convert_hf_to_gguf.py 324 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  260. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  262. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  263. )
  264. )
  265. or not new_name.endswith(".weight")
  266. ):
  267. data_qtype = gguf.GGMLQuantizationType.F32
  268. if data_qtype is False and any(
  269. self.match_model_tensor_name(new_name, key, bid)
  270. for key in (
  271. gguf.MODEL_TENSOR.TOKEN_EMBD,
  272. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.OUTPUT,
  274. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  275. gguf.MODEL_TENSOR.LAUREL_L,
  276. gguf.MODEL_TENSOR.LAUREL_R,
  277. )
  278. ):
  279. if self.ftype in (
  280. gguf.LlamaFileType.MOSTLY_TQ1_0,
  281. gguf.LlamaFileType.MOSTLY_TQ2_0,
  282. ):
  283. # TODO: use Q4_K and Q6_K
  284. data_qtype = gguf.GGMLQuantizationType.F16
  285. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  286. if isinstance(data_qtype, bool):
  287. if self.ftype == gguf.LlamaFileType.ALL_F32:
  288. data_qtype = gguf.GGMLQuantizationType.F32
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  290. data_qtype = gguf.GGMLQuantizationType.F16
  291. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  292. data_qtype = gguf.GGMLQuantizationType.BF16
  293. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  294. data_qtype = gguf.GGMLQuantizationType.Q8_0
  295. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  296. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  297. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  298. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  299. else:
  300. raise ValueError(f"Unknown file type: {self.ftype.name}")
  301. try:
  302. data = gguf.quants.quantize(data, data_qtype)
  303. except gguf.QuantError as e:
  304. logger.warning("%s, %s", e, "falling back to F16")
  305. data_qtype = gguf.GGMLQuantizationType.F16
  306. data = gguf.quants.quantize(data, data_qtype)
  307. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  308. # reverse shape to make it similar to the internal ggml dimension order
  309. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  310. # n_dims is implicit in the shape
  311. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  312. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  313. def set_type(self):
  314. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  315. def prepare_metadata(self, vocab_only: bool):
  316. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  317. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  318. # If we are using HF model id, set the metadata name to the model id
  319. if self.remote_hf_model_id:
  320. self.metadata.name = self.remote_hf_model_id
  321. # Fallback to model directory name if metadata name is still missing
  322. if self.metadata.name is None:
  323. self.metadata.name = self.dir_model.name
  324. # Generate parameter weight class (useful for leader boards) if not yet determined
  325. if self.metadata.size_label is None and total_params > 0:
  326. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  327. self.set_type()
  328. logger.info("Set meta model")
  329. self.metadata.set_gguf_meta_model(self.gguf_writer)
  330. logger.info("Set model parameters")
  331. self.set_gguf_parameters()
  332. logger.info("Set model quantization version")
  333. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  334. def write_vocab(self):
  335. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  336. def write(self):
  337. self.prepare_tensors()
  338. self.prepare_metadata(vocab_only=False)
  339. self.gguf_writer.write_header_to_file(path=self.fname_out)
  340. self.gguf_writer.write_kv_data_to_file()
  341. self.gguf_writer.write_tensors_to_file(progress=True)
  342. self.gguf_writer.close()
  343. @staticmethod
  344. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  345. part_names: list[str] = []
  346. for filename in os.listdir(dir_model):
  347. if filename.startswith(prefix) and filename.endswith(suffix):
  348. part_names.append(filename)
  349. part_names.sort()
  350. return part_names
  351. @staticmethod
  352. def load_hparams(dir_model: Path):
  353. try:
  354. # for security reason, we don't allow loading remote code by default
  355. # if a model need remote code, we will fallback to config.json
  356. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  357. except Exception as e:
  358. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  359. logger.warning("Trying to load config.json instead")
  360. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  361. config = json.load(f)
  362. if "llm_config" in config:
  363. # rename for InternVL
  364. config["text_config"] = config["llm_config"]
  365. if "thinker_config" in config:
  366. # rename for Qwen2.5-Omni
  367. config["text_config"] = config["thinker_config"]["text_config"]
  368. return config
  369. @classmethod
  370. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  371. assert names
  372. def func(modelcls: AnyModel) -> AnyModel:
  373. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  374. for name in names:
  375. cls._model_classes[model_type][name] = modelcls
  376. return modelcls
  377. return func
  378. @classmethod
  379. def print_registered_models(cls):
  380. for model_type, model_classes in cls._model_classes.items():
  381. logger.error(f"{model_type.name} models:")
  382. for name in sorted(model_classes.keys()):
  383. logger.error(f" - {name}")
  384. @classmethod
  385. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  386. try:
  387. return cls._model_classes[model_type][arch]
  388. except KeyError:
  389. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  390. class TextModel(ModelBase):
  391. model_type = ModelType.TEXT
  392. hf_arch: str
  393. def __init__(self, *args, **kwargs):
  394. super().__init__(*args, **kwargs)
  395. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  396. if "text_config" in self.hparams:
  397. # move the text_config to the root level
  398. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  399. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  400. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  401. @classmethod
  402. def __init_subclass__(cls):
  403. # can't use an abstract property, because overriding it without type errors
  404. # would require using decorated functions instead of simply defining the property
  405. if "model_arch" not in cls.__dict__:
  406. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  407. def set_vocab(self):
  408. self._set_vocab_gpt2()
  409. def prepare_metadata(self, vocab_only: bool):
  410. super().prepare_metadata(vocab_only=vocab_only)
  411. total_params = self.gguf_writer.get_total_parameter_count()[0]
  412. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  413. output_type: str = self.ftype.name.partition("_")[2]
  414. # Filename Output
  415. if self.fname_out.is_dir():
  416. # Generate default filename based on model specification and available metadata
  417. if not vocab_only:
  418. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  419. else:
  420. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  421. # Use the default filename
  422. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  423. else:
  424. # Output path is a custom defined templated filename
  425. # Note: `not is_dir()` is used because `.is_file()` will not detect
  426. # file template strings as it doesn't actually exist as a file
  427. # Process templated file name with the output ftype, useful with the "auto" ftype
  428. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  429. logger.info("Set model tokenizer")
  430. self.set_vocab()
  431. def set_gguf_parameters(self):
  432. self.gguf_writer.add_block_count(self.block_count)
  433. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  434. self.gguf_writer.add_context_length(n_ctx)
  435. logger.info(f"gguf: context length = {n_ctx}")
  436. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  437. self.gguf_writer.add_embedding_length(n_embd)
  438. logger.info(f"gguf: embedding length = {n_embd}")
  439. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  440. self.gguf_writer.add_feed_forward_length(n_ff)
  441. logger.info(f"gguf: feed forward length = {n_ff}")
  442. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  443. self.gguf_writer.add_head_count(n_head)
  444. logger.info(f"gguf: head count = {n_head}")
  445. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  446. self.gguf_writer.add_head_count_kv(n_head_kv)
  447. logger.info(f"gguf: key-value head count = {n_head_kv}")
  448. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  449. self.gguf_writer.add_rope_freq_base(rope_theta)
  450. logger.info(f"gguf: rope theta = {rope_theta}")
  451. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  452. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  453. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  454. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  455. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  456. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  457. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  458. self.gguf_writer.add_expert_count(n_experts)
  459. logger.info(f"gguf: expert count = {n_experts}")
  460. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  461. self.gguf_writer.add_expert_used_count(n_experts_used)
  462. logger.info(f"gguf: experts used count = {n_experts_used}")
  463. if (head_dim := self.hparams.get("head_dim")) is not None:
  464. self.gguf_writer.add_key_length(head_dim)
  465. self.gguf_writer.add_value_length(head_dim)
  466. self.gguf_writer.add_file_type(self.ftype)
  467. logger.info(f"gguf: file type = {self.ftype}")
  468. def write_vocab(self):
  469. if len(self.gguf_writer.tensors) != 1:
  470. raise ValueError('Splitting the vocabulary is not supported')
  471. self.prepare_metadata(vocab_only=True)
  472. self.gguf_writer.write_header_to_file(path=self.fname_out)
  473. self.gguf_writer.write_kv_data_to_file()
  474. self.gguf_writer.close()
  475. def does_token_look_special(self, token: str | bytes) -> bool:
  476. if isinstance(token, (bytes, bytearray)):
  477. token_text = token.decode(encoding="utf-8")
  478. elif isinstance(token, memoryview):
  479. token_text = token.tobytes().decode(encoding="utf-8")
  480. else:
  481. token_text = token
  482. # Some models mark some added tokens which ought to be control tokens as not special.
  483. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  484. seems_special = token_text in (
  485. "<pad>", # deepseek-coder
  486. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  487. )
  488. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  490. # TODO: should these be marked as UNUSED instead? (maybe not)
  491. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  492. return seems_special
  493. # used for GPT-2 BPE and WordPiece vocabs
  494. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  495. tokens: list[str] = []
  496. toktypes: list[int] = []
  497. from transformers import AutoTokenizer
  498. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  499. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  500. assert max(tokenizer.vocab.values()) < vocab_size
  501. tokpre = self.get_vocab_base_pre(tokenizer)
  502. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  503. added_vocab = tokenizer.get_added_vocab()
  504. added_tokens_decoder = tokenizer.added_tokens_decoder
  505. for i in range(vocab_size):
  506. if i not in reverse_vocab:
  507. tokens.append(f"[PAD{i}]")
  508. toktypes.append(gguf.TokenType.UNUSED)
  509. else:
  510. token: str = reverse_vocab[i]
  511. if token in added_vocab:
  512. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  513. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  514. if not added_tokens_decoder[i].normalized:
  515. previous_token = token
  516. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  517. if previous_token != token:
  518. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  519. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  520. toktypes.append(gguf.TokenType.CONTROL)
  521. else:
  522. # NOTE: this was added for Gemma.
  523. # Encoding and decoding the tokens above isn't sufficient for this case.
  524. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  525. toktypes.append(gguf.TokenType.USER_DEFINED)
  526. else:
  527. toktypes.append(gguf.TokenType.NORMAL)
  528. tokens.append(token)
  529. return tokens, toktypes, tokpre
  530. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  531. # do not modify it manually!
  532. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  533. # Marker: Start get_vocab_base_pre
  534. def get_vocab_base_pre(self, tokenizer) -> str:
  535. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  536. # is specific for the BPE pre-tokenizer used by the model
  537. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  538. # use in llama.cpp to implement the same pre-tokenizer
  539. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  540. chktok = tokenizer.encode(chktxt)
  541. chkhsh = sha256(str(chktok).encode()).hexdigest()
  542. logger.debug(f"chktok: {chktok}")
  543. logger.debug(f"chkhsh: {chkhsh}")
  544. res = None
  545. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  546. # or pull the latest version of the model from Huggingface
  547. # don't edit the hashes manually!
  548. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  549. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  550. res = "llama-bpe"
  551. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  552. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  553. res = "deepseek-llm"
  554. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  555. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  556. res = "deepseek-coder"
  557. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  558. # ref: https://huggingface.co/tiiuae/falcon-7b
  559. res = "falcon"
  560. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  561. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  562. res = "bert-bge"
  563. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  564. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  565. res = "falcon3"
  566. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  567. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  568. res = "bert-bge-large"
  569. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  570. # ref: https://huggingface.co/mosaicml/mpt-7b
  571. res = "mpt"
  572. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  573. # ref: https://huggingface.co/bigcode/starcoder2-3b
  574. res = "starcoder"
  575. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  576. # ref: https://huggingface.co/openai-community/gpt2
  577. res = "gpt-2"
  578. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  579. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  580. res = "stablelm2"
  581. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  582. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  583. res = "refact"
  584. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  585. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  586. res = "command-r"
  587. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  588. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  589. res = "qwen2"
  590. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  591. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  592. res = "olmo"
  593. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  594. # ref: https://huggingface.co/databricks/dbrx-base
  595. res = "dbrx"
  596. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  597. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  598. res = "jina-v1-en"
  599. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  600. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  601. res = "jina-v2-en"
  602. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  603. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  604. res = "jina-v2-es"
  605. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  606. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  607. res = "jina-v2-de"
  608. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  609. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  610. res = "smaug-bpe"
  611. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  612. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  613. res = "poro-chat"
  614. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  615. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  616. res = "jina-v2-code"
  617. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  618. # ref: https://huggingface.co/LumiOpen/Viking-7B
  619. res = "viking"
  620. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  621. # ref: https://huggingface.co/core42/jais-13b
  622. res = "jais"
  623. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  624. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  625. res = "codeshell"
  626. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  627. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  628. res = "tekken"
  629. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  630. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  631. res = "smollm"
  632. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  633. # ref: https://huggingface.co/bigscience/bloom
  634. res = "bloom"
  635. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  636. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  637. res = "gpt3-finnish"
  638. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  639. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  640. res = "exaone"
  641. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  642. # ref: https://huggingface.co/microsoft/phi-2
  643. res = "phi-2"
  644. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  645. # ref: https://huggingface.co/facebook/chameleon-7b
  646. res = "chameleon"
  647. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  648. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  649. res = "roberta-bpe"
  650. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  651. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  652. res = "gigachat"
  653. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  654. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  655. res = "megrez"
  656. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  657. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  658. res = "deepseek-v3"
  659. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  660. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  661. res = "deepseek-r1-qwen"
  662. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  663. # ref: https://huggingface.co/Xenova/gpt-4o
  664. res = "gpt-4o"
  665. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  666. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  667. res = "superbpe"
  668. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  669. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  670. res = "trillion"
  671. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  672. # ref: https://huggingface.co/inclusionAI/Ling-lite
  673. res = "bailingmoe"
  674. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  675. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  676. res = "llama4"
  677. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  678. # ref: https://huggingface.co/mistral-community/pixtral-12b
  679. res = "pixtral"
  680. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  681. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  682. res = "seed-coder"
  683. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  684. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  685. res = "chatglm-bpe"
  686. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  687. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  688. res = "chatglm-bpe"
  689. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  690. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  691. res = "glm4"
  692. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  693. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  694. res = "minerva-7b"
  695. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  696. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  697. res = "hunyuan"
  698. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  699. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  700. res = "falcon-h1"
  701. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  702. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  703. res = "falcon-h1"
  704. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  705. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  706. res = "falcon-h1"
  707. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  708. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  709. res = "falcon-h1"
  710. if res is None:
  711. logger.warning("\n")
  712. logger.warning("**************************************************************************************")
  713. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  714. logger.warning("** There are 2 possible reasons for this:")
  715. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  716. logger.warning("** - the pre-tokenization config has changed upstream")
  717. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  718. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  719. logger.warning("**")
  720. logger.warning(f"** chkhsh: {chkhsh}")
  721. logger.warning("**************************************************************************************")
  722. logger.warning("\n")
  723. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  724. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  725. logger.debug(f"chkhsh: {chkhsh}")
  726. return res
  727. # Marker: End get_vocab_base_pre
  728. def _set_vocab_none(self) -> None:
  729. self.gguf_writer.add_tokenizer_model("none")
  730. def _set_vocab_gpt2(self) -> None:
  731. tokens, toktypes, tokpre = self.get_vocab_base()
  732. self.gguf_writer.add_tokenizer_model("gpt2")
  733. self.gguf_writer.add_tokenizer_pre(tokpre)
  734. self.gguf_writer.add_token_list(tokens)
  735. self.gguf_writer.add_token_types(toktypes)
  736. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  737. special_vocab.add_to_gguf(self.gguf_writer)
  738. def _set_vocab_qwen(self):
  739. dir_model = self.dir_model
  740. hparams = self.hparams
  741. tokens: list[str] = []
  742. toktypes: list[int] = []
  743. from transformers import AutoTokenizer
  744. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  745. vocab_size = hparams["vocab_size"]
  746. assert max(tokenizer.get_vocab().values()) < vocab_size
  747. tokpre = self.get_vocab_base_pre(tokenizer)
  748. merges = []
  749. vocab = {}
  750. mergeable_ranks = tokenizer.mergeable_ranks
  751. for token, rank in mergeable_ranks.items():
  752. vocab[QwenModel.token_bytes_to_string(token)] = rank
  753. if len(token) == 1:
  754. continue
  755. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  756. assert len(merged) == 2
  757. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  758. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  759. added_vocab = tokenizer.special_tokens
  760. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  761. for i in range(vocab_size):
  762. if i not in reverse_vocab:
  763. tokens.append(f"[PAD{i}]")
  764. toktypes.append(gguf.TokenType.UNUSED)
  765. elif reverse_vocab[i] in added_vocab:
  766. tokens.append(reverse_vocab[i])
  767. toktypes.append(gguf.TokenType.CONTROL)
  768. else:
  769. tokens.append(reverse_vocab[i])
  770. toktypes.append(gguf.TokenType.NORMAL)
  771. self.gguf_writer.add_tokenizer_model("gpt2")
  772. self.gguf_writer.add_tokenizer_pre(tokpre)
  773. self.gguf_writer.add_token_list(tokens)
  774. self.gguf_writer.add_token_types(toktypes)
  775. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  776. special_vocab.merges = merges
  777. # only add special tokens when they were not already loaded from config.json
  778. if len(special_vocab.special_token_ids) == 0:
  779. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  780. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  781. # this one is usually not in config.json anyway
  782. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  783. special_vocab.add_to_gguf(self.gguf_writer)
  784. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  785. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  786. self.gguf_writer.add_tokenizer_model("llama")
  787. self.gguf_writer.add_tokenizer_pre("default")
  788. self.gguf_writer.add_token_list(tokens)
  789. self.gguf_writer.add_token_scores(scores)
  790. self.gguf_writer.add_token_types(toktypes)
  791. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  792. special_vocab.add_to_gguf(self.gguf_writer)
  793. def _create_vocab_sentencepiece(self):
  794. from sentencepiece import SentencePieceProcessor
  795. tokenizer_path = self.dir_model / 'tokenizer.model'
  796. if not tokenizer_path.is_file():
  797. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  798. tokenizer = SentencePieceProcessor()
  799. tokenizer.LoadFromFile(str(tokenizer_path))
  800. vocab_size = self.find_hparam([
  801. "vocab_size_per_layer_input", # gemma3n
  802. "vocab_size",
  803. ], optional=True) or tokenizer.vocab_size()
  804. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  805. scores: list[float] = [-10000.0] * vocab_size
  806. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  807. for token_id in range(tokenizer.vocab_size()):
  808. if token_id >= vocab_size:
  809. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  810. break
  811. piece = tokenizer.IdToPiece(token_id)
  812. text = piece.encode("utf-8")
  813. score = tokenizer.GetScore(token_id)
  814. toktype = SentencePieceTokenTypes.NORMAL
  815. if tokenizer.IsUnknown(token_id):
  816. toktype = SentencePieceTokenTypes.UNKNOWN
  817. elif tokenizer.IsControl(token_id):
  818. toktype = SentencePieceTokenTypes.CONTROL
  819. elif tokenizer.IsUnused(token_id):
  820. toktype = SentencePieceTokenTypes.UNUSED
  821. elif tokenizer.IsByte(token_id):
  822. toktype = SentencePieceTokenTypes.BYTE
  823. tokens[token_id] = text
  824. scores[token_id] = score
  825. toktypes[token_id] = toktype
  826. added_tokens_file = self.dir_model / 'added_tokens.json'
  827. if added_tokens_file.is_file():
  828. with open(added_tokens_file, "r", encoding="utf-8") as f:
  829. added_tokens_json = json.load(f)
  830. for key in added_tokens_json:
  831. token_id = added_tokens_json[key]
  832. if token_id >= vocab_size:
  833. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  834. continue
  835. tokens[token_id] = key.encode("utf-8")
  836. scores[token_id] = -1000.0
  837. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  838. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  839. if tokenizer_config_file.is_file():
  840. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  841. tokenizer_config_json = json.load(f)
  842. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  843. for token_id, token_data in added_tokens_decoder.items():
  844. token_id = int(token_id)
  845. token: str = token_data["content"]
  846. if token_id >= vocab_size:
  847. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  848. continue
  849. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  850. if tokens[token_id] != token.encode("utf-8"):
  851. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  852. if token_data.get("special") or self.does_token_look_special(token):
  853. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  854. else:
  855. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  856. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  857. scores[token_id] = -1000.0
  858. tokens[token_id] = token.encode("utf-8")
  859. if vocab_size > len(tokens):
  860. pad_count = vocab_size - len(tokens)
  861. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  862. for i in range(1, pad_count + 1):
  863. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  864. scores.append(-1000.0)
  865. toktypes.append(SentencePieceTokenTypes.UNUSED)
  866. return tokens, scores, toktypes
  867. def _set_vocab_llama_hf(self):
  868. vocab = gguf.LlamaHfVocab(self.dir_model)
  869. tokens = []
  870. scores = []
  871. toktypes = []
  872. for text, score, toktype in vocab.all_tokens():
  873. tokens.append(text)
  874. scores.append(score)
  875. toktypes.append(toktype)
  876. assert len(tokens) == vocab.vocab_size
  877. self.gguf_writer.add_tokenizer_model("llama")
  878. self.gguf_writer.add_tokenizer_pre("default")
  879. self.gguf_writer.add_token_list(tokens)
  880. self.gguf_writer.add_token_scores(scores)
  881. self.gguf_writer.add_token_types(toktypes)
  882. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  883. special_vocab.add_to_gguf(self.gguf_writer)
  884. def _set_vocab_rwkv_world(self):
  885. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  886. vocab_size = self.hparams.get("vocab_size", 65536)
  887. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  888. toktypes: list[int] = [gguf.TokenType.CONTROL]
  889. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  890. lines = f.readlines()
  891. for line in lines:
  892. parts = line.split(' ')
  893. assert len(parts) >= 3
  894. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  895. token = token.encode("utf-8") if isinstance(token, str) else token
  896. assert isinstance(token, bytes)
  897. assert len(token) == token_len
  898. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  899. tokens.append(token_text.encode("utf-8"))
  900. toktypes.append(gguf.TokenType.NORMAL)
  901. remainder = vocab_size - len(tokens)
  902. assert remainder >= 0
  903. for i in range(len(tokens), vocab_size):
  904. tokens.append(f"[PAD{i}]".encode("utf-8"))
  905. toktypes.append(gguf.TokenType.UNUSED)
  906. self.gguf_writer.add_tokenizer_model("rwkv")
  907. self.gguf_writer.add_token_list(tokens)
  908. self.gguf_writer.add_token_types(toktypes)
  909. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  910. special_vocab.chat_template = "rwkv-world"
  911. # hack: Add '\n\n' as the EOT token to make it chat normally
  912. special_vocab._set_special_token("eot", 261)
  913. # hack: Override these as they have already been set (incorrectly)
  914. special_vocab.special_token_ids["bos"] = 0
  915. special_vocab.special_token_ids["eos"] = 0
  916. special_vocab.add_to_gguf(self.gguf_writer)
  917. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  918. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  919. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  920. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  921. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  922. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  923. assert field # tokenizer model
  924. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  925. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  926. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  927. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  928. assert field # token list
  929. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  930. if model_name == "llama-spm":
  931. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  932. assert field # token scores
  933. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  934. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  935. assert field # token types
  936. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  937. if model_name != "llama-spm":
  938. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  939. assert field # token merges
  940. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  941. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  942. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  943. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  944. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  945. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  946. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  947. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  948. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  949. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  950. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  951. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  952. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  953. def _try_set_pooling_type(self) -> None:
  954. # get pooling path
  955. pooling_path = None
  956. module_path = self.dir_model / "modules.json"
  957. if module_path.is_file():
  958. with open(module_path, encoding="utf-8") as f:
  959. modules = json.load(f)
  960. for mod in modules:
  961. if mod["type"] == "sentence_transformers.models.Pooling":
  962. pooling_path = mod["path"]
  963. break
  964. # get pooling type
  965. if pooling_path is not None:
  966. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  967. pooling = json.load(f)
  968. if pooling["pooling_mode_mean_tokens"]:
  969. pooling_type = gguf.PoolingType.MEAN
  970. elif pooling["pooling_mode_cls_token"]:
  971. pooling_type = gguf.PoolingType.CLS
  972. elif pooling["pooling_mode_lasttoken"]:
  973. pooling_type = gguf.PoolingType.LAST
  974. else:
  975. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  976. self.gguf_writer.add_pooling_type(pooling_type)
  977. class MmprojModel(ModelBase):
  978. model_type = ModelType.MMPROJ
  979. model_arch = gguf.MODEL_ARCH.MMPROJ
  980. preprocessor_config: dict[str, Any]
  981. global_config: dict[str, Any]
  982. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  983. has_vision_encoder: bool = True # by default
  984. has_audio_encoder: bool = False
  985. # for models having multiple encoders, we need to separate their hparams
  986. hparams_vision: dict[str, Any] | None = None
  987. hparams_audio: dict[str, Any] | None = None
  988. def __init__(self, *args, **kwargs):
  989. super().__init__(*args, **kwargs)
  990. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  991. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  992. # get n_embd of the text model
  993. if "text_config" not in self.hparams:
  994. self.hparams["text_config"] = {}
  995. if "audio_config" not in self.hparams:
  996. self.hparams["audio_config"] = {}
  997. text_config = {**self.hparams, **self.hparams["text_config"]}
  998. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  999. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1000. # move vision config to the top level, while preserving the original hparams in global_config
  1001. import copy
  1002. self.global_config = copy.deepcopy(self.hparams)
  1003. self.hparams_vision = self.get_vision_config()
  1004. self.hparams_audio = self.get_audio_config()
  1005. if self.hparams_vision is None and self.hparams_audio is None:
  1006. raise ValueError("vision_config / audio_config not found in hparams")
  1007. # for compat with vision-only models
  1008. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1009. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1010. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1011. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1012. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1013. # load preprocessor config
  1014. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1015. self.preprocessor_config = json.load(f)
  1016. def get_vision_config(self) -> dict[str, Any] | None:
  1017. return self.global_config.get("vision_config")
  1018. def get_audio_config(self) -> dict[str, Any] | None:
  1019. return self.global_config.get("audio_config")
  1020. def set_type(self):
  1021. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1022. def set_gguf_parameters(self):
  1023. self.gguf_writer.add_file_type(self.ftype)
  1024. if self.has_vision_encoder:
  1025. self.gguf_writer.add_clip_has_vision_encoder(True)
  1026. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1027. # vision config
  1028. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1029. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1030. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1031. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1032. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1033. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1034. # preprocessor config
  1035. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1036. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1037. if self.has_audio_encoder:
  1038. self.gguf_writer.add_clip_has_audio_encoder(True)
  1039. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1040. # audio config
  1041. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1042. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1043. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1044. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1045. if not self.has_vision_encoder and not self.has_audio_encoder:
  1046. raise ValueError("MmprojModel must have either vision or audio encoder")
  1047. def write_vocab(self):
  1048. raise ValueError("MmprojModel does not support vocab writing")
  1049. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1050. assert self.hparams_vision is not None
  1051. return self._find_param(self.hparams_vision, keys, optional)
  1052. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1053. assert self.hparams_audio is not None
  1054. return self._find_param(self.hparams_audio, keys, optional)
  1055. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1056. key = next((k for k in keys if k in obj), None)
  1057. if key is not None:
  1058. return obj[key]
  1059. if optional:
  1060. return None
  1061. raise KeyError(f"could not find any of: {keys}")
  1062. @ModelBase.register("GPTNeoXForCausalLM")
  1063. class GPTNeoXModel(TextModel):
  1064. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1065. def set_gguf_parameters(self):
  1066. block_count = self.hparams["num_hidden_layers"]
  1067. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1068. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1069. self.gguf_writer.add_block_count(block_count)
  1070. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1071. self.gguf_writer.add_rope_dimension_count(
  1072. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1073. )
  1074. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1075. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1076. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1077. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1078. del bid # unused
  1079. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1080. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1081. tensors: list[tuple[str, Tensor]] = []
  1082. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1083. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1084. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1085. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1086. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1087. data_torch = torch.cat(
  1088. (
  1089. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1090. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1091. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1092. ),
  1093. dim=0,
  1094. )
  1095. logger.info("re-format attention.linear_qkv.weight")
  1096. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1097. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1098. data_torch = torch.cat(
  1099. (
  1100. qkv_bias[:, 0, :].reshape((n_embed,)),
  1101. qkv_bias[:, 1, :].reshape((n_embed,)),
  1102. qkv_bias[:, 2, :].reshape((n_embed,)),
  1103. ),
  1104. dim=0,
  1105. )
  1106. logger.info("re-format attention.linear_qkv.bias")
  1107. tensors.append((self.map_tensor_name(name), data_torch))
  1108. return tensors
  1109. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1110. class BloomModel(TextModel):
  1111. model_arch = gguf.MODEL_ARCH.BLOOM
  1112. def set_gguf_parameters(self):
  1113. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1114. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1115. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1116. self.gguf_writer.add_embedding_length(n_embed)
  1117. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1118. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1119. self.gguf_writer.add_head_count(n_head)
  1120. self.gguf_writer.add_head_count_kv(n_head)
  1121. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1122. self.gguf_writer.add_file_type(self.ftype)
  1123. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1124. del bid # unused
  1125. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1126. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1127. name = re.sub(r'transformer\.', '', name)
  1128. tensors: list[tuple[str, Tensor]] = []
  1129. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1130. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1131. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1132. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1133. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1134. data_torch = torch.cat(
  1135. (
  1136. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1137. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1138. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1139. ),
  1140. dim=0,
  1141. )
  1142. logger.info("re-format attention.linear_qkv.weight")
  1143. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1144. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1145. data_torch = torch.cat(
  1146. (
  1147. qkv_bias[:, 0, :].reshape((n_embed,)),
  1148. qkv_bias[:, 1, :].reshape((n_embed,)),
  1149. qkv_bias[:, 2, :].reshape((n_embed,)),
  1150. ),
  1151. dim=0,
  1152. )
  1153. logger.info("re-format attention.linear_qkv.bias")
  1154. tensors.append((self.map_tensor_name(name), data_torch))
  1155. return tensors
  1156. @ModelBase.register("MPTForCausalLM")
  1157. class MPTModel(TextModel):
  1158. model_arch = gguf.MODEL_ARCH.MPT
  1159. def set_vocab(self):
  1160. try:
  1161. self._set_vocab_gpt2()
  1162. except Exception:
  1163. # Fallback for SEA-LION model
  1164. self._set_vocab_sentencepiece()
  1165. self.gguf_writer.add_add_bos_token(False)
  1166. self.gguf_writer.add_pad_token_id(3)
  1167. self.gguf_writer.add_eos_token_id(1)
  1168. self.gguf_writer.add_unk_token_id(0)
  1169. def set_gguf_parameters(self):
  1170. block_count = self.hparams["n_layers"]
  1171. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1172. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1173. self.gguf_writer.add_block_count(block_count)
  1174. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1175. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1176. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1177. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1178. self.gguf_writer.add_layer_norm_eps(1e-5)
  1179. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1180. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1181. if self.hparams["attn_config"]["alibi"]:
  1182. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1183. else:
  1184. self.gguf_writer.add_max_alibi_bias(0.0)
  1185. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1186. del bid # unused
  1187. if "scales" in name:
  1188. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1189. new_name = new_name.replace("scales", "act.scales")
  1190. else:
  1191. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1192. return [(new_name, data_torch)]
  1193. @ModelBase.register("OrionForCausalLM")
  1194. class OrionModel(TextModel):
  1195. model_arch = gguf.MODEL_ARCH.ORION
  1196. def set_vocab(self):
  1197. self._set_vocab_sentencepiece()
  1198. def set_gguf_parameters(self):
  1199. block_count = self.hparams["num_hidden_layers"]
  1200. head_count = self.hparams["num_attention_heads"]
  1201. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1202. ctx_length = 0
  1203. if "max_sequence_length" in self.hparams:
  1204. ctx_length = self.hparams["max_sequence_length"]
  1205. elif "max_position_embeddings" in self.hparams:
  1206. ctx_length = self.hparams["max_position_embeddings"]
  1207. elif "model_max_length" in self.hparams:
  1208. ctx_length = self.hparams["model_max_length"]
  1209. else:
  1210. raise ValueError("gguf: can not find ctx length parameter.")
