ggml.h 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport) extern
  178. # else
  179. # define GGML_API __declspec(dllimport) extern
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default"))) extern
  183. # endif
  184. #else
  185. # define GGML_API extern
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__) && !defined(__clang__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #if defined(_WIN32) && !defined(_WIN32_WINNT)
  203. # define _WIN32_WINNT 0x0A00
  204. #endif
  205. #include <stdbool.h>
  206. #include <stddef.h>
  207. #include <stdint.h>
  208. #include <stdio.h>
  209. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  210. #define GGML_FILE_VERSION 2
  211. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  212. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  213. #define GGML_MAX_DIMS 4
  214. #define GGML_MAX_PARAMS 2048
  215. #define GGML_MAX_SRC 10
  216. #define GGML_MAX_N_THREADS 512
  217. #define GGML_MAX_OP_PARAMS 64
  218. #ifndef GGML_MAX_NAME
  219. # define GGML_MAX_NAME 64
  220. #endif
  221. #define GGML_DEFAULT_N_THREADS 4
  222. #define GGML_DEFAULT_GRAPH_SIZE 2048
  223. #if UINTPTR_MAX == 0xFFFFFFFF
  224. #define GGML_MEM_ALIGN 4
  225. #elif defined(__EMSCRIPTEN__)
  226. // emscripten uses max_align_t == 8, so we need GGML_MEM_ALIGN == 8 for 64-bit wasm.
  227. // (for 32-bit wasm, the first conditional is true and GGML_MEM_ALIGN stays 4.)
  228. // ref: https://github.com/ggml-org/llama.cpp/pull/18628
  229. #define GGML_MEM_ALIGN 8
  230. #else
  231. #define GGML_MEM_ALIGN 16
  232. #endif
  233. #define GGML_EXIT_SUCCESS 0
  234. #define GGML_EXIT_ABORTED 1
  235. // TODO: convert to enum https://github.com/ggml-org/llama.cpp/pull/16187#discussion_r2388538726
  236. #define GGML_ROPE_TYPE_NORMAL 0
  237. #define GGML_ROPE_TYPE_NEOX 2
  238. #define GGML_ROPE_TYPE_MROPE 8
  239. #define GGML_ROPE_TYPE_VISION 24
  240. #define GGML_ROPE_TYPE_IMROPE 40 // binary: 101000
  241. #define GGML_MROPE_SECTIONS 4
  242. #define GGML_UNUSED(x) (void)(x)
  243. #ifdef __CUDACC__
  244. template<typename... Args>
  245. __host__ __device__ constexpr inline void ggml_unused_vars_impl(Args&&...) noexcept {}
  246. #define GGML_UNUSED_VARS(...) ggml_unused_vars_impl(__VA_ARGS__)
  247. #else
  248. #define GGML_UNUSED_VARS(...) do { (void)sizeof((__VA_ARGS__, 0)); } while(0)
  249. #endif // __CUDACC__
  250. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  251. #ifndef NDEBUG
  252. # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  253. #elif defined(__GNUC__)
  254. # define GGML_UNREACHABLE() __builtin_unreachable()
  255. #elif defined(_MSC_VER)
  256. # define GGML_UNREACHABLE() __assume(0)
  257. #else
  258. # define GGML_UNREACHABLE() ((void) 0)
  259. #endif
  260. #ifdef __cplusplus
  261. # define GGML_NORETURN [[noreturn]]
  262. #elif defined(_MSC_VER)
  263. # define GGML_NORETURN __declspec(noreturn)
  264. #else
  265. # define GGML_NORETURN _Noreturn
  266. #endif
  267. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  268. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  269. // used to copy the number of elements and stride in bytes of tensors into local variables.
  270. // main purpose is to reduce code duplication and improve readability.
  271. //
  272. // example:
  273. //
  274. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  275. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  276. //
  277. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  278. const type prefix##0 = (pointer) ? (pointer)->array[0] : 0; \
  279. GGML_UNUSED(prefix##0);
  280. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  281. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  282. const type prefix##1 = (pointer) ? (pointer)->array[1] : 0; \
  283. GGML_UNUSED(prefix##1);
  284. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  285. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  286. const type prefix##2 = (pointer) ? (pointer)->array[2] : 0; \
  287. GGML_UNUSED(prefix##2);
  288. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  289. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  290. const type prefix##3 = (pointer) ? (pointer)->array[3] : 0; \
  291. GGML_UNUSED(prefix##3);
  292. #define GGML_TENSOR_UNARY_OP_LOCALS \
  293. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  294. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  295. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  296. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  297. #define GGML_TENSOR_BINARY_OP_LOCALS \
  298. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  299. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  300. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  301. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  302. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  303. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  304. #define GGML_TENSOR_TERNARY_OP_LOCALS \
  305. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  306. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  307. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  308. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  309. GGML_TENSOR_LOCALS(int64_t, ne2, src2, ne) \
  310. GGML_TENSOR_LOCALS(size_t, nb2, src2, nb) \
  311. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  312. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  313. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  314. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  315. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  316. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  317. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  318. #ifdef __cplusplus
  319. extern "C" {
  320. #endif
  321. // Function type used in fatal error callbacks
  322. typedef void (*ggml_abort_callback_t)(const char * error_message);
  323. // Set the abort callback (passing null will restore original abort functionality: printing a message to stdout)
  324. // Returns the old callback for chaining
  325. GGML_API ggml_abort_callback_t ggml_set_abort_callback(ggml_abort_callback_t callback);
  326. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  327. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  328. enum ggml_status {
  329. GGML_STATUS_ALLOC_FAILED = -2,
  330. GGML_STATUS_FAILED = -1,
  331. GGML_STATUS_SUCCESS = 0,
  332. GGML_STATUS_ABORTED = 1,
  333. };
  334. // get ggml_status name string
  335. GGML_API const char * ggml_status_to_string(enum ggml_status status);
  336. // ieee 754-2008 half-precision float16
  337. // todo: make this not an integral type
  338. typedef uint16_t ggml_fp16_t;
  339. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  340. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  341. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  342. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  343. // google brain half-precision bfloat16
  344. typedef struct { uint16_t bits; } ggml_bf16_t;
