llama.h 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  34. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  35. #define LLAMA_SESSION_VERSION 6
  36. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  37. #define LLAMA_STATE_SEQ_VERSION 1
  38. #ifdef __cplusplus
  39. extern "C" {
  40. #endif
  41. //
  42. // C interface
  43. //
  44. // TODO: show sample usage
  45. //
  46. struct llama_model;
  47. struct llama_context;
  48. typedef int32_t llama_pos;
  49. typedef int32_t llama_token;
  50. typedef int32_t llama_seq_id;
  51. enum llama_vocab_type {
  52. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  53. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  54. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  55. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  56. };
  57. // pre-tokenization types
  58. enum llama_vocab_pre_type {
  59. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  60. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  61. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  62. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  63. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  64. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  65. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  66. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  67. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  68. };
  69. // note: these values should be synchronized with ggml_rope
  70. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  71. enum llama_rope_type {
  72. LLAMA_ROPE_TYPE_NONE = -1,
  73. LLAMA_ROPE_TYPE_NORM = 0,
  74. LLAMA_ROPE_TYPE_NEOX = 2,
  75. LLAMA_ROPE_TYPE_GLM = 4,
  76. };
  77. enum llama_token_type {
  78. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  79. LLAMA_TOKEN_TYPE_NORMAL = 1,
  80. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  81. LLAMA_TOKEN_TYPE_CONTROL = 3,
  82. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  83. LLAMA_TOKEN_TYPE_UNUSED = 5,
  84. LLAMA_TOKEN_TYPE_BYTE = 6,
  85. };
  86. // model file types
  87. enum llama_ftype {
  88. LLAMA_FTYPE_ALL_F32 = 0,
  89. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  90. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  91. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  92. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  93. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  94. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  95. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  96. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  97. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  98. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  99. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  100. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  101. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  102. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  103. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  104. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  105. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  106. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  107. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  108. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  109. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  110. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  111. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  112. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  113. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  114. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  115. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  116. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  117. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  118. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  119. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  120. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  121. };
  122. enum llama_rope_scaling_type {
  123. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  124. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  125. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  126. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  127. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  128. };
  129. enum llama_pooling_type {
  130. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  131. LLAMA_POOLING_TYPE_NONE = 0,
  132. LLAMA_POOLING_TYPE_MEAN = 1,
  133. LLAMA_POOLING_TYPE_CLS = 2,
  134. };
  135. enum llama_split_mode {
  136. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  137. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  138. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  139. };
  140. typedef struct llama_token_data {
  141. llama_token id; // token id
  142. float logit; // log-odds of the token
  143. float p; // probability of the token
  144. } llama_token_data;
  145. typedef struct llama_token_data_array {
  146. llama_token_data * data;
  147. size_t size;
  148. bool sorted;
  149. } llama_token_data_array;
  150. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  151. // Input data for llama_decode
  152. // A llama_batch object can contain input about one or many sequences
  153. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  154. //
  155. // - token : the token ids of the input (used when embd is NULL)
  156. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  157. // - pos : the positions of the respective token in the sequence
  158. // - seq_id : the sequence to which the respective token belongs
  159. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  160. //
  161. typedef struct llama_batch {
  162. int32_t n_tokens;
  163. llama_token * token;
  164. float * embd;
  165. llama_pos * pos;
  166. int32_t * n_seq_id;
  167. llama_seq_id ** seq_id;
  168. int8_t * logits; // TODO: rename this to "output"
  169. // NOTE: helpers for smooth API transition - can be deprecated in the future
  170. // for future-proof code, use the above fields instead and ignore everything below
  171. //
  172. // pos[i] = all_pos_0 + i*all_pos_1
  173. //
  174. llama_pos all_pos_0; // used if pos == NULL
  175. llama_pos all_pos_1; // used if pos == NULL
  176. llama_seq_id all_seq_id; // used if seq_id == NULL
  177. } llama_batch;
  178. enum llama_model_kv_override_type {
  179. LLAMA_KV_OVERRIDE_TYPE_INT,
  180. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  181. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  182. LLAMA_KV_OVERRIDE_TYPE_STR,
  183. };
  184. struct llama_model_kv_override {
  185. enum llama_model_kv_override_type tag;
  186. char key[128];
  187. union {
  188. int64_t val_i64;
  189. double val_f64;
  190. bool val_bool;
  191. char val_str[128];
  192. };
  193. };
  194. struct llama_model_params {
  195. int32_t n_gpu_layers; // number of layers to store in VRAM
  196. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  197. // main_gpu interpretation depends on split_mode:
  198. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  199. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  200. // LLAMA_SPLIT_LAYER: ignored
  201. int32_t main_gpu;
  202. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  203. const float * tensor_split;
  204. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  205. // If the provided progress_callback returns true, model loading continues.