  1211. self.gguf_writer.add_file_type(self.ftype)
  1212. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1213. self.gguf_writer.add_context_length(ctx_length)
  1214. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1215. self.gguf_writer.add_block_count(block_count)
  1216. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1217. self.gguf_writer.add_head_count(head_count)
  1218. self.gguf_writer.add_head_count_kv(head_count_kv)
  1219. # note: config provides rms norm but it is actually layer norm
  1220. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1221. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1222. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1223. class BaichuanModel(TextModel):
  1224. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1225. def set_vocab(self):
  1226. self._set_vocab_sentencepiece()
  1227. def set_gguf_parameters(self):
  1228. block_count = self.hparams["num_hidden_layers"]
  1229. head_count = self.hparams["num_attention_heads"]
  1230. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1231. ctx_length = 0
  1232. if "max_sequence_length" in self.hparams:
  1233. ctx_length = self.hparams["max_sequence_length"]
  1234. elif "max_position_embeddings" in self.hparams:
  1235. ctx_length = self.hparams["max_position_embeddings"]
  1236. elif "model_max_length" in self.hparams:
  1237. ctx_length = self.hparams["model_max_length"]
  1238. else:
  1239. raise ValueError("gguf: can not find ctx length parameter.")
  1240. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1241. self.gguf_writer.add_context_length(ctx_length)
  1242. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1243. self.gguf_writer.add_block_count(block_count)
  1244. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1245. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1246. self.gguf_writer.add_head_count(head_count)
  1247. self.gguf_writer.add_head_count_kv(head_count_kv)
  1248. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1249. self.gguf_writer.add_file_type(self.ftype)
  1250. rope_scaling = self.hparams.get("rope_scaling") or {}
  1251. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1252. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1253. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1254. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1255. head_count = self.hparams["num_attention_heads"]
  1256. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1257. tensors: list[tuple[str, Tensor]] = []
  1258. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1259. logger.info(f"Unpacking and permuting layer {bid}")
  1260. tensors = [
  1261. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1262. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1263. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1264. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1265. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1266. self._reverse_hf_part(data_torch, 2)),
  1267. ]
  1268. else:
  1269. tensors = [(self.map_tensor_name(name), data_torch)]
  1270. return tensors
  1271. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1272. if n_kv_head is not None and n_head != n_kv_head:
  1273. n_head //= n_kv_head
  1274. return (
  1275. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1276. .swapaxes(1, 2)
  1277. .reshape(weights.shape)
  1278. )
  1279. def _reverse_hf_permute_part(
  1280. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1281. ) -> Tensor:
  1282. r = weights.shape[0] // 3
  1283. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1284. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1285. r = weights.shape[0] // 3
  1286. return weights[r * n_part:r * n_part + r, ...]
  1287. @ModelBase.register("XverseForCausalLM")
  1288. class XverseModel(TextModel):
  1289. model_arch = gguf.MODEL_ARCH.XVERSE
  1290. def set_vocab(self):
  1291. assert (self.dir_model / "tokenizer.json").is_file()
  1292. dir_model = self.dir_model
  1293. hparams = self.hparams
  1294. tokens: list[bytes] = []
  1295. toktypes: list[int] = []
  1296. from transformers import AutoTokenizer
  1297. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1298. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1299. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1300. # because vocab_size is the count of items, and indexes start at 0.
  1301. max_vocab_index = max(tokenizer.get_vocab().values())
  1302. if max_vocab_index >= vocab_size:
  1303. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1304. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1305. added_vocab = tokenizer.get_added_vocab()
  1306. for token_id in range(vocab_size):
  1307. token_text = reverse_vocab[token_id].encode('utf-8')
  1308. # replace "\x00" to string with length > 0
  1309. if token_text == b"\x00":
  1310. toktype = gguf.TokenType.BYTE # special
  1311. token_text = f"<{token_text}>".encode('utf-8')
  1312. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1313. toktype = gguf.TokenType.BYTE # special
  1314. elif reverse_vocab[token_id] in added_vocab:
  1315. if tokenizer.added_tokens_decoder[token_id].special:
  1316. toktype = gguf.TokenType.CONTROL
  1317. else:
  1318. toktype = gguf.TokenType.USER_DEFINED
  1319. else:
  1320. toktype = gguf.TokenType.NORMAL
  1321. tokens.append(token_text)
  1322. toktypes.append(toktype)
  1323. self.gguf_writer.add_tokenizer_model("llama")
  1324. self.gguf_writer.add_tokenizer_pre("default")
  1325. self.gguf_writer.add_token_list(tokens)
  1326. self.gguf_writer.add_token_types(toktypes)
  1327. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1328. special_vocab.add_to_gguf(self.gguf_writer)
  1329. def set_gguf_parameters(self):
  1330. block_count = self.hparams["num_hidden_layers"]
  1331. head_count = self.hparams["num_attention_heads"]
  1332. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1333. ctx_length = 0
  1334. if "max_sequence_length" in self.hparams:
  1335. ctx_length = self.hparams["max_sequence_length"]
  1336. elif "max_position_embeddings" in self.hparams:
  1337. ctx_length = self.hparams["max_position_embeddings"]
  1338. elif "model_max_length" in self.hparams:
  1339. ctx_length = self.hparams["model_max_length"]
  1340. else:
  1341. raise ValueError("gguf: can not find ctx length parameter.")
  1342. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1343. self.gguf_writer.add_context_length(ctx_length)
  1344. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1345. self.gguf_writer.add_block_count(block_count)
  1346. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1347. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1348. self.gguf_writer.add_head_count(head_count)
  1349. self.gguf_writer.add_head_count_kv(head_count_kv)
  1350. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1351. self.gguf_writer.add_file_type(self.ftype)
  1352. rope_scaling = self.hparams.get("rope_scaling") or {}
  1353. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1354. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1355. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1356. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1357. del bid # unused
  1358. head_count = self.hparams["num_attention_heads"]
  1359. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1360. # HF models permute some of the tensors, so we need to undo that
  1361. if name.endswith("q_proj.weight"):
  1362. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1363. if name.endswith("k_proj.weight"):
  1364. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1365. return [(self.map_tensor_name(name), data_torch)]
  1366. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1367. if n_kv_head is not None and n_head != n_kv_head:
  1368. n_head //= n_kv_head
  1369. return (
  1370. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1371. .swapaxes(1, 2)
  1372. .reshape(weights.shape)
  1373. )
  1374. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1375. class FalconModel(TextModel):
  1376. model_arch = gguf.MODEL_ARCH.FALCON
  1377. def set_gguf_parameters(self):
  1378. block_count = self.hparams.get("num_hidden_layers")
  1379. if block_count is None:
  1380. block_count = self.hparams["n_layer"] # old name
  1381. n_head = self.hparams.get("num_attention_heads")
  1382. if n_head is None:
  1383. n_head = self.hparams["n_head"] # old name
  1384. n_head_kv = self.hparams.get("num_kv_heads")
  1385. if n_head_kv is None:
  1386. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1387. self.gguf_writer.add_context_length(2048) # not in config.json
  1388. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1389. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1390. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1391. self.gguf_writer.add_block_count(block_count)
  1392. self.gguf_writer.add_head_count(n_head)
  1393. self.gguf_writer.add_head_count_kv(n_head_kv)
  1394. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1395. self.gguf_writer.add_file_type(self.ftype)
  1396. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1397. del bid # unused
  1398. # QKV tensor transform
  1399. # The original query_key_value tensor contains n_head_kv "kv groups",
  1400. # each consisting of n_head/n_head_kv query weights followed by one key
  1401. # and one value weight (shared by all query heads in the kv group).
  1402. # This layout makes it a big pain to work with in GGML.
  1403. # So we rearrange them here,, so that we have n_head query weights
  1404. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1405. # in contiguous fashion.
  1406. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1407. if "query_key_value" in name:
  1408. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1409. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1410. head_dim = self.hparams["hidden_size"] // n_head
  1411. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1412. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1413. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1414. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1415. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1416. return [(self.map_tensor_name(name), data_torch)]
  1417. @ModelBase.register("GPTBigCodeForCausalLM")
  1418. class StarCoderModel(TextModel):
  1419. model_arch = gguf.MODEL_ARCH.STARCODER
  1420. def set_gguf_parameters(self):
  1421. block_count = self.hparams["n_layer"]
  1422. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1423. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1424. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1425. self.gguf_writer.add_block_count(block_count)
  1426. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1427. self.gguf_writer.add_head_count_kv(1)
  1428. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1429. self.gguf_writer.add_file_type(self.ftype)
  1430. @ModelBase.register("GPTRefactForCausalLM")
  1431. class RefactModel(TextModel):
  1432. model_arch = gguf.MODEL_ARCH.REFACT
  1433. def set_vocab(self):
  1434. super().set_vocab()
  1435. # TODO: how to determine special FIM tokens automatically?
  1436. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1437. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1438. special_vocab._set_special_token("prefix", 1)
  1439. special_vocab._set_special_token("suffix", 3)
  1440. special_vocab._set_special_token("middle", 2)
  1441. special_vocab.chat_template = None # do not add it twice
  1442. special_vocab.add_to_gguf(self.gguf_writer)
  1443. def set_gguf_parameters(self):
  1444. hidden_dim = self.hparams["n_embd"]
  1445. inner_dim = 4 * hidden_dim
  1446. hidden_dim = int(2 * inner_dim / 3)
  1447. multiple_of = 256
  1448. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1449. block_count = self.hparams["n_layer"]
  1450. # refact uses Alibi. So this is from config.json which might be used by training.
  1451. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1452. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1453. self.gguf_writer.add_feed_forward_length(ff_dim)
  1454. self.gguf_writer.add_block_count(block_count)
  1455. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1456. self.gguf_writer.add_head_count_kv(1)
  1457. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1458. self.gguf_writer.add_file_type(self.ftype)
  1459. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1460. hidden_dim = self.hparams["n_embd"]
  1461. inner_dim = 4 * hidden_dim
  1462. hidden_dim = int(2 * inner_dim / 3)
  1463. multiple_of = 256
  1464. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1465. n_head = self.hparams["n_head"]
  1466. n_head_kv = 1
  1467. head_dim = self.hparams["n_embd"] // n_head
  1468. tensors: list[tuple[str, Tensor]] = []
  1469. if bid is not None:
  1470. if name == f"transformer.h.{bid}.attn.kv.weight":
  1471. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1472. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1473. elif name == f"transformer.h.{bid}.attn.q.weight":
  1474. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1475. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1476. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1477. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1478. if len(tensors) == 0:
  1479. tensors.append((self.map_tensor_name(name), data_torch))
  1480. return tensors
  1481. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1482. class StableLMModel(TextModel):
  1483. model_arch = gguf.MODEL_ARCH.STABLELM
  1484. def set_vocab(self):
  1485. if (self.dir_model / "tokenizer.json").is_file():
  1486. self._set_vocab_gpt2()
  1487. else:
  1488. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1489. self._set_vocab_qwen()
  1490. def set_gguf_parameters(self):
  1491. hparams = self.hparams
  1492. block_count = hparams["num_hidden_layers"]
  1493. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1494. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1495. self.gguf_writer.add_block_count(block_count)
  1496. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1497. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1498. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1499. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1500. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1501. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1502. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1503. self.gguf_writer.add_file_type(self.ftype)
  1504. _q_norms: list[dict[str, Tensor]] | None = None
  1505. _k_norms: list[dict[str, Tensor]] | None = None
  1506. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1507. n_head = self.hparams["num_attention_heads"]
  1508. n_kv_head = self.hparams["num_key_value_heads"]
  1509. if name.find("q_layernorm.norms") != -1:
  1510. assert bid is not None
  1511. if self._q_norms is None:
  1512. self._q_norms = [{} for _ in range(self.block_count)]
  1513. self._q_norms[bid][name] = data_torch
  1514. if len(self._q_norms[bid]) >= n_head:
  1515. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1516. else:
  1517. return []
  1518. if name.find("k_layernorm.norms") != -1:
  1519. assert bid is not None
  1520. if self._k_norms is None:
  1521. self._k_norms = [{} for _ in range(self.block_count)]
  1522. self._k_norms[bid][name] = data_torch
  1523. if len(self._k_norms[bid]) >= n_kv_head:
  1524. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1525. else:
  1526. return []
  1527. return [(self.map_tensor_name(name), data_torch)]
  1528. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1529. datas: list[Tensor] = []
  1530. # extract the norms in order
  1531. for xid in range(n_head):
  1532. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1533. datas.append(norms[ename])
  1534. del norms[ename]
  1535. data_torch = torch.stack(datas, dim=0)
  1536. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1537. new_name = self.map_tensor_name(merged_name)
  1538. return [(new_name, data_torch)]
  1539. def prepare_tensors(self):
  1540. super().prepare_tensors()
  1541. if self._q_norms is not None or self._k_norms is not None:
  1542. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1543. norms = (
  1544. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1545. ) + (
  1546. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1547. )
  1548. if len(norms) > 0:
  1549. raise ValueError(f"Unprocessed norms: {norms}")
  1550. @ModelBase.register(
  1551. "LLaMAForCausalLM",
  1552. "LlamaForCausalLM",
  1553. "MistralForCausalLM",
  1554. "MixtralForCausalLM",
  1555. "VLlama3ForCausalLM",
  1556. "LlavaForConditionalGeneration",
  1557. "LlamaModel")
  1558. class LlamaModel(TextModel):
  1559. model_arch = gguf.MODEL_ARCH.LLAMA
  1560. undo_permute = True
  1561. def __init__(self, *args, **kwargs):
  1562. super().__init__(*args, **kwargs)
  1563. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1564. if self.hf_arch == "VLlama3ForCausalLM":
  1565. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1566. def set_vocab(self):
  1567. try:
  1568. self._set_vocab_sentencepiece()
  1569. except FileNotFoundError:
  1570. try:
  1571. self._set_vocab_llama_hf()
  1572. except (FileNotFoundError, TypeError):
  1573. # Llama 3
  1574. self._set_vocab_gpt2()
  1575. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1576. if self.hparams.get("vocab_size", 32000) == 32016:
  1577. special_vocab = gguf.SpecialVocab(
  1578. self.dir_model, load_merges=False,
  1579. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1580. )
  1581. special_vocab._set_special_token("prefix", 32007)
  1582. special_vocab._set_special_token("suffix", 32008)
  1583. special_vocab._set_special_token("middle", 32009)
  1584. special_vocab._set_special_token("eot", 32010)
  1585. special_vocab.add_to_gguf(self.gguf_writer)
  1586. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1587. if tokenizer_config_file.is_file():
  1588. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1589. tokenizer_config_json = json.load(f)
  1590. if "add_prefix_space" in tokenizer_config_json:
  1591. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1592. # Apply to granite small models only
  1593. if self.hparams.get("vocab_size", 32000) == 49152:
  1594. self.gguf_writer.add_add_bos_token(False)
  1595. def set_gguf_parameters(self):
  1596. super().set_gguf_parameters()
  1597. hparams = self.hparams
  1598. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1599. if (rope_dim := hparams.get("head_dim")) is None:
  1600. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1601. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1602. rope_scaling = self.hparams.get("rope_scaling") or {}
  1603. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1604. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1605. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1606. @staticmethod
  1607. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1608. if n_head_kv is not None and n_head != n_head_kv:
  1609. n_head = n_head_kv
  1610. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1611. .swapaxes(1, 2)
  1612. .reshape(weights.shape))
  1613. _experts: list[dict[str, Tensor]] | None = None
  1614. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1615. n_head = self.hparams["num_attention_heads"]
  1616. n_kv_head = self.hparams.get("num_key_value_heads")
  1617. is_vision_tensor = "vision_tower" in name \
  1618. or "vision_model" in name \
  1619. or "model.connector" in name \
  1620. or "multi_modal_projector" in name
  1621. if is_vision_tensor:
  1622. return [] # skip vision tensors
  1623. elif self.hf_arch == "LlamaModel":
  1624. name = "model." + name
  1625. elif name.startswith("model.text_model"):
  1626. name = name.replace("text_model.", "") # for SmolVLM
  1627. elif name.startswith("language_model."):
  1628. name = name.replace("language_model.", "") # for the rest
  1629. if self.undo_permute:
  1630. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1631. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1632. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1633. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1634. # process the experts separately
  1635. if name.find("block_sparse_moe.experts") != -1:
  1636. n_experts = self.hparams["num_local_experts"]
  1637. assert bid is not None
  1638. if self._experts is None:
  1639. self._experts = [{} for _ in range(self.block_count)]
  1640. self._experts[bid][name] = data_torch
  1641. if len(self._experts[bid]) >= n_experts * 3:
  1642. tensors: list[tuple[str, Tensor]] = []
  1643. # merge the experts into a single 3d tensor
  1644. for wid in ["w1", "w2", "w3"]:
  1645. datas: list[Tensor] = []
  1646. for xid in range(n_experts):
  1647. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1648. datas.append(self._experts[bid][ename])
  1649. del self._experts[bid][ename]
  1650. data_torch = torch.stack(datas, dim=0)
  1651. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1652. new_name = self.map_tensor_name(merged_name)
  1653. tensors.append((new_name, data_torch))
  1654. return tensors
  1655. else:
  1656. return []
  1657. return [(self.map_tensor_name(name), data_torch)]
  1658. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1659. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1660. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1661. base = self.hparams.get("rope_theta", 10000.0)
  1662. if (dim := self.hparams.get("head_dim")) is None:
  1663. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1664. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1665. factor = rope_scaling.get("factor", 8.0)
  1666. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1667. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1668. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1669. low_freq_wavelen = old_context_len / low_freq_factor
  1670. high_freq_wavelen = old_context_len / high_freq_factor
  1671. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1672. rope_factors = []
  1673. for freq in freqs:
  1674. wavelen = 2 * math.pi / freq
  1675. if wavelen < high_freq_wavelen:
  1676. rope_factors.append(1)
  1677. elif wavelen > low_freq_wavelen:
  1678. rope_factors.append(factor)
  1679. else:
  1680. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1681. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1682. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1683. def prepare_tensors(self):
  1684. super().prepare_tensors()
  1685. if self._experts is not None:
  1686. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1687. experts = [k for d in self._experts for k in d.keys()]
  1688. if len(experts) > 0:
  1689. raise ValueError(f"Unprocessed experts: {experts}")
  1690. @ModelBase.register("ArceeForCausalLM")
  1691. class ArceeModel(LlamaModel):
  1692. model_arch = gguf.MODEL_ARCH.ARCEE
  1693. def set_gguf_parameters(self):
  1694. super().set_gguf_parameters()
  1695. self._try_set_pooling_type()
  1696. rope_scaling = self.hparams.get("rope_scaling") or {}
  1697. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1698. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1699. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1700. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1701. @ModelBase.register(
  1702. "LlavaForConditionalGeneration", # pixtral
  1703. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1704. )
  1705. class LlavaVisionModel(MmprojModel):
  1706. img_break_tok_id = -1
  1707. def __init__(self, *args, **kwargs):
  1708. super().__init__(*args, **kwargs)
  1709. if self.hparams["model_type"] == "pixtral":
  1710. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1711. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1712. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1713. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1714. else:
  1715. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1716. def get_token_id(self, token: str) -> int:
  1717. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1718. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1719. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1720. for id_, token_data in added_tokens_decoder.items():
  1721. if token_data["content"] == token:
  1722. return int(id_)
  1723. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1724. def set_gguf_parameters(self):
  1725. super().set_gguf_parameters()
  1726. hparams = self.hparams
  1727. if hparams["model_type"] == "pixtral":
  1728. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1729. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1730. # hidden_act
  1731. if hparams["hidden_act"] == "silu":
  1732. self.gguf_writer.add_vision_use_silu(True)
  1733. elif hparams["hidden_act"] == "gelu":
  1734. self.gguf_writer.add_vision_use_gelu(True)
  1735. else:
  1736. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1737. # spatial_merge_size
  1738. if "spatial_merge_size" in self.global_config:
  1739. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1740. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1741. del bid # unused
  1742. n_head = self.hparams["num_attention_heads"]
  1743. n_kv_head = n_head
  1744. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1745. # process vision tensors
