neb01 = b0->ne[1];
  6772. //const int neb02 = b0->ne[2];
  6773. //const int neb03 = b0->ne[3];
  6774. const int neb10 = b1->ne[0];
  6775. const int neb11 = b1->ne[1];
  6776. //const int neb12 = b1->ne[2];
  6777. //const int neb13 = b1->ne[3];
  6778. const int nec00 = c0->ne[0];
  6779. const int nec01 = c0->ne[1];
  6780. //const int nec02 = c0->ne[2];
  6781. //const int nec03 = c0->ne[3];
  6782. const int nec10 = c1->ne[0];
  6783. const int nec11 = c1->ne[1];
  6784. //const int nec12 = c1->ne[2];
  6785. //const int nec13 = c1->ne[3];
  6786. const int ne0 = dst->ne[0];
  6787. const int ne1 = dst->ne[1];
  6788. const int ne2 = dst->ne[2];
  6789. //const int ne3 = dst->ne[3];
  6790. const int nba0 = a->nb[0];
  6791. const int nba1 = a->nb[1];
  6792. const int nba2 = a->nb[2];
  6793. const int nba3 = a->nb[3];
  6794. const int nbb00 = b0->nb[0];
  6795. const int nbb01 = b0->nb[1];
  6796. const int nbb02 = b0->nb[2];
  6797. const int nbb03 = b0->nb[3];
  6798. const int nbb10 = b1->nb[0];
  6799. //const int nbb11 = b1->nb[1];
  6800. //const int nbb12 = b1->nb[2];
  6801. //const int nbb13 = b1->nb[3];
  6802. const int nbc00 = c0->nb[0];
  6803. const int nbc01 = c0->nb[1];
  6804. const int nbc02 = c0->nb[2];
  6805. const int nbc03 = c0->nb[3];
  6806. const int nbc10 = c1->nb[0];
  6807. //const int nbc11 = c1->nb[1];
  6808. //const int nbc12 = c1->nb[2];
  6809. //const int nbc13 = c1->nb[3];
  6810. const int nb0 = dst->nb[0];
  6811. const int nb1 = dst->nb[1];
  6812. const int nb2 = dst->nb[2];
  6813. const int nb3 = dst->nb[3];
  6814. const int ith = params->ith;
  6815. const int nth = params->nth;
  6816. const int D = nea0;
  6817. //const int N = nea1;
  6818. const int M = neb01;
  6819. GGML_ASSERT(ne0 == nea0);
  6820. GGML_ASSERT(ne1 == nea1);
  6821. GGML_ASSERT(ne2 == nea2);
  6822. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6823. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6824. GGML_ASSERT(nbb10 == sizeof(float));
  6825. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6826. GGML_ASSERT(nbc10 == sizeof(float));
  6827. GGML_ASSERT(neb00 == D);
  6828. GGML_ASSERT(neb01 == M);
  6829. GGML_ASSERT(neb10 == M);
  6830. GGML_ASSERT(neb11 == 1);
  6831. GGML_ASSERT(nec00 == M);
  6832. GGML_ASSERT(nec01 == D);
  6833. GGML_ASSERT(nec10 == D);
  6834. GGML_ASSERT(nec11 == 1);
  6835. // dst cannot be transposed or permuted
  6836. GGML_ASSERT(nb0 == sizeof(float));
  6837. GGML_ASSERT(nb0 <= nb1);
  6838. GGML_ASSERT(nb1 <= nb2);
  6839. GGML_ASSERT(nb2 <= nb3);
  6840. if (params->type == GGML_TASK_INIT) {
  6841. return;
  6842. }
  6843. if (params->type == GGML_TASK_FINALIZE) {
  6844. return;
  6845. }
  6846. // parallelize by a rows using ggml_vec_dot_f32
  6847. // total rows in a
  6848. const int nr = nea1*nea2*nea3;
  6849. // rows per thread
  6850. const int dr = (nr + nth - 1)/nth;
  6851. // row range for this thread
  6852. const int ir0 = dr*ith;
  6853. const int ir1 = MIN(ir0 + dr, nr);
  6854. for (int ir = ir0; ir < ir1; ++ir) {
  6855. // a indices
  6856. const int ia3 = ir/(nea2*nea1);
  6857. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6858. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6859. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6860. for (int ic = 0; ic < neb01; ++ic) {
  6861. // b0 indices
  6862. const int ib03 = ia3;
  6863. const int ib02 = ia2;
  6864. const int ib01 = ic;
  6865. // S indices
  6866. const int i1 = ib01;
  6867. ggml_vec_dot_f16(nea0,
  6868. S + i1,
  6869. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6870. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6871. }
  6872. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6873. //ggml_vec_gelu_f32(neb01, S, S);
  6874. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6875. for (int i = 0; i < M; i++) {
  6876. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6877. }
  6878. ggml_vec_gelu_f16(neb01, S16, S16);
  6879. {
  6880. // dst indices
  6881. const int i1 = ia1;
  6882. const int i2 = ia2;
  6883. const int i3 = ia3;
  6884. for (int ic = 0; ic < nec01; ++ic) {
  6885. ggml_vec_dot_f16(neb01,
  6886. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6887. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6888. S16);
  6889. }
  6890. ggml_vec_add_f32(nec01,
  6891. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6892. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6893. (float *) c1->data);
  6894. }
  6895. }
  6896. }
  6897. static void ggml_compute_forward_flash_ff(
  6898. const struct ggml_compute_params * params,
  6899. const struct ggml_tensor * a,
  6900. const struct ggml_tensor * b0,
  6901. const struct ggml_tensor * b1,
  6902. const struct ggml_tensor * c0,
  6903. const struct ggml_tensor * c1,
  6904. struct ggml_tensor * dst) {
  6905. switch (b0->type) {
  6906. case GGML_TYPE_F16:
  6907. {
  6908. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6909. } break;
  6910. case GGML_TYPE_F32:
  6911. {
  6912. GGML_ASSERT(false); // TODO
  6913. } break;
  6914. case GGML_TYPE_Q4_0:
  6915. case GGML_TYPE_Q4_1:
  6916. case GGML_TYPE_I8:
  6917. case GGML_TYPE_I16:
  6918. case GGML_TYPE_I32:
  6919. case GGML_TYPE_COUNT:
  6920. {
  6921. GGML_ASSERT(false);
  6922. } break;
  6923. }
  6924. }
  6925. /////////////////////////////////
  6926. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6927. GGML_ASSERT(params);
  6928. switch (tensor->op) {
  6929. case GGML_OP_DUP:
  6930. {
  6931. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6932. } break;
  6933. case GGML_OP_ADD:
  6934. {
  6935. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6936. } break;
  6937. case GGML_OP_SUB:
  6938. {
  6939. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6940. } break;
  6941. case GGML_OP_MUL:
  6942. {
  6943. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6944. } break;
  6945. case GGML_OP_DIV:
  6946. {
  6947. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6948. } break;
  6949. case GGML_OP_SQR:
  6950. {
  6951. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6952. } break;
  6953. case GGML_OP_SQRT:
  6954. {
  6955. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6956. } break;
  6957. case GGML_OP_SUM:
  6958. {
  6959. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6960. } break;
  6961. case GGML_OP_MEAN:
  6962. {
  6963. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6964. } break;
  6965. case GGML_OP_REPEAT:
  6966. {
  6967. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6968. } break;
  6969. case GGML_OP_ABS:
  6970. {
  6971. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6972. } break;
  6973. case GGML_OP_SGN:
  6974. {
  6975. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6976. } break;
  6977. case GGML_OP_NEG:
  6978. {
  6979. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6980. } break;
  6981. case GGML_OP_STEP:
  6982. {
  6983. ggml_compute_forward_step(params, tensor->src0, tensor);
  6984. } break;
  6985. case GGML_OP_RELU:
  6986. {
  6987. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6988. } break;
  6989. case GGML_OP_GELU:
  6990. {
  6991. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6992. } break;
  6993. case GGML_OP_SILU:
  6994. {
  6995. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6996. } break;
  6997. case GGML_OP_NORM:
  6998. {
  6999. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7000. } break;
  7001. case GGML_OP_RMS_NORM:
  7002. {
  7003. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7004. } break;
  7005. case GGML_OP_MUL_MAT:
  7006. {
  7007. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7008. } break;
  7009. case GGML_OP_SCALE:
  7010. {