  206. // If it returns false, model loading is immediately aborted.
  207. llama_progress_callback progress_callback;
  208. // context pointer passed to the progress callback
  209. void * progress_callback_user_data;
  210. // override key-value pairs of the model meta data
  211. const struct llama_model_kv_override * kv_overrides;
  212. // Keep the booleans together to avoid misalignment during copy-by-value.
  213. bool vocab_only; // only load the vocabulary, no weights
  214. bool use_mmap; // use mmap if possible
  215. bool use_mlock; // force system to keep model in RAM
  216. bool check_tensors; // validate model tensor data
  217. };
  218. struct llama_context_params {
  219. uint32_t seed; // RNG seed, -1 for random
  220. uint32_t n_ctx; // text context, 0 = from model
  221. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  222. uint32_t n_ubatch; // physical maximum batch size
  223. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  224. uint32_t n_threads; // number of threads to use for generation
  225. uint32_t n_threads_batch; // number of threads to use for batch processing
  226. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  227. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  228. // (ignored if no pooling layer)
  229. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  230. float rope_freq_base; // RoPE base frequency, 0 = from model
  231. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  232. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  233. float yarn_attn_factor; // YaRN magnitude scaling factor
  234. float yarn_beta_fast; // YaRN low correction dim
  235. float yarn_beta_slow; // YaRN high correction dim
  236. uint32_t yarn_orig_ctx; // YaRN original context size
  237. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  238. ggml_backend_sched_eval_callback cb_eval;
  239. void * cb_eval_user_data;
  240. enum ggml_type type_k; // data type for K cache
  241. enum ggml_type type_v; // data type for V cache
  242. // Keep the booleans together to avoid misalignment during copy-by-value.
  243. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  244. bool embeddings; // if true, extract embeddings (together with logits)
  245. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  246. bool flash_attn; // whether to use flash attention
  247. // Abort callback
  248. // if it returns true, execution of llama_decode() will be aborted
  249. // currently works only with CPU execution
  250. ggml_abort_callback abort_callback;
  251. void * abort_callback_data;
  252. };
  253. // model quantization parameters
  254. typedef struct llama_model_quantize_params {
  255. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  256. enum llama_ftype ftype; // quantize to this llama_ftype
  257. enum ggml_type output_tensor_type; // output tensor type
  258. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  259. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  260. bool quantize_output_tensor; // quantize output.weight
  261. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  262. bool pure; // quantize all tensors to the default type
  263. bool keep_split; // quantize to the same number of shards
  264. void * imatrix; // pointer to importance matrix data
  265. void * kv_overrides; // pointer to vector containing overrides
  266. } llama_model_quantize_params;
  267. // grammar types
  268. struct llama_grammar;
  269. // grammar element type
  270. enum llama_gretype {
  271. // end of rule definition
  272. LLAMA_GRETYPE_END = 0,
  273. // start of alternate definition for rule
  274. LLAMA_GRETYPE_ALT = 1,
  275. // non-terminal element: reference to rule
  276. LLAMA_GRETYPE_RULE_REF = 2,
  277. // terminal element: character (code point)
  278. LLAMA_GRETYPE_CHAR = 3,
  279. // inverse char(s) ([^a], [^a-b] [^abc])
  280. LLAMA_GRETYPE_CHAR_NOT = 4,
  281. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  282. // be an inclusive range ([a-z])
  283. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  284. // modifies a preceding LLAMA_GRETYPE_CHAR or
  285. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  286. LLAMA_GRETYPE_CHAR_ALT = 6,
  287. };
  288. typedef struct llama_grammar_element {
  289. enum llama_gretype type;
  290. uint32_t value; // Unicode code point or rule ID
  291. } llama_grammar_element;
  292. // performance timing information
  293. struct llama_timings {
  294. double t_start_ms;
  295. double t_end_ms;
  296. double t_load_ms;