  1746. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1747. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1748. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1749. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1750. return [(self.map_tensor_name(name), data_torch)]
  1751. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1752. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1753. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1754. img_break_embd = data_torch[self.img_break_tok_id]
  1755. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1756. return [(self.map_tensor_name(name), img_break_embd)]
  1757. return [] # skip other tensors
  1758. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1759. class SmolVLMModel(MmprojModel):
  1760. def __init__(self, *args, **kwargs):
  1761. super().__init__(*args, **kwargs)
  1762. if self.hparams["model_type"] == "smolvlm_vision":
  1763. # fix for SmolVLM2, missing some keys in config.json
  1764. # default values are taken from transformers code
  1765. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1766. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1767. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1768. def set_gguf_parameters(self):
  1769. super().set_gguf_parameters()
  1770. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1771. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1772. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1773. self.gguf_writer.add_vision_use_gelu(True)
  1774. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1775. del bid, new_name, n_dims # unused
  1776. if ".embeddings." in name:
  1777. return gguf.GGMLQuantizationType.F32
  1778. return False
  1779. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1780. del bid # unused
  1781. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1782. if is_vision_tensor:
  1783. return [(self.map_tensor_name(name), data_torch)]
  1784. return [] # skip other tensors
  1785. @ModelBase.register("Llama4ForConditionalGeneration")
  1786. class Llama4Model(LlamaModel):
  1787. model_arch = gguf.MODEL_ARCH.LLAMA4
  1788. undo_permute = False
  1789. def __init__(self, *args, **kwargs):
  1790. super().__init__(*args, **kwargs)
  1791. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1792. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1793. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1794. def set_vocab(self):
  1795. self._set_vocab_gpt2()
  1796. def set_gguf_parameters(self):
  1797. super().set_gguf_parameters()
  1798. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1799. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1800. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1801. if name.startswith("language_model."):
  1802. name = name.replace("language_model.", "")
  1803. # split the gate_up into gate and up
  1804. if "gate_up_proj" in name:
  1805. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1806. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1807. dim_half = data_torch.shape[-1] // 2
  1808. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1809. return [
  1810. (self.map_tensor_name(name_gate), gate_proj_weight),
  1811. (self.map_tensor_name(name_up), up_proj_weight)
  1812. ]
  1813. if name.endswith("down_proj"):
  1814. name += ".weight"
  1815. data_torch = data_torch.transpose(-1, -2)
  1816. if "multi_modal_projector" in name or "vision_model" in name:
  1817. return []
  1818. return super().modify_tensors(data_torch, name, bid)
  1819. @ModelBase.register("Llama4ForConditionalGeneration")
  1820. class Llama4VisionModel(MmprojModel):
  1821. def set_gguf_parameters(self):
  1822. super().set_gguf_parameters()
  1823. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1824. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1825. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1826. assert self.hparams["hidden_act"] == "gelu"
  1827. self.gguf_writer.add_vision_use_gelu(True)
  1828. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1829. del bid # unused
  1830. if "multi_modal_projector" in name or "vision_model" in name:
  1831. # process vision tensors
  1832. if "positional_embedding_vlm" in name and ".weight" not in name:
  1833. name += ".weight"
  1834. if "multi_modal_projector.linear_1" in name:
  1835. # despite the name with number postfix, this is a single fully connected layer
  1836. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1837. return [(self.map_tensor_name(name), data_torch)]
  1838. return []
  1839. @ModelBase.register("Mistral3ForConditionalGeneration")
  1840. class Mistral3Model(LlamaModel):
  1841. model_arch = gguf.MODEL_ARCH.LLAMA
  1842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1843. name = name.replace("language_model.", "")
  1844. if "multi_modal_projector" in name or "vision_tower" in name:
  1845. return []
  1846. return super().modify_tensors(data_torch, name, bid)
  1847. @ModelBase.register("DeciLMForCausalLM")
  1848. class DeciModel(TextModel):
  1849. model_arch = gguf.MODEL_ARCH.DECI
  1850. @staticmethod
  1851. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1852. # DeciLM-specific code
  1853. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1854. return DeciModel._find_multiple(intermediate_size, 256)
  1855. @staticmethod
  1856. def _find_multiple(n: int, k: int) -> int:
  1857. # DeciLM-specific code
  1858. if n % k == 0:
  1859. return n
  1860. return n + k - (n % k)
  1861. def __init__(self, *args, **kwargs):
  1862. super().__init__(*args, **kwargs)
  1863. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1864. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1865. assert self.block_count == len(_block_configs)
  1866. self._num_kv_heads = list()
  1867. self._num_heads = list()
  1868. _ffn_multipliers = list()
  1869. # ***linear attention layer***
  1870. # if n_heads_in_group is None and replace_with_linear is True
  1871. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1872. # ***attention-free layer***
  1873. # if n_heads_in_group is None and replace_with_linear is False
  1874. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1875. # ***normal attention-layer***
  1876. # if n_heads_in_group is not None, then
  1877. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1878. # _num_heads[il] is num_attention_head
  1879. # ***dummy layer*** for nemotron 253B
  1880. # if n_heads_in_group is None and ffn_mult is None
  1881. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1882. for il in range(len(_block_configs)):
  1883. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1884. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1885. self._num_kv_heads.append(0)
  1886. self._num_heads.append(self.hparams["num_attention_heads"])
  1887. else:
  1888. self._num_kv_heads.append(0)
  1889. self._num_heads.append(0)
  1890. else:
  1891. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1892. self._num_heads.append(self.hparams["num_attention_heads"])
  1893. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1894. _ffn_multipliers.append(0.0)
  1895. else:
  1896. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1897. assert self.block_count == len(self._num_kv_heads)
  1898. assert self.block_count == len(self._num_heads)
  1899. assert self.block_count == len(_ffn_multipliers)
  1900. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1901. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1902. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1903. self._ffn_dims: list[int] = [
  1904. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1905. for multiplier in _ffn_multipliers
  1906. ]
  1907. def set_vocab(self):
  1908. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1909. # eos_token from '|eot_id|' to '|end_of_text|'
  1910. if self.hparams.get("vocab_size", 128256) == 128256:
  1911. tokens, toktypes, tokpre = self.get_vocab_base()
  1912. self.gguf_writer.add_tokenizer_model("gpt2")
  1913. self.gguf_writer.add_tokenizer_pre(tokpre)
  1914. self.gguf_writer.add_token_list(tokens)
  1915. self.gguf_writer.add_token_types(toktypes)
  1916. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1917. special_vocab.add_to_gguf(self.gguf_writer)
  1918. else:
  1919. # DeciLM-7B
  1920. self._set_vocab_llama_hf()
  1921. def set_gguf_parameters(self):
  1922. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1923. assert self.block_count == len(self._num_kv_heads)
  1924. assert self.block_count == len(self._num_heads)
  1925. assert self.block_count == len(self._ffn_dims)
  1926. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1927. self.gguf_writer.add_rope_freq_base(rope_theta)
  1928. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1929. self.gguf_writer.add_head_count(self._num_heads)
  1930. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1931. self.gguf_writer.add_block_count(self.block_count)
  1932. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1933. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1934. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1935. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1936. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1937. self.gguf_writer.add_file_type(self.ftype)
  1938. else: # DeciLM-7B
  1939. super().set_gguf_parameters()
  1940. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1941. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1942. assert self.block_count == len(self._num_kv_heads)
  1943. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1944. hparams = self.hparams
  1945. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1946. if (rope_dim := hparams.get("head_dim")) is None:
  1947. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1948. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1949. rope_scaling = self.hparams.get("rope_scaling") or {}
  1950. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1951. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1952. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1953. @staticmethod
  1954. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1955. if n_head_kv is not None and n_head != n_head_kv:
  1956. n_head = n_head_kv
  1957. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1958. .swapaxes(1, 2)
  1959. .reshape(weights.shape))
  1960. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1961. n_head = self.hparams["num_attention_heads"]
  1962. if bid is not None:
  1963. if "num_key_value_heads_per_layer" in self.hparams:
  1964. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1965. elif "block_configs" in self.hparams:
  1966. n_kv_head = self._num_kv_heads[bid]
  1967. n_head = self._num_heads[bid]
  1968. else:
  1969. n_kv_head = self.hparams.get("num_key_value_heads")
  1970. else:
  1971. n_kv_head = self.hparams.get("num_key_value_heads")
  1972. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1973. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1974. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1975. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1976. return [(self.map_tensor_name(name), data_torch)]
  1977. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1978. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1979. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1980. base = self.hparams.get("rope_theta", 10000.0)
  1981. if (dim := self.hparams.get("head_dim")) is None:
  1982. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1983. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1984. factor = rope_scaling.get("factor", 8.0)
  1985. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1986. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1987. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1988. low_freq_wavelen = old_context_len / low_freq_factor
  1989. high_freq_wavelen = old_context_len / high_freq_factor
  1990. assert low_freq_wavelen != high_freq_wavelen
  1991. rope_factors = []
  1992. for freq in freqs:
  1993. wavelen = 2 * math.pi / freq
  1994. if wavelen < high_freq_wavelen:
  1995. rope_factors.append(1)
  1996. elif wavelen > low_freq_wavelen:
  1997. rope_factors.append(factor)
  1998. else:
  1999. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2000. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2001. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2002. def prepare_tensors(self):
  2003. super().prepare_tensors()
  2004. @ModelBase.register("BitnetForCausalLM")
  2005. class BitnetModel(TextModel):
  2006. model_arch = gguf.MODEL_ARCH.BITNET
  2007. def set_vocab(self):
  2008. self._set_vocab_sentencepiece()
  2009. def set_gguf_parameters(self):
  2010. super().set_gguf_parameters()
  2011. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2012. self.gguf_writer.add_rope_scaling_factor(1.0)
  2013. def weight_quant(self, weight: Tensor) -> Tensor:
  2014. dtype = weight.dtype
  2015. weight = weight.float()
  2016. scale = weight.abs().mean().clamp(min=1e-5)
  2017. iscale = 1 / scale
  2018. # TODO: multiply by the scale directly instead of inverting it twice
  2019. # (this is also unnecessarily doubly inverted upstream)
  2020. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2021. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2022. return result.type(dtype)
  2023. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2024. new_name = self.map_tensor_name(name)
  2025. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2026. gguf.MODEL_TENSOR.ATTN_Q,
  2027. gguf.MODEL_TENSOR.ATTN_K,
  2028. gguf.MODEL_TENSOR.ATTN_V,
  2029. gguf.MODEL_TENSOR.ATTN_OUT,
  2030. gguf.MODEL_TENSOR.FFN_UP,
  2031. gguf.MODEL_TENSOR.FFN_DOWN,
  2032. gguf.MODEL_TENSOR.FFN_GATE,
  2033. ]):
  2034. # transform weight into 1/0/-1 (in fp32)
  2035. data_torch = self.weight_quant(data_torch)
  2036. yield (new_name, data_torch)
  2037. @ModelBase.register("GrokForCausalLM")
  2038. class GrokModel(TextModel):
  2039. model_arch = gguf.MODEL_ARCH.GROK
  2040. def set_vocab(self):
  2041. self._set_vocab_sentencepiece()
  2042. def __init__(self, *args, **kwargs):
  2043. super().__init__(*args, **kwargs)
  2044. def set_gguf_parameters(self):
  2045. super().set_gguf_parameters()
  2046. _experts: list[dict[str, Tensor]] | None = None
  2047. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2048. # process the experts separately
  2049. if name.find(".moe.") != -1:
  2050. n_experts = self.hparams["num_local_experts"]
  2051. assert bid is not None
  2052. if self._experts is None:
  2053. self._experts = [{} for _ in range(self.block_count)]
  2054. self._experts[bid][name] = data_torch
  2055. if len(self._experts[bid]) >= n_experts * 3:
  2056. tensors: list[tuple[str, Tensor]] = []
  2057. # merge the experts into a single 3d tensor
  2058. for wid in ["linear", "linear_1", "linear_v"]:
  2059. datas: list[Tensor] = []
  2060. for xid in range(n_experts):
  2061. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2062. datas.append(self._experts[bid][ename])
  2063. del self._experts[bid][ename]
  2064. data_torch = torch.stack(datas, dim=0)
  2065. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2066. new_name = self.map_tensor_name(merged_name)
  2067. tensors.append((new_name, data_torch))
  2068. return tensors
  2069. else:
  2070. return []
  2071. return [(self.map_tensor_name(name), data_torch)]
  2072. @ModelBase.register("DbrxForCausalLM")
  2073. class DbrxModel(TextModel):
  2074. model_arch = gguf.MODEL_ARCH.DBRX
  2075. def set_gguf_parameters(self):
  2076. ffn_config = self.hparams["ffn_config"]
  2077. attn_config = self.hparams["attn_config"]
  2078. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2079. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2080. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2081. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2082. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2083. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2084. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2085. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2086. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2087. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2088. self.gguf_writer.add_layer_norm_eps(1e-5)
  2089. self.gguf_writer.add_file_type(self.ftype)
  2090. logger.info(f"gguf: file type = {self.ftype}")
  2091. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2092. del bid # unused
  2093. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2094. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2095. n_embd = self.hparams["d_model"]
  2096. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2097. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2098. # But llama.cpp moe graph works differently
  2099. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2100. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2101. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2102. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2103. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2104. experts = False
  2105. for exp_tensor_name in exp_tensor_names.keys():
  2106. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2107. experts = True
  2108. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2109. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2110. data_torch = data_torch.permute(*permute_tensor)
  2111. break
  2112. # map tensor names
  2113. # In MoE models the ffn tensors are typically most of the model weights,
  2114. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2115. # Every other model has the weight names ending in .weight,
  2116. # let's assume that is the convention which is not the case for dbrx:
  2117. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2118. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2119. return [(new_name, data_torch)]
  2120. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2121. del name, new_name, bid # unused
  2122. return n_dims > 1
  2123. @ModelBase.register("MiniCPMForCausalLM")
  2124. class MiniCPMModel(TextModel):
  2125. model_arch = gguf.MODEL_ARCH.MINICPM
  2126. def set_gguf_parameters(self):
  2127. super().set_gguf_parameters()
  2128. embedding_scale = float(self.hparams["scale_emb"])
  2129. self.gguf_writer.add_embedding_scale(embedding_scale)
  2130. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2131. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2132. self.gguf_writer.add_residual_scale(residual_scale)
  2133. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2134. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2135. self.gguf_writer.add_logit_scale(logit_scale)
  2136. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2137. rope_scaling = self.hparams.get("rope_scaling") or {}
  2138. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2139. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2140. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2141. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2142. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2143. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2144. if rope_scaling is not None:
  2145. long_factors = rope_scaling.get('long_factor', None)
  2146. short_factors = rope_scaling.get('short_factor', None)
  2147. if long_factors is None or short_factors is None:
  2148. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2149. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2150. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2151. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2152. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2153. def set_vocab(self):
  2154. self._set_vocab_sentencepiece()
  2155. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2156. del bid # unused
  2157. n_head = self.hparams["num_attention_heads"]
  2158. n_kv_head = self.hparams.get("num_key_value_heads")
  2159. # HF models permute some of the tensors, so we need to undo that
  2160. if name.endswith(("q_proj.weight")):
  2161. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2162. if name.endswith(("k_proj.weight")):
  2163. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2164. return [(self.map_tensor_name(name), data_torch)]
  2165. @ModelBase.register("MiniCPM3ForCausalLM")
  2166. class MiniCPM3Model(TextModel):
  2167. model_arch = gguf.MODEL_ARCH.MINICPM3
  2168. def set_gguf_parameters(self):
  2169. hparams = self.hparams
  2170. self.gguf_writer.add_file_type(self.ftype)
  2171. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2172. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2173. self.gguf_writer.add_block_count(self.block_count)
  2174. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2175. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2176. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2177. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2178. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2179. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2180. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2181. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2182. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2183. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2184. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2185. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2186. if rope_scaling is not None:
  2187. rope_dims = self.hparams["qk_rope_head_dim"]
  2188. long_factors = rope_scaling.get('long_factor', None)
  2189. short_factors = rope_scaling.get('short_factor', None)
  2190. if long_factors is None or short_factors is None:
  2191. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2192. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2193. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2194. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2195. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2196. def set_vocab(self):
  2197. self._set_vocab_sentencepiece()
  2198. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2199. if n_kv_head is not None and n_head != n_kv_head:
  2200. n_head //= n_kv_head
  2201. return (
  2202. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2203. .swapaxes(1, 2)
  2204. .reshape(weights.shape)
  2205. )
  2206. @ModelBase.register("QWenLMHeadModel")
  2207. class QwenModel(TextModel):
  2208. model_arch = gguf.MODEL_ARCH.QWEN
  2209. @staticmethod
  2210. def token_bytes_to_string(b):
  2211. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2212. byte_encoder = bytes_to_unicode()
  2213. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2214. @staticmethod
  2215. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2216. parts = [bytes([b]) for b in token]
  2217. while True:
  2218. min_idx = None
  2219. min_rank = None
  2220. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2221. rank = mergeable_ranks.get(pair[0] + pair[1])
  2222. if rank is not None and (min_rank is None or rank < min_rank):
  2223. min_idx = i
  2224. min_rank = rank
  2225. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2226. break
  2227. assert min_idx is not None
  2228. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2229. return parts
  2230. def set_vocab(self):
  2231. self._set_vocab_qwen()
  2232. def set_gguf_parameters(self):
  2233. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2234. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2235. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2236. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2237. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2238. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2239. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2240. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2241. self.gguf_writer.add_file_type(self.ftype)
  2242. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2243. class Qwen2Model(TextModel):
  2244. model_arch = gguf.MODEL_ARCH.QWEN2
  2245. def set_vocab(self):
  2246. try:
  2247. self._set_vocab_sentencepiece()
  2248. except FileNotFoundError:
  2249. self._set_vocab_gpt2()
  2250. def set_gguf_parameters(self):
  2251. super().set_gguf_parameters()
  2252. self._try_set_pooling_type()
  2253. rope_scaling = self.hparams.get("rope_scaling") or {}
  2254. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2255. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2256. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2257. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2258. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2259. if self.hf_arch == "Qwen2Model":
  2260. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2261. if "language_model." in name:
  2262. name = name.replace("language_model.", "") # for InternVL
  2263. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2264. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2265. # skip vision and audio tensors
  2266. return []
  2267. yield from super().modify_tensors(data_torch, name, bid)
  2268. @ModelBase.register("Ernie4_5_ForCausalLM")
  2269. class Ernie4_5Model(TextModel):
  2270. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2271. def set_vocab(self):
  2272. self._set_vocab_sentencepiece()
  2273. def set_gguf_parameters(self):
  2274. super().set_gguf_parameters()
  2275. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2276. num_heads = self.hparams["num_attention_heads"]
  2277. num_kv_heads = self.hparams["num_key_value_heads"]
  2278. head_dim = self.hparams["head_dim"]
  2279. if "ernie." in name:
  2280. name = name.replace("ernie.", "model.")