  7011. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7012. } break;
  7013. case GGML_OP_CPY:
  7014. {
  7015. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7016. } break;
  7017. case GGML_OP_RESHAPE:
  7018. {
  7019. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7020. } break;
  7021. case GGML_OP_VIEW:
  7022. {
  7023. ggml_compute_forward_view(params, tensor->src0);
  7024. } break;
  7025. case GGML_OP_PERMUTE:
  7026. {
  7027. ggml_compute_forward_permute(params, tensor->src0);
  7028. } break;
  7029. case GGML_OP_TRANSPOSE:
  7030. {
  7031. ggml_compute_forward_transpose(params, tensor->src0);
  7032. } break;
  7033. case GGML_OP_GET_ROWS:
  7034. {
  7035. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7036. } break;
  7037. case GGML_OP_DIAG_MASK_INF:
  7038. {
  7039. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7040. } break;
  7041. case GGML_OP_SOFT_MAX:
  7042. {
  7043. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7044. } break;
  7045. case GGML_OP_ROPE:
  7046. {
  7047. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7048. } break;
  7049. case GGML_OP_CONV_1D_1S:
  7050. {
  7051. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7052. } break;
  7053. case GGML_OP_CONV_1D_2S:
  7054. {
  7055. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7056. } break;
  7057. case GGML_OP_FLASH_ATTN:
  7058. {
  7059. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7060. GGML_ASSERT(t == 0 || t == 1);
  7061. bool masked = t != 0;
  7062. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7063. } break;
  7064. case GGML_OP_FLASH_FF:
  7065. {
  7066. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7067. } break;
  7068. case GGML_OP_NONE:
  7069. {
  7070. // nop
  7071. } break;
  7072. case GGML_OP_COUNT:
  7073. {
  7074. GGML_ASSERT(false);
  7075. } break;
  7076. }
  7077. }
  7078. ////////////////////////////////////////////////////////////////////////////////
  7079. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7080. struct ggml_tensor * src0 = tensor->src0;
  7081. struct ggml_tensor * src1 = tensor->src1;
  7082. switch (tensor->op) {
  7083. case GGML_OP_DUP:
  7084. {
  7085. if (src0->grad) {
  7086. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7087. }
  7088. } break;
  7089. case GGML_OP_ADD:
  7090. {
  7091. if (src0->grad) {
  7092. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7093. }
  7094. if (src1->grad) {
  7095. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7096. }
  7097. } break;
  7098. case GGML_OP_SUB:
  7099. {
  7100. if (src0->grad) {
  7101. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7102. }
  7103. if (src1->grad) {
  7104. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7105. }
  7106. } break;
  7107. case GGML_OP_MUL:
  7108. {
  7109. if (src0->grad) {
  7110. src0->grad =
  7111. ggml_add_impl(ctx,
  7112. src0->grad,
  7113. ggml_mul(ctx, src1, tensor->grad),
  7114. inplace);
  7115. }
  7116. if (src1->grad) {
  7117. src1->grad =
  7118. ggml_add_impl(ctx,
  7119. src1->grad,
  7120. ggml_mul(ctx, src0, tensor->grad),
  7121. inplace);
  7122. }
  7123. } break;
  7124. case GGML_OP_DIV:
  7125. {
  7126. if (src0->grad) {
  7127. src0->grad =
  7128. ggml_add_impl(ctx,
  7129. src0->grad,
  7130. ggml_div(ctx, tensor->grad, src1),
  7131. inplace);
  7132. }
  7133. if (src1->grad) {
  7134. src1->grad =
  7135. ggml_sub_impl(ctx,
  7136. src1->grad,
  7137. ggml_mul(ctx,
  7138. tensor->grad,
  7139. ggml_div(ctx, tensor, src1)),
  7140. inplace);
  7141. }
  7142. } break;
  7143. case GGML_OP_SQR:
  7144. {
  7145. if (src0->grad) {
  7146. src0->grad =
  7147. ggml_add_impl(ctx,
  7148. src0->grad,
  7149. ggml_mul(ctx,
  7150. ggml_mul(ctx, src0, tensor->grad),
  7151. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7152. inplace);
  7153. }
  7154. } break;
  7155. case GGML_OP_SQRT:
  7156. {
  7157. if (src0->grad) {
  7158. src0->grad =
  7159. ggml_add_impl(ctx,
  7160. src0->grad,
  7161. ggml_div(ctx,
  7162. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7163. tensor),
  7164. inplace);
  7165. }
  7166. } break;
  7167. case GGML_OP_SUM:
  7168. {
  7169. if (src0->grad) {
  7170. src0->grad =
  7171. ggml_add_impl(ctx,
  7172. src0->grad,
  7173. ggml_repeat(ctx, tensor->grad, src0->grad),
  7174. inplace);
  7175. }
  7176. } break;
  7177. case GGML_OP_MEAN:
  7178. {
  7179. GGML_ASSERT(false); // TODO: implement
  7180. } break;
  7181. case GGML_OP_REPEAT:
  7182. {
  7183. if (src0->grad) {
  7184. src0->grad =
  7185. ggml_add_impl(ctx,
  7186. src0->grad,
  7187. ggml_sum(ctx, tensor->grad),
  7188. inplace);
  7189. }
  7190. } break;
  7191. case GGML_OP_ABS:
  7192. {
  7193. if (src0->grad) {
  7194. src0->grad =
  7195. ggml_add_impl(ctx,
  7196. src0->grad,
  7197. ggml_mul(ctx,
  7198. ggml_sgn(ctx, src0),
  7199. tensor->grad),
  7200. inplace);
  7201. }
  7202. } break;
  7203. case GGML_OP_SGN:
  7204. {
  7205. if (src0->grad) {
  7206. // noop
  7207. }
  7208. } break;
  7209. case GGML_OP_NEG:
  7210. {
  7211. if (src0->grad) {
  7212. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7213. }
  7214. } break;
  7215. case GGML_OP_STEP:
  7216. {
  7217. if (src0->grad) {
  7218. // noop
  7219. }
  7220. } break;
  7221. case GGML_OP_RELU:
  7222. {
  7223. if (src0->grad) {
  7224. src0->grad = ggml_sub_impl(ctx,
  7225. src0->grad,
  7226. ggml_mul(ctx,
  7227. ggml_step(ctx, src0),
  7228. tensor->grad),
  7229. inplace);
  7230. }
  7231. } break;
  7232. case GGML_OP_GELU:
  7233. {
  7234. GGML_ASSERT(false); // TODO: not implemented
  7235. } break;
  7236. case GGML_OP_SILU:
  7237. {
  7238. GGML_ASSERT(false); // TODO: not implemented
  7239. } break;
  7240. case GGML_OP_NORM:
  7241. {
  7242. GGML_ASSERT(false); // TODO: not implemented
  7243. } break;
  7244. case GGML_OP_RMS_NORM:
  7245. {
  7246. GGML_ASSERT(false); // TODO: not implemented
  7247. } break;
  7248. case GGML_OP_MUL_MAT:
  7249. {
  7250. if (src0->grad) {
  7251. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7252. GGML_ASSERT(false);
  7253. }
  7254. if (src1->grad) {
  7255. src1->grad =
  7256. ggml_add_impl(ctx,
  7257. src1->grad,
  7258. // TODO: fix transpose, the node will break the graph connections
  7259. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7260. inplace);
  7261. }
  7262. } break;
  7263. case GGML_OP_SCALE:
  7264. {
  7265. GGML_ASSERT(false); // TODO: not implemented
  7266. } break;
  7267. case GGML_OP_CPY:
  7268. {
  7269. GGML_ASSERT(false); // TODO: not implemented
  7270. } break;
  7271. case GGML_OP_RESHAPE:
  7272. {
  7273. GGML_ASSERT(false); // TODO: not implemented
  7274. } break;
  7275. case GGML_OP_VIEW:
  7276. {
  7277. GGML_ASSERT(false); // not supported
  7278. } break;
  7279. case GGML_OP_PERMUTE:
  7280. {
  7281. GGML_ASSERT(false); // TODO: not implemented
  7282. } break;
  7283. case GGML_OP_TRANSPOSE:
  7284. {
  7285. GGML_ASSERT(false); // TODO: not implemented
  7286. } break;
  7287. case GGML_OP_GET_ROWS:
  7288. {
  7289. GGML_ASSERT(false); // TODO: not implemented
  7290. } break;
  7291. case GGML_OP_DIAG_MASK_INF:
  7292. {
  7293. GGML_ASSERT(false); // TODO: not implemented
  7294. } break;
  7295. case GGML_OP_SOFT_MAX:
  7296. {
  7297. GGML_ASSERT(false); // TODO: not implemented
  7298. } break;
  7299. case GGML_OP_ROPE:
  7300. {
  7301. GGML_ASSERT(false); // TODO: not implemented
  7302. } break;
  7303. case GGML_OP_CONV_1D_1S:
  7304. {
  7305. GGML_ASSERT(false); // TODO: not implemented
  7306. } break;
  7307. case GGML_OP_CONV_1D_2S:
  7308. {
  7309. GGML_ASSERT(false); // TODO: not implemented
  7310. } break;
  7311. case GGML_OP_FLASH_ATTN:
  7312. {
  7313. GGML_ASSERT(false); // not supported
  7314. } break;
