convert-hf-to-gguf.py 131 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import contextlib
  6. import json
  7. import os
  8. import re
  9. import sys
  10. from abc import ABC, abstractmethod
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  15. import numpy as np
  16. import torch
  17. if TYPE_CHECKING:
  18. from torch import Tensor
  19. if 'NO_LOCAL_GGUF' not in os.environ:
  20. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  21. import gguf
  22. from convert import LlamaHfVocab, permute
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model(ABC):
  34. _model_classes: dict[str, type[Model]] = {}
  35. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
  36. self.dir_model = dir_model
  37. self.ftype = ftype
  38. self.fname_out = fname_out
  39. self.is_big_endian = is_big_endian
  40. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  41. self.use_temp_file = use_temp_file
  42. self.is_safetensors = self._is_model_safetensors()
  43. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  44. self.part_names = self._get_part_names()
  45. self.hparams = Model.load_hparams(self.dir_model)
  46. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  47. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  48. @property
  49. @abstractmethod
  50. def model_arch(self) -> gguf.MODEL_ARCH:
  51. pass
  52. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  53. key = next((k for k in keys if k in self.hparams), None)
  54. if key is not None:
  55. return self.hparams[key]
  56. if optional:
  57. return None
  58. raise KeyError(f"could not find any of: {keys}")
  59. def set_vocab(self):
  60. self._set_vocab_gpt2()
  61. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  62. for part_name in self.part_names:
  63. logger.info(f"gguf: loading model part '{part_name}'")
  64. ctx: ContextManager[Any]
  65. if self.is_safetensors:
  66. from safetensors import safe_open
  67. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  68. else:
  69. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  70. with ctx as model_part:
  71. for name in model_part.keys():
  72. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  73. yield name, data
  74. def set_gguf_parameters(self):
  75. self.gguf_writer.add_name(self.dir_model.name)
  76. self.gguf_writer.add_block_count(self.block_count)
  77. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  78. self.gguf_writer.add_context_length(n_ctx)
  79. logger.info(f"gguf: context length = {n_ctx}")
  80. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  81. self.gguf_writer.add_embedding_length(n_embd)
  82. logger.info(f"gguf: embedding length = {n_embd}")
  83. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  84. self.gguf_writer.add_feed_forward_length(n_ff)
  85. logger.info(f"gguf: feed forward length = {n_ff}")
  86. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  87. self.gguf_writer.add_head_count(n_head)
  88. logger.info(f"gguf: head count = {n_head}")
  89. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  90. self.gguf_writer.add_head_count_kv(n_head_kv)
  91. logger.info(f"gguf: key-value head count = {n_head_kv}")
  92. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  93. self.gguf_writer.add_rope_freq_base(rope_theta)
  94. logger.info(f"gguf: rope theta = {rope_theta}")
  95. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  96. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  97. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  98. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  99. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  100. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  101. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  102. self.gguf_writer.add_expert_count(n_experts)
  103. logger.info(f"gguf: expert count = {n_experts}")
  104. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  105. self.gguf_writer.add_expert_used_count(n_experts_used)
  106. logger.info(f"gguf: experts used count = {n_experts_used}")
  107. self.gguf_writer.add_file_type(self.ftype)
  108. logger.info(f"gguf: file type = {self.ftype}")
  109. def write_tensors(self):
  110. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  111. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  112. for name, data_torch in self.get_tensors():
  113. # we don't need these
  114. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  115. continue
  116. old_dtype = data_torch.dtype
  117. # convert any unsupported data types to float32
  118. if data_torch.dtype not in (torch.float16, torch.float32):
  119. data_torch = data_torch.to(torch.float32)
  120. data = data_torch.squeeze().numpy()
  121. # map tensor names
  122. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  123. if new_name is None:
  124. raise ValueError(f"Can not map tensor {name!r}")
  125. n_dims = len(data.shape)
  126. data_dtype = data.dtype
  127. # if f32 desired, convert any float16 to float32
  128. if self.ftype == 0 and data_dtype == np.float16:
  129. data = data.astype(np.float32)
  130. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  131. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  132. data = data.astype(np.float32)
  133. # if f16 desired, convert any float32 2-dim weight tensors to float16
  134. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  135. data = data.astype(np.float16)
  136. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  137. self.gguf_writer.add_tensor(new_name, data)
  138. def write(self):
  139. self.write_tensors()
  140. self.gguf_writer.write_header_to_file()
  141. self.gguf_writer.write_kv_data_to_file()
  142. self.gguf_writer.write_tensors_to_file()
  143. self.gguf_writer.close()
  144. def write_vocab(self):
  145. self.gguf_writer.write_header_to_file()
  146. self.gguf_writer.write_kv_data_to_file()
  147. self.gguf_writer.close()
  148. @staticmethod
  149. def count_model_parts(dir_model: Path, prefix: str) -> int:
  150. num_parts = 0
  151. for filename in os.listdir(dir_model):
  152. if filename.endswith(prefix):
  153. num_parts += 1
  154. return num_parts
  155. @staticmethod
  156. def load_hparams(dir_model):
  157. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  158. return json.load(f)
  159. @classmethod
  160. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  161. assert names
  162. def func(modelcls: type[Model]):
  163. for name in names:
  164. cls._model_classes[name] = modelcls
  165. return modelcls
  166. return func
  167. @classmethod
  168. def from_model_architecture(cls, arch):
  169. try:
  170. return cls._model_classes[arch]
  171. except KeyError:
  172. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  173. def _is_model_safetensors(self) -> bool:
  174. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  175. def _get_part_names(self):
  176. if self.is_safetensors:
  177. if self.num_parts == 1: # there's only one .safetensors file
  178. return ("model.safetensors",)
  179. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  180. if self.num_parts == 1: # there's only one .bin file
  181. return ("pytorch_model.bin",)
  182. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  183. # used for GPT-2 BPE and WordPiece vocabs
  184. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  185. tokens: list[str] = []
  186. toktypes: list[int] = []
  187. from transformers import AutoTokenizer
  188. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  189. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  190. assert max(tokenizer.vocab.values()) < vocab_size
  191. tokpre = self.get_vocab_base_pre(tokenizer)
  192. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  193. added_vocab = tokenizer.get_added_vocab()
  194. for i in range(vocab_size):
  195. if i not in reverse_vocab:
  196. tokens.append(f"[PAD{i}]")
  197. toktypes.append(gguf.TokenType.USER_DEFINED)
  198. elif reverse_vocab[i] in added_vocab:
  199. tokens.append(reverse_vocab[i])
  200. if tokenizer.added_tokens_decoder[i].special:
  201. toktypes.append(gguf.TokenType.CONTROL)
  202. else:
  203. toktypes.append(gguf.TokenType.USER_DEFINED)
  204. else:
  205. tokens.append(reverse_vocab[i])
  206. toktypes.append(gguf.TokenType.NORMAL)
  207. return tokens, toktypes, tokpre
  208. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  209. # do not modify it manually!
  210. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  211. def get_vocab_base_pre(self, tokenizer) -> str:
  212. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  213. # is specific for the BPE pre-tokenizer used by the model
  214. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  215. # use in llama.cpp to implement the same pre-tokenizer
  216. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  217. chktok = tokenizer.encode(chktxt)
  218. chkhsh = sha256(str(chktok).encode()).hexdigest()
  219. logger.debug(f"chktok: {chktok}")
  220. logger.debug(f"chkhsh: {chkhsh}")
  221. res = None
  222. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  223. # or pull the latest version of the model from Huggingface
  224. # don't edit the hashes manually!
  225. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  226. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  227. res = "llama-bpe"
  228. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  229. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  230. res = "deepseek-llm"
  231. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  232. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  233. res = "deepseek-coder"
  234. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  235. # ref: https://huggingface.co/tiiuae/falcon-7b
  236. res = "falcon"
  237. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  238. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  239. res = "bert-bge"
  240. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  241. # ref: https://huggingface.co/mosaicml/mpt-7b
  242. res = "mpt"
  243. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  244. # ref: https://huggingface.co/bigcode/starcoder2-3b
  245. res = "starcoder"
  246. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  247. # ref: https://huggingface.co/openai-community/gpt2
  248. res = "gpt-2"
  249. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  250. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  251. res = "refact"
  252. if res is None:
  253. logger.warning("\n")
  254. logger.warning("**************************************************************************************")
  255. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  256. logger.warning("** There are 2 possible reasons for this:")
  257. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  258. logger.warning("** - the pre-tokenization config has changed upstream")
  259. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  260. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  261. logger.warning("**")
  262. logger.warning(f"** chkhsh: {chkhsh}")
  263. logger.warning("**************************************************************************************")
  264. logger.warning("\n")
  265. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  266. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  267. logger.debug(f"chkhsh: {chkhsh}")
  268. return res
  269. def _set_vocab_gpt2(self) -> None:
  270. tokens, toktypes, tokpre = self.get_vocab_base()
  271. self.gguf_writer.add_tokenizer_model("gpt2")
  272. self.gguf_writer.add_tokenizer_pre(tokpre)
  273. self.gguf_writer.add_token_list(tokens)
  274. self.gguf_writer.add_token_types(toktypes)
  275. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  276. special_vocab.add_to_gguf(self.gguf_writer)
  277. def _set_vocab_qwen(self):
  278. dir_model = self.dir_model
  279. hparams = self.hparams
  280. tokens: list[str] = []
  281. toktypes: list[int] = []
  282. from transformers import AutoTokenizer
  283. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  284. vocab_size = hparams["vocab_size"]
  285. assert max(tokenizer.get_vocab().values()) < vocab_size
  286. tokpre = self.get_vocab_base_pre(tokenizer)
  287. merges = []
  288. vocab = {}
  289. mergeable_ranks = tokenizer.mergeable_ranks
  290. for token, rank in mergeable_ranks.items():
  291. vocab[QwenModel.token_bytes_to_string(token)] = rank
  292. if len(token) == 1:
  293. continue
  294. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  295. assert len(merged) == 2
  296. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  297. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  298. added_vocab = tokenizer.special_tokens
  299. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  300. for i in range(vocab_size):
  301. if i not in reverse_vocab:
  302. tokens.append(f"[PAD{i}]")
  303. toktypes.append(gguf.TokenType.USER_DEFINED)
  304. elif reverse_vocab[i] in added_vocab:
  305. tokens.append(reverse_vocab[i])
  306. toktypes.append(gguf.TokenType.CONTROL)
  307. else:
  308. tokens.append(reverse_vocab[i])
  309. toktypes.append(gguf.TokenType.NORMAL)
  310. self.gguf_writer.add_tokenizer_model("gpt2")
  311. self.gguf_writer.add_tokenizer_pre(tokpre)
  312. self.gguf_writer.add_token_list(tokens)
  313. self.gguf_writer.add_token_types(toktypes)
  314. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  315. special_vocab.merges = merges
  316. # only add special tokens when they were not already loaded from config.json
  317. if len(special_vocab.special_token_ids) == 0:
  318. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  319. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  320. # this one is usually not in config.json anyway
  321. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  322. special_vocab.add_to_gguf(self.gguf_writer)
  323. def _set_vocab_sentencepiece(self):
  324. from sentencepiece import SentencePieceProcessor