  2281. # split the qkv weights
  2282. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2283. if "qkv_proj" in name:
  2284. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2285. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2286. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2287. total_q_dim = num_heads * head_dim
  2288. total_k_dim = num_kv_heads * head_dim
  2289. total_v_dim = num_kv_heads * head_dim
  2290. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2291. return [
  2292. (self.map_tensor_name(name_q), q_proj_weight),
  2293. (self.map_tensor_name(name_k), k_proj_weight),
  2294. (self.map_tensor_name(name_v), v_proj_weight)
  2295. ]
  2296. # split the up_gate_proj into gate and up
  2297. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2298. if "up_gate_proj" in name:
  2299. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2300. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2301. dim_half = data_torch.shape[0] // 2
  2302. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2303. return [
  2304. (self.map_tensor_name(name_gate), gate_proj_weight),
  2305. (self.map_tensor_name(name_up), up_proj_weight)
  2306. ]
  2307. return [(self.map_tensor_name(name), data_torch)]
  2308. @ModelBase.register(
  2309. "Qwen2VLModel",
  2310. "Qwen2VLForConditionalGeneration",
  2311. "Qwen2_5_VLForConditionalGeneration",
  2312. "Qwen2_5OmniModel",
  2313. )
  2314. class Qwen2VLModel(TextModel):
  2315. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2316. def set_gguf_parameters(self):
  2317. super().set_gguf_parameters()
  2318. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2319. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2320. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2321. def set_vocab(self):
  2322. try:
  2323. self._set_vocab_sentencepiece()
  2324. except FileNotFoundError:
  2325. self._set_vocab_gpt2()
  2326. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2327. del bid # unused
  2328. if name.startswith("thinker."):
  2329. name = name.replace("thinker.", "")
  2330. if name.startswith("visual") or name.startswith("audio") or \
  2331. name.startswith("talker") or name.startswith("token2wav"):
  2332. # skip multimodal tensors
  2333. return []
  2334. return [(self.map_tensor_name(name), data_torch)]
  2335. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2336. class Qwen2VLVisionModel(MmprojModel):
  2337. def __init__(self, *args, **kwargs):
  2338. super().__init__(*args, **kwargs)
  2339. assert self.hparams_vision is not None
  2340. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2341. # rename config.json values
  2342. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2343. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2344. if "embed_dim" in self.hparams_vision: # qwen2vl
  2345. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2346. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2347. def set_gguf_parameters(self):
  2348. super().set_gguf_parameters()
  2349. assert self.hparams_vision is not None
  2350. hparams = self.hparams_vision
  2351. model_type = self.global_config['model_type']
  2352. if model_type == 'qwen2_vl':
  2353. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2354. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2355. if model_type == 'qwen2_5_omni':
  2356. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2357. else:
  2358. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2359. self.gguf_writer.add_vision_use_silu(True)
  2360. # find n_wa_pattern (window attention pattern)
  2361. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2362. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2363. n_wa_pattern = fullatt_block_indexes[0] + 1
  2364. # validate n_wa_pattern
  2365. for i in range(1, len(fullatt_block_indexes)):
  2366. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2367. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2368. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2369. else:
  2370. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2371. # default values below are taken from HF tranformers code
  2372. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2373. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2374. del bid, name, n_dims # unused
  2375. if ".patch_embd." in new_name:
  2376. return gguf.GGMLQuantizationType.F16
  2377. if ".position_embd." in new_name:
  2378. return gguf.GGMLQuantizationType.F32
  2379. return False
  2380. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2381. del bid # unused
  2382. if name.startswith("visual."):
  2383. # process visual tensors
  2384. # split QKV tensors if needed
  2385. if ".qkv." in name:
  2386. if data_torch.ndim == 2: # weight
  2387. c3, _ = data_torch.shape
  2388. else: # bias
  2389. c3 = data_torch.shape[0]
  2390. assert c3 % 3 == 0
  2391. c = c3 // 3
  2392. wq = data_torch[:c]
  2393. wk = data_torch[c: c * 2]
  2394. wv = data_torch[c * 2:]
  2395. return [
  2396. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2397. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2398. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2399. ]
  2400. elif 'patch_embed.proj.weight' in name:
  2401. # split Conv3D into Conv2Ds
  2402. c1, c2, kt, kh, kw = data_torch.shape
  2403. del c1, c2, kh, kw # unused
  2404. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2405. return [
  2406. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2407. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2408. ]
  2409. else:
  2410. return [(self.map_tensor_name(name), data_torch)]
  2411. return [] # skip other tensors
  2412. @ModelBase.register("Qwen2_5OmniModel")
  2413. class Qwen25OmniModel(Qwen2VLVisionModel):
  2414. has_vision_encoder = True
  2415. has_audio_encoder = True
  2416. def __init__(self, *args, **kwargs):
  2417. super().__init__(*args, **kwargs)
  2418. assert self.hparams_audio is not None
  2419. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2420. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2421. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2422. def set_gguf_parameters(self):
  2423. super().set_gguf_parameters()
  2424. assert self.hparams_audio is not None
  2425. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2426. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2427. def get_vision_config(self) -> dict[str, Any] | None:
  2428. return self.global_config["thinker_config"].get("vision_config")
  2429. def get_audio_config(self) -> dict[str, Any] | None:
  2430. return self.global_config["thinker_config"].get("audio_config")
  2431. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2432. # SinusoidsPositionEmbedding
  2433. assert self.hparams_audio is not None
  2434. max_timescale = 10000
  2435. length = 1500
  2436. channels = self.hparams_audio["hidden_size"]
  2437. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2438. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2439. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2440. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2441. yield ("audio_tower.embed_positions.weight", pos_embd)
  2442. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2443. del bid, new_name, n_dims # unused
  2444. if ".conv" in name and ".weight" in name:
  2445. return gguf.GGMLQuantizationType.F16
  2446. return False
  2447. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2448. if name.startswith("thinker."):
  2449. name = name.replace("thinker.", "")
  2450. if name.startswith("audio_tower"):
  2451. # process audio tensors
  2452. if "conv1.bias" in name or "conv2.bias" in name:
  2453. # transpose conv1 and conv2 bias
  2454. data_torch = data_torch.unsqueeze(-1)
  2455. if "audio_bos_eos_token" in name:
  2456. # this tensor is left unused in transformers code
  2457. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2458. return []
  2459. return [(self.map_tensor_name(name), data_torch)]
  2460. return super().modify_tensors(data_torch, name, bid)
  2461. @ModelBase.register("InternVisionModel")
  2462. class InternVisionModel(MmprojModel):
  2463. def set_gguf_parameters(self):
  2464. super().set_gguf_parameters()
  2465. hparams = self.hparams
  2466. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2467. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2468. # hidden_act
  2469. if hparams["hidden_act"] == "silu":
  2470. self.gguf_writer.add_vision_use_silu(True)
  2471. elif hparams["hidden_act"] == "gelu":
  2472. self.gguf_writer.add_vision_use_gelu(True)
  2473. else:
  2474. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2475. # downsample_ratio
  2476. downsample_ratio = self.global_config.get("downsample_ratio")
  2477. assert downsample_ratio is not None
  2478. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2479. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2480. del bid, name, n_dims # unused
  2481. if ".patch_embd." in new_name:
  2482. return gguf.GGMLQuantizationType.F16
  2483. if ".position_embd." in new_name:
  2484. return gguf.GGMLQuantizationType.F32
  2485. return False
  2486. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2487. del bid # unused
  2488. if name.startswith("vision_model") or name.startswith("mlp"):
  2489. # process visual tensors
  2490. # correct name
  2491. if name.startswith("vision_model"):
  2492. name = "vision_tower." + name
  2493. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2494. name += ".weight"
  2495. # split QKV tensors if needed
  2496. if ".qkv." in name:
  2497. if data_torch.ndim == 2: # weight
  2498. c3, _ = data_torch.shape
  2499. else: # bias
  2500. c3 = data_torch.shape[0]
  2501. assert c3 % 3 == 0
  2502. c = c3 // 3
  2503. wq = data_torch[:c]
  2504. wk = data_torch[c: c * 2]
  2505. wv = data_torch[c * 2:]
  2506. return [
  2507. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2508. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2509. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2510. ]
  2511. return [(self.map_tensor_name(name), data_torch)]
  2512. return [] # skip other tensors
  2513. @ModelBase.register("WavTokenizerDec")
  2514. class WavTokenizerDecModel(TextModel):
  2515. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2516. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2517. del bid # unused
  2518. if \
  2519. name.endswith("codebook.cluster_size") or \
  2520. name.endswith("codebook.embed_avg") or \
  2521. name.endswith("codebook.inited"):
  2522. logger.debug(f"Skipping {name!r}")
  2523. return []
  2524. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2525. return [(self.map_tensor_name(name), data_torch)]
  2526. def set_vocab(self):
  2527. self._set_vocab_none()
  2528. def set_gguf_parameters(self):
  2529. super().set_gguf_parameters()
  2530. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2531. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2532. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2533. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2534. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2535. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2536. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2537. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2538. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2539. self.gguf_writer.add_causal_attention(False)
  2540. @ModelBase.register("Qwen2MoeForCausalLM")
  2541. class Qwen2MoeModel(TextModel):
  2542. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2543. def set_gguf_parameters(self):
  2544. super().set_gguf_parameters()
  2545. if (n_experts := self.hparams.get("num_experts")) is not None:
  2546. self.gguf_writer.add_expert_count(n_experts)
  2547. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2548. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2549. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2550. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2551. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2552. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2553. # YaRN is not enabled by default
  2554. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2555. rope_scaling = self.hparams.get("rope_scaling") or {}
  2556. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2557. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2558. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2559. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2560. _experts: list[dict[str, Tensor]] | None = None
  2561. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2562. # process the experts separately
  2563. if name.find("experts") != -1:
  2564. n_experts = self.hparams["num_experts"]
  2565. assert bid is not None
  2566. if self._experts is None:
  2567. self._experts = [{} for _ in range(self.block_count)]
  2568. self._experts[bid][name] = data_torch
  2569. if len(self._experts[bid]) >= n_experts * 3:
  2570. tensors: list[tuple[str, Tensor]] = []
  2571. # merge the experts into a single 3d tensor
  2572. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2573. datas: list[Tensor] = []
  2574. for xid in range(n_experts):
  2575. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2576. datas.append(self._experts[bid][ename])
  2577. del self._experts[bid][ename]
  2578. data_torch = torch.stack(datas, dim=0)
  2579. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2580. new_name = self.map_tensor_name(merged_name)
  2581. tensors.append((new_name, data_torch))
  2582. return tensors
  2583. else:
  2584. return []
  2585. return [(self.map_tensor_name(name), data_torch)]
  2586. def prepare_tensors(self):
  2587. super().prepare_tensors()
  2588. if self._experts is not None:
  2589. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2590. experts = [k for d in self._experts for k in d.keys()]
  2591. if len(experts) > 0:
  2592. raise ValueError(f"Unprocessed experts: {experts}")
  2593. @ModelBase.register("Qwen3ForCausalLM")
  2594. class Qwen3Model(Qwen2Model):
  2595. model_arch = gguf.MODEL_ARCH.QWEN3
  2596. @ModelBase.register("Qwen3MoeForCausalLM")
  2597. class Qwen3MoeModel(Qwen2MoeModel):
  2598. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2599. @ModelBase.register("GPT2LMHeadModel")
  2600. class GPT2Model(TextModel):
  2601. model_arch = gguf.MODEL_ARCH.GPT2
  2602. def set_gguf_parameters(self):
  2603. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2604. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2605. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2606. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2607. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2608. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2609. self.gguf_writer.add_file_type(self.ftype)
  2610. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2611. del bid # unused
  2612. tensors: list[tuple[str, Tensor]] = []
  2613. # we don't need these
  2614. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2615. return tensors
  2616. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2617. data_torch = data_torch.transpose(1, 0)
  2618. new_name = self.map_tensor_name(name)
  2619. tensors.append((new_name, data_torch))
  2620. return tensors
  2621. @ModelBase.register("PhiForCausalLM")
  2622. class Phi2Model(TextModel):
  2623. model_arch = gguf.MODEL_ARCH.PHI2
  2624. def set_gguf_parameters(self):
  2625. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2626. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2627. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2628. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2629. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2630. self.gguf_writer.add_embedding_length(n_embd)
  2631. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2632. self.gguf_writer.add_block_count(block_count)
  2633. self.gguf_writer.add_head_count(n_head)
  2634. self.gguf_writer.add_head_count_kv(n_head)
  2635. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2636. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2637. self.gguf_writer.add_file_type(self.ftype)
  2638. self.gguf_writer.add_add_bos_token(False)
  2639. @ModelBase.register("Phi3ForCausalLM")
  2640. class Phi3MiniModel(TextModel):
  2641. model_arch = gguf.MODEL_ARCH.PHI3
  2642. def set_vocab(self):
  2643. # Phi-4 model uses GPT2Tokenizer
  2644. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2645. if tokenizer_config_file.is_file():
  2646. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2647. tokenizer_config_json = json.load(f)
  2648. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2649. if tokenizer_class == 'GPT2Tokenizer':
  2650. return self._set_vocab_gpt2()
  2651. from sentencepiece import SentencePieceProcessor
  2652. tokenizer_path = self.dir_model / 'tokenizer.model'
  2653. if not tokenizer_path.is_file():
  2654. raise ValueError(f'Error: Missing {tokenizer_path}')
  2655. tokenizer = SentencePieceProcessor()
  2656. tokenizer.LoadFromFile(str(tokenizer_path))
  2657. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2658. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2659. scores: list[float] = [-10000.0] * vocab_size
  2660. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2661. for token_id in range(tokenizer.vocab_size()):
  2662. piece = tokenizer.IdToPiece(token_id)
  2663. text = piece.encode("utf-8")
  2664. score = tokenizer.GetScore(token_id)
  2665. toktype = SentencePieceTokenTypes.NORMAL
  2666. if tokenizer.IsUnknown(token_id):
  2667. toktype = SentencePieceTokenTypes.UNKNOWN
  2668. elif tokenizer.IsControl(token_id):
  2669. toktype = SentencePieceTokenTypes.CONTROL
  2670. elif tokenizer.IsUnused(token_id):
  2671. toktype = SentencePieceTokenTypes.UNUSED
  2672. elif tokenizer.IsByte(token_id):
  2673. toktype = SentencePieceTokenTypes.BYTE
  2674. tokens[token_id] = text
  2675. scores[token_id] = score
  2676. toktypes[token_id] = toktype
  2677. added_tokens_file = self.dir_model / 'added_tokens.json'
  2678. if added_tokens_file.is_file():
  2679. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2680. added_tokens_json = json.load(f)
  2681. for key in added_tokens_json:
  2682. token_id = added_tokens_json[key]
  2683. if token_id >= vocab_size:
  2684. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2685. continue
  2686. tokens[token_id] = key.encode("utf-8")
  2687. scores[token_id] = -1000.0
  2688. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2689. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2690. if tokenizer_config_file.is_file():
  2691. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2692. tokenizer_config_json = json.load(f)
  2693. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2694. for token_id, foken_data in added_tokens_decoder.items():
  2695. token_id = int(token_id)
  2696. token = foken_data["content"].encode("utf-8")
  2697. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2698. if tokens[token_id] != token:
  2699. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2700. tokens[token_id] = token
  2701. scores[token_id] = -1000.0
  2702. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2703. if foken_data.get("special"):
  2704. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2705. tokenizer_file = self.dir_model / 'tokenizer.json'
  2706. if tokenizer_file.is_file():
  2707. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2708. tokenizer_json = json.load(f)
  2709. added_tokens = tokenizer_json.get("added_tokens", [])
  2710. for foken_data in added_tokens:
  2711. token_id = int(foken_data["id"])
  2712. token = foken_data["content"].encode("utf-8")
  2713. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2714. if tokens[token_id] != token:
  2715. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2716. tokens[token_id] = token
  2717. scores[token_id] = -1000.0
  2718. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2719. if foken_data.get("special"):
  2720. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2721. self.gguf_writer.add_tokenizer_model("llama")
  2722. self.gguf_writer.add_tokenizer_pre("default")
  2723. self.gguf_writer.add_token_list(tokens)
  2724. self.gguf_writer.add_token_scores(scores)
  2725. self.gguf_writer.add_token_types(toktypes)
  2726. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2727. special_vocab.add_to_gguf(self.gguf_writer)
  2728. def set_gguf_parameters(self):
  2729. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2730. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2731. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2732. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2733. rms_eps = self.find_hparam(["rms_norm_eps"])
  2734. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2735. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2736. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2737. rope_dims = int(rot_pct * n_embd) // n_head
  2738. self.gguf_writer.add_context_length(max_pos_embds)
  2739. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2740. self.gguf_writer.add_embedding_length(n_embd)
  2741. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2742. self.gguf_writer.add_block_count(block_count)
  2743. self.gguf_writer.add_head_count(n_head)
  2744. self.gguf_writer.add_head_count_kv(n_head_kv)
  2745. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2746. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2747. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2748. self.gguf_writer.add_file_type(self.ftype)
  2749. sliding_window = self.hparams.get("sliding_window")
  2750. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2751. if sliding_window is None:
  2752. sliding_window = 0
  2753. self.gguf_writer.add_sliding_window(sliding_window)
  2754. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2755. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2756. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2757. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2758. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2759. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2760. rope_dims = int(rot_pct * n_embd) // n_head
  2761. # write rope scaling for long context (128k) model
  2762. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2763. if rope_scaling is None:
  2764. return
  2765. scale = max_pos_embds / orig_max_pos_embds
  2766. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2767. if len(rope_scaling_type) == 0:
  2768. raise KeyError('Missing the required key rope_scaling.type')
  2769. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2770. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2771. elif rope_scaling_type == 'yarn':
  2772. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2773. else:
  2774. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2775. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2776. long_factors = rope_scaling.get('long_factor', None)
  2777. short_factors = rope_scaling.get('short_factor', None)
  2778. if long_factors is None or short_factors is None:
  2779. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2780. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2781. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2782. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2783. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2784. @ModelBase.register("PhiMoEForCausalLM")
  2785. class PhiMoeModel(Phi3MiniModel):
  2786. model_arch = gguf.MODEL_ARCH.PHIMOE
  2787. _experts: list[dict[str, Tensor]] | None = None
  2788. def set_gguf_parameters(self):
  2789. super().set_gguf_parameters()
  2790. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2791. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2792. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2793. # process the experts separately
  2794. if name.find("block_sparse_moe.experts") != -1:
  2795. n_experts = self.hparams["num_local_experts"]
  2796. assert bid is not None
  2797. if self._experts is None:
  2798. self._experts = [{} for _ in range(self.block_count)]
  2799. self._experts[bid][name] = data_torch
  2800. if len(self._experts[bid]) >= n_experts * 3:
  2801. tensors: list[tuple[str, Tensor]] = []
  2802. # merge the experts into a single 3d tensor
  2803. for w_name in ["w1", "w2", "w3"]:
  2804. datas: list[Tensor] = []
  2805. for xid in range(n_experts):
  2806. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2807. datas.append(self._experts[bid][ename])
  2808. del self._experts[bid][ename]
  2809. data_torch = torch.stack(datas, dim=0)
  2810. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2811. new_name = self.map_tensor_name(merged_name)
  2812. tensors.append((new_name, data_torch))
  2813. return tensors
  2814. else:
  2815. return []
  2816. return [(self.map_tensor_name(name), data_torch)]
  2817. def prepare_tensors(self):
  2818. super().prepare_tensors()
  2819. if self._experts is not None:
  2820. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2821. experts = [k for d in self._experts for k in d.keys()]
  2822. if len(experts) > 0:
  2823. raise ValueError(f"Unprocessed experts: {experts}")
  2824. @ModelBase.register("PlamoForCausalLM")
  2825. class PlamoModel(TextModel):
  2826. model_arch = gguf.MODEL_ARCH.PLAMO
  2827. def set_vocab(self):
  2828. self._set_vocab_sentencepiece()
  2829. def set_gguf_parameters(self):
  2830. hparams = self.hparams
  2831. block_count = hparams["num_hidden_layers"]
  2832. self.gguf_writer.add_context_length(4096) # not in config.json
  2833. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2834. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2835. self.gguf_writer.add_block_count(block_count)
  2836. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2837. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2838. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2839. self.gguf_writer.add_file_type(self.ftype)
  2840. def shuffle_attn_q_weight(self, data_torch):
  2841. assert data_torch.size() == (5120, 5120)
  2842. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2843. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2844. data_torch = torch.reshape(data_torch, (5120, 5120))
  2845. return data_torch
  2846. def shuffle_attn_output_weight(self, data_torch):
  2847. assert data_torch.size() == (5120, 5120)
  2848. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2849. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2850. data_torch = torch.reshape(data_torch, (5120, 5120))
  2851. return data_torch
  2852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2853. del bid # unused
  2854. new_name = self.map_tensor_name(name)
  2855. # shuffle for broadcasting of gqa in ggml_mul_mat
  2856. if new_name.endswith("attn_q.weight"):
  2857. data_torch = self.shuffle_attn_q_weight(data_torch)
  2858. elif new_name.endswith("attn_output.weight"):
  2859. data_torch = self.shuffle_attn_output_weight(data_torch)
  2860. return [(new_name, data_torch)]
  2861. @ModelBase.register("CodeShellForCausalLM")
  2862. class CodeShellModel(TextModel):
  2863. model_arch = gguf.MODEL_ARCH.CODESHELL
  2864. def set_gguf_parameters(self):
  2865. block_count = self.hparams["n_layer"]
  2866. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2867. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2868. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2869. self.gguf_writer.add_block_count(block_count)
  2870. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2871. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2872. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2873. self.gguf_writer.add_file_type(self.ftype)
  2874. self.gguf_writer.add_rope_freq_base(10000.0)
  2875. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2876. self.gguf_writer.add_rope_scaling_factor(1.0)
  2877. _has_tok_embd = False
  2878. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2879. del bid # unused
  2880. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2881. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2882. new_name = self.map_tensor_name(name)
  2883. # assuming token_embd.weight is seen before output.weight
  2884. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2885. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2886. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2887. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2888. self.tensor_names.remove("transformer.wte.weight")
  2889. elif new_name == tok_embd_name:
  2890. self._has_tok_embd = True
  2891. return [(new_name, data_torch)]
  2892. @ModelBase.register("InternLM2ForCausalLM")
  2893. class InternLM2Model(TextModel):
  2894. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2895. def set_vocab(self):
  2896. # (TODO): Is there a better way?
  2897. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2898. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2899. # recognized as an empty string in C++.
  2900. from sentencepiece import SentencePieceProcessor
  2901. from sentencepiece import sentencepiece_model_pb2 as model
  2902. tokenizer_path = self.dir_model / 'tokenizer.model'
  2903. tokens: list[bytes] = []
  2904. scores: list[float] = []
  2905. toktypes: list[int] = []
  2906. if not tokenizer_path.is_file():
  2907. logger.error(f'Error: Missing {tokenizer_path}')
  2908. sys.exit(1)
  2909. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2910. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2911. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2912. tokenizer = SentencePieceProcessor()
  2913. tokenizer.LoadFromFile(str(tokenizer_path))
  2914. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2915. for token_id in range(vocab_size):
  2916. piece = tokenizer.IdToPiece(token_id)
  2917. text = piece.encode("utf-8")
  2918. score = tokenizer.GetScore(token_id)
  2919. if text == b"\x00":
  2920. # (TODO): fixme
  2921. # Hack here and replace the \x00 characters.
  2922. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2923. text = "🐉".encode("utf-8")
  2924. toktype = SentencePieceTokenTypes.NORMAL
  2925. if tokenizer.IsUnknown(token_id):
  2926. toktype = SentencePieceTokenTypes.UNKNOWN
  2927. elif tokenizer.IsControl(token_id):
  2928. toktype = SentencePieceTokenTypes.CONTROL
  2929. elif tokenizer.IsUnused(token_id):
  2930. toktype = SentencePieceTokenTypes.UNUSED
  2931. elif tokenizer.IsByte(token_id):
  2932. toktype = SentencePieceTokenTypes.BYTE
  2933. # take care of ununsed raw token
  2934. if piece.startswith('[UNUSED'):
  2935. toktype = SentencePieceTokenTypes.UNUSED
  2936. tokens.append(text)
  2937. scores.append(score)
  2938. toktypes.append(toktype)
  2939. added_tokens_file = self.dir_model / 'added_tokens.json'
  2940. if added_tokens_file.is_file():
  2941. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2942. added_tokens_json = json.load(f)
  2943. for key in added_tokens_json:
  2944. tokens.append(key.encode("utf-8"))
  2945. scores.append(-1000.0)
  2946. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2947. chat_eos_token = '<|im_end|>'
  2948. chat_eos_token_id = None
  2949. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2950. if tokenizer_config_file.is_file():
  2951. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2952. tokenizer_config_json = json.load(f)
  2953. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2954. for token_id, foken_data in added_tokens_decoder.items():
  2955. token_id = int(token_id)
  2956. token = foken_data["content"]
  2957. if token == chat_eos_token:
  2958. chat_eos_token_id = token_id
  2959. token = token.encode("utf-8")
  2960. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2961. if tokens[token_id] != token:
  2962. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2963. tokens[token_id] = token
  2964. scores[token_id] = -1000.0
  2965. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2966. if foken_data.get("special"):
  2967. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2968. tokenizer_file = self.dir_model / 'tokenizer.json'
  2969. if tokenizer_file.is_file():
  2970. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2971. tokenizer_json = json.load(f)
  2972. added_tokens = tokenizer_json.get("added_tokens", [])
  2973. for foken_data in added_tokens:
  2974. token_id = int(foken_data["id"])
  2975. token = foken_data["content"]
  2976. if token == chat_eos_token:
  2977. chat_eos_token_id = token_id
  2978. token = token.encode("utf-8")
  2979. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2980. if tokens[token_id] != token:
  2981. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2982. tokens[token_id] = token
  2983. scores[token_id] = -1000.0
  2984. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2985. if foken_data.get("special"):
  2986. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2987. self.gguf_writer.add_tokenizer_model("llama")
  2988. self.gguf_writer.add_tokenizer_pre("default")
  2989. self.gguf_writer.add_token_list(tokens)
  2990. self.gguf_writer.add_token_scores(scores)
  2991. self.gguf_writer.add_token_types(toktypes)
  2992. self.gguf_writer.add_add_space_prefix(add_prefix)
  2993. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2994. old_eos = special_vocab.special_token_ids["eos"]
  2995. if chat_eos_token_id is not None:
  2996. # For the chat model, we replace the eos with '<|im_end|>'.
  2997. # TODO: this is a hack, should be fixed
  2998. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2999. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3000. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3001. " in chat mode so that the conversation can end normally.")
  3002. special_vocab.add_to_gguf(self.gguf_writer)
  3003. def set_gguf_parameters(self):
  3004. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3005. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3006. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3007. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3008. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3009. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3010. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3011. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3012. self.gguf_writer.add_file_type(self.ftype)
  3013. rope_scaling = self.hparams.get("rope_scaling") or {}
  3014. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3015. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3016. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3017. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3018. num_heads = self.hparams["num_attention_heads"]
  3019. num_kv_heads = self.hparams["num_key_value_heads"]
  3020. n_embd = self.hparams["hidden_size"]
  3021. q_per_kv = num_heads // num_kv_heads
  3022. head_dim = n_embd // num_heads
  3023. num_groups = num_heads // q_per_kv
  3024. name = name.replace("language_model.", "") # InternVL
  3025. if name.startswith("mlp") or name.startswith("vision_model"):
  3026. # skip visual tensors
  3027. return []
  3028. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3029. qkv = data_torch
  3030. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3031. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3032. # The model weights of q and k equire additional reshape.