  7315. case GGML_OP_FLASH_FF:
  7316. {
  7317. GGML_ASSERT(false); // not supported
  7318. } break;
  7319. case GGML_OP_NONE:
  7320. {
  7321. // nop
  7322. } break;
  7323. case GGML_OP_COUNT:
  7324. {
  7325. GGML_ASSERT(false);
  7326. } break;
  7327. }
  7328. }
  7329. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7330. if (node->grad == NULL) {
  7331. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7332. // it can also happen during forward pass, if the user performs computations with constants
  7333. if (node->op != GGML_OP_NONE) {
  7334. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7335. }
  7336. }
  7337. // check if already visited
  7338. for (int i = 0; i < cgraph->n_nodes; i++) {
  7339. if (cgraph->nodes[i] == node) {
  7340. return;
  7341. }
  7342. }
  7343. for (int i = 0; i < cgraph->n_leafs; i++) {
  7344. if (cgraph->leafs[i] == node) {
  7345. return;
  7346. }
  7347. }
  7348. if (node->src0) {
  7349. ggml_visit_parents(cgraph, node->src0);
  7350. }
  7351. if (node->src1) {
  7352. ggml_visit_parents(cgraph, node->src1);
  7353. }
  7354. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7355. if (node->opt[i]) {
  7356. ggml_visit_parents(cgraph, node->opt[i]);
  7357. }
  7358. }
  7359. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7360. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7361. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7362. cgraph->leafs[cgraph->n_leafs] = node;
  7363. cgraph->n_leafs++;
  7364. } else {
  7365. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7366. cgraph->nodes[cgraph->n_nodes] = node;
  7367. cgraph->grads[cgraph->n_nodes] = node->grad;
  7368. cgraph->n_nodes++;
  7369. }
  7370. }
  7371. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7372. if (!expand) {
  7373. cgraph->n_nodes = 0;
  7374. cgraph->n_leafs = 0;
  7375. }
  7376. const int n0 = cgraph->n_nodes;
  7377. UNUSED(n0);
  7378. ggml_visit_parents(cgraph, tensor);
  7379. const int n_new = cgraph->n_nodes - n0;
  7380. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7381. if (n_new > 0) {
  7382. // the last added node should always be starting point
  7383. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7384. }
  7385. }
  7386. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7387. ggml_build_forward_impl(cgraph, tensor, true);
  7388. }
  7389. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7390. struct ggml_cgraph result = {
  7391. /*.n_nodes =*/ 0,
  7392. /*.n_leafs =*/ 0,
  7393. /*.n_threads =*/ 0,
  7394. /*.work_size =*/ 0,
  7395. /*.work =*/ NULL,
  7396. /*.nodes =*/ { NULL },
  7397. /*.grads =*/ { NULL },
  7398. /*.leafs =*/ { NULL },
  7399. /*.perf_runs =*/ 0,
  7400. /*.perf_cycles =*/ 0,
  7401. /*.perf_time_us =*/ 0,
  7402. };
  7403. ggml_build_forward_impl(&result, tensor, false);
  7404. return result;
  7405. }
  7406. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7407. struct ggml_cgraph result = *gf;
  7408. GGML_ASSERT(gf->n_nodes > 0);
  7409. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7410. if (keep) {
  7411. for (int i = 0; i < gf->n_nodes; i++) {
  7412. struct ggml_tensor * node = gf->nodes[i];
  7413. if (node->grad) {
  7414. node->grad = ggml_dup_tensor(ctx, node);
  7415. gf->grads[i] = node->grad;
  7416. }
  7417. }
  7418. }
  7419. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7420. struct ggml_tensor * node = gf->nodes[i];
  7421. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7422. if (node->grad) {
  7423. ggml_compute_backward(ctx, node, keep);
  7424. }
  7425. }
  7426. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7427. struct ggml_tensor * node = gf->nodes[i];
  7428. if (node->is_param) {
  7429. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7430. ggml_build_forward_impl(&result, node->grad, true);
  7431. }
  7432. }
  7433. return result;
  7434. }
  7435. //
  7436. // thread data
  7437. //
  7438. // synchronization is done via busy loops
  7439. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7440. //
  7441. #ifdef __APPLE__
  7442. //#include <os/lock.h>
  7443. //
  7444. //typedef os_unfair_lock ggml_lock_t;
  7445. //
  7446. //#define ggml_lock_init(x) UNUSED(x)
  7447. //#define ggml_lock_destroy(x) UNUSED(x)
  7448. //#define ggml_lock_lock os_unfair_lock_lock
  7449. //#define ggml_lock_unlock os_unfair_lock_unlock
  7450. //
  7451. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7452. typedef int ggml_lock_t;
  7453. #define ggml_lock_init(x) UNUSED(x)
  7454. #define ggml_lock_destroy(x) UNUSED(x)
  7455. #define ggml_lock_lock(x) UNUSED(x)
  7456. #define ggml_lock_unlock(x) UNUSED(x)
  7457. #define GGML_LOCK_INITIALIZER 0
  7458. typedef pthread_t ggml_thread_t;
  7459. #define ggml_thread_create pthread_create
  7460. #define ggml_thread_join pthread_join
  7461. #else
  7462. //typedef pthread_spinlock_t ggml_lock_t;
  7463. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7464. //#define ggml_lock_destroy pthread_spin_destroy
  7465. //#define ggml_lock_lock pthread_spin_lock
  7466. //#define ggml_lock_unlock pthread_spin_unlock
  7467. typedef int ggml_lock_t;
  7468. #define ggml_lock_init(x) UNUSED(x)
  7469. #define ggml_lock_destroy(x) UNUSED(x)
  7470. #define ggml_lock_lock(x) UNUSED(x)
  7471. #define ggml_lock_unlock(x) UNUSED(x)
  7472. #define GGML_LOCK_INITIALIZER 0
  7473. typedef pthread_t ggml_thread_t;
  7474. #define ggml_thread_create pthread_create
  7475. #define ggml_thread_join pthread_join
  7476. #endif
  7477. struct ggml_compute_state_shared {
  7478. ggml_lock_t spin;
  7479. int n_threads;
  7480. // synchronization primitives
  7481. atomic_int n_ready;
  7482. atomic_bool has_work;
  7483. atomic_bool stop; // stop all threads
  7484. };
  7485. struct ggml_compute_state {
  7486. ggml_thread_t thrd;
  7487. struct ggml_compute_params params;
  7488. struct ggml_tensor * node;
  7489. struct ggml_compute_state_shared * shared;
  7490. };
  7491. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7492. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7493. const int n_threads = state->shared->n_threads;
  7494. while (true) {
  7495. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7496. atomic_store(&state->shared->has_work, false);
  7497. } else {
  7498. while (atomic_load(&state->shared->has_work)) {
  7499. if (atomic_load(&state->shared->stop)) {
  7500. return 0;
  7501. }
  7502. ggml_lock_lock (&state->shared->spin);
  7503. ggml_lock_unlock(&state->shared->spin);
  7504. }
  7505. }
  7506. atomic_fetch_sub(&state->shared->n_ready, 1);
  7507. // wait for work
  7508. while (!atomic_load(&state->shared->has_work)) {
  7509. if (atomic_load(&state->shared->stop)) {
  7510. return 0;
  7511. }
  7512. ggml_lock_lock (&state->shared->spin);
  7513. ggml_lock_unlock(&state->shared->spin);
  7514. }
  7515. // check if we should stop
  7516. if (atomic_load(&state->shared->stop)) {
  7517. break;
  7518. }
  7519. if (state->node) {
  7520. if (state->params.ith < state->params.nth) {
  7521. ggml_compute_forward(&state->params, state->node);
  7522. }
  7523. state->node = NULL;
  7524. } else {
  7525. break;
  7526. }
  7527. }
  7528. return 0;
  7529. }
  7530. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7531. const int n_threads = cgraph->n_threads;
  7532. struct ggml_compute_state_shared state_shared = {
  7533. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7534. /*.n_threads =*/ n_threads,
  7535. /*.n_ready =*/ 0,
  7536. /*.has_work =*/ false,
  7537. /*.stop =*/ false,
  7538. };
  7539. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7540. // create thread pool
  7541. if (n_threads > 1) {
  7542. ggml_lock_init(&state_shared.spin);
  7543. atomic_store(&state_shared.has_work, true);