  325. tokenizer_path = self.dir_model / 'tokenizer.model'
  326. tokens: list[bytes] = []
  327. scores: list[float] = []
  328. toktypes: list[int] = []
  329. if not tokenizer_path.is_file():
  330. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  331. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  332. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  333. for token_id in range(tokenizer.vocab_size()):
  334. piece = tokenizer.id_to_piece(token_id)
  335. text = piece.encode("utf-8")
  336. score = tokenizer.get_score(token_id)
  337. toktype = SentencePieceTokenTypes.NORMAL
  338. if tokenizer.is_unknown(token_id):
  339. toktype = SentencePieceTokenTypes.UNKNOWN
  340. elif tokenizer.is_control(token_id):
  341. toktype = SentencePieceTokenTypes.CONTROL
  342. elif tokenizer.is_unused(token_id):
  343. toktype = SentencePieceTokenTypes.UNUSED
  344. elif tokenizer.is_byte(token_id):
  345. toktype = SentencePieceTokenTypes.BYTE
  346. tokens.append(text)
  347. scores.append(score)
  348. toktypes.append(toktype)
  349. added_tokens_file = self.dir_model / 'added_tokens.json'
  350. if added_tokens_file.is_file():
  351. with open(added_tokens_file, "r", encoding="utf-8") as f:
  352. added_tokens_json = json.load(f)
  353. for key in added_tokens_json:
  354. key = key.encode("utf-8")
  355. if key not in tokens:
  356. tokens.append(key)
  357. scores.append(-1000.0)
  358. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  359. if vocab_size > len(tokens):
  360. pad_count = vocab_size - len(tokens)
  361. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  362. for i in range(1, pad_count + 1):
  363. tokens.append(f"[PAD{i}]")
  364. scores.append(-1000.0)
  365. toktypes.append(SentencePieceTokenTypes.UNUSED)
  366. assert len(tokens) == vocab_size
  367. self.gguf_writer.add_tokenizer_model("llama")
  368. self.gguf_writer.add_tokenizer_pre("default")
  369. self.gguf_writer.add_token_list(tokens)
  370. self.gguf_writer.add_token_scores(scores)
  371. self.gguf_writer.add_token_types(toktypes)
  372. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  373. special_vocab.add_to_gguf(self.gguf_writer)
  374. def _set_vocab_llama_hf(self):
  375. vocab = LlamaHfVocab(self.dir_model)
  376. tokens = []
  377. scores = []
  378. toktypes = []
  379. for text, score, toktype in vocab.all_tokens():
  380. tokens.append(text)
  381. scores.append(score)
  382. toktypes.append(toktype)
  383. assert len(tokens) == vocab.vocab_size
  384. self.gguf_writer.add_tokenizer_model("llama")
  385. self.gguf_writer.add_tokenizer_pre("default")
  386. self.gguf_writer.add_token_list(tokens)
  387. self.gguf_writer.add_token_scores(scores)
  388. self.gguf_writer.add_token_types(toktypes)
  389. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  390. special_vocab.add_to_gguf(self.gguf_writer)
  391. @Model.register("GPTNeoXForCausalLM")
  392. class GPTNeoXModel(Model):
  393. model_arch = gguf.MODEL_ARCH.GPTNEOX
  394. def set_gguf_parameters(self):
  395. block_count = self.hparams["num_hidden_layers"]
  396. self.gguf_writer.add_name(self.dir_model.name)
  397. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  398. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  399. self.gguf_writer.add_block_count(block_count)
  400. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  401. self.gguf_writer.add_rope_dimension_count(
  402. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  403. )
  404. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  405. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  406. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  407. @Model.register("BloomForCausalLM")
  408. class BloomModel(Model):
  409. model_arch = gguf.MODEL_ARCH.BLOOM
  410. def set_gguf_parameters(self):
  411. self.gguf_writer.add_name("Bloom")
  412. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  413. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  414. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  415. self.gguf_writer.add_embedding_length(n_embed)
  416. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  417. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  418. self.gguf_writer.add_head_count(n_head)
  419. self.gguf_writer.add_head_count_kv(n_head)
  420. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  421. self.gguf_writer.add_file_type(self.ftype)
  422. def write_tensors(self):
  423. block_count = self.hparams["n_layer"]
  424. tensors = dict(self.get_tensors())
  425. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  426. has_lm_head = True
  427. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  428. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  429. for name, data_torch in tensors.items():
  430. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  431. has_lm_head = False
  432. name = re.sub(r'transformer\.', '', name)
  433. old_dtype = data_torch.dtype
  434. # convert any unsupported data types to float32
  435. if data_torch.dtype not in (torch.float16, torch.float32):
  436. data_torch = data_torch.to(torch.float32)
  437. data = data_torch.squeeze().numpy()
  438. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  439. # Map bloom-style qkv_linear to gpt-style qkv_linear
  440. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  441. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  442. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  443. data = np.concatenate(
  444. (
  445. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  446. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  447. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  448. ),
  449. axis=0,
  450. )
  451. logger.info("re-format attention.linear_qkv.weight")
  452. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  453. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  454. data = np.concatenate(
  455. (
  456. qkv_bias[:, 0, :].reshape((n_embed,)),
  457. qkv_bias[:, 1, :].reshape((n_embed,)),
  458. qkv_bias[:, 2, :].reshape((n_embed,)),
  459. ),
  460. axis=0,
  461. )
  462. logger.info("re-format attention.linear_qkv.bias")
  463. # map tensor names
  464. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  465. if new_name is None:
  466. raise ValueError(f"Can not map tensor {name!r}")
  467. n_dims = len(data.shape)
  468. data_dtype = data.dtype
  469. # if f32 desired, convert any float16 to float32
  470. if self.ftype == 0 and data_dtype == np.float16:
  471. data = data.astype(np.float32)
  472. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  473. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  474. data = data.astype(np.float32)
  475. # if f16 desired, convert any float32 2-dim weight tensors to float16
  476. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  477. data = data.astype(np.float16)
  478. logger.info(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  479. self.gguf_writer.add_tensor(new_name, data)
  480. if not has_lm_head and name == "word_embeddings.weight":
  481. self.gguf_writer.add_tensor("output.weight", data)
  482. logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  483. @Model.register("MPTForCausalLM")
  484. class MPTModel(Model):
  485. model_arch = gguf.MODEL_ARCH.MPT
  486. def set_vocab(self):
  487. try:
  488. self._set_vocab_gpt2()
  489. except Exception:
  490. # Fallback for SEA-LION model
  491. self._set_vocab_sentencepiece()
  492. self.gguf_writer.add_add_bos_token(False)
  493. self.gguf_writer.add_pad_token_id(3)
  494. self.gguf_writer.add_eos_token_id(1)
  495. self.gguf_writer.add_unk_token_id(0)
  496. def set_gguf_parameters(self):
  497. block_count = self.hparams["n_layers"]
  498. self.gguf_writer.add_name(self.dir_model.name)
  499. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  500. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  501. self.gguf_writer.add_block_count(block_count)
  502. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  503. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  504. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  505. self.gguf_writer.add_head_count_kv(kv_n_heads)
  506. self.gguf_writer.add_layer_norm_eps(1e-5)
  507. if self.hparams["attn_config"]["clip_qkv"] is not None:
  508. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  509. if self.hparams["attn_config"]["alibi"]:
  510. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  511. else:
  512. self.gguf_writer.add_max_alibi_bias(0.0)
  513. def write_tensors(self):
  514. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  515. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  516. for name, data_torch in self.get_tensors():
  517. # we don't need these
  518. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  519. continue
  520. old_dtype = data_torch.dtype
  521. # convert any unsupported data types to float32
  522. if data_torch.dtype not in (torch.float16, torch.float32):
  523. data_torch = data_torch.to(torch.float32)
  524. data = data_torch.squeeze().numpy()
  525. # map tensor names
  526. if "scales" in name:
  527. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  528. if new_name is not None:
  529. new_name = new_name.replace("scales", "act.scales")
  530. else:
  531. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  532. if new_name is None:
  533. raise ValueError(f"Can not map tensor {name!r}")
  534. n_dims = len(data.shape)
  535. data_dtype = data.dtype
  536. # if f32 desired, convert any float16 to float32
  537. if self.ftype == 0 and data_dtype == np.float16:
  538. data = data.astype(np.float32)
  539. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  540. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  541. data = data.astype(np.float32)
  542. # if f16 desired, convert any float32 2-dim weight tensors to float16
  543. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  544. data = data.astype(np.float16)
  545. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  546. self.gguf_writer.add_tensor(new_name, data)
  547. @Model.register("OrionForCausalLM")
  548. class OrionModel(Model):
  549. model_arch = gguf.MODEL_ARCH.ORION
  550. def set_vocab(self):
  551. self._set_vocab_sentencepiece()
  552. def set_gguf_parameters(self):
  553. block_count = self.hparams["num_hidden_layers"]
  554. head_count = self.hparams["num_attention_heads"]
  555. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  556. hf_repo = self.hparams.get("_name_or_path", "")
  557. ctx_length = 0
  558. if "max_sequence_length" in self.hparams:
  559. ctx_length = self.hparams["max_sequence_length"]
  560. elif "max_position_embeddings" in self.hparams:
  561. ctx_length = self.hparams["max_position_embeddings"]
  562. elif "model_max_length" in self.hparams:
  563. ctx_length = self.hparams["model_max_length"]
  564. else:
  565. raise ValueError("gguf: can not find ctx length parameter.")
  566. self.gguf_writer.add_file_type(self.ftype)
  567. self.gguf_writer.add_name(self.dir_model.name)
  568. self.gguf_writer.add_source_hf_repo(hf_repo)
  569. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  570. self.gguf_writer.add_context_length(ctx_length)
  571. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  572. self.gguf_writer.add_block_count(block_count)
  573. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  574. self.gguf_writer.add_head_count(head_count)
  575. self.gguf_writer.add_head_count_kv(head_count_kv)
  576. # note: config provides rms norm but it is actually layer norm
  577. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  578. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  579. def write_tensors(self):
  580. # Collect tensors from generator object
  581. model_kv = dict(self.get_tensors())
  582. block_count = self.hparams["num_hidden_layers"]
  583. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  584. for name, data_torch in model_kv.items():
  585. # we don't need these
  586. if name.endswith(".rotary_emb.inv_freq"):
  587. continue
  588. old_dtype = data_torch.dtype
  589. # convert any unsupported data types to float32
  590. if data_torch.dtype not in (torch.float16, torch.float32):
  591. data_torch = data_torch.to(torch.float32)
  592. data = data_torch.squeeze().numpy()
  593. # map tensor names
  594. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  595. if new_name is None:
  596. raise ValueError(f"Can not map tensor {name!r}")
  597. n_dims = len(data.shape)
  598. data_dtype = data.dtype
  599. # if f32 desired, convert any float16 to float32
  600. if self.ftype == 0 and data_dtype == np.float16:
  601. data = data.astype(np.float32)
  602. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  603. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  604. data = data.astype(np.float32)
  605. # if f16 desired, convert any float32 2-dim weight tensors to float16
  606. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  607. data = data.astype(np.float16)
  608. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  609. self.gguf_writer.add_tensor(new_name, data)
  610. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  611. class BaichuanModel(Model):
  612. model_arch = gguf.MODEL_ARCH.BAICHUAN
  613. def set_vocab(self):
  614. self._set_vocab_sentencepiece()
  615. def set_gguf_parameters(self):
  616. block_count = self.hparams["num_hidden_layers"]
  617. head_count = self.hparams["num_attention_heads"]
  618. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  619. hf_repo = self.hparams.get("_name_or_path", "")
  620. ctx_length = 0
  621. if "max_sequence_length" in self.hparams:
  622. ctx_length = self.hparams["max_sequence_length"]
  623. elif "max_position_embeddings" in self.hparams:
  624. ctx_length = self.hparams["max_position_embeddings"]
  625. elif "model_max_length" in self.hparams:
  626. ctx_length = self.hparams["model_max_length"]
  627. else:
  628. raise ValueError("gguf: can not find ctx length parameter.")
