ops.cpp 351 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587
  1. #include "ops.h"
  2. #include "ggml-cpu.h"
  3. #include "ggml-impl.h"
  4. #include "binary-ops.h"
  5. #include "ggml.h"
  6. #include "unary-ops.h"
  7. #include "vec.h"
  8. #include <float.h>
  9. #include <algorithm>
  10. // ggml_compute_forward_dup
  11. static void ggml_compute_forward_dup_same_cont(
  12. const ggml_compute_params * params,
  13. ggml_tensor * dst) {
  14. const ggml_tensor * src0 = dst->src[0];
  15. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  16. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  17. GGML_ASSERT(src0->type == dst->type);
  18. const size_t nb0 = ggml_type_size(src0->type);
  19. const int ith = params->ith; // thread index
  20. const int nth = params->nth; // number of threads
  21. // parallelize by blocks
  22. const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type);
  23. const int dr = (nk + nth - 1) / nth;
  24. const int k0 = dr * ith;
  25. const int k1 = MIN(k0 + dr, nk);
  26. if (k0 < k1) {
  27. memcpy(
  28. ((char *) dst->data + k0*nb0),
  29. ((char *) src0->data + k0*nb0),
  30. (k1 - k0) * nb0);
  31. }
  32. }
  33. static void ggml_compute_forward_dup_f16(
  34. const ggml_compute_params * params,
  35. ggml_tensor * dst) {
  36. const ggml_tensor * src0 = dst->src[0];
  37. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  38. GGML_TENSOR_UNARY_OP_LOCALS
  39. const int ith = params->ith; // thread index
  40. const int nth = params->nth; // number of threads
  41. // parallelize by rows
  42. const int nr = ne01;
  43. // number of rows per thread
  44. const int dr = (nr + nth - 1) / nth;
  45. // row range for this thread
  46. const int ir0 = dr * ith;
  47. const int ir1 = MIN(ir0 + dr, nr);
  48. if (src0->type == dst->type &&
  49. ne00 == ne0 &&
  50. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  51. // copy by rows
  52. const size_t rs = ne00*nb00;
  53. for (int64_t i03 = 0; i03 < ne03; i03++) {
  54. for (int64_t i02 = 0; i02 < ne02; i02++) {
  55. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  56. memcpy(
  57. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  58. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  59. rs);
  60. }
  61. }
  62. }
  63. return;
  64. }
  65. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  66. if (ggml_is_contiguous(dst)) {
  67. if (nb00 == sizeof(ggml_fp16_t)) {
  68. if (dst->type == GGML_TYPE_F16) {
  69. size_t id = 0;
  70. const size_t rs = ne00 * nb00;
  71. char * dst_ptr = (char *) dst->data;
  72. for (int i03 = 0; i03 < ne03; i03++) {
  73. for (int i02 = 0; i02 < ne02; i02++) {
  74. id += rs * ir0;
  75. for (int i01 = ir0; i01 < ir1; i01++) {
  76. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  77. memcpy(dst_ptr + id, src0_ptr, rs);
  78. id += rs;
  79. }
  80. id += rs * (ne01 - ir1);
  81. }
  82. }
  83. } else if (dst->type == GGML_TYPE_F32) {
  84. size_t id = 0;
  85. float * dst_ptr = (float *) dst->data;
  86. for (int i03 = 0; i03 < ne03; i03++) {
  87. for (int i02 = 0; i02 < ne02; i02++) {
  88. id += ne00 * ir0;
  89. for (int i01 = ir0; i01 < ir1; i01++) {
  90. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  91. for (int i00 = 0; i00 < ne00; i00++) {
  92. dst_ptr[id] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
  93. id++;
  94. }
  95. }
  96. id += ne00 * (ne01 - ir1);
  97. }
  98. }
  99. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  100. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  101. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  102. size_t id = 0;
  103. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  104. char * dst_ptr = (char *) dst->data;
  105. for (int i03 = 0; i03 < ne03; i03++) {
  106. for (int i02 = 0; i02 < ne02; i02++) {
  107. id += rs * ir0;
  108. for (int i01 = ir0; i01 < ir1; i01++) {
  109. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  110. for (int i00 = 0; i00 < ne00; i00++) {
  111. src0_f32[i00] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
  112. }
  113. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  114. id += rs;
  115. }
  116. id += rs * (ne01 - ir1);
  117. }
  118. }
  119. } else {
  120. GGML_ABORT("fatal error"); // TODO: implement
  121. }
  122. } else {
  123. //printf("%s: this is not optimal - fix me\n", __func__);
  124. if (dst->type == GGML_TYPE_F32) {
  125. size_t id = 0;
  126. float * dst_ptr = (float *) dst->data;
  127. for (int i03 = 0; i03 < ne03; i03++) {
  128. for (int i02 = 0; i02 < ne02; i02++) {
  129. id += ne00 * ir0;
  130. for (int i01 = ir0; i01 < ir1; i01++) {
  131. for (int i00 = 0; i00 < ne00; i00++) {
  132. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  133. dst_ptr[id] = GGML_CPU_FP16_TO_FP32(*src0_ptr);
  134. id++;
  135. }
  136. }
  137. id += ne00 * (ne01 - ir1);
  138. }
  139. }
  140. } else if (dst->type == GGML_TYPE_F16) {
  141. size_t id = 0;
  142. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  143. for (int i03 = 0; i03 < ne03; i03++) {
  144. for (int i02 = 0; i02 < ne02; i02++) {
  145. id += ne00 * ir0;
  146. for (int i01 = ir0; i01 < ir1; i01++) {
  147. for (int i00 = 0; i00 < ne00; i00++) {
  148. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  149. dst_ptr[id] = *src0_ptr;
  150. id++;
  151. }
  152. }
  153. id += ne00 * (ne01 - ir1);
  154. }
  155. }
  156. } else {
  157. GGML_ABORT("fatal error"); // TODO: implement
  158. }
  159. }
  160. return;
  161. }
  162. // dst counters
  163. int64_t i10 = 0;
  164. int64_t i11 = 0;
  165. int64_t i12 = 0;
  166. int64_t i13 = 0;
  167. if (dst->type == GGML_TYPE_F16) {
  168. for (int64_t i03 = 0; i03 < ne03; i03++) {
  169. for (int64_t i02 = 0; i02 < ne02; i02++) {
  170. i10 += ne00 * ir0;
  171. while (i10 >= ne0) {
  172. i10 -= ne0;
  173. if (++i11 == ne1) {
  174. i11 = 0;
  175. if (++i12 == ne2) {
  176. i12 = 0;
  177. if (++i13 == ne3) {
  178. i13 = 0;
  179. }
  180. }
  181. }
  182. }
  183. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  184. for (int64_t i00 = 0; i00 < ne00; i00++) {
  185. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  186. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  187. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  188. if (++i10 == ne00) {
  189. i10 = 0;
  190. if (++i11 == ne01) {
  191. i11 = 0;
  192. if (++i12 == ne02) {
  193. i12 = 0;
  194. if (++i13 == ne03) {
  195. i13 = 0;
  196. }
  197. }
  198. }
  199. }
  200. }
  201. }
  202. i10 += ne00 * (ne01 - ir1);
  203. while (i10 >= ne0) {
  204. i10 -= ne0;
  205. if (++i11 == ne1) {
  206. i11 = 0;
  207. if (++i12 == ne2) {
  208. i12 = 0;
  209. if (++i13 == ne3) {
  210. i13 = 0;
  211. }
  212. }
  213. }
  214. }
  215. }
  216. }
  217. } else if (dst->type == GGML_TYPE_F32) {
  218. for (int64_t i03 = 0; i03 < ne03; i03++) {
  219. for (int64_t i02 = 0; i02 < ne02; i02++) {
  220. i10 += ne00 * ir0;
  221. while (i10 >= ne0) {
  222. i10 -= ne0;
  223. if (++i11 == ne1) {
  224. i11 = 0;
  225. if (++i12 == ne2) {
  226. i12 = 0;
  227. if (++i13 == ne3) {
  228. i13 = 0;
  229. }
  230. }
  231. }
  232. }
  233. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  234. for (int64_t i00 = 0; i00 < ne00; i00++) {
  235. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  236. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  237. *(float *) dst_ptr = GGML_CPU_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  238. if (++i10 == ne0) {
  239. i10 = 0;
  240. if (++i11 == ne1) {
  241. i11 = 0;
  242. if (++i12 == ne2) {
  243. i12 = 0;
  244. if (++i13 == ne3) {
  245. i13 = 0;
  246. }
  247. }
  248. }
  249. }
  250. }
  251. }
  252. i10 += ne00 * (ne01 - ir1);
  253. while (i10 >= ne0) {
  254. i10 -= ne0;
  255. if (++i11 == ne1) {
  256. i11 = 0;
  257. if (++i12 == ne2) {
  258. i12 = 0;
  259. if (++i13 == ne3) {
  260. i13 = 0;
  261. }
  262. }
  263. }
  264. }
  265. }
  266. }
  267. } else {
  268. GGML_ABORT("fatal error"); // TODO: implement
  269. }
  270. }
  271. static void ggml_compute_forward_dup_bf16(
  272. const ggml_compute_params * params,
  273. ggml_tensor * dst) {
  274. const ggml_tensor * src0 = dst->src[0];
  275. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  276. GGML_TENSOR_UNARY_OP_LOCALS
  277. const int ith = params->ith; // thread index
  278. const int nth = params->nth; // number of threads
  279. // parallelize by rows
  280. const int nr = ne01;
  281. // number of rows per thread
  282. const int dr = (nr + nth - 1) / nth;
  283. // row range for this thread
  284. const int ir0 = dr * ith;
  285. const int ir1 = MIN(ir0 + dr, nr);
  286. if (src0->type == dst->type &&
  287. ne00 == ne0 &&
  288. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  289. // copy by rows
  290. const size_t rs = ne00*nb00;
  291. for (int64_t i03 = 0; i03 < ne03; i03++) {
  292. for (int64_t i02 = 0; i02 < ne02; i02++) {
  293. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  294. memcpy(
  295. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  296. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  297. rs);
  298. }
  299. }
  300. }
  301. return;
  302. }
  303. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  304. if (ggml_is_contiguous(dst)) {
  305. if (nb00 == sizeof(ggml_bf16_t)) {
  306. if (dst->type == GGML_TYPE_BF16) {
  307. size_t id = 0;
  308. const size_t rs = ne00 * nb00;
  309. char * dst_ptr = (char *) dst->data;
  310. for (int i03 = 0; i03 < ne03; i03++) {
  311. for (int i02 = 0; i02 < ne02; i02++) {
  312. id += rs * ir0;
  313. for (int i01 = ir0; i01 < ir1; i01++) {
  314. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  315. memcpy(dst_ptr + id, src0_ptr, rs);
  316. id += rs;
  317. }
  318. id += rs * (ne01 - ir1);
  319. }
  320. }
  321. } else if (dst->type == GGML_TYPE_F16) {
  322. size_t id = 0;
  323. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  324. for (int i03 = 0; i03 < ne03; i03++) {
  325. for (int i02 = 0; i02 < ne02; i02++) {
  326. id += ne00 * ir0;
  327. for (int i01 = ir0; i01 < ir1; i01++) {
  328. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  329. for (int i00 = 0; i00 < ne00; i00++) {
  330. dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  331. id++;
  332. }
  333. }
  334. id += ne00 * (ne01 - ir1);
  335. }
  336. }
  337. } else if (dst->type == GGML_TYPE_F32) {
  338. size_t id = 0;
  339. float * dst_ptr = (float *) dst->data;
  340. for (int i03 = 0; i03 < ne03; i03++) {
  341. for (int i02 = 0; i02 < ne02; i02++) {
  342. id += ne00 * ir0;
  343. for (int i01 = ir0; i01 < ir1; i01++) {
  344. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  345. for (int i00 = 0; i00 < ne00; i00++) {
  346. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  347. id++;
  348. }
  349. }
  350. id += ne00 * (ne01 - ir1);
  351. }
  352. }
  353. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  354. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  355. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  356. size_t id = 0;
  357. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  358. char * dst_ptr = (char *) dst->data;
  359. for (int i03 = 0; i03 < ne03; i03++) {
  360. for (int i02 = 0; i02 < ne02; i02++) {
  361. id += rs * ir0;
  362. for (int i01 = ir0; i01 < ir1; i01++) {
  363. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  364. for (int i00 = 0; i00 < ne00; i00++) {
  365. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  366. }
  367. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  368. id += rs;
  369. }
  370. id += rs * (ne01 - ir1);
  371. }
  372. }
  373. } else {
  374. GGML_ABORT("fatal error"); // TODO: implement
  375. }
  376. } else {
  377. //printf("%s: this is not optimal - fix me\n", __func__);
  378. if (dst->type == GGML_TYPE_F32) {
  379. size_t id = 0;
  380. float * dst_ptr = (float *) dst->data;
  381. for (int i03 = 0; i03 < ne03; i03++) {
  382. for (int i02 = 0; i02 < ne02; i02++) {
  383. id += ne00 * ir0;
  384. for (int i01 = ir0; i01 < ir1; i01++) {
  385. for (int i00 = 0; i00 < ne00; i00++) {
  386. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  387. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  388. id++;
  389. }
  390. }
  391. id += ne00 * (ne01 - ir1);
  392. }
  393. }
  394. } else if (dst->type == GGML_TYPE_BF16) {
  395. size_t id = 0;
  396. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  397. for (int i03 = 0; i03 < ne03; i03++) {
  398. for (int i02 = 0; i02 < ne02; i02++) {
  399. id += ne00 * ir0;
  400. for (int i01 = ir0; i01 < ir1; i01++) {
  401. for (int i00 = 0; i00 < ne00; i00++) {
  402. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  403. dst_ptr[id] = *src0_ptr;
  404. id++;
  405. }
  406. }
  407. id += ne00 * (ne01 - ir1);
  408. }
  409. }
  410. } else if (dst->type == GGML_TYPE_F16) {
  411. size_t id = 0;
  412. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  413. for (int i03 = 0; i03 < ne03; i03++) {
  414. for (int i02 = 0; i02 < ne02; i02++) {
  415. id += ne00 * ir0;
  416. for (int i01 = ir0; i01 < ir1; i01++) {
  417. for (int i00 = 0; i00 < ne00; i00++) {
  418. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  419. dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  420. id++;
  421. }
  422. }
  423. id += ne00 * (ne01 - ir1);
  424. }
  425. }
  426. } else {
  427. GGML_ABORT("fatal error"); // TODO: implement
  428. }
  429. }
  430. return;
  431. }
  432. // dst counters
  433. int64_t i10 = 0;
  434. int64_t i11 = 0;
  435. int64_t i12 = 0;
  436. int64_t i13 = 0;
  437. if (dst->type == GGML_TYPE_BF16) {
  438. for (int64_t i03 = 0; i03 < ne03; i03++) {
  439. for (int64_t i02 = 0; i02 < ne02; i02++) {
  440. i10 += ne00 * ir0;
  441. while (i10 >= ne0) {
  442. i10 -= ne0;
  443. if (++i11 == ne1) {
  444. i11 = 0;
  445. if (++i12 == ne2) {
  446. i12 = 0;
  447. if (++i13 == ne3) {
  448. i13 = 0;
  449. }
  450. }
  451. }
  452. }
  453. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  454. for (int64_t i00 = 0; i00 < ne00; i00++) {
  455. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  456. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  457. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  458. if (++i10 == ne00) {
  459. i10 = 0;
  460. if (++i11 == ne01) {
  461. i11 = 0;
  462. if (++i12 == ne02) {
  463. i12 = 0;
  464. if (++i13 == ne03) {
  465. i13 = 0;
  466. }
  467. }
  468. }
  469. }
  470. }
  471. }
  472. i10 += ne00 * (ne01 - ir1);
  473. while (i10 >= ne0) {
  474. i10 -= ne0;
  475. if (++i11 == ne1) {
  476. i11 = 0;
  477. if (++i12 == ne2) {
  478. i12 = 0;
  479. if (++i13 == ne3) {
  480. i13 = 0;
  481. }
  482. }
  483. }
  484. }
  485. }
  486. }
  487. } else if (dst->type == GGML_TYPE_F16) {
  488. for (int64_t i03 = 0; i03 < ne03; i03++) {
  489. for (int64_t i02 = 0; i02 < ne02; i02++) {
  490. i10 += ne00 * ir0;
  491. while (i10 >= ne0) {
  492. i10 -= ne0;
  493. if (++i11 == ne1) {
  494. i11 = 0;
  495. if (++i12 == ne2) {
  496. i12 = 0;
  497. if (++i13 == ne3) {
  498. i13 = 0;
  499. }
  500. }
  501. }
  502. }
  503. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  504. for (int64_t i00 = 0; i00 < ne00; i00++) {
  505. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  506. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  507. *(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  508. if (++i10 == ne0) {
  509. i10 = 0;
  510. if (++i11 == ne1) {
  511. i11 = 0;
  512. if (++i12 == ne2) {
  513. i12 = 0;
  514. if (++i13 == ne3) {
  515. i13 = 0;
  516. }
  517. }
  518. }
  519. }
  520. }
  521. }
  522. i10 += ne00 * (ne01 - ir1);
  523. while (i10 >= ne0) {
  524. i10 -= ne0;
  525. if (++i11 == ne1) {
  526. i11 = 0;
  527. if (++i12 == ne2) {
  528. i12 = 0;
  529. if (++i13 == ne3) {
  530. i13 = 0;
  531. }
  532. }
  533. }
  534. }
  535. }
  536. }
  537. } else if (dst->type == GGML_TYPE_F32) {
  538. for (int64_t i03 = 0; i03 < ne03; i03++) {
  539. for (int64_t i02 = 0; i02 < ne02; i02++) {
  540. i10 += ne00 * ir0;
  541. while (i10 >= ne0) {
  542. i10 -= ne0;
  543. if (++i11 == ne1) {
  544. i11 = 0;
  545. if (++i12 == ne2) {
  546. i12 = 0;
  547. if (++i13 == ne3) {
  548. i13 = 0;
  549. }
  550. }
  551. }
  552. }
  553. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  554. for (int64_t i00 = 0; i00 < ne00; i00++) {
  555. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  556. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  557. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  558. if (++i10 == ne0) {
  559. i10 = 0;
  560. if (++i11 == ne1) {
  561. i11 = 0;
  562. if (++i12 == ne2) {
  563. i12 = 0;
  564. if (++i13 == ne3) {
  565. i13 = 0;
  566. }
  567. }
  568. }
  569. }
  570. }
  571. }
  572. i10 += ne00 * (ne01 - ir1);
  573. while (i10 >= ne0) {
  574. i10 -= ne0;
  575. if (++i11 == ne1) {
  576. i11 = 0;
  577. if (++i12 == ne2) {
  578. i12 = 0;
  579. if (++i13 == ne3) {
  580. i13 = 0;
  581. }
  582. }
  583. }
  584. }
  585. }
  586. }
  587. } else {
  588. GGML_ABORT("fatal error"); // TODO: implement
  589. }
  590. }
  591. static void ggml_compute_forward_dup_f32(
  592. const ggml_compute_params * params,
  593. ggml_tensor * dst) {
  594. const ggml_tensor * src0 = dst->src[0];
  595. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  596. GGML_TENSOR_UNARY_OP_LOCALS
  597. const int ith = params->ith; // thread index
  598. const int nth = params->nth; // number of threads
  599. // parallelize by rows
  600. const int nr = ne01;
  601. // number of rows per thread
  602. const int dr = (nr + nth - 1) / nth;
  603. // row range for this thread
  604. const int ir0 = dr * ith;
  605. const int ir1 = MIN(ir0 + dr, nr);
  606. if (src0->type == dst->type &&
  607. ne00 == ne0 &&
  608. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  609. // copy by rows
  610. const size_t rs = ne00*nb00;
  611. for (int64_t i03 = 0; i03 < ne03; i03++) {
  612. for (int64_t i02 = 0; i02 < ne02; i02++) {
  613. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  614. memcpy(
  615. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  616. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  617. rs);
  618. }
  619. }
  620. }
  621. return;
  622. }
  623. if (ggml_is_contiguous(dst)) {
  624. // TODO: simplify
  625. if (nb00 == sizeof(float)) {
  626. if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  627. ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
  628. size_t id = 0;
  629. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  630. char * dst_ptr = (char *) dst->data;
  631. for (int i03 = 0; i03 < ne03; i03++) {
  632. for (int i02 = 0; i02 < ne02; i02++) {
  633. id += rs * ir0;
  634. for (int i01 = ir0; i01 < ir1; i01++) {
  635. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  636. from_float(src0_ptr, dst_ptr + id, ne00);
  637. id += rs;
  638. }
  639. id += rs * (ne01 - ir1);
  640. }
  641. }
  642. } else {
  643. GGML_ABORT("fatal error"); // TODO: implement
  644. }
  645. } else {
  646. //printf("%s: this is not optimal - fix me\n", __func__);
  647. if (dst->type == GGML_TYPE_F32) {
  648. size_t id = 0;
  649. float * dst_ptr = (float *) dst->data;
  650. for (int i03 = 0; i03 < ne03; i03++) {
  651. for (int i02 = 0; i02 < ne02; i02++) {
  652. id += ne00 * ir0;
  653. for (int i01 = ir0; i01 < ir1; i01++) {
  654. for (int i00 = 0; i00 < ne00; i00++) {
  655. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  656. dst_ptr[id] = *src0_ptr;
  657. id++;
  658. }
  659. }
  660. id += ne00 * (ne01 - ir1);
  661. }
  662. }
  663. } else if (dst->type == GGML_TYPE_F16) {
  664. size_t id = 0;
  665. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  666. for (int i03 = 0; i03 < ne03; i03++) {
  667. for (int i02 = 0; i02 < ne02; i02++) {
  668. id += ne00 * ir0;
  669. for (int i01 = ir0; i01 < ir1; i01++) {
  670. for (int i00 = 0; i00 < ne00; i00++) {
  671. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  672. dst_ptr[id] = GGML_CPU_FP32_TO_FP16(*src0_ptr);
  673. id++;
  674. }
  675. }
  676. id += ne00 * (ne01 - ir1);
  677. }
  678. }
  679. } else if (dst->type == GGML_TYPE_BF16) {
  680. size_t id = 0;
  681. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  682. for (int i03 = 0; i03 < ne03; i03++) {
  683. for (int i02 = 0; i02 < ne02; i02++) {
  684. id += ne00 * ir0;
  685. for (int i01 = ir0; i01 < ir1; i01++) {
  686. for (int i00 = 0; i00 < ne00; i00++) {
  687. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  688. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  689. id++;
  690. }
  691. }
  692. id += ne00 * (ne01 - ir1);
  693. }
  694. }
  695. } else {
  696. GGML_ABORT("fatal error"); // TODO: implement
  697. }
  698. }
  699. return;
  700. }
  701. // dst counters
  702. int64_t i10 = 0;
  703. int64_t i11 = 0;
  704. int64_t i12 = 0;
  705. int64_t i13 = 0;
  706. if (dst->type == GGML_TYPE_F32) {
  707. for (int64_t i03 = 0; i03 < ne03; i03++) {
  708. for (int64_t i02 = 0; i02 < ne02; i02++) {
  709. i10 += ne00 * ir0;
  710. while (i10 >= ne0) {
  711. i10 -= ne0;
  712. if (++i11 == ne1) {
  713. i11 = 0;
  714. if (++i12 == ne2) {
  715. i12 = 0;
  716. if (++i13 == ne3) {
  717. i13 = 0;
  718. }
  719. }
  720. }
  721. }
  722. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  723. for (int64_t i00 = 0; i00 < ne00; i00++) {
  724. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  725. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  726. memcpy(dst_ptr, src0_ptr, sizeof(float));
  727. if (++i10 == ne0) {
  728. i10 = 0;
  729. if (++i11 == ne1) {
  730. i11 = 0;
  731. if (++i12 == ne2) {
  732. i12 = 0;
  733. if (++i13 == ne3) {
  734. i13 = 0;
  735. }
  736. }
  737. }
  738. }
  739. }
  740. }
  741. i10 += ne00 * (ne01 - ir1);
  742. while (i10 >= ne0) {
  743. i10 -= ne0;
  744. if (++i11 == ne1) {
  745. i11 = 0;
  746. if (++i12 == ne2) {
  747. i12 = 0;
  748. if (++i13 == ne3) {
  749. i13 = 0;
  750. }
  751. }
  752. }
  753. }
  754. }
  755. }
  756. } else if (dst->type == GGML_TYPE_F16) {
  757. for (int64_t i03 = 0; i03 < ne03; i03++) {
  758. for (int64_t i02 = 0; i02 < ne02; i02++) {
  759. i10 += ne00 * ir0;
  760. while (i10 >= ne0) {
  761. i10 -= ne0;
  762. if (++i11 == ne1) {
  763. i11 = 0;
  764. if (++i12 == ne2) {
  765. i12 = 0;
  766. if (++i13 == ne3) {
  767. i13 = 0;
  768. }
  769. }
  770. }
  771. }
  772. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  773. for (int64_t i00 = 0; i00 < ne00; i00++) {
  774. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  775. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  776. *(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(*(const float *) src0_ptr);
  777. if (++i10 == ne0) {
  778. i10 = 0;
  779. if (++i11 == ne1) {
  780. i11 = 0;
  781. if (++i12 == ne2) {
  782. i12 = 0;
  783. if (++i13 == ne3) {
  784. i13 = 0;
  785. }
  786. }
  787. }
  788. }
  789. }
  790. }
  791. i10 += ne00 * (ne01 - ir1);
  792. while (i10 >= ne0) {
  793. i10 -= ne0;
  794. if (++i11 == ne1) {
  795. i11 = 0;
  796. if (++i12 == ne2) {
  797. i12 = 0;
  798. if (++i13 == ne3) {
  799. i13 = 0;
  800. }
  801. }
  802. }
  803. }
  804. }
  805. }
  806. } else if (dst->type == GGML_TYPE_BF16) {
  807. for (int64_t i03 = 0; i03 < ne03; i03++) {
  808. for (int64_t i02 = 0; i02 < ne02; i02++) {
  809. i10 += ne00 * ir0;
  810. while (i10 >= ne0) {
  811. i10 -= ne0;
  812. if (++i11 == ne1) {
  813. i11 = 0;
  814. if (++i12 == ne2) {
  815. i12 = 0;
  816. if (++i13 == ne3) {
  817. i13 = 0;
  818. }
  819. }
  820. }
  821. }
  822. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  823. for (int64_t i00 = 0; i00 < ne00; i00++) {
  824. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  825. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  826. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  827. if (++i10 == ne0) {
  828. i10 = 0;
  829. if (++i11 == ne1) {
  830. i11 = 0;
  831. if (++i12 == ne2) {
  832. i12 = 0;
  833. if (++i13 == ne3) {
  834. i13 = 0;
  835. }
  836. }
  837. }
  838. }
  839. }
  840. }
  841. i10 += ne00 * (ne01 - ir1);
  842. while (i10 >= ne0) {
  843. i10 -= ne0;
  844. if (++i11 == ne1) {
  845. i11 = 0;
  846. if (++i12 == ne2) {
  847. i12 = 0;
  848. if (++i13 == ne3) {
  849. i13 = 0;
  850. }
  851. }
  852. }
  853. }
  854. }
  855. }
  856. } else {
  857. GGML_ABORT("fatal error"); // TODO: implement
  858. }
  859. }
  860. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  861. static void ggml_compute_forward_dup_bytes(
  862. const ggml_compute_params * params,
  863. ggml_tensor * dst) {
  864. const ggml_tensor * src0 = dst->src[0];
  865. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  866. GGML_ASSERT(src0->type == dst->type);
  867. GGML_TENSOR_UNARY_OP_LOCALS;
  868. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  869. ggml_compute_forward_dup_same_cont(params, dst);
  870. return;
  871. }
  872. const size_t type_size = ggml_type_size(src0->type);
  873. const int ith = params->ith; // thread index
  874. const int nth = params->nth; // number of threads
  875. // parallelize by rows
  876. const int nr = ne01;
  877. // number of rows per thread
  878. const int dr = (nr + nth - 1) / nth;
  879. // row range for this thread
  880. const int ir0 = dr * ith;
  881. const int ir1 = MIN(ir0 + dr, nr);
  882. if (src0->type == dst->type &&
  883. ggml_are_same_shape(src0, dst) &&
  884. nb00 == type_size && nb0 == type_size) {
  885. // copy by rows
  886. const size_t rs = ggml_row_size(src0->type, ne00);
  887. for (int64_t i03 = 0; i03 < ne03; i03++) {
  888. for (int64_t i02 = 0; i02 < ne02; i02++) {
  889. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  890. memcpy(
  891. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  892. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  893. rs);
  894. }
  895. }
  896. }
  897. return;
  898. }
  899. if (ggml_is_contiguous(dst)) {
  900. size_t id = 0;
  901. char * dst_ptr = (char *) dst->data;
  902. const size_t rs = ne00 * type_size;
  903. if (nb00 == type_size) {
  904. // src0 is contigous on first dimension, copy by rows
  905. for (int64_t i03 = 0; i03 < ne03; i03++) {
  906. for (int64_t i02 = 0; i02 < ne02; i02++) {
  907. id += rs * ir0;
  908. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  909. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  910. memcpy(dst_ptr + id, src0_ptr, rs);
  911. id += rs;
  912. }
  913. id += rs * (ne01 - ir1);
  914. }
  915. }
  916. } else {
  917. //printf("%s: this is not optimal - fix me\n", __func__);
  918. for (int64_t i03 = 0; i03 < ne03; i03++) {
  919. for (int64_t i02 = 0; i02 < ne02; i02++) {
  920. id += rs * ir0;
  921. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  922. for (int64_t i00 = 0; i00 < ne00; i00++) {
  923. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  924. memcpy(dst_ptr + id, src0_ptr, type_size);
  925. id += type_size;
  926. }
  927. }
  928. id += rs * (ne01 - ir1);
  929. }
  930. }
  931. }
  932. return;
  933. }
  934. // dst counters
  935. int64_t k10 = 0;
  936. int64_t i11 = 0;
  937. int64_t i12 = 0;
  938. int64_t i13 = 0;
  939. // number of blocks in a row
  940. const int64_t nk00 = ne00 / ggml_blck_size(src0->type);
  941. const int64_t nk0 = ne0 / ggml_blck_size(dst->type);
  942. for (int64_t i03 = 0; i03 < ne03; i03++) {
  943. for (int64_t i02 = 0; i02 < ne02; i02++) {
  944. k10 += nk00 * ir0;
  945. while (k10 >= nk0) {
  946. k10 -= nk0;
  947. if (++i11 == ne1) {
  948. i11 = 0;
  949. if (++i12 == ne2) {
  950. i12 = 0;
  951. if (++i13 == ne3) {
  952. i13 = 0;
  953. }
  954. }
  955. }
  956. }
  957. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  958. for (int64_t k00 = 0; k00 < nk00; k00++) {
  959. const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  960. char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  961. memcpy(dst_ptr, src0_ptr, type_size);
  962. if (++k10 == nk0) {
  963. k10 = 0;
  964. if (++i11 == ne1) {
  965. i11 = 0;
  966. if (++i12 == ne2) {
  967. i12 = 0;
  968. if (++i13 == ne3) {
  969. i13 = 0;
  970. }
  971. }
  972. }
  973. }
  974. }
  975. }
  976. k10 += nk00 * (ne01 - ir1);
  977. while (k10 >= nk0) {
  978. k10 -= nk0;
  979. if (++i11 == ne1) {
  980. i11 = 0;
  981. if (++i12 == ne2) {
  982. i12 = 0;
  983. if (++i13 == ne3) {
  984. i13 = 0;
  985. }
  986. }
  987. }
  988. }
  989. }
  990. }
  991. }
  992. static void ggml_compute_forward_dup_q(
  993. const ggml_compute_params * params,
  994. ggml_tensor * dst) {
  995. const ggml_tensor * src0 = dst->src[0];
  996. const ggml_tensor * src1 = dst->src[1];
  997. GGML_TENSOR_BINARY_OP_LOCALS
  998. const ggml_type type = src0->type;
  999. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  1000. size_t qk = ggml_blck_size(type);
  1001. const int64_t nr = ggml_nelements(src1) / qk;
  1002. // destination must be contiguous in the first dimension
  1003. GGML_ASSERT(nb10 == ggml_type_size(dst->type));
  1004. // must either have first dimension large enough to hold a row, or fully contiguous
  1005. GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
  1006. const int ith = params->ith;
  1007. const int nth = params->nth;
  1008. const int dr = (nr + nth - 1)/nth;
  1009. // row range for this thread
  1010. const int ir0 = dr*ith;
  1011. const int ir1 = MIN(ir0 + dr, nr);
  1012. for (int64_t ir = ir0; ir < ir1; ++ir) {
  1013. uint32_t i = ir * qk;
  1014. const int64_t i03 = i/(ne00 * ne01 * ne02);
  1015. const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
  1016. const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
  1017. const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
  1018. const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
  1019. const int64_t i13 = i/(ne10 * ne11 * ne12);
  1020. const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
  1021. const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
  1022. const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
  1023. const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
  1024. dequantize_row_q(
  1025. (const void *) ((char *) src0->data + x_offset),
  1026. (float *) ((char *) dst->data + dst_offset), qk);
  1027. }
  1028. }
  1029. void ggml_compute_forward_dup(
  1030. const ggml_compute_params * params,
  1031. ggml_tensor * dst) {
  1032. const ggml_tensor * src0 = dst->src[0];
  1033. if (src0->type == dst->type) {
  1034. ggml_compute_forward_dup_bytes(params, dst);
  1035. return;
  1036. }
  1037. switch (src0->type) {
  1038. case GGML_TYPE_F16:
  1039. {
  1040. ggml_compute_forward_dup_f16(params, dst);
  1041. } break;
  1042. case GGML_TYPE_BF16:
  1043. {
  1044. ggml_compute_forward_dup_bf16(params, dst);
  1045. } break;
  1046. case GGML_TYPE_F32:
  1047. {
  1048. ggml_compute_forward_dup_f32(params, dst);
  1049. } break;
  1050. default:
  1051. {
  1052. if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
  1053. ggml_compute_forward_dup_q(params, dst);
  1054. break;
  1055. }
  1056. GGML_ABORT("fatal error");
  1057. }
  1058. }
  1059. }
  1060. // ggml_compute_forward_add
  1061. static void ggml_compute_forward_add_q_f32(
  1062. const ggml_compute_params * params,
  1063. ggml_tensor * dst) {
  1064. const ggml_tensor * src0 = dst->src[0];
  1065. const ggml_tensor * src1 = dst->src[1];
  1066. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  1067. const int nr = ggml_nrows(src0);
  1068. GGML_TENSOR_BINARY_OP_LOCALS
  1069. const int ith = params->ith;
  1070. const int nth = params->nth;
  1071. const ggml_type type = src0->type;
  1072. const ggml_type dtype = dst->type;
  1073. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  1074. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
  1075. // we don't support permuted src0 or src1
  1076. GGML_ASSERT(nb00 == ggml_type_size(type));
  1077. GGML_ASSERT(nb10 == sizeof(float));
  1078. // dst cannot be transposed or permuted
  1079. GGML_ASSERT(nb0 <= nb1);
  1080. GGML_ASSERT(nb1 <= nb2);
  1081. GGML_ASSERT(nb2 <= nb3);
  1082. GGML_ASSERT(ggml_is_quantized(src0->type));
  1083. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1084. // rows per thread
  1085. const int dr = (nr + nth - 1)/nth;
  1086. // row range for this thread
  1087. const int ir0 = dr*ith;
  1088. const int ir1 = MIN(ir0 + dr, nr);
  1089. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  1090. for (int ir = ir0; ir < ir1; ++ir) {
  1091. // src0 indices
  1092. const int i03 = ir/(ne02*ne01);
  1093. const int i02 = (ir - i03*ne02*ne01)/ne01;
  1094. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  1095. // src1 and dst are same shape as src0 => same indices
  1096. const int i13 = i03;
  1097. const int i12 = i02;
  1098. const int i11 = i01;
  1099. const int i3 = i03;
  1100. const int i2 = i02;
  1101. const int i1 = i01;
  1102. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  1103. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  1104. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  1105. assert(ne00 % 32 == 0);
  1106. // unquantize row from src0 to temp buffer
  1107. dequantize_row_q(src0_row, wdata, ne00);
  1108. // add src1
  1109. ggml_vec_acc_f32(ne00, wdata, src1_row);
  1110. // quantize row to dst
  1111. if (quantize_row_q != NULL) {
  1112. quantize_row_q(wdata, dst_row, ne00);
  1113. } else {
  1114. memcpy(dst_row, wdata, ne0*nb0);
  1115. }
  1116. }
  1117. }
  1118. void ggml_compute_forward_add(
  1119. const ggml_compute_params * params,
  1120. ggml_tensor * dst) {
  1121. const ggml_tensor * src0 = dst->src[0];
  1122. switch (src0->type) {
  1123. case GGML_TYPE_F32:
  1124. case GGML_TYPE_F16:
  1125. case GGML_TYPE_BF16:
  1126. {
  1127. ggml_compute_forward_add_non_quantized(params, dst);
  1128. } break;
  1129. case GGML_TYPE_Q4_0:
  1130. case GGML_TYPE_Q4_1:
  1131. case GGML_TYPE_Q5_0:
  1132. case GGML_TYPE_Q5_1:
  1133. case GGML_TYPE_Q8_0:
  1134. case GGML_TYPE_MXFP4:
  1135. case GGML_TYPE_Q2_K:
  1136. case GGML_TYPE_Q3_K:
  1137. case GGML_TYPE_Q4_K:
  1138. case GGML_TYPE_Q5_K:
  1139. case GGML_TYPE_Q6_K:
  1140. case GGML_TYPE_TQ1_0:
  1141. case GGML_TYPE_TQ2_0:
  1142. case GGML_TYPE_IQ2_XXS:
  1143. case GGML_TYPE_IQ2_XS:
  1144. case GGML_TYPE_IQ3_XXS:
  1145. case GGML_TYPE_IQ1_S:
  1146. case GGML_TYPE_IQ1_M:
  1147. case GGML_TYPE_IQ4_NL:
  1148. case GGML_TYPE_IQ4_XS:
  1149. case GGML_TYPE_IQ3_S:
  1150. case GGML_TYPE_IQ2_S:
  1151. {
  1152. ggml_compute_forward_add_q_f32(params, dst);
  1153. } break;
  1154. default:
  1155. {
  1156. GGML_ABORT("fatal error");
  1157. }
  1158. }
  1159. }
  1160. // ggml_compute_forward_add_id
  1161. static void ggml_compute_forward_add_id_f32(
  1162. const ggml_compute_params * params,
  1163. ggml_tensor * dst) {
  1164. const ggml_tensor * src0 = dst->src[0];
  1165. const ggml_tensor * src1 = dst->src[1];
  1166. const ggml_tensor * src2 = dst->src[2];
  1167. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  1168. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  1169. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1170. GGML_ASSERT(src2->type == GGML_TYPE_I32);
  1171. GGML_ASSERT(src0->nb[0] == sizeof(float));
  1172. GGML_ASSERT(src1->nb[0] == sizeof(float));
  1173. const int ith = params->ith;
  1174. const int nth = params->nth;
  1175. const int nr = ggml_nrows(src0);
  1176. GGML_TENSOR_TERNARY_OP_LOCALS
  1177. GGML_ASSERT( nb0 == sizeof(float));
  1178. GGML_ASSERT(nb10 == sizeof(float));
  1179. // rows per thread
  1180. const int dr = (nr + nth - 1)/nth;
  1181. // row range for this thread
  1182. const int ir0 = dr*ith;
  1183. const int ir1 = MIN(ir0 + dr, nr);
  1184. for (int ir = ir0; ir < ir1; ++ir) {
  1185. // src0 indices
  1186. const int i3 = ir/(ne2*ne1);
  1187. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1188. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1189. // src1 indices
  1190. const int i11 = *(int32_t *) ((char *) src2->data + i1*nb20 + i2*nb21);
  1191. GGML_ASSERT(i11 >= 0 && i11 < ne11);
  1192. ggml_vec_add_f32(ne0,
  1193. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  1194. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  1195. (float *) ((char *) src1->data + i11*nb11));
  1196. }
  1197. }
  1198. void ggml_compute_forward_add_id(
  1199. const ggml_compute_params * params,
  1200. ggml_tensor * dst) {
  1201. const ggml_tensor * src0 = dst->src[0];
  1202. switch (src0->type) {
  1203. case GGML_TYPE_F32:
  1204. {
  1205. ggml_compute_forward_add_id_f32(params, dst);
  1206. } break;
  1207. default:
  1208. {
  1209. GGML_ABORT("unsupported type for ggml_compute_forward_add_id: %s", ggml_type_name(src0->type));
  1210. }
  1211. }
  1212. }
  1213. // ggml_compute_forward_add1
  1214. static void ggml_compute_forward_add1_f32(
  1215. const ggml_compute_params * params,
  1216. ggml_tensor * dst) {
  1217. const ggml_tensor * src0 = dst->src[0];
  1218. const ggml_tensor * src1 = dst->src[1];
  1219. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1220. GGML_ASSERT(ggml_is_scalar(src1));
  1221. const int ith = params->ith;
  1222. const int nth = params->nth;
  1223. const int nr = ggml_nrows(src0);
  1224. GGML_TENSOR_UNARY_OP_LOCALS
  1225. GGML_ASSERT( nb0 == sizeof(float));
  1226. GGML_ASSERT(nb00 == sizeof(float));
  1227. // rows per thread
  1228. const int dr = (nr + nth - 1)/nth;
  1229. // row range for this thread
  1230. const int ir0 = dr*ith;
  1231. const int ir1 = MIN(ir0 + dr, nr);
  1232. for (int ir = ir0; ir < ir1; ++ir) {
  1233. // src0 and dst are same shape => same indices
  1234. const int i3 = ir/(ne2*ne1);
  1235. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1236. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1237. #ifdef GGML_USE_ACCELERATE
  1238. GGML_UNUSED(ggml_vec_add1_f32);
  1239. vDSP_vadd(
  1240. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  1241. (float *) ((char *) src1->data), 0,
  1242. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  1243. ne0);
  1244. #else
  1245. ggml_vec_add1_f32(ne0,
  1246. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  1247. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  1248. *(float *) src1->data);
  1249. #endif
  1250. }
  1251. }
  1252. static void ggml_compute_forward_add1_f16_f32(
  1253. const ggml_compute_params * params,
  1254. ggml_tensor * dst) {
  1255. const ggml_tensor * src0 = dst->src[0];
  1256. const ggml_tensor * src1 = dst->src[1];
  1257. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1258. GGML_ASSERT(ggml_is_scalar(src1));
  1259. // scalar to add
  1260. const float v = *(float *) src1->data;
  1261. const int ith = params->ith;
  1262. const int nth = params->nth;
  1263. const int nr = ggml_nrows(src0);
  1264. GGML_TENSOR_UNARY_OP_LOCALS
  1265. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1266. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1267. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  1268. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  1269. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  1270. // rows per thread
  1271. const int dr = (nr + nth - 1)/nth;
  1272. // row range for this thread
  1273. const int ir0 = dr*ith;
  1274. const int ir1 = MIN(ir0 + dr, nr);
  1275. for (int ir = ir0; ir < ir1; ++ir) {
  1276. // src0 and dst are same shape => same indices
  1277. const int i3 = ir/(ne2*ne1);
  1278. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1279. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1280. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1281. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1282. for (int i = 0; i < ne0; i++) {
  1283. dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
  1284. }
  1285. }
  1286. }
  1287. static void ggml_compute_forward_add1_f16_f16(
  1288. const ggml_compute_params * params,
  1289. ggml_tensor * dst) {
  1290. const ggml_tensor * src0 = dst->src[0];
  1291. const ggml_tensor * src1 = dst->src[1];
  1292. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1293. GGML_ASSERT(ggml_is_scalar(src1));
  1294. // scalar to add
  1295. const float v = GGML_CPU_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  1296. const int ith = params->ith;
  1297. const int nth = params->nth;
  1298. const int nr = ggml_nrows(src0);
  1299. GGML_TENSOR_UNARY_OP_LOCALS
  1300. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1301. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  1302. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  1303. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  1304. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  1305. // rows per thread
  1306. const int dr = (nr + nth - 1)/nth;
  1307. // row range for this thread
  1308. const int ir0 = dr*ith;
  1309. const int ir1 = MIN(ir0 + dr, nr);
  1310. for (int ir = ir0; ir < ir1; ++ir) {
  1311. // src0 and dst are same shape => same indices
  1312. const int i3 = ir/(ne2*ne1);
  1313. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1314. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1315. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1316. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1317. for (int i = 0; i < ne0; i++) {
  1318. dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
  1319. }
  1320. }
  1321. }
  1322. static void ggml_compute_forward_add1_q_f32(
  1323. const ggml_compute_params * params,
  1324. ggml_tensor * dst) {
  1325. const ggml_tensor * src0 = dst->src[0];
  1326. const ggml_tensor * src1 = dst->src[1];
  1327. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1328. GGML_ASSERT(ggml_is_scalar(src1));
  1329. // scalar to add
  1330. const float v = *(float *) src1->data;
  1331. const int ith = params->ith;
  1332. const int nth = params->nth;
  1333. const int nr = ggml_nrows(src0);
  1334. GGML_TENSOR_UNARY_OP_LOCALS
  1335. const ggml_type type = src0->type;
  1336. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  1337. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
  1338. // we don't support permuted src0
  1339. GGML_ASSERT(nb00 == ggml_type_size(type));
  1340. // dst cannot be transposed or permuted
  1341. GGML_ASSERT(nb0 <= nb1);
  1342. GGML_ASSERT(nb1 <= nb2);
  1343. GGML_ASSERT(nb2 <= nb3);
  1344. GGML_ASSERT(ggml_is_quantized(src0->type));
  1345. GGML_ASSERT(dst->type == src0->type);
  1346. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1347. // rows per thread
  1348. const int dr = (nr + nth - 1)/nth;
  1349. // row range for this thread
  1350. const int ir0 = dr*ith;
  1351. const int ir1 = MIN(ir0 + dr, nr);
  1352. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  1353. for (int ir = ir0; ir < ir1; ++ir) {
  1354. // src0 and dst are same shape => same indices
  1355. const int i3 = ir/(ne2*ne1);
  1356. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1357. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1358. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  1359. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  1360. assert(ne0 % 32 == 0);
  1361. // unquantize row from src0 to temp buffer
  1362. dequantize_row_q(src0_row, wdata, ne0);
  1363. // add src1
  1364. ggml_vec_acc1_f32(ne0, wdata, v);
  1365. // quantize row to dst
  1366. quantize_row_q(wdata, dst_row, ne0);
  1367. }
  1368. }
  1369. static void ggml_compute_forward_add1_bf16_f32(
  1370. const ggml_compute_params * params,
  1371. ggml_tensor * dst) {
  1372. const ggml_tensor * src0 = dst->src[0];
  1373. const ggml_tensor * src1 = dst->src[1];
  1374. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1375. GGML_ASSERT(ggml_is_scalar(src1));
  1376. // scalar to add
  1377. const float v = *(float *) src1->data;
  1378. const int ith = params->ith;
  1379. const int nth = params->nth;
  1380. const int nr = ggml_nrows(src0);
  1381. GGML_TENSOR_UNARY_OP_LOCALS
  1382. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  1383. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1384. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  1385. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  1386. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  1387. // rows per thread
  1388. const int dr = (nr + nth - 1)/nth;
  1389. // row range for this thread
  1390. const int ir0 = dr*ith;
  1391. const int ir1 = MIN(ir0 + dr, nr);
  1392. for (int ir = ir0; ir < ir1; ++ir) {
  1393. // src0 and dst are same shape => same indices
  1394. const int i3 = ir/(ne2*ne1);
  1395. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1396. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1397. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1398. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1399. for (int i = 0; i < ne0; i++) {
  1400. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  1401. }
  1402. }
  1403. }
  1404. static void ggml_compute_forward_add1_bf16_bf16(
  1405. const ggml_compute_params * params,
  1406. ggml_tensor * dst) {
  1407. const ggml_tensor * src0 = dst->src[0];
  1408. const ggml_tensor * src1 = dst->src[1];
  1409. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1410. GGML_ASSERT(ggml_is_scalar(src1));
  1411. // scalar to add
  1412. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  1413. const int ith = params->ith;
  1414. const int nth = params->nth;
  1415. const int nr = ggml_nrows(src0);
  1416. GGML_TENSOR_UNARY_OP_LOCALS
  1417. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  1418. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  1419. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  1420. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  1421. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  1422. // rows per thread
  1423. const int dr = (nr + nth - 1)/nth;
  1424. // row range for this thread
  1425. const int ir0 = dr*ith;
  1426. const int ir1 = MIN(ir0 + dr, nr);
  1427. for (int ir = ir0; ir < ir1; ++ir) {
  1428. // src0 and dst are same shape => same indices
  1429. const int i3 = ir/(ne2*ne1);
  1430. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1431. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1432. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1433. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1434. for (int i = 0; i < ne0; i++) {
  1435. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  1436. }
  1437. }
  1438. }
  1439. void ggml_compute_forward_add1(
  1440. const ggml_compute_params * params,
  1441. ggml_tensor * dst) {
  1442. const ggml_tensor * src0 = dst->src[0];
  1443. const ggml_tensor * src1 = dst->src[1];
  1444. switch (src0->type) {
  1445. case GGML_TYPE_F32:
  1446. {
  1447. ggml_compute_forward_add1_f32(params, dst);
  1448. } break;
  1449. case GGML_TYPE_F16:
  1450. {
  1451. if (src1->type == GGML_TYPE_F16) {
  1452. ggml_compute_forward_add1_f16_f16(params, dst);
  1453. }
  1454. else if (src1->type == GGML_TYPE_F32) {
  1455. ggml_compute_forward_add1_f16_f32(params, dst);
  1456. }
  1457. else {
  1458. GGML_ABORT("fatal error");
  1459. }
  1460. } break;
  1461. case GGML_TYPE_BF16:
  1462. {
  1463. if (src1->type == GGML_TYPE_BF16) {
  1464. ggml_compute_forward_add1_bf16_bf16(params, dst);
  1465. }
  1466. else if (src1->type == GGML_TYPE_F32) {
  1467. ggml_compute_forward_add1_bf16_f32(params, dst);
  1468. }
  1469. else {
  1470. GGML_ABORT("fatal error");
  1471. }
  1472. } break;
  1473. case GGML_TYPE_Q4_0:
  1474. case GGML_TYPE_Q4_1:
  1475. case GGML_TYPE_Q5_0:
  1476. case GGML_TYPE_Q5_1:
  1477. case GGML_TYPE_Q8_0:
  1478. case GGML_TYPE_Q8_1:
  1479. case GGML_TYPE_MXFP4:
  1480. case GGML_TYPE_Q2_K:
  1481. case GGML_TYPE_Q3_K:
  1482. case GGML_TYPE_Q4_K:
  1483. case GGML_TYPE_Q5_K:
  1484. case GGML_TYPE_Q6_K:
  1485. case GGML_TYPE_TQ1_0:
  1486. case GGML_TYPE_TQ2_0:
  1487. case GGML_TYPE_IQ2_XXS:
  1488. case GGML_TYPE_IQ2_XS:
  1489. case GGML_TYPE_IQ3_XXS:
  1490. case GGML_TYPE_IQ1_S:
  1491. case GGML_TYPE_IQ1_M:
  1492. case GGML_TYPE_IQ4_NL:
  1493. case GGML_TYPE_IQ4_XS:
  1494. case GGML_TYPE_IQ3_S:
  1495. case GGML_TYPE_IQ2_S:
  1496. {
  1497. ggml_compute_forward_add1_q_f32(params, dst);
  1498. } break;
  1499. default:
  1500. {
  1501. GGML_ABORT("fatal error");
  1502. }
  1503. }
  1504. }
  1505. // ggml_compute_forward_acc
  1506. static void ggml_compute_forward_acc_f32(
  1507. const ggml_compute_params * params,
  1508. ggml_tensor * dst) {
  1509. const ggml_tensor * src0 = dst->src[0];
  1510. const ggml_tensor * src1 = dst->src[1];
  1511. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1512. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  1513. // view src0 and dst with these strides and data offset inbytes during acc
  1514. // nb0 is implicitly element_size because src0 and dst are contiguous
  1515. size_t nb1 = ((int32_t *) dst->op_params)[0];
  1516. size_t nb2 = ((int32_t *) dst->op_params)[1];
  1517. size_t nb3 = ((int32_t *) dst->op_params)[2];
  1518. size_t offset = ((int32_t *) dst->op_params)[3];
  1519. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  1520. if (!inplace) {
  1521. if (params->ith == 0) {
  1522. // memcpy needs to be synchronized across threads to avoid race conditions.