  7544. for (int j = 0; j < n_threads - 1; j++) {
  7545. workers[j] = (struct ggml_compute_state) {
  7546. .thrd = 0,
  7547. .params = {
  7548. .type = GGML_TASK_COMPUTE,
  7549. .ith = j + 1,
  7550. .nth = n_threads,
  7551. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7552. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7553. },
  7554. .node = NULL,
  7555. .shared = &state_shared,
  7556. };
  7557. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7558. GGML_ASSERT(rc == 0);
  7559. UNUSED(rc);
  7560. }
  7561. }
  7562. // initialize tasks + work buffer
  7563. {
  7564. size_t work_size = 0;
  7565. // thread scheduling for the different operations
  7566. for (int i = 0; i < cgraph->n_nodes; i++) {
  7567. struct ggml_tensor * node = cgraph->nodes[i];
  7568. switch (node->op) {
  7569. case GGML_OP_DUP:
  7570. {
  7571. node->n_tasks = 1;
  7572. } break;
  7573. case GGML_OP_ADD:
  7574. {
  7575. node->n_tasks = n_threads;
  7576. } break;
  7577. case GGML_OP_SUB:
  7578. case GGML_OP_MUL:
  7579. case GGML_OP_DIV:
  7580. case GGML_OP_SQR:
  7581. case GGML_OP_SQRT:
  7582. case GGML_OP_SUM:
  7583. case GGML_OP_MEAN:
  7584. case GGML_OP_REPEAT:
  7585. case GGML_OP_ABS:
  7586. case GGML_OP_SGN:
  7587. case GGML_OP_NEG:
  7588. case GGML_OP_STEP:
  7589. case GGML_OP_RELU:
  7590. {
  7591. node->n_tasks = 1;
  7592. } break;
  7593. case GGML_OP_GELU:
  7594. {
  7595. node->n_tasks = n_threads;
  7596. } break;
  7597. case GGML_OP_SILU:
  7598. {
  7599. node->n_tasks = n_threads;
  7600. } break;
  7601. case GGML_OP_NORM:
  7602. case GGML_OP_RMS_NORM:
  7603. {
  7604. node->n_tasks = n_threads;
  7605. } break;
  7606. case GGML_OP_MUL_MAT:
  7607. {
  7608. node->n_tasks = n_threads;
  7609. // TODO: use different scheduling for different matrix sizes
  7610. //const int nr0 = ggml_nrows(node->src0);
  7611. //const int nr1 = ggml_nrows(node->src1);
  7612. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7613. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7614. size_t cur = 0;
  7615. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7616. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7617. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7618. node->n_tasks = 1; // TODO: this actually is doing nothing
  7619. // the threads are still spinning
  7620. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7621. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7622. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7623. //printf("cur = %zu\n", cur);
  7624. } else {
  7625. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7626. }
  7627. #else
  7628. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7629. #endif
  7630. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7631. cur = 0;
  7632. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7633. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7634. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7635. node->n_tasks = 1;
  7636. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7637. } else
  7638. #endif
  7639. {
  7640. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7641. }
  7642. } else {
  7643. GGML_ASSERT(false);
  7644. }
  7645. work_size = MAX(work_size, cur);
  7646. } break;
  7647. case GGML_OP_SCALE:
  7648. {
  7649. node->n_tasks = n_threads;
  7650. } break;
  7651. case GGML_OP_CPY:
  7652. case GGML_OP_RESHAPE:
  7653. case GGML_OP_VIEW:
  7654. case GGML_OP_PERMUTE:
  7655. case GGML_OP_TRANSPOSE:
  7656. case GGML_OP_GET_ROWS:
  7657. case GGML_OP_DIAG_MASK_INF:
  7658. {
  7659. node->n_tasks = 1;
  7660. } break;
  7661. case GGML_OP_SOFT_MAX:
  7662. {
  7663. node->n_tasks = n_threads;
  7664. } break;
  7665. case GGML_OP_ROPE:
  7666. {
  7667. node->n_tasks = 1;
  7668. } break;
  7669. case GGML_OP_CONV_1D_1S:
  7670. case GGML_OP_CONV_1D_2S:
  7671. {
  7672. node->n_tasks = n_threads;
  7673. GGML_ASSERT(node->src0->ne[3] == 1);
  7674. GGML_ASSERT(node->src1->ne[2] == 1);
  7675. GGML_ASSERT(node->src1->ne[3] == 1);
  7676. size_t cur = 0;
  7677. const int nk = node->src0->ne[0];
  7678. if (node->src0->type == GGML_TYPE_F16 &&
  7679. node->src1->type == GGML_TYPE_F32) {
  7680. cur = sizeof(ggml_fp16_t)*(
  7681. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7682. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7683. );
  7684. } else if (node->src0->type == GGML_TYPE_F32 &&
  7685. node->src1->type == GGML_TYPE_F32) {
  7686. cur = sizeof(float)*(
  7687. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7688. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7689. );
  7690. } else {
  7691. GGML_ASSERT(false);
  7692. }
  7693. work_size = MAX(work_size, cur);
  7694. } break;
  7695. case GGML_OP_FLASH_ATTN:
  7696. {
  7697. node->n_tasks = n_threads;
  7698. size_t cur = 0;
  7699. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7700. if (node->src1->type == GGML_TYPE_F32) {
  7701. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7702. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7703. }
  7704. if (node->src1->type == GGML_TYPE_F16) {
  7705. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7706. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7707. }
  7708. work_size = MAX(work_size, cur);
  7709. } break;
  7710. case GGML_OP_FLASH_FF:
  7711. {
  7712. node->n_tasks = n_threads;
  7713. size_t cur = 0;
  7714. if (node->src1->type == GGML_TYPE_F32) {
  7715. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7716. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7717. }
  7718. if (node->src1->type == GGML_TYPE_F16) {
  7719. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7720. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7721. }
  7722. work_size = MAX(work_size, cur);
  7723. } break;
  7724. case GGML_OP_NONE:
  7725. {
  7726. node->n_tasks = 1;
  7727. } break;
  7728. case GGML_OP_COUNT:
  7729. {
  7730. GGML_ASSERT(false);
  7731. } break;
  7732. }
  7733. }
  7734. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7735. GGML_ASSERT(false); // TODO: better handling
  7736. }
  7737. if (work_size > 0 && cgraph->work == NULL) {
  7738. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7739. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7740. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7741. }
  7742. }
  7743. const int64_t perf_start_cycles = ggml_perf_cycles();
  7744. const int64_t perf_start_time_us = ggml_perf_time_us();
  7745. for (int i = 0; i < cgraph->n_nodes; i++) {
  7746. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7747. struct ggml_tensor * node = cgraph->nodes[i];
  7748. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7749. //if (node->grad == NULL && node->perf_runs > 0) {
  7750. // continue;
  7751. //}
  7752. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7753. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7754. // INIT
  7755. struct ggml_compute_params params = {
  7756. /*.type =*/ GGML_TASK_INIT,
  7757. /*.ith =*/ 0,
  7758. /*.nth =*/ node->n_tasks,
  7759. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7760. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7761. };
  7762. ggml_compute_forward(&params, node);
  7763. // COMPUTE
  7764. if (node->n_tasks > 1) {
  7765. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7766. atomic_store(&state_shared.has_work, false);
  7767. }
  7768. while (atomic_load(&state_shared.has_work)) {
  7769. ggml_lock_lock (&state_shared.spin);
  7770. ggml_lock_unlock(&state_shared.spin);
  7771. }
  7772. // launch thread pool
  7773. for (int j = 0; j < n_threads - 1; j++) {
  7774. workers[j].params = (struct ggml_compute_params) {
  7775. .type = GGML_TASK_COMPUTE,
  7776. .ith = j + 1,
  7777. .nth = node->n_tasks,