  629. self.gguf_writer.add_name(self.dir_model.name)
  630. self.gguf_writer.add_source_hf_repo(hf_repo)
  631. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  632. self.gguf_writer.add_context_length(ctx_length)
  633. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  634. self.gguf_writer.add_block_count(block_count)
  635. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  636. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  637. self.gguf_writer.add_head_count(head_count)
  638. self.gguf_writer.add_head_count_kv(head_count_kv)
  639. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  640. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  641. if self.hparams["rope_scaling"].get("type") == "linear":
  642. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  643. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  644. def write_tensors(self):
  645. # Collect tensors from generator object
  646. model_kv = dict(self.get_tensors())
  647. block_count = self.hparams["num_hidden_layers"]
  648. head_count = self.hparams["num_attention_heads"]
  649. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  650. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  651. for i in range(block_count):
  652. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  653. logger.info(f"Unpacking and permuting layer {i}")
  654. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  655. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  656. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  657. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  658. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  659. self._reverse_hf_part(w, 2)
  660. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  661. for name, data_torch in model_kv.items():
  662. # we don't need these
  663. if name.endswith(".rotary_emb.inv_freq"):
  664. continue
  665. old_dtype = data_torch.dtype
  666. # convert any unsupported data types to float32
  667. if data_torch.dtype not in (torch.float16, torch.float32):
  668. data_torch = data_torch.to(torch.float32)
  669. data = data_torch.squeeze().numpy()
  670. # map tensor names
  671. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  672. if new_name is None:
  673. raise ValueError(f"Can not map tensor {name!r}")
  674. n_dims = len(data.shape)
  675. data_dtype = data.dtype
  676. # if f32 desired, convert any float16 to float32
  677. if self.ftype == 0 and data_dtype == np.float16:
  678. data = data.astype(np.float32)
  679. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  680. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  681. data = data.astype(np.float32)
  682. # if f16 desired, convert any float32 2-dim weight tensors to float16
  683. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  684. data = data.astype(np.float16)
  685. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  686. self.gguf_writer.add_tensor(new_name, data)
  687. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  688. if n_kv_head is not None and n_head != n_kv_head:
  689. n_head //= n_kv_head
  690. return (
  691. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  692. .swapaxes(1, 2)
  693. .reshape(weights.shape)
  694. )
  695. def _reverse_hf_permute_part(
  696. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  697. ) -> Tensor:
  698. r = weights.shape[0] // 3
  699. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  700. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  701. r = weights.shape[0] // 3
  702. return weights[r * n_part:r * n_part + r, ...]
  703. @Model.register("XverseForCausalLM")
  704. class XverseModel(Model):
  705. model_arch = gguf.MODEL_ARCH.XVERSE
  706. def set_vocab(self):
  707. assert (self.dir_model / "tokenizer.json").is_file()
  708. dir_model = self.dir_model
  709. hparams = self.hparams
  710. tokens: list[bytearray] = []
  711. toktypes: list[int] = []
  712. from transformers import AutoTokenizer
  713. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  714. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  715. assert max(tokenizer.vocab.values()) < vocab_size
  716. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  717. added_vocab = tokenizer.get_added_vocab()
  718. for token_id in range(vocab_size):
  719. token_text = reverse_vocab[token_id].encode('utf-8')
  720. # replace "\x00" to string with length > 0
  721. if token_text == b"\x00":
  722. toktype = gguf.TokenType.BYTE # special
  723. token_text = f"<{token_text}>".encode('utf-8')
  724. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  725. toktype = gguf.TokenType.BYTE # special
  726. elif reverse_vocab[token_id] in added_vocab:
  727. if tokenizer.added_tokens_decoder[token_id].special:
  728. toktype = gguf.TokenType.CONTROL
  729. else:
  730. toktype = gguf.TokenType.USER_DEFINED
  731. else:
  732. toktype = gguf.TokenType.NORMAL
  733. tokens.append(token_text)
  734. toktypes.append(toktype)
  735. self.gguf_writer.add_tokenizer_model("llama")
  736. self.gguf_writer.add_tokenizer_pre("default")
  737. self.gguf_writer.add_token_list(tokens)
  738. self.gguf_writer.add_token_types(toktypes)
  739. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  740. special_vocab.add_to_gguf(self.gguf_writer)
  741. def set_gguf_parameters(self):
  742. block_count = self.hparams["num_hidden_layers"]
  743. head_count = self.hparams["num_attention_heads"]
  744. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  745. hf_repo = self.hparams.get("_name_or_path", "")
  746. ctx_length = 0
  747. if "max_sequence_length" in self.hparams:
  748. ctx_length = self.hparams["max_sequence_length"]
  749. elif "max_position_embeddings" in self.hparams:
  750. ctx_length = self.hparams["max_position_embeddings"]
  751. elif "model_max_length" in self.hparams:
  752. ctx_length = self.hparams["model_max_length"]
  753. else:
  754. raise ValueError("gguf: can not find ctx length parameter.")
  755. self.gguf_writer.add_name(self.dir_model.name)
  756. self.gguf_writer.add_source_hf_repo(hf_repo)
  757. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  758. self.gguf_writer.add_context_length(ctx_length)
  759. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  760. self.gguf_writer.add_block_count(block_count)
  761. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  762. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  763. self.gguf_writer.add_head_count(head_count)
  764. self.gguf_writer.add_head_count_kv(head_count_kv)
  765. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  766. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  767. if self.hparams["rope_scaling"].get("type") == "linear":
  768. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  769. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  770. def write_tensors(self):
  771. # Collect tensors from generator object
  772. model_kv = dict(self.get_tensors())
  773. block_count = self.hparams["num_hidden_layers"]
  774. head_count = self.hparams["num_attention_heads"]
  775. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  776. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  777. for name, data_torch in model_kv.items():
  778. # we don't need these
  779. if name.endswith(".rotary_emb.inv_freq"):
  780. continue
  781. old_dtype = data_torch.dtype
  782. # convert any unsupported data types to float32
  783. if data_torch.dtype not in (torch.float16, torch.float32):
  784. data_torch = data_torch.to(torch.float32)
  785. # HF models permute some of the tensors, so we need to undo that
  786. if name.endswith(("q_proj.weight")):
  787. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  788. if name.endswith(("k_proj.weight")):
  789. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  790. data = data_torch.squeeze().numpy()
  791. # map tensor names
  792. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  793. if new_name is None:
  794. raise ValueError(f"Can not map tensor {name!r}")
  795. n_dims = len(data.shape)
  796. data_dtype = data.dtype
  797. # if f32 desired, convert any float16 to float32
  798. if self.ftype == 0 and data_dtype == np.float16:
  799. data = data.astype(np.float32)
  800. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  801. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  802. data = data.astype(np.float32)
  803. # if f16 desired, convert any float32 2-dim weight tensors to float16
  804. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  805. data = data.astype(np.float16)
  806. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  807. self.gguf_writer.add_tensor(new_name, data)
  808. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  809. if n_kv_head is not None and n_head != n_kv_head:
  810. n_head //= n_kv_head
  811. return (
  812. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  813. .swapaxes(1, 2)
  814. .reshape(weights.shape)
  815. )
  816. @Model.register("FalconForCausalLM", "RWForCausalLM")
  817. class FalconModel(Model):
  818. model_arch = gguf.MODEL_ARCH.FALCON
  819. def set_gguf_parameters(self):
  820. block_count = self.hparams.get("num_hidden_layers")
  821. if block_count is None:
  822. block_count = self.hparams["n_layer"] # old name
  823. n_head = self.hparams.get("num_attention_heads")
  824. if n_head is None:
  825. n_head = self.hparams["n_head"] # old name
  826. n_head_kv = self.hparams.get("num_kv_heads")
  827. if n_head_kv is None:
  828. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  829. self.gguf_writer.add_name("Falcon")
  830. self.gguf_writer.add_context_length(2048) # not in config.json
  831. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  832. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  833. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  834. self.gguf_writer.add_block_count(block_count)
  835. self.gguf_writer.add_head_count(n_head)
  836. self.gguf_writer.add_head_count_kv(n_head_kv)
  837. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  838. self.gguf_writer.add_file_type(self.ftype)
  839. def write_tensors(self):
  840. block_count = self.hparams.get("num_hidden_layers")
  841. if block_count is None:
  842. block_count = self.hparams["n_layer"] # old name
  843. n_head = self.hparams.get("num_attention_heads")
  844. if n_head is None:
  845. n_head = self.hparams["n_head"] # old name
  846. n_head_kv = self.hparams.get("num_kv_heads")
  847. if n_head_kv is None:
  848. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  849. head_dim = self.hparams["hidden_size"] // n_head
  850. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  851. for name, data_torch in self.get_tensors():
  852. old_dtype = data_torch.dtype
  853. # convert any unsupported data types to float32
  854. if data_torch.dtype not in (torch.float16, torch.float32):
  855. data_torch = data_torch.to(torch.float32)
  856. # QKV tensor transform
  857. # The original query_key_value tensor contains n_head_kv "kv groups",
  858. # each consisting of n_head/n_head_kv query weights followed by one key
  859. # and one value weight (shared by all query heads in the kv group).
  860. # This layout makes it a big pain to work with in GGML.
  861. # So we rearrange them here,, so that we have n_head query weights
  862. # followed by n_head_kv key weights followed by n_head_kv value weights,
  863. # in contiguous fashion.