  1523. // => do it in INIT phase
  1524. memcpy(
  1525. ((char *) dst->data),
  1526. ((char *) src0->data),
  1527. ggml_nbytes(dst));
  1528. }
  1529. ggml_barrier(params->threadpool);
  1530. }
  1531. const int ith = params->ith;
  1532. const int nth = params->nth;
  1533. const int nr = ggml_nrows(src1);
  1534. const int nc = src1->ne[0];
  1535. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  1536. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  1537. // src0 and dst as viewed during acc
  1538. const size_t nb0 = ggml_element_size(src0);
  1539. const size_t nb00 = nb0;
  1540. const size_t nb01 = nb1;
  1541. const size_t nb02 = nb2;
  1542. const size_t nb03 = nb3;
  1543. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  1544. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  1545. GGML_ASSERT(nb10 == sizeof(float));
  1546. // rows per thread
  1547. const int dr = (nr + nth - 1)/nth;
  1548. // row range for this thread
  1549. const int ir0 = dr*ith;
  1550. const int ir1 = MIN(ir0 + dr, nr);
  1551. for (int ir = ir0; ir < ir1; ++ir) {
  1552. // src0 and dst are viewed with shape of src1 and offset
  1553. // => same indices
  1554. const int i3 = ir/(ne12*ne11);
  1555. const int i2 = (ir - i3*ne12*ne11)/ne11;
  1556. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  1557. #ifdef GGML_USE_ACCELERATE
  1558. vDSP_vadd(
  1559. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  1560. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  1561. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  1562. #else
  1563. ggml_vec_add_f32(nc,
  1564. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  1565. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  1566. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  1567. #endif
  1568. }
  1569. }
  1570. void ggml_compute_forward_acc(
  1571. const ggml_compute_params * params,
  1572. ggml_tensor * dst) {
  1573. const ggml_tensor * src0 = dst->src[0];
  1574. switch (src0->type) {
  1575. case GGML_TYPE_F32:
  1576. {
  1577. ggml_compute_forward_acc_f32(params, dst);
  1578. } break;
  1579. case GGML_TYPE_F16:
  1580. case GGML_TYPE_BF16:
  1581. case GGML_TYPE_Q4_0:
  1582. case GGML_TYPE_Q4_1:
  1583. case GGML_TYPE_Q5_0:
  1584. case GGML_TYPE_Q5_1:
  1585. case GGML_TYPE_Q8_0:
  1586. case GGML_TYPE_Q8_1:
  1587. case GGML_TYPE_MXFP4:
  1588. case GGML_TYPE_Q2_K:
  1589. case GGML_TYPE_Q3_K:
  1590. case GGML_TYPE_Q4_K:
  1591. case GGML_TYPE_Q5_K:
  1592. case GGML_TYPE_Q6_K:
  1593. case GGML_TYPE_TQ1_0:
  1594. case GGML_TYPE_TQ2_0:
  1595. case GGML_TYPE_IQ2_XXS:
  1596. case GGML_TYPE_IQ2_XS:
  1597. case GGML_TYPE_IQ3_XXS:
  1598. case GGML_TYPE_IQ1_S:
  1599. case GGML_TYPE_IQ1_M:
  1600. case GGML_TYPE_IQ4_NL:
  1601. case GGML_TYPE_IQ4_XS:
  1602. case GGML_TYPE_IQ3_S:
  1603. case GGML_TYPE_IQ2_S:
  1604. default:
  1605. {
  1606. GGML_ABORT("fatal error");
  1607. }
  1608. }
  1609. }
  1610. // ggml_compute_forward_sum
  1611. static void ggml_compute_forward_sum_f32(
  1612. const ggml_compute_params * params,
  1613. ggml_tensor * dst) {
  1614. const ggml_tensor * src0 = dst->src[0];
  1615. if (params->ith != 0) {
  1616. return;
  1617. }
  1618. assert(ggml_is_scalar(dst));
  1619. assert(src0->nb[0] == sizeof(float));
  1620. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  1621. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  1622. ggml_float sum = 0;
  1623. ggml_float row_sum = 0;
  1624. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1625. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1626. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1627. ggml_vec_sum_f32_ggf(ne00,
  1628. &row_sum,
  1629. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  1630. sum += row_sum;
  1631. }
  1632. }
  1633. }
  1634. ((float *) dst->data)[0] = sum;
  1635. }
  1636. static void ggml_compute_forward_sum_f16(
  1637. const ggml_compute_params * params,
  1638. ggml_tensor * dst) {
  1639. const ggml_tensor * src0 = dst->src[0];
  1640. if (params->ith != 0) {
  1641. return;
  1642. }
  1643. assert(ggml_is_scalar(dst));
  1644. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  1645. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  1646. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  1647. float sum = 0;
  1648. float row_sum = 0;
  1649. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1650. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1651. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1652. ggml_vec_sum_f16_ggf(ne00,
  1653. &row_sum,
  1654. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  1655. sum += row_sum;
  1656. }
  1657. }
  1658. }
  1659. ((ggml_fp16_t *) dst->data)[0] = GGML_CPU_FP32_TO_FP16(sum);
  1660. }
  1661. static void ggml_compute_forward_sum_bf16(
  1662. const ggml_compute_params * params,
  1663. ggml_tensor * dst) {
  1664. const ggml_tensor * src0 = dst->src[0];
  1665. if (params->ith != 0) {
  1666. return;
  1667. }
  1668. assert(ggml_is_scalar(dst));
  1669. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  1670. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  1671. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  1672. float sum = 0;
  1673. float row_sum = 0;
  1674. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1675. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1676. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1677. ggml_vec_sum_bf16_ggf(ne00,
  1678. &row_sum,
  1679. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  1680. sum += row_sum;
  1681. }
  1682. }
  1683. }
  1684. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  1685. }
  1686. void ggml_compute_forward_sum(
  1687. const ggml_compute_params * params,
  1688. ggml_tensor * dst) {
  1689. const ggml_tensor * src0 = dst->src[0];
  1690. switch (src0->type) {
  1691. case GGML_TYPE_F32:
  1692. {
  1693. ggml_compute_forward_sum_f32(params, dst);
  1694. } break;
  1695. case GGML_TYPE_F16:
  1696. {
  1697. ggml_compute_forward_sum_f16(params, dst);
  1698. } break;
  1699. case GGML_TYPE_BF16:
  1700. {
  1701. ggml_compute_forward_sum_bf16(params, dst);
  1702. } break;
  1703. default:
  1704. {
  1705. GGML_ABORT("fatal error");
  1706. }
  1707. }
  1708. }
  1709. // ggml_compute_forward_sum_rows
  1710. static void ggml_compute_forward_sum_rows_f32(
  1711. const ggml_compute_params * params,
  1712. ggml_tensor * dst) {
  1713. const ggml_tensor * src0 = dst->src[0];
  1714. if (params->ith != 0) {
  1715. return;
  1716. }
  1717. GGML_ASSERT(src0->nb[0] == sizeof(float));
  1718. GGML_ASSERT(dst->nb[0] == sizeof(float));
  1719. GGML_TENSOR_UNARY_OP_LOCALS
  1720. GGML_ASSERT(ne0 == 1);
  1721. GGML_ASSERT(ne1 == ne01);
  1722. GGML_ASSERT(ne2 == ne02);
  1723. GGML_ASSERT(ne3 == ne03);
  1724. for (int64_t i3 = 0; i3 < ne03; i3++) {
  1725. for (int64_t i2 = 0; i2 < ne02; i2++) {
  1726. for (int64_t i1 = 0; i1 < ne01; i1++) {
  1727. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  1728. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  1729. float row_sum = 0;
  1730. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  1731. dst_row[0] = row_sum;
  1732. }
  1733. }
  1734. }
  1735. }
  1736. void ggml_compute_forward_sum_rows(
  1737. const ggml_compute_params * params,
  1738. ggml_tensor * dst) {
  1739. const ggml_tensor * src0 = dst->src[0];
  1740. switch (src0->type) {
  1741. case GGML_TYPE_F32:
  1742. {
  1743. ggml_compute_forward_sum_rows_f32(params, dst);
  1744. } break;
  1745. default:
  1746. {
  1747. GGML_ABORT("fatal error");
  1748. }
  1749. }
  1750. }
  1751. // ggml_compute_forward_mean
  1752. static void ggml_compute_forward_mean_f32(
  1753. const ggml_compute_params * params,
  1754. ggml_tensor * dst) {
  1755. const ggml_tensor * src0 = dst->src[0];
  1756. if (params->ith != 0) {
  1757. return;
  1758. }
  1759. assert(src0->nb[0] == sizeof(float));
  1760. GGML_TENSOR_UNARY_OP_LOCALS
  1761. assert(ne0 == 1);
  1762. assert(ne1 == ne01);
  1763. assert(ne2 == ne02);
  1764. assert(ne3 == ne03);
  1765. GGML_UNUSED(ne0);
  1766. GGML_UNUSED(ne1);
  1767. GGML_UNUSED(ne2);
  1768. GGML_UNUSED(ne3);
  1769. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1770. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1771. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1772. ggml_vec_sum_f32(ne00,
  1773. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  1774. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  1775. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  1776. }
  1777. }
  1778. }
  1779. }
  1780. void ggml_compute_forward_mean(
  1781. const ggml_compute_params * params,
  1782. ggml_tensor * dst) {
  1783. const ggml_tensor * src0 = dst->src[0];
  1784. switch (src0->type) {
  1785. case GGML_TYPE_F32:
  1786. {
  1787. ggml_compute_forward_mean_f32(params, dst);
  1788. } break;
  1789. default:
  1790. {
  1791. GGML_ABORT("fatal error");
  1792. }
  1793. }
  1794. }
  1795. // ggml_compute_forward_argmax
  1796. static void ggml_compute_forward_argmax_f32(
  1797. const ggml_compute_params * params,
  1798. ggml_tensor * dst) {
  1799. const ggml_tensor * src0 = dst->src[0];
  1800. if (params->ith != 0) {
  1801. return;
  1802. }
  1803. assert(src0->nb[0] == sizeof(float));
  1804. assert(dst->nb[0] == sizeof(float));
  1805. const int64_t ne00 = src0->ne[0];
  1806. const int64_t ne01 = src0->ne[1];
  1807. const size_t nb01 = src0->nb[1];
  1808. const size_t nb0 = dst->nb[0];
  1809. for (int64_t i1 = 0; i1 < ne01; i1++) {
  1810. float * src = (float *) ((char *) src0->data + i1*nb01);
  1811. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  1812. int v = 0;
  1813. ggml_vec_argmax_f32(ne00, &v, src);
  1814. dst_[0] = v;
  1815. }
  1816. }
  1817. void ggml_compute_forward_argmax(
  1818. const ggml_compute_params * params,
  1819. ggml_tensor * dst) {
  1820. const ggml_tensor * src0 = dst->src[0];
  1821. switch (src0->type) {
  1822. case GGML_TYPE_F32:
  1823. {
  1824. ggml_compute_forward_argmax_f32(params, dst);
  1825. } break;
  1826. default:
  1827. {
  1828. GGML_ABORT("fatal error");
  1829. }
  1830. }
  1831. }
  1832. // ggml_compute_forward_count_equal
  1833. static void ggml_compute_forward_count_equal_i32(
  1834. const ggml_compute_params * params,
  1835. ggml_tensor * dst) {
  1836. const ggml_tensor * src0 = dst->src[0];
  1837. const ggml_tensor * src1 = dst->src[1];
  1838. GGML_TENSOR_BINARY_OP_LOCALS;
  1839. GGML_ASSERT(src0->type == GGML_TYPE_I32);
  1840. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  1841. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  1842. GGML_ASSERT(ggml_is_scalar(dst));
  1843. GGML_ASSERT(dst->type == GGML_TYPE_I64);
  1844. const int64_t nr = ggml_nrows(src0);
  1845. const int ith = params->ith;
  1846. const int nth = params->nth;
  1847. int64_t * sums = (int64_t *) params->wdata;
  1848. int64_t sum_thread = 0;
  1849. // rows per thread
  1850. const int64_t dr = (nr + nth - 1)/nth;
  1851. // row range for this thread
  1852. const int64_t ir0 = dr*ith;
  1853. const int64_t ir1 = MIN(ir0 + dr, nr);
  1854. for (int64_t ir = ir0; ir < ir1; ++ir) {
  1855. const int64_t i03 = ir / (ne02*ne01);
  1856. const int64_t i02 = (ir - i03*ne03) / ne01;
  1857. const int64_t i01 = ir - i03*ne03 - i02*ne02;
  1858. const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
  1859. const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
  1860. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  1861. const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
  1862. const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
  1863. sum_thread += val0 == val1;
  1864. }
  1865. }
  1866. if (ith != 0) {
  1867. sums[ith] = sum_thread;
  1868. }
  1869. ggml_barrier(params->threadpool);
  1870. if (ith != 0) {
  1871. return;
  1872. }
  1873. for (int ith_other = 1; ith_other < nth; ++ith_other) {
  1874. sum_thread += sums[ith_other];
  1875. }
  1876. *((int64_t *) dst->data) = sum_thread;
  1877. }
  1878. void ggml_compute_forward_count_equal(
  1879. const ggml_compute_params * params,
  1880. ggml_tensor * dst) {
  1881. const ggml_tensor * src0 = dst->src[0];
  1882. switch (src0->type) {
  1883. case GGML_TYPE_I32:
  1884. {
  1885. ggml_compute_forward_count_equal_i32(params, dst);
  1886. } break;
  1887. default:
  1888. {
  1889. GGML_ABORT("fatal error");
  1890. }
  1891. }
  1892. }
  1893. // ggml_compute_forward_repeat
  1894. static void ggml_compute_forward_repeat_f32(
  1895. const ggml_compute_params * params,
  1896. ggml_tensor * dst) {
  1897. const ggml_tensor * src0 = dst->src[0];
  1898. if (params->ith != 0) {
  1899. return;
  1900. }
  1901. GGML_ASSERT(ggml_can_repeat(src0, dst));
  1902. GGML_TENSOR_UNARY_OP_LOCALS
  1903. // guaranteed to be an integer due to the check in ggml_can_repeat
  1904. const int nr0 = (int)(ne0/ne00);
  1905. const int nr1 = (int)(ne1/ne01);
  1906. const int nr2 = (int)(ne2/ne02);
  1907. const int nr3 = (int)(ne3/ne03);
  1908. // TODO: support for transposed / permuted tensors
  1909. GGML_ASSERT(nb0 == sizeof(float));
  1910. GGML_ASSERT(nb00 == sizeof(float));
  1911. // TODO: maybe this is not optimal?
  1912. for (int i3 = 0; i3 < nr3; i3++) {
  1913. for (int k3 = 0; k3 < ne03; k3++) {
  1914. for (int i2 = 0; i2 < nr2; i2++) {
  1915. for (int k2 = 0; k2 < ne02; k2++) {
  1916. for (int i1 = 0; i1 < nr1; i1++) {
  1917. for (int k1 = 0; k1 < ne01; k1++) {
  1918. for (int i0 = 0; i0 < nr0; i0++) {
  1919. ggml_vec_cpy_f32(ne00,
  1920. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  1921. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  1922. }
  1923. }
  1924. }
  1925. }
  1926. }
  1927. }
  1928. }
  1929. }
  1930. static void ggml_compute_forward_repeat_f16(
  1931. const ggml_compute_params * params,
  1932. ggml_tensor * dst) {
  1933. const ggml_tensor * src0 = dst->src[0];
  1934. if (params->ith != 0) {
  1935. return;
  1936. }
  1937. GGML_ASSERT(ggml_can_repeat(src0, dst));
  1938. GGML_TENSOR_UNARY_OP_LOCALS
  1939. // guaranteed to be an integer due to the check in ggml_can_repeat
  1940. const int nr0 = (int)(ne0/ne00);
  1941. const int nr1 = (int)(ne1/ne01);
  1942. const int nr2 = (int)(ne2/ne02);
  1943. const int nr3 = (int)(ne3/ne03);
  1944. // TODO: support for transposed / permuted tensors
  1945. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  1946. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  1947. // TODO: maybe this is not optimal?
  1948. for (int i3 = 0; i3 < nr3; i3++) {
  1949. for (int k3 = 0; k3 < ne03; k3++) {
  1950. for (int i2 = 0; i2 < nr2; i2++) {
  1951. for (int k2 = 0; k2 < ne02; k2++) {
  1952. for (int i1 = 0; i1 < nr1; i1++) {
  1953. for (int k1 = 0; k1 < ne01; k1++) {
  1954. for (int i0 = 0; i0 < nr0; i0++) {
  1955. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  1956. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  1957. // ggml_vec_cpy_f16(ne00, y, x)
  1958. for (int i = 0; i < ne00; ++i) {
  1959. y[i] = x[i];
  1960. }
  1961. }
  1962. }
  1963. }
  1964. }
  1965. }
  1966. }
  1967. }
  1968. }
  1969. void ggml_compute_forward_repeat(
  1970. const ggml_compute_params * params,
  1971. ggml_tensor * dst) {
  1972. const ggml_tensor * src0 = dst->src[0];
  1973. switch (src0->type) {
  1974. case GGML_TYPE_F16:
  1975. case GGML_TYPE_BF16:
  1976. case GGML_TYPE_I16:
  1977. {
  1978. ggml_compute_forward_repeat_f16(params, dst);
  1979. } break;
  1980. case GGML_TYPE_F32:
  1981. case GGML_TYPE_I32:
  1982. {
  1983. ggml_compute_forward_repeat_f32(params, dst);
  1984. } break;
  1985. // TODO: templateify the implemenation and support for I64
  1986. // ref https://github.com/ggml-org/llama.cpp/pull/14274#discussion_r2169492225
  1987. //case GGML_TYPE_I64:
  1988. // {
  1989. // ggml_compute_forward_repeat_i64(params, dst);
  1990. // } break;
  1991. default:
  1992. {
  1993. GGML_ABORT("fatal error");
  1994. }
  1995. }
  1996. }
  1997. // ggml_compute_forward_repeat_back
  1998. static void ggml_compute_forward_repeat_back_f32(
  1999. const ggml_compute_params * params,
  2000. ggml_tensor * dst) {
  2001. const ggml_tensor * src0 = dst->src[0];
  2002. if (params->ith != 0) {
  2003. return;
  2004. }
  2005. GGML_ASSERT(ggml_can_repeat(dst, src0));
  2006. GGML_TENSOR_UNARY_OP_LOCALS
  2007. // guaranteed to be an integer due to the check in ggml_can_repeat
  2008. const int nr0 = (int)(ne00/ne0);
  2009. const int nr1 = (int)(ne01/ne1);
  2010. const int nr2 = (int)(ne02/ne2);
  2011. const int nr3 = (int)(ne03/ne3);
  2012. // TODO: support for transposed / permuted tensors
  2013. GGML_ASSERT(nb0 == sizeof(float));
  2014. GGML_ASSERT(nb00 == sizeof(float));
  2015. if (ggml_is_contiguous(dst)) {
  2016. ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
  2017. } else {
  2018. for (int k3 = 0; k3 < ne3; k3++) {
  2019. for (int k2 = 0; k2 < ne2; k2++) {
  2020. for (int k1 = 0; k1 < ne1; k1++) {
  2021. ggml_vec_set_f32(ne0,
  2022. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  2023. 0);
  2024. }
  2025. }
  2026. }
  2027. }
  2028. // TODO: maybe this is not optimal?