  7778. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7779. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7780. };
  7781. workers[j].node = node;
  7782. }
  7783. atomic_fetch_sub(&state_shared.n_ready, 1);
  7784. while (atomic_load(&state_shared.n_ready) > 0) {
  7785. ggml_lock_lock (&state_shared.spin);
  7786. ggml_lock_unlock(&state_shared.spin);
  7787. }
  7788. atomic_store(&state_shared.has_work, true);
  7789. }
  7790. params.type = GGML_TASK_COMPUTE;
  7791. ggml_compute_forward(&params, node);
  7792. // wait for thread pool
  7793. if (node->n_tasks > 1) {
  7794. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7795. atomic_store(&state_shared.has_work, false);
  7796. }
  7797. while (atomic_load(&state_shared.has_work)) {
  7798. ggml_lock_lock (&state_shared.spin);
  7799. ggml_lock_unlock(&state_shared.spin);
  7800. }
  7801. atomic_fetch_sub(&state_shared.n_ready, 1);
  7802. while (atomic_load(&state_shared.n_ready) != 0) {
  7803. ggml_lock_lock (&state_shared.spin);
  7804. ggml_lock_unlock(&state_shared.spin);
  7805. }
  7806. }
  7807. // FINALIZE
  7808. if (node->n_tasks > 1) {
  7809. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7810. atomic_store(&state_shared.has_work, false);
  7811. }
  7812. while (atomic_load(&state_shared.has_work)) {
  7813. ggml_lock_lock (&state_shared.spin);
  7814. ggml_lock_unlock(&state_shared.spin);
  7815. }
  7816. // launch thread pool
  7817. for (int j = 0; j < n_threads - 1; j++) {
  7818. workers[j].params = (struct ggml_compute_params) {
  7819. .type = GGML_TASK_FINALIZE,
  7820. .ith = j + 1,
  7821. .nth = node->n_tasks,
  7822. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7823. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7824. };
  7825. workers[j].node = node;
  7826. }
  7827. atomic_fetch_sub(&state_shared.n_ready, 1);
  7828. while (atomic_load(&state_shared.n_ready) > 0) {
  7829. ggml_lock_lock (&state_shared.spin);
  7830. ggml_lock_unlock(&state_shared.spin);
  7831. }
  7832. atomic_store(&state_shared.has_work, true);
  7833. }
  7834. params.type = GGML_TASK_FINALIZE;
  7835. ggml_compute_forward(&params, node);
  7836. // wait for thread pool
  7837. if (node->n_tasks > 1) {
  7838. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7839. atomic_store(&state_shared.has_work, false);
  7840. }
  7841. while (atomic_load(&state_shared.has_work)) {
  7842. ggml_lock_lock (&state_shared.spin);
  7843. ggml_lock_unlock(&state_shared.spin);
  7844. }
  7845. atomic_fetch_sub(&state_shared.n_ready, 1);
  7846. while (atomic_load(&state_shared.n_ready) != 0) {
  7847. ggml_lock_lock (&state_shared.spin);
  7848. ggml_lock_unlock(&state_shared.spin);
  7849. }
  7850. }
  7851. // performance stats (node)
  7852. {
  7853. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7854. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7855. node->perf_runs++;
  7856. node->perf_cycles += perf_cycles_cur;
  7857. node->perf_time_us += perf_time_us_cur;
  7858. }
  7859. }
  7860. // join thread pool
  7861. if (n_threads > 1) {
  7862. atomic_store(&state_shared.stop, true);
  7863. atomic_store(&state_shared.has_work, true);
  7864. for (int j = 0; j < n_threads - 1; j++) {
  7865. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7866. GGML_ASSERT(rc == 0);
  7867. UNUSED(rc);
  7868. }
  7869. ggml_lock_destroy(&state_shared.spin);
  7870. }
  7871. // performance stats (graph)
  7872. {
  7873. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7874. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7875. cgraph->perf_runs++;
  7876. cgraph->perf_cycles += perf_cycles_cur;
  7877. cgraph->perf_time_us += perf_time_us_cur;
  7878. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7879. __func__, cgraph->perf_runs,
  7880. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7881. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7882. (double) perf_time_us_cur / 1000.0,
  7883. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7884. }
  7885. }
  7886. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7887. for (int i = 0; i < cgraph->n_nodes; i++) {
  7888. struct ggml_tensor * grad = cgraph->grads[i];
  7889. if (grad) {
  7890. ggml_set_zero(grad);
  7891. }
  7892. }
  7893. }
  7894. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7895. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7896. GGML_PRINT("=== GRAPH ===\n");
  7897. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7898. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7899. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7900. for (int i = 0; i < cgraph->n_nodes; i++) {
  7901. struct ggml_tensor * node = cgraph->nodes[i];
  7902. perf_total_per_op_us[node->op] += node->perf_time_us;
  7903. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7904. i,
  7905. node->ne[0], node->ne[1], node->ne[2],
  7906. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7907. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7908. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7909. (double) node->perf_time_us / 1000.0,
  7910. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7911. }
  7912. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7913. for (int i = 0; i < cgraph->n_leafs; i++) {
  7914. struct ggml_tensor * node = cgraph->leafs[i];
  7915. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7916. i,
  7917. node->ne[0], node->ne[1],
  7918. GGML_OP_LABEL[node->op]);
  7919. }
  7920. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7921. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7922. }
  7923. GGML_PRINT("========================================\n");
  7924. }
  7925. // check if node is part of the graph
  7926. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7927. if (cgraph == NULL) {
  7928. return true;
  7929. }
  7930. for (int i = 0; i < cgraph->n_nodes; i++) {
  7931. if (cgraph->nodes[i] == node) {
  7932. return true;
  7933. }
  7934. }
  7935. return false;
  7936. }
  7937. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7938. for (int i = 0; i < cgraph->n_nodes; i++) {
  7939. struct ggml_tensor * parent = cgraph->nodes[i];
  7940. if (parent->grad == node) {
  7941. return parent;
  7942. }
  7943. }
  7944. return NULL;
  7945. }
  7946. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7947. char color[16];
  7948. FILE * fp = fopen(filename, "w");
  7949. GGML_ASSERT(fp);
  7950. fprintf(fp, "digraph G {\n");
  7951. fprintf(fp, " newrank = true;\n");
  7952. fprintf(fp, " rankdir = LR;\n");
  7953. for (int i = 0; i < gb->n_nodes; i++) {
  7954. struct ggml_tensor * node = gb->nodes[i];
  7955. if (ggml_graph_get_parent(gb, node) != NULL) {
  7956. continue;
  7957. }
  7958. if (node->is_param) {
  7959. snprintf(color, sizeof(color), "yellow");
  7960. } else if (node->grad) {
  7961. if (ggml_graph_find(gf, node)) {
  7962. snprintf(color, sizeof(color), "green");
  7963. } else {
  7964. snprintf(color, sizeof(color), "lightblue");
  7965. }
  7966. } else {
  7967. snprintf(color, sizeof(color), "white");
  7968. }
  7969. fprintf(fp, " \"%p\" [ \
  7970. style = filled; fillcolor = %s; shape = record; \
  7971. label=\"%d [%d, %d] | <x>%s",
  7972. (void *) node, color,
  7973. i, node->ne[0], node->ne[1],
  7974. GGML_OP_SYMBOL[node->op]);
  7975. if (node->grad) {
  7976. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7977. } else {
  7978. fprintf(fp, "\"; ]\n");
  7979. }
  7980. }
  7981. for (int i = 0; i < gb->n_leafs; i++) {
  7982. struct ggml_tensor * node = gb->leafs[i];
  7983. snprintf(color, sizeof(color), "pink");
  7984. if (ggml_nelements(node) == 1) {
  7985. fprintf(fp, " \"%p\" [ \
  7986. style = filled; fillcolor = %s; shape = record; \
  7987. label=\"<x>%.1e\"; ]\n",