  864. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  865. if "query_key_value" in name:
  866. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  867. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  868. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  869. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  870. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  871. data = data_torch.squeeze().numpy()
  872. # map tensor names
  873. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  874. if new_name is None:
  875. raise ValueError(f"Can not map tensor {name!r}")
  876. n_dims = len(data.shape)
  877. data_dtype = data.dtype
  878. # if f32 desired, convert any float16 to float32
  879. if self.ftype == 0 and data_dtype == np.float16:
  880. data = data.astype(np.float32)
  881. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  882. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  883. data = data.astype(np.float32)
  884. # if f16 desired, convert any float32 2-dim weight tensors to float16
  885. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  886. data = data.astype(np.float16)
  887. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  888. self.gguf_writer.add_tensor(new_name, data)
  889. @Model.register("GPTBigCodeForCausalLM")
  890. class StarCoderModel(Model):
  891. model_arch = gguf.MODEL_ARCH.STARCODER
  892. def set_gguf_parameters(self):
  893. block_count = self.hparams["n_layer"]
  894. self.gguf_writer.add_name("StarCoder")
  895. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  896. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  897. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  898. self.gguf_writer.add_block_count(block_count)
  899. self.gguf_writer.add_head_count(self.hparams["n_head"])
  900. self.gguf_writer.add_head_count_kv(1)
  901. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  902. self.gguf_writer.add_file_type(self.ftype)
  903. @Model.register("GPTRefactForCausalLM")
  904. class RefactModel(Model):
  905. model_arch = gguf.MODEL_ARCH.REFACT
  906. def set_gguf_parameters(self):
  907. hidden_dim = self.hparams["n_embd"]
  908. inner_dim = 4 * hidden_dim
  909. hidden_dim = int(2 * inner_dim / 3)
  910. multiple_of = 256
  911. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  912. block_count = self.hparams["n_layer"]
  913. self.gguf_writer.add_name("Refact")
  914. # refact uses Alibi. So this is from config.json which might be used by training.
  915. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  916. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  917. self.gguf_writer.add_feed_forward_length(ff_dim)
  918. self.gguf_writer.add_block_count(block_count)
  919. self.gguf_writer.add_head_count(self.hparams["n_head"])
  920. self.gguf_writer.add_head_count_kv(1)
  921. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  922. self.gguf_writer.add_file_type(self.ftype)
  923. def write_tensors(self):
  924. hidden_dim = self.hparams["n_embd"]
  925. inner_dim = 4 * hidden_dim
  926. hidden_dim = int(2 * inner_dim / 3)
  927. multiple_of = 256
  928. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  929. n_head = self.hparams["n_head"]
  930. n_head_kv = 1
  931. head_dim = self.hparams["n_embd"] // n_head
  932. block_count = self.hparams["n_layer"]
  933. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  934. tensors = dict(self.get_tensors())
  935. for i in range(block_count):
  936. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  937. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  938. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  939. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  940. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  941. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  942. del tensors[f"transformer.h.{i}.attn.q.weight"]
  943. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  944. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  945. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  946. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  947. for name, data_torch in tensors.items():
  948. old_dtype = data_torch.dtype
  949. # convert any unsupported data types to float32
  950. if data_torch.dtype not in (torch.float16, torch.float32):
  951. data_torch = data_torch.to(torch.float32)
  952. data = data_torch.squeeze().numpy()
  953. # map tensor names
  954. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  955. if new_name is None:
  956. raise ValueError(f"Can not map tensor {name!r}")
  957. n_dims = len(data.shape)
  958. data_dtype = data.dtype
  959. # if f32 desired, convert any float16 to float32
  960. if self.ftype == 0 and data_dtype == np.float16:
  961. data = data.astype(np.float32)
  962. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  963. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  964. data = data.astype(np.float32)
  965. # if f16 desired, convert any float32 2-dim weight tensors to float16
  966. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  967. data = data.astype(np.float16)
  968. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  969. self.gguf_writer.add_tensor(new_name, data)
  970. @Model.register("PersimmonForCausalLM")
  971. class PersimmonModel(Model):
  972. model_arch = gguf.MODEL_ARCH.PERSIMMON
  973. def set_gguf_parameters(self):
  974. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  975. head_count = self.hparams["num_attention_heads"]
  976. head_count_kv = head_count
  977. hidden_size = self.hparams["hidden_size"]
  978. self.gguf_writer.add_name('persimmon-8b-chat')
  979. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  980. self.gguf_writer.add_embedding_length(hidden_size)
  981. self.gguf_writer.add_block_count(block_count)
  982. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  983. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  984. # than the head size?
  985. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  986. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  987. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  988. self.gguf_writer.add_head_count(head_count)
  989. self.gguf_writer.add_head_count_kv(head_count_kv)
  990. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  991. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  992. def set_vocab(self):
  993. self._set_vocab_sentencepiece()
  994. # self.gguf_writer.add_bos_token_id(71013)
  995. # self.gguf_writer.add_eos_token_id(71013)
  996. def write_tensors(self):
  997. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  998. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  999. for name, data_torch in self.get_tensors():
  1000. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  1001. continue
  1002. old_dtype = data_torch.dtype
  1003. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  1004. data = data_torch.to(torch.float32).squeeze().numpy()
  1005. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1006. if new_name is None:
  1007. raise ValueError(f"Can not map tensor {name!r}")
  1008. n_dims = len(data.shape)
  1009. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1010. self.gguf_writer.add_tensor(new_name, data)
  1011. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1012. class StableLMModel(Model):
  1013. model_arch = gguf.MODEL_ARCH.STABLELM
  1014. def set_vocab(self):
  1015. if (self.dir_model / "tokenizer.json").is_file():
  1016. self._set_vocab_gpt2()
  1017. else:
  1018. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  1019. self._set_vocab_qwen()
  1020. def set_gguf_parameters(self):
  1021. hparams = self.hparams
  1022. block_count = hparams["num_hidden_layers"]
  1023. self.gguf_writer.add_name(self.dir_model.name)
  1024. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1025. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1026. self.gguf_writer.add_block_count(block_count)
  1027. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1028. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1029. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1030. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1031. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1032. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1033. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1034. def write_tensors(self):
  1035. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1036. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1037. n_head = self.hparams.get("num_attention_heads")
  1038. n_kv_head = self.hparams.get("num_key_value_heads")
  1039. q_norms = dict()
  1040. k_norms = dict()
  1041. for name, data_torch in self.get_tensors():
  1042. # we don't need these
  1043. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1044. continue
  1045. old_dtype = data_torch.dtype
  1046. # convert any unsupported data types to float32
  1047. if data_torch.dtype not in (torch.float16, torch.float32):
  1048. data_torch = data_torch.to(torch.float32)
  1049. data = data_torch.squeeze().numpy()
  1050. n_dims = len(data.shape)
  1051. if name.find("q_layernorm.norms") != -1:
  1052. q_norms[name] = data
  1053. if len(q_norms) >= (block_count * n_head):
  1054. self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
  1055. continue
  1056. if name.find("k_layernorm.norms") != -1:
  1057. k_norms[name] = data
  1058. if len(k_norms) >= (block_count * n_kv_head):
  1059. self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
  1060. continue
  1061. # map tensor names
  1062. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1063. if new_name is None:
  1064. raise ValueError(f"Can not map tensor {name!r}")
  1065. n_dims = len(data.shape)
  1066. data_dtype = data.dtype
  1067. # if f32 desired, convert any float16 to float32
  1068. if self.ftype == 0 and data_dtype == np.float16:
  1069. data = data.astype(np.float32)
  1070. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1071. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1072. data = data.astype(np.float32)
  1073. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1074. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1075. data = data.astype(np.float16)
  1076. logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1077. self.gguf_writer.add_tensor(new_name, data)
  1078. def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
  1079. for bid in range(block_count):
  1080. datas = []
  1081. for xid in range(n_head):
  1082. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1083. datas.append(norms[ename])
  1084. del norms[ename]
  1085. data = np.stack(datas, axis=0)
  1086. data_dtype = data.dtype
  1087. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1088. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1089. if new_name is None:
  1090. raise ValueError(f"Can not map tensor {name!r}")
  1091. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1092. data = data.astype(np.float32)
  1093. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1094. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1095. data = data.astype(np.float16)
  1096. logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1097. self.gguf_writer.add_tensor(new_name, data)
  1098. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1099. class LlamaModel(Model):
  1100. model_arch = gguf.MODEL_ARCH.LLAMA
  1101. def set_vocab(self):
  1102. try:
  1103. self. _set_vocab_sentencepiece()
  1104. except FileNotFoundError:
  1105. try:
  1106. self._set_vocab_llama_hf()
  1107. except (FileNotFoundError, TypeError):
  1108. # Llama 3
  1109. self._set_vocab_gpt2()
  1110. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1111. if self.hparams.get("vocab_size", 32000) == 32016:
  1112. special_vocab = gguf.SpecialVocab(
  1113. self.dir_model, load_merges=False,
  1114. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1115. )
  1116. special_vocab._set_special_token("prefix", 32007)
  1117. special_vocab._set_special_token("suffix", 32008)
  1118. special_vocab._set_special_token("middle", 32009)
  1119. special_vocab._set_special_token("eot", 32010)
  1120. special_vocab.add_to_gguf(self.gguf_writer)
  1121. def set_gguf_parameters(self):
  1122. super().set_gguf_parameters()
  1123. hparams = self.hparams
  1124. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1125. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1126. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1127. if self.hparams["rope_scaling"].get("type") == "linear":
  1128. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1129. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1130. # Same as super class, but permuting q_proj, k_proj
  1131. def write_tensors(self):
  1132. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1133. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1134. n_head = self.hparams.get("num_attention_heads")
  1135. n_kv_head = self.hparams.get("num_key_value_heads")
  1136. n_experts = self.hparams.get("num_local_experts")
  1137. experts = dict()
  1138. for name, data_torch in self.get_tensors():
  1139. # we don't need these
  1140. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  1141. continue
  1142. old_dtype = data_torch.dtype
  1143. # convert any unsupported data types to float32
  1144. if data_torch.dtype not in (torch.float16, torch.float32):
  1145. data_torch = data_torch.to(torch.float32)
  1146. data = data_torch.numpy()
  1147. if name.endswith("q_proj.weight"):
  1148. data = permute(data, n_head, n_head)
  1149. if name.endswith("k_proj.weight"):
  1150. data = permute(data, n_head, n_kv_head)
  1151. data = data.squeeze()
  1152. # process the experts separately
  1153. if name.find("block_sparse_moe.experts") != -1:
  1154. experts[name] = data
  1155. if len(experts) >= n_experts:
  1156. # merge the experts into a single 3d tensor
  1157. for bid in range(block_count):
  1158. for wid in range(1, 4):
  1159. full = True
  1160. for xid in range(n_experts):
  1161. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1162. if ename not in experts:
  1163. full = False
  1164. break
  1165. if not full:
  1166. continue
  1167. datas = []
  1168. for xid in range(n_experts):
  1169. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1170. datas.append(experts[ename])
  1171. del experts[ename]
  1172. data = np.stack(datas, axis=0)
  1173. data_dtype = data.dtype
  1174. if self.ftype == 0 and data_dtype == np.float16:
  1175. data = data.astype(np.float32)
  1176. if self.ftype == 1 and data_dtype == np.float32:
  1177. data = data.astype(np.float16)