  2029. for (int i3 = 0; i3 < nr3; i3++) {
  2030. for (int k3 = 0; k3 < ne3; k3++) {
  2031. for (int i2 = 0; i2 < nr2; i2++) {
  2032. for (int k2 = 0; k2 < ne2; k2++) {
  2033. for (int i1 = 0; i1 < nr1; i1++) {
  2034. for (int k1 = 0; k1 < ne1; k1++) {
  2035. for (int i0 = 0; i0 < nr0; i0++) {
  2036. ggml_vec_acc_f32(ne0,
  2037. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  2038. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  2039. }
  2040. }
  2041. }
  2042. }
  2043. }
  2044. }
  2045. }
  2046. }
  2047. void ggml_compute_forward_repeat_back(
  2048. const ggml_compute_params * params,
  2049. ggml_tensor * dst) {
  2050. const ggml_tensor * src0 = dst->src[0];
  2051. switch (src0->type) {
  2052. case GGML_TYPE_F32:
  2053. {
  2054. ggml_compute_forward_repeat_back_f32(params, dst);
  2055. } break;
  2056. default:
  2057. {
  2058. GGML_ABORT("fatal error");
  2059. }
  2060. }
  2061. }
  2062. // ggml_compute_forward_concat
  2063. static void ggml_compute_forward_concat_any(
  2064. const ggml_compute_params * params,
  2065. ggml_tensor * dst) {
  2066. const ggml_tensor * src0 = dst->src[0];
  2067. const ggml_tensor * src1 = dst->src[1];
  2068. const size_t len = ggml_type_size(src0->type);
  2069. const int ith = params->ith;
  2070. const int nth = params->nth;
  2071. GGML_TENSOR_BINARY_OP_LOCALS
  2072. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2073. GGML_ASSERT(dim >= 0 && dim < 4);
  2074. int64_t o[4] = {0, 0, 0, 0};
  2075. o[dim] = src0->ne[dim];
  2076. const char * x;
  2077. // TODO: smarter multi-theading
  2078. for (int i3 = 0; i3 < ne3; i3++) {
  2079. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2080. for (int i1 = 0; i1 < ne1; i1++) {
  2081. for (int i0 = 0; i0 < ne0; i0++) {
  2082. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2083. x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03;
  2084. } else {
  2085. x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13;
  2086. }
  2087. char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3;
  2088. memcpy(y, x, len);
  2089. }
  2090. }
  2091. }
  2092. }
  2093. }
  2094. static void ggml_compute_forward_concat_i8(
  2095. const ggml_compute_params * params,
  2096. ggml_tensor * dst) {
  2097. const ggml_tensor * src0 = dst->src[0];
  2098. const ggml_tensor * src1 = dst->src[1];
  2099. GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t));
  2100. const int ith = params->ith;
  2101. const int nth = params->nth;
  2102. GGML_TENSOR_BINARY_OP_LOCALS
  2103. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2104. GGML_ASSERT(dim >= 0 && dim < 4);
  2105. int64_t o[4] = {0, 0, 0, 0};
  2106. o[dim] = src0->ne[dim];
  2107. const int8_t * x;
  2108. // TODO: smarter multi-theading
  2109. for (int i3 = 0; i3 < ne3; i3++) {
  2110. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2111. for (int i1 = 0; i1 < ne1; i1++) {
  2112. for (int i0 = 0; i0 < ne0; i0++) {
  2113. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2114. x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  2115. } else {
  2116. x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  2117. }
  2118. int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  2119. *y = *x;
  2120. }
  2121. }
  2122. }
  2123. }
  2124. }
  2125. static void ggml_compute_forward_concat_f16(
  2126. const ggml_compute_params * params,
  2127. ggml_tensor * dst) {
  2128. const ggml_tensor * src0 = dst->src[0];
  2129. const ggml_tensor * src1 = dst->src[1];
  2130. GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t));
  2131. const int ith = params->ith;
  2132. const int nth = params->nth;
  2133. GGML_TENSOR_BINARY_OP_LOCALS
  2134. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2135. GGML_ASSERT(dim >= 0 && dim < 4);
  2136. int64_t o[4] = {0, 0, 0, 0};
  2137. o[dim] = src0->ne[dim];
  2138. const ggml_fp16_t * x;
  2139. // TODO: smarter multi-theading
  2140. for (int i3 = 0; i3 < ne3; i3++) {
  2141. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2142. for (int i1 = 0; i1 < ne1; i1++) {
  2143. for (int i0 = 0; i0 < ne0; i0++) {
  2144. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2145. x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  2146. } else {
  2147. x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  2148. }
  2149. ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  2150. *y = *x;
  2151. }
  2152. }
  2153. }
  2154. }
  2155. }
  2156. static void ggml_compute_forward_concat_f32(
  2157. const ggml_compute_params * params,
  2158. ggml_tensor * dst) {
  2159. const ggml_tensor * src0 = dst->src[0];
  2160. const ggml_tensor * src1 = dst->src[1];
  2161. GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float));
  2162. const int ith = params->ith;
  2163. const int nth = params->nth;
  2164. GGML_TENSOR_BINARY_OP_LOCALS
  2165. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2166. GGML_ASSERT(dim >= 0 && dim < 4);
  2167. int64_t o[4] = {0, 0, 0, 0};
  2168. o[dim] = src0->ne[dim];
  2169. const float * x;
  2170. // TODO: smarter multi-theading
  2171. for (int i3 = 0; i3 < ne3; i3++) {
  2172. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2173. for (int i1 = 0; i1 < ne1; i1++) {
  2174. for (int i0 = 0; i0 < ne0; i0++) {
  2175. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2176. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  2177. } else {
  2178. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  2179. }
  2180. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  2181. *y = *x;
  2182. }
  2183. }
  2184. }
  2185. }
  2186. }
  2187. void ggml_compute_forward_concat(
  2188. const ggml_compute_params * params,
  2189. ggml_tensor * dst) {
  2190. const ggml_tensor * src0 = dst->src[0];
  2191. switch (src0->type) {
  2192. case GGML_TYPE_F16:
  2193. case GGML_TYPE_BF16:
  2194. case GGML_TYPE_I16:
  2195. {
  2196. ggml_compute_forward_concat_f16(params, dst);
  2197. } break;
  2198. case GGML_TYPE_I8:
  2199. {
  2200. ggml_compute_forward_concat_i8(params, dst);
  2201. } break;
  2202. case GGML_TYPE_F32:
  2203. case GGML_TYPE_I32:
  2204. {
  2205. ggml_compute_forward_concat_f32(params, dst);
  2206. } break;
  2207. default:
  2208. {
  2209. ggml_compute_forward_concat_any(params, dst);
  2210. }
  2211. }
  2212. }
  2213. // ggml_compute_forward_gelu
  2214. static void ggml_compute_forward_gelu_f32(
  2215. const ggml_compute_params * params,
  2216. ggml_tensor * dst) {
  2217. const ggml_tensor * src0 = dst->src[0];
  2218. assert(ggml_is_contiguous_1(src0));
  2219. assert(ggml_is_contiguous_1(dst));
  2220. assert(ggml_are_same_shape(src0, dst));
  2221. const int ith = params->ith;
  2222. const int nth = params->nth;
  2223. const int nc = src0->ne[0];
  2224. const int nr = ggml_nrows(src0);
  2225. // rows per thread
  2226. const int dr = (nr + nth - 1)/nth;
  2227. // row range for this thread
  2228. const int ir0 = dr*ith;
  2229. const int ir1 = MIN(ir0 + dr, nr);
  2230. for (int i1 = ir0; i1 < ir1; i1++) {
  2231. ggml_vec_gelu_f32(nc,
  2232. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2233. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2234. #ifndef NDEBUG
  2235. for (int k = 0; k < nc; k++) {
  2236. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2237. GGML_UNUSED(x);
  2238. assert(!isnan(x));
  2239. assert(!isinf(x));
  2240. }
  2241. #endif
  2242. }
  2243. }
  2244. static void ggml_compute_forward_gelu_f16(
  2245. const ggml_compute_params * params,
  2246. ggml_tensor * dst) {
  2247. const ggml_tensor * src0 = dst->src[0];
  2248. assert(ggml_is_contiguous_1(src0));
  2249. assert(ggml_is_contiguous_1(dst));
  2250. assert(ggml_are_same_shape(src0, dst));
  2251. const int ith = params->ith;
  2252. const int nth = params->nth;
  2253. const int nc = src0->ne[0];
  2254. const int nr = ggml_nrows(src0);
  2255. // rows per thread
  2256. const int dr = (nr + nth - 1)/nth;
  2257. // row range for this thread
  2258. const int ir0 = dr*ith;
  2259. const int ir1 = MIN(ir0 + dr, nr);
  2260. for (int i1 = ir0; i1 < ir1; i1++) {
  2261. ggml_vec_gelu_f16(nc,
  2262. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2263. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2264. #ifndef NDEBUG
  2265. for (int k = 0; k < nc; k++) {
  2266. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2267. const float v = GGML_CPU_FP16_TO_FP32(x);
  2268. GGML_UNUSED(v);
  2269. assert(!isnan(v));
  2270. assert(!isinf(v));
  2271. }
  2272. #endif
  2273. }
  2274. }
  2275. static void ggml_compute_forward_gelu(
  2276. const ggml_compute_params * params,
  2277. ggml_tensor * dst) {
  2278. const ggml_tensor * src0 = dst->src[0];
  2279. switch (src0->type) {
  2280. case GGML_TYPE_F32:
  2281. {
  2282. ggml_compute_forward_gelu_f32(params, dst);
  2283. } break;
  2284. case GGML_TYPE_F16:
  2285. {
  2286. ggml_compute_forward_gelu_f16(params, dst);
  2287. } break;
  2288. default:
  2289. {
  2290. GGML_ABORT("fatal error");
  2291. }
  2292. }
  2293. }
  2294. // ggml_compute_forward_gelu_erf
  2295. static void ggml_compute_forward_gelu_erf_f32(
  2296. const ggml_compute_params * params,
  2297. ggml_tensor * dst) {
  2298. const ggml_tensor * src0 = dst->src[0];
  2299. assert(ggml_is_contiguous_1(src0));
  2300. assert(ggml_is_contiguous_1(dst));
  2301. assert(ggml_are_same_shape(src0, dst));
  2302. const int ith = params->ith;
  2303. const int nth = params->nth;
  2304. const int nc = src0->ne[0];
  2305. const int nr = ggml_nrows(src0);
  2306. // rows per thread
  2307. const int dr = (nr + nth - 1)/nth;
  2308. // row range for this thread
  2309. const int ir0 = dr*ith;
  2310. const int ir1 = MIN(ir0 + dr, nr);
  2311. for (int i1 = ir0; i1 < ir1; i1++) {
  2312. ggml_vec_gelu_erf_f32(nc,
  2313. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2314. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2315. #ifndef NDEBUG
  2316. for (int k = 0; k < nc; k++) {
  2317. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2318. GGML_UNUSED(x);
  2319. assert(!isnan(x));
  2320. assert(!isinf(x));
  2321. }
  2322. #endif
  2323. }
  2324. }
  2325. static void ggml_compute_forward_gelu_erf_f16(
  2326. const ggml_compute_params * params,
  2327. ggml_tensor * dst) {
  2328. const ggml_tensor * src0 = dst->src[0];
  2329. assert(ggml_is_contiguous_1(src0));
  2330. assert(ggml_is_contiguous_1(dst));
  2331. assert(ggml_are_same_shape(src0, dst));
  2332. const int ith = params->ith;
  2333. const int nth = params->nth;
  2334. const int nc = src0->ne[0];
  2335. const int nr = ggml_nrows(src0);
  2336. // rows per thread
  2337. const int dr = (nr + nth - 1)/nth;
  2338. // row range for this thread
  2339. const int ir0 = dr*ith;
  2340. const int ir1 = MIN(ir0 + dr, nr);
  2341. for (int i1 = ir0; i1 < ir1; i1++) {
  2342. ggml_vec_gelu_erf_f16(nc,
  2343. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2344. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2345. #ifndef NDEBUG
  2346. for (int k = 0; k < nc; k++) {
  2347. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2348. const float v = GGML_CPU_FP16_TO_FP32(x);
  2349. GGML_UNUSED(v);
  2350. assert(!isnan(v));
  2351. assert(!isinf(v));
  2352. }
  2353. #endif
  2354. }
  2355. }
  2356. static void ggml_compute_forward_gelu_erf(
  2357. const ggml_compute_params * params,
  2358. ggml_tensor * dst) {
  2359. const ggml_tensor * src0 = dst->src[0];
  2360. switch (src0->type) {
  2361. case GGML_TYPE_F32:
  2362. {
  2363. ggml_compute_forward_gelu_erf_f32(params, dst);
  2364. } break;
  2365. case GGML_TYPE_F16:
  2366. {
  2367. ggml_compute_forward_gelu_erf_f16(params, dst);
  2368. } break;
  2369. default:
  2370. {
  2371. GGML_ABORT("fatal error");
  2372. }
  2373. }
  2374. }
  2375. // ggml_compute_forward_gelu_quick
  2376. static void ggml_compute_forward_gelu_quick_f32(
  2377. const ggml_compute_params * params,
  2378. ggml_tensor * dst) {
  2379. const ggml_tensor * src0 = dst->src[0];
  2380. assert(ggml_is_contiguous_1(src0));
  2381. assert(ggml_is_contiguous_1(dst));
  2382. assert(ggml_are_same_shape(src0, dst));
  2383. const int ith = params->ith;
  2384. const int nth = params->nth;
  2385. const int nc = src0->ne[0];
  2386. const int nr = ggml_nrows(src0);
  2387. // rows per thread
  2388. const int dr = (nr + nth - 1)/nth;
  2389. // row range for this thread
  2390. const int ir0 = dr*ith;
  2391. const int ir1 = MIN(ir0 + dr, nr);
  2392. for (int i1 = ir0; i1 < ir1; i1++) {
  2393. ggml_vec_gelu_quick_f32(nc,
  2394. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2395. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2396. #ifndef NDEBUG
  2397. for (int k = 0; k < nc; k++) {
  2398. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2399. GGML_UNUSED(x);
  2400. assert(!isnan(x));
  2401. assert(!isinf(x));
  2402. }
  2403. #endif
  2404. }
  2405. }
  2406. static void ggml_compute_forward_gelu_quick_f16(
  2407. const ggml_compute_params * params,
  2408. ggml_tensor * dst) {
  2409. const ggml_tensor * src0 = dst->src[0];
  2410. assert(ggml_is_contiguous_1(src0));
  2411. assert(ggml_is_contiguous_1(dst));
  2412. assert(ggml_are_same_shape(src0, dst));
  2413. const int ith = params->ith;
  2414. const int nth = params->nth;
  2415. const int nc = src0->ne[0];
  2416. const int nr = ggml_nrows(src0);
  2417. // rows per thread
  2418. const int dr = (nr + nth - 1)/nth;
  2419. // row range for this thread
  2420. const int ir0 = dr*ith;
  2421. const int ir1 = MIN(ir0 + dr, nr);
  2422. for (int i1 = ir0; i1 < ir1; i1++) {
  2423. ggml_vec_gelu_quick_f16(nc,
  2424. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2425. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2426. #ifndef NDEBUG
  2427. for (int k = 0; k < nc; k++) {
  2428. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2429. const float v = GGML_CPU_FP16_TO_FP32(x);
  2430. GGML_UNUSED(v);
  2431. assert(!isnan(v));
  2432. assert(!isinf(v));
  2433. }
  2434. #endif
  2435. }
  2436. }
  2437. static void ggml_compute_forward_gelu_quick(
  2438. const ggml_compute_params * params,
  2439. ggml_tensor * dst) {
  2440. const ggml_tensor * src0 = dst->src[0];
  2441. switch (src0->type) {
  2442. case GGML_TYPE_F32:
  2443. {
  2444. ggml_compute_forward_gelu_quick_f32(params, dst);
  2445. } break;
  2446. case GGML_TYPE_F16:
  2447. {
  2448. ggml_compute_forward_gelu_quick_f16(params, dst);
  2449. } break;
  2450. default:
  2451. {
  2452. GGML_ABORT("fatal error");
  2453. }
  2454. }
  2455. }
  2456. // ggml_compute_forward_silu
  2457. static void ggml_compute_forward_silu_f32(
  2458. const ggml_compute_params * params,
  2459. ggml_tensor * dst) {
  2460. const ggml_tensor * src0 = dst->src[0];
  2461. assert(ggml_is_contiguous_1(src0));
  2462. assert(ggml_is_contiguous_1(dst));
  2463. assert(ggml_are_same_shape(src0, dst));
  2464. const int ith = params->ith;
  2465. const int nth = params->nth;
  2466. const int nc = src0->ne[0];
  2467. const int nr = ggml_nrows(src0);
  2468. // rows per thread
  2469. const int dr = (nr + nth - 1)/nth;
  2470. // row range for this thread
  2471. const int ir0 = dr*ith;
  2472. const int ir1 = MIN(ir0 + dr, nr);
  2473. for (int i1 = ir0; i1 < ir1; i1++) {
  2474. ggml_vec_silu_f32(nc,
  2475. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2476. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2477. #ifndef NDEBUG
  2478. for (int k = 0; k < nc; k++) {
  2479. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  2480. GGML_UNUSED(x);
  2481. assert(!isnan(x));
  2482. assert(!isinf(x));
  2483. }
  2484. #endif
  2485. }
  2486. }
  2487. static void ggml_compute_forward_silu_f16(
  2488. const ggml_compute_params * params,
  2489. ggml_tensor * dst) {
  2490. const ggml_tensor * src0 = dst->src[0];
  2491. assert(ggml_is_contiguous_1(src0));
  2492. assert(ggml_is_contiguous_1(dst));
  2493. assert(ggml_are_same_shape(src0, dst));
  2494. const int ith = params->ith;
  2495. const int nth = params->nth;
  2496. const int nc = src0->ne[0];
  2497. const int nr = ggml_nrows(src0);
  2498. // rows per thread
  2499. const int dr = (nr + nth - 1)/nth;
  2500. // row range for this thread
  2501. const int ir0 = dr*ith;
  2502. const int ir1 = MIN(ir0 + dr, nr);
  2503. for (int i1 = ir0; i1 < ir1; i1++) {
  2504. ggml_vec_silu_f16(nc,
  2505. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2506. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2507. #ifndef NDEBUG
  2508. for (int k = 0; k < nc; k++) {
  2509. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  2510. const float v = GGML_CPU_FP16_TO_FP32(x);
  2511. GGML_UNUSED(v);
  2512. assert(!isnan(v));
  2513. assert(!isinf(v));
  2514. }
  2515. #endif
  2516. }
  2517. }
  2518. static void ggml_compute_forward_silu(
  2519. const ggml_compute_params * params,
  2520. ggml_tensor * dst) {
  2521. const ggml_tensor * src0 = dst->src[0];
  2522. switch (src0->type) {
  2523. case GGML_TYPE_F32:
  2524. {
  2525. ggml_compute_forward_silu_f32(params, dst);
  2526. } break;
  2527. case GGML_TYPE_F16:
  2528. {
  2529. ggml_compute_forward_silu_f16(params, dst);
  2530. } break;
  2531. default:
  2532. {
  2533. GGML_ABORT("fatal error");
  2534. }
  2535. }
  2536. }
  2537. // ggml_compute_forward_leaky_relu
  2538. static void ggml_compute_forward_leaky_relu_f32(
  2539. const ggml_compute_params * params,
  2540. ggml_tensor * dst) {
  2541. const ggml_tensor * src0 = dst->src[0];
  2542. if (params->ith != 0) {
  2543. return;
  2544. }
  2545. assert(ggml_is_contiguous_1(src0));
  2546. assert(ggml_is_contiguous_1(dst));
  2547. assert(ggml_are_same_shape(src0, dst));
  2548. const int n = ggml_nrows(src0);
  2549. const int nc = src0->ne[0];
  2550. float negative_slope;
  2551. memcpy(&negative_slope, dst->op_params, sizeof(float));
  2552. assert(dst->nb[0] == sizeof(float));
  2553. assert(src0->nb[0] == sizeof(float));
  2554. for (int i = 0; i < n; i++) {
  2555. ggml_vec_leaky_relu_f32(nc,
  2556. (float *) ((char *) dst->data + i*( dst->nb[1])),
  2557. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  2558. }
  2559. }
  2560. static void ggml_compute_forward_leaky_relu_f16(
  2561. const ggml_compute_params * params,
  2562. ggml_tensor * dst) {
  2563. const ggml_tensor * src0 = dst->src[0];
  2564. if (params->ith != 0) {
  2565. return;
  2566. }
  2567. assert(ggml_is_contiguous_1(src0));
  2568. assert(ggml_is_contiguous_1(dst));
  2569. assert(ggml_are_same_shape(src0, dst));
  2570. const int n = ggml_nrows(src0);
  2571. const int nc = src0->ne[0];
  2572. float negative_slope;
  2573. memcpy(&negative_slope, dst->op_params, sizeof(float));
  2574. assert(dst->nb[0] == sizeof(ggml_fp16_t));
  2575. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  2576. for (int i = 0; i < n; i++) {
  2577. ggml_vec_leaky_relu_f16(nc,
  2578. (ggml_fp16_t *) ((char *) dst->data + i*( dst->nb[1])),
  2579. (ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  2580. }
  2581. }
  2582. void ggml_compute_forward_leaky_relu(
  2583. const ggml_compute_params * params,
  2584. ggml_tensor * dst) {
  2585. const ggml_tensor * src0 = dst->src[0];
  2586. switch (src0->type) {
  2587. case GGML_TYPE_F32:
  2588. {
  2589. ggml_compute_forward_leaky_relu_f32(params, dst);
  2590. } break;
  2591. case GGML_TYPE_F16:
  2592. {
  2593. ggml_compute_forward_leaky_relu_f16(params, dst);
  2594. } break;
  2595. default:
  2596. {
  2597. GGML_ABORT("fatal error");
  2598. }
  2599. }
  2600. }
  2601. // ggml_compute_forward_silu_back
  2602. static void ggml_compute_forward_silu_back_f32(
  2603. const ggml_compute_params * params,
  2604. ggml_tensor * dst) {
  2605. const ggml_tensor * grad = dst->src[0];
  2606. const ggml_tensor * src1 = dst->src[1];
  2607. assert(ggml_is_contiguous_1(grad));
  2608. assert(ggml_is_contiguous_1(src1));
  2609. assert(ggml_is_contiguous_1(dst));
  2610. assert(ggml_are_same_shape(src1, dst));
  2611. assert(ggml_are_same_shape(src1, grad));
  2612. const int ith = params->ith;
  2613. const int nth = params->nth;
  2614. const int nc = src1->ne[0];
  2615. const int nr = ggml_nrows(src1);
  2616. // rows per thread
  2617. const int dr = (nr + nth - 1)/nth;
  2618. // row range for this thread
  2619. const int ir0 = dr*ith;
  2620. const int ir1 = MIN(ir0 + dr, nr);
  2621. for (int i1 = ir0; i1 < ir1; i1++) {
  2622. ggml_vec_silu_backward_f32(nc,
  2623. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2624. (float *) ((char *) src1->data + i1*(src1->nb[1])),
  2625. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  2626. #ifndef NDEBUG
  2627. for (int k = 0; k < nc; k++) {
  2628. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2629. GGML_UNUSED(x);
  2630. assert(!isnan(x));
  2631. assert(!isinf(x));
  2632. }
  2633. #endif
  2634. }
  2635. }
  2636. static void ggml_compute_forward_silu_back_f16(
  2637. const ggml_compute_params * params,
  2638. ggml_tensor * dst) {
  2639. const ggml_tensor * grad = dst->src[0];
  2640. const ggml_tensor * src1 = dst->src[1];
  2641. assert(ggml_is_contiguous_1(grad));
  2642. assert(ggml_is_contiguous_1(src1));
  2643. assert(ggml_is_contiguous_1(dst));
  2644. assert(ggml_are_same_shape(src1, dst));
  2645. assert(ggml_are_same_shape(src1, grad));
  2646. const int ith = params->ith;
  2647. const int nth = params->nth;
  2648. const int nc = src1->ne[0];
  2649. const int nr = ggml_nrows(src1);
  2650. // rows per thread
  2651. const int dr = (nr + nth - 1)/nth;
  2652. // row range for this thread
  2653. const int ir0 = dr*ith;
  2654. const int ir1 = MIN(ir0 + dr, nr);
  2655. for (int i1 = ir0; i1 < ir1; i1++) {
  2656. ggml_vec_silu_backward_f16(nc,
  2657. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2658. (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
  2659. (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
  2660. #ifndef NDEBUG
  2661. for (int k = 0; k < nc; k++) {
  2662. const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2663. const float v = GGML_CPU_FP16_TO_FP32(x);
  2664. GGML_UNUSED(v);
  2665. assert(!isnan(v));
  2666. assert(!isinf(v));
  2667. }
  2668. #endif
  2669. }
  2670. }
  2671. void ggml_compute_forward_silu_back(
  2672. const ggml_compute_params * params,
  2673. ggml_tensor * dst) {
  2674. const ggml_tensor * src0 = dst->src[0];
  2675. switch (src0->type) {
  2676. case GGML_TYPE_F32:
  2677. {
  2678. ggml_compute_forward_silu_back_f32(params, dst);
  2679. } break;
  2680. case GGML_TYPE_F16:
  2681. {
  2682. ggml_compute_forward_silu_back_f16(params, dst);
  2683. } break;
  2684. default:
  2685. {
  2686. GGML_ABORT("fatal error");
  2687. }
  2688. }
  2689. }
  2690. // ggml_compute_forward_reglu
  2691. static void ggml_compute_forward_reglu_f32(
  2692. const ggml_compute_params * params,
  2693. ggml_tensor * dst) {
  2694. const ggml_tensor * src0 = dst->src[0];
  2695. const ggml_tensor * src1 = dst->src[1];
  2696. char * src0_d = (char *) src0->data;
  2697. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2698. const size_t src0_o = src0->nb[1];
  2699. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  2700. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2701. GGML_ASSERT(ggml_is_contiguous_1(dst));
  2702. if (src1) {
  2703. GGML_ASSERT(ggml_is_contiguous_1(src1));
  2704. GGML_ASSERT(src0->type == src1->type);
  2705. }
  2706. const int ith = params->ith;
  2707. const int nth = params->nth;
  2708. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  2709. const int nr = ggml_nrows(src0);
  2710. GGML_ASSERT(dst->ne[0] == nc);
  2711. GGML_ASSERT(ggml_nrows(dst) == nr);
  2712. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  2713. // rows per thread
  2714. const int dr = (nr + nth - 1)/nth;
  2715. // row range for this thread
  2716. const int ir0 = dr*ith;
  2717. const int ir1 = MIN(ir0 + dr, nr);
  2718. for (int i1 = ir0; i1 < ir1; i1++) {
  2719. float * src0_p = (float *) (src0_d + i1*src0_o);
  2720. float * src1_p = (float *) (src1_d + i1*src1_o);
  2721. if (!src1) {
  2722. src0_p += swapped ? nc : 0;
  2723. src1_p += swapped ? 0 : nc;
  2724. }
  2725. ggml_vec_reglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  2726. #ifndef NDEBUG
  2727. for (int k = 0; k < nc; k++) {
  2728. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2729. GGML_UNUSED(x);
  2730. assert(!isnan(x));
  2731. assert(!isinf(x));
  2732. }
  2733. #endif
  2734. }
  2735. }
  2736. static void ggml_compute_forward_reglu_f16(
  2737. const ggml_compute_params * params,
  2738. ggml_tensor * dst) {
  2739. const ggml_tensor * src0 = dst->src[0];
  2740. const ggml_tensor * src1 = dst->src[1];
  2741. char * src0_d = (char *) src0->data;
  2742. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2743. const size_t src0_o = src0->nb[1];
  2744. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  2745. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2746. GGML_ASSERT(ggml_is_contiguous_1(dst));
  2747. if (src1) {
  2748. GGML_ASSERT(ggml_is_contiguous_1(src1));
  2749. GGML_ASSERT(src0->type == src1->type);
  2750. }
  2751. const int ith = params->ith;
  2752. const int nth = params->nth;
  2753. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  2754. const int nr = ggml_nrows(src0);
  2755. GGML_ASSERT(dst->ne[0] == nc);
  2756. GGML_ASSERT(ggml_nrows(dst) == nr);
  2757. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  2758. // rows per thread
  2759. const int dr = (nr + nth - 1)/nth;
  2760. // row range for this thread
  2761. const int ir0 = dr*ith;
  2762. const int ir1 = MIN(ir0 + dr, nr);
  2763. for (int i1 = ir0; i1 < ir1; i1++) {
  2764. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  2765. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  2766. if (!src1) {
  2767. src0_p += swapped ? nc : 0;
  2768. src1_p += swapped ? 0 : nc;
  2769. }
  2770. ggml_vec_reglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  2771. #ifndef NDEBUG
  2772. for (int k = 0; k < nc; k++) {
  2773. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2774. const float v = GGML_FP16_TO_FP32(x);
  2775. GGML_UNUSED(v);
  2776. assert(!isnan(v));
  2777. assert(!isinf(v));
  2778. }
  2779. #endif
  2780. }
  2781. }
  2782. static void ggml_compute_forward_reglu(
  2783. const ggml_compute_params * params,
  2784. ggml_tensor * dst) {
  2785. const ggml_tensor * src0 = dst->src[0];
  2786. switch (src0->type) {
  2787. case GGML_TYPE_F32:
  2788. {
  2789. ggml_compute_forward_reglu_f32(params, dst);
  2790. } break;
  2791. case GGML_TYPE_F16:
  2792. {
  2793. ggml_compute_forward_reglu_f16(params, dst);
  2794. } break;
  2795. default:
  2796. {
  2797. GGML_ABORT("fatal error");
  2798. }
  2799. }
  2800. }
  2801. // ggml_compute_forward_geglu
  2802. static void ggml_compute_forward_geglu_f32(
  2803. const ggml_compute_params * params,
  2804. ggml_tensor * dst) {
  2805. const ggml_tensor * src0 = dst->src[0];
  2806. const ggml_tensor * src1 = dst->src[1];
  2807. char * src0_d = (char *) src0->data;
  2808. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2809. const size_t src0_o = src0->nb[1];
  2810. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  2811. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2812. GGML_ASSERT(ggml_is_contiguous_1(dst));
  2813. if (src1) {
  2814. GGML_ASSERT(ggml_is_contiguous_1(src1));
  2815. GGML_ASSERT(src0->type == src1->type);
  2816. }
  2817. const int ith = params->ith;
  2818. const int nth = params->nth;
  2819. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  2820. const int nr = ggml_nrows(src0);
  2821. GGML_ASSERT(dst->ne[0] == nc);
  2822. GGML_ASSERT(ggml_nrows(dst) == nr);
  2823. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  2824. // rows per thread
  2825. const int dr = (nr + nth - 1)/nth;
  2826. // row range for this thread
  2827. const int ir0 = dr*ith;
  2828. const int ir1 = MIN(ir0 + dr, nr);
  2829. for (int i1 = ir0; i1 < ir1; i1++) {
  2830. float * src0_p = (float *) (src0_d + i1*src0_o);
  2831. float * src1_p = (float *) (src1_d + i1*src1_o);
  2832. if (!src1) {
  2833. src0_p += swapped ? nc : 0;
  2834. src1_p += swapped ? 0 : nc;
  2835. }
  2836. ggml_vec_geglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  2837. #ifndef NDEBUG
  2838. for (int k = 0; k < nc; k++) {
  2839. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2840. GGML_UNUSED(x);
  2841. assert(!isnan(x));
  2842. assert(!isinf(x));
  2843. }
  2844. #endif
  2845. }
  2846. }
  2847. static void ggml_compute_forward_geglu_f16(
  2848. const ggml_compute_params * params,
  2849. ggml_tensor * dst) {
  2850. const ggml_tensor * src0 = dst->src[0];
  2851. const ggml_tensor * src1 = dst->src[1];
  2852. char * src0_d = (char *) src0->data;
  2853. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2854. const size_t src0_o = src0->nb[1];
  2855. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  2856. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2857. GGML_ASSERT(ggml_is_contiguous_1(dst));
  2858. if (src1) {
  2859. GGML_ASSERT(ggml_is_contiguous_1(src1));
  2860. GGML_ASSERT(src0->type == src1->type);
  2861. }
  2862. const int ith = params->ith;
  2863. const int nth = params->nth;
  2864. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  2865. const int nr = ggml_nrows(src0);
  2866. GGML_ASSERT(dst->ne[0] == nc);
  2867. GGML_ASSERT(ggml_nrows(dst) == nr);
  2868. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  2869. // rows per thread
  2870. const int dr = (nr + nth - 1)/nth;
  2871. // row range for this thread
  2872. const int ir0 = dr*ith;
  2873. const int ir1 = MIN(ir0 + dr, nr);
  2874. for (int i1 = ir0; i1 < ir1; i1++) {
  2875. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  2876. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  2877. if (!src1) {
  2878. src0_p += swapped ? nc : 0;
  2879. src1_p += swapped ? 0 : nc;
  2880. }
  2881. ggml_vec_geglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  2882. #ifndef NDEBUG
  2883. for (int k = 0; k < nc; k++) {
  2884. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2885. const float v = GGML_FP16_TO_FP32(x);
  2886. GGML_UNUSED(v);
  2887. assert(!isnan(v));
  2888. assert(!isinf(v));
  2889. }
  2890. #endif
  2891. }
  2892. }
  2893. static void ggml_compute_forward_geglu(
  2894. const ggml_compute_params * params,
  2895. ggml_tensor * dst) {
  2896. const ggml_tensor * src0 = dst->src[0];
  2897. switch (src0->type) {
  2898. case GGML_TYPE_F32:
  2899. {
  2900. ggml_compute_forward_geglu_f32(params, dst);
  2901. } break;
  2902. case GGML_TYPE_F16:
  2903. {
  2904. ggml_compute_forward_geglu_f16(params, dst);
  2905. } break;
  2906. default:
  2907. {
  2908. GGML_ABORT("fatal error");
  2909. }
  2910. }
  2911. }
  2912. // ggml_compute_forward_swiglu
  2913. static void ggml_compute_forward_swiglu_f32(
  2914. const ggml_compute_params * params,
  2915. ggml_tensor * dst) {
  2916. const ggml_tensor * src0 = dst->src[0];
  2917. const ggml_tensor * src1 = dst->src[1];
  2918. char * src0_d = (char *) src0->data;
  2919. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2920. const size_t src0_o = src0->nb[1];
  2921. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  2922. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2923. GGML_ASSERT(ggml_is_contiguous_1(dst));
  2924. if (src1) {
  2925. GGML_ASSERT(ggml_is_contiguous_1(src1));
  2926. GGML_ASSERT(src0->type == src1->type);
  2927. }
  2928. const int ith = params->ith;
  2929. const int nth = params->nth;
  2930. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  2931. const int nr = ggml_nrows(src0);
  2932. GGML_ASSERT(dst->ne[0] == nc);
  2933. GGML_ASSERT(ggml_nrows(dst) == nr);
  2934. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  2935. // rows per thread
  2936. const int dr = (nr + nth - 1)/nth;
  2937. // row range for this thread
  2938. const int ir0 = dr*ith;
  2939. const int ir1 = MIN(ir0 + dr, nr);
  2940. for (int i1 = ir0; i1 < ir1; i1++) {
  2941. float * src0_p = (float *) (src0_d + i1*src0_o);
  2942. float * src1_p = (float *) (src1_d + i1*src1_o);
  2943. if (!src1) {
  2944. src0_p += swapped ? nc : 0;
  2945. src1_p += swapped ? 0 : nc;
  2946. }
  2947. ggml_vec_swiglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  2948. #ifndef NDEBUG
  2949. for (int k = 0; k < nc; k++) {
  2950. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2951. GGML_UNUSED(x);
  2952. assert(!isnan(x));
  2953. assert(!isinf(x));
  2954. }
  2955. #endif
  2956. }
  2957. }
  2958. static void ggml_compute_forward_swiglu_f16(
  2959. const ggml_compute_params * params,
  2960. ggml_tensor * dst) {
  2961. const ggml_tensor * src0 = dst->src[0];
  2962. const ggml_tensor * src1 = dst->src[1];
  2963. char * src0_d = (char *) src0->data;
  2964. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2965. const size_t src0_o = src0->nb[1];
  2966. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  2967. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2968. GGML_ASSERT(ggml_is_contiguous_1(dst));
  2969. if (src1) {
  2970. GGML_ASSERT(ggml_is_contiguous_1(src1));
  2971. GGML_ASSERT(src0->type == src1->type);
  2972. }
  2973. const int ith = params->ith;
  2974. const int nth = params->nth;
  2975. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  2976. const int nr = ggml_nrows(src0);
  2977. GGML_ASSERT(dst->ne[0] == nc);
  2978. GGML_ASSERT(ggml_nrows(dst) == nr);
  2979. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  2980. // rows per thread
  2981. const int dr = (nr + nth - 1)/nth;
  2982. // row range for this thread
  2983. const int ir0 = dr*ith;
  2984. const int ir1 = MIN(ir0 + dr, nr);
  2985. for (int i1 = ir0; i1 < ir1; i1++) {
  2986. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  2987. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  2988. if (!src1) {
  2989. src0_p += swapped ? nc : 0;
  2990. src1_p += swapped ? 0 : nc;
  2991. }
  2992. ggml_vec_swiglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  2993. #ifndef NDEBUG
  2994. for (int k = 0; k < nc; k++) {
  2995. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2996. const float v = GGML_FP16_TO_FP32(x);
  2997. GGML_UNUSED(v);
  2998. assert(!isnan(v));
  2999. assert(!isinf(v));
  3000. }
  3001. #endif
  3002. }
  3003. }
  3004. static void ggml_compute_forward_swiglu(
  3005. const ggml_compute_params * params,
  3006. ggml_tensor * dst) {
  3007. const ggml_tensor * src0 = dst->src[0];
  3008. switch (src0->type) {
  3009. case GGML_TYPE_F32:
  3010. {
  3011. ggml_compute_forward_swiglu_f32(params, dst);
  3012. } break;
  3013. case GGML_TYPE_F16:
  3014. {
  3015. ggml_compute_forward_swiglu_f16(params, dst);
  3016. } break;
  3017. default:
  3018. {
  3019. GGML_ABORT("fatal error");
  3020. }
  3021. }
  3022. }
  3023. // ggml_compute_forward_swiglu_oai
  3024. static void ggml_compute_forward_swiglu_oai_f32(
  3025. const ggml_compute_params * params,
  3026. ggml_tensor * dst) {
  3027. const ggml_tensor * src0 = dst->src[0];
  3028. const ggml_tensor * src1 = dst->src[1];
  3029. char * src0_d = (char *) src0->data;
  3030. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3031. const size_t src0_o = src0->nb[1];
  3032. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3033. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3034. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3035. if (src1) {
  3036. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3037. GGML_ASSERT(src0->type == src1->type);
  3038. }
  3039. const int ith = params->ith;
  3040. const int nth = params->nth;
  3041. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3042. const int nr = ggml_nrows(src0);
  3043. GGML_ASSERT(dst->ne[0] == nc);
  3044. GGML_ASSERT(ggml_nrows(dst) == nr);
  3045. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3046. const float alpha = ggml_get_op_params_f32(dst, 2);
  3047. const float limit = ggml_get_op_params_f32(dst, 3);
  3048. // rows per thread
  3049. const int dr = (nr + nth - 1)/nth;
  3050. // row range for this thread
  3051. const int ir0 = dr*ith;
  3052. const int ir1 = MIN(ir0 + dr, nr);
  3053. for (int i1 = ir0; i1 < ir1; i1++) {
  3054. float * src0_p = (float *) (src0_d + i1*src0_o);
  3055. float * src1_p = (float *) (src1_d + i1*src1_o);
  3056. float * dst_p = (float *) ((char *) dst->data + i1*(dst->nb[1]));
  3057. if (!src1) {
  3058. src0_p += swapped ? nc : 0;
  3059. src1_p += swapped ? 0 : nc;
  3060. }
  3061. for (int k = 0; k < nc; k++) {
  3062. const float x = std::min(src0_p[k], limit);
  3063. const float y = std::clamp(src1_p[k], -limit, limit);
  3064. const float out_glu = x / (1.f + expf(alpha * (-x)));
  3065. dst_p[k] = out_glu * (y + 1.f);
  3066. }
  3067. #ifndef NDEBUG
  3068. for (int k = 0; k < nc; k++) {
  3069. const float x = dst_p[k];
  3070. GGML_UNUSED(x);
  3071. assert(!isnan(x));
  3072. assert(!isinf(x));
  3073. }
  3074. #endif
  3075. }
  3076. }
  3077. static void ggml_compute_forward_swiglu_oai(
  3078. const ggml_compute_params * params,
  3079. ggml_tensor * dst) {
  3080. const ggml_tensor * src0 = dst->src[0];
  3081. switch (src0->type) {
  3082. case GGML_TYPE_F32:
  3083. {
  3084. ggml_compute_forward_swiglu_oai_f32(params, dst);
  3085. } break;
  3086. default:
  3087. {
  3088. GGML_ABORT("fatal error");
  3089. }
  3090. }
  3091. }
  3092. // ggml_compute_forward_geglu_erf
  3093. static void ggml_compute_forward_geglu_erf_f32(
  3094. const ggml_compute_params * params,
  3095. ggml_tensor * dst) {
  3096. const ggml_tensor * src0 = dst->src[0];
  3097. const ggml_tensor * src1 = dst->src[1];
  3098. char * src0_d = (char *) src0->data;
  3099. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3100. const size_t src0_o = src0->nb[1];
  3101. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3102. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3103. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3104. if (src1) {
  3105. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3106. GGML_ASSERT(src0->type == src1->type);
  3107. }
  3108. const int ith = params->ith;
  3109. const int nth = params->nth;
  3110. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3111. const int nr = ggml_nrows(src0);
  3112. GGML_ASSERT(dst->ne[0] == nc);
  3113. GGML_ASSERT(ggml_nrows(dst) == nr);
  3114. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3115. // rows per thread
  3116. const int dr = (nr + nth - 1)/nth;
  3117. // row range for this thread
  3118. const int ir0 = dr*ith;
  3119. const int ir1 = MIN(ir0 + dr, nr);
  3120. for (int i1 = ir0; i1 < ir1; i1++) {
  3121. float * src0_p = (float *) (src0_d + i1*src0_o);
  3122. float * src1_p = (float *) (src1_d + i1*src1_o);
  3123. if (!src1) {
  3124. src0_p += swapped ? nc : 0;
  3125. src1_p += swapped ? 0 : nc;
  3126. }
  3127. ggml_vec_geglu_erf_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3128. #ifndef NDEBUG
  3129. for (int k = 0; k < nc; k++) {
  3130. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3131. GGML_UNUSED(x);
  3132. assert(!isnan(x));
  3133. assert(!isinf(x));
  3134. }
  3135. #endif
  3136. }
  3137. }
  3138. static void ggml_compute_forward_geglu_erf_f16(
  3139. const ggml_compute_params * params,
  3140. ggml_tensor * dst) {
  3141. const ggml_tensor * src0 = dst->src[0];
  3142. const ggml_tensor * src1 = dst->src[1];
  3143. char * src0_d = (char *) src0->data;
  3144. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3145. const size_t src0_o = src0->nb[1];
  3146. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3147. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3148. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3149. if (src1) {
  3150. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3151. GGML_ASSERT(src0->type == src1->type);
  3152. }
  3153. const int ith = params->ith;
  3154. const int nth = params->nth;
  3155. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3156. const int nr = ggml_nrows(src0);
  3157. GGML_ASSERT(dst->ne[0] == nc);
  3158. GGML_ASSERT(ggml_nrows(dst) == nr);
  3159. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3160. // rows per thread
  3161. const int dr = (nr + nth - 1)/nth;
  3162. // row range for this thread
  3163. const int ir0 = dr*ith;
  3164. const int ir1 = MIN(ir0 + dr, nr);
  3165. for (int i1 = ir0; i1 < ir1; i1++) {
  3166. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  3167. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  3168. if (!src1) {
  3169. src0_p += swapped ? nc : 0;
  3170. src1_p += swapped ? 0 : nc;
  3171. }
  3172. ggml_vec_geglu_erf_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3173. #ifndef NDEBUG
  3174. for (int k = 0; k < nc; k++) {
  3175. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3176. const float v = GGML_FP16_TO_FP32(x);
  3177. GGML_UNUSED(v);
  3178. assert(!isnan(v));
  3179. assert(!isinf(v));
  3180. }
  3181. #endif
  3182. }
  3183. }
  3184. static void ggml_compute_forward_geglu_erf(
  3185. const ggml_compute_params * params,
  3186. ggml_tensor * dst) {
  3187. const ggml_tensor * src0 = dst->src[0];
  3188. switch (src0->type) {
  3189. case GGML_TYPE_F32:
  3190. {
  3191. ggml_compute_forward_geglu_erf_f32(params, dst);
  3192. } break;
  3193. case GGML_TYPE_F16:
  3194. {
  3195. ggml_compute_forward_geglu_erf_f16(params, dst);
  3196. } break;
  3197. default:
  3198. {
  3199. GGML_ABORT("fatal error");
  3200. }
  3201. }
  3202. }
  3203. // ggml_compute_forward_geglu_quick
  3204. static void ggml_compute_forward_geglu_quick_f32(
  3205. const ggml_compute_params * params,
  3206. ggml_tensor * dst) {
  3207. const ggml_tensor * src0 = dst->src[0];
  3208. const ggml_tensor * src1 = dst->src[1];
  3209. char * src0_d = (char *) src0->data;
  3210. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3211. const size_t src0_o = src0->nb[1];
  3212. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3213. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3214. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3215. if (src1) {
  3216. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3217. GGML_ASSERT(src0->type == src1->type);
  3218. }
  3219. const int ith = params->ith;
  3220. const int nth = params->nth;
  3221. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3222. const int nr = ggml_nrows(src0);
  3223. GGML_ASSERT(dst->ne[0] == nc);
  3224. GGML_ASSERT(ggml_nrows(dst) == nr);
  3225. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3226. // rows per thread
  3227. const int dr = (nr + nth - 1)/nth;
  3228. // row range for this thread
  3229. const int ir0 = dr*ith;
  3230. const int ir1 = MIN(ir0 + dr, nr);
  3231. for (int i1 = ir0; i1 < ir1; i1++) {
  3232. float * src0_p = (float *) (src0_d + i1*src0_o);
  3233. float * src1_p = (float *) (src1_d + i1*src1_o);
  3234. if (!src1) {
  3235. src0_p += swapped ? nc : 0;
  3236. src1_p += swapped ? 0 : nc;
  3237. }
  3238. ggml_vec_geglu_quick_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3239. #ifndef NDEBUG
  3240. for (int k = 0; k < nc; k++) {
  3241. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3242. GGML_UNUSED(x);
  3243. assert(!isnan(x));
  3244. assert(!isinf(x));
  3245. }
  3246. #endif
  3247. }
  3248. }
  3249. static void ggml_compute_forward_geglu_quick_f16(
  3250. const ggml_compute_params * params,
  3251. ggml_tensor * dst) {
  3252. const ggml_tensor * src0 = dst->src[0];
  3253. const ggml_tensor * src1 = dst->src[1];
  3254. char * src0_d = (char *) src0->data;
  3255. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3256. const size_t src0_o = src0->nb[1];
  3257. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3258. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3259. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3260. if (src1) {
  3261. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3262. GGML_ASSERT(src0->type == src1->type);
  3263. }
  3264. const int ith = params->ith;
  3265. const int nth = params->nth;
  3266. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3267. const int nr = ggml_nrows(src0);
  3268. GGML_ASSERT(dst->ne[0] == nc);
  3269. GGML_ASSERT(ggml_nrows(dst) == nr);
  3270. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3271. // rows per thread
  3272. const int dr = (nr + nth - 1)/nth;
  3273. // row range for this thread
  3274. const int ir0 = dr*ith;
  3275. const int ir1 = MIN(ir0 + dr, nr);
  3276. for (int i1 = ir0; i1 < ir1; i1++) {
  3277. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  3278. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  3279. if (!src1) {
  3280. src0_p += swapped ? nc : 0;
  3281. src1_p += swapped ? 0 : nc;
  3282. }
  3283. ggml_vec_geglu_quick_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3284. #ifndef NDEBUG
  3285. for (int k = 0; k < nc; k++) {
  3286. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3287. const float v = GGML_FP16_TO_FP32(x);
  3288. GGML_UNUSED(v);
  3289. assert(!isnan(v));
  3290. assert(!isinf(v));
  3291. }
  3292. #endif
  3293. }
  3294. }
  3295. static void ggml_compute_forward_geglu_quick(
  3296. const ggml_compute_params * params,
  3297. ggml_tensor * dst) {
  3298. const ggml_tensor * src0 = dst->src[0];
  3299. switch (src0->type) {
  3300. case GGML_TYPE_F32:
  3301. {
  3302. ggml_compute_forward_geglu_quick_f32(params, dst);
  3303. } break;
  3304. case GGML_TYPE_F16:
  3305. {
  3306. ggml_compute_forward_geglu_quick_f16(params, dst);
  3307. } break;
  3308. default:
  3309. {
  3310. GGML_ABORT("fatal error");
  3311. }
  3312. }
  3313. }
  3314. // ggml_compute_forward_norm
  3315. static void ggml_compute_forward_norm_f32(
  3316. const ggml_compute_params * params,
  3317. ggml_tensor * dst) {
  3318. const ggml_tensor * src0 = dst->src[0];
  3319. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3320. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3321. const int ith = params->ith;
  3322. const int nth = params->nth;
  3323. GGML_TENSOR_UNARY_OP_LOCALS
  3324. float eps;
  3325. memcpy(&eps, dst->op_params, sizeof(float));
  3326. GGML_ASSERT(eps >= 0.0f);
  3327. // TODO: optimize
  3328. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3329. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3330. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3331. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3332. ggml_float sum = 0.0;
  3333. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3334. sum += (ggml_float)x[i00];
  3335. }
  3336. float mean = sum/ne00;
  3337. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3338. ggml_float sum2 = 0.0;
  3339. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3340. float v = x[i00] - mean;
  3341. y[i00] = v;
  3342. sum2 += (ggml_float)(v*v);
  3343. }
  3344. float variance = sum2/ne00;
  3345. const float scale = 1.0f/sqrtf(variance + eps);
  3346. ggml_vec_scale_f32(ne00, y, scale);
  3347. }
  3348. }
  3349. }
  3350. }
  3351. void ggml_compute_forward_norm(
  3352. const ggml_compute_params * params,
  3353. ggml_tensor * dst) {
  3354. const ggml_tensor * src0 = dst->src[0];
  3355. switch (src0->type) {
  3356. case GGML_TYPE_F32:
  3357. {
  3358. ggml_compute_forward_norm_f32(params, dst);
  3359. } break;
  3360. default:
  3361. {
  3362. GGML_ABORT("fatal error");
  3363. }
  3364. }
  3365. }
  3366. // ggml_compute_forward_group_rms_norm
  3367. static void ggml_compute_forward_rms_norm_f32(
  3368. const ggml_compute_params * params,
  3369. ggml_tensor * dst) {
  3370. const ggml_tensor * src0 = dst->src[0];
  3371. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3372. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3373. const int ith = params->ith;
  3374. const int nth = params->nth;
  3375. GGML_TENSOR_UNARY_OP_LOCALS
  3376. float eps;
  3377. memcpy(&eps, dst->op_params, sizeof(float));
  3378. GGML_ASSERT(eps >= 0.0f);
  3379. // TODO: optimize
  3380. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3381. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3382. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3383. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3384. ggml_float sum = 0.0;
  3385. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3386. sum += (ggml_float)(x[i00] * x[i00]);
  3387. }
  3388. const float mean = sum/ne00;
  3389. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3390. memcpy(y, x, ne00 * sizeof(float));
  3391. // for (int i00 = 0; i00 < ne00; i00++) {
  3392. // y[i00] = x[i00];
  3393. // }
  3394. const float scale = 1.0f/sqrtf(mean + eps);
  3395. // if you hit this, likely you got an inf somewhere earlier
  3396. assert(scale > 0.0f);
  3397. ggml_vec_scale_f32(ne00, y, scale);
  3398. }
  3399. }
  3400. }
  3401. }
  3402. void ggml_compute_forward_rms_norm(
  3403. const ggml_compute_params * params,
  3404. ggml_tensor * dst) {
  3405. const ggml_tensor * src0 = dst->src[0];
  3406. switch (src0->type) {
  3407. case GGML_TYPE_F32:
  3408. {
  3409. ggml_compute_forward_rms_norm_f32(params, dst);
  3410. } break;
  3411. default:
  3412. {
  3413. GGML_ABORT("fatal error");
  3414. }
  3415. }
  3416. }
  3417. static void ggml_compute_forward_rms_norm_back_f32(
  3418. const ggml_compute_params * params,
  3419. ggml_tensor * dst) {
  3420. const ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
  3421. const ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
  3422. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  3423. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3424. GGML_ASSERT(src1->nb[0] == sizeof(float));
  3425. const int ith = params->ith;
  3426. const int nth = params->nth;
  3427. GGML_TENSOR_BINARY_OP_LOCALS
  3428. float eps;
  3429. memcpy(&eps, dst->op_params, sizeof(float));
  3430. // TODO: optimize
  3431. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3432. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3433. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3434. // src1 is same shape as src0 => same indices
  3435. const int64_t i11 = i01;
  3436. const int64_t i12 = i02;
  3437. const int64_t i13 = i03;
  3438. const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3439. const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  3440. ggml_float sum_xx = 0.0;
  3441. ggml_float sum_xdz = 0.0;
  3442. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3443. sum_xx += (ggml_float)(x[i00] * x[i00]);
  3444. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  3445. }
  3446. //const float mean = (float)(sum_xx)/ne00;
  3447. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  3448. const float sum_eps = (float)(sum_xx) + eps*ne00;
  3449. //const float mean_xdz = (float)(sum_xdz)/ne00;
  3450. // we could cache rms from forward pass to improve performance.