  297. double t_sample_ms;
  298. double t_p_eval_ms;
  299. double t_eval_ms;
  300. int32_t n_sample;
  301. int32_t n_p_eval;
  302. int32_t n_eval;
  303. };
  304. // used in chat template
  305. typedef struct llama_chat_message {
  306. const char * role;
  307. const char * content;
  308. } llama_chat_message;
  309. // Helpers for getting default parameters
  310. LLAMA_API struct llama_model_params llama_model_default_params(void);
  311. LLAMA_API struct llama_context_params llama_context_default_params(void);
  312. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  313. // Initialize the llama + ggml backend
  314. // If numa is true, use NUMA optimizations
  315. // Call once at the start of the program
  316. LLAMA_API void llama_backend_init(void);
  317. //optional:
  318. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  319. // Call once at the end of the program - currently only used for MPI
  320. LLAMA_API void llama_backend_free(void);
  321. LLAMA_API struct llama_model * llama_load_model_from_file(
  322. const char * path_model,
  323. struct llama_model_params params);
  324. LLAMA_API void llama_free_model(struct llama_model * model);
  325. LLAMA_API struct llama_context * llama_new_context_with_model(
  326. struct llama_model * model,
  327. struct llama_context_params params);
  328. // Frees all allocated memory
  329. LLAMA_API void llama_free(struct llama_context * ctx);
  330. LLAMA_API int64_t llama_time_us(void);
  331. LLAMA_API size_t llama_max_devices(void);
  332. LLAMA_API bool llama_supports_mmap (void);
  333. LLAMA_API bool llama_supports_mlock (void);
  334. LLAMA_API bool llama_supports_gpu_offload(void);
  335. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  336. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  337. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  338. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  339. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  340. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  341. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  342. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  343. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  344. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  345. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  346. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  347. // Get the model's RoPE frequency scaling factor
  348. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  349. // Functions to access the model's GGUF metadata scalar values
  350. // - The functions return the length of the string on success, or -1 on failure
  351. // - The output string is always null-terminated and cleared on failure
  352. // - GGUF array values are not supported by these functions
  353. // Get metadata value as a string by key name
  354. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  355. // Get the number of metadata key/value pairs
  356. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  357. // Get metadata key name by index
  358. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  359. // Get metadata value as a string by index
  360. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  361. // Get a string describing the model type
  362. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  363. // Returns the total size of all the tensors in the model in bytes
  364. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  365. // Returns the total number of parameters in the model
  366. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  367. // Get a llama model tensor
  368. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  369. // Returns 0 on success
  370. LLAMA_API uint32_t llama_model_quantize(
  371. const char * fname_inp,
  372. const char * fname_out,
  373. const llama_model_quantize_params * params);
  374. // Apply a LoRA adapter to a loaded model
  375. // path_base_model is the path to a higher quality model to use as a base for
  376. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  377. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  378. // will be applied on top of the previous one
  379. // Returns 0 on success
  380. LLAMA_API int32_t llama_model_apply_lora_from_file(
  381. const struct llama_model * model,
  382. const char * path_lora,
  383. float scale,
  384. const char * path_base_model,
  385. int32_t n_threads);
  386. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  387. // the currently loaded vector.