  1178. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1179. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1180. if new_name is None:
  1181. raise ValueError(f"Can not map tensor {name!r}")
  1182. logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1183. self.gguf_writer.add_tensor(new_name, data)
  1184. continue
  1185. # map tensor names
  1186. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1187. if new_name is None:
  1188. raise ValueError(f"Can not map tensor {name!r}")
  1189. n_dims = len(data.shape)
  1190. data_dtype = data.dtype
  1191. # if f32 desired, convert any float16 to float32
  1192. if self.ftype == 0 and data_dtype == np.float16:
  1193. data = data.astype(np.float32)
  1194. # 1d tensors need to be converted to float32
  1195. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1196. data = data.astype(np.float32)
  1197. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1198. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1199. data = data.astype(np.float16)
  1200. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1201. self.gguf_writer.add_tensor(new_name, data)
  1202. if len(experts) > 0:
  1203. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1204. @Model.register("GrokForCausalLM")
  1205. class GrokModel(Model):
  1206. model_arch = gguf.MODEL_ARCH.GROK
  1207. def set_vocab(self):
  1208. self._set_vocab_sentencepiece()
  1209. def __init__(self, *args, **kwargs):
  1210. super().__init__(*args, **kwargs)
  1211. def set_gguf_parameters(self):
  1212. super().set_gguf_parameters()
  1213. self.gguf_writer.add_name("Grok")
  1214. def write_tensors(self):
  1215. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1216. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1217. n_experts = self.hparams.get("num_local_experts")
  1218. experts = dict()
  1219. for name, data_torch in self.get_tensors():
  1220. # we don't need these
  1221. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1222. continue
  1223. old_dtype = data_torch.dtype
  1224. # convert any unsupported data types to float32
  1225. if data_torch.dtype not in (torch.float16, torch.float32):
  1226. data_torch = data_torch.to(torch.float32)
  1227. data = data_torch.squeeze().numpy()
  1228. # process the experts separately
  1229. if name.find(".moe.") != -1:
  1230. experts[name] = data
  1231. if len(experts) >= n_experts:
  1232. # merge the experts into a single 3d tensor
  1233. for bid in range(block_count):
  1234. for wid in ["linear", "linear_1", "linear_v"]:
  1235. full = True
  1236. for xid in range(n_experts):
  1237. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1238. if ename not in experts:
  1239. full = False
  1240. break
  1241. if not full:
  1242. continue
  1243. datas = []
  1244. for xid in range(n_experts):
  1245. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1246. datas.append(experts[ename])
  1247. del experts[ename]
  1248. data = np.stack(datas, axis=0)
  1249. data_dtype = data.dtype
  1250. if self.ftype == 0 and data_dtype == np.float16:
  1251. data = data.astype(np.float32)
  1252. if self.ftype == 1 and data_dtype == np.float32:
  1253. data = data.astype(np.float16)
  1254. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1255. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1256. if new_name is None:
  1257. raise ValueError(f"Can not map tensor {name!r}")
  1258. logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1259. self.gguf_writer.add_tensor(new_name, data)
  1260. continue
  1261. # map tensor names
  1262. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1263. if new_name is None:
  1264. raise ValueError(f"Can not map tensor {name!r}")
  1265. n_dims = len(data.shape)
  1266. data_dtype = data.dtype
  1267. # if f32 desired, convert any float16 to float32
  1268. if self.ftype == 0 and data_dtype == np.float16:
  1269. data = data.astype(np.float32)
  1270. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1271. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1272. data = data.astype(np.float32)
  1273. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1274. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1275. data = data.astype(np.float16)
  1276. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1277. self.gguf_writer.add_tensor(new_name, data)
  1278. @Model.register("DbrxForCausalLM")
  1279. class DbrxModel(Model):
  1280. model_arch = gguf.MODEL_ARCH.DBRX
  1281. def set_gguf_parameters(self):
  1282. ffn_config = self.hparams["ffn_config"]
  1283. attn_config = self.hparams["attn_config"]
  1284. self.gguf_writer.add_name(self.hparams["model_type"])
  1285. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1286. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1287. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1288. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1289. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1290. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1291. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1292. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1293. self.gguf_writer.add_file_type(self.ftype)
  1294. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1295. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1296. self.gguf_writer.add_layer_norm_eps(1e-5)
  1297. self.gguf_writer.add_file_type(self.ftype)
  1298. logger.info(f"gguf: file type = {self.ftype}")
  1299. def write_tensors(self):
  1300. block_count = self.hparams.get("n_layers")
  1301. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1302. for name, data_torch in self.get_tensors():
  1303. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1304. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1305. n_embd = self.hparams["d_model"]
  1306. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1307. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1308. # But llama.cpp moe graph works differently
  1309. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1310. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1311. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1312. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1313. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1314. experts = False
  1315. for exp_tensor_name in exp_tensor_names.keys():
  1316. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1317. experts = True
  1318. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1319. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1320. data_torch = data_torch.permute(*permute_tensor)
  1321. break
  1322. old_dtype = data_torch.dtype
  1323. # convert any unsupported data types to float32
  1324. if data_torch.dtype not in (torch.float16, torch.float32):
  1325. data_torch = data_torch.to(torch.float32)
  1326. data = data_torch.squeeze().numpy()
  1327. # map tensor names
  1328. # In MoE models the ffn tensors are typically most of the model weights,
  1329. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1330. # Every other model has the weight names ending in .weight,
  1331. # let's assume that is the convention which is not the case for dbrx:
  1332. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1333. new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1334. if new_name is None:
  1335. raise ValueError(f"Can not map tensor {name!r}")
  1336. n_dims = len(data.shape)
  1337. data_dtype = data.dtype
  1338. # Most of the codebase that takes in 1D tensors only handles F32 tensors
  1339. # and most of the outputs tensors are F32.
  1340. if data_dtype != np.float32 and n_dims == 1:
  1341. raise ValueError(f"Can not map tensor {name!r}: all 1D tensors must be F32")
  1342. # if f32 desired, convert any float16 to float32
  1343. if self.ftype == 0 and data_dtype == np.float16:
  1344. data = data.astype(np.float32)
  1345. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1346. if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
  1347. data = data.astype(np.float16)
  1348. logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1349. self.gguf_writer.add_tensor(new_name, data)
  1350. @Model.register("MiniCPMForCausalLM")
  1351. class MiniCPMModel(Model):
  1352. model_arch = gguf.MODEL_ARCH.MINICPM
  1353. def set_gguf_parameters(self):
  1354. block_count = self.hparams["num_hidden_layers"]
  1355. self.gguf_writer.add_name("MiniCPM")
  1356. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1357. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1358. self.gguf_writer.add_block_count(block_count)
  1359. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1360. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1361. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1362. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1363. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1364. self.gguf_writer.add_file_type(self.ftype)
  1365. def set_vocab(self):
  1366. self._set_vocab_llama_hf()
  1367. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1368. if n_kv_head is not None and n_head != n_kv_head:
  1369. n_head //= n_kv_head
  1370. return (
  1371. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1372. .swapaxes(1, 2)
  1373. .reshape(weights.shape)
  1374. )
  1375. def write_tensors(self):
  1376. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1377. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1378. n_head = self.hparams.get("num_attention_heads")
  1379. n_kv_head = self.hparams.get("num_key_value_heads")
  1380. for name, data_torch in self.get_tensors():
  1381. # we don't need these
  1382. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1383. continue
  1384. old_dtype = data_torch.dtype
  1385. # convert any unsupported data types to float32
  1386. if data_torch.dtype not in (torch.float16, torch.float32):
  1387. data_torch = data_torch.to(torch.float32)
  1388. # HF models permute some of the tensors, so we need to undo that
  1389. if name.endswith(("q_proj.weight")):
  1390. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1391. if name.endswith(("k_proj.weight")):
  1392. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1393. data = data_torch.squeeze().numpy()
  1394. # map tensor names
  1395. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1396. if new_name is None:
  1397. raise ValueError(f"Can not map tensor {name!r}")
  1398. n_dims = len(data.shape)
  1399. data_dtype = data.dtype
  1400. # if f32 desired, convert any float16 to float32
  1401. if self.ftype == 0 and data_dtype == np.float16:
  1402. data = data.astype(np.float32)
  1403. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1404. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1405. data = data.astype(np.float32)
  1406. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1407. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1408. data = data.astype(np.float16)
  1409. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1410. self.gguf_writer.add_tensor(new_name, data)
  1411. @Model.register("QWenLMHeadModel")
  1412. class QwenModel(Model):
  1413. model_arch = gguf.MODEL_ARCH.QWEN
  1414. @staticmethod
  1415. def token_bytes_to_string(b):
  1416. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1417. byte_encoder = bytes_to_unicode()
  1418. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1419. @staticmethod
  1420. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1421. parts = [bytes([b]) for b in token]
  1422. while True:
  1423. min_idx = None
  1424. min_rank = None
  1425. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1426. rank = mergeable_ranks.get(pair[0] + pair[1])
  1427. if rank is not None and (min_rank is None or rank < min_rank):
  1428. min_idx = i
  1429. min_rank = rank
  1430. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1431. break
  1432. assert min_idx is not None
  1433. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1434. return parts
  1435. def set_vocab(self):
  1436. self._set_vocab_qwen()
  1437. def set_gguf_parameters(self):
  1438. self.gguf_writer.add_name("Qwen")
  1439. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1440. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1441. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1442. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1443. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1444. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1445. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1446. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1447. def write_tensors(self):
  1448. block_count = self.hparams["num_hidden_layers"]
  1449. model_kv = dict(self.get_tensors())
  1450. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1451. for name, data_torch in model_kv.items():
  1452. # we don't need these
  1453. if name.endswith(".rotary_emb.inv_freq"):
  1454. continue
  1455. old_dtype = data_torch.dtype
  1456. # convert any unsupported data types to float32
  1457. if data_torch.dtype not in (torch.float16, torch.float32):
  1458. data_torch = data_torch.to(torch.float32)
  1459. data = data_torch.squeeze().numpy()
  1460. # map tensor names
  1461. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1462. if new_name is None:
  1463. raise ValueError(f"Can not map tensor {name!r}")
  1464. n_dims = len(data.shape)
  1465. data_dtype = data.dtype
  1466. # if f32 desired, convert any float16 to float32
  1467. if self.ftype == 0 and data_dtype == np.float16:
  1468. data = data.astype(np.float32)
  1469. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1470. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1471. data = data.astype(np.float32)
  1472. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1473. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1474. data = data.astype(np.float16)
  1475. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1476. self.gguf_writer.add_tensor(new_name, data)
  1477. @Model.register("Qwen2ForCausalLM")
  1478. class Qwen2Model(Model):
  1479. model_arch = gguf.MODEL_ARCH.QWEN2
  1480. def set_vocab(self):
  1481. try:
  1482. self._set_vocab_sentencepiece()
  1483. except FileNotFoundError:
  1484. self._set_vocab_gpt2()
  1485. @Model.register("Qwen2MoeForCausalLM")
  1486. class Qwen2MoeModel(Model):
  1487. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1488. def set_gguf_parameters(self):
  1489. super().set_gguf_parameters()
  1490. if (n_experts := self.hparams.get("num_experts")) is not None:
  1491. self.gguf_writer.add_expert_count(n_experts)
  1492. def write_tensors(self):
  1493. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1494. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1495. n_experts = self.hparams.get("num_experts")
  1496. experts = dict()