  3451. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  3452. //const float rms = sqrtf(mean_eps);
  3453. const float rrms = 1.0f / sqrtf(mean_eps);
  3454. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  3455. {
  3456. // z = rms_norm(x)
  3457. //
  3458. // rms_norm(src1) =
  3459. // scale(
  3460. // src1,
  3461. // div(
  3462. // 1,
  3463. // sqrt(
  3464. // add(
  3465. // scale(
  3466. // sum(
  3467. // sqr(
  3468. // src1)),
  3469. // (1.0/N)),
  3470. // eps))));
  3471. // postorder:
  3472. // ## op args grad
  3473. // 00 param src1 grad[#00]
  3474. // 01 const 1
  3475. // 02 sqr (#00) grad[#02]
  3476. // 03 sum (#02) grad[#03]
  3477. // 04 const 1/N
  3478. // 05 scale (#03, #04) grad[#05]
  3479. // 06 const eps
  3480. // 07 add (#05, #06) grad[#07]
  3481. // 08 sqrt (#07) grad[#08]
  3482. // 09 div (#01,#08) grad[#09]
  3483. // 10 scale (#00,#09) grad[#10]
  3484. //
  3485. // backward pass, given grad[#10]
  3486. // #10: scale
  3487. // grad[#00] += scale(grad[#10],#09)
  3488. // grad[#09] += sum(mul(grad[#10],#00))
  3489. // #09: div
  3490. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  3491. // #08: sqrt
  3492. // grad[#07] += mul(grad[#08], div(0.5, #08))
  3493. // #07: add
  3494. // grad[#05] += grad[#07]
  3495. // #05: scale
  3496. // grad[#03] += scale(grad[#05],#04)
  3497. // #03: sum
  3498. // grad[#02] += repeat(grad[#03], #02)
  3499. // #02:
  3500. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  3501. //
  3502. // substitute and simplify:
  3503. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  3504. // grad[#02] = repeat(grad[#03], #02)
  3505. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  3506. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  3507. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  3508. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  3509. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  3510. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  3511. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  3512. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  3513. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  3514. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  3515. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  3516. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  3517. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  3518. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  3519. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  3520. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  3521. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  3522. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  3523. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  3524. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  3525. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  3526. // a = b*c + d*e
  3527. // a = b*c*f/f + d*e*f/f
  3528. // a = (b*c*f + d*e*f)*(1/f)
  3529. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  3530. // a = (b + d*e/c)*c
  3531. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  3532. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  3533. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  3534. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  3535. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  3536. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  3537. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  3538. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  3539. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  3540. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  3541. }
  3542. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  3543. // post-order:
  3544. // dx := x
  3545. // dx := scale(dx,-mean_xdz/mean_eps)
  3546. // dx := add(dx, dz)
  3547. // dx := scale(dx, rrms)
  3548. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3549. // dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
  3550. ggml_vec_cpy_f32 (ne00, dx, x);
  3551. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  3552. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  3553. ggml_vec_acc_f32 (ne00, dx, dz);
  3554. ggml_vec_scale_f32(ne00, dx, rrms);
  3555. }
  3556. }
  3557. }
  3558. }
  3559. void ggml_compute_forward_rms_norm_back(
  3560. const ggml_compute_params * params,
  3561. ggml_tensor * dst) {
  3562. const ggml_tensor * src0 = dst->src[0];
  3563. switch (src0->type) {
  3564. case GGML_TYPE_F32:
  3565. {
  3566. ggml_compute_forward_rms_norm_back_f32(params, dst);
  3567. } break;
  3568. default:
  3569. {
  3570. GGML_ABORT("fatal error");
  3571. }
  3572. }
  3573. }
  3574. // ggml_compute_forward_group_norm
  3575. static void ggml_compute_forward_group_norm_f32(
  3576. const ggml_compute_params * params,
  3577. ggml_tensor * dst) {
  3578. const ggml_tensor * src0 = dst->src[0];
  3579. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3580. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3581. const int ith = params->ith;
  3582. const int nth = params->nth;
  3583. GGML_TENSOR_UNARY_OP_LOCALS
  3584. // TODO: optimize
  3585. float eps;
  3586. memcpy(&eps, dst->op_params + 1, sizeof(float));
  3587. int n_channels = src0->ne[2];
  3588. int n_groups = dst->op_params[0];
  3589. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  3590. for (int i = ith; i < n_groups; i += nth) {
  3591. int start = i * n_channels_per_group;
  3592. int end = start + n_channels_per_group;
  3593. if (end > n_channels) {
  3594. end = n_channels;
  3595. }
  3596. int step = end - start;
  3597. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3598. ggml_float sum = 0.0;
  3599. for (int64_t i02 = start; i02 < end; i02++) {
  3600. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3601. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  3602. ggml_float sumr = 0.0;
  3603. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3604. sumr += (ggml_float)x[i00];
  3605. }
  3606. sum += sumr;
  3607. }
  3608. }
  3609. const float mean = sum / (ne00 * ne01 * step);
  3610. ggml_float sum2 = 0.0;
  3611. for (int64_t i02 = start; i02 < end; i02++) {
  3612. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3613. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  3614. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  3615. ggml_float sumr = 0.0;
  3616. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3617. float v = x[i00] - mean;
  3618. y[i00] = v;
  3619. sumr += (ggml_float)(v * v);
  3620. }
  3621. sum2 += sumr;
  3622. }
  3623. }
  3624. const float variance = sum2 / (ne00 * ne01 * step);
  3625. const float scale = 1.0f / sqrtf(variance + eps);
  3626. for (int64_t i02 = start; i02 < end; i02++) {
  3627. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3628. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  3629. ggml_vec_scale_f32(ne00, y, scale);
  3630. }
  3631. }
  3632. }
  3633. }
  3634. }
  3635. void ggml_compute_forward_group_norm(
  3636. const ggml_compute_params * params,
  3637. ggml_tensor * dst) {
  3638. const ggml_tensor * src0 = dst->src[0];
  3639. switch (src0->type) {
  3640. case GGML_TYPE_F32:
  3641. {
  3642. ggml_compute_forward_group_norm_f32(params, dst);
  3643. } break;
  3644. default:
  3645. {
  3646. GGML_ABORT("fatal error");
  3647. }
  3648. }
  3649. }
  3650. // ggml_compute_forward_l2_norm
  3651. static void ggml_compute_forward_l2_norm_f32(
  3652. const ggml_compute_params * params,
  3653. ggml_tensor * dst) {
  3654. const ggml_tensor * src0 = dst->src[0];
  3655. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3656. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3657. const int ith = params->ith;
  3658. const int nth = params->nth;
  3659. GGML_TENSOR_UNARY_OP_LOCALS
  3660. float eps;
  3661. memcpy(&eps, dst->op_params, sizeof(float));
  3662. GGML_ASSERT(eps >= 0.0f);
  3663. // TODO: optimize
  3664. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3665. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3666. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3667. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3668. ggml_float sum = 0.0;
  3669. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3670. sum += (ggml_float)(x[i00] * x[i00]);
  3671. }
  3672. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3673. memcpy(y, x, ne00 * sizeof(float));
  3674. const float scale = 1.0f/fmaxf(sqrtf(sum), eps);
  3675. ggml_vec_scale_f32(ne00, y, scale);
  3676. }
  3677. }
  3678. }
  3679. }
  3680. void ggml_compute_forward_l2_norm(
  3681. const ggml_compute_params * params,
  3682. ggml_tensor * dst) {
  3683. const ggml_tensor * src0 = dst->src[0];
  3684. switch (src0->type) {
  3685. case GGML_TYPE_F32:
  3686. {
  3687. ggml_compute_forward_l2_norm_f32(params, dst);
  3688. } break;
  3689. default:
  3690. {
  3691. GGML_ABORT("fatal error");
  3692. }
  3693. }
  3694. }
  3695. // ggml_compute_forward_out_prod
  3696. static void ggml_compute_forward_out_prod_f32(
  3697. const ggml_compute_params * params,
  3698. ggml_tensor * dst) {
  3699. const ggml_tensor * src0 = dst->src[0];
  3700. const ggml_tensor * src1 = dst->src[1];
  3701. GGML_TENSOR_BINARY_OP_LOCALS
  3702. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  3703. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  3704. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3705. const int ith = params->ith;
  3706. const int nth = params->nth;
  3707. GGML_ASSERT(ne0 == ne00);
  3708. GGML_ASSERT(ne1 == ne10);
  3709. GGML_ASSERT(ne2 == ne12);
  3710. GGML_ASSERT(ne3 == ne13);
  3711. GGML_ASSERT(ne2 % ne02 == 0);
  3712. GGML_ASSERT(ne3 % ne03 == 0);
  3713. // we don't support permuted src0 or src1
  3714. GGML_ASSERT(nb00 == sizeof(float));
  3715. // dst cannot be transposed or permuted
  3716. GGML_ASSERT(nb0 == sizeof(float));
  3717. // GGML_ASSERT(nb0 <= nb1);
  3718. // GGML_ASSERT(nb1 <= nb2);
  3719. // GGML_ASSERT(nb2 <= nb3);
  3720. // nb01 >= nb00 - src0 is not transposed
  3721. // compute by src0 rows
  3722. if (ith == 0) {
  3723. ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
  3724. }
  3725. ggml_barrier(params->threadpool);
  3726. // dst[:,:,:,:] = 0
  3727. // for i2,i3:
  3728. // for i1:
  3729. // for i01:
  3730. // for i0:
  3731. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  3732. // parallelize by last three dimensions
  3733. // total rows in dst
  3734. const int64_t nr = ne1*ne2*ne3;
  3735. // rows per thread
  3736. const int64_t dr = (nr + nth - 1)/nth;
  3737. // row range for this thread
  3738. const int64_t ir0 = dr*ith;
  3739. const int64_t ir1 = MIN(ir0 + dr, nr);
  3740. // block-tiling attempt
  3741. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  3742. const int64_t blck_1 = 16;
  3743. // dps == dst per src0, used for group query attention
  3744. const int64_t dps2 = ne2 / ne02;
  3745. const int64_t dps3 = ne3 / ne03;
  3746. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  3747. const int64_t bir1 = MIN(bir + blck_1, ir1);
  3748. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  3749. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  3750. for (int64_t ir = bir; ir < bir1; ++ir) {
  3751. // dst indices
  3752. const int64_t i3 = ir/(ne2*ne1);
  3753. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  3754. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3755. const int64_t i02 = i2 / dps2;
  3756. const int64_t i03 = i3 / dps3;
  3757. //const int64_t i10 = i1;
  3758. const int64_t i12 = i2;
  3759. const int64_t i13 = i3;
  3760. #if GGML_VEC_MAD_UNROLL > 2
  3761. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  3762. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  3763. const int64_t i11 = i01;
  3764. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  3765. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  3766. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3767. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  3768. }
  3769. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  3770. const int64_t i11 = i01;
  3771. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  3772. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  3773. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3774. ggml_vec_mad_f32(ne0, d, s0, *s1);
  3775. }
  3776. #else
  3777. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  3778. const int64_t i11 = i01;
  3779. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  3780. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  3781. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3782. ggml_vec_mad_f32(ne0, d, s0, *s1);
  3783. }
  3784. #endif
  3785. }
  3786. }
  3787. }
  3788. }
  3789. static void ggml_compute_forward_out_prod_q_f32(
  3790. const ggml_compute_params * params,
  3791. ggml_tensor * dst) {
  3792. const ggml_tensor * src0 = dst->src[0];
  3793. const ggml_tensor * src1 = dst->src[1];
  3794. GGML_TENSOR_BINARY_OP_LOCALS;
  3795. const int ith = params->ith;
  3796. const int nth = params->nth;
  3797. const ggml_type type = src0->type;
  3798. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  3799. GGML_ASSERT(ne02 == ne12);
  3800. GGML_ASSERT(ne03 == ne13);
  3801. GGML_ASSERT(ne2 == ne12);
  3802. GGML_ASSERT(ne3 == ne13);
  3803. // we don't support permuted src0 dim0
  3804. GGML_ASSERT(nb00 == ggml_type_size(type));
  3805. // dst dim0 cannot be transposed or permuted
  3806. GGML_ASSERT(nb0 == sizeof(float));
  3807. // GGML_ASSERT(nb0 <= nb1);
  3808. // GGML_ASSERT(nb1 <= nb2);
  3809. // GGML_ASSERT(nb2 <= nb3);
  3810. GGML_ASSERT(ne0 == ne00);
  3811. GGML_ASSERT(ne1 == ne10);
  3812. GGML_ASSERT(ne2 == ne02);
  3813. GGML_ASSERT(ne3 == ne03);
  3814. // nb01 >= nb00 - src0 is not transposed
  3815. // compute by src0 rows
  3816. if (ith == 0) {
  3817. ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
  3818. }
  3819. ggml_barrier(params->threadpool);
  3820. // parallelize by last three dimensions
  3821. // total rows in dst
  3822. const int64_t nr = ne1*ne2*ne3;
  3823. // rows per thread
  3824. const int64_t dr = (nr + nth - 1)/nth;
  3825. // row range for this thread
  3826. const int64_t ir0 = dr*ith;
  3827. const int64_t ir1 = MIN(ir0 + dr, nr);
  3828. // dst[:,:,:,:] = 0
  3829. // for i2,i3:
  3830. // for i1:
  3831. // for i01:
  3832. // for i0:
  3833. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  3834. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  3835. for (int64_t ir = ir0; ir < ir1; ++ir) {
  3836. // dst indices
  3837. const int64_t i3 = ir/(ne2*ne1);
  3838. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  3839. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3840. const int64_t i02 = i2;
  3841. const int64_t i03 = i3;
  3842. //const int64_t i10 = i1;
  3843. const int64_t i12 = i2;
  3844. const int64_t i13 = i3;
  3845. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  3846. const int64_t i11 = i01;
  3847. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  3848. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  3849. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3850. dequantize_row_q(s0, wdata, ne0);
  3851. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  3852. }
  3853. }
  3854. }
  3855. void ggml_compute_forward_out_prod(
  3856. const ggml_compute_params * params,
  3857. ggml_tensor * dst) {
  3858. const ggml_tensor * src0 = dst->src[0];
  3859. switch (src0->type) {
  3860. case GGML_TYPE_Q4_0:
  3861. case GGML_TYPE_Q4_1:
  3862. case GGML_TYPE_Q5_0:
  3863. case GGML_TYPE_Q5_1:
  3864. case GGML_TYPE_Q8_0:
  3865. case GGML_TYPE_MXFP4:
  3866. case GGML_TYPE_Q2_K:
  3867. case GGML_TYPE_Q3_K:
  3868. case GGML_TYPE_Q4_K:
  3869. case GGML_TYPE_Q5_K:
  3870. case GGML_TYPE_Q6_K:
  3871. case GGML_TYPE_TQ1_0:
  3872. case GGML_TYPE_TQ2_0:
  3873. case GGML_TYPE_IQ2_XXS:
  3874. case GGML_TYPE_IQ2_XS:
  3875. case GGML_TYPE_IQ3_XXS:
  3876. case GGML_TYPE_IQ1_S:
  3877. case GGML_TYPE_IQ1_M:
  3878. case GGML_TYPE_IQ4_NL:
  3879. case GGML_TYPE_IQ4_XS:
  3880. case GGML_TYPE_IQ3_S:
  3881. case GGML_TYPE_IQ2_S:
  3882. {
  3883. ggml_compute_forward_out_prod_q_f32(params, dst);
  3884. } break;
  3885. case GGML_TYPE_F16:
  3886. {
  3887. GGML_ABORT("fatal error"); // todo
  3888. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  3889. }
  3890. case GGML_TYPE_F32:
  3891. {
  3892. ggml_compute_forward_out_prod_f32(params, dst);
  3893. } break;
  3894. default:
  3895. {
  3896. GGML_ABORT("fatal error");
  3897. }
  3898. }
  3899. }
  3900. // ggml_compute_forward_scale
  3901. static void ggml_compute_forward_scale_f32(
  3902. const ggml_compute_params * params,
  3903. ggml_tensor * dst) {
  3904. const ggml_tensor * src0 = dst->src[0];
  3905. GGML_ASSERT(ggml_is_contiguous(src0));
  3906. GGML_ASSERT(ggml_is_contiguous(dst));
  3907. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3908. float s; // scale factor
  3909. float b; // bias
  3910. memcpy(&s, (float *) dst->op_params + 0, sizeof(float));
  3911. memcpy(&b, (float *) dst->op_params + 1, sizeof(float));
  3912. const int ith = params->ith;
  3913. const int nth = params->nth;
  3914. const int nc = src0->ne[0];
  3915. const int nr = ggml_nrows(src0);
  3916. // rows per thread
  3917. const int dr = (nr + nth - 1)/nth;
  3918. // row range for this thread
  3919. const int ir0 = dr*ith;
  3920. const int ir1 = MIN(ir0 + dr, nr);
  3921. const size_t nb01 = src0->nb[1];
  3922. const size_t nb1 = dst->nb[1];
  3923. if (b == 0.0f) {
  3924. for (int i1 = ir0; i1 < ir1; i1++) {
  3925. if (dst->data != src0->data) {
  3926. // src0 is same shape as dst => same indices
  3927. // TODO: add x parameter to ggml_vec_scale_f32 and remove this memcpy
  3928. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  3929. }
  3930. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), s);
  3931. }
  3932. } else {
  3933. for (int i1 = ir0; i1 < ir1; i1++) {
  3934. ggml_vec_mad1_f32(nc,
  3935. (float *) ((char *) dst->data + i1*nb1),
  3936. (float *) ((char *) src0->data + i1*nb1),
  3937. s, b);
  3938. }
  3939. }
  3940. }
  3941. void ggml_compute_forward_scale(
  3942. const ggml_compute_params * params,
  3943. ggml_tensor * dst) {
  3944. const ggml_tensor * src0 = dst->src[0];
  3945. switch (src0->type) {
  3946. case GGML_TYPE_F32:
  3947. {
  3948. ggml_compute_forward_scale_f32(params, dst);
  3949. } break;
  3950. default:
  3951. {
  3952. GGML_ABORT("fatal error");
  3953. }
  3954. }
  3955. }
  3956. // ggml_compute_forward_set
  3957. static void ggml_compute_forward_set_f32(
  3958. const ggml_compute_params * params,
  3959. ggml_tensor * dst) {
  3960. const ggml_tensor * src0 = dst->src[0];
  3961. const ggml_tensor * src1 = dst->src[1];
  3962. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3963. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  3964. // view src0 and dst with these strides and data offset inbytes during set
  3965. // nb0 is implicitly element_size because src0 and dst are contiguous
  3966. size_t nb1 = ((int32_t *) dst->op_params)[0];
  3967. size_t nb2 = ((int32_t *) dst->op_params)[1];
  3968. size_t nb3 = ((int32_t *) dst->op_params)[2];
  3969. size_t offset = ((int32_t *) dst->op_params)[3];
  3970. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  3971. if (!inplace) {
  3972. if (params->ith == 0) {
  3973. // memcpy needs to be synchronized across threads to avoid race conditions.
  3974. // => do it in INIT phase
  3975. memcpy(
  3976. ((char *) dst->data),
  3977. ((char *) src0->data),
  3978. ggml_nbytes(dst));
  3979. }
  3980. ggml_barrier(params->threadpool);
  3981. }
  3982. const int ith = params->ith;
  3983. const int nth = params->nth;
  3984. const int nr = ggml_nrows(src1);
  3985. const int nc = src1->ne[0];
  3986. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  3987. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  3988. // src0 and dst as viewed during set
  3989. const size_t nb0 = ggml_element_size(src0);
  3990. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  3991. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  3992. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  3993. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  3994. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  3995. GGML_ASSERT(nb10 == sizeof(float));
  3996. // rows per thread
  3997. const int dr = (nr + nth - 1)/nth;
  3998. // row range for this thread
  3999. const int ir0 = dr*ith;
  4000. const int ir1 = MIN(ir0 + dr, nr);
  4001. for (int ir = ir0; ir < ir1; ++ir) {
  4002. // src0 and dst are viewed with shape of src1 and offset
  4003. // => same indices
  4004. const int i3 = ir/(ne12*ne11);
  4005. const int i2 = (ir - i3*ne12*ne11)/ne11;
  4006. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  4007. ggml_vec_cpy_f32(nc,
  4008. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  4009. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  4010. }
  4011. }
  4012. static void ggml_compute_forward_set_i32(
  4013. const ggml_compute_params * params,
  4014. ggml_tensor * dst) {
  4015. const ggml_tensor * src0 = dst->src[0];
  4016. const ggml_tensor * src1 = dst->src[1];
  4017. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4018. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4019. // view src0 and dst with these strides and data offset inbytes during set
  4020. // nb0 is implicitly element_size because src0 and dst are contiguous
  4021. size_t nb1 = ((int32_t *) dst->op_params)[0];
  4022. size_t nb2 = ((int32_t *) dst->op_params)[1];
  4023. size_t nb3 = ((int32_t *) dst->op_params)[2];
  4024. size_t offset = ((int32_t *) dst->op_params)[3];
  4025. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  4026. if (!inplace) {
  4027. if (params->ith == 0) {
  4028. // memcpy needs to be synchronized across threads to avoid race conditions.
  4029. // => do it in INIT phase
  4030. memcpy(
  4031. ((char *) dst->data),
  4032. ((char *) src0->data),
  4033. ggml_nbytes(dst));
  4034. }
  4035. ggml_barrier(params->threadpool);
  4036. }
  4037. const int ith = params->ith;
  4038. const int nth = params->nth;
  4039. const int nr = ggml_nrows(src1);
  4040. const int nc = src1->ne[0];
  4041. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  4042. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  4043. // src0 and dst as viewed during set
  4044. const size_t nb0 = ggml_element_size(src0);
  4045. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  4046. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  4047. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  4048. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  4049. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  4050. GGML_ASSERT(nb10 == sizeof(int32_t));
  4051. // rows per thread
  4052. const int dr = (nr + nth - 1)/nth;
  4053. // row range for this thread
  4054. const int ir0 = dr*ith;
  4055. const int ir1 = MIN(ir0 + dr, nr);
  4056. for (int ir = ir0; ir < ir1; ++ir) {
  4057. // src0 and dst are viewed with shape of src1 and offset
  4058. // => same indices
  4059. const int i3 = ir/(ne12*ne11);
  4060. const int i2 = (ir - i3*ne12*ne11)/ne11;
  4061. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  4062. ggml_vec_cpy_i32(nc,
  4063. (int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  4064. (int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  4065. }
  4066. }
  4067. void ggml_compute_forward_set(
  4068. const ggml_compute_params * params,
  4069. ggml_tensor * dst) {
  4070. const ggml_tensor * src0 = dst->src[0];
  4071. switch (src0->type) {
  4072. case GGML_TYPE_F32:
  4073. {
  4074. ggml_compute_forward_set_f32(params, dst);
  4075. } break;
  4076. case GGML_TYPE_I32:
  4077. {
  4078. ggml_compute_forward_set_i32(params, dst);
  4079. } break;
  4080. case GGML_TYPE_F16:
  4081. case GGML_TYPE_BF16:
  4082. case GGML_TYPE_Q4_0:
  4083. case GGML_TYPE_Q4_1:
  4084. case GGML_TYPE_Q5_0:
  4085. case GGML_TYPE_Q5_1:
  4086. case GGML_TYPE_Q8_0:
  4087. case GGML_TYPE_Q8_1:
  4088. case GGML_TYPE_MXFP4:
  4089. case GGML_TYPE_Q2_K:
  4090. case GGML_TYPE_Q3_K:
  4091. case GGML_TYPE_Q4_K:
  4092. case GGML_TYPE_Q5_K:
  4093. case GGML_TYPE_Q6_K:
  4094. case GGML_TYPE_TQ1_0:
  4095. case GGML_TYPE_TQ2_0:
  4096. case GGML_TYPE_IQ2_XXS:
  4097. case GGML_TYPE_IQ2_XS:
  4098. case GGML_TYPE_IQ3_XXS:
  4099. case GGML_TYPE_IQ1_S:
  4100. case GGML_TYPE_IQ1_M:
  4101. case GGML_TYPE_IQ4_NL:
  4102. case GGML_TYPE_IQ4_XS:
  4103. case GGML_TYPE_IQ3_S:
  4104. case GGML_TYPE_IQ2_S:
  4105. default:
  4106. {
  4107. GGML_ABORT("fatal error");
  4108. }
  4109. }
  4110. }
  4111. // ggml_compute_forward_cpy
  4112. void ggml_compute_forward_cpy(
  4113. const ggml_compute_params * params,
  4114. ggml_tensor * dst) {
  4115. ggml_compute_forward_dup(params, dst);
  4116. }
  4117. // ggml_compute_forward_cont
  4118. void ggml_compute_forward_cont(
  4119. const ggml_compute_params * params,
  4120. ggml_tensor * dst) {
  4121. ggml_compute_forward_dup(params, dst);
  4122. }
  4123. // ggml_compute_forward_reshape
  4124. void ggml_compute_forward_reshape(
  4125. const ggml_compute_params * params,
  4126. ggml_tensor * dst) {
  4127. // NOP
  4128. GGML_UNUSED(params);
  4129. GGML_UNUSED(dst);
  4130. }
  4131. // ggml_compute_forward_view
  4132. void ggml_compute_forward_view(
  4133. const ggml_compute_params * params,
  4134. ggml_tensor * dst) {
  4135. // NOP
  4136. GGML_UNUSED(params);
  4137. GGML_UNUSED(dst);
  4138. }
  4139. // ggml_compute_forward_permute
  4140. void ggml_compute_forward_permute(
  4141. const ggml_compute_params * params,
  4142. ggml_tensor * dst) {
  4143. // NOP
  4144. GGML_UNUSED(params);
  4145. GGML_UNUSED(dst);
  4146. }
  4147. // ggml_compute_forward_transpose
  4148. void ggml_compute_forward_transpose(
  4149. const ggml_compute_params * params,
  4150. ggml_tensor * dst) {
  4151. // NOP
  4152. GGML_UNUSED(params);
  4153. GGML_UNUSED(dst);
  4154. }
  4155. // ggml_compute_forward_get_rows
  4156. static void ggml_compute_forward_get_rows_q(
  4157. const ggml_compute_params * params,
  4158. ggml_tensor * dst) {
  4159. const ggml_tensor * src0 = dst->src[0];
  4160. const ggml_tensor * src1 = dst->src[1];
  4161. GGML_TENSOR_BINARY_OP_LOCALS
  4162. const int64_t nc = ne00;
  4163. const int64_t nr = ggml_nelements(src1);
  4164. const ggml_type type = src0->type;
  4165. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  4166. assert(ne0 == nc);
  4167. assert(ne02 == ne11);
  4168. assert(nb00 == ggml_type_size(type));
  4169. assert(ggml_nrows(dst) == nr);
  4170. const int ith = params->ith;
  4171. const int nth = params->nth;
  4172. // rows per thread
  4173. const int dr = (nr + nth - 1)/nth;
  4174. // row range for this thread
  4175. const int ir0 = dr*ith;
  4176. const int ir1 = MIN(ir0 + dr, nr);
  4177. for (int64_t i = ir0; i < ir1; ++i) {
  4178. const int64_t i12 = i/(ne11*ne10);
  4179. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4180. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4181. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4182. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4183. dequantize_row_q(
  4184. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  4185. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  4186. }
  4187. }
  4188. static void ggml_compute_forward_get_rows_f16(
  4189. const ggml_compute_params * params,
  4190. ggml_tensor * dst) {
  4191. const ggml_tensor * src0 = dst->src[0];
  4192. const ggml_tensor * src1 = dst->src[1];
  4193. GGML_TENSOR_BINARY_OP_LOCALS
  4194. const int64_t nc = ne00;
  4195. const int64_t nr = ggml_nelements(src1);
  4196. assert(ne0 == nc);
  4197. assert(ne02 == ne11);
  4198. assert(nb00 == sizeof(ggml_fp16_t));
  4199. assert(ggml_nrows(dst) == nr);
  4200. const int ith = params->ith;
  4201. const int nth = params->nth;
  4202. // rows per thread
  4203. const int dr = (nr + nth - 1)/nth;
  4204. // row range for this thread
  4205. const int ir0 = dr*ith;
  4206. const int ir1 = MIN(ir0 + dr, nr);
  4207. for (int64_t i = ir0; i < ir1; ++i) {
  4208. const int64_t i12 = i/(ne11*ne10);
  4209. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4210. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4211. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4212. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4213. ggml_cpu_fp16_to_fp32(
  4214. (const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  4215. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  4216. }
  4217. }
  4218. static void ggml_compute_forward_get_rows_bf16(
  4219. const ggml_compute_params * params,
  4220. ggml_tensor * dst) {
  4221. const ggml_tensor * src0 = dst->src[0];
  4222. const ggml_tensor * src1 = dst->src[1];
  4223. GGML_TENSOR_BINARY_OP_LOCALS
  4224. const int64_t nc = ne00;
  4225. const int64_t nr = ggml_nelements(src1);
  4226. assert(ne0 == nc);
  4227. assert(ne02 == ne11);
  4228. assert(nb00 == sizeof(ggml_bf16_t));
  4229. assert(ggml_nrows(dst) == nr);
  4230. const int ith = params->ith;
  4231. const int nth = params->nth;
  4232. // rows per thread
  4233. const int dr = (nr + nth - 1)/nth;
  4234. // row range for this thread
  4235. const int ir0 = dr*ith;
  4236. const int ir1 = MIN(ir0 + dr, nr);
  4237. for (int64_t i = ir0; i < ir1; ++i) {
  4238. const int64_t i12 = i/(ne11*ne10);
  4239. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4240. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4241. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4242. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4243. ggml_cpu_bf16_to_fp32(
  4244. (const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  4245. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  4246. }
  4247. }
  4248. static void ggml_compute_forward_get_rows_f32(
  4249. const ggml_compute_params * params,
  4250. ggml_tensor * dst) {
  4251. const ggml_tensor * src0 = dst->src[0];
  4252. const ggml_tensor * src1 = dst->src[1];
  4253. GGML_TENSOR_BINARY_OP_LOCALS
  4254. const int64_t nc = ne00;
  4255. const int64_t nr = ggml_nelements(src1);
  4256. assert(ne0 == nc);
  4257. assert(ne02 == ne11);
  4258. assert(nb00 == sizeof(float));
  4259. assert(ggml_nrows(dst) == nr);
  4260. const int ith = params->ith;
  4261. const int nth = params->nth;
  4262. // rows per thread
  4263. const int dr = (nr + nth - 1)/nth;
  4264. // row range for this thread
  4265. const int ir0 = dr*ith;
  4266. const int ir1 = MIN(ir0 + dr, nr);
  4267. for (int64_t i = ir0; i < ir1; ++i) {
  4268. const int64_t i12 = i/(ne11*ne10);
  4269. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4270. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4271. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4272. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4273. ggml_vec_cpy_f32(nc,
  4274. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  4275. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  4276. }
  4277. }
  4278. void ggml_compute_forward_get_rows(
  4279. const ggml_compute_params * params,
  4280. ggml_tensor * dst) {
  4281. const ggml_tensor * src0 = dst->src[0];
  4282. switch (src0->type) {
  4283. case GGML_TYPE_Q4_0:
  4284. case GGML_TYPE_Q4_1:
  4285. case GGML_TYPE_Q5_0:
  4286. case GGML_TYPE_Q5_1:
  4287. case GGML_TYPE_Q8_0:
  4288. case GGML_TYPE_Q8_1:
  4289. case GGML_TYPE_MXFP4:
  4290. case GGML_TYPE_Q2_K:
  4291. case GGML_TYPE_Q3_K:
  4292. case GGML_TYPE_Q4_K:
  4293. case GGML_TYPE_Q5_K:
  4294. case GGML_TYPE_Q6_K:
  4295. case GGML_TYPE_TQ1_0:
  4296. case GGML_TYPE_TQ2_0:
  4297. case GGML_TYPE_IQ2_XXS:
  4298. case GGML_TYPE_IQ2_XS:
  4299. case GGML_TYPE_IQ3_XXS:
  4300. case GGML_TYPE_IQ1_S:
  4301. case GGML_TYPE_IQ1_M:
  4302. case GGML_TYPE_IQ4_NL:
  4303. case GGML_TYPE_IQ4_XS:
  4304. case GGML_TYPE_IQ3_S:
  4305. case GGML_TYPE_IQ2_S:
  4306. {
  4307. ggml_compute_forward_get_rows_q(params, dst);
  4308. } break;
  4309. case GGML_TYPE_F16:
  4310. {
  4311. ggml_compute_forward_get_rows_f16(params, dst);
  4312. } break;
  4313. case GGML_TYPE_BF16:
  4314. {
  4315. ggml_compute_forward_get_rows_bf16(params, dst);
  4316. } break;
  4317. case GGML_TYPE_F32:
  4318. case GGML_TYPE_I32:
  4319. {
  4320. ggml_compute_forward_get_rows_f32(params, dst);
  4321. } break;
  4322. default:
  4323. {
  4324. GGML_ABORT("fatal error");
  4325. }
  4326. }
  4327. //static bool first = true;
  4328. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  4329. //if (first) {
  4330. // first = false;
  4331. //} else {
  4332. // for (int k = 0; k < dst->ne[1]; ++k) {
  4333. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  4334. // for (int i = 0; i < 16; ++i) {
  4335. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  4336. // }
  4337. // printf("\n");
  4338. // }
  4339. // printf("\n");
  4340. // }
  4341. // printf("\n");
  4342. // exit(0);
  4343. //}
  4344. }
  4345. static void ggml_compute_forward_set_rows_f32(
  4346. const ggml_compute_params * params,
  4347. ggml_tensor * dst) {
  4348. const ggml_tensor * src0 = dst->src[0];
  4349. const ggml_tensor * src1 = dst->src[1];
  4350. GGML_TENSOR_BINARY_OP_LOCALS
  4351. const int64_t nc = ne00;
  4352. const int64_t nr = ne01;
  4353. assert(ne0 == nc);
  4354. assert(ne2 == ne02);
  4355. assert(ne3 == ne03);
  4356. assert(src0->type == GGML_TYPE_F32);
  4357. assert(ne02 % ne11 == 0);
  4358. assert(ne03 % ne12 == 0);
  4359. const int ith = params->ith;
  4360. const int nth = params->nth;
  4361. // rows per thread
  4362. const int64_t dr = (nr + nth - 1)/nth;
  4363. // row range for this thread
  4364. const int64_t ir0 = dr*ith;
  4365. const int64_t ir1 = std::min(ir0 + dr, nr);
  4366. ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
  4367. for (int64_t i03 = 0; i03 < ne03; ++i03) {
  4368. for (int64_t i02 = 0; i02 < ne02; ++i02) {
  4369. for (int64_t i = ir0; i < ir1; ++i) {
  4370. const int64_t i12 = i03%ne12;
  4371. const int64_t i11 = i02%ne11;
  4372. const int64_t i10 = i;
  4373. const int64_t i1 = *(int64_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4374. GGML_ASSERT(i1 >= 0 && i1 < ne1);
  4375. from_float(
  4376. (const float *) ((char *) src0->data + i*nb01 + i02*nb02 + i03*nb03),
  4377. ((char *) dst->data + i1*nb1 + i02*nb2 + i03*nb3), nc);
  4378. }
  4379. }
  4380. }
  4381. }
  4382. void ggml_compute_forward_set_rows(
  4383. const ggml_compute_params * params,
  4384. ggml_tensor * dst) {
  4385. const ggml_tensor * src0 = dst->src[0];
  4386. switch (src0->type) {
  4387. case GGML_TYPE_F32:
  4388. {
  4389. ggml_compute_forward_set_rows_f32(params, dst);
  4390. } break;
  4391. default:
  4392. {
  4393. GGML_ABORT("src0->type = %d (%s) not supported", src0->type, ggml_type_name(src0->type));
  4394. }
  4395. }
  4396. }
  4397. // ggml_compute_forward_get_rows_back
  4398. static void ggml_compute_forward_get_rows_back_f32_f16(
  4399. const ggml_compute_params * params,
  4400. ggml_tensor * dst) {
  4401. const ggml_tensor * src0 = dst->src[0];
  4402. const ggml_tensor * src1 = dst->src[1];
  4403. if (params->ith != 0) {
  4404. return;
  4405. }
  4406. GGML_ASSERT(ggml_is_contiguous(dst));
  4407. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  4408. memset(dst->data, 0, ggml_nbytes(dst));
  4409. const int nc = src0->ne[0];
  4410. const int nr = ggml_nelements(src1);
  4411. GGML_ASSERT( dst->ne[0] == nc);
  4412. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  4413. for (int i = 0; i < nr; ++i) {
  4414. const int r = ((int32_t *) src1->data)[i];
  4415. for (int j = 0; j < nc; ++j) {
  4416. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  4417. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_CPU_FP16_TO_FP32(v);
  4418. }
  4419. }
  4420. }
  4421. static void ggml_compute_forward_get_rows_back_f32(
  4422. const ggml_compute_params * params,
  4423. ggml_tensor * dst) {
  4424. const ggml_tensor * src0 = dst->src[0];
  4425. const ggml_tensor * src1 = dst->src[1];
  4426. if (params->ith != 0) {
  4427. return;
  4428. }
  4429. GGML_ASSERT(ggml_is_contiguous(dst));
  4430. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  4431. memset(dst->data, 0, ggml_nbytes(dst));
  4432. const int nc = src0->ne[0];
  4433. const int nr = ggml_nelements(src1);
  4434. GGML_ASSERT( dst->ne[0] == nc);
  4435. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4436. for (int i = 0; i < nr; ++i) {
  4437. const int r = ((int32_t *) src1->data)[i];
  4438. ggml_vec_add_f32(nc,
  4439. (float *) ((char *) dst->data + r*dst->nb[1]),
  4440. (float *) ((char *) dst->data + r*dst->nb[1]),
  4441. (float *) ((char *) src0->data + i*src0->nb[1]));
  4442. }
  4443. }
  4444. void ggml_compute_forward_get_rows_back(
  4445. const ggml_compute_params * params,
  4446. ggml_tensor * dst) {
  4447. const ggml_tensor * src0 = dst->src[0];
  4448. switch (src0->type) {
  4449. case GGML_TYPE_F16:
  4450. {
  4451. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  4452. } break;
  4453. case GGML_TYPE_F32:
  4454. {
  4455. ggml_compute_forward_get_rows_back_f32(params, dst);
  4456. } break;
  4457. default:
  4458. {
  4459. GGML_ABORT("fatal error");
  4460. }
  4461. }
  4462. //static bool first = true;
  4463. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  4464. //if (first) {
  4465. // first = false;
  4466. //} else {
  4467. // for (int k = 0; k < dst->ne[1]; ++k) {
  4468. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  4469. // for (int i = 0; i < 16; ++i) {
  4470. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  4471. // }
  4472. // printf("\n");
  4473. // }
  4474. // printf("\n");
  4475. // }
  4476. // printf("\n");
  4477. // exit(0);
  4478. //}
  4479. }
  4480. // ggml_compute_forward_diag
  4481. static void ggml_compute_forward_diag_f32(
  4482. const ggml_compute_params * params,
  4483. ggml_tensor * dst) {
  4484. const ggml_tensor * src0 = dst->src[0];
  4485. if (params->ith != 0) {
  4486. return;
  4487. }
  4488. // TODO: handle transposed/permuted matrices
  4489. GGML_TENSOR_UNARY_OP_LOCALS
  4490. GGML_ASSERT(ne00 == ne0);
  4491. GGML_ASSERT(ne00 == ne1);
  4492. GGML_ASSERT(ne01 == 1);
  4493. GGML_ASSERT(ne02 == ne2);
  4494. GGML_ASSERT(ne03 == ne3);
  4495. GGML_ASSERT(nb00 == sizeof(float));
  4496. GGML_ASSERT(nb0 == sizeof(float));
  4497. for (int i3 = 0; i3 < ne3; i3++) {
  4498. for (int i2 = 0; i2 < ne2; i2++) {
  4499. for (int i1 = 0; i1 < ne1; i1++) {
  4500. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  4501. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  4502. for (int i0 = 0; i0 < i1; i0++) {
  4503. d[i0] = 0;
  4504. }
  4505. d[i1] = s[i1];
  4506. for (int i0 = i1+1; i0 < ne0; i0++) {
  4507. d[i0] = 0;
  4508. }
  4509. }
  4510. }
  4511. }
  4512. }
  4513. void ggml_compute_forward_diag(
  4514. const ggml_compute_params * params,
  4515. ggml_tensor * dst) {
  4516. const ggml_tensor * src0 = dst->src[0];
  4517. switch (src0->type) {
  4518. case GGML_TYPE_F32:
  4519. {
  4520. ggml_compute_forward_diag_f32(params, dst);
  4521. } break;
  4522. default:
  4523. {
  4524. GGML_ABORT("fatal error");
  4525. }
  4526. }
  4527. }
  4528. // ggml_compute_forward_diag_mask_inf
  4529. static void ggml_compute_forward_diag_mask_f32(
  4530. const ggml_compute_params * params,
  4531. ggml_tensor * dst,
  4532. const float value) {
  4533. const ggml_tensor * src0 = dst->src[0];
  4534. const int ith = params->ith;
  4535. const int nth = params->nth;
  4536. const int n_past = ((int32_t *) dst->op_params)[0];
  4537. const bool inplace = src0->data == dst->data;
  4538. GGML_ASSERT(n_past >= 0);
  4539. if (!inplace) {
  4540. if (ith == 0) {
  4541. // memcpy needs to be synchronized across threads to avoid race conditions.