  388. // n_embd should be the size of a single layer's control, and data should point
  389. // to an n_embd x n_layers buffer starting from layer 1.
  390. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  391. // See llama_control_vector_load in common to load a control vector.
  392. LLAMA_API int32_t llama_control_vector_apply(
  393. struct llama_context * lctx,
  394. const float * data,
  395. size_t len,
  396. int32_t n_embd,
  397. int32_t il_start,
  398. int32_t il_end);
  399. //
  400. // KV cache
  401. //
  402. // Information associated with an individual cell in the KV cache view.
  403. struct llama_kv_cache_view_cell {
  404. // The position for this cell. Takes KV cache shifts into account.
  405. // May be negative if the cell is not populated.
  406. llama_pos pos;
  407. };
  408. // An updateable view of the KV cache.
  409. struct llama_kv_cache_view {
  410. // Number of KV cache cells. This will be the same as the context size.
  411. int32_t n_cells;
  412. // Maximum number of sequences that can exist in a cell. It's not an error
  413. // if there are more sequences in a cell than this value, however they will
  414. // not be visible in the view cells_sequences.
  415. int32_t n_seq_max;
  416. // Number of tokens in the cache. For example, if there are two populated
  417. // cells, the first with 1 sequence id in it and the second with 2 sequence
  418. // ids then you'll have 3 tokens.
  419. int32_t token_count;
  420. // Number of populated cache cells.
  421. int32_t used_cells;
  422. // Maximum contiguous empty slots in the cache.
  423. int32_t max_contiguous;
  424. // Index to the start of the max_contiguous slot range. Can be negative
  425. // when cache is full.
  426. int32_t max_contiguous_idx;
  427. // Information for an individual cell.
  428. struct llama_kv_cache_view_cell * cells;
  429. // The sequences for each cell. There will be n_seq_max items per cell.
  430. llama_seq_id * cells_sequences;
  431. };
  432. // Create an empty KV cache view. (use only for debugging purposes)
  433. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  434. // Free a KV cache view. (use only for debugging purposes)
  435. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  436. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  437. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  438. // Returns the number of tokens in the KV cache (slow, use only for debug)
  439. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  440. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  441. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  442. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  443. // Clear the KV cache - both cell info is erased and KV data is zeroed
  444. LLAMA_API void llama_kv_cache_clear(
  445. struct llama_context * ctx);
  446. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  447. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  448. // seq_id < 0 : match any sequence
  449. // p0 < 0 : [0, p1]
  450. // p1 < 0 : [p0, inf)
  451. LLAMA_API bool llama_kv_cache_seq_rm(
  452. struct llama_context * ctx,
  453. llama_seq_id seq_id,
  454. llama_pos p0,
  455. llama_pos p1);
  456. // Copy all tokens that belong to the specified sequence to another sequence
  457. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  458. // p0 < 0 : [0, p1]
  459. // p1 < 0 : [p0, inf)
  460. LLAMA_API void llama_kv_cache_seq_cp(
  461. struct llama_context * ctx,
  462. llama_seq_id seq_id_src,
  463. llama_seq_id seq_id_dst,
  464. llama_pos p0,
  465. llama_pos p1);
  466. // Removes all tokens that do not belong to the specified sequence
  467. LLAMA_API void llama_kv_cache_seq_keep(
  468. struct llama_context * ctx,
  469. llama_seq_id seq_id);
  470. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  471. // If the KV cache is RoPEd, the KV data is updated accordingly:
  472. // - lazily on next llama_decode()
  473. // - explicitly with llama_kv_cache_update()
  474. // p0 < 0 : [0, p1]
  475. // p1 < 0 : [p0, inf)
  476. LLAMA_API void llama_kv_cache_seq_add(
  477. struct llama_context * ctx,
  478. llama_seq_id seq_id,
  479. llama_pos p0,
  480. llama_pos p1,
  481. llama_pos delta);
  482. // Integer division of the positions by factor of `d > 1`
  483. // If the KV cache is RoPEd, the KV data is updated accordingly:
  484. // - lazily on next llama_decode()
  485. // - explicitly with llama_kv_cache_update()
  486. // p0 < 0 : [0, p1]
  487. // p1 < 0 : [p0, inf)
  488. LLAMA_API void llama_kv_cache_seq_div(
  489. struct llama_context * ctx,
  490. llama_seq_id seq_id,
  491. llama_pos p0,