  345. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  346. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  347. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  348. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  349. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  350. struct ggml_object;
  351. struct ggml_context;
  352. struct ggml_cgraph;
  353. // NOTE: always add types at the end of the enum to keep backward compatibility
  354. enum ggml_type {
  355. GGML_TYPE_F32 = 0,
  356. GGML_TYPE_F16 = 1,
  357. GGML_TYPE_Q4_0 = 2,
  358. GGML_TYPE_Q4_1 = 3,
  359. // GGML_TYPE_Q4_2 = 4, support has been removed
  360. // GGML_TYPE_Q4_3 = 5, support has been removed
  361. GGML_TYPE_Q5_0 = 6,
  362. GGML_TYPE_Q5_1 = 7,
  363. GGML_TYPE_Q8_0 = 8,
  364. GGML_TYPE_Q8_1 = 9,
  365. GGML_TYPE_Q2_K = 10,
  366. GGML_TYPE_Q3_K = 11,
  367. GGML_TYPE_Q4_K = 12,
  368. GGML_TYPE_Q5_K = 13,
  369. GGML_TYPE_Q6_K = 14,
  370. GGML_TYPE_Q8_K = 15,
  371. GGML_TYPE_IQ2_XXS = 16,
  372. GGML_TYPE_IQ2_XS = 17,
  373. GGML_TYPE_IQ3_XXS = 18,
  374. GGML_TYPE_IQ1_S = 19,
  375. GGML_TYPE_IQ4_NL = 20,
  376. GGML_TYPE_IQ3_S = 21,
  377. GGML_TYPE_IQ2_S = 22,
  378. GGML_TYPE_IQ4_XS = 23,
  379. GGML_TYPE_I8 = 24,
  380. GGML_TYPE_I16 = 25,
  381. GGML_TYPE_I32 = 26,
  382. GGML_TYPE_I64 = 27,
  383. GGML_TYPE_F64 = 28,
  384. GGML_TYPE_IQ1_M = 29,
  385. GGML_TYPE_BF16 = 30,
  386. // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
  387. // GGML_TYPE_Q4_0_4_8 = 32,
  388. // GGML_TYPE_Q4_0_8_8 = 33,
  389. GGML_TYPE_TQ1_0 = 34,
  390. GGML_TYPE_TQ2_0 = 35,
  391. // GGML_TYPE_IQ4_NL_4_4 = 36,
  392. // GGML_TYPE_IQ4_NL_4_8 = 37,
  393. // GGML_TYPE_IQ4_NL_8_8 = 38,
  394. GGML_TYPE_MXFP4 = 39, // MXFP4 (1 block)
  395. GGML_TYPE_COUNT = 40,
  396. };
  397. // precision
  398. enum ggml_prec {
  399. GGML_PREC_DEFAULT = 0, // stored as ggml_tensor.op_params, 0 by default
  400. GGML_PREC_F32 = 10,
  401. };
  402. // model file types
  403. enum ggml_ftype {
  404. GGML_FTYPE_UNKNOWN = -1,
  405. GGML_FTYPE_ALL_F32 = 0,
  406. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  407. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  408. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  409. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  410. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  411. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  412. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  413. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  414. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  415. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  416. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  417. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  418. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  419. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  420. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  421. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  422. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  423. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  424. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  425. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  426. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  427. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  428. GGML_FTYPE_MOSTLY_MXFP4 = 25, // except 1d tensors
  429. };
  430. // available tensor operations:
  431. enum ggml_op {
  432. GGML_OP_NONE = 0,
  433. GGML_OP_DUP,
  434. GGML_OP_ADD,
  435. GGML_OP_ADD_ID,
  436. GGML_OP_ADD1,
  437. GGML_OP_ACC,
  438. GGML_OP_SUB,
  439. GGML_OP_MUL,
  440. GGML_OP_DIV,
  441. GGML_OP_SQR,
  442. GGML_OP_SQRT,
  443. GGML_OP_LOG,
  444. GGML_OP_SIN,
  445. GGML_OP_COS,
  446. GGML_OP_SUM,
  447. GGML_OP_SUM_ROWS,
  448. GGML_OP_CUMSUM,
  449. GGML_OP_MEAN,
  450. GGML_OP_ARGMAX,
  451. GGML_OP_COUNT_EQUAL,
  452. GGML_OP_REPEAT,
  453. GGML_OP_REPEAT_BACK,
  454. GGML_OP_CONCAT,
  455. GGML_OP_SILU_BACK,
  456. GGML_OP_NORM, // normalize
  457. GGML_OP_RMS_NORM,
  458. GGML_OP_RMS_NORM_BACK,
  459. GGML_OP_GROUP_NORM,
  460. GGML_OP_L2_NORM,
  461. GGML_OP_MUL_MAT,
  462. GGML_OP_MUL_MAT_ID,
  463. GGML_OP_OUT_PROD,
  464. GGML_OP_SCALE,
  465. GGML_OP_SET,
  466. GGML_OP_CPY,
  467. GGML_OP_CONT,
  468. GGML_OP_RESHAPE,
  469. GGML_OP_VIEW,
  470. GGML_OP_PERMUTE,
  471. GGML_OP_TRANSPOSE,
  472. GGML_OP_GET_ROWS,
  473. GGML_OP_GET_ROWS_BACK,
  474. GGML_OP_SET_ROWS,
  475. GGML_OP_DIAG,
  476. GGML_OP_DIAG_MASK_INF,
  477. GGML_OP_DIAG_MASK_ZERO,
  478. GGML_OP_SOFT_MAX,
  479. GGML_OP_SOFT_MAX_BACK,
  480. GGML_OP_ROPE,
  481. GGML_OP_ROPE_BACK,
  482. GGML_OP_CLAMP,
  483. GGML_OP_CONV_TRANSPOSE_1D,
  484. GGML_OP_IM2COL,
  485. GGML_OP_IM2COL_BACK,
  486. GGML_OP_IM2COL_3D,
  487. GGML_OP_CONV_2D,
  488. GGML_OP_CONV_3D,
  489. GGML_OP_CONV_2D_DW,
  490. GGML_OP_CONV_TRANSPOSE_2D,
  491. GGML_OP_POOL_1D,
  492. GGML_OP_POOL_2D,
  493. GGML_OP_POOL_2D_BACK,
  494. GGML_OP_UPSCALE,
  495. GGML_OP_PAD,
  496. GGML_OP_PAD_REFLECT_1D,
  497. GGML_OP_ROLL,
  498. GGML_OP_ARANGE,
  499. GGML_OP_TIMESTEP_EMBEDDING,
  500. GGML_OP_ARGSORT,
  501. GGML_OP_TOP_K,
  502. GGML_OP_LEAKY_RELU,
  503. GGML_OP_TRI,
  504. GGML_OP_FILL,
  505. GGML_OP_FLASH_ATTN_EXT,
  506. GGML_OP_FLASH_ATTN_BACK,
  507. GGML_OP_SSM_CONV,
  508. GGML_OP_SSM_SCAN,
  509. GGML_OP_WIN_PART,
  510. GGML_OP_WIN_UNPART,
  511. GGML_OP_GET_REL_POS,
  512. GGML_OP_ADD_REL_POS,
  513. GGML_OP_RWKV_WKV6,
  514. GGML_OP_GATED_LINEAR_ATTN,
  515. GGML_OP_RWKV_WKV7,
  516. GGML_OP_SOLVE_TRI,
  517. GGML_OP_UNARY,
  518. GGML_OP_MAP_CUSTOM1,
  519. GGML_OP_MAP_CUSTOM2,
  520. GGML_OP_MAP_CUSTOM3,
  521. GGML_OP_CUSTOM,
  522. GGML_OP_CROSS_ENTROPY_LOSS,
  523. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  524. GGML_OP_OPT_STEP_ADAMW,
  525. GGML_OP_OPT_STEP_SGD,
  526. GGML_OP_GLU,
  527. GGML_OP_COUNT,
  528. };
  529. enum ggml_unary_op {
  530. GGML_UNARY_OP_ABS,
  531. GGML_UNARY_OP_SGN,
  532. GGML_UNARY_OP_NEG,
  533. GGML_UNARY_OP_STEP,
  534. GGML_UNARY_OP_TANH,
  535. GGML_UNARY_OP_ELU,
  536. GGML_UNARY_OP_RELU,
  537. GGML_UNARY_OP_SIGMOID,
  538. GGML_UNARY_OP_GELU,
  539. GGML_UNARY_OP_GELU_QUICK,
  540. GGML_UNARY_OP_SILU,
  541. GGML_UNARY_OP_HARDSWISH,
  542. GGML_UNARY_OP_HARDSIGMOID,
  543. GGML_UNARY_OP_EXP,
  544. GGML_UNARY_OP_EXPM1,
  545. GGML_UNARY_OP_SOFTPLUS,
  546. GGML_UNARY_OP_GELU_ERF,
  547. GGML_UNARY_OP_XIELU,
  548. GGML_UNARY_OP_FLOOR,
  549. GGML_UNARY_OP_CEIL,
  550. GGML_UNARY_OP_ROUND,
  551. GGML_UNARY_OP_TRUNC,
  552. GGML_UNARY_OP_COUNT,
  553. };
  554. enum ggml_glu_op {
  555. GGML_GLU_OP_REGLU,
  556. GGML_GLU_OP_GEGLU,
  557. GGML_GLU_OP_SWIGLU,
  558. GGML_GLU_OP_SWIGLU_OAI,
  559. GGML_GLU_OP_GEGLU_ERF,
  560. GGML_GLU_OP_GEGLU_QUICK,
  561. GGML_GLU_OP_COUNT,
  562. };
  563. enum ggml_object_type {
  564. GGML_OBJECT_TYPE_TENSOR,
  565. GGML_OBJECT_TYPE_GRAPH,
  566. GGML_OBJECT_TYPE_WORK_BUFFER
  567. };
  568. enum ggml_log_level {
  569. GGML_LOG_LEVEL_NONE = 0,
  570. GGML_LOG_LEVEL_DEBUG = 1,
  571. GGML_LOG_LEVEL_INFO = 2,
  572. GGML_LOG_LEVEL_WARN = 3,
  573. GGML_LOG_LEVEL_ERROR = 4,
  574. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  575. };
  576. // this tensor...