  3033. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3034. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3035. v = v.reshape((-1, v.shape[-1]))
  3036. return [
  3037. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3038. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3039. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3040. ]
  3041. else:
  3042. return [(self.map_tensor_name(name), data_torch)]
  3043. @ModelBase.register("InternLM3ForCausalLM")
  3044. class InternLM3Model(TextModel):
  3045. model_arch = gguf.MODEL_ARCH.LLAMA
  3046. def set_vocab(self):
  3047. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3048. self.gguf_writer.add_tokenizer_model("llama")
  3049. self.gguf_writer.add_tokenizer_pre("default")
  3050. self.gguf_writer.add_token_list(tokens)
  3051. self.gguf_writer.add_token_scores(scores)
  3052. self.gguf_writer.add_token_types(toktypes)
  3053. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3054. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3055. if tokenizer_config_file.is_file():
  3056. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3057. tokenizer_config_json = json.load(f)
  3058. if "add_prefix_space" in tokenizer_config_json:
  3059. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3060. if "added_tokens_decoder" in tokenizer_config_json:
  3061. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3062. if token_data.get("special"):
  3063. token_id = int(token_id)
  3064. token = token_data["content"]
  3065. special_vocab._set_special_token(token, token_id)
  3066. # update eos token
  3067. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3068. special_vocab.special_token_ids["eos"] = token_id
  3069. special_vocab.add_to_gguf(self.gguf_writer)
  3070. def set_gguf_parameters(self):
  3071. super().set_gguf_parameters()
  3072. hparams = self.hparams
  3073. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3074. if (rope_dim := hparams.get("head_dim")) is None:
  3075. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3076. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3077. rope_scaling = self.hparams.get("rope_scaling") or {}
  3078. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3079. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3080. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3081. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3082. n_head = self.hparams["num_attention_heads"]
  3083. n_kv_head = self.hparams.get("num_key_value_heads")
  3084. name = name.replace("language_model.", "") # InternVL
  3085. if name.startswith("mlp") or name.startswith("vision_model"):
  3086. # skip visual tensors
  3087. return []
  3088. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3089. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3090. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3091. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3092. return [(self.map_tensor_name(name), data_torch)]
  3093. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3094. class BertModel(TextModel):
  3095. model_arch = gguf.MODEL_ARCH.BERT
  3096. def __init__(self, *args, **kwargs):
  3097. super().__init__(*args, **kwargs)
  3098. self.vocab_size = None
  3099. if cls_out_labels := self.hparams.get("id2label"):
  3100. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3101. # Remove dummy labels added by AutoConfig
  3102. cls_out_labels = None
  3103. self.cls_out_labels = cls_out_labels
  3104. def set_gguf_parameters(self):
  3105. super().set_gguf_parameters()
  3106. self.gguf_writer.add_causal_attention(False)
  3107. self._try_set_pooling_type()
  3108. if self.cls_out_labels:
  3109. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3110. def set_vocab(self):
  3111. tokens, toktypes, tokpre = self.get_vocab_base()
  3112. self.vocab_size = len(tokens)
  3113. # we need this to validate the size of the token_type embeddings
  3114. # though currently we are passing all zeros to the token_type embeddings
  3115. # "Sequence A" or "Sequence B"
  3116. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3117. # convert to phantom space vocab
  3118. def phantom(tok):
  3119. if tok.startswith("[") and tok.endswith("]"):
  3120. return tok
  3121. if tok.startswith("##"):
  3122. return tok[2:]
  3123. return "\u2581" + tok
  3124. tokens = list(map(phantom, tokens))
  3125. # add vocab to gguf
  3126. self.gguf_writer.add_tokenizer_model("bert")
  3127. self.gguf_writer.add_tokenizer_pre(tokpre)
  3128. self.gguf_writer.add_token_list(tokens)
  3129. self.gguf_writer.add_token_types(toktypes)
  3130. # handle special tokens
  3131. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3132. special_vocab.add_to_gguf(self.gguf_writer)
  3133. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3134. del bid # unused
  3135. if name.startswith("bert."):
  3136. name = name[5:]
  3137. if name.endswith(".gamma"):
  3138. name = name[:-6] + ".weight"
  3139. if name.endswith(".beta"):
  3140. name = name[:-5] + ".bias"
  3141. # we are only using BERT for embeddings so we don't need the pooling layer
  3142. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3143. return [] # we don't need these
  3144. if name.startswith("cls.predictions"):
  3145. return []
  3146. if name.startswith("cls.seq_relationship"):
  3147. return []
  3148. if self.cls_out_labels:
  3149. # For BertForSequenceClassification (direct projection layer)
  3150. if name == "classifier.weight":
  3151. name = "classifier.out_proj.weight"
  3152. if name == "classifier.bias":
  3153. name = "classifier.out_proj.bias"
  3154. return [(self.map_tensor_name(name), data_torch)]
  3155. def _xlmroberta_tokenizer_init(self) -> None:
  3156. # we need the pad_token_id to know how to chop down position_embd matrix
  3157. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3158. self._position_offset = 1 + pad_token_id
  3159. if "max_position_embeddings" in self.hparams:
  3160. self.hparams["max_position_embeddings"] -= self._position_offset
  3161. else:
  3162. self._position_offset = None
  3163. def _xlmroberta_set_vocab(self) -> None:
  3164. # to avoid TypeError: Descriptors cannot be created directly
  3165. # exception when importing sentencepiece_model_pb2
  3166. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3167. from sentencepiece import SentencePieceProcessor
  3168. from sentencepiece import sentencepiece_model_pb2 as model
  3169. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3170. tokenizer_json = {}
  3171. tokenizer_config_json = {}
  3172. if not tokenizer_path.is_file():
  3173. tokenizer_path = self.dir_model / 'tokenizer.json'
  3174. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3175. if not tokenizer_path.is_file():
  3176. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3177. from base64 import b64decode
  3178. from transformers import AutoTokenizer
  3179. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3180. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3181. tokenizer_json = json.load(fp)
  3182. if tokenizer_config_path.is_file():
  3183. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3184. tokenizer_config_json = json.load(fp)
  3185. add_prefix = tokenizer.add_prefix_space
  3186. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3187. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3188. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3189. else:
  3190. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3191. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3192. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3193. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3194. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3195. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3196. tokenizer = SentencePieceProcessor()
  3197. tokenizer.LoadFromFile(str(tokenizer_path))
  3198. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3199. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3200. scores: list[float] = [-10000.0] * vocab_size
  3201. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3202. if isinstance(tokenizer, SentencePieceProcessor):
  3203. for token_id in range(tokenizer.vocab_size()):
  3204. piece = tokenizer.IdToPiece(token_id)
  3205. text = piece.encode("utf-8")
  3206. score = tokenizer.GetScore(token_id)
  3207. toktype = SentencePieceTokenTypes.NORMAL
  3208. if tokenizer.IsUnknown(token_id):
  3209. toktype = SentencePieceTokenTypes.UNKNOWN
  3210. elif tokenizer.IsControl(token_id):
  3211. toktype = SentencePieceTokenTypes.CONTROL
  3212. elif tokenizer.IsUnused(token_id):
  3213. toktype = SentencePieceTokenTypes.UNUSED
  3214. elif tokenizer.IsByte(token_id):
  3215. toktype = SentencePieceTokenTypes.BYTE
  3216. tokens[token_id] = text
  3217. scores[token_id] = score
  3218. toktypes[token_id] = toktype
  3219. else:
  3220. added_vocab = tokenizer.get_added_vocab()
  3221. unk_token = tokenizer_config_json.get("unk_token")
  3222. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3223. for token_id in range(tokenizer.vocab_size):
  3224. piece = tokenizer._convert_id_to_token(token_id)
  3225. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3226. text = piece.encode("utf-8")
  3227. score = tokenizer_json["model"]["vocab"][token_id][1]
  3228. toktype = SentencePieceTokenTypes.NORMAL
  3229. if token_id == unk_token_id:
  3230. toktype = SentencePieceTokenTypes.UNKNOWN
  3231. elif token_id in tokenizer.all_special_ids:
  3232. toktype = SentencePieceTokenTypes.CONTROL
  3233. elif token_id in added_vocab.values():
  3234. toktype = SentencePieceTokenTypes.USER_DEFINED
  3235. # No reliable way to detect this, but jina doesn't have any
  3236. # elif tokenizer.IsByte(token_id):
  3237. # toktype = SentencePieceTokenTypes.BYTE
  3238. tokens[token_id] = text
  3239. scores[token_id] = score
  3240. toktypes[token_id] = toktype
  3241. if isinstance(tokenizer, SentencePieceProcessor):
  3242. # realign tokens (see HF tokenizer code)
  3243. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3244. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3245. toktypes = [
  3246. SentencePieceTokenTypes.CONTROL,
  3247. SentencePieceTokenTypes.CONTROL,
  3248. SentencePieceTokenTypes.CONTROL,
  3249. SentencePieceTokenTypes.UNKNOWN,
  3250. ] + toktypes[3:-1]
  3251. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3252. # Add mask token missing from sentencepiece.bpe.model
  3253. tokens[250001] = b'<mask>'
  3254. scores[250001] = 0.0
  3255. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3256. self.gguf_writer.add_tokenizer_model("t5")
  3257. self.gguf_writer.add_tokenizer_pre("default")
  3258. self.gguf_writer.add_token_list(tokens)
  3259. self.gguf_writer.add_token_scores(scores)
  3260. self.gguf_writer.add_token_types(toktypes)
  3261. self.gguf_writer.add_add_space_prefix(add_prefix)
  3262. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3263. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3264. if precompiled_charsmap:
  3265. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3266. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3267. special_vocab.add_to_gguf(self.gguf_writer)
  3268. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3269. class DistilBertModel(BertModel):
  3270. model_arch = gguf.MODEL_ARCH.BERT
  3271. def set_gguf_parameters(self):
  3272. self.gguf_writer.add_layer_norm_eps(1e-12)
  3273. logger.info("gguf: layer norm epsilon = 1e-12")
  3274. super().set_gguf_parameters()
  3275. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3276. if name.startswith("distilbert."):
  3277. name = name[11:]
  3278. # These layers act as MLM head, so we don't need them
  3279. if name.startswith("vocab_"):
  3280. return []
  3281. return super().modify_tensors(data_torch, name, bid)
  3282. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3283. class RobertaModel(BertModel):
  3284. model_arch = gguf.MODEL_ARCH.BERT
  3285. def __init__(self, *args, **kwargs):
  3286. super().__init__(*args, **kwargs)
  3287. # we need the pad_token_id to know how to chop down position_embd matrix
  3288. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3289. self._position_offset = 1 + pad_token_id
  3290. if "max_position_embeddings" in self.hparams:
  3291. self.hparams["max_position_embeddings"] -= self._position_offset
  3292. else:
  3293. self._position_offset = None
  3294. def set_vocab(self):
  3295. """Support BPE tokenizers for roberta models"""
  3296. bpe_tok_path = self.dir_model / "tokenizer.json"
  3297. if bpe_tok_path.exists():
  3298. self._set_vocab_gpt2()
  3299. # we need this to validate the size of the token_type embeddings
  3300. # though currently we are passing all zeros to the token_type embeddings
  3301. # "Sequence A" or "Sequence B"
  3302. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3303. else:
  3304. return super().set_vocab()
  3305. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3306. # if name starts with "roberta.", remove the prefix
  3307. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3308. if name.startswith("roberta."):
  3309. name = name[8:]
  3310. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3311. if name == "embeddings.position_embeddings.weight":
  3312. if self._position_offset is not None:
  3313. data_torch = data_torch[self._position_offset:,:]
  3314. return super().modify_tensors(data_torch, name, bid)
  3315. @ModelBase.register("NomicBertModel")
  3316. class NomicBertModel(BertModel):
  3317. model_arch = gguf.MODEL_ARCH.BERT
  3318. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3319. hparams = kwargs.pop("hparams", None)
  3320. if hparams is None:
  3321. hparams = ModelBase.load_hparams(dir_model)
  3322. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3323. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3324. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3325. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3326. if self._tokenizer_is_xlmroberta:
  3327. self._xlmroberta_tokenizer_init()
  3328. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3329. if npos == 8192 and mtp == 2048:
  3330. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3331. elif npos == 2048 and mtp == 2048:
  3332. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3333. else:
  3334. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3335. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3336. # this doesn't do anything in the HF version
  3337. assert self.hparams["causal"] is False
  3338. # no bias tensors unless MoE
  3339. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3340. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3341. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3342. # norm at end of layer
  3343. assert self.hparams["prenorm"] is False
  3344. # standard RoPE
  3345. assert self.hparams["rotary_emb_fraction"] == 1.0
  3346. assert self.hparams["rotary_emb_interleaved"] is False
  3347. assert self.hparams["rotary_emb_scale_base"] is None
  3348. def set_vocab(self) -> None:
  3349. if self._tokenizer_is_xlmroberta:
  3350. return self._xlmroberta_set_vocab()
  3351. return super().set_vocab()
  3352. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3353. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3354. if "mlp.experts.bias" in name:
  3355. return [] # Explicitly return an empty list.
  3356. if "mlp.experts.mlp.w1" in name:
  3357. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3358. name += ".weight"
  3359. if "mlp.experts.mlp.w2" in name:
  3360. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3361. data_torch = data_torch.transpose(1, 2)
  3362. name += ".weight"
  3363. return [(self.map_tensor_name(name), data_torch)]
  3364. def set_gguf_parameters(self):
  3365. super().set_gguf_parameters()
  3366. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3367. if self.is_moe:
  3368. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3369. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3370. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3371. def _is_tokenizer_xlmroberta(self) -> bool:
  3372. with open(self.dir_model / "tokenizer.json") as f:
  3373. tokenizer_json = json.load(f)
  3374. toktyp = tokenizer_json["model"]["type"]
  3375. if toktyp == "Unigram":
  3376. return True
  3377. if toktyp == "WordPiece":
  3378. return False
  3379. raise ValueError(f"unknown tokenizer: {toktyp}")
  3380. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3381. class NeoBert(BertModel):
  3382. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3383. def set_gguf_parameters(self):
  3384. super().set_gguf_parameters()
  3385. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3386. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3387. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3388. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3389. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3390. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3391. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3392. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3393. def modify_tensors(self, data_torch, name, bid):
  3394. if name.startswith("decoder."):
  3395. return []
  3396. if name.startswith("model."):
  3397. name = name[6:]
  3398. return super().modify_tensors(data_torch, name, bid)
  3399. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3400. class XLMRobertaModel(BertModel):
  3401. model_arch = gguf.MODEL_ARCH.BERT
  3402. def __init__(self, *args, **kwargs):
  3403. super().__init__(*args, **kwargs)
  3404. self._xlmroberta_tokenizer_init()
  3405. def set_vocab(self):
  3406. self._xlmroberta_set_vocab()
  3407. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3408. # if name starts with "roberta.", remove the prefix
  3409. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3410. if name.startswith("roberta."):
  3411. name = name[8:]
  3412. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3413. if name == "embeddings.position_embeddings.weight":
  3414. if self._position_offset is not None:
  3415. data_torch = data_torch[self._position_offset:,:]
  3416. return super().modify_tensors(data_torch, name, bid)
  3417. @ModelBase.register("GemmaForCausalLM")
  3418. class GemmaModel(TextModel):
  3419. model_arch = gguf.MODEL_ARCH.GEMMA
  3420. def set_vocab(self):
  3421. self._set_vocab_sentencepiece()
  3422. # TODO: these special tokens should be exported only for the CodeGemma family
  3423. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3424. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3425. special_vocab._set_special_token("prefix", 67)
  3426. special_vocab._set_special_token("suffix", 69)
  3427. special_vocab._set_special_token("middle", 68)
  3428. special_vocab._set_special_token("fsep", 70)
  3429. special_vocab._set_special_token("eot", 107)
  3430. special_vocab.chat_template = None # do not add it twice
  3431. special_vocab.add_to_gguf(self.gguf_writer)
  3432. self.gguf_writer.add_add_space_prefix(False)
  3433. def set_gguf_parameters(self):
  3434. hparams = self.hparams
  3435. block_count = hparams["num_hidden_layers"]
  3436. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3437. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3438. self.gguf_writer.add_block_count(block_count)
  3439. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3440. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3441. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3442. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3443. self.gguf_writer.add_key_length(hparams["head_dim"])
  3444. self.gguf_writer.add_value_length(hparams["head_dim"])
  3445. self.gguf_writer.add_file_type(self.ftype)
  3446. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3447. del bid # unused
  3448. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3449. # To prevent errors, skip loading lm_head.weight.
  3450. if name == "lm_head.weight":
  3451. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3452. return []
  3453. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3454. if name.endswith("norm.weight"):
  3455. data_torch = data_torch + 1
  3456. return [(self.map_tensor_name(name), data_torch)]
  3457. @ModelBase.register("Gemma2ForCausalLM")
  3458. class Gemma2Model(TextModel):
  3459. model_arch = gguf.MODEL_ARCH.GEMMA2
  3460. def set_vocab(self):
  3461. self._set_vocab_sentencepiece()
  3462. self.gguf_writer.add_add_space_prefix(False)
  3463. def set_gguf_parameters(self):
  3464. hparams = self.hparams
  3465. block_count = hparams["num_hidden_layers"]
  3466. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3467. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3468. self.gguf_writer.add_block_count(block_count)
  3469. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3470. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3471. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3472. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3473. self.gguf_writer.add_key_length(hparams["head_dim"])
  3474. self.gguf_writer.add_value_length(hparams["head_dim"])
  3475. self.gguf_writer.add_file_type(self.ftype)
  3476. self.gguf_writer.add_attn_logit_softcapping(
  3477. self.hparams["attn_logit_softcapping"]
  3478. )
  3479. self.gguf_writer.add_final_logit_softcapping(
  3480. self.hparams["final_logit_softcapping"]
  3481. )
  3482. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3483. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3484. del bid # unused
  3485. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3486. # To prevent errors, skip loading lm_head.weight.
  3487. if name == "lm_head.weight":
  3488. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3489. return []
  3490. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3491. if name.endswith("norm.weight"):
  3492. data_torch = data_torch + 1
  3493. return [(self.map_tensor_name(name), data_torch)]
  3494. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3495. class Gemma3Model(TextModel):
  3496. model_arch = gguf.MODEL_ARCH.GEMMA3
  3497. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3498. def set_vocab(self):
  3499. self._set_vocab_sentencepiece()
  3500. self.gguf_writer.add_add_space_prefix(False)
  3501. def set_gguf_parameters(self):
  3502. hparams = self.hparams
  3503. block_count = hparams["num_hidden_layers"]
  3504. # some default values are not specified in the hparams
  3505. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3506. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3507. self.gguf_writer.add_block_count(block_count)
  3508. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3509. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3510. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3511. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3512. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3513. self.gguf_writer.add_file_type(self.ftype)
  3514. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3515. # attn_logit_softcapping is removed in Gemma3
  3516. assert hparams.get("attn_logit_softcapping") is None
  3517. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3518. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3519. if hparams.get("rope_scaling") is not None:
  3520. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3521. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3522. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3523. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3524. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3525. del bid # unused
  3526. if "language_model." in name:
  3527. name = name.replace("language_model.", "")
  3528. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3529. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3530. return [] # skip vision tensors
  3531. # remove OOV (out-of-vocabulary) rows in token_embd
  3532. if "embed_tokens.weight" in name:
  3533. vocab = self._create_vocab_sentencepiece()
  3534. tokens = vocab[0]
  3535. data_torch = data_torch[:len(tokens)]
  3536. # ref code in Gemma3RMSNorm
  3537. # output = output * (1.0 + self.weight.float())
  3538. # note: this is not the case on gemma3n
  3539. if name.endswith("norm.weight"):
  3540. data_torch = data_torch + self.norm_shift
  3541. return [(self.map_tensor_name(name), data_torch)]
  3542. @ModelBase.register("Gemma3ForConditionalGeneration")
  3543. class Gemma3VisionModel(MmprojModel):
  3544. def set_gguf_parameters(self):
  3545. super().set_gguf_parameters()
  3546. hparams = self.hparams
  3547. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3548. # default values below are taken from HF tranformers code
  3549. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3550. self.gguf_writer.add_vision_use_gelu(True)
  3551. # calculate proj_scale_factor (used by tinygemma3 test model)
  3552. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3553. n_per_side = int(image_seq_length ** 0.5)
  3554. image_size = self.hparams["image_size"]
  3555. patch_size = self.hparams["patch_size"]
  3556. proj_scale_factor = (image_size // patch_size) // n_per_side
  3557. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3558. # we only need to write this if it's not the default value
  3559. # in this case, we are converting a test model
  3560. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3561. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3562. del bid, new_name, n_dims # unused
  3563. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3564. if "input_projection" in name:
  3565. return gguf.GGMLQuantizationType.F16
  3566. if ".embeddings." in name:
  3567. return gguf.GGMLQuantizationType.F32
  3568. return False
  3569. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3570. del bid # unused
  3571. if "vision_model.head." in name:
  3572. return [] # skip redundant tensors for tinygemma3
  3573. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3574. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3575. # process vision tensors
  3576. name = name.replace("_weight", ".weight")
  3577. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3578. # the other norm values are part of SigLIP model, and they are already correct
  3579. # ref code: Gemma3RMSNorm
  3580. if "soft_emb_norm.weight" in name:
  3581. logger.info(f"Correcting norm value for '{name}'")
  3582. data_torch = data_torch + 1
  3583. return [(self.map_tensor_name(name), data_torch)]
  3584. return [] # skip other tensors
  3585. @ModelBase.register("Gemma3nForConditionalGeneration")
  3586. class Gemma3NModel(Gemma3Model):
  3587. model_arch = gguf.MODEL_ARCH.GEMMA3N
  3588. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  3589. _altup_proj: list[Tensor] = []
  3590. _altup_unembd: list[Tensor] = []
  3591. def __init__(self, *args, **kwargs):
  3592. super().__init__(*args, **kwargs)
  3593. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  3594. self._altup_proj = [
  3595. torch.Tensor(), # to be replaced
  3596. torch.Tensor(), # to be replaced
  3597. torch.Tensor(), # to be replaced
  3598. ]
  3599. self._altup_unembd = [
  3600. torch.Tensor(), # to be replaced
  3601. torch.Tensor(), # to be replaced
  3602. torch.Tensor(), # to be replaced
  3603. ]
  3604. def set_vocab(self):
  3605. super().set_vocab()
  3606. def set_gguf_parameters(self):
  3607. super().set_gguf_parameters()
  3608. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  3609. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  3610. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  3611. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  3612. activation_sparsity_scale = []
  3613. for s in self.hparams["activation_sparsity_pattern"]:
  3614. normal_dist = torch.distributions.normal.Normal(0, 1)
  3615. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  3616. activation_sparsity_scale.append(std_multiplier.item())
  3617. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  3618. sliding_window_pattern = []
  3619. for t in self.hparams["layer_types"]:
  3620. sliding_window_pattern.append(t == "sliding_attention")
  3621. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  3622. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  3623. has_all = all(m.numel() > 0 for m in matrices)
  3624. if not has_all:
  3625. return None
  3626. else:
  3627. return torch.stack(matrices, dim=0)
  3628. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3629. if name.endswith("_scale"):
  3630. name = name + ".weight"
  3631. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  3632. if "language_model." not in name:
  3633. return [] # skip non-language model tensors
  3634. if "altup_unembed_projections" in name:
  3635. data_torch = data_torch.to(device="cpu")
  3636. if ".0." in name:
  3637. self._altup_unembd[0] = data_torch
  3638. elif ".1." in name:
  3639. self._altup_unembd[1] = data_torch
  3640. elif ".2." in name:
  3641. self._altup_unembd[2] = data_torch
  3642. else:
  3643. raise ValueError(f"Unknown name: {name}")
  3644. out = self._stack_matrices(self._altup_unembd)
  3645. if out is not None:
  3646. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  3647. else:
  3648. return []
  3649. if "altup_projections" in name:
  3650. data_torch = data_torch.to(device="cpu")
  3651. if ".0." in name:
  3652. self._altup_proj[0] = data_torch
  3653. elif ".1." in name:
  3654. self._altup_proj[1] = data_torch
  3655. elif ".2." in name:
  3656. self._altup_proj[2] = data_torch
  3657. else:
  3658. raise ValueError(f"Unknown name: {name}")
  3659. out = self._stack_matrices(self._altup_proj)
  3660. if out is not None:
  3661. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  3662. else:
  3663. return []
  3664. return super().modify_tensors(data_torch, name, bid)
  3665. @ModelBase.register("Starcoder2ForCausalLM")
  3666. class StarCoder2Model(TextModel):
  3667. model_arch = gguf.MODEL_ARCH.STARCODER2
  3668. @ModelBase.register("Rwkv6ForCausalLM")
  3669. class Rwkv6Model(TextModel):
  3670. model_arch = gguf.MODEL_ARCH.RWKV6
  3671. def set_vocab(self):
  3672. self._set_vocab_rwkv_world()
  3673. def set_gguf_parameters(self):
  3674. block_count = self.hparams["num_hidden_layers"]
  3675. head_size = self.hparams["head_size"]
  3676. hidden_size = self.hparams["hidden_size"]
  3677. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3678. rescale_every_n_layers = self.hparams["rescale_every"]
  3679. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3680. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3681. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3682. # RWKV isn't context limited
  3683. self.gguf_writer.add_context_length(1048576)
  3684. self.gguf_writer.add_embedding_length(hidden_size)
  3685. self.gguf_writer.add_block_count(block_count)
  3686. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3687. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3688. self.gguf_writer.add_wkv_head_size(head_size)
  3689. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3690. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3691. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3692. self.gguf_writer.add_file_type(self.ftype)
  3693. # required by llama.cpp, unused
  3694. self.gguf_writer.add_head_count(0)
  3695. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3696. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3697. new_name = self.map_tensor_name(name)
  3698. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3699. new_name += ".weight"
  3700. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3701. data_torch = data_torch.transpose(0, 1)
  3702. if new_name.endswith("time_mix_w2.weight"):
  3703. data_torch = data_torch.permute(0, 2, 1)
  3704. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3705. data_torch = data_torch.squeeze()
  3706. try:
  3707. rescale_every_n_layers = self.hparams["rescale_every"]
  3708. if rescale_every_n_layers > 0:
  3709. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3710. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3711. except KeyError:
  3712. pass
  3713. # concat time_mix_lerp weights to reduce some cpu overhead
  3714. # also reduces the number of tensors in the model
  3715. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3716. try:
  3717. self.lerp_weights[bid][new_name] = data_torch
  3718. except KeyError:
  3719. self.lerp_weights[bid] = {new_name: data_torch}
  3720. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3721. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3722. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3723. yield (new_name, data)
  3724. return
  3725. yield (new_name, data_torch)
  3726. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3727. class RWKV6Qwen2Model(Rwkv6Model):
  3728. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3729. def set_vocab(self):
  3730. try:
  3731. self._set_vocab_sentencepiece()
  3732. except FileNotFoundError:
  3733. self._set_vocab_gpt2()
  3734. def set_gguf_parameters(self):
  3735. block_count = self.hparams["num_hidden_layers"]
  3736. num_attention_heads = self.hparams["num_attention_heads"]
  3737. num_key_value_heads = self.hparams["num_key_value_heads"]
  3738. hidden_size = self.hparams["hidden_size"]
  3739. head_size = hidden_size // num_attention_heads
  3740. rms_norm_eps = self.hparams["rms_norm_eps"]
  3741. intermediate_size = self.hparams["intermediate_size"]
  3742. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3743. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3744. # RWKV isn't context limited
  3745. self.gguf_writer.add_context_length(1048576)
  3746. self.gguf_writer.add_embedding_length(hidden_size)
  3747. self.gguf_writer.add_block_count(block_count)
  3748. self.gguf_writer.add_wkv_head_size(head_size)
  3749. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3750. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3751. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3752. self.gguf_writer.add_file_type(self.ftype)
  3753. # special parameters for time_mixing in RWKV6QWEN2
  3754. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3755. self.gguf_writer.add_token_shift_count(1)
  3756. # RWKV6QWEN2 use grouped key/value like GQA
  3757. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3758. # required by llama.cpp, unused
  3759. self.gguf_writer.add_head_count(0)
  3760. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3761. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3762. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3763. data = data.view(5, -1, data.shape[-1])
  3764. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3765. # permute them here to avoid code changes
  3766. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3767. if "w2" in new_name:
  3768. data = data.view(5, -1, data.shape[-1])
  3769. yield (new_name, data)
  3770. continue
  3771. yield (new_name, data)
  3772. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3773. class Rwkv7Model(TextModel):
  3774. model_arch = gguf.MODEL_ARCH.RWKV7
  3775. def set_vocab(self):
  3776. self._set_vocab_rwkv_world()
  3777. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3778. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3779. def set_gguf_parameters(self):
  3780. block_count = self.hparams["num_hidden_layers"]
  3781. try:
  3782. head_size = self.hparams["head_size"]
  3783. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3784. except KeyError:
  3785. head_size = self.hparams["head_dim"]
  3786. layer_norm_eps = self.hparams["norm_eps"]
  3787. hidden_size = self.hparams["hidden_size"]
  3788. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3789. # ICLR: In-Context-Learning-Rate
  3790. try:
  3791. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3792. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3793. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3794. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3795. except KeyError:
  3796. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3797. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3798. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3799. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3800. # RWKV isn't context limited
  3801. self.gguf_writer.add_context_length(1048576)
  3802. self.gguf_writer.add_embedding_length(hidden_size)
  3803. self.gguf_writer.add_block_count(block_count)
  3804. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3805. self.gguf_writer.add_wkv_head_size(head_size)
  3806. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3807. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3808. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3809. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3810. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3811. self.gguf_writer.add_file_type(self.ftype)
  3812. # required by llama.cpp, unused
  3813. self.gguf_writer.add_head_count(0)
  3814. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3815. lora_needs_transpose: bool = True
  3816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3817. # unify tensor names here to make life easier
  3818. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3819. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3820. name = name.replace("time_mixer.", "")
  3821. # lora layer names in fla-hub's impl
  3822. if "_lora.lora" in name:
  3823. self.lora_needs_transpose = False
  3824. name = name.replace("_lora.lora.0.weight", "1.weight")
  3825. name = name.replace("_lora.lora.2.weight", "2.weight")
  3826. name = name.replace("_lora.lora.2.bias", "0.weight")
  3827. name = name.replace("feed_forward_norm", "ln2")
  3828. name = name.replace("g_norm", "ln_x")
  3829. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3830. # some models have dummy v0/v1/v2 on first layer while others don't
  3831. # ignore them all since they are not used
  3832. return
  3833. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3834. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3835. if bid is not None and "attention.x_" in name:
  3836. if "attention.x_x" in name:
  3837. # already concatenated
  3838. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3839. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3840. yield (new_name, data)
  3841. else:
  3842. try:
  3843. self.lerp_weights[bid][name] = data_torch
  3844. except KeyError:
  3845. self.lerp_weights[bid] = {name: data_torch}
  3846. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3847. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3848. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3849. yield (new_name, data)
  3850. return
  3851. else:
  3852. data_torch = data_torch.squeeze()
  3853. new_name = self.map_tensor_name(name)
  3854. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3855. new_name += ".weight"
  3856. if self.lora_needs_transpose and any(
  3857. new_name.endswith(t) for t in [
  3858. "time_mix_w1.weight", "time_mix_w2.weight",
  3859. "time_mix_a1.weight", "time_mix_a2.weight",
  3860. "time_mix_v1.weight", "time_mix_v2.weight",
  3861. "time_mix_g1.weight", "time_mix_g2.weight",
  3862. ]
  3863. ):
  3864. data_torch = data_torch.transpose(0, 1)
  3865. if 'r_k' in new_name:
  3866. data_torch = data_torch.flatten()
  3867. if bid == 0 and "time_mix_a" in new_name:
  3868. # dummy v0/v1/v2 on first layer
  3869. # easist way to make llama happy
  3870. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3871. yield (new_name, data_torch)
  3872. @ModelBase.register("RwkvHybridForCausalLM")
  3873. class ARwkv7Model(Rwkv7Model):
  3874. model_arch = gguf.MODEL_ARCH.ARWKV7
  3875. def set_vocab(self):
  3876. try:
  3877. self._set_vocab_sentencepiece()
  3878. except FileNotFoundError:
  3879. self._set_vocab_gpt2()
  3880. def set_gguf_parameters(self):
  3881. block_count = self.hparams["num_hidden_layers"]
  3882. hidden_size = self.hparams["hidden_size"]
  3883. head_size = self.hparams["head_size"]
  3884. rms_norm_eps = self.hparams["rms_norm_eps"]
  3885. intermediate_size = self.hparams["intermediate_size"]
  3886. wkv_has_gate = self.hparams["wkv_has_gate"]
  3887. assert self.hparams["wkv_version"] == 7
  3888. # ICLR: In-Context-Learning-Rate
  3889. lora_rank_decay = 64
  3890. lora_rank_iclr = 64
  3891. lora_rank_value_residual_mix = 32
  3892. lora_rank_gate = 128 if wkv_has_gate else 0
  3893. # RWKV isn't context limited
  3894. self.gguf_writer.add_context_length(1048576)
  3895. self.gguf_writer.add_embedding_length(hidden_size)
  3896. self.gguf_writer.add_block_count(block_count)
  3897. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3898. self.gguf_writer.add_wkv_head_size(head_size)
  3899. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3900. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3901. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3902. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3903. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3904. self.gguf_writer.add_file_type(self.ftype)
  3905. self.gguf_writer.add_token_shift_count(1)
  3906. # required by llama.cpp, unused
  3907. self.gguf_writer.add_head_count(0)
  3908. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3909. class MambaModel(TextModel):
  3910. model_arch = gguf.MODEL_ARCH.MAMBA
  3911. def __init__(self, dir_model: Path, *args, **kwargs):
  3912. # Avoid using AutoConfig for hparams
  3913. hparams = kwargs.pop("hparams", None)
  3914. if hparams is None:
  3915. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  3916. hparams = json.load(f)
  3917. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  3918. def set_vocab(self):
  3919. vocab_size = self.hparams["vocab_size"]
  3920. # Round vocab size to next multiple of 8
  3921. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3922. # pad using ceiling division
  3923. # ref: https://stackoverflow.com/a/17511341/22827863
  3924. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3925. self.hparams["vocab_size"] = vocab_size
  3926. if (self.dir_model / "tokenizer.json").is_file():
  3927. self._set_vocab_gpt2()
  3928. elif (self.dir_model / "tokenizer.model").is_file():
  3929. self._set_vocab_sentencepiece()
  3930. else:
  3931. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3932. self._set_vocab_builtin("gpt-neox", vocab_size)
  3933. def set_gguf_parameters(self):
  3934. d_model = self.find_hparam(["hidden_size", "d_model"])
  3935. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3936. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3937. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3938. # ceiling division
  3939. # ref: https://stackoverflow.com/a/17511341/22827863
  3940. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3941. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3942. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3943. use_dt_b_c_norm = False
  3944. # For falconmamba we do apply RMS norm on B / DT and C layers
  3945. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3946. use_dt_b_c_norm = True
  3947. # Fail early for models which don't have a block expansion factor of 2
  3948. assert d_inner == 2 * d_model
  3949. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3950. self.gguf_writer.add_embedding_length(d_model)
  3951. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3952. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3953. self.gguf_writer.add_block_count(self.block_count)
  3954. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3955. self.gguf_writer.add_ssm_inner_size(d_inner)
  3956. self.gguf_writer.add_ssm_state_size(d_state)
  3957. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3958. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3959. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3960. self.gguf_writer.add_file_type(self.ftype)
  3961. _tok_embd = None
  3962. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3963. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3964. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3965. new_name = self.map_tensor_name(name)
  3966. if name.endswith(".A_log"):
  3967. logger.debug("A_log --> A ==> " + new_name)
  3968. data_torch = -torch.exp(data_torch)
  3969. # [4 1 8192 1] -> [4 8192 1 1]
  3970. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3971. data_torch = data_torch.squeeze()
  3972. # assuming token_embd.weight is seen before output.weight
  3973. if self._tok_embd is not None and new_name == output_name:
  3974. if torch.equal(self._tok_embd, data_torch):
  3975. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3976. return []
  3977. elif new_name == tok_embd_name:
  3978. self._tok_embd = data_torch
  3979. return [(new_name, data_torch)]
  3980. @ModelBase.register("Mamba2ForCausalLM")
  3981. class Mamba2Model(TextModel):
  3982. model_arch = gguf.MODEL_ARCH.MAMBA2
  3983. def __init__(self, dir_model: Path, *args, **kwargs):
  3984. # Avoid using AutoConfig for hparams
  3985. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  3986. hparams = kwargs.pop("hparams", None)
  3987. if hparams is None:
  3988. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  3989. hparams = json.load(f)
  3990. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  3991. def set_vocab(self):
  3992. vocab_size = self.hparams["vocab_size"]
  3993. # Round vocab size to next multiple of 16
  3994. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  3995. # pad using ceiling division
  3996. # ref: https://stackoverflow.com/a/17511341/22827863
  3997. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3998. self.hparams["vocab_size"] = vocab_size
  3999. if (self.dir_model / "tokenizer.model").is_file():
  4000. self._set_vocab_sentencepiece()
  4001. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4002. # mamba-codestral
  4003. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4004. elif (self.dir_model / "tokenizer.json").is_file():
  4005. self._set_vocab_gpt2()
  4006. else:
  4007. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4008. self._set_vocab_builtin("gpt-neox", vocab_size)
  4009. def set_gguf_parameters(self):
  4010. d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4011. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4012. d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4013. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4014. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4015. n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4016. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4017. # Fail early for models which don't have a block expansion factor of 2
  4018. # TODO: does this really matter?
  4019. # skip the assertion for FalconH1 Model
  4020. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4021. assert d_inner == 2 * d_model
  4022. assert d_inner % head_dim == 0
  4023. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4024. self.gguf_writer.add_embedding_length(d_model)
  4025. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4026. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4027. self.gguf_writer.add_block_count(self.block_count)
  4028. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4029. self.gguf_writer.add_ssm_inner_size(d_inner)
  4030. self.gguf_writer.add_ssm_state_size(d_state)
  4031. self.gguf_writer.add_ssm_time_step_rank(d_inner // head_dim)
  4032. self.gguf_writer.add_ssm_group_count(n_group)
  4033. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4034. self.gguf_writer.add_file_type(self.ftype)
  4035. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4036. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4037. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4038. name = name.removeprefix("model.")
  4039. if name.endswith(".dt_bias"):
  4040. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4041. new_name = self.map_tensor_name(name)
  4042. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4043. data_torch = data_torch.squeeze()
  4044. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4045. gguf.MODEL_TENSOR.SSM_A,
  4046. gguf.MODEL_TENSOR.SSM_D,
  4047. ]):
  4048. # unsqueeze A to use similar shape semantics as Mamba-1
  4049. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4050. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4051. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4052. d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4053. d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4054. n_group = self.hparams.get("n_groups", 1)
  4055. data_torch = data_torch.reshape((n_group, d_inner // n_group))
  4056. if name.endswith(".A_log"):
  4057. logger.debug("A_log --> A ==> " + new_name)
  4058. data_torch = -torch.exp(data_torch)
  4059. yield (new_name, data_torch)
  4060. @ModelBase.register("CohereForCausalLM")
  4061. class CommandR2Model(TextModel):
  4062. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4063. def __init__(self, *args, **kwargs):
  4064. super().__init__(*args, **kwargs)
  4065. # max_position_embeddings = 8192 in config.json but model was actually
  4066. # trained on 128k context length
  4067. # aya-23 models don't have model_max_length specified
  4068. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4069. def set_gguf_parameters(self):
  4070. super().set_gguf_parameters()
  4071. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4072. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4073. @ModelBase.register("Cohere2ForCausalLM")
  4074. class Cohere2Model(TextModel):
  4075. model_arch = gguf.MODEL_ARCH.COHERE2
  4076. def set_gguf_parameters(self):
  4077. super().set_gguf_parameters()
  4078. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4079. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4080. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4081. rotary_pct = self.hparams["rotary_pct"]
  4082. hidden_size = self.hparams["hidden_size"]
  4083. num_attention_heads = self.hparams["num_attention_heads"]
  4084. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4085. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4086. @ModelBase.register("OlmoForCausalLM")
  4087. @ModelBase.register("OLMoForCausalLM")
  4088. class OlmoModel(TextModel):
  4089. model_arch = gguf.MODEL_ARCH.OLMO
  4090. def set_gguf_parameters(self):
  4091. super().set_gguf_parameters()
  4092. self.gguf_writer.add_layer_norm_eps(1e-5)
  4093. clip_qkv = self.hparams.get("clip_qkv")
  4094. if clip_qkv is not None:
  4095. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4096. # Same as super class, but permuting q_proj, k_proj
  4097. # Copied from: LlamaModel
  4098. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4099. del bid # unused
  4100. n_head = self.hparams["num_attention_heads"]
  4101. n_kv_head = self.hparams.get("num_key_value_heads")
  4102. if name.endswith("q_proj.weight"):
  4103. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4104. if name.endswith("k_proj.weight"):
  4105. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4106. return [(self.map_tensor_name(name), data_torch)]
  4107. @ModelBase.register("Olmo2ForCausalLM")
  4108. class Olmo2Model(TextModel):
  4109. model_arch = gguf.MODEL_ARCH.OLMO2
  4110. @ModelBase.register("OlmoeForCausalLM")
  4111. class OlmoeModel(TextModel):
  4112. model_arch = gguf.MODEL_ARCH.OLMOE
  4113. def set_gguf_parameters(self):
  4114. super().set_gguf_parameters()
  4115. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4116. if (n_experts := self.hparams.get("num_experts")) is not None:
  4117. self.gguf_writer.add_expert_count(n_experts)
  4118. _experts: list[dict[str, Tensor]] | None = None
  4119. # Copied from: Qwen2MoeModel
  4120. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4121. # process the experts separately
  4122. if name.find("experts") != -1:
  4123. n_experts = self.hparams["num_experts"]
  4124. assert bid is not None
  4125. if self._experts is None:
  4126. self._experts = [{} for _ in range(self.block_count)]
  4127. self._experts[bid][name] = data_torch
  4128. if len(self._experts[bid]) >= n_experts * 3:
  4129. tensors: list[tuple[str, Tensor]] = []
  4130. # merge the experts into a single 3d tensor
  4131. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4132. datas: list[Tensor] = []
  4133. for xid in range(n_experts):
  4134. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4135. datas.append(self._experts[bid][ename])
  4136. del self._experts[bid][ename]
  4137. data_torch = torch.stack(datas, dim=0)
  4138. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4139. new_name = self.map_tensor_name(merged_name)
  4140. tensors.append((new_name, data_torch))
  4141. return tensors
  4142. else:
  4143. return []
  4144. return [(self.map_tensor_name(name), data_torch)]
  4145. # Copied from: Qwen2MoeModel
  4146. def prepare_tensors(self):
  4147. super().prepare_tensors()
  4148. if self._experts is not None:
  4149. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4150. experts = [k for d in self._experts for k in d.keys()]
  4151. if len(experts) > 0:
  4152. raise ValueError(f"Unprocessed experts: {experts}")
  4153. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4154. class JinaBertV2Model(BertModel):
  4155. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4156. def set_vocab(self):
  4157. tokenizer_class = 'BertTokenizer'
  4158. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4159. tokenizer_class = json.load(f)['tokenizer_class']
  4160. if tokenizer_class == 'BertTokenizer':
  4161. super().set_vocab()
  4162. elif tokenizer_class == 'RobertaTokenizer':
  4163. self._set_vocab_gpt2()
  4164. self.gguf_writer.add_token_type_count(2)
  4165. else:
  4166. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4167. @ModelBase.register("OpenELMForCausalLM")
  4168. class OpenELMModel(TextModel):
  4169. model_arch = gguf.MODEL_ARCH.OPENELM
  4170. @staticmethod
  4171. def _make_divisible(v: float | int, divisor: int) -> int:
  4172. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4173. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4174. # Make sure that round down does not go down by more than 10%.
  4175. if new_v < 0.9 * v:
  4176. new_v += divisor
  4177. return new_v
  4178. def __init__(self, *args, **kwargs):
  4179. super().__init__(*args, **kwargs)
  4180. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4181. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4182. self._n_embd: int = self.hparams["model_dim"]
  4183. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4184. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4185. self._ffn_dims: list[int] = [
  4186. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4187. for multiplier in ffn_multipliers
  4188. ]
  4189. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4190. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4191. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4192. def set_vocab(self):
  4193. try:
  4194. self._set_vocab_sentencepiece()
  4195. except FileNotFoundError:
  4196. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4197. def set_gguf_parameters(self):
  4198. n_embd = self._n_embd
  4199. head_dim = self.hparams["head_dim"]
  4200. rot_pct = 1.0
  4201. assert self.block_count == len(self._num_kv_heads)
  4202. assert self.block_count == len(self._num_query_heads)
  4203. assert self.block_count == len(self._ffn_dims)
  4204. self.gguf_writer.add_block_count(self.block_count)
  4205. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4206. self.gguf_writer.add_embedding_length(n_embd)
  4207. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4208. self.gguf_writer.add_head_count(self._num_query_heads)
  4209. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4210. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4211. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4212. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4213. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4214. self.gguf_writer.add_key_length(head_dim)
  4215. self.gguf_writer.add_value_length(head_dim)
  4216. self.gguf_writer.add_file_type(self.ftype)
  4217. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4218. if "n_layers" in keys:
  4219. return self.hparams["num_transformer_layers"]
  4220. return super().find_hparam(keys, optional)
  4221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4222. # split ff
  4223. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4224. ff_dim = self._ffn_dims[bid]
  4225. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4226. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4227. return
  4228. yield (self.map_tensor_name(name), data_torch)
  4229. @ModelBase.register("ArcticForCausalLM")
  4230. class ArcticModel(TextModel):
  4231. model_arch = gguf.MODEL_ARCH.ARCTIC
  4232. def set_vocab(self):
  4233. # The reason for using a custom implementation here is that the
  4234. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4235. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4236. from sentencepiece import SentencePieceProcessor
  4237. tokenizer_path = self.dir_model / 'tokenizer.model'
  4238. if not tokenizer_path.is_file():
  4239. logger.error(f'Error: Missing {tokenizer_path}')
  4240. sys.exit(1)
  4241. # Read the whole vocabulary from the tokenizer.model file
  4242. tokenizer = SentencePieceProcessor()
  4243. tokenizer.LoadFromFile(str(tokenizer_path))
  4244. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4245. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4246. scores: list[float] = [-10000.0] * vocab_size
  4247. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4248. for token_id in range(tokenizer.vocab_size()):
  4249. piece = tokenizer.IdToPiece(token_id)
  4250. text = piece.encode("utf-8")
  4251. score = tokenizer.GetScore(token_id)
  4252. toktype = SentencePieceTokenTypes.NORMAL
  4253. if tokenizer.IsUnknown(token_id):
  4254. toktype = SentencePieceTokenTypes.UNKNOWN
  4255. elif tokenizer.IsControl(token_id):
  4256. toktype = SentencePieceTokenTypes.CONTROL
  4257. elif tokenizer.IsUnused(token_id):
  4258. toktype = SentencePieceTokenTypes.UNUSED
  4259. elif tokenizer.IsByte(token_id):
  4260. toktype = SentencePieceTokenTypes.BYTE
  4261. tokens[token_id] = text
  4262. scores[token_id] = score
  4263. toktypes[token_id] = toktype
  4264. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4265. # of information about added/redefined tokens and modify them accordingly.