  7988. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  7989. } else {
  7990. fprintf(fp, " \"%p\" [ \
  7991. style = filled; fillcolor = %s; shape = record; \
  7992. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7993. (void *) node, color,
  7994. i, node->ne[0], node->ne[1]);
  7995. }
  7996. }
  7997. for (int i = 0; i < gb->n_nodes; i++) {
  7998. struct ggml_tensor * node = gb->nodes[i];
  7999. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8000. if (node->src0) {
  8001. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8002. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8003. parent0 ? (void *) parent0 : (void *) node->src0,
  8004. parent0 ? "g" : "x",
  8005. parent ? (void *) parent : (void *) node,
  8006. parent ? "g" : "x",
  8007. parent ? "empty" : "vee",
  8008. parent ? "dashed" : "solid");
  8009. }
  8010. if (node->src1) {
  8011. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8012. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8013. parent1 ? (void *) parent1 : (void *) node->src1,
  8014. parent1 ? "g" : "x",
  8015. parent ? (void *) parent : (void *) node,
  8016. parent ? "g" : "x",
  8017. parent ? "empty" : "vee",
  8018. parent ? "dashed" : "solid");
  8019. }
  8020. }
  8021. for (int i = 0; i < gb->n_leafs; i++) {
  8022. struct ggml_tensor * node = gb->leafs[i];
  8023. if (node->src0) {
  8024. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8025. (void *) node->src0, "x",
  8026. (void *) node, "x");
  8027. }
  8028. if (node->src1) {
  8029. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8030. (void *) node->src1, "x",
  8031. (void *) node, "x");
  8032. }
  8033. }
  8034. fprintf(fp, "}\n");
  8035. fclose(fp);
  8036. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8037. }
  8038. ////////////////////////////////////////////////////////////////////////////////
  8039. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8040. int i = 0;
  8041. for (int p = 0; p < np; ++p) {
  8042. const int ne = ggml_nelements(ps[p]) ;
  8043. // TODO: add function to set tensor from array
  8044. for (int j = 0; j < ne; ++j) {
  8045. ggml_set_f32_1d(ps[p], j, x[i++]);
  8046. }
  8047. }
  8048. }
  8049. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8050. int i = 0;
  8051. for (int p = 0; p < np; ++p) {
  8052. const int ne = ggml_nelements(ps[p]) ;
  8053. // TODO: add function to get all elements at once
  8054. for (int j = 0; j < ne; ++j) {
  8055. x[i++] = ggml_get_f32_1d(ps[p], j);
  8056. }
  8057. }
  8058. }
  8059. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8060. int i = 0;
  8061. for (int p = 0; p < np; ++p) {
  8062. const int ne = ggml_nelements(ps[p]) ;
  8063. // TODO: add function to get all elements at once
  8064. for (int j = 0; j < ne; ++j) {
  8065. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8066. }
  8067. }
  8068. }
  8069. //
  8070. // ADAM
  8071. //
  8072. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8073. //
  8074. static enum ggml_opt_result ggml_opt_adam(
  8075. struct ggml_context * ctx,
  8076. struct ggml_opt_params params,
  8077. struct ggml_tensor * f,
  8078. struct ggml_cgraph * gf,
  8079. struct ggml_cgraph * gb) {
  8080. GGML_ASSERT(ggml_is_scalar(f));
  8081. gf->n_threads = params.n_threads;
  8082. gb->n_threads = params.n_threads;
  8083. // these will store the parameters we want to optimize
  8084. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8085. int np = 0;
  8086. int nx = 0;
  8087. for (int i = 0; i < gf->n_nodes; ++i) {
  8088. if (gf->nodes[i]->is_param) {
  8089. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8090. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8091. ps[np++] = gf->nodes[i];
  8092. nx += ggml_nelements(gf->nodes[i]);
  8093. }
  8094. }
  8095. // constants
  8096. const float alpha = params.adam.alpha;
  8097. const float beta1 = params.adam.beta1;
  8098. const float beta2 = params.adam.beta2;
  8099. const float eps = params.adam.eps;
  8100. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8101. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8102. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8103. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8104. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8105. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8106. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8107. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8108. // initialize
  8109. ggml_vec_set_f32(nx, m, 0.0f);
  8110. ggml_vec_set_f32(nx, v, 0.0f);
  8111. // update view
  8112. ggml_opt_get_params(np, ps, x);
  8113. // compute the function value
  8114. ggml_graph_reset (gf);
  8115. ggml_set_f32 (f->grad, 1.0f);
  8116. ggml_graph_compute(ctx, gb);
  8117. float fx_prev = ggml_get_f32_1d(f, 0);
  8118. if (pf) {
  8119. pf[0] = fx_prev;
  8120. }
  8121. int n_no_improvement = 0;
  8122. float fx_best = fx_prev;
  8123. // run the optimizer
  8124. for (int t = 0; t < params.adam.n_iter; ++t) {
  8125. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8126. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8127. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8128. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8129. for (int i = 0; i < np; ++i) {
  8130. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8131. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8132. }
  8133. const int64_t t_start_wall = ggml_time_us();
  8134. const int64_t t_start_cpu = ggml_cycles();
  8135. UNUSED(t_start_wall);
  8136. UNUSED(t_start_cpu);
  8137. {
  8138. // update the gradient
  8139. ggml_opt_get_grad(np, ps, g1);
  8140. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8141. ggml_vec_scale_f32(nx, m, beta1);
  8142. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8143. // g2 = g1^2
  8144. ggml_vec_sqr_f32 (nx, g2, g1);
  8145. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8146. ggml_vec_scale_f32(nx, v, beta2);
  8147. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8148. // m^hat = m_t / (1 - beta1^t)
  8149. // v^hat = v_t / (1 - beta2^t)
  8150. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8151. ggml_vec_cpy_f32 (nx, mh, m);
  8152. ggml_vec_cpy_f32 (nx, vh, v);
  8153. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8154. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8155. ggml_vec_sqrt_f32 (nx, vh, vh);
  8156. ggml_vec_acc1_f32 (nx, vh, eps);
  8157. ggml_vec_div_f32 (nx, mh, mh, vh);
  8158. ggml_vec_sub_f32 (nx, x, x, mh);
  8159. // update the parameters
  8160. ggml_opt_set_params(np, ps, x);
  8161. }
  8162. ggml_graph_reset (gf);
  8163. ggml_set_f32 (f->grad, 1.0f);
  8164. ggml_graph_compute(ctx, gb);
  8165. const float fx = ggml_get_f32_1d(f, 0);
  8166. // check convergence
  8167. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8168. GGML_PRINT_DEBUG("converged\n");
  8169. return GGML_OPT_OK;
  8170. }
  8171. // delta-based convergence test
  8172. if (pf != NULL) {
  8173. // need at least params.past iterations to start checking for convergence
  8174. if (params.past <= t) {
  8175. const float rate = (pf[t%params.past] - fx)/fx;
  8176. if (fabsf(rate) < params.delta) {
  8177. return GGML_OPT_OK;
  8178. }
  8179. }
  8180. pf[t%params.past] = fx;
  8181. }
  8182. // check for improvement
  8183. if (params.max_no_improvement > 0) {
  8184. if (fx_best > fx) {
  8185. fx_best = fx;
  8186. n_no_improvement = 0;
  8187. } else {
  8188. ++n_no_improvement;
  8189. if (n_no_improvement >= params.max_no_improvement) {
  8190. return GGML_OPT_OK;
  8191. }
  8192. }
  8193. }
  8194. fx_prev = fx;
  8195. {
  8196. const int64_t t_end_cpu = ggml_cycles();
  8197. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8198. UNUSED(t_end_cpu);