  1497. for name, data_torch in self.get_tensors():
  1498. # we don't need these
  1499. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1500. continue
  1501. old_dtype = data_torch.dtype
  1502. # convert any unsupported data types to float32
  1503. if data_torch.dtype not in (torch.float16, torch.float32):
  1504. data_torch = data_torch.to(torch.float32)
  1505. data = data_torch.squeeze().numpy()
  1506. # process the experts separately
  1507. if name.find("experts") != -1:
  1508. experts[name] = data
  1509. if len(experts) >= n_experts * 3:
  1510. # merge the experts into a single 3d tensor
  1511. for bid in range(block_count):
  1512. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1513. full = True
  1514. for xid in range(n_experts):
  1515. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1516. if ename not in experts:
  1517. full = False
  1518. break
  1519. if not full:
  1520. continue
  1521. datas = []
  1522. for xid in range(n_experts):
  1523. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1524. datas.append(experts[ename])
  1525. del experts[ename]
  1526. data = np.stack(datas, axis=0)
  1527. data_dtype = data.dtype
  1528. if self.ftype == 0 and data_dtype == np.float16:
  1529. data = data.astype(np.float32)
  1530. if self.ftype == 1 and data_dtype == np.float32:
  1531. data = data.astype(np.float16)
  1532. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1533. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1534. if new_name is None:
  1535. raise ValueError(f"Can not map tensor {name!r}")
  1536. logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1537. self.gguf_writer.add_tensor(new_name, data)
  1538. continue
  1539. # map tensor names
  1540. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1541. if new_name is None:
  1542. raise ValueError(f"Can not map tensor {name!r}")
  1543. n_dims = len(data.shape)
  1544. data_dtype = data.dtype
  1545. # if f32 desired, convert any float16 to float32
  1546. if self.ftype == 0 and data_dtype == np.float16:
  1547. data = data.astype(np.float32)
  1548. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1549. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1550. data = data.astype(np.float32)
  1551. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1552. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1553. data = data.astype(np.float16)
  1554. logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1555. self.gguf_writer.add_tensor(new_name, data)
  1556. if len(experts) > 0:
  1557. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1558. @Model.register("GPT2LMHeadModel")
  1559. class GPT2Model(Model):
  1560. model_arch = gguf.MODEL_ARCH.GPT2
  1561. def set_gguf_parameters(self):
  1562. self.gguf_writer.add_name(self.dir_model.name)
  1563. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1564. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1565. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1566. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1567. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1568. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1569. self.gguf_writer.add_file_type(self.ftype)
  1570. def write_tensors(self):
  1571. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1572. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1573. for name, data_torch in self.get_tensors():
  1574. # we don't need these
  1575. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1576. continue
  1577. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1578. data_torch = data_torch.transpose(1, 0)
  1579. old_dtype = data_torch.dtype
  1580. # convert any unsupported data types to float32
  1581. if data_torch.dtype not in (torch.float16, torch.float32):
  1582. data_torch = data_torch.to(torch.float32)
  1583. data = data_torch.squeeze().numpy()
  1584. # map tensor names
  1585. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1586. if new_name is None:
  1587. raise ValueError(f"Can not map tensor {name!r}")
  1588. n_dims = len(data.shape)
  1589. data_dtype = data.dtype
  1590. # if f32 desired, convert any float16 to float32
  1591. if self.ftype == 0 and data_dtype == np.float16:
  1592. data = data.astype(np.float32)
  1593. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1594. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1595. data = data.astype(np.float32)
  1596. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1597. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1598. data = data.astype(np.float16)
  1599. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1600. self.gguf_writer.add_tensor(new_name, data)
  1601. # note: GPT2 output is tied to (same as) wte in original model
  1602. if new_name == "token_embd.weight":
  1603. logger.info(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1604. self.gguf_writer.add_tensor("output.weight", data)
  1605. @Model.register("PhiForCausalLM")
  1606. class Phi2Model(Model):
  1607. model_arch = gguf.MODEL_ARCH.PHI2
  1608. def set_gguf_parameters(self):
  1609. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1610. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1611. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1612. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1613. self.gguf_writer.add_name("Phi2")
  1614. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1615. self.gguf_writer.add_embedding_length(n_embd)
  1616. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1617. self.gguf_writer.add_block_count(block_count)
  1618. self.gguf_writer.add_head_count(n_head)
  1619. self.gguf_writer.add_head_count_kv(n_head)
  1620. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1621. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1622. self.gguf_writer.add_file_type(self.ftype)
  1623. self.gguf_writer.add_add_bos_token(False)
  1624. @Model.register("Phi3ForCausalLM")
  1625. class Phi3MiniModel(Model):
  1626. model_arch = gguf.MODEL_ARCH.PHI3
  1627. def set_vocab(self):
  1628. from sentencepiece import SentencePieceProcessor
  1629. tokenizer_path = self.dir_model / 'tokenizer.model'
  1630. if not tokenizer_path.is_file():
  1631. raise ValueError(f'Error: Missing {tokenizer_path}')
  1632. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1633. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1634. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1635. scores: list[float] = [-10000.0] * vocab_size
  1636. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1637. for token_id in range(tokenizer.vocab_size()):
  1638. piece = tokenizer.id_to_piece(token_id)
  1639. text = piece.encode("utf-8")
  1640. score = tokenizer.get_score(token_id)
  1641. toktype = SentencePieceTokenTypes.NORMAL
  1642. if tokenizer.is_unknown(token_id):
  1643. toktype = SentencePieceTokenTypes.UNKNOWN
  1644. elif tokenizer.is_control(token_id):
  1645. toktype = SentencePieceTokenTypes.CONTROL
  1646. elif tokenizer.is_unused(token_id):
  1647. toktype = SentencePieceTokenTypes.UNUSED
  1648. elif tokenizer.is_byte(token_id):
  1649. toktype = SentencePieceTokenTypes.BYTE
  1650. tokens[token_id] = text
  1651. scores[token_id] = score
  1652. toktypes[token_id] = toktype
  1653. added_tokens_file = self.dir_model / 'added_tokens.json'
  1654. if added_tokens_file.is_file():
  1655. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1656. added_tokens_json = json.load(f)
  1657. for key in added_tokens_json:
  1658. token_id = added_tokens_json[key]
  1659. if (token_id >= vocab_size):
  1660. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1661. continue
  1662. tokens[token_id] = key.encode("utf-8")
  1663. scores[token_id] = -1000.0
  1664. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1665. self.gguf_writer.add_tokenizer_model("llama")
  1666. self.gguf_writer.add_tokenizer_pre("default")
  1667. self.gguf_writer.add_token_list(tokens)
  1668. self.gguf_writer.add_token_scores(scores)
  1669. self.gguf_writer.add_token_types(toktypes)
  1670. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1671. special_vocab.add_to_gguf(self.gguf_writer)
  1672. def set_gguf_parameters(self):
  1673. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1674. rot_pct = 1.0
  1675. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1676. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1677. rms_eps = self.find_hparam(["rms_norm_eps"])
  1678. self.gguf_writer.add_name("Phi3")
  1679. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1680. self.gguf_writer.add_embedding_length(n_embd)
  1681. self.gguf_writer.add_feed_forward_length(8192)
  1682. self.gguf_writer.add_block_count(block_count)
  1683. self.gguf_writer.add_head_count(n_head)
  1684. self.gguf_writer.add_head_count_kv(n_head)
  1685. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1686. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1687. self.gguf_writer.add_file_type(self.ftype)
  1688. @Model.register("PlamoForCausalLM")
  1689. class PlamoModel(Model):
  1690. model_arch = gguf.MODEL_ARCH.PLAMO
  1691. def set_vocab(self):
  1692. self._set_vocab_sentencepiece()
  1693. def set_gguf_parameters(self):
  1694. hparams = self.hparams
  1695. block_count = hparams["num_hidden_layers"]
  1696. self.gguf_writer.add_name("PLaMo")
  1697. self.gguf_writer.add_context_length(4096) # not in config.json
  1698. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1699. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1700. self.gguf_writer.add_block_count(block_count)
  1701. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1702. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1703. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1704. def shuffle_attn_q_weight(self, data_torch):
  1705. assert data_torch.size() == (5120, 5120)
  1706. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1707. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1708. data_torch = torch.reshape(data_torch, (5120, 5120))
  1709. return data_torch
  1710. def shuffle_attn_output_weight(self, data_torch):
  1711. assert data_torch.size() == (5120, 5120)
  1712. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1713. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1714. data_torch = torch.reshape(data_torch, (5120, 5120))
  1715. return data_torch
  1716. def write_tensors(self):
  1717. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1718. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1719. for name, data_torch in self.get_tensors():
  1720. if "self_attn.rotary_emb.inv_freq" in name:
  1721. continue
  1722. # map tensor names
  1723. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1724. if new_name is None:
  1725. raise ValueError(f"Can not map tensor {name!r}")
  1726. # shuffle for broadcasting of gqa in ggml_mul_mat
  1727. if new_name.endswith("attn_q.weight"):
  1728. data_torch = self.shuffle_attn_q_weight(data_torch)
  1729. elif new_name.endswith("attn_output.weight"):
  1730. data_torch = self.shuffle_attn_output_weight(data_torch)
  1731. old_dtype = data_torch.dtype
  1732. # convert any unsupported data types to float32
  1733. if data_torch.dtype not in (torch.float16, torch.float32):
  1734. data_torch = data_torch.to(torch.float32)
  1735. data = data_torch.squeeze().numpy()
  1736. n_dims = len(data.shape)
  1737. data_dtype = data.dtype
  1738. # if f32 desired, convert any float16 to float32
  1739. if self.ftype == 0 and data_dtype == np.float16:
  1740. data = data.astype(np.float32)
  1741. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1742. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1743. data = data.astype(np.float32)
  1744. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1745. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1746. data = data.astype(np.float16)
  1747. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1748. self.gguf_writer.add_tensor(new_name, data)
  1749. @Model.register("CodeShellForCausalLM")
  1750. class CodeShellModel(Model):
  1751. model_arch = gguf.MODEL_ARCH.CODESHELL
  1752. def set_gguf_parameters(self):
  1753. block_count = self.hparams["n_layer"]
  1754. self.gguf_writer.add_name("CodeShell")
  1755. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1756. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1757. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1758. self.gguf_writer.add_block_count(block_count)
  1759. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1760. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1761. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1762. self.gguf_writer.add_file_type(self.ftype)
  1763. self.gguf_writer.add_rope_freq_base(10000.0)
  1764. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1765. self.gguf_writer.add_rope_scaling_factor(1.0)
  1766. def write_tensors(self):
  1767. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1768. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1769. tensors = dict(self.get_tensors())
  1770. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1771. for name, data_torch in tensors.items():
  1772. # we don't need these
  1773. if name.endswith((".attn.rotary_emb.inv_freq")):
  1774. continue
  1775. old_dtype = data_torch.dtype
  1776. # convert any unsupported data types to float32
  1777. if data_torch.dtype not in (torch.float16, torch.float32):
  1778. data_torch = data_torch.to(torch.float32)
  1779. data = data_torch.squeeze().numpy()
  1780. # map tensor names
  1781. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1782. if new_name is None:
  1783. raise ValueError(f"Can not map tensor {name!r}")
  1784. n_dims = len(data.shape)
  1785. data_dtype = data.dtype
  1786. # if f32 desired, convert any float16 to float32
  1787. if self.ftype == 0 and data_dtype == np.float16:
  1788. data = data.astype(np.float32)
  1789. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1790. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1791. data = data.astype(np.float32)
  1792. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1793. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1794. data = data.astype(np.float16)
  1795. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1796. self.gguf_writer.add_tensor(new_name, data)
  1797. if not has_lm_head and name == "transformer.wte.weight":
  1798. self.gguf_writer.add_tensor("output.weight", data)
  1799. logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1800. @Model.register("InternLM2ForCausalLM")
  1801. class InternLM2Model(Model):
  1802. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1803. def set_vocab(self):
  1804. # (TODO): Is there a better way?