  492. llama_pos p1,
  493. int d);
  494. // Returns the largest position present in the KV cache for the specified sequence
  495. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  496. struct llama_context * ctx,
  497. llama_seq_id seq_id);
  498. // Defragment the KV cache
  499. // This will be applied:
  500. // - lazily on next llama_decode()
  501. // - explicitly with llama_kv_cache_update()
  502. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  503. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  504. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  505. //
  506. // State / sessions
  507. //
  508. // Returns the maximum size in bytes of the state (rng, logits, embedding
  509. // and kv_cache) - will often be smaller after compacting tokens
  510. LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
  511. LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
  512. "use llama_state_get_size instead");
  513. // Copies the state to the specified destination address.
  514. // Destination needs to have allocated enough memory.
  515. // Returns the number of bytes copied
  516. LLAMA_API size_t llama_state_get_data(
  517. struct llama_context * ctx,
  518. uint8_t * dst);
  519. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  520. struct llama_context * ctx,
  521. uint8_t * dst),
  522. "use llama_state_get_data instead");
  523. // Set the state reading from the specified address
  524. // Returns the number of bytes read
  525. LLAMA_API size_t llama_state_set_data(
  526. struct llama_context * ctx,
  527. const uint8_t * src);
  528. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  529. struct llama_context * ctx,
  530. const uint8_t * src),
  531. "use llama_state_set_data instead");
  532. // Save/load session file
  533. LLAMA_API bool llama_state_load_file(
  534. struct llama_context * ctx,
  535. const char * path_session,
  536. llama_token * tokens_out,
  537. size_t n_token_capacity,
  538. size_t * n_token_count_out);
  539. LLAMA_API DEPRECATED(bool llama_load_session_file(
  540. struct llama_context * ctx,
  541. const char * path_session,
  542. llama_token * tokens_out,
  543. size_t n_token_capacity,
  544. size_t * n_token_count_out),
  545. "use llama_state_load_file instead");
  546. LLAMA_API bool llama_state_save_file(
  547. struct llama_context * ctx,
  548. const char * path_session,
  549. const llama_token * tokens,
  550. size_t n_token_count);
  551. LLAMA_API DEPRECATED(bool llama_save_session_file(
  552. struct llama_context * ctx,
  553. const char * path_session,
  554. const llama_token * tokens,
  555. size_t n_token_count),
  556. "use llama_state_save_file instead");
  557. // Get the exact size needed to copy the KV cache of a single sequence
  558. LLAMA_API size_t llama_state_seq_get_size(
  559. struct llama_context * ctx,
  560. llama_seq_id seq_id);
  561. // Copy the KV cache of a single sequence into the specified buffer
  562. LLAMA_API size_t llama_state_seq_get_data(
  563. struct llama_context * ctx,
  564. uint8_t * dst,
  565. llama_seq_id seq_id);
  566. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  567. // Returns:
  568. // - Positive: Ok
  569. // - Zero: Failed to load
  570. LLAMA_API size_t llama_state_seq_set_data(
  571. struct llama_context * ctx,
  572. const uint8_t * src,
  573. llama_seq_id dest_seq_id);
  574. LLAMA_API size_t llama_state_seq_save_file(
  575. struct llama_context * ctx,
  576. const char * filepath,
  577. llama_seq_id seq_id,
  578. const llama_token * tokens,
  579. size_t n_token_count);
  580. LLAMA_API size_t llama_state_seq_load_file(
  581. struct llama_context * ctx,
  582. const char * filepath,
  583. llama_seq_id dest_seq_id,
  584. llama_token * tokens_out,
  585. size_t n_token_capacity,
  586. size_t * n_token_count_out);
  587. //
  588. // Decoding
  589. //
  590. // Return batch for single sequence of tokens starting at pos_0
  591. //
  592. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  593. //
  594. LLAMA_API struct llama_batch llama_batch_get_one(
  595. llama_token * tokens,
  596. int32_t n_tokens,
  597. llama_pos pos_0,
  598. llama_seq_id seq_id);
  599. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  600. // Each token can be assigned up to n_seq_max sequence ids
  601. // The batch has to be freed with llama_batch_free()
  602. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  603. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  604. // The rest of the llama_batch members are allocated with size n_tokens
  605. // All members are left uninitialized
  606. LLAMA_API struct llama_batch llama_batch_init(