  577. enum ggml_tensor_flag {
  578. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  579. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  580. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  581. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  582. };
  583. enum ggml_tri_type {
  584. GGML_TRI_TYPE_UPPER_DIAG = 0,
  585. GGML_TRI_TYPE_UPPER = 1,
  586. GGML_TRI_TYPE_LOWER_DIAG = 2,
  587. GGML_TRI_TYPE_LOWER = 3
  588. };
  589. struct ggml_init_params {
  590. // memory pool
  591. size_t mem_size; // bytes
  592. void * mem_buffer; // if NULL, memory will be allocated internally
  593. bool no_alloc; // don't allocate memory for the tensor data
  594. };
  595. // n-dimensional tensor
  596. struct ggml_tensor {
  597. enum ggml_type type;
  598. struct ggml_backend_buffer * buffer;
  599. int64_t ne[GGML_MAX_DIMS]; // number of elements
  600. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  601. // nb[0] = ggml_type_size(type)
  602. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  603. // nb[i] = nb[i-1] * ne[i-1]
  604. // compute data
  605. enum ggml_op op;
  606. // op params - allocated as int32_t for alignment
  607. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  608. int32_t flags;
  609. struct ggml_tensor * src[GGML_MAX_SRC];
  610. // source tensor and offset for views
  611. struct ggml_tensor * view_src;
  612. size_t view_offs;
  613. void * data;
  614. char name[GGML_MAX_NAME];
  615. void * extra; // extra things e.g. for ggml-cuda.cu
  616. char padding[8];
  617. };
  618. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  619. // Abort callback
  620. // If not NULL, called before ggml computation
  621. // If it returns true, the computation is aborted
  622. typedef bool (*ggml_abort_callback)(void * data);
  623. //
  624. // GUID
  625. //
  626. // GUID types
  627. typedef uint8_t ggml_guid[16];
  628. typedef ggml_guid * ggml_guid_t;
  629. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  630. // misc
  631. GGML_API const char * ggml_version(void);
  632. GGML_API const char * ggml_commit(void);
  633. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  634. GGML_API int64_t ggml_time_ms(void);
  635. GGML_API int64_t ggml_time_us(void);
  636. GGML_API int64_t ggml_cycles(void);
  637. GGML_API int64_t ggml_cycles_per_ms(void);
  638. // accepts a UTF-8 path, even on Windows
  639. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  640. GGML_API void ggml_print_object (const struct ggml_object * obj);
  641. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  642. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  643. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  644. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  645. GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  646. GGML_API int64_t ggml_blck_size(enum ggml_type type);
  647. GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  648. GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  649. GGML_DEPRECATED(
  650. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  651. "use ggml_row_size() instead");
  652. GGML_API const char * ggml_type_name(enum ggml_type type);
  653. GGML_API const char * ggml_op_name (enum ggml_op op);
  654. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  655. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  656. GGML_API const char * ggml_glu_op_name(enum ggml_glu_op op);
  657. GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  658. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  659. GGML_API bool ggml_is_quantized(enum ggml_type type);
  660. // TODO: temporary until model loading of ggml examples is refactored
  661. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  662. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  663. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  664. GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
  665. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  666. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  667. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  668. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  669. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  670. // returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
  671. GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  672. GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  673. GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  674. GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  675. // returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
  676. GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
  677. // true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
  678. GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
  679. // true if the elements in dimension 0 are contiguous, or there is just 1 block of elements
  680. GGML_API bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor);
  681. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  682. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  683. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  684. // use this to compute the memory overhead of a tensor
  685. GGML_API size_t ggml_tensor_overhead(void);
  686. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  687. // main
  688. GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
  689. GGML_API void ggml_reset(struct ggml_context * ctx);
  690. GGML_API void ggml_free (struct ggml_context * ctx);
  691. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  692. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  693. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  694. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  695. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  696. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  697. GGML_API struct ggml_tensor * ggml_new_tensor(
  698. struct ggml_context * ctx,
  699. enum ggml_type type,
  700. int n_dims,
  701. const int64_t *ne);
  702. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  703. struct ggml_context * ctx,
  704. enum ggml_type type,
  705. int64_t ne0);
  706. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  707. struct ggml_context * ctx,
  708. enum ggml_type type,
  709. int64_t ne0,
  710. int64_t ne1);
  711. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  712. struct ggml_context * ctx,
  713. enum ggml_type type,
  714. int64_t ne0,
  715. int64_t ne1,
  716. int64_t ne2);
  717. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  718. struct ggml_context * ctx,
  719. enum ggml_type type,
  720. int64_t ne0,
  721. int64_t ne1,
  722. int64_t ne2,
  723. int64_t ne3);
  724. GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
  725. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  726. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  727. // Context tensor enumeration and lookup
  728. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  729. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  730. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  731. // Converts a flat index into coordinates
  732. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  733. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  734. GGML_API enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor);
  735. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  736. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  737. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  738. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  739. GGML_ATTRIBUTE_FORMAT(2, 3)
  740. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  741. // Tensor flags
  742. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  743. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  744. GGML_API void ggml_set_param(struct ggml_tensor * tensor);
  745. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  746. //
  747. // operations on tensors with backpropagation
  748. //
  749. GGML_API struct ggml_tensor * ggml_dup(
  750. struct ggml_context * ctx,
  751. struct ggml_tensor * a);
  752. // in-place, returns view(a)
  753. GGML_API struct ggml_tensor * ggml_dup_inplace(
  754. struct ggml_context * ctx,
  755. struct ggml_tensor * a);
  756. GGML_API struct ggml_tensor * ggml_add(
  757. struct ggml_context * ctx,
  758. struct ggml_tensor * a,
  759. struct ggml_tensor * b);
  760. GGML_API struct ggml_tensor * ggml_add_inplace(
  761. struct ggml_context * ctx,
  762. struct ggml_tensor * a,
  763. struct ggml_tensor * b);
  764. GGML_API struct ggml_tensor * ggml_add_cast(
  765. struct ggml_context * ctx,
  766. struct ggml_tensor * a,
  767. struct ggml_tensor * b,
  768. enum ggml_type type);
  769. // dst[i0, i1, i2] = a[i0, i1, i2] + b[i0, ids[i1, i2]]
  770. GGML_API struct ggml_tensor * ggml_add_id(
  771. struct ggml_context * ctx,
  772. struct ggml_tensor * a,
  773. struct ggml_tensor * b,
  774. struct ggml_tensor * ids);
  775. GGML_API struct ggml_tensor * ggml_add1(
  776. struct ggml_context * ctx,
  777. struct ggml_tensor * a,
  778. struct ggml_tensor * b);
  779. GGML_API struct ggml_tensor * ggml_add1_inplace(
  780. struct ggml_context * ctx,
  781. struct ggml_tensor * a,
  782. struct ggml_tensor * b);
  783. // dst = a
  784. // view(dst, nb1, nb2, nb3, offset) += b
  785. // return dst
  786. GGML_API struct ggml_tensor * ggml_acc(
  787. struct ggml_context * ctx,
  788. struct ggml_tensor * a,