  1805. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1806. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1807. # recognized as an empty string in C++.
  1808. from sentencepiece import SentencePieceProcessor
  1809. from sentencepiece import sentencepiece_model_pb2 as model
  1810. tokenizer_path = self.dir_model / 'tokenizer.model'
  1811. tokens: list[bytes] = []
  1812. scores: list[float] = []
  1813. toktypes: list[int] = []
  1814. if not tokenizer_path.is_file():
  1815. logger.error(f'Error: Missing {tokenizer_path}')
  1816. sys.exit(1)
  1817. sentencepiece_model = model.ModelProto()
  1818. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1819. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1820. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1821. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1822. for token_id in range(vocab_size):
  1823. piece = tokenizer.id_to_piece(token_id)
  1824. text = piece.encode("utf-8")
  1825. score = tokenizer.get_score(token_id)
  1826. if text == b"\x00":
  1827. # (TODO): fixme
  1828. # Hack here and replace the \x00 characters.
  1829. logger.debug(f"InternLM2 convert token '{text}' to '🐉'!")
  1830. text = "🐉"
  1831. toktype = SentencePieceTokenTypes.NORMAL
  1832. if tokenizer.is_unknown(token_id):
  1833. toktype = SentencePieceTokenTypes.UNKNOWN
  1834. elif tokenizer.is_control(token_id):
  1835. toktype = SentencePieceTokenTypes.CONTROL
  1836. elif tokenizer.is_unused(token_id):
  1837. toktype = SentencePieceTokenTypes.UNUSED
  1838. elif tokenizer.is_byte(token_id):
  1839. toktype = SentencePieceTokenTypes.BYTE
  1840. tokens.append(text)
  1841. scores.append(score)
  1842. toktypes.append(toktype)
  1843. added_tokens_file = self.dir_model / 'added_tokens.json'
  1844. if added_tokens_file.is_file():
  1845. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1846. added_tokens_json = json.load(f)
  1847. for key in added_tokens_json:
  1848. tokens.append(key.encode("utf-8"))
  1849. scores.append(-1000.0)
  1850. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1851. self.gguf_writer.add_tokenizer_model("llama")
  1852. self.gguf_writer.add_tokenizer_pre("default")
  1853. self.gguf_writer.add_token_list(tokens)
  1854. self.gguf_writer.add_token_scores(scores)
  1855. self.gguf_writer.add_token_types(toktypes)
  1856. self.gguf_writer.add_add_space_prefix(add_prefix)
  1857. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1858. old_eos = special_vocab.special_token_ids["eos"]
  1859. if "chat" in os.path.basename(self.dir_model.absolute()):
  1860. # For the chat model, we replace the eos with '<|im_end|>'.
  1861. # TODO: this is a hack, should be fixed
  1862. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1863. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1864. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1865. in chat mode so that the conversation can end normally.")
  1866. special_vocab.add_to_gguf(self.gguf_writer)
  1867. def _try_get_sft_eos(self, tokenizer):
  1868. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1869. im_end_list = tokenizer.encode('<|im_end|>')
  1870. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1871. if len(unused_145_list) == 1:
  1872. eos_token = unused_145_list[0]
  1873. if len(im_end_list) == 1:
  1874. eos_token = im_end_list[0]
  1875. return eos_token
  1876. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1877. if n_head_kv is not None and n_head != n_head_kv:
  1878. n_head = n_head_kv
  1879. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1880. .swapaxes(1, 2)
  1881. .reshape(weights.shape))
  1882. def set_gguf_parameters(self):
  1883. self.gguf_writer.add_name("InternLM2")
  1884. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1885. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1886. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1887. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1888. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1889. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1890. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1891. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1892. def post_write_tensors(self, tensor_map, name, data_torch):
  1893. old_dtype = data_torch.dtype
  1894. # convert any unsupported data types to float32
  1895. if data_torch.dtype not in (torch.float16, torch.float32):
  1896. data_torch = data_torch.to(torch.float32)
  1897. data = data_torch.squeeze().numpy()
  1898. # map tensor names
  1899. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1900. if new_name is None:
  1901. raise ValueError(f"Can not map tensor {name!r}")
  1902. n_dims = len(data.shape)
  1903. data_dtype = data.dtype
  1904. # if f32 desired, convert any float16 to float32
  1905. if self.ftype == 0 and data_dtype == np.float16:
  1906. data = data.astype(np.float32)
  1907. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1908. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1909. data = data.astype(np.float32)
  1910. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1911. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1912. data = data.astype(np.float16)
  1913. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1914. self.gguf_writer.add_tensor(new_name, data)
  1915. def write_tensors(self):
  1916. from einops import rearrange
  1917. num_heads = self.hparams.get("num_attention_heads")
  1918. num_kv_heads = self.hparams.get("num_key_value_heads")
  1919. hidden_size = self.hparams.get("hidden_size")
  1920. q_per_kv = num_heads // num_kv_heads
  1921. head_dim = hidden_size // num_heads
  1922. num_groups = num_heads // q_per_kv
  1923. block_count = self.hparams["num_hidden_layers"]
  1924. model_kv = dict(self.get_tensors())
  1925. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1926. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1927. for name, data_torch in model_kv.items():
  1928. # we don't need these
  1929. if name.endswith(".rotary_emb.inv_freq"):
  1930. continue
  1931. if re.match(qkv_pattern, name):
  1932. bid = re.findall(qkv_pattern, name)[0]
  1933. qkv = data_torch
  1934. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1935. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1936. # The model weights of q and k equire additional reshape.
  1937. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1938. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1939. v = rearrange(v, " o g n i -> o (g n i)").T
  1940. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1941. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1942. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1943. else:
  1944. self.post_write_tensors(tensor_map, name, data_torch)
  1945. @Model.register("BertModel", "CamembertModel")
  1946. class BertModel(Model):
  1947. model_arch = gguf.MODEL_ARCH.BERT
  1948. def __init__(self, *args, **kwargs):
  1949. super().__init__(*args, **kwargs)
  1950. self.vocab_size = None
  1951. def set_gguf_parameters(self):
  1952. super().set_gguf_parameters()
  1953. self.gguf_writer.add_causal_attention(False)
  1954. # get pooling path
  1955. pooling_path = None
  1956. module_path = self.dir_model / "modules.json"
  1957. if module_path.is_file():
  1958. with open(module_path, encoding="utf-8") as f:
  1959. modules = json.load(f)
  1960. for mod in modules:
  1961. if mod["type"] == "sentence_transformers.models.Pooling":
  1962. pooling_path = mod["path"]
  1963. break
  1964. # get pooling type
  1965. if pooling_path is not None:
  1966. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1967. pooling = json.load(f)
  1968. if pooling["pooling_mode_mean_tokens"]:
  1969. pooling_type = gguf.PoolingType.MEAN
  1970. elif pooling["pooling_mode_cls_token"]:
  1971. pooling_type = gguf.PoolingType.CLS
  1972. else:
  1973. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1974. self.gguf_writer.add_pooling_type(pooling_type)
  1975. def set_vocab(self):
  1976. tokens, toktypes, tokpre = self.get_vocab_base()
  1977. self.vocab_size = len(tokens)
  1978. # we need this to validate the size of the token_type embeddings
  1979. # though currently we are passing all zeros to the token_type embeddings
  1980. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1981. # convert to phantom space vocab
  1982. def phantom(tok):
  1983. if tok.startswith("[") and tok.endswith("]"):
  1984. return tok
  1985. if tok.startswith("##"):
  1986. return tok[2:]
  1987. return "\u2581" + tok
  1988. tokens = list(map(phantom, tokens))
  1989. # add vocab to gguf
  1990. self.gguf_writer.add_tokenizer_model("bert")
  1991. self.gguf_writer.add_tokenizer_pre(tokpre)
  1992. self.gguf_writer.add_token_list(tokens)
  1993. self.gguf_writer.add_token_types(toktypes)
  1994. # handle special tokens
  1995. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1996. special_vocab.add_to_gguf(self.gguf_writer)
  1997. def write_tensors(self):
  1998. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1999. tensors = dict(self.get_tensors())
  2000. for name, data_torch in tensors.items():
  2001. # we are only using BERT for embeddings so we don't need the pooling layer
  2002. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2003. continue # we don't need these
  2004. # map tensor names
  2005. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2006. if new_name is None:
  2007. raise ValueError(f"Can not map tensor {name!r}")
  2008. # convert any unsupported data types to float32
  2009. if data_torch.dtype not in (torch.float16, torch.float32):
  2010. data_torch = data_torch.to(torch.float32)
  2011. data = data_torch.squeeze().numpy()
  2012. n_dims = len(data.shape)
  2013. new_dtype: type[np.floating[Any]]
  2014. if (
  2015. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  2016. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  2017. ):
  2018. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2019. new_dtype = np.float16
  2020. else:
  2021. # if f32 desired, convert any float16 to float32
  2022. new_dtype = np.float32
  2023. logger.info(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  2024. if data.dtype != new_dtype:
  2025. data = data.astype(new_dtype)
  2026. self.gguf_writer.add_tensor(new_name, data)
  2027. @Model.register("NomicBertModel")
  2028. class NomicBertModel(BertModel):
  2029. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2030. def __init__(self, *args, **kwargs):
  2031. super().__init__(*args, **kwargs)
  2032. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2033. self.hparams["n_ctx"] = 2048
  2034. # SwigLU activation
  2035. assert self.hparams["activation_function"] == "swiglu"
  2036. # this doesn't do anything in the HF version
  2037. assert self.hparams["causal"] is False
  2038. # no bias tensors
  2039. assert self.hparams["qkv_proj_bias"] is False
  2040. assert self.hparams["mlp_fc1_bias"] is False
  2041. assert self.hparams["mlp_fc2_bias"] is False
  2042. # norm at end of layer
  2043. assert self.hparams["prenorm"] is False
  2044. # standard RoPE
  2045. assert self.hparams["rotary_emb_fraction"] == 1.0
  2046. assert self.hparams["rotary_emb_interleaved"] is False
  2047. assert self.hparams["rotary_emb_scale_base"] is None
  2048. def set_gguf_parameters(self):
  2049. super().set_gguf_parameters()
  2050. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2051. @Model.register("GemmaForCausalLM")
  2052. class GemmaModel(Model):
  2053. model_arch = gguf.MODEL_ARCH.GEMMA
  2054. def set_vocab(self):
  2055. self._set_vocab_sentencepiece()
  2056. # TODO: these special tokens should be exported only for the CodeGemma family
  2057. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2058. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2059. special_vocab._set_special_token("prefix", 67)
  2060. special_vocab._set_special_token("suffix", 69)
  2061. special_vocab._set_special_token("middle", 68)
  2062. special_vocab._set_special_token("fsep", 70)
  2063. special_vocab._set_special_token("eot", 107)
  2064. special_vocab.add_to_gguf(self.gguf_writer)
  2065. def set_gguf_parameters(self):
  2066. hparams = self.hparams
  2067. block_count = hparams["num_hidden_layers"]
  2068. self.gguf_writer.add_name(self.dir_model.name)
  2069. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2070. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2071. self.gguf_writer.add_block_count(block_count)
  2072. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2073. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2074. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2075. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2076. self.gguf_writer.add_key_length(hparams["head_dim"])
  2077. self.gguf_writer.add_value_length(hparams["head_dim"])
  2078. self.gguf_writer.add_file_type(self.ftype)
  2079. def write_tensors(self):
  2080. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2081. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2082. for name, data_torch in self.get_tensors():
  2083. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2084. # To prevent errors, skip loading lm_head.weight.