  607. int32_t n_tokens,
  608. int32_t embd,
  609. int32_t n_seq_max);
  610. // Frees a batch of tokens allocated with llama_batch_init()
  611. LLAMA_API void llama_batch_free(struct llama_batch batch);
  612. // Positive return values does not mean a fatal error, but rather a warning.
  613. // 0 - success
  614. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  615. // < 0 - error
  616. LLAMA_API int32_t llama_decode(
  617. struct llama_context * ctx,
  618. struct llama_batch batch);
  619. // Set the number of threads used for decoding
  620. // n_threads is the number of threads used for generation (single token)
  621. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  622. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  623. // Set whether to use causal attention or not
  624. // If set to true, the model will only attend to the past tokens
  625. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  626. // Set abort callback
  627. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  628. // Wait until all computations are finished
  629. // This is automatically done when using one of the functions below to obtain the computation results
  630. // and is not necessary to call it explicitly in most cases
  631. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  632. // Token logits obtained from the last call to llama_decode()
  633. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  634. // in the order they have appeared in the batch.
  635. // Rows: number of tokens for which llama_batch.logits[i] != 0
  636. // Cols: n_vocab
  637. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  638. // Logits for the ith token. For positive indices, Equivalent to:
  639. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  640. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  641. // returns NULL for invalid ids.
  642. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  643. // Get all output token embeddings.
  644. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  645. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  646. // in the order they have appeared in the batch.
  647. // shape: [n_outputs*n_embd]
  648. // Otherwise, returns NULL.
  649. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  650. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  651. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  652. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  653. // shape: [n_embd] (1-dimensional)
  654. // returns NULL for invalid ids.
  655. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  656. // Get the embeddings for a sequence id
  657. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  658. // shape: [n_embd] (1-dimensional)
  659. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  660. //
  661. // Vocab
  662. //
  663. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  664. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  665. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  666. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  667. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  668. // Special tokens
  669. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  670. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  671. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  672. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  673. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  674. // Returns -1 if unknown, 1 for true or 0 for false.
  675. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  676. // Returns -1 if unknown, 1 for true or 0 for false.
  677. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  678. // Codellama infill tokens
  679. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  680. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  681. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  682. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  683. //
  684. // Tokenization
  685. //
  686. /// @details Convert the provided text into tokens.
  687. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  688. /// @return Returns the number of tokens on success, no more than n_tokens_max
  689. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  690. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  691. /// as plaintext. Does not insert a leading space.
  692. LLAMA_API int32_t llama_tokenize(
  693. const struct llama_model * model,
  694. const char * text,
  695. int32_t text_len,
  696. llama_token * tokens,
  697. int32_t n_tokens_max,
  698. bool add_special,
  699. bool parse_special);
  700. // Token Id -> Piece.