  789. struct ggml_tensor * b,
  790. size_t nb1,
  791. size_t nb2,
  792. size_t nb3,
  793. size_t offset);
  794. GGML_API struct ggml_tensor * ggml_acc_inplace(
  795. struct ggml_context * ctx,
  796. struct ggml_tensor * a,
  797. struct ggml_tensor * b,
  798. size_t nb1,
  799. size_t nb2,
  800. size_t nb3,
  801. size_t offset);
  802. GGML_API struct ggml_tensor * ggml_sub(
  803. struct ggml_context * ctx,
  804. struct ggml_tensor * a,
  805. struct ggml_tensor * b);
  806. GGML_API struct ggml_tensor * ggml_sub_inplace(
  807. struct ggml_context * ctx,
  808. struct ggml_tensor * a,
  809. struct ggml_tensor * b);
  810. GGML_API struct ggml_tensor * ggml_mul(
  811. struct ggml_context * ctx,
  812. struct ggml_tensor * a,
  813. struct ggml_tensor * b);
  814. GGML_API struct ggml_tensor * ggml_mul_inplace(
  815. struct ggml_context * ctx,
  816. struct ggml_tensor * a,
  817. struct ggml_tensor * b);
  818. GGML_API struct ggml_tensor * ggml_div(
  819. struct ggml_context * ctx,
  820. struct ggml_tensor * a,
  821. struct ggml_tensor * b);
  822. GGML_API struct ggml_tensor * ggml_div_inplace(
  823. struct ggml_context * ctx,
  824. struct ggml_tensor * a,
  825. struct ggml_tensor * b);
  826. GGML_API struct ggml_tensor * ggml_sqr(
  827. struct ggml_context * ctx,
  828. struct ggml_tensor * a);
  829. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  830. struct ggml_context * ctx,
  831. struct ggml_tensor * a);
  832. GGML_API struct ggml_tensor * ggml_sqrt(
  833. struct ggml_context * ctx,
  834. struct ggml_tensor * a);
  835. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  836. struct ggml_context * ctx,
  837. struct ggml_tensor * a);
  838. GGML_API struct ggml_tensor * ggml_log(
  839. struct ggml_context * ctx,
  840. struct ggml_tensor * a);
  841. GGML_API struct ggml_tensor * ggml_log_inplace(
  842. struct ggml_context * ctx,
  843. struct ggml_tensor * a);
  844. GGML_API struct ggml_tensor * ggml_expm1(
  845. struct ggml_context * ctx,
  846. struct ggml_tensor * a);
  847. GGML_API struct ggml_tensor * ggml_expm1_inplace(
  848. struct ggml_context * ctx,
  849. struct ggml_tensor * a);
  850. GGML_API struct ggml_tensor * ggml_softplus(
  851. struct ggml_context * ctx,
  852. struct ggml_tensor * a);
  853. GGML_API struct ggml_tensor * ggml_softplus_inplace(
  854. struct ggml_context * ctx,
  855. struct ggml_tensor * a);
  856. GGML_API struct ggml_tensor * ggml_sin(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a);
  859. GGML_API struct ggml_tensor * ggml_sin_inplace(
  860. struct ggml_context * ctx,
  861. struct ggml_tensor * a);
  862. GGML_API struct ggml_tensor * ggml_cos(
  863. struct ggml_context * ctx,
  864. struct ggml_tensor * a);
  865. GGML_API struct ggml_tensor * ggml_cos_inplace(
  866. struct ggml_context * ctx,
  867. struct ggml_tensor * a);
  868. // return scalar
  869. GGML_API struct ggml_tensor * ggml_sum(
  870. struct ggml_context * ctx,
  871. struct ggml_tensor * a);
  872. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  873. GGML_API struct ggml_tensor * ggml_sum_rows(
  874. struct ggml_context * ctx,
  875. struct ggml_tensor * a);
  876. GGML_API struct ggml_tensor * ggml_cumsum(
  877. struct ggml_context * ctx,
  878. struct ggml_tensor * a);
  879. // mean along rows
  880. GGML_API struct ggml_tensor * ggml_mean(
  881. struct ggml_context * ctx,
  882. struct ggml_tensor * a);
  883. // argmax along rows
  884. GGML_API struct ggml_tensor * ggml_argmax(
  885. struct ggml_context * ctx,
  886. struct ggml_tensor * a);
  887. // count number of equal elements in a and b
  888. GGML_API struct ggml_tensor * ggml_count_equal(
  889. struct ggml_context * ctx,
  890. struct ggml_tensor * a,
  891. struct ggml_tensor * b);
  892. // if a is the same shape as b, and a is not parameter, return a
  893. // otherwise, return a new tensor: repeat(a) to fit in b
  894. GGML_API struct ggml_tensor * ggml_repeat(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a,
  897. struct ggml_tensor * b);
  898. // repeat a to the specified shape
  899. GGML_API struct ggml_tensor * ggml_repeat_4d(
  900. struct ggml_context * ctx,
  901. struct ggml_tensor * a,
  902. int64_t ne0,
  903. int64_t ne1,
  904. int64_t ne2,
  905. int64_t ne3);
  906. // sums repetitions in a into shape of b
  907. GGML_API struct ggml_tensor * ggml_repeat_back(
  908. struct ggml_context * ctx,
  909. struct ggml_tensor * a,
  910. struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
  911. // concat a and b along dim
  912. // used in stable-diffusion
  913. GGML_API struct ggml_tensor * ggml_concat(
  914. struct ggml_context * ctx,
  915. struct ggml_tensor * a,
  916. struct ggml_tensor * b,
  917. int dim);
  918. GGML_API struct ggml_tensor * ggml_abs(
  919. struct ggml_context * ctx,
  920. struct ggml_tensor * a);
  921. GGML_API struct ggml_tensor * ggml_abs_inplace(
  922. struct ggml_context * ctx,
  923. struct ggml_tensor * a);
  924. GGML_API struct ggml_tensor * ggml_sgn(
  925. struct ggml_context * ctx,
  926. struct ggml_tensor * a);
  927. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  928. struct ggml_context * ctx,
  929. struct ggml_tensor * a);
  930. GGML_API struct ggml_tensor * ggml_neg(
  931. struct ggml_context * ctx,
  932. struct ggml_tensor * a);
  933. GGML_API struct ggml_tensor * ggml_neg_inplace(
  934. struct ggml_context * ctx,
  935. struct ggml_tensor * a);
  936. GGML_API struct ggml_tensor * ggml_step(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a);
  939. GGML_API struct ggml_tensor * ggml_step_inplace(
  940. struct ggml_context * ctx,
  941. struct ggml_tensor * a);
  942. GGML_API struct ggml_tensor * ggml_tanh(
  943. struct ggml_context * ctx,
  944. struct ggml_tensor * a);
  945. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  946. struct ggml_context * ctx,
  947. struct ggml_tensor * a);
  948. GGML_API struct ggml_tensor * ggml_elu(
  949. struct ggml_context * ctx,
  950. struct ggml_tensor * a);
  951. GGML_API struct ggml_tensor * ggml_elu_inplace(
  952. struct ggml_context * ctx,
  953. struct ggml_tensor * a);
  954. GGML_API struct ggml_tensor * ggml_relu(
  955. struct ggml_context * ctx,
  956. struct ggml_tensor * a);
  957. GGML_API struct ggml_tensor * ggml_leaky_relu(
  958. struct ggml_context * ctx,
  959. struct ggml_tensor * a, float negative_slope, bool inplace);
  960. GGML_API struct ggml_tensor * ggml_relu_inplace(
  961. struct ggml_context * ctx,
  962. struct ggml_tensor * a);
  963. GGML_API struct ggml_tensor * ggml_sigmoid(
  964. struct ggml_context * ctx,
  965. struct ggml_tensor * a);
  966. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  967. struct ggml_context * ctx,
  968. struct ggml_tensor * a);
  969. GGML_API struct ggml_tensor * ggml_gelu(
  970. struct ggml_context * ctx,
  971. struct ggml_tensor * a);
  972. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  973. struct ggml_context * ctx,
  974. struct ggml_tensor * a);
  975. // GELU using erf (error function) when possible
  976. // some backends may fallback to approximation based on Abramowitz and Stegun formula
  977. GGML_API struct ggml_tensor * ggml_gelu_erf(
  978. struct ggml_context * ctx,
  979. struct ggml_tensor * a);
  980. GGML_API struct ggml_tensor * ggml_gelu_erf_inplace(
  981. struct ggml_context * ctx,
  982. struct ggml_tensor * a);
  983. GGML_API struct ggml_tensor * ggml_gelu_quick(
  984. struct ggml_context * ctx,
  985. struct ggml_tensor * a);
  986. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  987. struct ggml_context * ctx,
  988. struct ggml_tensor * a);
  989. GGML_API struct ggml_tensor * ggml_silu(
  990. struct ggml_context * ctx,
  991. struct ggml_tensor * a);
  992. GGML_API struct ggml_tensor * ggml_silu_inplace(
  993. struct ggml_context * ctx,
  994. struct ggml_tensor * a);
  995. // a - x
  996. // b - dy
  997. GGML_API struct ggml_tensor * ggml_silu_back(
  998. struct ggml_context * ctx,
  999. struct ggml_tensor * a,
  1000. struct ggml_tensor * b);
  1001. // hardswish(x) = x * relu6(x + 3) / 6
  1002. GGML_API struct ggml_tensor * ggml_hardswish(
  1003. struct ggml_context * ctx,
  1004. struct ggml_tensor * a);
  1005. // hardsigmoid(x) = relu6(x + 3) / 6
  1006. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  1007. struct ggml_context * ctx,
  1008. struct ggml_tensor * a);
  1009. GGML_API struct ggml_tensor * ggml_exp(
  1010. struct ggml_context * ctx,
  1011. struct ggml_tensor * a);
  1012. GGML_API struct ggml_tensor * ggml_exp_inplace(
  1013. struct ggml_context * ctx,
  1014. struct ggml_tensor * a);
  1015. GGML_API struct ggml_tensor * ggml_floor(
  1016. struct ggml_context * ctx,
  1017. struct ggml_tensor * a);
  1018. GGML_API struct ggml_tensor * ggml_floor_inplace(
  1019. struct ggml_context * ctx,
  1020. struct ggml_tensor * a);
  1021. GGML_API struct ggml_tensor * ggml_ceil(
  1022. struct ggml_context * ctx,
  1023. struct ggml_tensor * a);
  1024. GGML_API struct ggml_tensor * ggml_ceil_inplace(
  1025. struct ggml_context * ctx,
  1026. struct ggml_tensor * a);
  1027. GGML_API struct ggml_tensor * ggml_round(
  1028. struct ggml_context * ctx,
  1029. struct ggml_tensor * a);
  1030. GGML_API struct ggml_tensor * ggml_round_inplace(
  1031. struct ggml_context * ctx,
  1032. struct ggml_tensor * a);
  1033. /**
  1034. * Truncates the fractional part of each element in the tensor (towards zero).