  4542. // => do it in INIT phase
  4543. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4544. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4545. memcpy(
  4546. ((char *) dst->data),
  4547. ((char *) src0->data),
  4548. ggml_nbytes(dst));
  4549. }
  4550. ggml_barrier(params->threadpool);
  4551. }
  4552. // TODO: handle transposed/permuted matrices
  4553. const int n = ggml_nrows(src0);
  4554. const int nc = src0->ne[0];
  4555. const int nr = src0->ne[1];
  4556. const int nz = n/nr;
  4557. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4558. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4559. for (int k = 0; k < nz; k++) {
  4560. for (int j = ith; j < nr; j += nth) {
  4561. for (int i = n_past; i < nc; i++) {
  4562. if (i > n_past + j) {
  4563. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  4564. }
  4565. }
  4566. }
  4567. }
  4568. }
  4569. void ggml_compute_forward_diag_mask_inf(
  4570. const ggml_compute_params * params,
  4571. ggml_tensor * dst) {
  4572. const ggml_tensor * src0 = dst->src[0];
  4573. switch (src0->type) {
  4574. case GGML_TYPE_F32:
  4575. {
  4576. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  4577. } break;
  4578. default:
  4579. {
  4580. GGML_ABORT("fatal error");
  4581. }
  4582. }
  4583. }
  4584. void ggml_compute_forward_diag_mask_zero(
  4585. const ggml_compute_params * params,
  4586. ggml_tensor * dst) {
  4587. const ggml_tensor * src0 = dst->src[0];
  4588. switch (src0->type) {
  4589. case GGML_TYPE_F32:
  4590. {
  4591. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  4592. } break;
  4593. default:
  4594. {
  4595. GGML_ABORT("fatal error");
  4596. }
  4597. }
  4598. }
  4599. // ggml_compute_forward_soft_max
  4600. static void ggml_compute_forward_soft_max_f32(
  4601. const ggml_compute_params * params,
  4602. ggml_tensor * dst) {
  4603. const ggml_tensor * src0 = dst->src[0];
  4604. const ggml_tensor * src1 = dst->src[1];
  4605. const ggml_tensor * src2 = dst->src[2];
  4606. assert(ggml_is_contiguous(dst));
  4607. assert(ggml_are_same_shape(src0, dst));
  4608. float scale = 1.0f;
  4609. float max_bias = 0.0f;
  4610. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  4611. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  4612. const int ith = params->ith;
  4613. const int nth = params->nth;
  4614. GGML_TENSOR_UNARY_OP_LOCALS
  4615. const int64_t nb11 = src1 ? src1->nb[1] : 1;
  4616. const int64_t nb12 = src1 ? src1->nb[2] : 1;
  4617. const int64_t nb13 = src1 ? src1->nb[3] : 1;
  4618. const int64_t ne12 = src1 ? src1->ne[2] : 1;
  4619. const int64_t ne13 = src1 ? src1->ne[3] : 1;
  4620. // TODO: is this supposed to be ceil instead of floor?
  4621. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  4622. const uint32_t n_head = ne02;
  4623. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  4624. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  4625. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  4626. float * wp = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4627. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  4628. // sinks
  4629. const float * sk = src2 ? (float *)((char *) src2->data) : nullptr;
  4630. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4631. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4632. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4633. const int64_t i11 = i01;
  4634. const int64_t i12 = i02%ne12;
  4635. const int64_t i13 = i03%ne13;
  4636. // ALiBi
  4637. const uint32_t h = i02; // head
  4638. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  4639. float * sp = (float *)((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4640. float * dp = (float *)((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4641. // broadcast the mask across rows
  4642. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
  4643. float * mp_f32 = src1 ? (float *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
  4644. ggml_vec_cpy_f32 (ne00, wp, sp);
  4645. ggml_vec_scale_f32(ne00, wp, scale);
  4646. if (mp_f32) {
  4647. if (use_f16) {
  4648. for (int i = 0; i < ne00; ++i) {
  4649. wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
  4650. }
  4651. } else {
  4652. for (int i = 0; i < ne00; ++i) {
  4653. wp[i] += slope*mp_f32[i];
  4654. }
  4655. }
  4656. }
  4657. #ifndef NDEBUG
  4658. for (int i = 0; i < ne00; ++i) {
  4659. //printf("p[%d] = %f\n", i, p[i]);
  4660. assert(!isnan(wp[i]));
  4661. }
  4662. #endif
  4663. float max = -INFINITY;
  4664. ggml_vec_max_f32(ne00, &max, wp);
  4665. // if we have sinks, make a correction as if they were included in the softmax
  4666. if (sk) {
  4667. max = MAX(max, sk[i02]);
  4668. }
  4669. ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
  4670. assert(sum > 0.0);
  4671. if (sk) {
  4672. sum += (ggml_float) expf(sk[i02] - max);
  4673. }
  4674. sum = 1.0/sum;
  4675. ggml_vec_scale_f32(ne00, dp, sum);
  4676. #ifndef NDEBUG
  4677. for (int i = 0; i < ne00; ++i) {
  4678. assert(!isnan(dp[i]));
  4679. assert(!isinf(dp[i]));
  4680. }
  4681. #endif
  4682. }
  4683. }
  4684. }
  4685. }
  4686. void ggml_compute_forward_soft_max(
  4687. const ggml_compute_params * params,
  4688. ggml_tensor * dst) {
  4689. const ggml_tensor * src0 = dst->src[0];
  4690. switch (src0->type) {
  4691. case GGML_TYPE_F32:
  4692. {
  4693. ggml_compute_forward_soft_max_f32(params, dst);
  4694. } break;
  4695. default:
  4696. {
  4697. GGML_ABORT("fatal error");
  4698. }
  4699. }
  4700. }
  4701. // ggml_compute_forward_soft_max_ext_back
  4702. static void ggml_compute_forward_soft_max_ext_back_f32(
  4703. const ggml_compute_params * params,
  4704. ggml_tensor * dst) {
  4705. const ggml_tensor * src0 = dst->src[0];
  4706. const ggml_tensor * src1 = dst->src[1];
  4707. GGML_ASSERT(ggml_is_contiguous(src0));
  4708. GGML_ASSERT(ggml_is_contiguous(src1));
  4709. GGML_ASSERT(ggml_is_contiguous(dst));
  4710. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4711. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  4712. float scale = 1.0f;
  4713. float max_bias = 0.0f;
  4714. memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
  4715. memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
  4716. GGML_ASSERT(max_bias == 0.0f);
  4717. // TODO: handle transposed/permuted matrices
  4718. const int ith = params->ith;
  4719. const int nth = params->nth;
  4720. const int nc = src0->ne[0];
  4721. const int nr = ggml_nrows(src0);
  4722. // rows per thread
  4723. const int dr = (nr + nth - 1)/nth;
  4724. // row range for this thread
  4725. const int ir0 = dr*ith;
  4726. const int ir1 = MIN(ir0 + dr, nr);
  4727. for (int i1 = ir0; i1 < ir1; i1++) {
  4728. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  4729. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  4730. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  4731. #ifndef NDEBUG
  4732. for (int i = 0; i < nc; ++i) {
  4733. //printf("p[%d] = %f\n", i, p[i]);
  4734. assert(!isnan(dy[i]));
  4735. assert(!isnan(y[i]));
  4736. }
  4737. #endif
  4738. // Jii = yi - yi*yi
  4739. // Jij = -yi*yj
  4740. // J = diag(y)-y.T*y
  4741. // dx = J * dy
  4742. // dxk = sum_i(Jki * dyi)
  4743. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  4744. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  4745. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  4746. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  4747. // dxk = -yk * dot(y, dy) + yk*dyk
  4748. // dxk = yk * (- dot(y, dy) + dyk)
  4749. // dxk = yk * (dyk - dot(y, dy))
  4750. //
  4751. // post-order:
  4752. // dot_y_dy := dot(y, dy)
  4753. // dx := dy
  4754. // dx := dx - dot_y_dy
  4755. // dx := dx * y
  4756. // linear runtime, no additional memory
  4757. float dot_y_dy = 0;
  4758. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  4759. ggml_vec_cpy_f32 (nc, dx, dy);
  4760. ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
  4761. ggml_vec_mul_f32 (nc, dx, dx, y);
  4762. ggml_vec_scale_f32(nc, dx, scale);
  4763. #ifndef NDEBUG
  4764. for (int i = 0; i < nc; ++i) {
  4765. assert(!isnan(dx[i]));
  4766. assert(!isinf(dx[i]));
  4767. }
  4768. #endif
  4769. }
  4770. }
  4771. void ggml_compute_forward_soft_max_ext_back(
  4772. const ggml_compute_params * params,
  4773. ggml_tensor * dst) {
  4774. const ggml_tensor * src0 = dst->src[0];
  4775. switch (src0->type) {
  4776. case GGML_TYPE_F32:
  4777. {
  4778. ggml_compute_forward_soft_max_ext_back_f32(params, dst);
  4779. } break;
  4780. default:
  4781. {
  4782. GGML_ABORT("fatal error");
  4783. }
  4784. }
  4785. }
  4786. // ggml_compute_forward_clamp
  4787. static void ggml_compute_forward_clamp_f32(
  4788. const ggml_compute_params * params,
  4789. ggml_tensor * dst) {
  4790. const ggml_tensor * src0 = dst->src[0];
  4791. float min;
  4792. float max;
  4793. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  4794. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  4795. const int ith = params->ith;
  4796. const int nth = params->nth;
  4797. const int n = ggml_nrows(src0);
  4798. const int nc = src0->ne[0];
  4799. const size_t nb00 = src0->nb[0];
  4800. const size_t nb01 = src0->nb[1];
  4801. const size_t nb0 = dst->nb[0];
  4802. const size_t nb1 = dst->nb[1];
  4803. GGML_ASSERT( nb0 == sizeof(float));
  4804. GGML_ASSERT(nb00 == sizeof(float));
  4805. for (int j = ith; j < n; j += nth) {
  4806. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4807. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4808. for (int i = 0; i < nc; i++) {
  4809. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  4810. }
  4811. }
  4812. }
  4813. static void ggml_compute_forward_clamp_f16(
  4814. const ggml_compute_params * params,
  4815. ggml_tensor * dst) {
  4816. const ggml_tensor * src0 = dst->src[0];
  4817. float min;
  4818. float max;
  4819. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  4820. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  4821. const int ith = params->ith;
  4822. const int nth = params->nth;
  4823. const int n = ggml_nrows(src0);
  4824. const int nc = src0->ne[0];
  4825. const size_t nb00 = src0->nb[0];
  4826. const size_t nb01 = src0->nb[1];
  4827. const size_t nb0 = dst->nb[0];
  4828. const size_t nb1 = dst->nb[1];
  4829. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4830. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4831. for (int j = ith; j < n; j += nth) {
  4832. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4833. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4834. for (int i = 0; i < nc; i++) {
  4835. float v = GGML_CPU_FP16_TO_FP32(src0_ptr[i]);
  4836. dst_ptr[i] = GGML_CPU_FP32_TO_FP16(MAX(MIN(v, max), min));
  4837. }
  4838. }
  4839. }
  4840. void ggml_compute_forward_clamp(
  4841. const ggml_compute_params * params,
  4842. ggml_tensor * dst) {
  4843. const ggml_tensor * src0 = dst->src[0];
  4844. switch (src0->type) {
  4845. case GGML_TYPE_F32:
  4846. {
  4847. ggml_compute_forward_clamp_f32(params, dst);
  4848. } break;
  4849. case GGML_TYPE_F16:
  4850. {
  4851. ggml_compute_forward_clamp_f16(params, dst);
  4852. } break;
  4853. case GGML_TYPE_BF16:
  4854. case GGML_TYPE_Q4_0:
  4855. case GGML_TYPE_Q4_1:
  4856. case GGML_TYPE_Q5_0:
  4857. case GGML_TYPE_Q5_1:
  4858. case GGML_TYPE_Q8_0:
  4859. case GGML_TYPE_Q8_1:
  4860. case GGML_TYPE_MXFP4:
  4861. case GGML_TYPE_Q2_K:
  4862. case GGML_TYPE_Q3_K:
  4863. case GGML_TYPE_Q4_K:
  4864. case GGML_TYPE_Q5_K:
  4865. case GGML_TYPE_Q6_K:
  4866. case GGML_TYPE_TQ1_0:
  4867. case GGML_TYPE_TQ2_0:
  4868. case GGML_TYPE_IQ2_XXS:
  4869. case GGML_TYPE_IQ2_XS:
  4870. case GGML_TYPE_IQ3_XXS:
  4871. case GGML_TYPE_IQ1_S:
  4872. case GGML_TYPE_IQ1_M:
  4873. case GGML_TYPE_IQ4_NL:
  4874. case GGML_TYPE_IQ4_XS:
  4875. case GGML_TYPE_IQ3_S:
  4876. case GGML_TYPE_IQ2_S:
  4877. case GGML_TYPE_Q8_K:
  4878. case GGML_TYPE_I8:
  4879. case GGML_TYPE_I16:
  4880. case GGML_TYPE_I32:
  4881. case GGML_TYPE_I64:
  4882. case GGML_TYPE_F64:
  4883. case GGML_TYPE_COUNT:
  4884. {
  4885. GGML_ABORT("fatal error");
  4886. }
  4887. }
  4888. }
  4889. // ggml_compute_forward_rope
  4890. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  4891. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  4892. return 1 - MIN(1, MAX(0, y));
  4893. }
  4894. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  4895. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  4896. static void rope_yarn(
  4897. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  4898. float * cos_theta, float * sin_theta) {
  4899. // Get n-d rotational scaling corrected for extrapolation
  4900. float theta_interp = freq_scale * theta_extrap;
  4901. float theta = theta_interp;
  4902. if (ext_factor != 0.0f) {
  4903. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  4904. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  4905. // Get n-d magnitude scaling corrected for interpolation
  4906. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  4907. }
  4908. *cos_theta = cosf(theta) * mscale;
  4909. *sin_theta = sinf(theta) * mscale;
  4910. }
  4911. static void ggml_rope_cache_init(
  4912. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  4913. float * cache, float sin_sign, float theta_scale) {
  4914. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  4915. float theta = theta_base;
  4916. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  4917. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  4918. rope_yarn(
  4919. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  4920. );
  4921. cache[i0 + 1] *= sin_sign;
  4922. theta *= theta_scale;
  4923. }
  4924. }
  4925. static void ggml_mrope_cache_init(
  4926. float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
  4927. float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  4928. float * cache, float sin_sign, float theta_scale) {
  4929. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  4930. float theta_t = theta_base_t;
  4931. float theta_h = theta_base_h;
  4932. float theta_w = theta_base_w;
  4933. float theta_e = theta_base_e; // extra position id for vision encoder
  4934. int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
  4935. int sec_w = sections[1] + sections[0];
  4936. int sec_e = sections[2] + sec_w;
  4937. GGML_ASSERT(sect_dims <= ne0);
  4938. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  4939. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  4940. int sector = (i0 / 2) % sect_dims;
  4941. if (indep_sects) {
  4942. // compute theta independently for each dim sections
  4943. // (i.e. reset corresponding theta when `i0` go from one section to another)
  4944. if (sector == 0) {
  4945. theta_t = theta_base_t;
  4946. }
  4947. else if (sector == sections[0]) {
  4948. theta_h = theta_base_h;;
  4949. }
  4950. else if (sector == sec_w) {
  4951. theta_w = theta_base_w;
  4952. }
  4953. else if (sector == sec_e) {
  4954. theta_e = theta_base_e;
  4955. }
  4956. }
  4957. float theta = theta_t;
  4958. if (sector >= sections[0] && sector < sec_w) {
  4959. theta = theta_h;
  4960. }
  4961. else if (sector >= sec_w && sector < sec_w + sections[2]) {
  4962. theta = theta_w;
  4963. }
  4964. else if (sector >= sec_w + sections[2]) {
  4965. theta = theta_e;
  4966. }
  4967. rope_yarn(
  4968. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  4969. );
  4970. cache[i0 + 1] *= sin_sign;
  4971. theta_t *= theta_scale;
  4972. theta_w *= theta_scale;
  4973. theta_h *= theta_scale;
  4974. theta_e *= theta_scale;
  4975. }
  4976. }
  4977. static void ggml_compute_forward_rope_f32(
  4978. const ggml_compute_params * params,
  4979. ggml_tensor * dst,
  4980. const bool forward) {
  4981. const ggml_tensor * src0 = dst->src[0];
  4982. const ggml_tensor * src1 = dst->src[1];
  4983. const ggml_tensor * src2 = dst->src[2];
  4984. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  4985. int sections[4];
  4986. //const int n_past = ((int32_t *) dst->op_params)[0];
  4987. const int n_dims = ((int32_t *) dst->op_params)[1];
  4988. const int mode = ((int32_t *) dst->op_params)[2];
  4989. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  4990. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  4991. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  4992. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  4993. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  4994. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  4995. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  4996. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  4997. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
  4998. GGML_TENSOR_UNARY_OP_LOCALS
  4999. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5000. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5001. GGML_ASSERT(nb00 == sizeof(float));
  5002. const int ith = params->ith;
  5003. const int nth = params->nth;
  5004. const int nr = ggml_nrows(dst);
  5005. GGML_ASSERT(n_dims <= ne0);
  5006. GGML_ASSERT(n_dims % 2 == 0);
  5007. // rows per thread
  5008. const int dr = (nr + nth - 1)/nth;
  5009. // row range for this thread
  5010. const int ir0 = dr*ith;
  5011. const int ir1 = MIN(ir0 + dr, nr);
  5012. // row index used to determine which thread to use
  5013. int ir = 0;
  5014. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  5015. float corr_dims[2];
  5016. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  5017. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  5018. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
  5019. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  5020. if (is_mrope) {
  5021. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  5022. }
  5023. if (is_vision) {
  5024. GGML_ASSERT(n_dims == ne0/2);
  5025. }
  5026. const float * freq_factors = NULL;
  5027. if (src2 != NULL) {
  5028. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  5029. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  5030. freq_factors = (const float *) src2->data;
  5031. }
  5032. // backward process uses inverse rotation by cos and sin.
  5033. // cos and sin build a rotation matrix, where the inverse is the transpose.
  5034. // this essentially just switches the sign of sin.
  5035. const float sin_sign = forward ? 1.0f : -1.0f;
  5036. const int32_t * pos = (const int32_t *) src1->data;
  5037. for (int64_t i3 = 0; i3 < ne3; i3++) { // batch
  5038. for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len
  5039. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  5040. if (!is_mrope) {
  5041. const int64_t p = pos[i2];
  5042. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5043. }
  5044. else {
  5045. const int64_t p_t = pos[i2];
  5046. const int64_t p_h = pos[i2 + ne2];
  5047. const int64_t p_w = pos[i2 + ne2 * 2];
  5048. const int64_t p_e = pos[i2 + ne2 * 3];
  5049. ggml_mrope_cache_init(
  5050. p_t, p_h, p_w, p_e, sections, is_vision,
  5051. freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5052. }
  5053. for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads
  5054. if (ir++ < ir0) continue;
  5055. if (ir > ir1) break;
  5056. if (is_neox || is_mrope) {
  5057. if (is_vision){
  5058. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5059. const int64_t ic = i0/2;
  5060. const float cos_theta = cache[i0 + 0];
  5061. const float sin_theta = cache[i0 + 1];
  5062. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5063. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5064. const float x0 = src[0];
  5065. const float x1 = src[n_dims];
  5066. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5067. dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
  5068. }
  5069. } else {
  5070. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5071. const int64_t ic = i0/2;
  5072. const float cos_theta = cache[i0 + 0];
  5073. const float sin_theta = cache[i0 + 1];
  5074. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5075. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5076. const float x0 = src[0];
  5077. const float x1 = src[n_dims/2];
  5078. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5079. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  5080. }
  5081. }
  5082. } else {
  5083. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5084. const float cos_theta = cache[i0 + 0];
  5085. const float sin_theta = cache[i0 + 1];
  5086. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5087. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5088. const float x0 = src[0];
  5089. const float x1 = src[1];
  5090. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5091. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5092. }
  5093. }
  5094. if (is_vision) {
  5095. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5096. const int64_t ic = i0/2;
  5097. const float cos_theta = cache[i0 + 0];
  5098. const float sin_theta = cache[i0 + 1];
  5099. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5100. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5101. const float x0 = src[0];
  5102. const float x1 = src[n_dims];
  5103. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5104. dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
  5105. }
  5106. } else {
  5107. // fill the remain channels with data from src tensor
  5108. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5109. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5110. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5111. dst_data[0] = src[0];
  5112. dst_data[1] = src[1];
  5113. }
  5114. }
  5115. }
  5116. }
  5117. }
  5118. }
  5119. // TODO: deduplicate f16/f32 code
  5120. static void ggml_compute_forward_rope_f16(
  5121. const ggml_compute_params * params,
  5122. ggml_tensor * dst,
  5123. const bool forward) {
  5124. const ggml_tensor * src0 = dst->src[0];
  5125. const ggml_tensor * src1 = dst->src[1];
  5126. const ggml_tensor * src2 = dst->src[2];
  5127. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  5128. int sections[4];
  5129. //const int n_past = ((int32_t *) dst->op_params)[0];
  5130. const int n_dims = ((int32_t *) dst->op_params)[1];
  5131. const int mode = ((int32_t *) dst->op_params)[2];
  5132. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  5133. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  5134. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  5135. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  5136. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  5137. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  5138. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  5139. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  5140. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
  5141. GGML_TENSOR_UNARY_OP_LOCALS
  5142. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5143. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5144. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  5145. const int ith = params->ith;
  5146. const int nth = params->nth;
  5147. const int nr = ggml_nrows(dst);
  5148. GGML_ASSERT(n_dims <= ne0);
  5149. GGML_ASSERT(n_dims % 2 == 0);
  5150. // rows per thread
  5151. const int dr = (nr + nth - 1)/nth;
  5152. // row range for this thread
  5153. const int ir0 = dr*ith;
  5154. const int ir1 = MIN(ir0 + dr, nr);
  5155. // row index used to determine which thread to use
  5156. int ir = 0;
  5157. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  5158. float corr_dims[2];
  5159. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  5160. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  5161. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  5162. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  5163. if (is_mrope) {
  5164. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  5165. }
  5166. if (is_vision) {
  5167. GGML_ASSERT(n_dims == ne0/2);
  5168. }
  5169. const float * freq_factors = NULL;
  5170. if (src2 != NULL) {
  5171. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  5172. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  5173. freq_factors = (const float *) src2->data;
  5174. }
  5175. // backward process uses inverse rotation by cos and sin.
  5176. // cos and sin build a rotation matrix, where the inverse is the transpose.
  5177. // this essentially just switches the sign of sin.
  5178. const float sin_sign = forward ? 1.0f : -1.0f;
  5179. const int32_t * pos = (const int32_t *) src1->data;
  5180. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5181. for (int64_t i2 = 0; i2 < ne2; i2++) {
  5182. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  5183. if (!is_mrope) {
  5184. const int64_t p = pos[i2];
  5185. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5186. }
  5187. else {
  5188. const int64_t p_t = pos[i2];
  5189. const int64_t p_h = pos[i2 + ne2];
  5190. const int64_t p_w = pos[i2 + ne2 * 2];
  5191. const int64_t p_e = pos[i2 + ne2 * 3];
  5192. ggml_mrope_cache_init(
  5193. p_t, p_h, p_w, p_e, sections, is_vision,
  5194. freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5195. }
  5196. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5197. if (ir++ < ir0) continue;
  5198. if (ir > ir1) break;
  5199. if (is_neox || is_mrope) {
  5200. if (is_vision) {
  5201. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5202. const int64_t ic = i0/2;
  5203. const float cos_theta = cache[i0 + 0];
  5204. const float sin_theta = cache[i0 + 1];
  5205. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5206. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5207. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5208. const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
  5209. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5210. dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5211. }
  5212. } else {
  5213. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5214. const int64_t ic = i0/2;
  5215. const float cos_theta = cache[i0 + 0];
  5216. const float sin_theta = cache[i0 + 1];
  5217. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5218. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5219. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5220. const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims/2]);
  5221. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5222. dst_data[n_dims/2] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5223. }
  5224. }
  5225. } else {
  5226. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5227. const float cos_theta = cache[i0 + 0];
  5228. const float sin_theta = cache[i0 + 1];
  5229. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5230. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5231. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5232. const float x1 = GGML_CPU_FP16_TO_FP32(src[1]);
  5233. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5234. dst_data[1] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5235. }
  5236. }
  5237. if (is_vision) {
  5238. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5239. const int64_t ic = i0/2;
  5240. const float cos_theta = cache[i0 + 0];
  5241. const float sin_theta = cache[i0 + 1];
  5242. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5243. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5244. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5245. const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
  5246. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5247. dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5248. }
  5249. } else {
  5250. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5251. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5252. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5253. dst_data[0] = src[0];
  5254. dst_data[1] = src[1];
  5255. }
  5256. }
  5257. }
  5258. }
  5259. }
  5260. }
  5261. void ggml_compute_forward_rope(
  5262. const ggml_compute_params * params,
  5263. ggml_tensor * dst) {
  5264. const ggml_tensor * src0 = dst->src[0];
  5265. switch (src0->type) {
  5266. case GGML_TYPE_F16:
  5267. {
  5268. ggml_compute_forward_rope_f16(params, dst, true);
  5269. } break;
  5270. case GGML_TYPE_F32:
  5271. {
  5272. ggml_compute_forward_rope_f32(params, dst, true);
  5273. } break;
  5274. default:
  5275. {
  5276. GGML_ABORT("fatal error");
  5277. }
  5278. }
  5279. }
  5280. // ggml_compute_forward_rope_back
  5281. void ggml_compute_forward_rope_back(
  5282. const ggml_compute_params * params,
  5283. ggml_tensor * dst) {
  5284. const ggml_tensor * src0 = dst->src[0];
  5285. switch (src0->type) {
  5286. case GGML_TYPE_F16:
  5287. {
  5288. ggml_compute_forward_rope_f16(params, dst, false);
  5289. } break;
  5290. case GGML_TYPE_F32:
  5291. {
  5292. ggml_compute_forward_rope_f32(params, dst, false);
  5293. } break;
  5294. default:
  5295. {
  5296. GGML_ABORT("fatal error");
  5297. }
  5298. }
  5299. }
  5300. // ggml_compute_forward_conv_transpose_1d
  5301. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  5302. const ggml_compute_params * params,
  5303. ggml_tensor * dst) {
  5304. const ggml_tensor * src0 = dst->src[0];
  5305. const ggml_tensor * src1 = dst->src[1];
  5306. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5307. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5308. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5309. GGML_TENSOR_BINARY_OP_LOCALS
  5310. const int ith = params->ith;
  5311. const int nth = params->nth;
  5312. const int nk = ne00*ne01*ne02;
  5313. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5314. GGML_ASSERT(nb10 == sizeof(float));
  5315. if (ith == 0) {
  5316. memset(params->wdata, 0, params->wsize);
  5317. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  5318. {
  5319. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5320. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5321. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5322. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5323. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  5324. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5325. dst_data[i00*ne02 + i02] = src[i00];
  5326. }
  5327. }
  5328. }
  5329. }
  5330. // permute source data (src1) from (L x Cin) to (Cin x L)
  5331. {
  5332. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  5333. ggml_fp16_t * dst_data = wdata;
  5334. for (int64_t i11 = 0; i11 < ne11; i11++) {
  5335. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5336. for (int64_t i10 = 0; i10 < ne10; i10++) {
  5337. dst_data[i10*ne11 + i11] = GGML_CPU_FP32_TO_FP16(src[i10]);
  5338. }
  5339. }
  5340. }
  5341. // need to zero dst since we are accumulating into it
  5342. memset(dst->data, 0, ggml_nbytes(dst));
  5343. }
  5344. ggml_barrier(params->threadpool);
  5345. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  5346. // total rows in dst
  5347. const int nr = ne1;
  5348. // rows per thread
  5349. const int dr = (nr + nth - 1)/nth;
  5350. // row range for this thread
  5351. const int ir0 = dr*ith;
  5352. const int ir1 = MIN(ir0 + dr, nr);
  5353. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5354. ggml_fp16_t * const wdata_src = wdata + nk;
  5355. for (int i1 = ir0; i1 < ir1; i1++) {
  5356. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5357. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  5358. for (int i10 = 0; i10 < ne10; i10++) {
  5359. const int i1n = i10*ne11;
  5360. for (int i00 = 0; i00 < ne00; i00++) {
  5361. float v = 0;
  5362. ggml_vec_dot_f16(ne02, &v, 0,
  5363. (ggml_fp16_t *) wdata_src + i1n, 0,
  5364. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  5365. dst_data[i10*s0 + i00] += v;
  5366. }
  5367. }
  5368. }
  5369. }
  5370. static void ggml_compute_forward_conv_transpose_1d_f32(
  5371. const ggml_compute_params * params,
  5372. ggml_tensor * dst) {
  5373. const ggml_tensor * src0 = dst->src[0];
  5374. const ggml_tensor * src1 = dst->src[1];
  5375. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5376. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5377. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5378. GGML_TENSOR_BINARY_OP_LOCALS
  5379. const int ith = params->ith;
  5380. const int nth = params->nth;
  5381. const int nk = ne00*ne01*ne02;
  5382. GGML_ASSERT(nb00 == sizeof(float));
  5383. GGML_ASSERT(nb10 == sizeof(float));
  5384. if (ith == 0) {
  5385. memset(params->wdata, 0, params->wsize);
  5386. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  5387. {
  5388. float * const wdata = (float *) params->wdata + 0;
  5389. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5390. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5391. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5392. float * dst_data = wdata + i01*ne00*ne02;
  5393. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5394. dst_data[i00*ne02 + i02] = src[i00];
  5395. }
  5396. }
  5397. }
  5398. }
  5399. // prepare source data (src1)
  5400. {
  5401. float * const wdata = (float *) params->wdata + nk;
  5402. float * dst_data = wdata;
  5403. for (int64_t i11 = 0; i11 < ne11; i11++) {
  5404. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5405. for (int64_t i10 = 0; i10 < ne10; i10++) {
  5406. dst_data[i10*ne11 + i11] = src[i10];
  5407. }
  5408. }
  5409. }
  5410. // need to zero dst since we are accumulating into it
  5411. memset(dst->data, 0, ggml_nbytes(dst));
  5412. }
  5413. ggml_barrier(params->threadpool);
  5414. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  5415. // total rows in dst
  5416. const int nr = ne1;
  5417. // rows per thread
  5418. const int dr = (nr + nth - 1)/nth;
  5419. // row range for this thread
  5420. const int ir0 = dr*ith;
  5421. const int ir1 = MIN(ir0 + dr, nr);
  5422. float * const wdata = (float *) params->wdata + 0;
  5423. float * const wdata_src = wdata + nk;
  5424. for (int i1 = ir0; i1 < ir1; i1++) {
  5425. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5426. float * wdata_kernel = wdata + i1*ne02*ne00;
  5427. for (int i10 = 0; i10 < ne10; i10++) {
  5428. const int i1n = i10*ne11;
  5429. for (int i00 = 0; i00 < ne00; i00++) {
  5430. float v = 0;
  5431. ggml_vec_dot_f32(ne02, &v, 0,
  5432. wdata_src + i1n, 0,
  5433. wdata_kernel + i00*ne02, 0, 1);
  5434. dst_data[i10*s0 + i00] += v;
  5435. }
  5436. }
  5437. }
  5438. }
  5439. void ggml_compute_forward_conv_transpose_1d(
  5440. const ggml_compute_params * params,
  5441. ggml_tensor * dst) {
  5442. const ggml_tensor * src0 = dst->src[0];
  5443. switch (src0->type) {
  5444. case GGML_TYPE_F16:
  5445. {
  5446. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  5447. } break;
  5448. case GGML_TYPE_F32:
  5449. {
  5450. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  5451. } break;
  5452. default:
  5453. {
  5454. GGML_ABORT("fatal error");
  5455. }
  5456. }
  5457. }
  5458. // ggml_compute_forward_im2col_f32
  5459. // src0: kernel [OC, IC, KH, KW]
  5460. // src1: image [N, IC, IH, IW]
  5461. // dst: result [N, OH, OW, IC*KH*KW]
  5462. static void ggml_compute_forward_im2col_f32(
  5463. const ggml_compute_params * params,
  5464. ggml_tensor * dst) {
  5465. const ggml_tensor * src0 = dst->src[0];
  5466. const ggml_tensor * src1 = dst->src[1];
  5467. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5468. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5469. GGML_TENSOR_BINARY_OP_LOCALS;
  5470. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5471. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5472. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  5473. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  5474. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  5475. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  5476. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  5477. const int ith = params->ith;
  5478. const int nth = params->nth;
  5479. const int64_t N = is_2D ? ne13 : ne12;
  5480. const int64_t IC = is_2D ? ne12 : ne11;
  5481. const int64_t IH = is_2D ? ne11 : 1;
  5482. const int64_t IW = ne10;
  5483. const int64_t KH = is_2D ? ne01 : 1;
  5484. const int64_t KW = ne00;
  5485. const int64_t OH = is_2D ? ne2 : 1;
  5486. const int64_t OW = ne1;
  5487. int ofs0 = is_2D ? nb13 : nb12;
  5488. int ofs1 = is_2D ? nb12 : nb11;
  5489. GGML_ASSERT(nb10 == sizeof(float));
  5490. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5491. {
  5492. float * const wdata = (float *) dst->data;
  5493. for (int64_t in = 0; in < N; in++) {
  5494. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  5495. for (int64_t iow = 0; iow < OW; iow++) {
  5496. for (int64_t iic = ith; iic < IC; iic += nth) {
  5497. // micro kernel
  5498. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  5499. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  5500. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  5501. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5502. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  5503. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  5504. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  5505. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  5506. } else {
  5507. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  5508. }
  5509. }
  5510. }
  5511. }
  5512. }
  5513. }
  5514. }
  5515. }
  5516. }
  5517. // ggml_compute_forward_im2col_f16
  5518. // src0: kernel [OC, IC, KH, KW]
  5519. // src1: image [N, IC, IH, IW]
  5520. // dst: result [N, OH, OW, IC*KH*KW]
  5521. static void ggml_compute_forward_im2col_f16(
  5522. const ggml_compute_params * params,
  5523. ggml_tensor * dst) {
  5524. const ggml_tensor * src0 = dst->src[0];
  5525. const ggml_tensor * src1 = dst->src[1];
  5526. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5527. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5528. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  5529. GGML_TENSOR_BINARY_OP_LOCALS;
  5530. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5531. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5532. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  5533. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  5534. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  5535. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  5536. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  5537. const int ith = params->ith;
  5538. const int nth = params->nth;
  5539. const int64_t N = is_2D ? ne13 : ne12;
  5540. const int64_t IC = is_2D ? ne12 : ne11;
  5541. const int64_t IH = is_2D ? ne11 : 1;
  5542. const int64_t IW = ne10;
  5543. const int64_t KH = is_2D ? ne01 : 1;
  5544. const int64_t KW = ne00;
  5545. const int64_t OH = is_2D ? ne2 : 1;
  5546. const int64_t OW = ne1;
  5547. int ofs0 = is_2D ? nb13 : nb12;
  5548. int ofs1 = is_2D ? nb12 : nb11;
  5549. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5550. GGML_ASSERT(nb10 == sizeof(float));
  5551. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5552. {
  5553. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  5554. for (int64_t in = 0; in < N; in++) {
  5555. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  5556. for (int64_t iow = 0; iow < OW; iow++) {
  5557. for (int64_t iic = ith; iic < IC; iic += nth) {
  5558. // micro kernel
  5559. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  5560. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  5561. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  5562. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5563. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  5564. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  5565. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  5566. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  5567. } else {
  5568. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(src_data[iih*IW + iiw]);
  5569. }
  5570. }
  5571. }
  5572. }
  5573. }
  5574. }
  5575. }
  5576. }
  5577. }
  5578. void ggml_compute_forward_im2col(
  5579. const ggml_compute_params * params,
  5580. ggml_tensor * dst) {
  5581. switch (dst->type) {
  5582. case GGML_TYPE_F16:
  5583. {
  5584. ggml_compute_forward_im2col_f16(params, dst);
  5585. } break;
  5586. case GGML_TYPE_F32:
  5587. {
  5588. ggml_compute_forward_im2col_f32(params, dst);
  5589. } break;
  5590. default:
  5591. {
  5592. GGML_ABORT("fatal error");
  5593. }
  5594. }
  5595. }
  5596. // ggml_compute_forward_im2col_back_f32
  5597. void ggml_compute_forward_im2col_back_f32(
  5598. const ggml_compute_params * params,
  5599. ggml_tensor * dst) {
  5600. const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
  5601. const ggml_tensor * src1 = dst->src[1]; // convolution kernel
  5602. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5603. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5604. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5605. GGML_TENSOR_BINARY_OP_LOCALS;
  5606. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5607. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5608. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  5609. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  5610. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  5611. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  5612. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  5613. const int ith = params->ith;
  5614. const int nth = params->nth;
  5615. const int64_t N = is_2D ? ne3 : ne2;
  5616. const int64_t IC = is_2D ? ne2 : ne1;
  5617. const int64_t IH = is_2D ? ne1 : 1;
  5618. const int64_t IW = ne0;
  5619. const int64_t KH = is_2D ? ne11 : 1;
  5620. const int64_t KW = ne10;
  5621. const int64_t OH = is_2D ? ne02 : 1;
  5622. const int64_t OW = ne01;
  5623. int ofs0 = is_2D ? nb3 : nb2;
  5624. int ofs1 = is_2D ? nb2 : nb1;
  5625. GGML_ASSERT(nb0 == sizeof(float));
  5626. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5627. {
  5628. float * const wdata = (float *) dst->data;
  5629. for (int64_t in = 0; in < N; in++) {
  5630. for (int64_t iic = ith; iic < IC; iic += nth) {
  5631. for (int64_t iih = 0; iih < IH; iih++) {
  5632. for (int64_t iiw = 0; iiw < IW; iiw++) {
  5633. // micro kernel
  5634. float grad = 0.0f;
  5635. for (int64_t ikh = 0; ikh < KH; ikh++) {
  5636. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5637. // For s0 > 1 some values were skipped over in the forward pass.