  701. // Uses the vocabulary in the provided context.
  702. // Does not write null terminator to the buffer.
  703. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  704. // @param special If true, special tokens are rendered in the output.
  705. LLAMA_API int32_t llama_token_to_piece(
  706. const struct llama_model * model,
  707. llama_token token,
  708. char * buf,
  709. int32_t length,
  710. bool special);
  711. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  712. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  713. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  714. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  715. /// @param chat Pointer to a list of multiple llama_chat_message
  716. /// @param n_msg Number of llama_chat_message in this chat
  717. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  718. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  719. /// @param length The size of the allocated buffer
  720. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  721. LLAMA_API int32_t llama_chat_apply_template(
  722. const struct llama_model * model,
  723. const char * tmpl,
  724. const struct llama_chat_message * chat,
  725. size_t n_msg,
  726. bool add_ass,
  727. char * buf,
  728. int32_t length);
  729. //
  730. // Grammar
  731. //
  732. LLAMA_API struct llama_grammar * llama_grammar_init(
  733. const llama_grammar_element ** rules,
  734. size_t n_rules,
  735. size_t start_rule_index);
  736. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  737. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  738. //
  739. // Sampling functions
  740. //
  741. // Sets the current rng seed.
  742. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  743. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  744. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  745. LLAMA_API void llama_sample_repetition_penalties(
  746. struct llama_context * ctx,
  747. llama_token_data_array * candidates,
  748. const llama_token * last_tokens,
  749. size_t penalty_last_n,
  750. float penalty_repeat,
  751. float penalty_freq,
  752. float penalty_present);
  753. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  754. /// @param logits Logits extracted from the original generation context.
  755. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  756. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  757. LLAMA_API void llama_sample_apply_guidance(
  758. struct llama_context * ctx,
  759. float * logits,
  760. float * logits_guidance,
  761. float scale);
  762. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  763. LLAMA_API void llama_sample_softmax(
  764. struct llama_context * ctx,
  765. llama_token_data_array * candidates);
  766. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  767. LLAMA_API void llama_sample_top_k(
  768. struct llama_context * ctx,
  769. llama_token_data_array * candidates,
  770. int32_t k,
  771. size_t min_keep);
  772. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  773. LLAMA_API void llama_sample_top_p(
  774. struct llama_context * ctx,
  775. llama_token_data_array * candidates,
  776. float p,
  777. size_t min_keep);
  778. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  779. LLAMA_API void llama_sample_min_p(
  780. struct llama_context * ctx,
  781. llama_token_data_array * candidates,
  782. float p,
  783. size_t min_keep);
  784. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  785. LLAMA_API void llama_sample_tail_free(
  786. struct llama_context * ctx,
  787. llama_token_data_array * candidates,
  788. float z,
  789. size_t min_keep);
  790. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  791. LLAMA_API void llama_sample_typical(
  792. struct llama_context * ctx,
  793. llama_token_data_array * candidates,
  794. float p,
  795. size_t min_keep);
  796. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  797. LLAMA_API void llama_sample_entropy(
  798. struct llama_context * ctx,
  799. llama_token_data_array * candidates_p,
  800. float min_temp,
  801. float max_temp,
  802. float exponent_val);
  803. LLAMA_API void llama_sample_temp(
  804. struct llama_context * ctx,
  805. llama_token_data_array * candidates,
  806. float temp);
  807. /// @details Apply constraints from grammar
  808. LLAMA_API void llama_sample_grammar(
  809. struct llama_context * ctx,
  810. llama_token_data_array * candidates,
  811. const struct llama_grammar * grammar);
  812. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  813. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  814. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  815. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  816. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  817. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  818. LLAMA_API llama_token llama_sample_token_mirostat(
  819. struct llama_context * ctx,
  820. llama_token_data_array * candidates,
  821. float tau,
  822. float eta,
  823. int32_t m,
  824. float * mu);
  825. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  826. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  827. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  828. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  829. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  830. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  831. struct llama_context * ctx,
  832. llama_token_data_array * candidates,
  833. float tau,
  834. float eta,
  835. float * mu);
  836. /// @details Selects the token with the highest probability.