  8199. const int64_t t_end_wall = ggml_time_us();
  8200. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8201. UNUSED(t_end_wall);
  8202. }
  8203. }
  8204. return GGML_OPT_DID_NOT_CONVERGE;
  8205. }
  8206. //
  8207. // L-BFGS
  8208. //
  8209. // the L-BFGS implementation below is based on the following implementation:
  8210. //
  8211. // https://github.com/chokkan/liblbfgs
  8212. //
  8213. struct ggml_lbfgs_iteration_data {
  8214. float alpha;
  8215. float ys;
  8216. float * s;
  8217. float * y;
  8218. };
  8219. static enum ggml_opt_result linesearch_backtracking(
  8220. struct ggml_context * ctx,
  8221. const struct ggml_opt_params * params,
  8222. int nx,
  8223. float * x,
  8224. float * fx,
  8225. float * g,
  8226. float * d,
  8227. float * step,
  8228. const float * xp,
  8229. struct ggml_tensor * f,
  8230. struct ggml_cgraph * gf,
  8231. struct ggml_cgraph * gb,
  8232. const int np,
  8233. struct ggml_tensor * ps[]) {
  8234. int count = 0;
  8235. float width = 0.0f;
  8236. float dg = 0.0f;
  8237. float finit = 0.0f;
  8238. float dginit = 0.0f;
  8239. float dgtest = 0.0f;
  8240. const float dec = 0.5f;
  8241. const float inc = 2.1f;
  8242. if (*step <= 0.f) {
  8243. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8244. }
  8245. // compute the initial gradient in the search direction
  8246. ggml_vec_dot_f32(nx, &dginit, g, d);
  8247. // make sure that d points to a descent direction
  8248. if (0 < dginit) {
  8249. return GGML_LINESEARCH_FAIL;
  8250. }
  8251. // initialize local variables
  8252. finit = *fx;
  8253. dgtest = params->lbfgs.ftol*dginit;
  8254. while (true) {
  8255. ggml_vec_cpy_f32(nx, x, xp);
  8256. ggml_vec_mad_f32(nx, x, d, *step);
  8257. // evaluate the function and gradient values
  8258. {
  8259. ggml_opt_set_params(np, ps, x);
  8260. ggml_graph_reset (gf);
  8261. ggml_set_f32 (f->grad, 1.0f);
  8262. ggml_graph_compute(ctx, gb);
  8263. ggml_opt_get_grad(np, ps, g);
  8264. *fx = ggml_get_f32_1d(f, 0);
  8265. }
  8266. ++count;
  8267. if (*fx > finit + (*step)*dgtest) {
  8268. width = dec;
  8269. } else {
  8270. // Armijo condition is satisfied
  8271. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8272. return count;
  8273. }
  8274. ggml_vec_dot_f32(nx, &dg, g, d);
  8275. // check the Wolfe condition
  8276. if (dg < params->lbfgs.wolfe * dginit) {
  8277. width = inc;
  8278. } else {
  8279. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8280. // regular Wolfe conditions
  8281. return count;
  8282. }
  8283. if(dg > -params->lbfgs.wolfe*dginit) {
  8284. width = dec;
  8285. } else {
  8286. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8287. return count;
  8288. }
  8289. return count;
  8290. }
  8291. }
  8292. if (*step < params->lbfgs.min_step) {
  8293. return GGML_LINESEARCH_MINIMUM_STEP;
  8294. }
  8295. if (*step > params->lbfgs.max_step) {
  8296. return GGML_LINESEARCH_MAXIMUM_STEP;
  8297. }
  8298. if (params->lbfgs.max_linesearch <= count) {
  8299. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8300. }
  8301. (*step) *= width;
  8302. }
  8303. return GGML_LINESEARCH_FAIL;
  8304. }
  8305. static enum ggml_opt_result ggml_opt_lbfgs(
  8306. struct ggml_context * ctx,
  8307. struct ggml_opt_params params,
  8308. struct ggml_tensor * f,
  8309. struct ggml_cgraph * gf,
  8310. struct ggml_cgraph * gb) {
  8311. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8312. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8313. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8314. return GGML_OPT_INVALID_WOLFE;
  8315. }
  8316. }
  8317. gf->n_threads = params.n_threads;
  8318. gb->n_threads = params.n_threads;
  8319. const int m = params.lbfgs.m;
  8320. // these will store the parameters we want to optimize
  8321. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8322. int np = 0;
  8323. int nx = 0;
  8324. for (int i = 0; i < gf->n_nodes; ++i) {
  8325. if (gf->nodes[i]->is_param) {
  8326. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8327. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8328. ps[np++] = gf->nodes[i];
  8329. nx += ggml_nelements(gf->nodes[i]);
  8330. }
  8331. }
  8332. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8333. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8334. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8335. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8336. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8337. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8338. float fx = 0.0f; // cost function value
  8339. float xnorm = 0.0f; // ||x||
  8340. float gnorm = 0.0f; // ||g||
  8341. float step = 0.0f;
  8342. // initialize x from the graph nodes
  8343. ggml_opt_get_params(np, ps, x);
  8344. // the L-BFGS memory
  8345. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8346. for (int i = 0; i < m; ++i) {
  8347. lm[i].alpha = 0.0f;
  8348. lm[i].ys = 0.0f;
  8349. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8350. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8351. }
  8352. // evaluate the function value and its gradient
  8353. {
  8354. ggml_opt_set_params(np, ps, x);
  8355. ggml_graph_reset (gf);
  8356. ggml_set_f32 (f->grad, 1.0f);
  8357. ggml_graph_compute(ctx, gb);
  8358. ggml_opt_get_grad(np, ps, g);
  8359. fx = ggml_get_f32_1d(f, 0);
  8360. }
  8361. if (pf) {
  8362. pf[0] = fx;
  8363. }
  8364. float fx_best = fx;
  8365. // search direction = -gradient
  8366. ggml_vec_neg_f32(nx, d, g);
  8367. // ||x||, ||g||
  8368. ggml_vec_norm_f32(nx, &xnorm, x);
  8369. ggml_vec_norm_f32(nx, &gnorm, g);
  8370. if (xnorm < 1.0f) {
  8371. xnorm = 1.0f;
  8372. }
  8373. // already optimized
  8374. if (gnorm/xnorm <= params.lbfgs.eps) {
  8375. return GGML_OPT_OK;
  8376. }
  8377. // initial step
  8378. ggml_vec_norm_inv_f32(nx, &step, d);
  8379. int j = 0;
  8380. int k = 1;
  8381. int ls = 0;
  8382. int end = 0;
  8383. int bound = 0;
  8384. int n_no_improvement = 0;
  8385. float ys = 0.0f;
  8386. float yy = 0.0f;
  8387. float beta = 0.0f;
  8388. while (true) {
  8389. // store the current position and gradient vectors
  8390. ggml_vec_cpy_f32(nx, xp, x);
  8391. ggml_vec_cpy_f32(nx, gp, g);
  8392. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8393. if (ls < 0) {
  8394. // linesearch failed - go back to the previous point and return
  8395. ggml_vec_cpy_f32(nx, x, xp);
  8396. ggml_vec_cpy_f32(nx, g, gp);
  8397. return ls;
  8398. }
  8399. ggml_vec_norm_f32(nx, &xnorm, x);
  8400. ggml_vec_norm_f32(nx, &gnorm, g);
  8401. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8402. if (xnorm < 1.0f) {
  8403. xnorm = 1.0f;
  8404. }
  8405. if (gnorm/xnorm <= params.lbfgs.eps) {
  8406. // converged
  8407. return GGML_OPT_OK;
  8408. }
  8409. // delta-based convergence test
  8410. if (pf != NULL) {
  8411. // need at least params.past iterations to start checking for convergence
  8412. if (params.past <= k) {
  8413. const float rate = (pf[k%params.past] - fx)/fx;
  8414. if (fabsf(rate) < params.delta) {
  8415. return GGML_OPT_OK;
  8416. }
  8417. }
  8418. pf[k%params.past] = fx;
  8419. }
  8420. // check for improvement
  8421. if (params.max_no_improvement > 0) {
  8422. if (fx < fx_best) {
  8423. fx_best = fx;
  8424. n_no_improvement = 0;
  8425. } else {
  8426. n_no_improvement++;
  8427. if (n_no_improvement >= params.max_no_improvement) {
  8428. return GGML_OPT_OK;
  8429. }
  8430. }
  8431. }
  8432. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8433. // reached the maximum number of iterations
  8434. return GGML_OPT_DID_NOT_CONVERGE;
  8435. }
  8436. // update vectors s and y:
  8437. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8438. // y_{k+1} = g_{k+1} - g_{k}.