  5638. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
  5639. const int64_t tmpw = (iiw + p0 - ikw*d0);
  5640. if (tmpw % s0 != 0) {
  5641. continue;
  5642. }
  5643. const int64_t iow = tmpw / s0;
  5644. // Equivalent logic as above except for s1.
  5645. int64_t ioh;
  5646. if (is_2D) {
  5647. const int64_t tmph = iih + p1 - ikh*d1;
  5648. if (tmph % s1 != 0) {
  5649. continue;
  5650. }
  5651. ioh = tmph / s1;
  5652. } else {
  5653. ioh = 0;
  5654. }
  5655. if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
  5656. continue;
  5657. }
  5658. const float * const grad_in = (const float *) src0->data
  5659. + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  5660. grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
  5661. }
  5662. }
  5663. float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
  5664. dst_data[iih*IW + iiw] = grad;
  5665. }
  5666. }
  5667. }
  5668. }
  5669. }
  5670. }
  5671. static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
  5672. void * a, void * b, float * c) {
  5673. const ggml_type_traits * traits = ggml_get_type_traits(type);
  5674. struct ggml_tensor src1 = {};
  5675. src1.type = type;
  5676. src1.ne[0] = k;
  5677. src1.ne[1] = m;
  5678. src1.ne[2] = 1;
  5679. src1.ne[3] = 1;
  5680. src1.nb[0] = traits->type_size;
  5681. src1.nb[1] = k * traits->type_size;
  5682. src1.nb[2] = src1.nb[1];
  5683. src1.nb[3] = src1.nb[2];
  5684. src1.data = a;
  5685. struct ggml_tensor src0 = {};
  5686. src0.type = type;
  5687. src0.ne[0] = k;
  5688. src0.ne[1] = n;
  5689. src0.ne[2] = 1;
  5690. src0.ne[3] = 1;
  5691. src0.nb[0] = traits->type_size;
  5692. src0.nb[1] = k * traits->type_size;
  5693. src0.nb[2] = src0.nb[1];
  5694. src0.nb[3] = src0.nb[2];
  5695. src0.data = b;
  5696. struct ggml_tensor dst = {};
  5697. dst.ne[0] = n;
  5698. dst.ne[1] = m;
  5699. dst.ne[2] = 1;
  5700. dst.ne[3] = 1;
  5701. dst.nb[0] = sizeof(float);
  5702. dst.nb[1] = n * sizeof(float);
  5703. dst.nb[2] = dst.nb[1];
  5704. dst.nb[3] = dst.nb[2];
  5705. dst.data = c;
  5706. dst.src[0] = &src0;
  5707. dst.src[1] = &src1;
  5708. ggml_compute_forward_mul_mat(params, &dst);
  5709. }
  5710. // ggml_compute_forward_conv_2d
  5711. static void ggml_compute_forward_conv_2d_impl(const ggml_compute_params * params,
  5712. const ggml_tensor * kernel, // [KW, KH, IC, OC]
  5713. const ggml_tensor * src, // [W, H, C, N]
  5714. ggml_tensor * dst, // [OW, OH, OC, N]
  5715. ggml_type kernel_type) {
  5716. GGML_ASSERT(ggml_is_contiguous(kernel));
  5717. GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32);
  5718. GGML_ASSERT(kernel->type == kernel_type);
  5719. const ggml_type_traits * traits = ggml_get_type_traits(kernel_type);
  5720. const int32_t stride_x = dst->op_params[0];
  5721. const int32_t stride_y = dst->op_params[1];
  5722. const int32_t pad_x = dst->op_params[2];
  5723. const int32_t pad_y = dst->op_params[3];
  5724. const int32_t dilation_x = dst->op_params[4];
  5725. const int32_t dilation_y = dst->op_params[5];
  5726. const int64_t c_in = src->ne[2];
  5727. const int64_t c_out = kernel->ne[3];
  5728. GGML_ASSERT(c_in == kernel->ne[2]);
  5729. const int64_t src_w = src->ne[0];
  5730. const int64_t src_h = src->ne[1];
  5731. const int64_t knl_w = kernel->ne[0];
  5732. const int64_t knl_h = kernel->ne[1];
  5733. const int64_t dst_w = dst->ne[0];
  5734. const int64_t dst_h = dst->ne[1];
  5735. const float * src_data = (float *) src->data;
  5736. void * knl_data = kernel->data;
  5737. float * dst_data = (float *) dst->data;
  5738. const int64_t knl_n = knl_w * knl_h * c_in;
  5739. const int64_t patch_total = dst->ne[3] * dst_w * dst_h;
  5740. const int64_t space_per_patch = knl_n * traits->type_size + c_out * sizeof(float);
  5741. const int64_t batch_size = params->wsize / space_per_patch;
  5742. const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size;
  5743. const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch;
  5744. GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1);
  5745. void * tmp = params->wdata;
  5746. for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) {
  5747. const int64_t patch_start_batch = batch_i * patches_per_batch;
  5748. const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch,
  5749. patch_total);
  5750. const int64_t patch_n = patch_end_batch - patch_start_batch;
  5751. const int64_t patch_per_thread = (patch_n + params->nth - 1) / params->nth;
  5752. const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread;
  5753. const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch);
  5754. //im2col for a patch
  5755. for (int64_t p = patch_start; p < patch_end; ++p) {
  5756. const int64_t batch_n = p / (dst_w * dst_h);
  5757. const int64_t src_x = (p / dst_w) % dst_h;
  5758. const int64_t src_y = p % dst_w;
  5759. const float * src_base = (const float *)((const char *)src_data + batch_n * src->nb[3]);
  5760. char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n * traits->type_size;
  5761. for (int64_t ic = 0; ic < c_in; ++ic) {
  5762. for (int64_t ky = 0; ky < knl_h; ++ky) {
  5763. for (int64_t kx = 0; kx < knl_w; ++kx) {
  5764. const int64_t sy = src_x * stride_y + ky * dilation_y - pad_y;
  5765. const int64_t sx = src_y * stride_x + kx * dilation_x - pad_x;
  5766. int64_t dst_idx = ic * (knl_h * knl_w) + ky * knl_w + kx;
  5767. float src_val;
  5768. if (sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) {
  5769. src_val = 0.0f;
  5770. } else {
  5771. const float * src_ptr = (const float *)((const char *)src_base + sx * src->nb[0] + sy * src->nb[1] + ic * src->nb[2]);
  5772. src_val = *src_ptr;
  5773. }
  5774. char * element_ptr = dst_row + dst_idx * traits->type_size;
  5775. if (kernel_type == GGML_TYPE_F32) {
  5776. *(float *) element_ptr = src_val;
  5777. } else if (kernel_type == GGML_TYPE_F16) {
  5778. *(ggml_fp16_t *) element_ptr = GGML_CPU_FP32_TO_FP16(src_val);
  5779. }
  5780. }
  5781. }
  5782. }
  5783. } // patches handled by this thread
  5784. ggml_barrier(params->threadpool);
  5785. float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n * traits->type_size);
  5786. GGML_ASSERT(gemm_output + patch_n * c_out <= (float*)tmp + params->wsize);
  5787. // GEMM: patches[patch_n, knl_n] × kernel[knl_n, c_out] = output[patch_n, c_out]
  5788. ggml_call_mul_mat(kernel_type, params, patch_n, c_out, knl_n, tmp, knl_data, gemm_output);
  5789. ggml_barrier(params->threadpool);
  5790. //permute back [OC, N, OH, OW] to [N, OC, OH, OW]
  5791. const int64_t permute_per_thread = (patch_n + params->nth - 1) / params->nth;
  5792. const int64_t permute_start = params->ith * permute_per_thread;
  5793. const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n);
  5794. for (int64_t i = permute_start; i < permute_end; ++i) {
  5795. const int64_t p = patch_start_batch + i;
  5796. const int64_t batch_n = p / (dst_w * dst_h);
  5797. const int64_t dst_y = (p / dst_w) % dst_h;
  5798. const int64_t dst_x = p % dst_w;
  5799. for (int64_t oc = 0; oc < c_out; ++oc) {
  5800. const float value = gemm_output[i * c_out + oc];
  5801. float * dst_ptr = (float *)((char *)dst_data + dst_x * dst->nb[0] + dst_y * dst->nb[1] + oc * dst->nb[2] + batch_n * dst->nb[3]);
  5802. *dst_ptr = value;
  5803. }
  5804. }
  5805. }
  5806. }
  5807. void ggml_compute_forward_conv_2d(
  5808. const ggml_compute_params * params,
  5809. ggml_tensor * dst) {
  5810. const ggml_tensor * src0 = dst->src[0];
  5811. const ggml_tensor * src1 = dst->src[1];
  5812. ggml_compute_forward_conv_2d_impl(params, src0, src1, dst, src0->type);
  5813. }
  5814. // ggml_compute_forward_conv_3d
  5815. static void ggml_compute_forward_conv_3d_impl(const ggml_compute_params * params,
  5816. const ggml_tensor * kernel,
  5817. const ggml_tensor * src,
  5818. ggml_tensor * dst,
  5819. ggml_type kernel_type) {
  5820. GGML_ASSERT(ggml_is_contiguous(kernel));
  5821. GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32);
  5822. GGML_ASSERT(kernel->type == kernel_type);
  5823. const ggml_type_traits * traits = ggml_get_type_traits(kernel_type);
  5824. const int32_t s0 = dst->op_params[0];
  5825. const int32_t s1 = dst->op_params[1];
  5826. const int32_t s2 = dst->op_params[2];
  5827. const int32_t p0 = dst->op_params[3];
  5828. const int32_t p1 = dst->op_params[4];
  5829. const int32_t p2 = dst->op_params[5];
  5830. const int32_t d0 = dst->op_params[6];
  5831. const int32_t d1 = dst->op_params[7];
  5832. const int32_t d2 = dst->op_params[8];
  5833. const int32_t c = dst->op_params[9];
  5834. const int32_t n = dst->op_params[10];
  5835. const int32_t oc = dst->op_params[11];
  5836. const int64_t src_w = src->ne[0];
  5837. const int64_t src_h = src->ne[1];
  5838. const int64_t src_d = src->ne[2];
  5839. const int64_t knl_w = kernel->ne[0];
  5840. const int64_t knl_h = kernel->ne[1];
  5841. const int64_t knl_d = kernel->ne[2];
  5842. const int64_t dst_w = dst->ne[0];
  5843. const int64_t dst_h = dst->ne[1];
  5844. const int64_t dst_d = dst->ne[2];
  5845. const float * src_data = (float *) src->data;
  5846. void * knl_data = kernel->data;
  5847. float * dst_data = (float *) dst->data;
  5848. const int64_t knl_n_per_channel = knl_w * knl_h * knl_d;
  5849. const int64_t knl_n_total = knl_n_per_channel * c;
  5850. const int64_t patch_total = n * dst_w * dst_h * dst_d;
  5851. const int64_t space_per_patch = knl_n_total * traits->type_size + oc * sizeof(float);
  5852. const int64_t batch_size = params->wsize / space_per_patch;
  5853. const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size;
  5854. const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch;
  5855. GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1);
  5856. void * tmp = params->wdata;
  5857. for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) {
  5858. const int64_t patch_start_batch = batch_i * patches_per_batch;
  5859. const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch, patch_total);
  5860. const int64_t patch_n_in_batch = patch_end_batch - patch_start_batch;
  5861. const int64_t patch_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth;
  5862. const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread;
  5863. const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch);
  5864. for (int64_t p = patch_start; p < patch_end; ++p) {
  5865. const int64_t p_in_batch = p % (dst_w * dst_h * dst_d);
  5866. const int64_t p_in_depth = p_in_batch % (dst_w * dst_h);
  5867. const int64_t batch_idx = p / (dst_w * dst_h * dst_d);
  5868. const int64_t dst_z = p_in_batch / (dst_w * dst_h);
  5869. const int64_t dst_y = p_in_depth / dst_w;
  5870. const int64_t dst_x = p_in_depth % dst_w;
  5871. char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n_total * traits->type_size;
  5872. for (int64_t ic = 0; ic < c; ++ic) {
  5873. for (int64_t kz = 0; kz < knl_d; ++kz) {
  5874. for (int64_t ky = 0; ky < knl_h; ++ky) {
  5875. for (int64_t kx = 0; kx < knl_w; ++kx) {
  5876. const int64_t sz = dst_z * s2 + kz * d2 - p2;
  5877. const int64_t sy = dst_y * s1 + ky * d1 - p1;
  5878. const int64_t sx = dst_x * s0 + kx * d0 - p0;
  5879. int64_t dst_idx = ic * knl_n_per_channel + kz * (knl_h * knl_w) + ky * knl_w + kx;
  5880. float src_val;
  5881. if (sz < 0 || sz >= src_d || sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) {
  5882. src_val = 0.0f;
  5883. } else {
  5884. const int64_t cn_idx = batch_idx * c + ic;
  5885. const float * src_ptr = (const float *)((const char *)src_data + sx*src->nb[0] + sy*src->nb[1] + sz*src->nb[2] + cn_idx*src->nb[3]);
  5886. src_val = *src_ptr;
  5887. }
  5888. char * element_ptr = dst_row + dst_idx * traits->type_size;
  5889. if (kernel_type == GGML_TYPE_F32) {
  5890. *(float *)element_ptr = src_val;
  5891. } else if (kernel_type == GGML_TYPE_F16) {
  5892. *(ggml_fp16_t *)element_ptr = GGML_CPU_FP32_TO_FP16(src_val);
  5893. }
  5894. }
  5895. }
  5896. }
  5897. }
  5898. }
  5899. ggml_barrier(params->threadpool);
  5900. float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n_total * traits->type_size);
  5901. ggml_call_mul_mat(kernel_type, params, patch_n_in_batch, oc, knl_n_total, tmp, knl_data, gemm_output);
  5902. ggml_barrier(params->threadpool);
  5903. const int64_t permute_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth;
  5904. const int64_t permute_start = params->ith * permute_per_thread;
  5905. const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n_in_batch);
  5906. for (int64_t i = permute_start; i < permute_end; ++i) {
  5907. const int64_t p = patch_start_batch + i;
  5908. const int64_t p_in_batch = p % (dst_w * dst_h * dst_d);
  5909. const int64_t p_in_depth = p_in_batch % (dst_w * dst_h);
  5910. const int64_t batch_idx = p / (dst_w * dst_h * dst_d);
  5911. const int64_t dst_z = p_in_batch / (dst_w * dst_h);
  5912. const int64_t dst_y = p_in_depth / dst_w;
  5913. const int64_t dst_x = p_in_depth % dst_w;
  5914. for (int64_t ioc = 0; ioc < oc; ++ioc) {
  5915. const float value = gemm_output[i * oc + ioc];
  5916. const int64_t ocn_idx = batch_idx * oc + ioc;
  5917. float * dst_ptr = (float *)((char *)dst_data + dst_x*dst->nb[0] + dst_y*dst->nb[1] + dst_z*dst->nb[2] + ocn_idx*dst->nb[3]);
  5918. *dst_ptr = value;
  5919. }
  5920. }
  5921. }
  5922. }
  5923. void ggml_compute_forward_conv_3d(
  5924. const ggml_compute_params * params,
  5925. ggml_tensor * dst) {
  5926. const ggml_tensor * src0 = dst->src[0];
  5927. const ggml_tensor * src1 = dst->src[1];
  5928. ggml_compute_forward_conv_3d_impl(params, src0, src1, dst, src0->type);
  5929. }
  5930. // ggml_compute_forward_conv_transpose_2d
  5931. void ggml_compute_forward_conv_transpose_2d(
  5932. const ggml_compute_params * params,
  5933. ggml_tensor * dst) {
  5934. const ggml_tensor * src0 = dst->src[0];
  5935. const ggml_tensor * src1 = dst->src[1];
  5936. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5937. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5938. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5939. GGML_TENSOR_BINARY_OP_LOCALS
  5940. const int ith = params->ith;
  5941. const int nth = params->nth;
  5942. const int nk = ne00*ne01*ne02*ne03;
  5943. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5944. GGML_ASSERT(nb10 == sizeof(float));
  5945. if (ith == 0) {
  5946. memset(params->wdata, 0, params->wsize);
  5947. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  5948. {
  5949. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5950. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5951. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5952. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  5953. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  5954. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5955. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5956. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  5957. }
  5958. }
  5959. }
  5960. }
  5961. }
  5962. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  5963. {
  5964. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  5965. for (int i12 = 0; i12 < ne12; i12++) {
  5966. for (int i11 = 0; i11 < ne11; i11++) {
  5967. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  5968. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  5969. for (int i10 = 0; i10 < ne10; i10++) {
  5970. dst_data[i10*ne12 + i12] = GGML_CPU_FP32_TO_FP16(src[i10]);
  5971. }
  5972. }
  5973. }
  5974. }
  5975. memset(dst->data, 0, ggml_nbytes(dst));
  5976. }
  5977. ggml_barrier(params->threadpool);
  5978. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  5979. // total patches in dst
  5980. const int np = ne2;
  5981. // patches per thread
  5982. const int dp = (np + nth - 1)/nth;
  5983. // patch range for this thread
  5984. const int ip0 = dp*ith;
  5985. const int ip1 = MIN(ip0 + dp, np);
  5986. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5987. ggml_fp16_t * const wdata_src = wdata + nk;
  5988. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  5989. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  5990. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  5991. for (int i11 = 0; i11 < ne11; i11++) {
  5992. for (int i10 = 0; i10 < ne10; i10++) {
  5993. const int i1n = i11*ne10*ne12 + i10*ne12;
  5994. for (int i01 = 0; i01 < ne01; i01++) {
  5995. for (int i00 = 0; i00 < ne00; i00++) {
  5996. float v = 0;
  5997. ggml_vec_dot_f16(ne03, &v, 0,
  5998. wdata_src + i1n, 0,
  5999. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  6000. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  6001. }
  6002. }
  6003. }
  6004. }
  6005. }
  6006. }
  6007. // ggml_compute_forward_conv_2d_dw
  6008. struct ggml_conv_2d_dw_params {
  6009. int64_t channels;
  6010. int64_t batch;
  6011. int64_t src_w;
  6012. int64_t src_h;
  6013. int64_t dst_w;
  6014. int64_t dst_h;
  6015. int64_t knl_w;
  6016. int64_t knl_h;
  6017. int stride_x;
  6018. int stride_y;
  6019. int pad_x;
  6020. int pad_y;
  6021. int dilation_x;
  6022. int dilation_y;
  6023. };
  6024. static void ggml_compute_forward_conv_2d_dw_cwhn(
  6025. const ggml_compute_params * params,
  6026. const ggml_tensor * src,
  6027. const ggml_tensor * kernel,
  6028. ggml_tensor * dst,
  6029. const ggml_conv_2d_dw_params & p) {
  6030. const int64_t c = p.channels;
  6031. const float * knl_data = (const float *)kernel->data;
  6032. const int64_t rows_total = p.dst_h * p.batch;
  6033. const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth;
  6034. const int64_t row_start = params->ith * rows_per_thread;
  6035. const int64_t row_end = MIN(row_start + rows_per_thread, rows_total);
  6036. #ifdef GGML_SIMD
  6037. const int64_t pkg_size = GGML_F32_EPR;
  6038. const int64_t pkg_count = c / pkg_size;
  6039. const int64_t c_pkg_end = pkg_count * pkg_size;
  6040. #else
  6041. const int64_t c_pkg_end = 0;
  6042. #endif
  6043. for (int64_t row = row_start; row < row_end; ++row) {
  6044. const int64_t dst_y = row % p.dst_h;
  6045. const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c;
  6046. for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
  6047. float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c;
  6048. const int64_t src_y_base = dst_y * p.stride_y - p.pad_y;
  6049. const int64_t src_x_base = dst_x * p.stride_x - p.pad_x;
  6050. #ifdef GGML_SIMD
  6051. // Vectorized loop
  6052. for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) {
  6053. GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
  6054. for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
  6055. const int64_t src_y = src_y_base + knl_y * p.dilation_y;
  6056. if (src_y < 0 || src_y >= p.src_h) {
  6057. continue;
  6058. }
  6059. for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
  6060. const int64_t src_x = src_x_base + knl_x * p.dilation_x;
  6061. if (src_x < 0 || src_x >= p.src_w) {
  6062. continue;
  6063. }
  6064. GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i);
  6065. GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i);
  6066. sum = GGML_F32_VEC_FMA(sum, k, s);
  6067. }
  6068. }
  6069. GGML_F32_VEC_STORE(dst_data + c_i, sum);
  6070. }
  6071. #endif
  6072. // Scalar loop
  6073. for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) {
  6074. float sum = 0.0f;
  6075. for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
  6076. const int64_t src_y = src_y_base + knl_y * p.dilation_y;
  6077. if (src_y < 0 || src_y >= p.src_h) {
  6078. continue;
  6079. }
  6080. for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
  6081. const int64_t src_x = src_x_base + knl_x * p.dilation_x;
  6082. if (src_x < 0 || src_x >= p.src_w) {
  6083. continue;
  6084. }
  6085. sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i]
  6086. * src_data[(src_y * p.src_w + src_x) * c + c_i];
  6087. }
  6088. }
  6089. dst_data[c_i] = sum;
  6090. }
  6091. }
  6092. }
  6093. }
  6094. static void ggml_compute_forward_conv_2d_dw_whcn(
  6095. const ggml_compute_params * params,
  6096. const ggml_tensor * src,
  6097. const ggml_tensor * kernel,
  6098. ggml_tensor * dst,
  6099. const ggml_conv_2d_dw_params & p) {
  6100. const int64_t n = p.channels * p.batch;
  6101. const int64_t per_thread = (n + params->nth - 1) / params->nth;
  6102. const int64_t start = params->ith * per_thread;
  6103. const int64_t end = MIN(start + per_thread, n);
  6104. for (int64_t i = start; i < end; ++i) {
  6105. const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h;
  6106. const float * src_data = (const float *)src->data + i * p.src_w * p.src_h;
  6107. float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h;
  6108. for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) {
  6109. for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
  6110. float sum = 0.0f;
  6111. for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
  6112. const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
  6113. if (src_y < 0 || src_y >= p.src_h) {
  6114. continue;
  6115. }
  6116. for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
  6117. const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
  6118. if (src_x < 0 || src_x >= p.src_w) {
  6119. continue;
  6120. }
  6121. sum += knl_data[knl_y * p.knl_w + knl_x]
  6122. * src_data[src_y * p.src_w + src_x];
  6123. }
  6124. }
  6125. dst_data[dst_y * p.dst_w + dst_x] = sum;
  6126. }
  6127. }
  6128. }
  6129. }
  6130. void ggml_compute_forward_conv_2d_dw(
  6131. const ggml_compute_params * params,
  6132. ggml_tensor * dst) {
  6133. const ggml_tensor * kernel = dst->src[0];
  6134. const ggml_tensor * src = dst->src[1];
  6135. ggml_conv_2d_dw_params p;
  6136. p.channels = src->ne[2];
  6137. p.batch = src->ne[3];
  6138. p.src_w = src->ne[0];
  6139. p.src_h = src->ne[1];
  6140. p.dst_w = dst->ne[0];
  6141. p.dst_h = dst->ne[1];
  6142. p.knl_w = kernel->ne[0];
  6143. p.knl_h = kernel->ne[1];
  6144. p.stride_x = dst->op_params[0];
  6145. p.stride_y = dst->op_params[1];
  6146. p.pad_x = dst->op_params[2];
  6147. p.pad_y = dst->op_params[3];
  6148. p.dilation_x = dst->op_params[4];
  6149. p.dilation_y = dst->op_params[5];
  6150. GGML_ASSERT(kernel->ne[3] == p.channels);
  6151. GGML_ASSERT(dst->ne[3] == p.batch);
  6152. if (ggml_is_contiguous(src)) {
  6153. ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p);
  6154. } else if (ggml_is_contiguous_channels(src)) {
  6155. // kernel should also have channels most contiguous in memory
  6156. GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]);
  6157. ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p);
  6158. } else {
  6159. GGML_ABORT("non-contiguous memory layout not supported");
  6160. }
  6161. }
  6162. // ggml_compute_forward_pool_1d_sk_p0
  6163. static void ggml_compute_forward_pool_1d_sk_p0(
  6164. const ggml_compute_params * params,
  6165. const ggml_op_pool op,
  6166. const int k,
  6167. ggml_tensor * dst) {
  6168. const ggml_tensor * src = dst->src[0];
  6169. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  6170. if (params->ith != 0) {
  6171. return;
  6172. }
  6173. const char * cdata = (const char *)src->data;
  6174. const char * const data_end = cdata + ggml_nbytes(src);
  6175. float * drow = (float *)dst->data;
  6176. const int64_t rs = dst->ne[0];
  6177. while (cdata < data_end) {
  6178. const void * srow = (const void *)cdata;
  6179. int j = 0;
  6180. for (int64_t i = 0; i < rs; ++i) {
  6181. switch (op) {
  6182. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  6183. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  6184. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6185. }
  6186. for (int ki = 0; ki < k; ++ki) {
  6187. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  6188. switch (op) {
  6189. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  6190. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  6191. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6192. }
  6193. ++j;
  6194. }
  6195. switch (op) {
  6196. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  6197. case GGML_OP_POOL_MAX: break;
  6198. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6199. }
  6200. }
  6201. cdata += src->nb[1];
  6202. drow += rs;
  6203. }
  6204. }
  6205. // ggml_compute_forward_pool_1d
  6206. void ggml_compute_forward_pool_1d(
  6207. const ggml_compute_params * params,
  6208. ggml_tensor * dst) {
  6209. const int32_t * opts = (const int32_t *)dst->op_params;
  6210. ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
  6211. const int k0 = opts[1];
  6212. const int s0 = opts[2];
  6213. const int p0 = opts[3];
  6214. GGML_ASSERT(p0 == 0); // padding not supported
  6215. GGML_ASSERT(k0 == s0); // only s = k supported
  6216. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  6217. }
  6218. // ggml_compute_forward_pool_2d
  6219. void ggml_compute_forward_pool_2d(
  6220. const ggml_compute_params * params,
  6221. ggml_tensor * dst) {
  6222. const ggml_tensor * src = dst->src[0];
  6223. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  6224. if (params->ith != 0) {
  6225. return;
  6226. }
  6227. const int32_t * opts = (const int32_t *)dst->op_params;
  6228. ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
  6229. const int k0 = opts[1];
  6230. const int k1 = opts[2];
  6231. const int s0 = opts[3];
  6232. const int s1 = opts[4];
  6233. const int p0 = opts[5];
  6234. const int p1 = opts[6];
  6235. const char * cdata = (const char*)src->data;
  6236. const char * const data_end = cdata + ggml_nbytes(src);
  6237. const int64_t px = dst->ne[0];
  6238. const int64_t py = dst->ne[1];
  6239. const int64_t pa = px * py;
  6240. float * dplane = (float *)dst->data;
  6241. const int ka = k0 * k1;
  6242. const int offset0 = -p0;
  6243. const int offset1 = -p1;
  6244. while (cdata < data_end) {
  6245. for (int oy = 0; oy < py; ++oy) {
  6246. float * const drow = dplane + oy * px;
  6247. for (int ox = 0; ox < px; ++ox) {
  6248. float * const out = drow + ox;
  6249. switch (op) {
  6250. case GGML_OP_POOL_AVG: *out = 0; break;
  6251. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  6252. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6253. }
  6254. const int ix = offset0 + ox * s0;
  6255. const int iy = offset1 + oy * s1;
  6256. for (int ky = 0; ky < k1; ++ky) {
  6257. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  6258. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  6259. for (int kx = 0; kx < k0; ++kx) {
  6260. int j = ix + kx;
  6261. if (j < 0 || j >= src->ne[0]) continue;
  6262. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  6263. switch (op) {
  6264. case GGML_OP_POOL_AVG: *out += srow_j; break;
  6265. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  6266. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6267. }
  6268. }
  6269. }
  6270. switch (op) {
  6271. case GGML_OP_POOL_AVG: *out /= ka; break;
  6272. case GGML_OP_POOL_MAX: break;
  6273. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6274. }
  6275. }
  6276. }
  6277. cdata += src->nb[2];
  6278. dplane += pa;
  6279. }
  6280. }
  6281. // ggml_compute_forward_pool_2d_back
  6282. void ggml_compute_forward_pool_2d_back(
  6283. const ggml_compute_params * params,
  6284. ggml_tensor * dst) {
  6285. const ggml_tensor * src = dst->src[0];
  6286. const ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
  6287. assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
  6288. if (params->ith != 0) {
  6289. return;
  6290. }
  6291. const int32_t * opts = (const int32_t *)dst->op_params;
  6292. ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
  6293. const int k0 = opts[1];
  6294. const int k1 = opts[2];
  6295. const int s0 = opts[3];
  6296. const int s1 = opts[4];
  6297. const int p0 = opts[5];
  6298. const int p1 = opts[6];
  6299. char * cdata = (char *) dst->data;
  6300. const char * cdataf = (const char *) dstf->data;
  6301. const char * const data_end = cdata + ggml_nbytes(dst);
  6302. GGML_ASSERT(params->ith == 0);
  6303. memset(cdata, 0, ggml_nbytes(dst));
  6304. const int64_t px = src->ne[0];
  6305. const int64_t py = src->ne[1];
  6306. const int64_t pa = px * py;
  6307. const float * splane = (const float *) src->data;
  6308. const int ka = k0 * k1;
  6309. const int offset0 = -p0;
  6310. const int offset1 = -p1;
  6311. while (cdata < data_end) {
  6312. for (int oy = 0; oy < py; ++oy) {
  6313. const float * const srow = splane + oy * px;
  6314. for (int ox = 0; ox < px; ++ox) {
  6315. const float grad0 = srow[ox];
  6316. const int ix = offset0 + ox * s0;
  6317. const int iy = offset1 + oy * s1;
  6318. if (op == GGML_OP_POOL_MAX) {
  6319. float maxval = -FLT_MAX;
  6320. int kxmax = -1;
  6321. int kymax = -1;
  6322. for (int ky = 0; ky < k1; ++ky) {
  6323. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  6324. continue;
  6325. }
  6326. const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
  6327. for (int kx = 0; kx < k0; ++kx) {
  6328. int j = ix + kx;
  6329. if (j < 0 || j >= dst->ne[0]) {
  6330. continue;
  6331. }
  6332. const float val = dst->type == GGML_TYPE_F32 ?