  4266. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4267. if tokenizer_config_file.is_file():
  4268. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4269. tokenizer_config_json = json.load(f)
  4270. if "added_tokens_decoder" in tokenizer_config_json:
  4271. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4272. for token_id, token_json in added_tokens_decoder.items():
  4273. token_id = int(token_id)
  4274. if token_id >= vocab_size:
  4275. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4276. continue
  4277. token_content = token_json["content"]
  4278. token_type = SentencePieceTokenTypes.USER_DEFINED
  4279. token_score = -10000.0
  4280. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4281. # Set the score to 0.0 as in the original tokenizer.model
  4282. if ("special" in token_json) and token_json["special"]:
  4283. if token_content == tokenizer_config_json["unk_token"]:
  4284. token_type = SentencePieceTokenTypes.UNKNOWN
  4285. else:
  4286. token_type = SentencePieceTokenTypes.CONTROL
  4287. token_score = 0.0
  4288. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4289. tokens[token_id] = token_content.encode("utf-8")
  4290. toktypes[token_id] = token_type
  4291. scores[token_id] = token_score
  4292. self.gguf_writer.add_tokenizer_model("llama")
  4293. self.gguf_writer.add_tokenizer_pre("default")
  4294. self.gguf_writer.add_token_list(tokens)
  4295. self.gguf_writer.add_token_scores(scores)
  4296. self.gguf_writer.add_token_types(toktypes)
  4297. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4298. special_vocab.add_to_gguf(self.gguf_writer)
  4299. def set_gguf_parameters(self):
  4300. super().set_gguf_parameters()
  4301. hparams = self.hparams
  4302. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4303. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4304. _experts: list[dict[str, Tensor]] | None = None
  4305. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4306. n_head = self.hparams["num_attention_heads"]
  4307. n_kv_head = self.hparams.get("num_key_value_heads")
  4308. if name.endswith("q_proj.weight"):
  4309. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4310. if name.endswith("k_proj.weight"):
  4311. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4312. # process the experts separately
  4313. if name.find("block_sparse_moe.experts") != -1:
  4314. n_experts = self.hparams["num_local_experts"]
  4315. assert bid is not None
  4316. if self._experts is None:
  4317. self._experts = [{} for _ in range(self.block_count)]
  4318. self._experts[bid][name] = data_torch
  4319. if len(self._experts[bid]) >= n_experts * 3:
  4320. tensors: list[tuple[str, Tensor]] = []
  4321. # merge the experts into a single 3d tensor
  4322. for wid in ["w1", "w2", "w3"]:
  4323. datas: list[Tensor] = []
  4324. for xid in range(n_experts):
  4325. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4326. datas.append(self._experts[bid][ename])
  4327. del self._experts[bid][ename]
  4328. data_torch = torch.stack(datas, dim=0)
  4329. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4330. new_name = self.map_tensor_name(merged_name)
  4331. tensors.append((new_name, data_torch))
  4332. return tensors
  4333. else:
  4334. return []
  4335. return [(self.map_tensor_name(name), data_torch)]
  4336. def prepare_tensors(self):
  4337. super().prepare_tensors()
  4338. if self._experts is not None:
  4339. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4340. experts = [k for d in self._experts for k in d.keys()]
  4341. if len(experts) > 0:
  4342. raise ValueError(f"Unprocessed experts: {experts}")
  4343. @ModelBase.register("DeepseekForCausalLM")
  4344. class DeepseekModel(TextModel):
  4345. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4346. def set_vocab(self):
  4347. try:
  4348. self._set_vocab_sentencepiece()
  4349. except FileNotFoundError:
  4350. self._set_vocab_gpt2()
  4351. def set_gguf_parameters(self):
  4352. super().set_gguf_parameters()
  4353. hparams = self.hparams
  4354. if (rope_dim := hparams.get("head_dim")) is None:
  4355. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4356. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4357. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4358. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4359. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4360. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4361. self.gguf_writer.add_expert_weights_scale(1.0)
  4362. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4363. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4364. _experts: list[dict[str, Tensor]] | None = None
  4365. @staticmethod
  4366. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4367. if n_head_kv is not None and n_head != n_head_kv:
  4368. n_head = n_head_kv
  4369. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4370. .swapaxes(1, 2)
  4371. .reshape(weights.shape))
  4372. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4373. n_head = self.hparams["num_attention_heads"]
  4374. n_kv_head = self.hparams.get("num_key_value_heads")
  4375. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4376. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4377. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4378. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4379. # process the experts separately
  4380. if name.find("mlp.experts") != -1:
  4381. n_experts = self.hparams["n_routed_experts"]
  4382. assert bid is not None
  4383. if self._experts is None:
  4384. self._experts = [{} for _ in range(self.block_count)]
  4385. self._experts[bid][name] = data_torch
  4386. if len(self._experts[bid]) >= n_experts * 3:
  4387. tensors: list[tuple[str, Tensor]] = []
  4388. # merge the experts into a single 3d tensor
  4389. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4390. datas: list[Tensor] = []
  4391. for xid in range(n_experts):
  4392. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4393. datas.append(self._experts[bid][ename])
  4394. del self._experts[bid][ename]
  4395. data_torch = torch.stack(datas, dim=0)
  4396. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4397. new_name = self.map_tensor_name(merged_name)
  4398. tensors.append((new_name, data_torch))
  4399. return tensors
  4400. else:
  4401. return []
  4402. return [(self.map_tensor_name(name), data_torch)]
  4403. def prepare_tensors(self):
  4404. super().prepare_tensors()
  4405. if self._experts is not None:
  4406. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4407. experts = [k for d in self._experts for k in d.keys()]
  4408. if len(experts) > 0:
  4409. raise ValueError(f"Unprocessed experts: {experts}")
  4410. @ModelBase.register("DeepseekV2ForCausalLM")
  4411. @ModelBase.register("DeepseekV3ForCausalLM")
  4412. class DeepseekV2Model(TextModel):
  4413. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4414. def set_vocab(self):
  4415. self._set_vocab_gpt2()
  4416. def set_gguf_parameters(self):
  4417. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4418. self.hparams["num_key_value_heads"] = 1
  4419. super().set_gguf_parameters()
  4420. hparams = self.hparams
  4421. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4422. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4423. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4424. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4425. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4426. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4427. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4428. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4429. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4430. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4431. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4432. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4433. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4434. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4435. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4436. if hparams["scoring_func"] == "sigmoid":
  4437. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4438. elif hparams["scoring_func"] == "softmax":
  4439. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4440. else:
  4441. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4442. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4443. rope_scaling = self.hparams.get("rope_scaling") or {}
  4444. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4445. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4446. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4447. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4448. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4449. _experts: list[dict[str, Tensor]] | None = None
  4450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4451. # rename e_score_correction_bias tensors
  4452. if name.endswith("e_score_correction_bias"):
  4453. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4454. # skip Multi-Token Prediction (MTP) layers
  4455. block_count = self.hparams["num_hidden_layers"]
  4456. match = re.match(r"model.layers.(\d+)", name)
  4457. if match and int(match.group(1)) >= block_count:
  4458. return []
  4459. # process the experts separately
  4460. if name.find("mlp.experts") != -1:
  4461. n_experts = self.hparams["n_routed_experts"]
  4462. assert bid is not None
  4463. if self._experts is None:
  4464. self._experts = [{} for _ in range(self.block_count)]
  4465. self._experts[bid][name] = data_torch
  4466. if len(self._experts[bid]) >= n_experts * 3:
  4467. tensors: list[tuple[str, Tensor]] = []
  4468. # merge the experts into a single 3d tensor
  4469. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4470. datas: list[Tensor] = []
  4471. for xid in range(n_experts):
  4472. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4473. datas.append(self._experts[bid][ename])
  4474. del self._experts[bid][ename]
  4475. data_torch = torch.stack(datas, dim=0)
  4476. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4477. new_name = self.map_tensor_name(merged_name)
  4478. tensors.append((new_name, data_torch))
  4479. return tensors
  4480. else:
  4481. return []
  4482. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4483. if name.endswith("kv_b_proj.weight"):
  4484. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4485. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4486. n_head_kv = self.hparams["num_key_value_heads"]
  4487. v_head_dim = self.hparams["v_head_dim"]
  4488. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4489. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4490. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4491. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4492. k_b = k_b.transpose(1, 2)
  4493. return [
  4494. (self.map_tensor_name(name_kb), k_b),
  4495. (self.map_tensor_name(name_vb), v_b)
  4496. ]
  4497. return [(self.map_tensor_name(name), data_torch)]
  4498. def prepare_tensors(self):
  4499. super().prepare_tensors()
  4500. if self._experts is not None:
  4501. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4502. experts = [k for d in self._experts for k in d.keys()]
  4503. if len(experts) > 0:
  4504. raise ValueError(f"Unprocessed experts: {experts}")
  4505. @ModelBase.register("Dots1ForCausalLM")
  4506. class Dots1Model(Qwen2MoeModel):
  4507. model_arch = gguf.MODEL_ARCH.DOTS1
  4508. def __init__(self, *args, **kwargs):
  4509. super().__init__(*args, **kwargs)
  4510. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  4511. def set_gguf_parameters(self):
  4512. super().set_gguf_parameters()
  4513. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  4514. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  4515. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  4516. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  4517. if self.hparams["scoring_func"] == "noaux_tc":
  4518. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4519. else:
  4520. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  4521. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  4522. if name.endswith("e_score_correction_bias"):
  4523. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4524. if "shared_experts" in name:
  4525. return [(self.map_tensor_name(name), data_torch)]
  4526. return super().modify_tensors(data_torch, name, bid)
  4527. @ModelBase.register("PLMForCausalLM")
  4528. class PLMModel(TextModel):
  4529. model_arch = gguf.MODEL_ARCH.PLM
  4530. def set_vocab(self):
  4531. self._set_vocab_gpt2()
  4532. def set_gguf_parameters(self):
  4533. super().set_gguf_parameters()
  4534. hparams = self.hparams
  4535. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4536. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4537. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4538. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4539. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4540. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4541. return [(self.map_tensor_name(name), data_torch)]
  4542. def prepare_tensors(self):
  4543. super().prepare_tensors()
  4544. @ModelBase.register("T5WithLMHeadModel")
  4545. @ModelBase.register("T5ForConditionalGeneration")
  4546. @ModelBase.register("MT5ForConditionalGeneration")
  4547. @ModelBase.register("UMT5ForConditionalGeneration")
  4548. class T5Model(TextModel):
  4549. model_arch = gguf.MODEL_ARCH.T5
  4550. def __init__(self, *args, **kwargs):
  4551. super().__init__(*args, **kwargs)
  4552. self.shared_token_embeddings_found = False
  4553. def set_vocab(self):
  4554. # to avoid TypeError: Descriptors cannot be created directly
  4555. # exception when importing sentencepiece_model_pb2
  4556. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4557. from sentencepiece import SentencePieceProcessor
  4558. from sentencepiece import sentencepiece_model_pb2 as model
  4559. tokenizer_path = self.dir_model / 'tokenizer.model'
  4560. # many older models use spiece.model tokenizer model filename
  4561. if not tokenizer_path.is_file():
  4562. tokenizer_path = self.dir_model / 'spiece.model'
  4563. if not tokenizer_path.is_file():
  4564. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4565. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4566. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4567. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4568. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4569. # assure the tokenizer model file name is correct
  4570. assert tokenizer_path.name == 'tokenizer.model'
  4571. return self._set_vocab_sentencepiece()
  4572. else:
  4573. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4574. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4575. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4576. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4577. tokenizer = SentencePieceProcessor()
  4578. tokenizer.LoadFromFile(str(tokenizer_path))
  4579. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4580. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4581. scores: list[float] = [-10000.0] * vocab_size
  4582. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4583. for token_id in range(tokenizer.vocab_size()):
  4584. piece = tokenizer.IdToPiece(token_id)
  4585. text = piece.encode("utf-8")
  4586. score = tokenizer.GetScore(token_id)
  4587. toktype = SentencePieceTokenTypes.NORMAL
  4588. if tokenizer.IsUnknown(token_id):
  4589. toktype = SentencePieceTokenTypes.UNKNOWN
  4590. elif tokenizer.IsControl(token_id):
  4591. toktype = SentencePieceTokenTypes.CONTROL
  4592. elif tokenizer.IsUnused(token_id):
  4593. toktype = SentencePieceTokenTypes.UNUSED
  4594. elif tokenizer.IsByte(token_id):
  4595. toktype = SentencePieceTokenTypes.BYTE
  4596. tokens[token_id] = text
  4597. scores[token_id] = score
  4598. toktypes[token_id] = toktype
  4599. added_tokens_file = self.dir_model / 'added_tokens.json'
  4600. if added_tokens_file.is_file():
  4601. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4602. added_tokens_json = json.load(f)
  4603. for key in added_tokens_json:
  4604. token_id = added_tokens_json[key]
  4605. if token_id >= vocab_size:
  4606. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4607. continue
  4608. tokens[token_id] = key.encode("utf-8")
  4609. scores[token_id] = -1000.0
  4610. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4611. if vocab_size > len(tokens):
  4612. pad_count = vocab_size - len(tokens)
  4613. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4614. for i in range(1, pad_count + 1):
  4615. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4616. scores.append(-1000.0)
  4617. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4618. self.gguf_writer.add_tokenizer_model("t5")
  4619. self.gguf_writer.add_tokenizer_pre("default")
  4620. self.gguf_writer.add_token_list(tokens)
  4621. self.gguf_writer.add_token_scores(scores)
  4622. self.gguf_writer.add_token_types(toktypes)
  4623. self.gguf_writer.add_add_space_prefix(add_prefix)
  4624. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4625. if precompiled_charsmap:
  4626. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4627. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4628. special_vocab.add_to_gguf(self.gguf_writer)
  4629. def set_gguf_parameters(self):
  4630. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4631. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4632. n_ctx = 512
  4633. self.gguf_writer.add_context_length(n_ctx)
  4634. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4635. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4636. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4637. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4638. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4639. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4640. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4641. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4642. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4643. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4644. self.gguf_writer.add_file_type(self.ftype)
  4645. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4646. del bid # unused
  4647. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4648. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4649. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4650. # and decoder and ignore the remaining ones.
  4651. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4652. if not self.shared_token_embeddings_found:
  4653. name = "shared.weight"
  4654. self.shared_token_embeddings_found = True
  4655. else:
  4656. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4657. return []
  4658. return [(self.map_tensor_name(name), data_torch)]
  4659. @ModelBase.register("T5EncoderModel")
  4660. class T5EncoderModel(TextModel):
  4661. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4662. def __init__(self, *args, **kwargs):
  4663. super().__init__(*args, **kwargs)
  4664. self.shared_token_embeddings_found = False
  4665. def set_vocab(self):
  4666. # to avoid TypeError: Descriptors cannot be created directly
  4667. # exception when importing sentencepiece_model_pb2
  4668. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4669. from sentencepiece import SentencePieceProcessor
  4670. from sentencepiece import sentencepiece_model_pb2 as model
  4671. tokenizer_path = self.dir_model / 'tokenizer.model'
  4672. # many older models use spiece.model tokenizer model filename
  4673. if not tokenizer_path.is_file():
  4674. tokenizer_path = self.dir_model / 'spiece.model'
  4675. if not tokenizer_path.is_file():
  4676. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4677. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4678. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4679. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4680. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4681. # assure the tokenizer model file name is correct
  4682. assert tokenizer_path.name == 'tokenizer.model'
  4683. return self._set_vocab_sentencepiece()
  4684. else:
  4685. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4686. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4687. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4688. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4689. tokenizer = SentencePieceProcessor()
  4690. tokenizer.LoadFromFile(str(tokenizer_path))
  4691. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4692. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4693. scores: list[float] = [-10000.0] * vocab_size
  4694. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4695. for token_id in range(tokenizer.vocab_size()):
  4696. piece = tokenizer.IdToPiece(token_id)
  4697. text = piece.encode("utf-8")
  4698. score = tokenizer.GetScore(token_id)
  4699. toktype = SentencePieceTokenTypes.NORMAL
  4700. if tokenizer.IsUnknown(token_id):
  4701. toktype = SentencePieceTokenTypes.UNKNOWN
  4702. elif tokenizer.IsControl(token_id):
  4703. toktype = SentencePieceTokenTypes.CONTROL
  4704. elif tokenizer.IsUnused(token_id):
  4705. toktype = SentencePieceTokenTypes.UNUSED
  4706. elif tokenizer.IsByte(token_id):
  4707. toktype = SentencePieceTokenTypes.BYTE
  4708. tokens[token_id] = text
  4709. scores[token_id] = score
  4710. toktypes[token_id] = toktype
  4711. added_tokens_file = self.dir_model / 'added_tokens.json'
  4712. if added_tokens_file.is_file():
  4713. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4714. added_tokens_json = json.load(f)
  4715. for key in added_tokens_json:
  4716. token_id = added_tokens_json[key]
  4717. if token_id >= vocab_size:
  4718. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4719. continue
  4720. tokens[token_id] = key.encode("utf-8")
  4721. scores[token_id] = -1000.0
  4722. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4723. if vocab_size > len(tokens):
  4724. pad_count = vocab_size - len(tokens)
  4725. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4726. for i in range(1, pad_count + 1):
  4727. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4728. scores.append(-1000.0)
  4729. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4730. self.gguf_writer.add_tokenizer_model("t5")
  4731. self.gguf_writer.add_tokenizer_pre("default")
  4732. self.gguf_writer.add_token_list(tokens)
  4733. self.gguf_writer.add_token_scores(scores)
  4734. self.gguf_writer.add_token_types(toktypes)
  4735. self.gguf_writer.add_add_space_prefix(add_prefix)
  4736. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4737. if precompiled_charsmap:
  4738. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4739. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4740. special_vocab.add_to_gguf(self.gguf_writer)
  4741. def set_gguf_parameters(self):
  4742. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4743. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4744. n_ctx = 512
  4745. self.gguf_writer.add_context_length(n_ctx)
  4746. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4747. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4748. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4749. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4750. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4751. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4752. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4753. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4754. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4755. self.gguf_writer.add_file_type(self.ftype)
  4756. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4757. del bid # unused
  4758. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4759. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4760. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4761. # and decoder and ignore the remaining ones.
  4762. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4763. if not self.shared_token_embeddings_found:
  4764. name = "shared.weight"
  4765. self.shared_token_embeddings_found = True
  4766. else:
  4767. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4768. return []
  4769. return [(self.map_tensor_name(name), data_torch)]
  4770. @ModelBase.register("JAISLMHeadModel")
  4771. class JaisModel(TextModel):
  4772. model_arch = gguf.MODEL_ARCH.JAIS
  4773. def __init__(self, *args, **kwargs):
  4774. super().__init__(*args, **kwargs)
  4775. # SwigLU activation
  4776. assert self.hparams["activation_function"] == "swiglu"
  4777. # ALiBi position embedding
  4778. assert self.hparams["position_embedding_type"] == "alibi"
  4779. # Embeddings scale
  4780. self.embeddings_scale = 1.0
  4781. if 'mup_embeddings_scale' in self.hparams:
  4782. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4783. elif 'embeddings_scale' in self.hparams:
  4784. self.embeddings_scale = self.hparams['embeddings_scale']
  4785. else:
  4786. assert False
  4787. self.width_scale = 1.0
  4788. if 'mup_output_alpha' in self.hparams:
  4789. assert 'mup_width_scale' in self.hparams
  4790. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4791. elif 'width_scale' in self.hparams:
  4792. self.width_scale = self.hparams['width_scale']
  4793. else:
  4794. assert False
  4795. self.max_alibi_bias = 8.0
  4796. def set_vocab(self):
  4797. self._set_vocab_gpt2()
  4798. def set_gguf_parameters(self):
  4799. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4800. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4801. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4802. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4803. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4804. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4805. self.gguf_writer.add_file_type(self.ftype)
  4806. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4807. del bid # unused
  4808. tensors: list[tuple[str, Tensor]] = []
  4809. # we don't need these
  4810. if name.endswith((".attn.bias")):
  4811. return tensors
  4812. if name.endswith(("relative_pe.slopes")):
  4813. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4814. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4815. # but Jais's PyTorch model simply precalculates the slope values and places them
  4816. # in relative_pes.slopes
  4817. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4818. first_val = float(data_torch[0].item())
  4819. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4820. return tensors
  4821. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4822. data_torch = data_torch.transpose(1, 0)
  4823. new_name = self.map_tensor_name(name)
  4824. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4825. tensors.append((new_name, data_torch * self.embeddings_scale))
  4826. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4827. tensors.append((new_name, data_torch * self.width_scale))
  4828. else:
  4829. tensors.append((new_name, data_torch))
  4830. return tensors
  4831. def prepare_tensors(self):
  4832. super().prepare_tensors()
  4833. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4834. @ModelBase.register("Glm4ForCausalLM")
  4835. class Glm4Model(TextModel):
  4836. model_arch = gguf.MODEL_ARCH.GLM4
  4837. def set_vocab(self):
  4838. from transformers import AutoTokenizer
  4839. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4840. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4841. tokens, toktypes, tokpre = self.get_vocab_base()
  4842. self.gguf_writer.add_tokenizer_model("gpt2")
  4843. self.gguf_writer.add_tokenizer_pre(tokpre)
  4844. self.gguf_writer.add_token_list(tokens)
  4845. self.gguf_writer.add_token_types(toktypes)
  4846. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4847. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4848. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4849. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4850. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4851. special_vocab.add_to_gguf(self.gguf_writer)
  4852. def set_gguf_parameters(self):
  4853. super().set_gguf_parameters()
  4854. rope_dim = self.hparams["head_dim"]
  4855. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4856. rope_scaling = self.hparams.get("rope_scaling") or {}
  4857. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4858. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4859. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4860. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4861. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4862. class ChatGLMModel(TextModel):
  4863. model_arch = gguf.MODEL_ARCH.CHATGLM
  4864. def set_vocab_chatglm3(self):
  4865. dir_model = self.dir_model
  4866. hparams = self.hparams
  4867. tokens: list[bytes] = []
  4868. toktypes: list[int] = []
  4869. scores: list[float] = []
  4870. from transformers import AutoTokenizer
  4871. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4872. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4873. assert max(tokenizer.get_vocab().values()) < vocab_size
  4874. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4875. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4876. for token_id in range(vocab_size):
  4877. piece = tokenizer._convert_id_to_token(token_id)
  4878. if token_id == 0:
  4879. piece = "<unk>"
  4880. elif token_id == 1:
  4881. piece = "<bos>"
  4882. elif token_id == 2:
  4883. piece = "<eos>"
  4884. text = piece.encode("utf-8")
  4885. score = 0.0
  4886. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4887. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4888. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4889. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4890. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4891. if piece in special_tokens:
  4892. toktype = SentencePieceTokenTypes.CONTROL
  4893. elif len(piece) == 0:
  4894. text = f"[PAD{token_id}]".encode("utf-8")
  4895. toktype = SentencePieceTokenTypes.UNUSED
  4896. else:
  4897. toktype = SentencePieceTokenTypes.USER_DEFINED
  4898. tokens.append(text)
  4899. scores.append(score)
  4900. toktypes.append(toktype)
  4901. continue
  4902. toktype = SentencePieceTokenTypes.NORMAL
  4903. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4904. toktype = SentencePieceTokenTypes.UNKNOWN
  4905. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4906. toktype = SentencePieceTokenTypes.CONTROL
  4907. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4908. toktype = SentencePieceTokenTypes.UNUSED
  4909. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4910. toktype = SentencePieceTokenTypes.BYTE
  4911. tokens.append(text)
  4912. scores.append(score)
  4913. toktypes.append(toktype)
  4914. self.gguf_writer.add_tokenizer_model("llama")
  4915. # glm3 needs prefix and suffix formatted as:
  4916. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4917. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4918. self.gguf_writer.add_token_list(tokens)
  4919. self.gguf_writer.add_token_scores(scores)
  4920. self.gguf_writer.add_token_types(toktypes)
  4921. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4922. special_vocab.add_to_gguf(self.gguf_writer)
  4923. @staticmethod
  4924. def token_bytes_to_string(b):
  4925. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4926. byte_encoder = bytes_to_unicode()
  4927. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4928. @staticmethod
  4929. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4930. parts = [bytes([b]) for b in token]
  4931. while True:
  4932. min_idx = None
  4933. min_rank = None
  4934. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4935. rank = mergeable_ranks.get(pair[0] + pair[1])
  4936. if rank is not None and (min_rank is None or rank < min_rank):
  4937. min_idx = i
  4938. min_rank = rank
  4939. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4940. break
  4941. assert min_idx is not None
  4942. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4943. return parts
  4944. def set_vocab(self):
  4945. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4946. self.set_vocab_chatglm3()
  4947. return
  4948. dir_model = self.dir_model
  4949. hparams = self.hparams
  4950. tokens: list[str] = []
  4951. toktypes: list[int] = []
  4952. from transformers import AutoTokenizer
  4953. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4954. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4955. assert max(tokenizer.get_vocab().values()) < vocab_size
  4956. tokens, toktypes, tokpre = self.get_vocab_base()
  4957. self.gguf_writer.add_tokenizer_model("gpt2")
  4958. self.gguf_writer.add_tokenizer_pre(tokpre)
  4959. self.gguf_writer.add_token_list(tokens)
  4960. self.gguf_writer.add_token_types(toktypes)
  4961. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4962. # only add special tokens when they were not already loaded from config.json
  4963. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4964. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4965. # this one is usually not in config.json anyway
  4966. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4967. special_vocab.add_to_gguf(self.gguf_writer)
  4968. def set_gguf_parameters(self):
  4969. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4970. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4971. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4972. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4973. self.gguf_writer.add_embedding_length(n_embed)
  4974. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4975. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4976. self.gguf_writer.add_head_count(n_head)
  4977. self.gguf_writer.add_head_count_kv(n_head_kv)
  4978. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4979. self.gguf_writer.add_file_type(self.ftype)
  4980. if "attention_dim" in self.hparams:
  4981. rope_dim = self.hparams["attention_dim"]
  4982. else:
  4983. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4984. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4985. self.gguf_writer.add_add_bos_token(False)
  4986. rope_freq = 10000
  4987. if "rope_ratio" in self.hparams:
  4988. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4989. self.gguf_writer.add_rope_freq_base(rope_freq)
  4990. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4991. del bid # unused
  4992. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4993. return []
  4994. name = name.removeprefix("transformer.")
  4995. return [(self.map_tensor_name(name), data_torch)]
  4996. @ModelBase.register("NemotronForCausalLM")
  4997. class NemotronModel(TextModel):
  4998. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4999. def set_vocab(self):
  5000. self._set_vocab_sentencepiece()
  5001. self.gguf_writer.add_pad_token_id(0)
  5002. self.gguf_writer.add_unk_token_id(1)
  5003. def set_gguf_parameters(self):
  5004. super().set_gguf_parameters()
  5005. hparams = self.hparams
  5006. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5007. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5008. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5009. # * Partial RoPE
  5010. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5011. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5012. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5013. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5014. # * RopeScaling for Nemotron
  5015. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5016. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5017. else:
  5018. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5019. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5020. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5021. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5022. # model.layers.{l}.input_layernorm.weight
  5023. # model.layers.{l}.post_attention_layernorm.weight
  5024. # model.norm.weight
  5025. if name.endswith("norm.weight"):
  5026. data_torch = data_torch + 1
  5027. return [(self.map_tensor_name(name), data_torch)]
  5028. @ModelBase.register("ExaoneForCausalLM")
  5029. class ExaoneModel(TextModel):
  5030. model_arch = gguf.MODEL_ARCH.EXAONE
  5031. def set_gguf_parameters(self):
  5032. hparams = self.hparams
  5033. assert (hparams["activation_function"] == "silu")
  5034. max_position_embeddings = hparams["max_position_embeddings"]
  5035. embed_dim = hparams["hidden_size"]
  5036. num_heads = hparams["num_attention_heads"]
  5037. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5038. layer_norm_eps = hparams["layer_norm_epsilon"]
  5039. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5040. num_layers = hparams["num_layers"]
  5041. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5042. # attention_dropout_rate = hparams["attention_dropout"]
  5043. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5044. # embed_dropout_rate = hparams["embed_dropout"]
  5045. self.gguf_writer.add_embedding_length(embed_dim)
  5046. self.gguf_writer.add_head_count(num_heads)
  5047. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5048. self.gguf_writer.add_context_length(max_position_embeddings)
  5049. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5050. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5051. self.gguf_writer.add_block_count(num_layers)
  5052. self.gguf_writer.add_file_type(self.ftype)
  5053. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5054. self.gguf_writer.add_rope_freq_base(rope_theta)
  5055. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5056. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5057. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5058. rope_scaling = self.hparams.get("rope_scaling") or {}
  5059. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5060. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5061. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5062. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5063. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5064. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5065. base = self.hparams.get("rope_theta", 10000.0)
  5066. if (dim := self.hparams.get("head_dim")) is None:
  5067. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5068. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5069. factor = rope_scaling.get("factor", 8.0)
  5070. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5071. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5072. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5073. low_freq_wavelen = old_context_len / low_freq_factor
  5074. high_freq_wavelen = old_context_len / high_freq_factor
  5075. assert low_freq_wavelen != high_freq_wavelen
  5076. rope_factors = []
  5077. for freq in freqs:
  5078. wavelen = 2 * math.pi / freq
  5079. if wavelen < high_freq_wavelen:
  5080. rope_factors.append(1)
  5081. elif wavelen > low_freq_wavelen:
  5082. rope_factors.append(factor)
  5083. else:
  5084. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5085. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5086. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5087. @ModelBase.register("GraniteForCausalLM")
  5088. class GraniteModel(LlamaModel):
  5089. """Conversion for IBM's GraniteForCausalLM"""
  5090. model_arch = gguf.MODEL_ARCH.GRANITE
  5091. def set_gguf_parameters(self):
  5092. """Granite uses standard llama parameters with the following differences:
  5093. - No head_dim support
  5094. - New multiplier params:
  5095. - attention_scale
  5096. - embedding_scale
  5097. - residual_scale
  5098. - logits_scaling
  5099. """
  5100. if head_dim := self.hparams.pop("head_dim", None):
  5101. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5102. super().set_gguf_parameters()
  5103. # NOTE: Convert _multiplier params to _scale params for naming
  5104. # consistency
  5105. if attention_scale := self.hparams.get("attention_multiplier"):
  5106. self.gguf_writer.add_attention_scale(attention_scale)
  5107. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5108. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5109. self.gguf_writer.add_embedding_scale(embedding_scale)
  5110. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5111. if residual_scale := self.hparams.get("residual_multiplier"):
  5112. self.gguf_writer.add_residual_scale(residual_scale)
  5113. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5114. if logits_scale := self.hparams.get("logits_scaling"):
  5115. self.gguf_writer.add_logit_scale(logits_scale)
  5116. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5117. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5118. class GraniteMoeModel(GraniteModel):
  5119. """Conversion for IBM's GraniteMoeForCausalLM"""
  5120. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5121. def set_gguf_parameters(self):
  5122. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5123. - shared_intermediate_size
  5124. """
  5125. super().set_gguf_parameters()
  5126. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5127. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5128. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5130. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5131. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5132. the hidden size that is then split during forward. To keep compatibility
  5133. with existing mixtral support, we pull them apart here.