  1035. * For example: trunc(3.7) = 3.0, trunc(-2.9) = -2.0
  1036. * Similar to std::trunc in C/C++.
  1037. */
  1038. GGML_API struct ggml_tensor * ggml_trunc(
  1039. struct ggml_context * ctx,
  1040. struct ggml_tensor * a);
  1041. GGML_API struct ggml_tensor * ggml_trunc_inplace(
  1042. struct ggml_context * ctx,
  1043. struct ggml_tensor * a);
  1044. // xIELU activation function
  1045. // x = x * (c_a(alpha_n) + c_b(alpha_p, beta) * sigmoid(beta * x)) + eps * (x > 0)
  1046. // where c_a = softplus and c_b(a, b) = softplus(a) + b are constraining functions
  1047. // that constrain the positive and negative source alpha values respectively
  1048. GGML_API struct ggml_tensor * ggml_xielu(
  1049. struct ggml_context * ctx,
  1050. struct ggml_tensor * a,
  1051. float alpha_n,
  1052. float alpha_p,
  1053. float beta,
  1054. float eps);
  1055. // gated linear unit ops
  1056. // A: n columns, r rows,
  1057. // result is n / 2 columns, r rows,
  1058. // expects gate in second half of row, unless swapped is true
  1059. GGML_API struct ggml_tensor * ggml_glu(
  1060. struct ggml_context * ctx,
  1061. struct ggml_tensor * a,
  1062. enum ggml_glu_op op,
  1063. bool swapped);
  1064. GGML_API struct ggml_tensor * ggml_reglu(
  1065. struct ggml_context * ctx,
  1066. struct ggml_tensor * a);
  1067. GGML_API struct ggml_tensor * ggml_reglu_swapped(
  1068. struct ggml_context * ctx,
  1069. struct ggml_tensor * a);
  1070. GGML_API struct ggml_tensor * ggml_geglu(
  1071. struct ggml_context * ctx,
  1072. struct ggml_tensor * a);
  1073. GGML_API struct ggml_tensor * ggml_geglu_swapped(
  1074. struct ggml_context * ctx,
  1075. struct ggml_tensor * a);
  1076. GGML_API struct ggml_tensor * ggml_swiglu(
  1077. struct ggml_context * ctx,
  1078. struct ggml_tensor * a);
  1079. GGML_API struct ggml_tensor * ggml_swiglu_swapped(
  1080. struct ggml_context * ctx,
  1081. struct ggml_tensor * a);
  1082. GGML_API struct ggml_tensor * ggml_geglu_erf(
  1083. struct ggml_context * ctx,
  1084. struct ggml_tensor * a);
  1085. GGML_API struct ggml_tensor * ggml_geglu_erf_swapped(
  1086. struct ggml_context * ctx,
  1087. struct ggml_tensor * a);
  1088. GGML_API struct ggml_tensor * ggml_geglu_quick(
  1089. struct ggml_context * ctx,
  1090. struct ggml_tensor * a);
  1091. GGML_API struct ggml_tensor * ggml_geglu_quick_swapped(
  1092. struct ggml_context * ctx,
  1093. struct ggml_tensor * a);
  1094. // A: n columns, r rows,
  1095. // B: n columns, r rows,
  1096. GGML_API struct ggml_tensor * ggml_glu_split(
  1097. struct ggml_context * ctx,
  1098. struct ggml_tensor * a,
  1099. struct ggml_tensor * b,
  1100. enum ggml_glu_op op);
  1101. GGML_API struct ggml_tensor * ggml_reglu_split(
  1102. struct ggml_context * ctx,
  1103. struct ggml_tensor * a,
  1104. struct ggml_tensor * b);
  1105. GGML_API struct ggml_tensor * ggml_geglu_split(
  1106. struct ggml_context * ctx,
  1107. struct ggml_tensor * a,
  1108. struct ggml_tensor * b);
  1109. GGML_API struct ggml_tensor * ggml_swiglu_split(
  1110. struct ggml_context * ctx,
  1111. struct ggml_tensor * a,
  1112. struct ggml_tensor * b);
  1113. GGML_API struct ggml_tensor * ggml_geglu_erf_split(
  1114. struct ggml_context * ctx,
  1115. struct ggml_tensor * a,
  1116. struct ggml_tensor * b);
  1117. GGML_API struct ggml_tensor * ggml_geglu_quick_split(
  1118. struct ggml_context * ctx,
  1119. struct ggml_tensor * a,
  1120. struct ggml_tensor * b);
  1121. GGML_API struct ggml_tensor * ggml_swiglu_oai(
  1122. struct ggml_context * ctx,
  1123. struct ggml_tensor * a,
  1124. struct ggml_tensor * b,
  1125. float alpha,
  1126. float limit);
  1127. // normalize along rows
  1128. GGML_API struct ggml_tensor * ggml_norm(
  1129. struct ggml_context * ctx,
  1130. struct ggml_tensor * a,
  1131. float eps);
  1132. GGML_API struct ggml_tensor * ggml_norm_inplace(
  1133. struct ggml_context * ctx,
  1134. struct ggml_tensor * a,
  1135. float eps);
  1136. GGML_API struct ggml_tensor * ggml_rms_norm(
  1137. struct ggml_context * ctx,
  1138. struct ggml_tensor * a,
  1139. float eps);
  1140. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  1141. struct ggml_context * ctx,
  1142. struct ggml_tensor * a,
  1143. float eps);
  1144. // group normalize along ne0*ne1*n_groups
  1145. // used in stable-diffusion
  1146. GGML_API struct ggml_tensor * ggml_group_norm(
  1147. struct ggml_context * ctx,
  1148. struct ggml_tensor * a,
  1149. int n_groups,
  1150. float eps);
  1151. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  1152. struct ggml_context * ctx,
  1153. struct ggml_tensor * a,
  1154. int n_groups,
  1155. float eps);
  1156. // l2 normalize along rows
  1157. // used in rwkv v7
  1158. GGML_API struct ggml_tensor * ggml_l2_norm(
  1159. struct ggml_context * ctx,
  1160. struct ggml_tensor * a,
  1161. float eps);
  1162. GGML_API struct ggml_tensor * ggml_l2_norm_inplace(
  1163. struct ggml_context * ctx,
  1164. struct ggml_tensor * a,
  1165. float eps);
  1166. // a - x
  1167. // b - dy
  1168. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  1169. struct ggml_context * ctx,
  1170. struct ggml_tensor * a,
  1171. struct ggml_tensor * b,
  1172. float eps);
  1173. // A: k columns, n rows => [ne03, ne02, n, k]
  1174. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  1175. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  1176. GGML_API struct ggml_tensor * ggml_mul_mat(
  1177. struct ggml_context * ctx,
  1178. struct ggml_tensor * a,
  1179. struct ggml_tensor * b);
  1180. // change the precision of a matrix multiplication
  1181. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  1182. GGML_API void ggml_mul_mat_set_prec(
  1183. struct ggml_tensor * a,
  1184. enum ggml_prec prec);
  1185. // indirect matrix multiplication
  1186. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  1187. struct ggml_context * ctx,
  1188. struct ggml_tensor * as,
  1189. struct ggml_tensor * b,
  1190. struct ggml_tensor * ids);
  1191. // A: m columns, n rows,
  1192. // B: p columns, n rows,
  1193. // result is m columns, p rows
  1194. GGML_API struct ggml_tensor * ggml_out_prod(
  1195. struct ggml_context * ctx,
  1196. struct ggml_tensor * a,
  1197. struct ggml_tensor * b);
  1198. //
  1199. // operations on tensors without backpropagation
  1200. //
  1201. GGML_API struct ggml_tensor * ggml_scale(
  1202. struct ggml_context * ctx,
  1203. struct ggml_tensor * a,
  1204. float s);
  1205. // in-place, returns view(a)
  1206. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1207. struct ggml_context * ctx,
  1208. struct ggml_tensor * a,
  1209. float s);
  1210. // x = s * a + b
  1211. GGML_API struct ggml_tensor * ggml_scale_bias(
  1212. struct ggml_context * ctx,
  1213. struct ggml_tensor * a,
  1214. float s,
  1215. float b);
  1216. GGML_API struct ggml_tensor * ggml_scale_bias_inplace(
  1217. struct ggml_context * ctx,
  1218. struct ggml_tensor * a,
  1219. float s,
  1220. float b);
  1221. // b -> view(a,offset,nb1,nb2,3), return modified a
  1222. GGML_API struct ggml_tensor * ggml_set(
  1223. struct ggml_context * ctx,
  1224. struct ggml_tensor * a,
  1225. struct ggml_tensor * b,
  1226. size_t nb1,
  1227. size_t nb2,
  1228. size_t nb3,