  6333. ((const float *) drowf)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
  6334. if (val <= maxval) {
  6335. continue;
  6336. }
  6337. maxval = val;
  6338. kxmax = kx;
  6339. kymax = ky;
  6340. }
  6341. }
  6342. if (kxmax == -1 || kymax == -1) {
  6343. continue;
  6344. }
  6345. void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
  6346. const int j = ix + kxmax;
  6347. if (dst->type == GGML_TYPE_F32) {
  6348. ((float *) drow)[j] += grad0;
  6349. } else {
  6350. ((ggml_fp16_t *) drow)[j] = GGML_CPU_FP32_TO_FP16(grad0 + GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
  6351. }
  6352. } else if (op == GGML_OP_POOL_AVG) {
  6353. const float grad = grad0 / ka;
  6354. for (int ky = 0; ky < k1; ++ky) {
  6355. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  6356. continue;
  6357. }
  6358. void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
  6359. for (int kx = 0; kx < k0; ++kx) {
  6360. int j = ix + kx;
  6361. if (j < 0 || j >= dst->ne[0]) {
  6362. continue;
  6363. }
  6364. if (dst->type == GGML_TYPE_F32) {
  6365. ((float *) drow)[j] += grad;
  6366. } else {
  6367. ((ggml_fp16_t *) drow)[j] += GGML_CPU_FP32_TO_FP16(grad);
  6368. }
  6369. }
  6370. }
  6371. } else {
  6372. GGML_ASSERT(false);
  6373. }
  6374. }
  6375. }
  6376. cdata += dst->nb[2];
  6377. cdataf += dst->nb[2];
  6378. splane += pa;
  6379. }
  6380. }
  6381. // ggml_compute_forward_upscale
  6382. static void ggml_compute_forward_upscale_f32(
  6383. const ggml_compute_params * params,
  6384. ggml_tensor * dst) {
  6385. const ggml_tensor * src0 = dst->src[0];
  6386. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6387. const int ith = params->ith;
  6388. const int nth = params->nth;
  6389. GGML_TENSOR_UNARY_OP_LOCALS
  6390. float sf0 = (float)ne0/src0->ne[0];
  6391. float sf1 = (float)ne1/src0->ne[1];
  6392. float sf2 = (float)ne2/src0->ne[2];
  6393. float sf3 = (float)ne3/src0->ne[3];
  6394. const int32_t mode_flags = ggml_get_op_params_i32(dst, 0);
  6395. const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
  6396. if (mode == GGML_SCALE_MODE_NEAREST) {
  6397. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6398. const int64_t i03 = i3 / sf3;
  6399. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  6400. const int64_t i02 = i2 / sf2;
  6401. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6402. const int64_t i01 = i1 / sf1;
  6403. for (int64_t i0 = 0; i0 < ne0; i0++) {
  6404. const int64_t i00 = i0 / sf0;
  6405. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6406. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  6407. *y = *x;
  6408. }
  6409. }
  6410. }
  6411. }
  6412. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  6413. float pixel_offset = 0.5f;
  6414. if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  6415. pixel_offset = 0.0f;
  6416. sf0 = (float)(ne0 - 1) / (src0->ne[0] - 1);
  6417. sf1 = (float)(ne1 - 1) / (src0->ne[1] - 1);
  6418. }
  6419. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6420. const int64_t i03 = i3 / sf3;
  6421. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  6422. const int64_t i02 = i2 / sf2;
  6423. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6424. const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset;
  6425. int64_t y0 = (int64_t)floorf(y);
  6426. int64_t y1 = y0 + 1;
  6427. y0 = std::max(int64_t(0), std::min(y0, ne01 - 1));
  6428. y1 = std::max(int64_t(0), std::min(y1, ne01 - 1));
  6429. float dy = y - (float)y0;
  6430. dy = std::max(0.0f, std::min(dy, 1.0f));
  6431. for (int64_t i0 = 0; i0 < ne0; i0++) {
  6432. const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset;
  6433. int64_t x0 = (int64_t)floorf(x);
  6434. int64_t x1 = x0 + 1;
  6435. x0 = std::max(int64_t(0), std::min(x0, ne00 - 1));
  6436. x1 = std::max(int64_t(0), std::min(x1, ne00 - 1));
  6437. float dx = x - (float)x0;
  6438. dx = std::max(0.0f, std::min(dx, 1.0f));
  6439. // fetch the four surrounding pixel values and interpolate
  6440. const float a = *(const float *)((const char *)src0->data + x0*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
  6441. const float b = *(const float *)((const char *)src0->data + x1*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
  6442. const float c = *(const float *)((const char *)src0->data + x0*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
  6443. const float d = *(const float *)((const char *)src0->data + x1*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
  6444. const float val = a*(1 - dx)*(1 - dy) + b*dx*(1 - dy) + c*(1 - dx)*dy + d*dx*dy;
  6445. float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  6446. *y_dst = val;
  6447. }
  6448. }
  6449. }
  6450. }
  6451. } else {
  6452. GGML_ABORT("unsupported upscale mode");
  6453. }
  6454. }
  6455. void ggml_compute_forward_upscale(
  6456. const ggml_compute_params * params,
  6457. ggml_tensor * dst) {
  6458. const ggml_tensor * src0 = dst->src[0];
  6459. switch (src0->type) {
  6460. case GGML_TYPE_F32:
  6461. {
  6462. ggml_compute_forward_upscale_f32(params, dst);
  6463. } break;
  6464. default:
  6465. {
  6466. GGML_ABORT("fatal error");
  6467. }
  6468. }
  6469. }
  6470. // ggml_compute_forward_pad
  6471. static void ggml_compute_forward_pad_f32(
  6472. const ggml_compute_params * params,
  6473. ggml_tensor * dst) {
  6474. const ggml_tensor * src0 = dst->src[0];
  6475. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6476. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6477. const int ith = params->ith;
  6478. const int nth = params->nth;
  6479. GGML_TENSOR_UNARY_OP_LOCALS
  6480. float * dst_ptr = (float *) dst->data;
  6481. // TODO: optimize
  6482. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  6483. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  6484. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6485. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  6486. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  6487. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  6488. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  6489. dst_ptr[dst_idx] = *src_ptr;
  6490. } else {
  6491. dst_ptr[dst_idx] = 0;
  6492. }
  6493. }
  6494. }
  6495. }
  6496. }
  6497. }
  6498. void ggml_compute_forward_pad(
  6499. const ggml_compute_params * params,
  6500. ggml_tensor * dst) {
  6501. const ggml_tensor * src0 = dst->src[0];
  6502. switch (src0->type) {
  6503. case GGML_TYPE_F32:
  6504. {
  6505. ggml_compute_forward_pad_f32(params, dst);
  6506. } break;
  6507. default:
  6508. {
  6509. GGML_ABORT("fatal error");
  6510. }
  6511. }
  6512. }
  6513. // ggml_compute_forward_pad_reflect_1d
  6514. void ggml_compute_forward_pad_reflect_1d(
  6515. const ggml_compute_params * params,
  6516. ggml_tensor * dst) {
  6517. const ggml_tensor * src0 = dst->src[0];
  6518. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6519. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6520. const int ith = params->ith;
  6521. const int nth = params->nth;
  6522. const int32_t * opts = (const int32_t *) dst->op_params;
  6523. const int p0 = opts[0];
  6524. const int p1 = opts[1];
  6525. GGML_TENSOR_UNARY_OP_LOCALS
  6526. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6527. for (int64_t i2 = 0; i2 < ne2; i2++) {
  6528. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  6529. float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0);
  6530. float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0);
  6531. ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01));
  6532. for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; }
  6533. for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; }
  6534. }
  6535. }
  6536. }
  6537. }
  6538. // ggml_compute_forward_roll
  6539. static int64_t ggml_wrap_index(int64_t i, int64_t ne) {
  6540. if (i < 0) {
  6541. return i + ne;
  6542. } else if (i >= ne) {
  6543. return i - ne;
  6544. }
  6545. return i;
  6546. }
  6547. static void ggml_compute_forward_roll_f32(
  6548. const ggml_compute_params * params,
  6549. ggml_tensor * dst) {
  6550. const ggml_tensor * src0 = dst->src[0];
  6551. const float * src_data = (const float *) src0->data;
  6552. float * dst_data = (float *) dst->data;
  6553. GGML_TENSOR_UNARY_OP_LOCALS
  6554. const int s0 = ggml_get_op_params_i32(dst, 0);
  6555. const int s1 = ggml_get_op_params_i32(dst, 1);
  6556. const int s2 = ggml_get_op_params_i32(dst, 2);
  6557. const int s3 = ggml_get_op_params_i32(dst, 3);
  6558. const int64_t total = ne1 * ne2 * ne3;
  6559. const int64_t per_thread = (total + params->nth) / params->nth;
  6560. const int64_t start = params->ith * per_thread;
  6561. const int64_t end = std::min(start + per_thread, total);
  6562. for (int64_t i = start; i < end; ++i) {
  6563. const int64_t i1 = i % ne1;
  6564. const int64_t i2 = (i / ne1) % ne2;
  6565. const int64_t i3 = i / (ne2 * ne1);
  6566. float * dst_row = dst_data + (i3*nb3 + i2*nb2 + i1*nb1) / sizeof(float);
  6567. const int64_t i01 = ggml_wrap_index(i1 - s1, ne01);
  6568. const int64_t i02 = ggml_wrap_index(i2 - s2, ne02);
  6569. const int64_t i03 = ggml_wrap_index(i3 - s3, ne03);
  6570. const float * src_row = src_data + (i03*nb03 + i02*nb02 + i01*nb01) / sizeof(float);
  6571. const int64_t s = ggml_wrap_index(-s0, ne00);
  6572. const int64_t n = ne00 - s;
  6573. ggml_vec_cpy_f32(n, dst_row, src_row + s);
  6574. ggml_vec_cpy_f32(s, dst_row + n, src_row);
  6575. }
  6576. }
  6577. void ggml_compute_forward_roll(
  6578. const ggml_compute_params * params,
  6579. ggml_tensor * dst) {
  6580. const ggml_tensor * src0 = dst->src[0];
  6581. switch (src0->type) {
  6582. case GGML_TYPE_F32:
  6583. {
  6584. ggml_compute_forward_roll_f32(params, dst);
  6585. } break;
  6586. default:
  6587. {
  6588. GGML_ABORT("fatal error");
  6589. }
  6590. }
  6591. }
  6592. // ggml_compute_forward_arange
  6593. static void ggml_compute_forward_arange_f32(
  6594. const ggml_compute_params * params,
  6595. ggml_tensor * dst) {
  6596. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6597. const int ith = params->ith;
  6598. const int nth = params->nth;
  6599. const float start = ggml_get_op_params_f32(dst, 0);
  6600. const float stop = ggml_get_op_params_f32(dst, 1);
  6601. const float step = ggml_get_op_params_f32(dst, 2);
  6602. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  6603. GGML_ASSERT(ggml_nelements(dst) == steps);
  6604. for (int64_t i = ith; i < steps; i+= nth) {
  6605. float value = start + step * i;
  6606. ((float *)dst->data)[i] = value;
  6607. }
  6608. }
  6609. void ggml_compute_forward_arange(
  6610. const ggml_compute_params * params,
  6611. ggml_tensor * dst) {
  6612. switch (dst->type) {
  6613. case GGML_TYPE_F32:
  6614. {
  6615. ggml_compute_forward_arange_f32(params, dst);
  6616. } break;
  6617. default:
  6618. {
  6619. GGML_ABORT("fatal error");
  6620. }
  6621. }
  6622. }
  6623. static void ggml_compute_forward_timestep_embedding_f32(
  6624. const ggml_compute_params * params,
  6625. ggml_tensor * dst) {
  6626. const ggml_tensor * src0 = dst->src[0];
  6627. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6628. const int ith = params->ith;
  6629. const int nth = params->nth;
  6630. GGML_TENSOR_UNARY_OP_LOCALS
  6631. const int dim = ggml_get_op_params_i32(dst, 0);
  6632. const int max_period = ggml_get_op_params_i32(dst, 1);
  6633. int half = dim / 2;
  6634. for (int64_t i = 0; i < ne00; i++) {
  6635. float * embed_data = (float *)((char *) dst->data + i*nb1);
  6636. for (int64_t j = ith; j < half; j += nth) {
  6637. float timestep = ((float *)src0->data)[i];
  6638. float freq = (float)expf(-logf(max_period) * j / half);
  6639. float arg = timestep * freq;
  6640. embed_data[j] = cosf(arg);
  6641. embed_data[j + half] = sinf(arg);
  6642. }
  6643. if (dim % 2 != 0 && ith == 0) {
  6644. embed_data[dim] = 0.f;
  6645. }
  6646. }
  6647. }
  6648. void ggml_compute_forward_timestep_embedding(
  6649. const ggml_compute_params * params,
  6650. ggml_tensor * dst) {
  6651. const ggml_tensor * src0 = dst->src[0];
  6652. switch (src0->type) {
  6653. case GGML_TYPE_F32:
  6654. {
  6655. ggml_compute_forward_timestep_embedding_f32(params, dst);
  6656. } break;
  6657. default:
  6658. {
  6659. GGML_ABORT("fatal error");
  6660. }
  6661. }
  6662. }
  6663. // ggml_compute_forward_argsort
  6664. static void ggml_compute_forward_argsort_f32(
  6665. const ggml_compute_params * params,
  6666. ggml_tensor * dst) {
  6667. const ggml_tensor * src0 = dst->src[0];
  6668. GGML_TENSOR_UNARY_OP_LOCALS
  6669. GGML_ASSERT(nb0 == sizeof(float));
  6670. const int ith = params->ith;
  6671. const int nth = params->nth;
  6672. const int64_t nr = ggml_nrows(src0);
  6673. ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  6674. for (int64_t i = ith; i < nr; i += nth) {
  6675. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  6676. const float * src_data = (float *)((char *) src0->data + i*nb01);
  6677. for (int64_t j = 0; j < ne0; j++) {
  6678. dst_data[j] = j;
  6679. }
  6680. // C doesn't have a functional sort, so we do a bubble sort instead
  6681. for (int64_t j = 0; j < ne0; j++) {
  6682. for (int64_t k = j + 1; k < ne0; k++) {
  6683. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  6684. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  6685. int32_t tmp = dst_data[j];
  6686. dst_data[j] = dst_data[k];
  6687. dst_data[k] = tmp;
  6688. }
  6689. }
  6690. }
  6691. }
  6692. }
  6693. void ggml_compute_forward_argsort(
  6694. const ggml_compute_params * params,
  6695. ggml_tensor * dst) {
  6696. const ggml_tensor * src0 = dst->src[0];
  6697. switch (src0->type) {
  6698. case GGML_TYPE_F32:
  6699. {
  6700. ggml_compute_forward_argsort_f32(params, dst);
  6701. } break;
  6702. default:
  6703. {
  6704. GGML_ABORT("fatal error");
  6705. }
  6706. }
  6707. }
  6708. // ggml_compute_forward_flash_attn_ext
  6709. static void ggml_compute_forward_flash_attn_ext_f16(
  6710. const ggml_compute_params * params,
  6711. ggml_tensor * dst) {
  6712. const ggml_tensor * q = dst->src[0];
  6713. const ggml_tensor * k = dst->src[1];
  6714. const ggml_tensor * v = dst->src[2];
  6715. const ggml_tensor * mask = dst->src[3];
  6716. const ggml_tensor * sinks = dst->src[4];
  6717. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  6718. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  6719. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  6720. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  6721. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  6722. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  6723. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  6724. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  6725. const int ith = params->ith;
  6726. const int nth = params->nth;
  6727. const int64_t DK = nek0;
  6728. const int64_t DV = nev0;
  6729. const int64_t N = neq1;
  6730. GGML_ASSERT(ne0 == DV);
  6731. GGML_ASSERT(ne2 == N);
  6732. // input tensor rows must be contiguous
  6733. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  6734. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  6735. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  6736. GGML_ASSERT(neq0 == DK);
  6737. GGML_ASSERT(nek0 == DK);
  6738. GGML_ASSERT(nev0 == DV);
  6739. GGML_ASSERT(neq1 == N);
  6740. // dst cannot be transposed or permuted
  6741. GGML_ASSERT(nb0 == sizeof(float));
  6742. GGML_ASSERT(nb0 <= nb1);
  6743. GGML_ASSERT(nb1 <= nb2);
  6744. GGML_ASSERT(nb2 <= nb3);
  6745. // broadcast factors
  6746. const int64_t rk2 = neq2/nek2;
  6747. const int64_t rk3 = neq3/nek3;
  6748. const int64_t rv2 = neq2/nev2;
  6749. const int64_t rv3 = neq3/nev3;
  6750. // parallelize by q rows using ggml_vec_dot_f32
  6751. // total rows in q
  6752. const int nr = neq1*neq2*neq3;
  6753. // rows per thread
  6754. const int dr = (nr + nth - 1)/nth;
  6755. // row range for this thread
  6756. const int ir0 = dr*ith;
  6757. const int ir1 = MIN(ir0 + dr, nr);
  6758. float scale = 1.0f;
  6759. float max_bias = 0.0f;
  6760. float logit_softcap = 0.0f;
  6761. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  6762. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  6763. memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
  6764. if (logit_softcap != 0) {
  6765. scale /= logit_softcap;
  6766. }
  6767. const uint32_t n_head = neq2;
  6768. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  6769. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  6770. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  6771. ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
  6772. ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float;
  6773. ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
  6774. ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
  6775. GGML_ASSERT(( q_to_vec_dot) && "fattn: unsupported K-type");
  6776. GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float ) && "fattn: unsupported V-type");
  6777. // loop over n_batch and n_head
  6778. for (int ir = ir0; ir < ir1; ++ir) {
  6779. // q indices
  6780. const int iq3 = ir/(neq2*neq1);
  6781. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6782. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6783. const uint32_t h = iq2; // head index
  6784. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  6785. float S = 0.0f; // sum
  6786. float M = -INFINITY; // maximum KQ value
  6787. float * VKQ32 = (float *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  6788. float * V32 = (VKQ32 + 1*DV); // (temporary) FP32 V buffer
  6789. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator
  6790. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16
  6791. if (v->type == GGML_TYPE_F16) {
  6792. memset(VKQ16, 0, DV*sizeof(ggml_fp16_t));
  6793. } else {
  6794. memset(VKQ32, 0, DV*sizeof(float));
  6795. }
  6796. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1] + (iq2%mask->ne[2])*mask->nb[2] + (iq3%mask->ne[3])*mask->nb[3]) : NULL;
  6797. // k indices
  6798. const int ik3 = iq3 / rk3;
  6799. const int ik2 = iq2 / rk2;
  6800. // v indices
  6801. const int iv3 = iq3 / rv3;
  6802. const int iv2 = iq2 / rv2;
  6803. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  6804. q_to_vec_dot(pq, Q_q, DK);
  6805. // online softmax / attention
  6806. // loop over n_kv and n_head_kv
  6807. // ref: https://arxiv.org/pdf/2112.05682.pdf
  6808. for (int64_t ic = 0; ic < nek1; ++ic) {
  6809. const float mv = mp ? slope*GGML_CPU_FP16_TO_FP32(mp[ic]) : 0.0f;
  6810. if (mv == -INFINITY) {
  6811. continue;
  6812. }
  6813. float s; // KQ value
  6814. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  6815. kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1);
  6816. s = s*scale; // scale KQ value
  6817. if (logit_softcap != 0.0f) {
  6818. s = logit_softcap*tanhf(s);
  6819. }
  6820. s += mv; // apply mask
  6821. const float Mold = M;
  6822. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  6823. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  6824. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  6825. if (v->type == GGML_TYPE_F16) {
  6826. if (s > M) {
  6827. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  6828. M = s;
  6829. ms = expf(Mold - M);
  6830. // V = V*expf(Mold - M)
  6831. ggml_vec_scale_f16(DV, VKQ16, ms);
  6832. } else {
  6833. // no new maximum, ms == 1.0f, vs != 1.0f
  6834. vs = expf(s - M);
  6835. }
  6836. // V += v*expf(s - M)
  6837. ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs);
  6838. } else {
  6839. if (s > M) {
  6840. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  6841. M = s;
  6842. ms = expf(Mold - M);
  6843. // V = V*expf(Mold - M)
  6844. ggml_vec_scale_f32(DV, VKQ32, ms);
  6845. } else {
  6846. // no new maximum, ms == 1.0f, vs != 1.0f
  6847. vs = expf(s - M);
  6848. }
  6849. // V += v*expf(s - M)
  6850. if (v_to_float) {
  6851. v_to_float(v_data, V32, DV);
  6852. ggml_vec_mad_f32(DV, VKQ32, V32, vs);
  6853. } else {
  6854. // V is F32
  6855. ggml_vec_mad_f32(DV, VKQ32, (const float *) v_data, vs);
  6856. }
  6857. }
  6858. S = S*ms + vs; // scale and increment sum with partial sum
  6859. }
  6860. if (v->type == GGML_TYPE_F16) {
  6861. for (int64_t d = 0; d < DV; ++d) {
  6862. VKQ32[d] = GGML_CPU_FP16_TO_FP32(VKQ16[d]);
  6863. }
  6864. }
  6865. // sinks
  6866. if (sinks) {
  6867. const float s = ((float *)((char *) sinks->data))[h];
  6868. float ms = 1.0f;
  6869. float vs = 1.0f;
  6870. if (s > M) {
  6871. ms = expf(M - s);
  6872. ggml_vec_scale_f32(DV, VKQ32, ms);
  6873. } else {
  6874. vs = expf(s - M);
  6875. }
  6876. S = S*ms + vs;
  6877. }
  6878. // V /= S
  6879. const float S_inv = 1.0f/S;
  6880. ggml_vec_scale_f32(DV, VKQ32, S_inv);
  6881. // dst indices
  6882. const int i1 = iq1;
  6883. const int i2 = iq2;
  6884. const int i3 = iq3;
  6885. // original
  6886. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  6887. // permute(0, 2, 1, 3)
  6888. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  6889. }
  6890. }
  6891. void ggml_compute_forward_flash_attn_ext(
  6892. const ggml_compute_params * params,
  6893. ggml_tensor * dst) {
  6894. switch (dst->op_params[3]) {
  6895. case GGML_PREC_DEFAULT:
  6896. case GGML_PREC_F32:
  6897. {
  6898. // uses F32 accumulators
  6899. ggml_compute_forward_flash_attn_ext_f16(params, dst);
  6900. } break;
  6901. default:
  6902. {
  6903. GGML_ABORT("fatal error");
  6904. }
  6905. }
  6906. }
  6907. // ggml_compute_forward_flash_attn_back
  6908. static void ggml_compute_forward_flash_attn_back_f32(
  6909. const ggml_compute_params * params,
  6910. const bool masked,
  6911. ggml_tensor * dst) {
  6912. const ggml_tensor * q = dst->src[0];
  6913. const ggml_tensor * k = dst->src[1];
  6914. const ggml_tensor * v = dst->src[2];
  6915. const ggml_tensor * d = dst->src[3];
  6916. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  6917. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  6918. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  6919. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  6920. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  6921. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  6922. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  6923. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  6924. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  6925. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  6926. const int ith = params->ith;
  6927. const int nth = params->nth;
  6928. const int64_t D = neq0;
  6929. const int64_t N = neq1;
  6930. const int64_t P = nek1 - N;
  6931. const int64_t M = P + N;
  6932. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6933. const int mxDM = MAX(D, Mup);
  6934. // GGML_ASSERT(ne0 == D);
  6935. // GGML_ASSERT(ne1 == N);
  6936. GGML_ASSERT(P >= 0);
  6937. GGML_ASSERT(nbq0 == sizeof(float));
  6938. GGML_ASSERT(nbk0 == sizeof(float));
  6939. GGML_ASSERT(nbv0 == sizeof(float));
  6940. GGML_ASSERT(neq0 == D);
  6941. GGML_ASSERT(nek0 == D);
  6942. GGML_ASSERT(nev1 == D);
  6943. GGML_ASSERT(ned0 == D);
  6944. GGML_ASSERT(neq1 == N);
  6945. GGML_ASSERT(nek1 == N + P);
  6946. GGML_ASSERT(nev1 == D);
  6947. GGML_ASSERT(ned1 == N);
  6948. // dst cannot be transposed or permuted
  6949. GGML_ASSERT(nb0 == sizeof(float));
  6950. GGML_ASSERT(nb0 <= nb1);
  6951. GGML_ASSERT(nb1 <= nb2);
  6952. GGML_ASSERT(nb2 <= nb3);
  6953. if (ith == 0) {
  6954. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  6955. }
  6956. ggml_barrier(params->threadpool);
  6957. const int64_t elem_q = ggml_nelements(q);
  6958. const int64_t elem_k = ggml_nelements(k);
  6959. ggml_type result_type = dst->type;
  6960. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  6961. const size_t tsize = ggml_type_size(result_type);
  6962. const size_t offs_q = 0;
  6963. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  6964. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  6965. void * grad_q = (char *) dst->data;
  6966. void * grad_k = (char *) dst->data + offs_k;
  6967. void * grad_v = (char *) dst->data + offs_v;
  6968. const size_t nbgq1 = nb0*neq0;
  6969. const size_t nbgq2 = nb0*neq0*neq1;
  6970. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  6971. const size_t nbgk1 = nb0*nek0;
  6972. const size_t nbgk2 = nb0*nek0*nek1;
  6973. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  6974. const size_t nbgv1 = nb0*nev0;
  6975. const size_t nbgv2 = nb0*nev0*nev1;
  6976. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  6977. // parallelize by k rows using ggml_vec_dot_f32
  6978. // total rows in k
  6979. const int nr = nek2*nek3;
  6980. // rows per thread
  6981. const int dr = (nr + nth - 1)/nth;
  6982. // row range for this thread
  6983. const int ir0 = dr*ith;
  6984. const int ir1 = MIN(ir0 + dr, nr);
  6985. const float scale = 1.0f/sqrtf(D);
  6986. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6987. // how often k2 (and v2) is repeated in q2
  6988. int nrep = neq2/nek2;
  6989. for (int ir = ir0; ir < ir1; ++ir) {
  6990. // q indices
  6991. const int ik3 = ir/(nek2);
  6992. const int ik2 = ir - ik3*nek2;
  6993. const int iq3 = ik3;
  6994. const int id3 = ik3;
  6995. const int iv3 = ik3;
  6996. const int iv2 = ik2;
  6997. for (int irep = 0; irep < nrep; ++irep) {
  6998. const int iq2 = ik2 + irep*nek2;
  6999. const int id2 = iq2;
  7000. // (ik2 + irep*nek2) % nek2 == ik2
  7001. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  7002. const int id1 = iq1;
  7003. // not sure about CACHE_LINE_SIZE_F32..
  7004. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  7005. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  7006. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  7007. for (int i = M; i < Mup; ++i) {
  7008. S[i] = -INFINITY;
  7009. }
  7010. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  7011. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  7012. // k indices
  7013. const int ik1 = ic;
  7014. // S indices
  7015. const int i1 = ik1;
  7016. ggml_vec_dot_f32(neq0,
  7017. S + i1, 0,
  7018. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  7019. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  7020. }
  7021. // scale
  7022. ggml_vec_scale_f32(masked_begin, S, scale);
  7023. for (int64_t i = masked_begin; i < M; i++) {
  7024. S[i] = -INFINITY;
  7025. }
  7026. // softmax
  7027. // exclude known -INF S[..] values from max and loop
  7028. // dont forget to set their SM values to zero
  7029. {
  7030. float max = -INFINITY;
  7031. ggml_vec_max_f32(masked_begin, &max, S);
  7032. ggml_float sum = 0.0;
  7033. {
  7034. #ifdef GGML_SOFT_MAX_ACCELERATE
  7035. max = -max;
  7036. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  7037. vvexpf(SM, SM, &Mup);
  7038. ggml_vec_sum_f32(Mup, &sum, SM);
  7039. #else
  7040. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  7041. #endif
  7042. }
  7043. assert(sum > 0.0);
  7044. sum = 1.0/sum;
  7045. ggml_vec_scale_f32(masked_begin, SM, sum);
  7046. }
  7047. // step-by-step explanation
  7048. {
  7049. // forward-process shape grads from backward process
  7050. // parallel_for ik2,ik3:
  7051. // for irep:
  7052. // iq2 = ik2 + irep*nek2
  7053. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  7054. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  7055. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  7056. // for iq1:
  7057. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  7058. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  7059. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  7060. // S0 = -Inf [D,1,1,1]
  7061. // ~S1[i] = dot(kcur[:D,i], qcur)
  7062. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  7063. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  7064. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  7065. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  7066. // ~S5[i] = dot(vcur[:,i], S4)
  7067. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  7068. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  7069. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  7070. // dst backward-/ grad[dst] = d
  7071. //
  7072. // output gradients with their dependencies:
  7073. //
  7074. // grad[kcur] = grad[S1].T @ qcur
  7075. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  7076. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  7077. // grad[S4] = grad[S5] @ vcur
  7078. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  7079. // grad[qcur] = grad[S1] @ kcur
  7080. // grad[vcur] = grad[S5].T @ S4
  7081. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  7082. //
  7083. // in post-order:
  7084. //
  7085. // S1 = qcur @ kcur.T
  7086. // S2 = S1 * scale
  7087. // S3 = diag_mask_inf(S2, P)
  7088. // S4 = softmax(S3)
  7089. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  7090. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  7091. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  7092. // grad[qcur] = grad[S1] @ kcur
  7093. // grad[kcur] = grad[S1].T @ qcur
  7094. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  7095. //
  7096. // using less variables (SM=S4):
  7097. //
  7098. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  7099. // SM = softmax(S)
  7100. // S = d[:D,iq1,iq2,iq3] @ vcur
  7101. // dot_SM_gradSM = dot(SM, S)
  7102. // S = SM * (S - dot(SM, S))
  7103. // S = diag_mask_zero(S, P) * scale
  7104. //
  7105. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  7106. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  7107. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  7108. }
  7109. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  7110. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  7111. // for ic:
  7112. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  7113. // exclude known future zero S[..] values from operation
  7114. ggml_vec_set_f32(masked_begin, S, 0);
  7115. for (int64_t ic = 0; ic < D; ++ic) {
  7116. ggml_vec_mad_f32(masked_begin,
  7117. S,
  7118. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  7119. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  7120. }
  7121. // S = SM * (S - dot(SM, S))
  7122. float dot_SM_gradSM = 0;
  7123. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  7124. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  7125. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  7126. // S = diag_mask_zero(S, P) * scale
  7127. // already done by above ggml_vec_set_f32
  7128. // exclude known zero S[..] values from operation
  7129. ggml_vec_scale_f32(masked_begin, S, scale);
  7130. // S shape [M,1]
  7131. // SM shape [M,1]
  7132. // kcur shape [D,M]
  7133. // qcur shape [D,1]
  7134. // vcur shape [M,D]
  7135. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  7136. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  7137. // for ic:
  7138. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  7139. // exclude known zero S[..] values from loop
  7140. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  7141. ggml_vec_mad_f32(D,
  7142. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  7143. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7144. S[ic]);
  7145. }
  7146. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  7147. // for ic:
  7148. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  7149. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  7150. // exclude known zero S[..] values from loop
  7151. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  7152. ggml_vec_mad_f32(D,
  7153. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  7154. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  7155. S[ic]);
  7156. }
  7157. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  7158. // for ic:
  7159. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  7160. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  7161. // exclude known zero SM[..] values from mad
  7162. for (int64_t ic = 0; ic < D; ++ic) {
  7163. ggml_vec_mad_f32(masked_begin,
  7164. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  7165. SM,
  7166. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  7167. }
  7168. }
  7169. }
  7170. }
  7171. }
  7172. void ggml_compute_forward_flash_attn_back(
  7173. const ggml_compute_params * params,
  7174. const bool masked,
  7175. ggml_tensor * dst) {
  7176. const ggml_tensor * q = dst->src[0];
  7177. switch (q->type) {
  7178. case GGML_TYPE_F32:
  7179. {
  7180. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  7181. } break;
  7182. default:
  7183. {
  7184. GGML_ABORT("fatal error");
  7185. }
  7186. }
  7187. }
  7188. // ggml_compute_forward_ssm_conv
  7189. static void ggml_compute_forward_ssm_conv_f32(
  7190. const ggml_compute_params * params,
  7191. ggml_tensor * dst) {
  7192. const ggml_tensor * src0 = dst->src[0]; // conv_x
  7193. const ggml_tensor * src1 = dst->src[1]; // conv1d.weight
  7194. const int ith = params->ith;
  7195. const int nth = params->nth;
  7196. const int nc = src1->ne[0]; // d_conv
  7197. const int ncs = src0->ne[0]; // d_conv - 1 + n_t
  7198. const int nr = src0->ne[1]; // d_inner
  7199. const int n_t = dst->ne[1]; // tokens per sequence
  7200. const int n_s = dst->ne[2]; // number of sequences in the batch
  7201. GGML_ASSERT( dst->ne[0] == nr);
  7202. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7203. GGML_ASSERT(src1->nb[0] == sizeof(float));
  7204. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  7205. // rows per thread
  7206. const int dr = (nr + nth - 1)/nth;
  7207. // row range for this thread
  7208. const int ir0 = dr*ith;
  7209. const int ir1 = MIN(ir0 + dr, nr);
  7210. const int ir = ir1 - ir0;
  7211. for (int i3 = 0; i3 < n_s; ++i3) {
  7212. for (int i2 = 0; i2 < n_t; ++i2) {
  7213. // {d_conv - 1 + n_t, d_inner, n_seqs}
  7214. // sliding window
  7215. const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
  7216. const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
  7217. float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
  7218. // TODO: transpose the output for smaller strides for big batches?
  7219. // d_inner
  7220. for (int i1 = 0; i1 < ir; ++i1) {
  7221. // rowwise dot product
  7222. // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
  7223. float sumf = 0.0f;
  7224. // d_conv
  7225. for (int i0 = 0; i0 < nc; ++i0) {
  7226. sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
  7227. }
  7228. x[i1] = sumf;
  7229. }
  7230. }
  7231. }
  7232. }
  7233. void ggml_compute_forward_ssm_conv(
  7234. const ggml_compute_params * params,
  7235. ggml_tensor * dst) {
  7236. switch (dst->src[0]->type) {
  7237. case GGML_TYPE_F32:
  7238. {
  7239. ggml_compute_forward_ssm_conv_f32(params, dst);
  7240. } break;
  7241. default:
  7242. {
  7243. GGML_ABORT("fatal error");
  7244. }
  7245. }
  7246. }
  7247. // ggml_compute_forward_ssm_scan
  7248. static void ggml_compute_forward_ssm_scan_f32(
  7249. const ggml_compute_params * params,
  7250. ggml_tensor * dst) {
  7251. const ggml_tensor * src0 = dst->src[0]; // s {d_state, dim, n_head, n_seqs+}
  7252. const ggml_tensor * src1 = dst->src[1]; // x {dim, n_head, n_seq_tokens, n_seqs}
  7253. const ggml_tensor * src2 = dst->src[2]; // dt {n_head, n_seq_tokens, n_seqs}
  7254. const ggml_tensor * src3 = dst->src[3]; // A {d_state, n_head} or {1, n_head}
  7255. const ggml_tensor * src4 = dst->src[4]; // B {d_state, n_group, n_seq_tokens, n_seqs}
  7256. const ggml_tensor * src5 = dst->src[5]; // C {d_state, n_group, n_seq_tokens, n_seqs}
  7257. const ggml_tensor * src6 = dst->src[6]; // ids {n_seqs}
  7258. const int ith = params->ith;
  7259. const int nth = params->nth;
  7260. const int64_t nc = src0->ne[0]; // d_state
  7261. const int64_t nr = src0->ne[1]; // dim
  7262. const int64_t nh = src1->ne[1]; // n_head
  7263. const int64_t ng = src4->ne[1];
  7264. const int64_t nt = src1->ne[2]; // number of tokens per sequence
  7265. const int64_t ns = src1->ne[3]; // number of sequences in the batch
  7266. // can't use ggml_nbytes because src1 is not necessarily contiguous
  7267. const int64_t s_off = ggml_nelements(src1) * ggml_element_size(src1);
  7268. GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*ns == ggml_nelements(dst));
  7269. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7270. GGML_ASSERT(src1->nb[0] == sizeof(float));
  7271. GGML_ASSERT(src2->nb[0] == sizeof(float));
  7272. GGML_ASSERT(src3->nb[0] == sizeof(float));
  7273. GGML_ASSERT(src4->nb[0] == sizeof(float));
  7274. GGML_ASSERT(src5->nb[0] == sizeof(float));
  7275. GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
  7276. // allows optimizing the modulo since n_group should be a power of 2
  7277. GGML_ASSERT((ng & -ng) == ng);
  7278. // heads per thread
  7279. const int dh = (nh + nth - 1)/nth;
  7280. // head range for this thread
  7281. const int ih0 = dh*ith;
  7282. const int ih1 = MIN(ih0 + dh, nh);
  7283. const int32_t * ids = (const int32_t *) src6->data;
  7284. for (int i3 = 0; i3 < ns; ++i3) {
  7285. const float * s0 = (const float *) ((const char *) src0->data + ids[i3]*(src0->nb[3])); // {d_state, dim, nh, ns}
  7286. float * s = ( float *) (( char *) dst->data + i3*(src0->nb[3]) + s_off); // {d_state, dim, nh, ns}
  7287. for (int i2 = 0; i2 < nt; ++i2) {
  7288. const float * x = (const float *) ((const char *) src1->data + i2*(src1->nb[2]) + i3*(src1->nb[3])); // {dim, nh, nt, ns}
  7289. const float * dt = (const float *) ((const char *) src2->data + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {nh, nt, ns}
  7290. const float * A = (const float *) ((const char *) src3->data); // {d_state, nh} or {1, nh}
  7291. const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[2]) + i3*(src4->nb[3])); // {d_state, ng, nt, ns}
  7292. const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[2]) + i3*(src5->nb[3])); // {d_state, ng, nt, ns}
  7293. float * y = ( float *) (( char *) dst->data + i2*(nh*nr*sizeof(float)) + i3*(nt*nh*nr*sizeof(float))); // {dim, nh, nt, ns}
  7294. if (src3->ne[0] == 1) {
  7295. // Mamba-2 has a scalar decay factor per head; dA can be outside the state-wise loop
  7296. // n_head
  7297. for (int h = ih0; h < ih1; ++h) {
  7298. // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
  7299. const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
  7300. const float dA = expf(dt_soft_plus * A[h]);
  7301. // dim
  7302. for (int i1 = 0; i1 < nr; ++i1) {
  7303. const int ii = i1 + h*nr;
  7304. const float x_dt = x[ii] * dt_soft_plus;
  7305. float sumf = 0.0f;
  7306. #if defined(GGML_SIMD)
  7307. #if defined(__ARM_FEATURE_SVE)
  7308. const int ggml_f32_epr = svcntw();
  7309. const int ggml_f32_step = 1 * ggml_f32_epr;
  7310. const int np = (nc & ~(ggml_f32_step - 1));
  7311. GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
  7312. GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
  7313. GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
  7314. for (int i = 0; i < np; i += ggml_f32_step) {
  7315. // TODO: maybe unroll more?
  7316. for (int j = 0; j < 1; j++) {
  7317. GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
  7318. GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
  7319. GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
  7320. t0 = GGML_F32_VEC_MUL(t0, adA);
  7321. t1 = GGML_F32_VEC_MUL(t1, axdt);
  7322. t0 = GGML_F32_VEC_ADD(t0, t1);
  7323. sum = GGML_F32_VEC_FMA(sum, t0, t2);
  7324. GGML_F32_VEC_STORE(s + i + j*ggml_f32_epr + ii*nc, t0);
  7325. }
  7326. }
  7327. sumf = GGML_F32xt_REDUCE_ONE(sum);
  7328. #else
  7329. const int np = (nc & ~(GGML_F32_STEP - 1));
  7330. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  7331. GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
  7332. GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
  7333. GGML_F32_VEC ax[GGML_F32_ARR];
  7334. GGML_F32_VEC ay[GGML_F32_ARR];
  7335. GGML_F32_VEC az[GGML_F32_ARR];
  7336. for (int i = 0; i < np; i += GGML_F32_STEP) {
  7337. for (int j = 0; j < GGML_F32_ARR; j++) {
  7338. ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
  7339. ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
  7340. az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
  7341. ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
  7342. ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
  7343. ax[j] = GGML_F32_VEC_ADD(ax[j], ay[j]);
  7344. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], az[j]);
  7345. GGML_F32_VEC_STORE(s + i + j*GGML_F32_EPR + ii*nc, ax[j]);
  7346. }
  7347. }
  7348. // reduce sum0..sum3 to sum0
  7349. GGML_F32_VEC_REDUCE(sumf, sum);
  7350. #endif
  7351. #else
  7352. const int np = 0;
  7353. #endif
  7354. // d_state
  7355. for (int i0 = np; i0 < nc; ++i0) {
  7356. const int i = i0 + ii*nc;
  7357. const int ig = i0 + (h & (ng - 1))*nc;
  7358. // state = prev_state * dA + dB * x
  7359. const float state = (s0[i] * dA) + (B[ig] * x_dt);
  7360. // y = rowwise_dotprod(state, C)
  7361. sumf += state * C[ig];
  7362. s[i] = state;
  7363. }
  7364. y[ii] = sumf;
  7365. }
  7366. }
  7367. } else {
  7368. // Mamba-1 has an element-wise decay factor for the states
  7369. // n_head
  7370. for (int h = ih0; h < ih1; ++h) {
  7371. // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
  7372. const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
  7373. // dim
  7374. for (int i1 = 0; i1 < nr; ++i1) {
  7375. const int ii = i1 + h*nr;
  7376. const float x_dt = x[ii] * dt_soft_plus;
  7377. #if defined(__ARM_FEATURE_SVE)
  7378. svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
  7379. svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
  7380. svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
  7381. // d_state
  7382. // TODO: what happens when (d_state % svcntw()) != 0?
  7383. for (int64_t k = 0; k < nc; k += svcntw()) {
  7384. svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
  7385. svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + (h & (ng - 1))*nc]);
  7386. svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + (h & (ng - 1))*nc]);
  7387. svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
  7388. svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
  7389. t1 = exp_ps_sve(svptrue_b32(), t1);
  7390. svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
  7391. vs0 = GGML_F32_VEC_FMA(t2, vs0, t1);
  7392. r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
  7393. GGML_F32_VEC_STORE(&s[ii*nc + k], vs0);
  7394. }
  7395. y[ii] = GGML_F32xt_REDUCE_ONE(r1_vector);
  7396. #else
  7397. float sumf = 0.0f;
  7398. // NOTE: can't really use GGML_SIMD here because d_state is usually 16
  7399. // and also because expf is used within the loop.