  837. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  838. LLAMA_API llama_token llama_sample_token_greedy(
  839. struct llama_context * ctx,
  840. llama_token_data_array * candidates);
  841. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  842. LLAMA_API llama_token llama_sample_token(
  843. struct llama_context * ctx,
  844. llama_token_data_array * candidates);
  845. /// @details Accepts the sampled token into the grammar
  846. LLAMA_API void llama_grammar_accept_token(
  847. struct llama_context * ctx,
  848. struct llama_grammar * grammar,
  849. llama_token token);
  850. //
  851. // Beam search
  852. //
  853. struct llama_beam_view {
  854. const llama_token * tokens;
  855. size_t n_tokens;
  856. float p; // Cumulative beam probability (renormalized relative to all beams)
  857. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  858. };
  859. // Passed to beam_search_callback function.
  860. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  861. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  862. // These pointers are valid only during the synchronous callback, so should not be saved.
  863. struct llama_beams_state {
  864. struct llama_beam_view * beam_views;
  865. size_t n_beams; // Number of elements in beam_views[].
  866. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  867. bool last_call; // True iff this is the last callback invocation.
  868. };
  869. // Type of pointer to the beam_search_callback function.
  870. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  871. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  872. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  873. /// @details Deterministically returns entire sentence constructed by a beam search.
  874. /// @param ctx Pointer to the llama_context.
  875. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  876. /// @param callback_data A pointer that is simply passed back to callback.
  877. /// @param n_beams Number of beams to use.
  878. /// @param n_past Number of tokens already evaluated.
  879. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  880. LLAMA_API void llama_beam_search(
  881. struct llama_context * ctx,
  882. llama_beam_search_callback_fn_t callback,
  883. void * callback_data,
  884. size_t n_beams,
  885. int32_t n_past,
  886. int32_t n_predict);
  887. /// @details Build a split GGUF final path for this chunk.
  888. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  889. // Returns the split_path length.
  890. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  891. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  892. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  893. // Returns the split_prefix length.
  894. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  895. // Performance information
  896. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  897. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  898. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  899. // Print system information
  900. LLAMA_API const char * llama_print_system_info(void);
  901. // Set callback for all future logging events.
  902. // If this is not called, or NULL is supplied, everything is output on stderr.
  903. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  904. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  905. #ifdef __cplusplus
  906. }
  907. #endif
  908. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  909. #ifdef LLAMA_API_INTERNAL
  910. #include <random>
  911. #include <string>
  912. #include <vector>
  913. struct ggml_tensor;
  914. struct llama_partial_utf8 {
  915. uint32_t value; // bit value so far (unshifted)
  916. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  917. };
  918. struct llama_grammar {
  919. const std::vector<std::vector<llama_grammar_element>> rules;
  920. std::vector<std::vector<const llama_grammar_element *>> stacks;
  921. // buffer for partially generated UTF-8 sequence from accepted tokens
  922. llama_partial_utf8 partial_utf8;
  923. };
  924. struct llama_grammar_candidate {
  925. size_t index;
  926. const uint32_t * code_points;
  927. llama_partial_utf8 partial_utf8;
  928. };
  929. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  930. struct llama_context * ctx
  931. );
  932. void llama_grammar_accept(
  933. const std::vector<std::vector<llama_grammar_element>> & rules,
  934. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  935. const uint32_t chr,
  936. std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
  937. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  938. const std::string & src,
  939. llama_partial_utf8 partial_start);
  940. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  941. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  942. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  943. #endif // LLAMA_API_INTERNAL
  944. #endif // LLAMA_H