  5134. """
  5135. if name.endswith("block_sparse_moe.input_linear.weight"):
  5136. ffn_dim = self.hparams["intermediate_size"]
  5137. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5138. gate, up = data_torch.split(ffn_dim, dim=-2)
  5139. return [
  5140. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5141. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5142. ]
  5143. if name.endswith("shared_mlp.input_linear.weight"):
  5144. ffn_dim = self.hparams["shared_intermediate_size"]
  5145. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5146. gate, up = data_torch.split(ffn_dim, dim=-2)
  5147. return [
  5148. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5149. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5150. ]
  5151. return super().modify_tensors(data_torch, name, bid)
  5152. @ModelBase.register("BailingMoeForCausalLM")
  5153. class BailingMoeModel(TextModel):
  5154. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5155. def set_vocab(self):
  5156. self._set_vocab_gpt2()
  5157. def set_gguf_parameters(self):
  5158. super().set_gguf_parameters()
  5159. hparams = self.hparams
  5160. if (rope_dim := hparams.get("head_dim")) is None:
  5161. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5162. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5163. rope_scaling = self.hparams.get("rope_scaling") or {}
  5164. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5165. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5166. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5167. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5168. else:
  5169. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5170. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5171. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5172. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5173. self.gguf_writer.add_expert_weights_scale(1.0)
  5174. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5175. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  5176. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5177. _experts: list[dict[str, Tensor]] | None = None
  5178. @staticmethod
  5179. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5180. if n_head_kv is not None and n_head != n_head_kv:
  5181. n_head = n_head_kv
  5182. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5183. .swapaxes(1, 2)
  5184. .reshape(weights.shape))
  5185. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5186. n_head = self.hparams["num_attention_heads"]
  5187. n_kv_head = self.hparams.get("num_key_value_heads")
  5188. n_embd = self.hparams["hidden_size"]
  5189. if (head_dim := self.hparams.get("head_dim")) is None:
  5190. head_dim = n_embd // n_head
  5191. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5192. if name.endswith("attention.dense.weight"):
  5193. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  5194. elif name.endswith("query_key_value.weight"):
  5195. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  5196. return [
  5197. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  5198. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  5199. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  5200. ]
  5201. elif name.find("mlp.experts") != -1:
  5202. n_experts = self.hparams["num_experts"]
  5203. assert bid is not None
  5204. tensors: list[tuple[str, Tensor]] = []
  5205. if self._experts is None:
  5206. self._experts = [{} for _ in range(self.block_count)]
  5207. self._experts[bid][name] = data_torch
  5208. if len(self._experts[bid]) >= n_experts * 3:
  5209. # merge the experts into a single 3d tensor
  5210. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5211. datas: list[Tensor] = []
  5212. for xid in range(n_experts):
  5213. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5214. datas.append(self._experts[bid][ename])
  5215. del self._experts[bid][ename]
  5216. data_torch = torch.stack(datas, dim=0)
  5217. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5218. new_name = self.map_tensor_name(merged_name)
  5219. tensors.append((new_name, data_torch))
  5220. return tensors
  5221. new_name = self.map_tensor_name(name)
  5222. if new_name == output_name and self.hparams.get("norm_head"):
  5223. data_torch = data_torch.float()
  5224. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5225. return [(new_name, data_torch)]
  5226. def prepare_tensors(self):
  5227. super().prepare_tensors()
  5228. if self._experts is not None:
  5229. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5230. experts = [k for d in self._experts for k in d.keys()]
  5231. if len(experts) > 0:
  5232. raise ValueError(f"Unprocessed experts: {experts}")
  5233. @ModelBase.register("ChameleonForConditionalGeneration")
  5234. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5235. class ChameleonModel(TextModel):
  5236. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5237. def set_gguf_parameters(self):
  5238. super().set_gguf_parameters()
  5239. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5240. def set_vocab(self):
  5241. self._set_vocab_gpt2()
  5242. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5243. # ignore image tokenizer for now
  5244. # TODO: remove this once image support is implemented for Chameleon
  5245. if name.startswith("model.vqmodel"):
  5246. return []
  5247. n_head = self.hparams["num_attention_heads"]
  5248. n_kv_head = self.hparams.get("num_key_value_heads")
  5249. hidden_dim = self.hparams.get("hidden_size")
  5250. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5251. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5252. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5253. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5254. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5255. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5256. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5257. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5258. return [(self.map_tensor_name(name), data_torch)]
  5259. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5260. @staticmethod
  5261. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5262. head_dim = hidden_dim // n_heads
  5263. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5264. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5265. return data_torch
  5266. @ModelBase.register("UltravoxModel")
  5267. class UltravoxModel(TextModel):
  5268. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  5269. def __init__(self, *args, **kwargs):
  5270. super().__init__(*args, **kwargs)
  5271. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  5272. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  5273. class WhisperEncoderModel(MmprojModel):
  5274. has_vision_encoder = False # no vision encoder
  5275. has_audio_encoder = True
  5276. def __init__(self, *args, **kwargs):
  5277. super().__init__(*args, **kwargs)
  5278. self.hparams["hidden_size"] = self.hparams["d_model"]
  5279. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  5280. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  5281. def set_gguf_parameters(self):
  5282. super().set_gguf_parameters()
  5283. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  5284. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  5285. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  5286. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5287. del bid, new_name, n_dims # unused
  5288. if ".conv" in name and ".weight" in name:
  5289. return gguf.GGMLQuantizationType.F16
  5290. return False
  5291. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5292. del bid # unused
  5293. if name.startswith("language_model."):
  5294. # skip language model tensors
  5295. return []
  5296. # prevent clash naming with vision tensors
  5297. if name.startswith("multi_modal_projector"):
  5298. name = "audio." + name
  5299. if "conv1.bias" in name or "conv2.bias" in name:
  5300. # transpose conv1 and conv2 bias
  5301. data_torch = data_torch.unsqueeze(-1)
  5302. return [(self.map_tensor_name(name), data_torch)]
  5303. @ModelBase.register("UltravoxModel")
  5304. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  5305. has_vision_encoder = False # no vision encoder
  5306. has_audio_encoder = True
  5307. def set_gguf_parameters(self):
  5308. super().set_gguf_parameters()
  5309. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  5310. @ModelBase.register("FalconH1ForCausalLM")
  5311. class FalconH1Model(Mamba2Model):
  5312. model_arch = gguf.MODEL_ARCH.FALCON_H1
  5313. def __init__(self, *args, **kwargs):
  5314. # Set the hparam prefixes for Falcon Mamba2
  5315. self.hparam_prefixes = ["mamba"]
  5316. # Initialize the base Mamba2Model
  5317. super().__init__(*args, **kwargs)
  5318. # Use Llama conversion for attention
  5319. self._transformer_model_class = LlamaModel
  5320. # n_group and d_inner are used during reshape_tensors for mamaba2
  5321. self.n_group = self.find_hparam(["n_groups"])
  5322. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  5323. self.d_head = self.find_hparam(["d_head"])
  5324. # Initialize any Falcon Mamba2 specific attributes
  5325. self.has_attention = True # Falcon Mamba2 has attention components
  5326. # Load Falcon-H1 multipliers from hyperparameters
  5327. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  5328. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  5329. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  5330. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  5331. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  5332. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  5333. self.intermediate_size = self.find_hparam(["intermediate_size"])
  5334. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  5335. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5336. prefixed = []
  5337. for pfx in self.hparam_prefixes:
  5338. prefixed.extend(
  5339. "_".join([pfx, k])
  5340. for k in keys
  5341. )
  5342. keys = list(keys) + prefixed
  5343. return super().find_hparam(keys, *args, **kwargs)
  5344. def set_vocab(self):
  5345. self._set_vocab_gpt2()
  5346. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5347. tensors = list(super().modify_tensors(data_torch, name, bid))
  5348. tensor = tensors[0][1]
  5349. if "down_proj" in name:
  5350. tensor = tensor * self.mlp_multipliers[1]
  5351. elif "gate_proj" in name:
  5352. tensor = tensor * self.mlp_multipliers[0]
  5353. elif "k_proj" in name:
  5354. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  5355. elif "q_proj" in name:
  5356. tensor = tensor * self.attention_in_multiplier
  5357. elif "v_proj" in name:
  5358. tensor = tensor * self.attention_in_multiplier
  5359. elif "o_proj" in name:
  5360. tensor = tensor * self.attention_out_multiplier
  5361. elif "out_proj" in name:
  5362. tensor = tensor * self.ssm_out_multiplier
  5363. elif "in_proj" in name:
  5364. tensor = tensor * self.ssm_in_multiplier
  5365. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  5366. intermediate_size = self.hparams["mamba_d_ssm"]
  5367. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  5368. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  5369. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  5370. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  5371. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  5372. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  5373. elif "lm_head" in name:
  5374. tensor = tensor * self.hparams["lm_head_multiplier"]
  5375. elif "embed_tokens" in name:
  5376. tensor = tensor * self.hparams["embedding_multiplier"]
  5377. elif "mamba.norm" in name:
  5378. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  5379. tensors = [(tensors[0][0], tensor)]
  5380. return tensors
  5381. def set_gguf_parameters(self):
  5382. super().set_gguf_parameters()
  5383. ## General Params ##
  5384. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5385. # Override some Mamba2 defaults
  5386. self.gguf_writer.add_block_count(self.block_count)
  5387. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  5388. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5389. ## Attention params ##
  5390. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  5391. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  5392. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  5393. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  5394. ## Validation ##
  5395. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5396. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  5397. # Add any other Falcon Mamba2 specific configuration
  5398. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  5399. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  5400. class HunYuanMoEModel(TextModel):
  5401. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  5402. def __init__(self, *args, **kwargs):
  5403. super().__init__(*args, **kwargs)
  5404. # For handling tied embeddings
  5405. self._tok_embd = None
  5406. def set_vocab(self):
  5407. from transformers import AutoTokenizer
  5408. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5409. # 1. Get the pre-tokenizer identifier hash
  5410. tokpre = self.get_vocab_base_pre(tokenizer)
  5411. # 2. Reverse-engineer the merges list from mergeable_ranks
  5412. merges = []
  5413. vocab = {}
  5414. mergeable_ranks = tokenizer.mergeable_ranks
  5415. for token, rank in mergeable_ranks.items():
  5416. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5417. if len(token) == 1:
  5418. continue
  5419. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5420. if len(merged) == 2: # todo this is an assert in Qwen, why?
  5421. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5422. # 3. Generate the tokens and toktypes lists
  5423. vocab_size = self.hparams["vocab_size"]
  5424. assert tokenizer.vocab_size == vocab_size
  5425. special_tokens = tokenizer.special_tokens
  5426. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5427. tokens: list[str] = []
  5428. toktypes: list[int] = []
  5429. for i in range(vocab_size):
  5430. if i not in reverse_vocab:
  5431. tokens.append(f"[PAD{i}]")
  5432. toktypes.append(gguf.TokenType.UNUSED)
  5433. else:
  5434. token = reverse_vocab[i]
  5435. tokens.append(token)
  5436. if i in special_tokens.values():
  5437. toktypes.append(gguf.TokenType.CONTROL)
  5438. else:
  5439. toktypes.append(gguf.TokenType.NORMAL)
  5440. # 4. Write all vocab-related fields to the GGUF writer
  5441. self.gguf_writer.add_tokenizer_model("gpt2")
  5442. self.gguf_writer.add_tokenizer_pre(tokpre)
  5443. self.gguf_writer.add_token_list(tokens)
  5444. self.gguf_writer.add_token_types(toktypes)
  5445. self.gguf_writer.add_token_merges(merges)
  5446. # 5. Add special tokens and chat templates
  5447. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5448. special_vocab.add_to_gguf(self.gguf_writer)
  5449. # FIX for BOS token: Overwrite incorrect id read from config.json
  5450. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  5451. def set_gguf_parameters(self):
  5452. super().set_gguf_parameters()
  5453. hparams = self.hparams
  5454. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5455. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  5456. moe_intermediate_size = hparams["moe_intermediate_size"]
  5457. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  5458. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  5459. moe_topk = hparams["moe_topk"]
  5460. assert all(topk == moe_topk[0] for topk in moe_topk)
  5461. self.gguf_writer.add_expert_used_count(moe_topk[0])
  5462. moe_shared_expert = hparams["num_shared_expert"]
  5463. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  5464. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  5465. # Rope
  5466. rope_scaling = hparams.get("rope_scaling", {})
  5467. if rope_scaling.get("type") == "dynamic":
  5468. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  5469. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  5470. alpha = rope_scaling.get("alpha", 1000)
  5471. base = hparams.get("rope_theta", 10000.0)
  5472. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  5473. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  5474. self.gguf_writer.add_rope_freq_base(scaled_base)
  5475. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5476. self.gguf_writer.add_rope_scaling_factor(1)
  5477. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  5478. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  5479. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  5480. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  5481. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  5482. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  5483. _experts: list[dict[str, Tensor]] | None = None
  5484. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5485. if name == "model.embed_tokens.weight":
  5486. self._tok_embd = data_torch.clone()
  5487. if name == "lm_head.weight":
  5488. if self.hparams.get("tie_word_embeddings", False):
  5489. logger.info("Skipping tied output layer 'lm_head.weight'")
  5490. return []
  5491. if name.find("mlp.experts") != -1:
  5492. n_experts = self.hparams["num_experts"]
  5493. assert bid is not None
  5494. if self._experts is None:
  5495. self._experts = [{} for _ in range(self.block_count)]
  5496. self._experts[bid][name] = data_torch
  5497. if len(self._experts[bid]) >= n_experts * 3:
  5498. # merge the experts into a single 3d tensor
  5499. tensors: list[tuple[str, Tensor]] = []
  5500. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5501. datas: list[Tensor] = []
  5502. for xid in range(n_experts):
  5503. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5504. datas.append(self._experts[bid][ename])
  5505. del self._experts[bid][ename]
  5506. data_torch = torch.stack(datas, dim=0)
  5507. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5508. new_name = self.map_tensor_name(merged_name)
  5509. tensors.append((new_name, data_torch))
  5510. return tensors
  5511. else:
  5512. return []
  5513. return [(self.map_tensor_name(name), data_torch)]
  5514. def prepare_tensors(self):
  5515. super().prepare_tensors()
  5516. if self._experts is not None:
  5517. experts = [k for d in self._experts for k in d.keys()]
  5518. if len(experts) > 0:
  5519. raise ValueError(f"Unprocessed experts: {experts}")
  5520. @ModelBase.register("SmolLM3ForCausalLM")
  5521. class SmolLM3Model(LlamaModel):
  5522. model_arch = gguf.MODEL_ARCH.SMOLLM3
  5523. def set_vocab(self):
  5524. super().set_vocab()
  5525. # remove unsupported array slicing in chat template
  5526. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  5527. from transformers import AutoTokenizer
  5528. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5529. if tokenizer.chat_template is not None:
  5530. chat_template = tokenizer.chat_template.replace("[:]", "")
  5531. self.gguf_writer.add_chat_template(chat_template)
  5532. ###### CONVERSION LOGIC ######
  5533. # tree of lazy tensors
  5534. class LazyTorchTensor(gguf.LazyBase):
  5535. _tensor_type = torch.Tensor
  5536. # to keep the type-checker happy
  5537. dtype: torch.dtype
  5538. shape: torch.Size
  5539. # only used when converting a torch.Tensor to a np.ndarray
  5540. _dtype_map: dict[torch.dtype, type] = {
  5541. torch.float16: np.float16,
  5542. torch.float32: np.float32,
  5543. }
  5544. # used for safetensors slices
  5545. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  5546. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  5547. _dtype_str_map: dict[str, torch.dtype] = {
  5548. "F64": torch.float64,
  5549. "F32": torch.float32,
  5550. "BF16": torch.bfloat16,
  5551. "F16": torch.float16,
  5552. # "U64": torch.uint64,
  5553. "I64": torch.int64,
  5554. # "U32": torch.uint32,
  5555. "I32": torch.int32,
  5556. # "U16": torch.uint16,
  5557. "I16": torch.int16,
  5558. "U8": torch.uint8,
  5559. "I8": torch.int8,
  5560. "BOOL": torch.bool,
  5561. "F8_E4M3": torch.float8_e4m3fn,
  5562. "F8_E5M2": torch.float8_e5m2,
  5563. }
  5564. def numpy(self) -> gguf.LazyNumpyTensor:
  5565. dtype = self._dtype_map[self.dtype]
  5566. return gguf.LazyNumpyTensor(
  5567. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  5568. args=(self,),
  5569. func=(lambda s: s.numpy())
  5570. )
  5571. @classmethod
  5572. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  5573. return torch.empty(size=shape, dtype=dtype, device="meta")
  5574. @classmethod
  5575. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  5576. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  5577. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  5578. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  5579. return cast(torch.Tensor, lazy)
  5580. @classmethod
  5581. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  5582. dtype = cls._dtype_str_map[remote_tensor.dtype]
  5583. shape = remote_tensor.shape
  5584. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  5585. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  5586. return cast(torch.Tensor, lazy)
  5587. @classmethod
  5588. def __torch_function__(cls, func, types, args=(), kwargs=None):
  5589. del types # unused
  5590. if kwargs is None:
  5591. kwargs = {}
  5592. if func is torch.Tensor.numpy:
  5593. return args[0].numpy()
  5594. return cls._wrap_fn(func)(*args, **kwargs)
  5595. def parse_args() -> argparse.Namespace:
  5596. parser = argparse.ArgumentParser(
  5597. description="Convert a huggingface model to a GGML compatible file")
  5598. parser.add_argument(
  5599. "--vocab-only", action="store_true",
  5600. help="extract only the vocab",
  5601. )
  5602. parser.add_argument(
  5603. "--outfile", type=Path,
  5604. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  5605. )
  5606. parser.add_argument(
  5607. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  5608. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  5609. )
  5610. parser.add_argument(
  5611. "--bigendian", action="store_true",
  5612. help="model is executed on big endian machine",
  5613. )
  5614. parser.add_argument(
  5615. "model", type=str,
  5616. help="directory containing model file or huggingface repository ID (if --remote)",
  5617. nargs="?",
  5618. )
  5619. parser.add_argument(
  5620. "--use-temp-file", action="store_true",
  5621. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  5622. )
  5623. parser.add_argument(
  5624. "--no-lazy", action="store_true",
  5625. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  5626. )
  5627. parser.add_argument(
  5628. "--model-name", type=str, default=None,
  5629. help="name of the model",
  5630. )
  5631. parser.add_argument(
  5632. "--verbose", action="store_true",
  5633. help="increase output verbosity",
  5634. )
  5635. parser.add_argument(
  5636. "--split-max-tensors", type=int, default=0,
  5637. help="max tensors in each split",
  5638. )
  5639. parser.add_argument(
  5640. "--split-max-size", type=str, default="0",
  5641. help="max size per split N(M|G)",
  5642. )
  5643. parser.add_argument(
  5644. "--dry-run", action="store_true",
  5645. help="only print out a split plan and exit, without writing any new files",
  5646. )
  5647. parser.add_argument(
  5648. "--no-tensor-first-split", action="store_true",
  5649. help="do not add tensors to the first split (disabled by default)"
  5650. )
  5651. parser.add_argument(
  5652. "--metadata", type=Path,
  5653. help="Specify the path for an authorship metadata override file"
  5654. )
  5655. parser.add_argument(
  5656. "--print-supported-models", action="store_true",
  5657. help="Print the supported models"
  5658. )
  5659. parser.add_argument(
  5660. "--remote", action="store_true",
  5661. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  5662. )
  5663. parser.add_argument(
  5664. "--mmproj", action="store_true",
  5665. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  5666. )
  5667. args = parser.parse_args()
  5668. if not args.print_supported_models and args.model is None:
  5669. parser.error("the following arguments are required: model")
  5670. return args
  5671. def split_str_to_n_bytes(split_str: str) -> int:
  5672. if split_str.endswith("K"):
  5673. n = int(split_str[:-1]) * 1000
  5674. elif split_str.endswith("M"):
  5675. n = int(split_str[:-1]) * 1000 * 1000
  5676. elif split_str.endswith("G"):
  5677. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  5678. elif split_str.isnumeric():
  5679. n = int(split_str)
  5680. else:
  5681. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  5682. if n < 0:
  5683. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  5684. return n
  5685. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  5686. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  5687. # maybe we should fallback to text model's arch in that case, since not many models have both
  5688. text_config = hparams.get("text_config", {})
  5689. vision_config = hparams.get("vision_config", {})
  5690. arch = None
  5691. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  5692. arch = arches[0]
  5693. elif "ssm_cfg" in hparams:
  5694. # For non-hf Mamba and Mamba2 models
  5695. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  5696. # if "architectures" is found in the sub-config, use that instead
  5697. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  5698. arch = text_config["architectures"][0]
  5699. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  5700. arch = vision_config["architectures"][0]
  5701. if arch is None:
  5702. raise ValueError("Failed to detect model architecture")
  5703. return arch
  5704. def main() -> None:
  5705. args = parse_args()
  5706. if args.print_supported_models:
  5707. logger.error("Supported models:")
  5708. ModelBase.print_registered_models()
  5709. sys.exit(0)
  5710. if args.verbose:
  5711. logging.basicConfig(level=logging.DEBUG)
  5712. else:
  5713. logging.basicConfig(level=logging.INFO)
  5714. if args.remote:
  5715. hf_repo_id = args.model
  5716. from huggingface_hub import snapshot_download
  5717. local_dir = snapshot_download(
  5718. repo_id=hf_repo_id,
  5719. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  5720. dir_model = Path(local_dir)
  5721. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  5722. else:
  5723. hf_repo_id = None
  5724. dir_model = Path(args.model)
  5725. if not dir_model.is_dir():
  5726. logger.error(f'Error: {dir_model} is not a directory')
  5727. sys.exit(1)
  5728. ftype_map: dict[str, gguf.LlamaFileType] = {
  5729. "f32": gguf.LlamaFileType.ALL_F32,
  5730. "f16": gguf.LlamaFileType.MOSTLY_F16,
  5731. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  5732. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  5733. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  5734. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  5735. "auto": gguf.LlamaFileType.GUESSED,
  5736. }
  5737. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  5738. if args.use_temp_file and is_split:
  5739. logger.error("Error: Cannot use temp file when splitting")
  5740. sys.exit(1)
  5741. if args.outfile is not None:
  5742. fname_out = args.outfile
  5743. elif hf_repo_id:
  5744. # if remote, use the model ID as the output file name
  5745. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  5746. else:
  5747. fname_out = dir_model
  5748. logger.info(f"Loading model: {dir_model.name}")
  5749. if args.mmproj:
  5750. if "mmproj" not in fname_out.name:
  5751. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  5752. with torch.inference_mode():
  5753. output_type = ftype_map[args.outtype]
  5754. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  5755. hparams = ModelBase.load_hparams(dir_model)
  5756. model_architecture = get_model_architecture(hparams, model_type)
  5757. logger.info(f"Model architecture: {model_architecture}")
  5758. try:
  5759. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  5760. except NotImplementedError:
  5761. logger.error(f"Model {model_architecture} is not supported")
  5762. sys.exit(1)
  5763. model_instance = model_class(dir_model, output_type, fname_out,
  5764. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  5765. eager=args.no_lazy,
  5766. metadata_override=args.metadata, model_name=args.model_name,
  5767. split_max_tensors=args.split_max_tensors,
  5768. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  5769. small_first_shard=args.no_tensor_first_split,
  5770. remote_hf_model_id=hf_repo_id)
  5771. if args.vocab_only:
  5772. logger.info("Exporting model vocab...")
  5773. model_instance.write_vocab()
  5774. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  5775. else:
  5776. logger.info("Exporting model...")
  5777. model_instance.write()
  5778. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  5779. logger.info(f"Model successfully exported to {out_path}")
  5780. if __name__ == '__main__':
  5781. main()