  8439. //
  8440. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8441. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8442. // compute scalars ys and yy:
  8443. // ys = y^t \cdot s -> 1 / \rho.
  8444. // yy = y^t \cdot y.
  8445. //
  8446. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8447. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8448. lm[end].ys = ys;
  8449. // find new search direction
  8450. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8451. bound = (m <= k) ? m : k;
  8452. k++;
  8453. end = (end + 1)%m;
  8454. // initialize search direction with -g
  8455. ggml_vec_neg_f32(nx, d, g);
  8456. j = end;
  8457. for (int i = 0; i < bound; ++i) {
  8458. j = (j + m - 1) % m;
  8459. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8460. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8461. lm[j].alpha /= lm[j].ys;
  8462. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8463. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8464. }
  8465. ggml_vec_scale_f32(nx, d, ys/yy);
  8466. for (int i = 0; i < bound; ++i) {
  8467. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8468. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8469. beta /= lm[j].ys;
  8470. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8471. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8472. j = (j + 1)%m;
  8473. }
  8474. step = 1.0;
  8475. }
  8476. return GGML_OPT_DID_NOT_CONVERGE;
  8477. }
  8478. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8479. struct ggml_opt_params result;
  8480. switch (type) {
  8481. case GGML_OPT_ADAM:
  8482. {
  8483. result = (struct ggml_opt_params) {
  8484. .type = GGML_OPT_ADAM,
  8485. .n_threads = 1,
  8486. .past = 0,
  8487. .delta = 1e-5f,
  8488. .max_no_improvement = 100,
  8489. .print_forward_graph = true,
  8490. .print_backward_graph = true,
  8491. .adam = {
  8492. .n_iter = 10000,
  8493. .alpha = 0.001f,
  8494. .beta1 = 0.9f,
  8495. .beta2 = 0.999f,
  8496. .eps = 1e-8f,
  8497. .eps_f = 1e-5f,
  8498. .eps_g = 1e-3f,
  8499. },
  8500. };
  8501. } break;
  8502. case GGML_OPT_LBFGS:
  8503. {
  8504. result = (struct ggml_opt_params) {
  8505. .type = GGML_OPT_LBFGS,
  8506. .n_threads = 1,
  8507. .past = 0,
  8508. .delta = 1e-5f,
  8509. .max_no_improvement = 0,
  8510. .print_forward_graph = true,
  8511. .print_backward_graph = true,
  8512. .lbfgs = {
  8513. .m = 6,
  8514. .n_iter = 100,
  8515. .max_linesearch = 20,
  8516. .eps = 1e-5f,
  8517. .ftol = 1e-4f,
  8518. .wolfe = 0.9f,
  8519. .min_step = 1e-20f,
  8520. .max_step = 1e+20f,
  8521. .linesearch = GGML_LINESEARCH_DEFAULT,
  8522. },
  8523. };
  8524. } break;
  8525. }
  8526. return result;
  8527. }
  8528. enum ggml_opt_result ggml_opt(
  8529. struct ggml_context * ctx,
  8530. struct ggml_opt_params params,
  8531. struct ggml_tensor * f) {
  8532. bool free_ctx = false;
  8533. if (ctx == NULL) {
  8534. struct ggml_init_params params_ctx = {
  8535. .mem_size = 16*1024*1024,
  8536. .mem_buffer = NULL,
  8537. .no_alloc = false,
  8538. };
  8539. ctx = ggml_init(params_ctx);
  8540. if (ctx == NULL) {
  8541. return GGML_OPT_NO_CONTEXT;
  8542. }
  8543. free_ctx = true;
  8544. }
  8545. enum ggml_opt_result result = GGML_OPT_OK;
  8546. // build forward + backward compute graphs
  8547. struct ggml_cgraph gf = ggml_build_forward (f);
  8548. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8549. switch (params.type) {
  8550. case GGML_OPT_ADAM:
  8551. {
  8552. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8553. } break;
  8554. case GGML_OPT_LBFGS:
  8555. {
  8556. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8557. } break;
  8558. }
  8559. if (params.print_forward_graph) {
  8560. ggml_graph_print (&gf);
  8561. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8562. }
  8563. if (params.print_backward_graph) {
  8564. ggml_graph_print (&gb);
  8565. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8566. }
  8567. if (free_ctx) {
  8568. ggml_free(ctx);
  8569. }
  8570. return result;
  8571. }
  8572. ////////////////////////////////////////////////////////////////////////////////
  8573. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8574. assert(k % QK == 0);
  8575. const int nb = k / QK;
  8576. for (int j = 0; j < n; j += k) {
  8577. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8578. quantize_row_q4_0_reference(src + j, y, k);
  8579. for (int i = 0; i < nb; i++) {
  8580. for (int l = 0; l < QK; l += 2) {
  8581. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8582. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8583. hist[vi0]++;
  8584. hist[vi1]++;
  8585. }
  8586. }
  8587. }
  8588. return (n/QK*sizeof(block_q4_0));
  8589. }
  8590. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8591. assert(k % QK == 0);
  8592. const int nb = k / QK;
  8593. for (int j = 0; j < n; j += k) {
  8594. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8595. quantize_row_q4_1_reference(src + j, y, k);
  8596. for (int i = 0; i < nb; i++) {
  8597. for (int l = 0; l < QK; l += 2) {
  8598. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8599. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8600. hist[vi0]++;
  8601. hist[vi1]++;
  8602. }
  8603. }
  8604. }
  8605. return (n/QK*sizeof(block_q4_1));
  8606. }
  8607. ////////////////////////////////////////////////////////////////////////////////
  8608. int ggml_cpu_has_avx(void) {
  8609. #if defined(__AVX__)
  8610. return 1;
  8611. #else
  8612. return 0;
  8613. #endif
  8614. }
  8615. int ggml_cpu_has_avx2(void) {
  8616. #if defined(__AVX2__)
  8617. return 1;
  8618. #else
  8619. return 0;
  8620. #endif
  8621. }
  8622. int ggml_cpu_has_avx512(void) {
  8623. #if defined(__AVX512F__)
  8624. return 1;
  8625. #else
  8626. return 0;
  8627. #endif
  8628. }
  8629. int ggml_cpu_has_fma(void) {
  8630. #if defined(__FMA__)
  8631. return 1;
  8632. #else
  8633. return 0;
  8634. #endif
  8635. }
  8636. int ggml_cpu_has_neon(void) {
  8637. #if defined(__ARM_NEON)
  8638. return 1;
  8639. #else
  8640. return 0;
  8641. #endif
  8642. }
  8643. int ggml_cpu_has_arm_fma(void) {
  8644. #if defined(__ARM_FEATURE_FMA)
  8645. return 1;
  8646. #else
  8647. return 0;
  8648. #endif
  8649. }
  8650. int ggml_cpu_has_f16c(void) {
  8651. #if defined(__F16C__)
  8652. return 1;
  8653. #else
  8654. return 0;
  8655. #endif
  8656. }
  8657. int ggml_cpu_has_fp16_va(void) {
  8658. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8659. return 1;
  8660. #else
  8661. return 0;
  8662. #endif
  8663. }
  8664. int ggml_cpu_has_wasm_simd(void) {
  8665. #if defined(__wasm_simd128__)
  8666. return 1;
  8667. #else
  8668. return 0;
  8669. #endif
  8670. }
  8671. int ggml_cpu_has_blas(void) {
  8672. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8673. return 1;
  8674. #else
  8675. return 0;
  8676. #endif
  8677. }
  8678. int ggml_cpu_has_sse3(void) {
  8679. #if defined(__SSE3__)
  8680. return 1;
  8681. #else
  8682. return 0;
  8683. #endif
  8684. }
  8685. int ggml_cpu_has_vsx(void) {
  8686. #if defined(__POWER9_VECTOR__)
  8687. return 1;
  8688. #else
  8689. return 0;
  8690. #endif
  8691. }
  8692. ////////////////////////////////////////////////////////////////////////////////