  7400. // d_state
  7401. for (int i0 = 0; i0 < nc; ++i0) {
  7402. const int i = i0 + ii*nc;
  7403. const int ig = i0 + (h & (ng - 1))*nc;
  7404. // state = prev_state * dA + dB * x
  7405. const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
  7406. // y = rowwise_dotprod(state, C)
  7407. sumf += state * C[ig];
  7408. s[i] = state;
  7409. }
  7410. y[ii] = sumf;
  7411. #endif
  7412. }
  7413. }
  7414. }
  7415. // use the output as the source when it's not the first token-wise iteration
  7416. s0 = s;
  7417. }
  7418. }
  7419. }
  7420. void ggml_compute_forward_ssm_scan(
  7421. const ggml_compute_params * params,
  7422. ggml_tensor * dst) {
  7423. switch (dst->src[0]->type) {
  7424. case GGML_TYPE_F32:
  7425. {
  7426. ggml_compute_forward_ssm_scan_f32(params, dst);
  7427. } break;
  7428. default:
  7429. {
  7430. GGML_ABORT("fatal error");
  7431. }
  7432. }
  7433. }
  7434. // ggml_compute_forward_win_part
  7435. static void ggml_compute_forward_win_part_f32(
  7436. const ggml_compute_params * params,
  7437. ggml_tensor * dst) {
  7438. GGML_UNUSED(params);
  7439. const ggml_tensor * src0 = dst->src[0];
  7440. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7441. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  7442. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  7443. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  7444. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  7445. assert(ne00 == ne0);
  7446. assert(ne3 == nep0*nep1);
  7447. // TODO: optimize / multi-thread
  7448. for (int py = 0; py < nep1; ++py) {
  7449. for (int px = 0; px < nep0; ++px) {
  7450. const int64_t i3 = py*nep0 + px;
  7451. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  7452. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  7453. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7454. const int64_t i02 = py*w + i2;
  7455. const int64_t i01 = px*w + i1;
  7456. const int64_t i00 = i0;
  7457. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  7458. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  7459. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  7460. ((float *) dst->data)[i] = 0.0f;
  7461. } else {
  7462. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  7463. }
  7464. }
  7465. }
  7466. }
  7467. }
  7468. }
  7469. }
  7470. void ggml_compute_forward_win_part(
  7471. const ggml_compute_params * params,
  7472. ggml_tensor * dst) {
  7473. const ggml_tensor * src0 = dst->src[0];
  7474. switch (src0->type) {
  7475. case GGML_TYPE_F32:
  7476. {
  7477. ggml_compute_forward_win_part_f32(params, dst);
  7478. } break;
  7479. default:
  7480. {
  7481. GGML_ABORT("fatal error");
  7482. }
  7483. }
  7484. }
  7485. // ggml_compute_forward_win_unpart
  7486. static void ggml_compute_forward_win_unpart_f32(
  7487. const ggml_compute_params * params,
  7488. ggml_tensor * dst) {
  7489. GGML_UNUSED(params);
  7490. const ggml_tensor * src0 = dst->src[0];
  7491. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7492. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  7493. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  7494. // padding
  7495. const int px = (w - ne1%w)%w;
  7496. //const int py = (w - ne2%w)%w;
  7497. const int npx = (px + ne1)/w;
  7498. //const int npy = (py + ne2)/w;
  7499. assert(ne0 == ne00);
  7500. // TODO: optimize / multi-thread
  7501. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  7502. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  7503. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7504. const int ip2 = i2/w;
  7505. const int ip1 = i1/w;
  7506. const int64_t i02 = i2%w;
  7507. const int64_t i01 = i1%w;
  7508. const int64_t i00 = i0;
  7509. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  7510. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  7511. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  7512. }
  7513. }
  7514. }
  7515. }
  7516. void ggml_compute_forward_win_unpart(
  7517. const ggml_compute_params * params,
  7518. ggml_tensor * dst) {
  7519. const ggml_tensor * src0 = dst->src[0];
  7520. switch (src0->type) {
  7521. case GGML_TYPE_F32:
  7522. {
  7523. ggml_compute_forward_win_unpart_f32(params, dst);
  7524. } break;
  7525. default:
  7526. {
  7527. GGML_ABORT("fatal error");
  7528. }
  7529. }
  7530. }
  7531. //gmml_compute_forward_unary
  7532. void ggml_compute_forward_unary(
  7533. const ggml_compute_params * params,
  7534. ggml_tensor * dst) {
  7535. const ggml_unary_op op = ggml_get_unary_op(dst);
  7536. switch (op) {
  7537. case GGML_UNARY_OP_ABS:
  7538. {
  7539. ggml_compute_forward_abs(params, dst);
  7540. } break;
  7541. case GGML_UNARY_OP_SGN:
  7542. {
  7543. ggml_compute_forward_sgn(params, dst);
  7544. } break;
  7545. case GGML_UNARY_OP_NEG:
  7546. {
  7547. ggml_compute_forward_neg(params, dst);
  7548. } break;
  7549. case GGML_UNARY_OP_STEP:
  7550. {
  7551. ggml_compute_forward_step(params, dst);
  7552. } break;
  7553. case GGML_UNARY_OP_TANH:
  7554. {
  7555. ggml_compute_forward_tanh(params, dst);
  7556. } break;
  7557. case GGML_UNARY_OP_ELU:
  7558. {
  7559. ggml_compute_forward_elu(params, dst);
  7560. } break;
  7561. case GGML_UNARY_OP_RELU:
  7562. {
  7563. ggml_compute_forward_relu(params, dst);
  7564. } break;
  7565. case GGML_UNARY_OP_SIGMOID:
  7566. {
  7567. ggml_compute_forward_sigmoid(params, dst);
  7568. } break;
  7569. case GGML_UNARY_OP_GELU:
  7570. {
  7571. ggml_compute_forward_gelu(params, dst);
  7572. } break;
  7573. case GGML_UNARY_OP_GELU_ERF:
  7574. {
  7575. ggml_compute_forward_gelu_erf(params, dst);
  7576. } break;
  7577. case GGML_UNARY_OP_GELU_QUICK:
  7578. {
  7579. ggml_compute_forward_gelu_quick(params, dst);
  7580. } break;
  7581. case GGML_UNARY_OP_SILU:
  7582. {
  7583. ggml_compute_forward_silu(params, dst);
  7584. } break;
  7585. case GGML_UNARY_OP_HARDSWISH:
  7586. {
  7587. ggml_compute_forward_hardswish(params, dst);
  7588. } break;
  7589. case GGML_UNARY_OP_HARDSIGMOID:
  7590. {
  7591. ggml_compute_forward_hardsigmoid(params, dst);
  7592. } break;
  7593. case GGML_UNARY_OP_EXP:
  7594. {
  7595. ggml_compute_forward_exp(params, dst);
  7596. } break;
  7597. default:
  7598. {
  7599. GGML_ABORT("fatal error");
  7600. }
  7601. }
  7602. }
  7603. //ggml_compute_forward_glu
  7604. void ggml_compute_forward_glu(
  7605. const ggml_compute_params * params,
  7606. ggml_tensor * dst) {
  7607. const ggml_glu_op op = ggml_get_glu_op(dst);
  7608. switch (op) {
  7609. case GGML_GLU_OP_REGLU:
  7610. {
  7611. ggml_compute_forward_reglu(params, dst);
  7612. } break;
  7613. case GGML_GLU_OP_GEGLU:
  7614. {
  7615. ggml_compute_forward_geglu(params, dst);
  7616. } break;
  7617. case GGML_GLU_OP_SWIGLU:
  7618. {
  7619. ggml_compute_forward_swiglu(params, dst);
  7620. } break;
  7621. case GGML_GLU_OP_SWIGLU_OAI:
  7622. {
  7623. ggml_compute_forward_swiglu_oai(params, dst);
  7624. } break;
  7625. case GGML_GLU_OP_GEGLU_ERF:
  7626. {
  7627. ggml_compute_forward_geglu_erf(params, dst);
  7628. } break;
  7629. case GGML_GLU_OP_GEGLU_QUICK:
  7630. {
  7631. ggml_compute_forward_geglu_quick(params, dst);
  7632. } break;
  7633. default:
  7634. {
  7635. GGML_ABORT("fatal error");
  7636. }
  7637. }
  7638. }
  7639. // ggml_compute_forward_get_rel_pos
  7640. static void ggml_compute_forward_get_rel_pos_f16(
  7641. const ggml_compute_params * params,
  7642. ggml_tensor * dst) {
  7643. GGML_UNUSED(params);
  7644. const ggml_tensor * src0 = dst->src[0];
  7645. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  7646. GGML_TENSOR_UNARY_OP_LOCALS
  7647. const int64_t w = ne1;
  7648. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  7649. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  7650. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  7651. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  7652. const int64_t pos = (w - i1 - 1) + i2;
  7653. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7654. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  7655. }
  7656. }
  7657. }
  7658. }
  7659. void ggml_compute_forward_get_rel_pos(
  7660. const ggml_compute_params * params,
  7661. ggml_tensor * dst) {
  7662. const ggml_tensor * src0 = dst->src[0];
  7663. switch (src0->type) {
  7664. case GGML_TYPE_F16:
  7665. case GGML_TYPE_BF16:
  7666. {
  7667. ggml_compute_forward_get_rel_pos_f16(params, dst);
  7668. } break;
  7669. default:
  7670. {
  7671. GGML_ABORT("fatal error");
  7672. }
  7673. }
  7674. }
  7675. // ggml_compute_forward_add_rel_pos
  7676. static void ggml_compute_forward_add_rel_pos_f32(
  7677. const ggml_compute_params * params,
  7678. ggml_tensor * dst) {
  7679. const ggml_tensor * src0 = dst->src[0];
  7680. const ggml_tensor * src1 = dst->src[1];
  7681. const ggml_tensor * src2 = dst->src[2];
  7682. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  7683. if (!inplace) {
  7684. if (params->ith == 0) {
  7685. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  7686. }
  7687. ggml_barrier(params->threadpool);
  7688. }
  7689. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  7690. float * src1_data = (float *) src1->data;
  7691. float * src2_data = (float *) src2->data;
  7692. float * dst_data = (float *) dst->data;
  7693. const int64_t ne10 = src1->ne[0];
  7694. const int64_t ne11 = src1->ne[1];
  7695. const int64_t ne12 = src1->ne[2];
  7696. const int64_t ne13 = src1->ne[3];
  7697. const int ith = params->ith;
  7698. const int nth = params->nth;
  7699. // total patches in dst
  7700. const int np = ne13;
  7701. // patches per thread
  7702. const int dp = (np + nth - 1)/nth;
  7703. // patch range for this thread
  7704. const int ip0 = dp*ith;
  7705. const int ip1 = MIN(ip0 + dp, np);
  7706. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  7707. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7708. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7709. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  7710. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7711. const int64_t jp0 = jp1 + i10;
  7712. const float src1_e = src1_data[jp0];
  7713. const float src2_e = src2_data[jp0];
  7714. const int64_t jdh = jp0 * ne10;
  7715. const int64_t jdw = jdh - (ne10 - 1) * i10;
  7716. for (int64_t j = 0; j < ne10; ++j) {
  7717. dst_data[jdh + j ] += src2_e;
  7718. dst_data[jdw + j*ne10] += src1_e;
  7719. }
  7720. }
  7721. }
  7722. }
  7723. }
  7724. }
  7725. void ggml_compute_forward_add_rel_pos(
  7726. const ggml_compute_params * params,
  7727. ggml_tensor * dst) {
  7728. const ggml_tensor * src0 = dst->src[0];
  7729. switch (src0->type) {
  7730. case GGML_TYPE_F32:
  7731. {
  7732. ggml_compute_forward_add_rel_pos_f32(params, dst);
  7733. } break;
  7734. default:
  7735. {
  7736. GGML_ABORT("fatal error");
  7737. }
  7738. }
  7739. }
  7740. // ggml_compute_forward_rwkv_wkv6
  7741. static void ggml_compute_forward_rwkv_wkv6_f32(
  7742. const ggml_compute_params * params,
  7743. ggml_tensor * dst) {
  7744. const int64_t T = dst->src[1]->ne[2];
  7745. const int64_t C = dst->ne[0];
  7746. const int64_t HEADS = dst->src[1]->ne[1];
  7747. const int64_t n_seqs = dst->src[5]->ne[1];
  7748. const int64_t head_size = C / HEADS;
  7749. float * dst_data = (float *) dst->data;
  7750. float * state = ((float *) dst->data) + C * T;
  7751. const int ith = params->ith;
  7752. const int nth = params->nth;
  7753. if (ith >= HEADS) {
  7754. return;
  7755. }
  7756. const int h_start = (HEADS * ith) / nth;
  7757. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  7758. (HEADS * (ith + 1)) / nth : HEADS;
  7759. float * k = (float *) dst->src[0]->data;
  7760. float * v = (float *) dst->src[1]->data;
  7761. float * r = (float *) dst->src[2]->data;
  7762. float * time_faaaa = (float *) dst->src[3]->data;
  7763. float * time_decay = (float *) dst->src[4]->data;
  7764. size_t t_stride = HEADS * head_size; // Same to C
  7765. size_t h_stride = C / HEADS;
  7766. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  7767. size_t h_stride_2d = head_size * head_size;
  7768. if (ith == 0) {
  7769. memset(dst_data, 0, T * C * sizeof(float));
  7770. }
  7771. ggml_barrier(params->threadpool);
  7772. #if defined(__AVX__) && !defined(__AVX512F__)
  7773. #define GGML_F32X GGML_F32x8
  7774. #define GGML_F32X_SET1 GGML_F32x8_SET1
  7775. #define GGML_F32X_LOAD GGML_F32x8_LOAD
  7776. #define GGML_F32X_STORE GGML_F32x8_STORE
  7777. #define GGML_F32X_MUL GGML_F32x8_MUL
  7778. #define GGML_F32X_FMA GGML_F32x8_FMA
  7779. #define WKV_VECTOR_SIZE 8
  7780. #elif defined(__AVX512F__)
  7781. #define GGML_F32X GGML_F32x16
  7782. #define GGML_F32X_SET1 GGML_F32x16_SET1
  7783. #define GGML_F32X_LOAD GGML_F32x16_LOAD
  7784. #define GGML_F32X_STORE GGML_F32x16_STORE
  7785. #define GGML_F32X_MUL GGML_F32x16_MUL
  7786. #define GGML_F32X_FMA GGML_F32x16_FMA
  7787. #define WKV_VECTOR_SIZE 16
  7788. #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
  7789. #define GGML_F32X GGML_F32xt
  7790. #define GGML_F32X_SET1 GGML_F32xt_SET1
  7791. #define GGML_F32X_LOAD GGML_F32xt_LOAD
  7792. #define GGML_F32X_STORE GGML_F32xt_STORE
  7793. #define GGML_F32X_MUL GGML_F32xt_MUL
  7794. #define GGML_F32X_FMA GGML_F32xt_FMA
  7795. #define WKV_VECTOR_SIZE 8
  7796. #elif defined(__ARM_NEON) && defined(__aarch64__)
  7797. #define GGML_F32X GGML_F32x4
  7798. #define GGML_F32X_SET1 GGML_F32x4_SET1
  7799. #define GGML_F32X_LOAD GGML_F32x4_LOAD
  7800. #define GGML_F32X_STORE GGML_F32x4_STORE
  7801. #define GGML_F32X_MUL GGML_F32x4_MUL
  7802. #define GGML_F32X_FMA GGML_F32x4_FMA
  7803. #define WKV_VECTOR_SIZE 4
  7804. #endif
  7805. #ifdef WKV_VECTOR_SIZE
  7806. int wkv_vector_size;
  7807. #if defined(__ARM_FEATURE_SVE)
  7808. wkv_vector_size = svcntw();
  7809. #else
  7810. wkv_vector_size = WKV_VECTOR_SIZE;
  7811. #endif
  7812. const int64_t vec_count = head_size / wkv_vector_size;
  7813. for (int64_t t = 0; t < T; t++) {
  7814. size_t t_offset = t * t_stride;
  7815. size_t state_offset = head_size * C * (t / (T / n_seqs));
  7816. float * state_cur = state + state_offset;
  7817. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  7818. for (int64_t h = h_start; h < h_end; h++) {
  7819. size_t h_offset = h * h_stride;
  7820. size_t t_h_offset = t_offset + h_offset;
  7821. size_t h_2d_offset = h * h_stride_2d;
  7822. for (int64_t i = 0; i < head_size; i++) {
  7823. size_t t_h_i_offset = t_h_offset + i;
  7824. size_t h_i_offset = h_offset + i;
  7825. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  7826. float k_val = k[t_h_i_offset];
  7827. float r_val = r[t_h_i_offset];
  7828. float time_faaaa_val = time_faaaa[h_i_offset];
  7829. float time_decay_val = time_decay[t_h_i_offset];
  7830. // Broadcast scalar values to vectors
  7831. GGML_F32X k_vec = GGML_F32X_SET1(k_val);
  7832. GGML_F32X r_vec = GGML_F32X_SET1(r_val);
  7833. GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
  7834. GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
  7835. for (int64_t j = 0; j < vec_count; j++) {
  7836. size_t base_j = j * wkv_vector_size;
  7837. size_t t_h_j_offset = t_h_offset + base_j;
  7838. size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
  7839. // Load x elements at once
  7840. GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
  7841. GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
  7842. GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
  7843. // Compute kv = v * k
  7844. GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
  7845. // Compute temp = kv * time_faaaa + prev_state
  7846. GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
  7847. // Update dst: dst += temp * r
  7848. dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
  7849. GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
  7850. // Update state: state = prev_state * time_decay + kv
  7851. GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
  7852. GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
  7853. }
  7854. // Handle remaining elements, this will not be used.
  7855. for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
  7856. size_t t_h_j_offset = t_h_offset + j;
  7857. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  7858. float v_val = v[t_h_j_offset];
  7859. float kv_val = v_val * k_val;
  7860. float prev_state_val = state_prev[h_2d_i_j_offset];
  7861. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  7862. dst_data[t_h_j_offset] += temp_val * r_val;
  7863. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  7864. }
  7865. }
  7866. }
  7867. }
  7868. #else
  7869. // basically fused operations:
  7870. // dst = r @ (time_faaaa * (k @ v) + state),
  7871. // state = time_decay * state + (k @ v),
  7872. // recursive through each token
  7873. for (int64_t t = 0; t < T; t++) {
  7874. size_t t_offset = t * t_stride;
  7875. size_t state_offset = head_size * C * (t / (T / n_seqs));
  7876. float * state_cur = state + state_offset;
  7877. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  7878. for (int64_t h = h_start; h < h_end; h++) {
  7879. size_t h_offset = h * h_stride;
  7880. size_t t_h_offset = t_offset + h_offset;
  7881. size_t h_2d_offset = h * h_stride_2d;
  7882. for (int64_t i = 0; i < head_size; i++) {
  7883. size_t t_h_i_offset = t_h_offset + i;
  7884. size_t h_i_offset = h_offset + i;
  7885. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  7886. float k_val = k[t_h_i_offset];
  7887. float r_val = r[t_h_i_offset];
  7888. float time_faaaa_val = time_faaaa[h_i_offset];
  7889. // RWKV v6: different time_decay for each token.
  7890. float time_decay_val = time_decay[t_h_i_offset];
  7891. for (int64_t j = 0; j < head_size; j++) {
  7892. size_t t_h_j_offset = t_h_offset + j;
  7893. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  7894. float v_val = v[t_h_j_offset];
  7895. float kv_val = v_val * k_val;
  7896. float prev_state_val = state_prev[h_2d_i_j_offset];
  7897. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  7898. dst_data[t_h_j_offset] += temp_val * r_val;
  7899. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  7900. }
  7901. }
  7902. }
  7903. }
  7904. #endif
  7905. }
  7906. void ggml_compute_forward_rwkv_wkv6(
  7907. const ggml_compute_params * params,
  7908. ggml_tensor * dst) {
  7909. const ggml_tensor * src0 = dst->src[0];
  7910. switch (src0->type) {
  7911. case GGML_TYPE_F32:
  7912. {
  7913. ggml_compute_forward_rwkv_wkv6_f32(params, dst);
  7914. } break;
  7915. default:
  7916. {
  7917. GGML_ABORT("fatal error");
  7918. }
  7919. }
  7920. }
  7921. // ggml_compute_forward_gla
  7922. static void ggml_compute_forward_gla_f32(
  7923. const ggml_compute_params * params,
  7924. ggml_tensor * dst) {
  7925. const int64_t T = dst->src[1]->ne[2];
  7926. const int64_t C = dst->ne[0];
  7927. const int64_t HEADS = dst->src[1]->ne[1];
  7928. const int64_t n_seqs = dst->src[4]->ne[1];
  7929. const int64_t head_size = C / HEADS;
  7930. const float scale = ggml_get_op_params_f32(dst, 0);
  7931. float * dst_data = (float *) dst->data;
  7932. float * state = ((float *) dst->data) + C * T;
  7933. const int ith = params->ith;
  7934. const int nth = params->nth;
  7935. if (ith >= HEADS) {
  7936. return;
  7937. }
  7938. const int h_start = (HEADS * ith) / nth;
  7939. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  7940. (HEADS * (ith + 1)) / nth : HEADS;
  7941. float * k = (float *) dst->src[0]->data;
  7942. float * v = (float *) dst->src[1]->data;
  7943. float * q = (float *) dst->src[2]->data;
  7944. float * g = (float *) dst->src[3]->data;
  7945. size_t t_stride = HEADS * head_size; // Same to C
  7946. size_t h_stride = C / HEADS;
  7947. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  7948. size_t h_stride_2d = head_size * head_size;
  7949. if (ith == 0) {
  7950. memset(dst_data, 0, T * C * sizeof(float));
  7951. }
  7952. ggml_barrier(params->threadpool);
  7953. #if defined(__AVX__) && !defined(__AVX512F__)
  7954. #define GGML_F32X GGML_F32x8
  7955. #define GGML_F32X_SET1 GGML_F32x8_SET1
  7956. #define GGML_F32X_LOAD GGML_F32x8_LOAD
  7957. #define GGML_F32X_STORE GGML_F32x8_STORE
  7958. #define GGML_F32X_MUL GGML_F32x8_MUL
  7959. #define GGML_F32X_FMA GGML_F32x8_FMA
  7960. #define GLA_VECTOR_SIZE 8
  7961. #elif defined(__AVX512F__)
  7962. #define GGML_F32X GGML_F32x16
  7963. #define GGML_F32X_SET1 GGML_F32x16_SET1
  7964. #define GGML_F32X_LOAD GGML_F32x16_LOAD
  7965. #define GGML_F32X_STORE GGML_F32x16_STORE
  7966. #define GGML_F32X_MUL GGML_F32x16_MUL
  7967. #define GGML_F32X_FMA GGML_F32x16_FMA
  7968. #define GLA_VECTOR_SIZE 16
  7969. #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
  7970. #define GGML_F32X GGML_F32xt
  7971. #define GGML_F32X_SET1 GGML_F32xt_SET1
  7972. #define GGML_F32X_LOAD GGML_F32xt_LOAD
  7973. #define GGML_F32X_STORE GGML_F32xt_STORE
  7974. #define GGML_F32X_MUL GGML_F32xt_MUL
  7975. #define GGML_F32X_FMA GGML_F32xt_FMA
  7976. #define GLA_VECTOR_SIZE 8
  7977. #elif defined(__ARM_NEON) && defined(__aarch64__)
  7978. #define GGML_F32X GGML_F32x4
  7979. #define GGML_F32X_SET1 GGML_F32x4_SET1
  7980. #define GGML_F32X_LOAD GGML_F32x4_LOAD
  7981. #define GGML_F32X_STORE GGML_F32x4_STORE
  7982. #define GGML_F32X_MUL GGML_F32x4_MUL
  7983. #define GGML_F32X_FMA GGML_F32x4_FMA
  7984. #define GLA_VECTOR_SIZE 4
  7985. #endif
  7986. #ifdef GLA_VECTOR_SIZE
  7987. int gla_vector_size;
  7988. #if defined(__ARM_FEATURE_SVE)
  7989. gla_vector_size = svcntw();
  7990. #else
  7991. gla_vector_size = GLA_VECTOR_SIZE;
  7992. #endif
  7993. const int64_t vec_count = head_size / gla_vector_size;
  7994. for (int64_t t = 0; t < T; t++) {
  7995. size_t t_offset = t * t_stride;
  7996. size_t state_offset = head_size * C * (t / (T / n_seqs));
  7997. float * state_cur = state + state_offset;
  7998. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
  7999. for (int64_t h = h_start; h < h_end; h++) {
  8000. size_t h_offset = h * h_stride;
  8001. size_t t_h_offset = t_offset + h_offset;
  8002. size_t h_2d_offset = h * h_stride_2d;
  8003. for (int64_t i = 0; i < head_size; i++) {
  8004. size_t t_h_i_offset = t_h_offset + i;
  8005. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8006. float k_val = k[t_h_i_offset];
  8007. float q_val = q[t_h_i_offset] * scale;
  8008. float g_val = g[t_h_i_offset];
  8009. // Broadcast scalar values to vectors
  8010. GGML_F32X k_vec = GGML_F32X_SET1(k_val);
  8011. GGML_F32X q_vec = GGML_F32X_SET1(q_val);
  8012. GGML_F32X g_vec = GGML_F32X_SET1(g_val);
  8013. for (int64_t j = 0; j < vec_count; j++) {
  8014. size_t base_j = j * gla_vector_size;
  8015. size_t t_h_j_offset = t_h_offset + base_j;
  8016. size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
  8017. // Load x elements at once
  8018. GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
  8019. GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
  8020. GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
  8021. // Compute kv = v * k
  8022. GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
  8023. // Compute temp = prev_state * g + kv
  8024. GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);
  8025. // Update dst: dst += temp * q
  8026. dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
  8027. GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
  8028. // Update state
  8029. GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
  8030. }
  8031. // Handle remaining elements, this will not be used.
  8032. for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
  8033. size_t t_h_j_offset = t_h_offset + j;
  8034. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  8035. float v_val = v[t_h_j_offset];
  8036. float kv_val = v_val * k_val;
  8037. float prev_state_val = state_prev[h_2d_i_j_offset];
  8038. float temp_val = kv_val + prev_state_val * g_val;
  8039. dst_data[t_h_j_offset] += temp_val * q_val;
  8040. state_cur[h_2d_i_j_offset] = temp_val;
  8041. }
  8042. }
  8043. }
  8044. }
  8045. #else
  8046. for (int64_t t = 0; t < T; t++) {
  8047. size_t t_offset = t * t_stride;
  8048. size_t state_offset = head_size * C * (t / (T / n_seqs));
  8049. float * state_cur = state + state_offset;
  8050. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
  8051. for (int64_t h = h_start; h < h_end; h++) {
  8052. size_t h_offset = h * h_stride;
  8053. size_t t_h_offset = t_offset + h_offset;
  8054. size_t h_2d_offset = h * h_stride_2d;
  8055. for (int64_t i = 0; i < head_size; i++) {
  8056. size_t t_h_i_offset = t_h_offset + i;
  8057. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8058. float k_val = k[t_h_i_offset];
  8059. float q_val = q[t_h_i_offset] * scale;
  8060. float g_val = g[t_h_i_offset];
  8061. for (int64_t j = 0; j < head_size; j++) {
  8062. size_t t_h_j_offset = t_h_offset + j;
  8063. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  8064. float v_val = v[t_h_j_offset];
  8065. float kv_val = v_val * k_val;
  8066. float prev_state_val = state_prev[h_2d_i_j_offset];
  8067. float temp_val = prev_state_val * g_val + kv_val;
  8068. dst_data[t_h_j_offset] += temp_val * q_val;
  8069. state_cur[h_2d_i_j_offset] = temp_val;
  8070. }
  8071. }
  8072. }
  8073. }
  8074. #endif
  8075. }
  8076. void ggml_compute_forward_gla(
  8077. const ggml_compute_params * params,
  8078. ggml_tensor * dst) {
  8079. const ggml_tensor * src0 = dst->src[0];
  8080. switch (src0->type) {
  8081. case GGML_TYPE_F32:
  8082. {
  8083. ggml_compute_forward_gla_f32(params, dst);
  8084. } break;
  8085. default:
  8086. {
  8087. GGML_ABORT("fatal error");
  8088. }
  8089. }
  8090. }
  8091. // ggml_compute_forward_rwkv_wkv7
  8092. static void ggml_compute_forward_rwkv_wkv7_f32(
  8093. const ggml_compute_params * params,
  8094. ggml_tensor * dst) {
  8095. const int64_t T = dst->src[1]->ne[2];
  8096. const int64_t C = dst->ne[0];
  8097. const int64_t HEADS = dst->src[1]->ne[1];
  8098. const int64_t n_seqs = dst->src[6]->ne[1];
  8099. const int64_t head_size = C / HEADS;
  8100. float * dst_data = (float *) dst->data;
  8101. float * state = ((float *) dst->data) + C * T;
  8102. const int ith = params->ith;
  8103. const int nth = params->nth;
  8104. if (ith >= HEADS) {
  8105. return;
  8106. }
  8107. const int h_start = (HEADS * ith) / nth;
  8108. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  8109. (HEADS * (ith + 1)) / nth : HEADS;
  8110. float * r = (float *) dst->src[0]->data;
  8111. float * w = (float *) dst->src[1]->data;
  8112. float * k = (float *) dst->src[2]->data;
  8113. float * v = (float *) dst->src[3]->data;
  8114. float * a = (float *) dst->src[4]->data;
  8115. float * b = (float *) dst->src[5]->data;
  8116. int64_t t_stride = HEADS * head_size; // Same to C
  8117. int64_t h_stride = C / HEADS;
  8118. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  8119. int64_t h_stride_2d = head_size * head_size;
  8120. #if defined(GGML_SIMD)
  8121. #if defined(__ARM_FEATURE_SVE)
  8122. // scalar Route to scalar implementation //TODO: Write SVE code
  8123. for (int64_t t = 0; t < T; t++) {
  8124. int64_t t_offset = t * t_stride;
  8125. int64_t state_offset = head_size * C * (t / (T / n_seqs));
  8126. float * state_cur = state + state_offset;
  8127. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
  8128. for (int64_t h = h_start; h < h_end; h++) {
  8129. int64_t h_offset = h * h_stride;
  8130. int64_t t_h_offset = t_offset + h_offset;
  8131. int64_t h_2d_offset = h * h_stride_2d;
  8132. for (int64_t i = 0; i < head_size; i++) {
  8133. int64_t t_h_i_offset = t_h_offset + i;
  8134. int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8135. float v_val = v[t_h_i_offset];
  8136. float sa = 0, result = 0;
  8137. for (int64_t j = 0; j < head_size; j++) {
  8138. sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
  8139. }
  8140. for (int64_t j = 0; j < head_size; j++) {
  8141. int64_t t_h_j_offset = t_h_offset + j;
  8142. int64_t h_2d_i_j_offset = h_2d_i_offset + j;
  8143. float r_val = r[t_h_j_offset];
  8144. float w_val = w[t_h_j_offset];
  8145. float k_val = k[t_h_j_offset];
  8146. float b_val = b[t_h_j_offset];
  8147. float kv_val = v_val * k_val;
  8148. float prev_state_val = state_prev[h_2d_i_j_offset];
  8149. state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
  8150. result += state_cur[h_2d_i_j_offset] * r_val;
  8151. }
  8152. dst_data[t_h_i_offset] = result;
  8153. }
  8154. }
  8155. }
  8156. #else
  8157. for (int64_t t = 0; t < T; t++) {
  8158. int64_t t_offset = t * t_stride;
  8159. int64_t state_offset = head_size * C * (t / (T / n_seqs));
  8160. float * state_cur = state + state_offset;
  8161. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
  8162. for (int64_t h = h_start; h < h_end; h++) {
  8163. int64_t h_offset = h * h_stride;
  8164. int64_t t_h_offset = t_offset + h_offset;
  8165. int64_t h_2d_offset = h * h_stride_2d;
  8166. for (int64_t ii = 0; ii < head_size; ii++) {
  8167. int64_t t_h_i_offset = t_h_offset + ii;
  8168. int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
  8169. GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
  8170. float sa = 0;
  8171. {
  8172. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  8173. GGML_F32_VEC ax[GGML_F32_ARR];
  8174. GGML_F32_VEC ay[GGML_F32_ARR];
  8175. for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
  8176. for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
  8177. ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
  8178. ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
  8179. sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
  8180. }
  8181. }
  8182. GGML_F32_VEC_REDUCE(sa, sum);
  8183. }
  8184. GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
  8185. int64_t j = 0;
  8186. GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  8187. for (; j < head_size; j += GGML_F32_STEP) {
  8188. for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
  8189. int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
  8190. int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
  8191. GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
  8192. GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
  8193. GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
  8194. GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
  8195. k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
  8196. GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
  8197. // kv + s * decay + sa * b
  8198. state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
  8199. state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
  8200. GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
  8201. result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
  8202. }
  8203. }
  8204. GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
  8205. // There shouldn't be left-overs though.
  8206. for (; j < head_size; j++) {
  8207. int64_t t_h_j_offset = t_h_offset + j;
  8208. int64_t h_2d_i_j_offset = h_2d_i_offset + j;
  8209. float r_val = r[t_h_j_offset];
  8210. float w_val = w[t_h_j_offset];
  8211. float k_val = k[t_h_j_offset];
  8212. float b_val = b[t_h_j_offset];
  8213. float kv_val = v[t_h_i_offset] * k_val;
  8214. float prev_state_val = state_prev[h_2d_i_j_offset];
  8215. state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
  8216. dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
  8217. }
  8218. }
  8219. }
  8220. }
  8221. #endif
  8222. #else
  8223. for (int64_t t = 0; t < T; t++) {
  8224. int64_t t_offset = t * t_stride;
  8225. int64_t state_offset = head_size * C * (t / (T / n_seqs));
  8226. float * state_cur = state + state_offset;
  8227. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
  8228. for (int64_t h = h_start; h < h_end; h++) {
  8229. int64_t h_offset = h * h_stride;
  8230. int64_t t_h_offset = t_offset + h_offset;
  8231. int64_t h_2d_offset = h * h_stride_2d;
  8232. for (int64_t i = 0; i < head_size; i++) {
  8233. int64_t t_h_i_offset = t_h_offset + i;
  8234. int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8235. float v_val = v[t_h_i_offset];
  8236. float sa = 0, result = 0;
  8237. for (int64_t j = 0; j < head_size; j++) {
  8238. sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
  8239. }
  8240. for (int64_t j = 0; j < head_size; j++) {
  8241. int64_t t_h_j_offset = t_h_offset + j;
  8242. int64_t h_2d_i_j_offset = h_2d_i_offset + j;
  8243. float r_val = r[t_h_j_offset];
  8244. float w_val = w[t_h_j_offset];
  8245. float k_val = k[t_h_j_offset];
  8246. float b_val = b[t_h_j_offset];
  8247. float kv_val = v_val * k_val;
  8248. float prev_state_val = state_prev[h_2d_i_j_offset];
  8249. state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
  8250. result += state_cur[h_2d_i_j_offset] * r_val;
  8251. }
  8252. dst_data[t_h_i_offset] = result;
  8253. }
  8254. }
  8255. }
  8256. #endif
  8257. }
  8258. void ggml_compute_forward_rwkv_wkv7(
  8259. const ggml_compute_params * params,
  8260. ggml_tensor * dst) {
  8261. const ggml_tensor * src0 = dst->src[0];
  8262. switch (src0->type) {
  8263. case GGML_TYPE_F32:
  8264. {
  8265. ggml_compute_forward_rwkv_wkv7_f32(params, dst);
  8266. } break;
  8267. default:
  8268. {
  8269. GGML_ABORT("fatal error");
  8270. }
  8271. }
  8272. }
  8273. // ggml_compute_forward_map_custom1
  8274. void ggml_compute_forward_map_custom1(
  8275. const ggml_compute_params * params,
  8276. ggml_tensor * dst) {
  8277. const ggml_tensor * a = dst->src[0];
  8278. struct ggml_map_custom1_op_params p;
  8279. memcpy(&p, dst->op_params, sizeof(p));
  8280. p.fun(dst, a, params->ith, params->nth, p.userdata);
  8281. }
  8282. // ggml_compute_forward_map_custom2
  8283. void ggml_compute_forward_map_custom2(
  8284. const ggml_compute_params * params,
  8285. ggml_tensor * dst) {
  8286. const ggml_tensor * a = dst->src[0];
  8287. const ggml_tensor * b = dst->src[1];
  8288. struct ggml_map_custom2_op_params p;
  8289. memcpy(&p, dst->op_params, sizeof(p));
  8290. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  8291. }
  8292. // ggml_compute_forward_map_custom3
  8293. void ggml_compute_forward_map_custom3(
  8294. const ggml_compute_params * params,
  8295. ggml_tensor * dst) {
  8296. const ggml_tensor * a = dst->src[0];
  8297. const ggml_tensor * b = dst->src[1];
  8298. const ggml_tensor * c = dst->src[2];
  8299. struct ggml_map_custom3_op_params p;
  8300. memcpy(&p, dst->op_params, sizeof(p));
  8301. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  8302. }
  8303. // ggml_compute_forward_custom
  8304. void ggml_compute_forward_custom(
  8305. const struct ggml_compute_params * params,
  8306. struct ggml_tensor * dst) {
  8307. struct ggml_custom_op_params p;
  8308. memcpy(&p, dst->op_params, sizeof(p));
  8309. p.fun(dst, params->ith, params->nth, p.userdata);
  8310. }
  8311. // ggml_compute_forward_cross_entropy_loss
  8312. static void ggml_compute_forward_cross_entropy_loss_f32(
  8313. const ggml_compute_params * params,
  8314. ggml_tensor * dst) {
  8315. const ggml_tensor * src0 = dst->src[0];
  8316. const ggml_tensor * src1 = dst->src[1];
  8317. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8318. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8319. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  8320. GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
  8321. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  8322. GGML_ASSERT(ggml_is_scalar(dst));
  8323. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  8324. // TODO: handle transposed/permuted matrices
  8325. const int64_t nc = src0->ne[0];
  8326. const int64_t nr = ggml_nrows(src0);
  8327. const int ith = params->ith;
  8328. const int nth = params->nth;
  8329. float * sums = (float *) params->wdata;
  8330. float * st = ((float *) params->wdata) + nth + ith*nc;
  8331. float sum_thread = 0.0f;
  8332. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  8333. // rows per thread
  8334. const int64_t dr = (nr + nth - 1)/nth;
  8335. // row range for this thread
  8336. const int64_t ir0 = dr*ith;
  8337. const int64_t ir1 = MIN(ir0 + dr, nr);
  8338. for (int64_t i1 = ir0; i1 < ir1; ++i1) {
  8339. const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
  8340. const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
  8341. #ifndef NDEBUG
  8342. for (int64_t i = 0; i < nc; ++i) {
  8343. //printf("p[%d] = %f\n", i, p[i]);
  8344. assert(!isnan(s0[i]));
  8345. assert(!isnan(s1[i]));
  8346. }
  8347. #endif
  8348. float max = -INFINITY;
  8349. ggml_vec_max_f32(nc, &max, s0);
  8350. const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
  8351. assert(sum_softmax >= 0.0);
  8352. ggml_vec_add1_f32(nc, st, st, -sum_softmax);
  8353. ggml_vec_mul_f32(nc, st, st, s1);
  8354. float sum_st = 0.0f;
  8355. ggml_vec_sum_f32(nc, &sum_st, st);
  8356. sum_thread += sum_st;
  8357. #ifndef NDEBUG
  8358. for (int64_t i = 0; i < nc; ++i) {
  8359. assert(!isnan(st[i]));
  8360. assert(!isinf(st[i]));
  8361. }
  8362. #endif
  8363. }
  8364. sums[ith] = sum_thread;
  8365. ggml_barrier(params->threadpool);
  8366. if (ith == 0) {
  8367. float * dp = (float *) dst->data;
  8368. ggml_vec_sum_f32(nth, dp, sums);
  8369. dp[0] *= -1.0f / (float) nr;
  8370. }
  8371. }
  8372. void ggml_compute_forward_cross_entropy_loss(
  8373. const ggml_compute_params * params,
  8374. ggml_tensor * dst) {
  8375. const ggml_tensor * src0 = dst->src[0];
  8376. switch (src0->type) {
  8377. case GGML_TYPE_F32:
  8378. {
  8379. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  8380. } break;
  8381. default:
  8382. {
  8383. GGML_ABORT("fatal error");
  8384. }
  8385. }
  8386. }
  8387. // ggml_compute_forward_cross_entropy_loss_back
  8388. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  8389. const ggml_compute_params * params,
  8390. ggml_tensor * dst) {
  8391. const ggml_tensor * grad = dst->src[0]; // gradient of forward pass output
  8392. const ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
  8393. const ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
  8394. GGML_ASSERT(ggml_is_contiguous(dst));
  8395. GGML_ASSERT(ggml_is_contiguous(src0f));
  8396. GGML_ASSERT(ggml_is_contiguous(src1f));
  8397. GGML_ASSERT(ggml_is_contiguous(grad));
  8398. GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
  8399. const int64_t ith = params->ith;
  8400. const int64_t nth = params->nth;
  8401. // TODO: handle transposed/permuted matrices
  8402. const int64_t nc = src0f->ne[0];
  8403. const int64_t nr = ggml_nrows(src0f);
  8404. // rows per thread
  8405. const int64_t dr = (nr + nth - 1)/nth;
  8406. // row range for this thread
  8407. const int64_t ir0 = dr*ith;
  8408. const int64_t ir1 = MIN(ir0 + dr, nr);
  8409. const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
  8410. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  8411. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  8412. const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
  8413. const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
  8414. #ifndef NDEBUG
  8415. for (int64_t i = 0; i < nc; ++i) {
  8416. //printf("p[%d] = %f\n", i, p[i]);
  8417. assert(!isnan(s0[i]));
  8418. assert(!isnan(s1[i]));
  8419. }
  8420. #endif
  8421. // soft_max
  8422. float max = -INFINITY;
  8423. ggml_vec_max_f32(nc, &max, s0);
  8424. const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  8425. assert(sum > 0.0);
  8426. ggml_vec_scale_f32(nc, ds0, 1.0/sum);
  8427. // grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
  8428. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  8429. ggml_vec_scale_f32(nc, ds0, d_by_nr);
  8430. #ifndef NDEBUG
  8431. for (int64_t i = 0; i < nc; ++i) {
  8432. assert(!isnan(ds0[i]));
  8433. assert(!isinf(ds0[i]));
  8434. }
  8435. #endif
  8436. }
  8437. }
  8438. void ggml_compute_forward_cross_entropy_loss_back(
  8439. const ggml_compute_params * params,
  8440. ggml_tensor * dst) {
  8441. const ggml_tensor * src0 = dst->src[0];
  8442. switch (src0->type) {
  8443. case GGML_TYPE_F32:
  8444. {
  8445. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  8446. } break;
  8447. default:
  8448. {
  8449. GGML_ABORT("fatal error");
  8450. }
  8451. }
  8452. }
  8453. static void ggml_compute_forward_opt_step_adamw_f32(
  8454. const ggml_compute_params * params,
  8455. ggml_tensor * dst) {
  8456. const ggml_tensor * src0 = dst->src[0];
  8457. const ggml_tensor * src0_grad = dst->src[1];
  8458. const ggml_tensor * src0_grad_m = dst->src[2];
  8459. const ggml_tensor * src0_grad_v = dst->src[3];
  8460. const ggml_tensor * adamw_params = dst->src[4];
  8461. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  8462. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
  8463. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
  8464. GGML_ASSERT(ggml_nelements(adamw_params) == 7);
  8465. const int ith = params->ith;
  8466. const int nth = params->nth;
  8467. const int nr = ggml_nrows(src0);
  8468. GGML_TENSOR_UNARY_OP_LOCALS
  8469. GGML_ASSERT(nb00 == sizeof(float));
  8470. // rows per thread
  8471. const int dr = (nr + nth - 1)/nth;
  8472. // row range for this thread
  8473. const int ir0 = dr*ith;
  8474. const int ir1 = MIN(ir0 + dr, nr);
  8475. const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
  8476. const float alpha = adamw_params_ptr[0];
  8477. const float beta1 = adamw_params_ptr[1];
  8478. const float beta2 = adamw_params_ptr[2];
  8479. const float eps = adamw_params_ptr[3];
  8480. const float wd = adamw_params_ptr[4];
  8481. const float beta1h = adamw_params_ptr[5];
  8482. const float beta2h = adamw_params_ptr[6];
  8483. const float keep = 1.f - alpha * wd;
  8484. for (int ir = ir0; ir < ir1; ++ir) {
  8485. const int64_t i03 = ir/(ne02*ne01);
  8486. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8487. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8488. const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
  8489. float * w = (float *) ((char *) src0->data + offset); // weight
  8490. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  8491. float * m = (float *) ((char *) src0_grad_m->data + offset);
  8492. float * v = (float *) ((char *) src0_grad_v->data + offset);
  8493. for (int i00 = 0; i00 < ne00; ++i00) {
  8494. m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
  8495. v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
  8496. const float mh = m[i00]*beta1h;
  8497. const float vh = sqrtf(v[i00]*beta2h) + eps;
  8498. // The weight decay is applied independently of the Adam momenta m and v.
  8499. // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
  8500. // See: https://arxiv.org/pdf/1711.05101v3.pdf
  8501. w[i00] = w[i00] * keep - alpha * mh / vh;
  8502. }
  8503. }
  8504. }
  8505. void ggml_compute_forward_opt_step_adamw(
  8506. const ggml_compute_params * params,
  8507. ggml_tensor * dst) {
  8508. const ggml_tensor * src0 = dst->src[0];
  8509. switch (src0->type) {
  8510. case GGML_TYPE_F32:
  8511. {
  8512. ggml_compute_forward_opt_step_adamw_f32(params, dst);
  8513. } break;
  8514. default:
  8515. {
  8516. GGML_ABORT("fatal error");
  8517. }
  8518. }
  8519. }
  8520. static void ggml_compute_forward_opt_step_sgd_f32(const ggml_compute_params * params, ggml_tensor * dst) {
  8521. const ggml_tensor * src0 = dst->src[0];
  8522. const ggml_tensor * src0_grad = dst->src[1];
  8523. const ggml_tensor * sgd_params = dst->src[2];
  8524. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  8525. GGML_ASSERT(ggml_nelements(sgd_params) == 2);
  8526. const int ith = params->ith;
  8527. const int nth = params->nth;
  8528. const int nr = ggml_nrows(src0);
  8529. GGML_TENSOR_UNARY_OP_LOCALS
  8530. GGML_ASSERT(nb00 == sizeof(float));
  8531. // rows per thread
  8532. const int dr = (nr + nth - 1) / nth;
  8533. // row range for this thread
  8534. const int ir0 = dr * ith;
  8535. const int ir1 = MIN(ir0 + dr, nr);
  8536. // using adamw param subset we care about - alpha, wd - could have a separate struct
  8537. const float * sgd_params_ptr = ggml_get_data_f32(sgd_params);
  8538. const float alpha = sgd_params_ptr[0];
  8539. const float keep = 1.f - alpha * sgd_params_ptr[1];
  8540. for (int ir = ir0; ir < ir1; ++ir) {
  8541. const int64_t i03 = ir / (ne02 * ne01);
  8542. const int64_t i02 = (ir - i03 * ne02 * ne01) / ne01;
  8543. const int64_t i01 = (ir - i03 * ne02 * ne01 - i02 * ne01);
  8544. const size_t offset = i03 * nb03 + i02 * nb02 + i01 * nb01;
  8545. float * w = (float *) ((char *) src0->data + offset); // weight
  8546. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  8547. for (int i00 = 0; i00 < ne00; ++i00) {
  8548. w[i00] = w[i00] * keep - alpha * g[i00];
  8549. }
  8550. }
  8551. }
  8552. void ggml_compute_forward_opt_step_sgd(const ggml_compute_params * params, ggml_tensor * dst) {
  8553. const ggml_tensor * src0 = dst->src[0];
  8554. switch (src0->type) {
  8555. case GGML_TYPE_F32:
  8556. {
  8557. ggml_compute_forward_opt_step_sgd_f32(params, dst);
  8558. }
  8559. break;
  8560. default:
  8561. {
  8562. GGML_ABORT("fatal error - sgd is F32 only");
  8563. }
  8564. }
  8565. }