  2085. if name == "lm_head.weight":
  2086. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2087. continue
  2088. old_dtype = data_torch.dtype
  2089. # convert any unsupported data types to float32
  2090. if data_torch.dtype not in (torch.float16, torch.float32):
  2091. data_torch = data_torch.to(torch.float32)
  2092. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2093. if name.endswith("norm.weight"):
  2094. data_torch = data_torch + 1
  2095. data = data_torch.squeeze().numpy()
  2096. # map tensor names
  2097. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2098. if new_name is None:
  2099. raise ValueError(f"Can not map tensor {name!r}")
  2100. n_dims = len(data.shape)
  2101. data_dtype = data.dtype
  2102. data = data.astype(np.float32)
  2103. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2104. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  2105. data = data.astype(np.float16)
  2106. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2107. self.gguf_writer.add_tensor(new_name, data)
  2108. @Model.register("Starcoder2ForCausalLM")
  2109. class StarCoder2Model(Model):
  2110. model_arch = gguf.MODEL_ARCH.STARCODER2
  2111. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2112. class MambaModel(Model):
  2113. model_arch = gguf.MODEL_ARCH.MAMBA
  2114. def set_vocab(self):
  2115. vocab_size = self.hparams["vocab_size"]
  2116. # Round vocab size to next multiple of 8
  2117. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2118. # pad using ceiling division
  2119. # ref: https://stackoverflow.com/a/17511341/22827863
  2120. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2121. self.hparams["vocab_size"] = vocab_size
  2122. if (self.dir_model / "tokenizer.json").is_file():
  2123. self._set_vocab_gpt2()
  2124. else:
  2125. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2126. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  2127. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  2128. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  2129. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  2130. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  2131. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  2132. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]))
  2133. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  2134. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  2135. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  2136. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  2137. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  2138. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  2139. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  2140. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  2141. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  2142. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  2143. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  2144. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  2145. def set_gguf_parameters(self):
  2146. d_model = self.find_hparam(["hidden_size", "d_model"])
  2147. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2148. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2149. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2150. # ceiling division
  2151. # ref: https://stackoverflow.com/a/17511341/22827863
  2152. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2153. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2154. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2155. # Fail early for models which don't have a block expansion factor of 2
  2156. assert d_inner == 2 * d_model
  2157. self.gguf_writer.add_name(self.dir_model.name)
  2158. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2159. self.gguf_writer.add_embedding_length(d_model)
  2160. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2161. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2162. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2163. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2164. self.gguf_writer.add_ssm_inner_size(d_inner)
  2165. self.gguf_writer.add_ssm_state_size(d_state)
  2166. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2167. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2168. self.gguf_writer.add_file_type(self.ftype)
  2169. def write_tensors(self):
  2170. block_count = self.hparams["n_layer"]
  2171. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2172. tok_embd = None
  2173. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  2174. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  2175. for name, data_torch in self.get_tensors():
  2176. old_dtype = data_torch.dtype
  2177. # convert any unsupported data types to float32
  2178. if data_torch.dtype not in (torch.float16, torch.float32):
  2179. data_torch = data_torch.to(torch.float32)
  2180. # map tensor names
  2181. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2182. if new_name is None:
  2183. raise ValueError(f"Can not map tensor {name!r}")
  2184. if name.endswith(".A_log"):
  2185. logger.debug("A_log --> A ==> " + new_name)
  2186. data_torch = -torch.exp(data_torch)
  2187. # assuming token_embd.weight is seen before output.weight
  2188. if tok_embd is not None and new_name == output_name:
  2189. if torch.equal(tok_embd, data_torch):
  2190. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2191. continue
  2192. if new_name == tok_embd_name:
  2193. tok_embd = data_torch
  2194. data = data_torch.squeeze().numpy()
  2195. n_dims = len(data.shape)
  2196. data_dtype = data.dtype
  2197. # if f32 desired, convert any float16 to float32
  2198. if self.ftype == 0 and data_dtype == np.float16:
  2199. data = data.astype(np.float32)
  2200. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  2201. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2202. data = data.astype(np.float32)
  2203. # if f16 desired, convert big float32 2-dim weight tensors to float16
  2204. new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
  2205. if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  2206. data = data.astype(np.float16)
  2207. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2208. self.gguf_writer.add_tensor(new_name, data)
  2209. @Model.register("CohereForCausalLM")
  2210. class CommandR2Model(Model):
  2211. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2212. def __init__(self, *args, **kwargs):
  2213. super().__init__(*args, **kwargs)
  2214. # max_position_embeddings = 8192 in config.json but model was actually
  2215. # trained on 128k context length
  2216. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  2217. def set_gguf_parameters(self):
  2218. super().set_gguf_parameters()
  2219. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2220. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2221. @Model.register("OlmoForCausalLM")
  2222. @Model.register("OLMoForCausalLM")
  2223. class OlmoModel(Model):
  2224. model_arch = gguf.MODEL_ARCH.OLMO
  2225. def set_gguf_parameters(self):
  2226. super().set_gguf_parameters()
  2227. self.gguf_writer.add_layer_norm_eps(1e-5)
  2228. if "clip_qkv" in self.hparams is not None:
  2229. self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
  2230. # Same as super class, but permuting q_proj, k_proj
  2231. # Copied from: LlamaModel
  2232. def write_tensors(self):
  2233. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2234. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2235. n_head = self.hparams.get("num_attention_heads")
  2236. n_kv_head = self.hparams.get("num_key_value_heads")
  2237. for name, data_torch in self.get_tensors():
  2238. old_dtype = data_torch.dtype
  2239. # convert any unsupported data types to float32
  2240. if data_torch.dtype not in (torch.float16, torch.float32):
  2241. data_torch = data_torch.to(torch.float32)
  2242. data = data_torch.numpy()
  2243. if name.endswith("q_proj.weight"):
  2244. data = permute(data, n_head, n_head)
  2245. if name.endswith("k_proj.weight"):
  2246. data = permute(data, n_head, n_kv_head)
  2247. data = data.squeeze()
  2248. # map tensor names
  2249. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2250. if new_name is None:
  2251. raise ValueError(f"Can not map tensor {name!r}")
  2252. n_dims = len(data.shape)
  2253. data_dtype = data.dtype
  2254. # if f32 desired, convert any float16 to float32
  2255. if self.ftype == 0 and data_dtype == np.float16:
  2256. data = data.astype(np.float32)
  2257. # 1d tensors need to be converted to float32
  2258. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2259. data = data.astype(np.float32)
  2260. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2261. if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
  2262. data = data.astype(np.float16)
  2263. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2264. self.gguf_writer.add_tensor(new_name, data)
  2265. ###### CONVERSION LOGIC ######
  2266. def parse_args() -> argparse.Namespace:
  2267. parser = argparse.ArgumentParser(
  2268. description="Convert a huggingface model to a GGML compatible file")
  2269. parser.add_argument(
  2270. "--vocab-only", action="store_true",
  2271. help="extract only the vocab",
  2272. )
  2273. parser.add_argument(
  2274. "--awq-path", type=Path, default=None,
  2275. help="Path to scale awq cache file")
  2276. parser.add_argument(
  2277. "--outfile", type=Path,
  2278. help="path to write to; default: based on input",
  2279. )
  2280. parser.add_argument(
  2281. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  2282. help="output format - use f32 for float32, f16 for float16",
  2283. )
  2284. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  2285. parser.add_argument(
  2286. "model", type=Path,
  2287. help="directory containing model file",
  2288. )
  2289. parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
  2290. parser.add_argument("--model-name", type=str, default=None, help="name of the model")
  2291. parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
  2292. return parser.parse_args()
  2293. def main() -> None:
  2294. args = parse_args()
  2295. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2296. dir_model = args.model
  2297. if args.awq_path:
  2298. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2299. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2300. tmp_model_path = args.model / "weighted_model"
  2301. dir_model = tmp_model_path
  2302. if tmp_model_path.is_dir():
  2303. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2304. else:
  2305. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2306. logger.info("Saving new weighted model ...")
  2307. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2308. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2309. if not dir_model.is_dir():
  2310. logger.error(f'Error: {args.model} is not a directory')
  2311. sys.exit(1)
  2312. ftype_map = {
  2313. "f32": gguf.GGMLQuantizationType.F32,
  2314. "f16": gguf.GGMLQuantizationType.F16,
  2315. }
  2316. if args.outfile is not None:
  2317. fname_out = args.outfile
  2318. else:
  2319. # output in the same directory as the model by default
  2320. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  2321. logger.info(f"Loading model: {dir_model.name}")
  2322. hparams = Model.load_hparams(dir_model)
  2323. with torch.inference_mode():
  2324. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2325. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
  2326. logger.info("Set model parameters")
  2327. model_instance.set_gguf_parameters()
  2328. logger.info("Set model tokenizer")
  2329. model_instance.set_vocab()
  2330. if args.vocab_only:
  2331. logger.info(f"Exporting model vocab to '{fname_out}'")
  2332. model_instance.write_vocab()
  2333. else:
  2334. logger.info(f"Exporting model to '{fname_out}'")
  2335. model_instance.write()
  2336. logger.info(f"Model successfully exported to '{fname_out}'")
  2337. if __name__ == '__main__':
  2338. main()