  1229. size_t offset); // in bytes
  1230. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1231. GGML_API struct ggml_tensor * ggml_set_inplace(
  1232. struct ggml_context * ctx,
  1233. struct ggml_tensor * a,
  1234. struct ggml_tensor * b,
  1235. size_t nb1,
  1236. size_t nb2,
  1237. size_t nb3,
  1238. size_t offset); // in bytes
  1239. GGML_API struct ggml_tensor * ggml_set_1d(
  1240. struct ggml_context * ctx,
  1241. struct ggml_tensor * a,
  1242. struct ggml_tensor * b,
  1243. size_t offset); // in bytes
  1244. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1245. struct ggml_context * ctx,
  1246. struct ggml_tensor * a,
  1247. struct ggml_tensor * b,
  1248. size_t offset); // in bytes
  1249. // b -> view(a,offset,nb1,nb2,3), return modified a
  1250. GGML_API struct ggml_tensor * ggml_set_2d(
  1251. struct ggml_context * ctx,
  1252. struct ggml_tensor * a,
  1253. struct ggml_tensor * b,
  1254. size_t nb1,
  1255. size_t offset); // in bytes
  1256. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1257. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1258. struct ggml_context * ctx,
  1259. struct ggml_tensor * a,
  1260. struct ggml_tensor * b,
  1261. size_t nb1,
  1262. size_t offset); // in bytes
  1263. // a -> b, return view(b)
  1264. GGML_API struct ggml_tensor * ggml_cpy(
  1265. struct ggml_context * ctx,
  1266. struct ggml_tensor * a,
  1267. struct ggml_tensor * b);
  1268. // note: casting from f32 to i32 will discard the fractional part
  1269. GGML_API struct ggml_tensor * ggml_cast(
  1270. struct ggml_context * ctx,
  1271. struct ggml_tensor * a,
  1272. enum ggml_type type);
  1273. // make contiguous
  1274. GGML_API struct ggml_tensor * ggml_cont(
  1275. struct ggml_context * ctx,
  1276. struct ggml_tensor * a);
  1277. // make contiguous, with new shape
  1278. GGML_API struct ggml_tensor * ggml_cont_1d(
  1279. struct ggml_context * ctx,
  1280. struct ggml_tensor * a,
  1281. int64_t ne0);
  1282. GGML_API struct ggml_tensor * ggml_cont_2d(
  1283. struct ggml_context * ctx,
  1284. struct ggml_tensor * a,
  1285. int64_t ne0,
  1286. int64_t ne1);
  1287. GGML_API struct ggml_tensor * ggml_cont_3d(
  1288. struct ggml_context * ctx,
  1289. struct ggml_tensor * a,
  1290. int64_t ne0,
  1291. int64_t ne1,
  1292. int64_t ne2);
  1293. GGML_API struct ggml_tensor * ggml_cont_4d(
  1294. struct ggml_context * ctx,
  1295. struct ggml_tensor * a,
  1296. int64_t ne0,
  1297. int64_t ne1,
  1298. int64_t ne2,
  1299. int64_t ne3);
  1300. // return view(a), b specifies the new shape
  1301. // TODO: when we start computing gradient, make a copy instead of view
  1302. GGML_API struct ggml_tensor * ggml_reshape(
  1303. struct ggml_context * ctx,
  1304. struct ggml_tensor * a,
  1305. struct ggml_tensor * b);
  1306. // return view(a)
  1307. // TODO: when we start computing gradient, make a copy instead of view
  1308. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1309. struct ggml_context * ctx,
  1310. struct ggml_tensor * a,
  1311. int64_t ne0);
  1312. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1313. struct ggml_context * ctx,
  1314. struct ggml_tensor * a,
  1315. int64_t ne0,
  1316. int64_t ne1);
  1317. // return view(a)
  1318. // TODO: when we start computing gradient, make a copy instead of view
  1319. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1320. struct ggml_context * ctx,
  1321. struct ggml_tensor * a,
  1322. int64_t ne0,
  1323. int64_t ne1,
  1324. int64_t ne2);
  1325. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1326. struct ggml_context * ctx,
  1327. struct ggml_tensor * a,
  1328. int64_t ne0,
  1329. int64_t ne1,
  1330. int64_t ne2,
  1331. int64_t ne3);
  1332. // offset in bytes
  1333. GGML_API struct ggml_tensor * ggml_view_1d(
  1334. struct ggml_context * ctx,
  1335. struct ggml_tensor * a,
  1336. int64_t ne0,
  1337. size_t offset);
  1338. GGML_API struct ggml_tensor * ggml_view_2d(
  1339. struct ggml_context * ctx,
  1340. struct ggml_tensor * a,
  1341. int64_t ne0,
  1342. int64_t ne1,
  1343. size_t nb1, // row stride in bytes
  1344. size_t offset);
  1345. GGML_API struct ggml_tensor * ggml_view_3d(
  1346. struct ggml_context * ctx,
  1347. struct ggml_tensor * a,
  1348. int64_t ne0,
  1349. int64_t ne1,
  1350. int64_t ne2,
  1351. size_t nb1, // row stride in bytes
  1352. size_t nb2, // slice stride in bytes
  1353. size_t offset);
  1354. GGML_API struct ggml_tensor * ggml_view_4d(
  1355. struct ggml_context * ctx,
  1356. struct ggml_tensor * a,
  1357. int64_t ne0,
  1358. int64_t ne1,
  1359. int64_t ne2,
  1360. int64_t ne3,
  1361. size_t nb1, // row stride in bytes
  1362. size_t nb2, // slice stride in bytes
  1363. size_t nb3,
  1364. size_t offset);
  1365. GGML_API struct ggml_tensor * ggml_permute(
  1366. struct ggml_context * ctx,
  1367. struct ggml_tensor * a,
  1368. int axis0,
  1369. int axis1,
  1370. int axis2,
  1371. int axis3);
  1372. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1373. GGML_API struct ggml_tensor * ggml_transpose(
  1374. struct ggml_context * ctx,
  1375. struct ggml_tensor * a);
  1376. // supports 4D a:
  1377. // a [n_embd, ne1, ne2, ne3]
  1378. // b I32 [n_rows, ne2, ne3, 1]
  1379. //
  1380. // return [n_embd, n_rows, ne2, ne3]
  1381. GGML_API struct ggml_tensor * ggml_get_rows(
  1382. struct ggml_context * ctx,
  1383. struct ggml_tensor * a, // data
  1384. struct ggml_tensor * b); // row indices
  1385. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1386. struct ggml_context * ctx,
  1387. struct ggml_tensor * a, // gradients of ggml_get_rows result
  1388. struct ggml_tensor * b, // row indices
  1389. struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
  1390. // a TD [n_embd, ne1, ne2, ne3]
  1391. // b TS [n_embd, n_rows, ne02, ne03] | ne02 == ne2, ne03 == ne3
  1392. // c I64 [n_rows, ne11, ne12, 1] | c[i] in [0, ne1)
  1393. //
  1394. // undefined behavior if destination rows overlap
  1395. //
  1396. // broadcast:
  1397. // ne2 % ne11 == 0
  1398. // ne3 % ne12 == 0
  1399. //
  1400. // return view(a)
  1401. GGML_API struct ggml_tensor * ggml_set_rows(
  1402. struct ggml_context * ctx,
  1403. struct ggml_tensor * a, // destination
  1404. struct ggml_tensor * b, // source
  1405. struct ggml_tensor * c); // row indices
  1406. GGML_API struct ggml_tensor * ggml_diag(
  1407. struct ggml_context * ctx,
  1408. struct ggml_tensor * a);
  1409. // set elements above the diagonal to -INF
  1410. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1411. struct ggml_context * ctx,
  1412. struct ggml_tensor * a,
  1413. int n_past);
  1414. // in-place, returns view(a)
  1415. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1416. struct ggml_context * ctx,
  1417. struct ggml_tensor * a,
  1418. int n_past);
  1419. // set elements above the diagonal to 0
  1420. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1421. struct ggml_context * ctx,
  1422. struct ggml_tensor * a,
  1423. int n_past);
  1424. // in-place, returns view(a)
  1425. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1426. struct ggml_context * ctx,
  1427. struct ggml_tensor * a,
  1428. int n_past);
  1429. GGML_API struct ggml_tensor * ggml_soft_max(
  1430. struct ggml_context * ctx,
  1431. struct ggml_tensor * a);
  1432. // in-place, returns view(a)
  1433. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1434. struct ggml_context * ctx,
  1435. struct ggml_tensor * a);
  1436. // a [ne0, ne01, ne02, ne03]
  1437. // mask [ne0, ne11, ne12, ne13] | ne11 >= ne01, F16 or F32, optional
  1438. //
  1439. // broadcast:
  1440. // ne02 % ne12 == 0
  1441. // ne03 % ne13 == 0
  1442. //
  1443. // fused soft_max(a*scale + mask*(ALiBi slope))
  1444. // max_bias = 0.0f for no ALiBi
  1445. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1446. struct ggml_context * ctx,
  1447. struct ggml_tensor * a,
  1448. struct ggml_tensor * mask,
  1449. float scale,
  1450. float max_bias);
  1451. GGML_API struct ggml_tensor * ggml_soft_max_ext_inplace(
  1452. struct ggml_context * ctx,
  1453. struct ggml_tensor * a,
  1454. struct ggml_tensor * mask,
  1455. float scale,
  1456. float max_bias);
  1457. GGML_API void ggml_soft_max_add_sinks(
  1458. struct ggml_tensor * a,
  1459. struct ggml_tensor * sinks);
  1460. GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
  1461. struct ggml_context * ctx,
  1462. struct ggml_tensor * a,
  1463. struct ggml_tensor * b,
  1464. float scale,
  1465. float max_bias);
  1466. // in-place, returns view(a)
  1467. GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
  1468. struct ggml_context * ctx,
  1469. struct ggml_tensor * a,
  1470. struct ggml_tensor * b,
  1471. float scale,
  1472. float max_bias);
  1473. // rotary position embedding
  1474. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1475. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1476. //
  1477. // b is an int32 vector with size a->ne[2], it contains the positions
  1478. GGML_API struct ggml_tensor * ggml_rope(
  1479. struct ggml_context * ctx,
  1480. struct ggml_tensor * a,
  1481. struct ggml_tensor * b,
  1482. int n_dims,
  1483. int mode);
  1484. // in-place, returns view(a)
  1485. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1486. struct ggml_context * ctx,
  1487. struct ggml_tensor * a,
  1488. struct ggml_tensor * b,
  1489. int n_dims,
  1490. int mode);
  1491. // custom RoPE
  1492. // c is freq factors (e.g. phi3-128k), (optional)
  1493. GGML_API struct ggml_tensor * ggml_rope_ext(
  1494. struct ggml_context * ctx,
  1495. struct ggml_tensor * a,
  1496. struct ggml_tensor * b,
  1497. struct ggml_tensor * c,
  1498. int n_dims,
  1499. int mode,
  1500. int n_ctx_orig,
  1501. float freq_base,
  1502. float freq_scale,
  1503. float ext_factor,
  1504. float attn_factor,
  1505. float beta_fast,
  1506. float beta_slow);
  1507. GGML_API struct ggml_tensor * ggml_rope_multi(
  1508. struct ggml_context * ctx,
  1509. struct ggml_tensor * a,
  1510. struct ggml_tensor * b,
  1511. struct ggml_tensor * c,
  1512. int n_dims,
  1513. int sections[GGML_MROPE_SECTIONS],
  1514. int mode,
  1515. int n_ctx_orig,
  1516. float freq_base,
  1517. float freq_scale,
  1518. float ext_factor,
  1519. float attn_factor,
  1520. float beta_fast,
  1521. float beta_slow);
  1522. // in-place, returns view(a)
  1523. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1524. struct ggml_context * ctx,
  1525. struct ggml_tensor * a,
  1526. struct ggml_tensor * b,
  1527. struct ggml_tensor * c,
  1528. int n_dims,
  1529. int mode,
  1530. int n_ctx_orig,
  1531. float freq_base,
  1532. float freq_scale,
  1533. float ext_factor,
  1534. float attn_factor,
  1535. float beta_fast,
  1536. float beta_slow);
  1537. GGML_API struct ggml_tensor * ggml_rope_multi_inplace(
  1538. struct ggml_context * ctx,
  1539. struct ggml_tensor * a,
  1540. struct ggml_tensor * b,
  1541. struct ggml_tensor * c,
  1542. int n_dims,
  1543. int sections[GGML_MROPE_SECTIONS],
  1544. int mode,
  1545. int n_ctx_orig,
  1546. float freq_base,
  1547. float freq_scale,
  1548. float ext_factor,
  1549. float attn_factor,
  1550. float beta_fast,
  1551. float beta_slow);
  1552. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1553. struct ggml_context * ctx,
  1554. struct ggml_tensor * a,
  1555. struct ggml_tensor * b,
  1556. int n_dims,
  1557. int mode,
  1558. int n_ctx_orig,
  1559. float freq_base,
  1560. float freq_scale,
  1561. float ext_factor,
  1562. float attn_factor,
  1563. float beta_fast,
  1564. float beta_slow),
  1565. "use ggml_rope_ext instead");
  1566. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1567. struct ggml_context * ctx,
  1568. struct ggml_tensor * a,
  1569. struct ggml_tensor * b,
  1570. int n_dims,
  1571. int mode,
  1572. int n_ctx_orig,
  1573. float freq_base,
  1574. float freq_scale,
  1575. float ext_factor,
  1576. float attn_factor,
  1577. float beta_fast,
  1578. float beta_slow),
  1579. "use ggml_rope_ext_inplace instead");
  1580. // compute correction dims for YaRN RoPE scaling
  1581. GGML_API void ggml_rope_yarn_corr_dims(
  1582. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1583. // rotary position embedding backward, i.e compute dx from dy
  1584. // a - dy
  1585. GGML_API struct ggml_tensor * ggml_rope_ext_back(
  1586. struct ggml_context * ctx,
  1587. struct ggml_tensor * a, // gradients of ggml_rope result
  1588. struct ggml_tensor * b, // positions
  1589. struct ggml_tensor * c, // freq factors
  1590. int n_dims,
  1591. int mode,
  1592. int n_ctx_orig,
  1593. float freq_base,
  1594. float freq_scale,
  1595. float ext_factor,
  1596. float attn_factor,
  1597. float beta_fast,
  1598. float beta_slow);
  1599. GGML_API struct ggml_tensor * ggml_rope_multi_back(
  1600. struct ggml_context * ctx,
  1601. struct ggml_tensor * a,
  1602. struct ggml_tensor * b,
  1603. struct ggml_tensor * c,
  1604. int n_dims,
  1605. int sections[4],
  1606. int mode,
  1607. int n_ctx_orig,
  1608. float freq_base,
  1609. float freq_scale,
  1610. float ext_factor,
  1611. float attn_factor,
  1612. float beta_fast,
  1613. float beta_slow);
  1614. // clamp
  1615. // in-place, returns view(a)
  1616. GGML_API struct ggml_tensor * ggml_clamp(
  1617. struct ggml_context * ctx,
  1618. struct ggml_tensor * a,
  1619. float min,
  1620. float max);
  1621. // im2col
  1622. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1623. GGML_API struct ggml_tensor * ggml_im2col(
  1624. struct ggml_context * ctx,
  1625. struct ggml_tensor * a, // convolution kernel
  1626. struct ggml_tensor * b, // data
  1627. int s0, // stride dimension 0
  1628. int s1, // stride dimension 1
  1629. int p0, // padding dimension 0
  1630. int p1, // padding dimension 1
  1631. int d0, // dilation dimension 0
  1632. int d1, // dilation dimension 1
  1633. bool is_2D,
  1634. enum ggml_type dst_type);
  1635. GGML_API struct ggml_tensor * ggml_im2col_back(
  1636. struct ggml_context * ctx,
  1637. struct ggml_tensor * a, // convolution kernel
  1638. struct ggml_tensor * b, // gradient of im2col output
  1639. int64_t * ne, // shape of im2col input
  1640. int s0, // stride dimension 0
  1641. int s1, // stride dimension 1
  1642. int p0, // padding dimension 0
  1643. int p1, // padding dimension 1
  1644. int d0, // dilation dimension 0
  1645. int d1, // dilation dimension 1
  1646. bool is_2D);
  1647. GGML_API struct ggml_tensor * ggml_conv_1d(
  1648. struct ggml_context * ctx,
  1649. struct ggml_tensor * a, // convolution kernel
  1650. struct ggml_tensor * b, // data
  1651. int s0, // stride
  1652. int p0, // padding
  1653. int d0); // dilation
  1654. // conv_1d with padding = half
  1655. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1656. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1657. struct ggml_context * ctx,
  1658. struct ggml_tensor * a, // convolution kernel
  1659. struct ggml_tensor * b, // data
  1660. int s, // stride
  1661. int d); // dilation
  1662. // depthwise
  1663. // TODO: this is very likely wrong for some cases! - needs more testing
  1664. GGML_API struct ggml_tensor * ggml_conv_1d_dw(
  1665. struct ggml_context * ctx,
  1666. struct ggml_tensor * a, // convolution kernel
  1667. struct ggml_tensor * b, // data
  1668. int s0, // stride
  1669. int p0, // padding
  1670. int d0); // dilation
  1671. GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph(
  1672. struct ggml_context * ctx,
  1673. struct ggml_tensor * a, // convolution kernel
  1674. struct ggml_tensor * b, // data
  1675. int s0, // stride
  1676. int d0); // dilation
  1677. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1678. struct ggml_context * ctx,
  1679. struct ggml_tensor * a, // convolution kernel
  1680. struct ggml_tensor * b, // data
  1681. int s0, // stride
  1682. int p0, // padding
  1683. int d0); // dilation
  1684. GGML_API struct ggml_tensor * ggml_conv_2d(
  1685. struct ggml_context * ctx,
  1686. struct ggml_tensor * a, // convolution kernel
  1687. struct ggml_tensor * b, // data
  1688. int s0, // stride dimension 0
  1689. int s1, // stride dimension 1
  1690. int p0, // padding dimension 0
  1691. int p1, // padding dimension 1
  1692. int d0, // dilation dimension 0
  1693. int d1); // dilation dimension 1
  1694. GGML_API struct ggml_tensor * ggml_im2col_3d(
  1695. struct ggml_context * ctx,
  1696. struct ggml_tensor * a,
  1697. struct ggml_tensor * b,
  1698. int64_t IC,
  1699. int s0, // stride width
  1700. int s1, // stride height
  1701. int s2, // stride depth
  1702. int p0, // padding width
  1703. int p1, // padding height
  1704. int p2, // padding depth
  1705. int d0, // dilation width
  1706. int d1, // dilation height
  1707. int d2, // dilation depth
  1708. enum ggml_type dst_type);
  1709. // a: [OC*IC, KD, KH, KW]
  1710. // b: [N*IC, ID, IH, IW]
  1711. // result: [N*OC, OD, OH, OW]
  1712. GGML_API struct ggml_tensor * ggml_conv_3d(
  1713. struct ggml_context * ctx,
  1714. struct ggml_tensor * a,
  1715. struct ggml_tensor * b,
  1716. int64_t IC,
  1717. int s0, // stride width
  1718. int s1, // stride height
  1719. int s2, // stride depth
  1720. int p0, // padding width
  1721. int p1, // padding height
  1722. int p2, // padding depth
  1723. int d0, // dilation width
  1724. int d1, // dilation height
  1725. int d2 // dilation depth
  1726. );
  1727. // kernel size is a->ne[0] x a->ne[1]
  1728. // stride is equal to kernel size
  1729. // padding is zero
  1730. // example:
  1731. // a: 16 16 3 768
  1732. // b: 1024 1024 3 1
  1733. // res: 64 64 768 1
  1734. // used in sam
  1735. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1736. struct ggml_context * ctx,
  1737. struct ggml_tensor * a,
  1738. struct ggml_tensor * b);
  1739. // kernel size is a->ne[0] x a->ne[1]
  1740. // stride is 1
  1741. // padding is half
  1742. // example:
  1743. // a: 3 3 256 256
  1744. // b: 64 64 256 1
  1745. // res: 64 64 256 1
  1746. // used in sam
  1747. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1748. struct ggml_context * ctx,
  1749. struct ggml_tensor * a,
  1750. struct ggml_tensor * b);
  1751. // depthwise (via im2col and mul_mat)
  1752. GGML_API struct ggml_tensor * ggml_conv_2d_dw(
  1753. struct ggml_context * ctx,
  1754. struct ggml_tensor * a, // convolution kernel
  1755. struct ggml_tensor * b, // data
  1756. int s0, // stride dimension 0
  1757. int s1, // stride dimension 1
  1758. int p0, // padding dimension 0
  1759. int p1, // padding dimension 1
  1760. int d0, // dilation dimension 0
  1761. int d1); // dilation dimension 1
  1762. // Depthwise 2D convolution
  1763. // may be faster than ggml_conv_2d_dw, but not available in all backends
  1764. // a: KW KH 1 C convolution kernel
  1765. // b: W H C N input data
  1766. // res: W_out H_out C N
  1767. GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
  1768. struct ggml_context * ctx,
  1769. struct ggml_tensor * a,
  1770. struct ggml_tensor * b,
  1771. int stride0,
  1772. int stride1,
  1773. int pad0,
  1774. int pad1,
  1775. int dilation0,
  1776. int dilation1);
  1777. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1778. struct ggml_context * ctx,
  1779. struct ggml_tensor * a,
  1780. struct ggml_tensor * b,
  1781. int stride);
  1782. GGML_API struct ggml_tensor * ggml_conv_2d_direct(
  1783. struct ggml_context * ctx,
  1784. struct ggml_tensor * a, // convolution kernel [KW, KH, IC, OC]
  1785. struct ggml_tensor * b, // input data [W, H, C, N]
  1786. int s0, // stride dimension 0
  1787. int s1, // stride dimension 1
  1788. int p0, // padding dimension 0
  1789. int p1, // padding dimension 1
  1790. int d0, // dilation dimension 0
  1791. int d1); // dilation dimension 1
  1792. GGML_API struct ggml_tensor * ggml_conv_3d_direct(
  1793. struct ggml_context * ctx,
  1794. struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
  1795. struct ggml_tensor * b, // input [W, H, D, C * N]
  1796. int s0, // stride
  1797. int s1,
  1798. int s2,
  1799. int p0, // padding
  1800. int p1,
  1801. int p2,
  1802. int d0, // dilation
  1803. int d1,
  1804. int d2,
  1805. int n_channels,
  1806. int n_batch,
  1807. int n_channels_out);
  1808. enum ggml_op_pool {
  1809. GGML_OP_POOL_MAX,
  1810. GGML_OP_POOL_AVG,
  1811. GGML_OP_POOL_COUNT,
  1812. };
  1813. GGML_API struct ggml_tensor * ggml_pool_1d(
  1814. struct ggml_context * ctx,
  1815. struct ggml_tensor * a,
  1816. enum ggml_op_pool op,
  1817. int k0, // kernel size
  1818. int s0, // stride
  1819. int p0); // padding
  1820. // the result will have 2*p0 padding for the first dimension
  1821. // and 2*p1 padding for the second dimension
  1822. GGML_API struct ggml_tensor * ggml_pool_2d(
  1823. struct ggml_context * ctx,
  1824. struct ggml_tensor * a,
  1825. enum ggml_op_pool op,
  1826. int k0,
  1827. int k1,
  1828. int s0,
  1829. int s1,
  1830. float p0,
  1831. float p1);
  1832. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1833. struct ggml_context * ctx,
  1834. struct ggml_tensor * a,
  1835. struct ggml_tensor * af, // "a"/input used in forward pass
  1836. enum ggml_op_pool op,
  1837. int k0,
  1838. int k1,
  1839. int s0,
  1840. int s1,
  1841. float p0,
  1842. float p1);
  1843. enum ggml_scale_mode {
  1844. GGML_SCALE_MODE_NEAREST = 0,
  1845. GGML_SCALE_MODE_BILINEAR = 1,
  1846. GGML_SCALE_MODE_BICUBIC = 2,
  1847. GGML_SCALE_MODE_COUNT
  1848. };
  1849. enum ggml_scale_flag {
  1850. GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8),
  1851. GGML_SCALE_FLAG_ANTIALIAS = (1 << 9),
  1852. };
  1853. // interpolate
  1854. // multiplies ne0 and ne1 by scale factor
  1855. GGML_API struct ggml_tensor * ggml_upscale(
  1856. struct ggml_context * ctx,
  1857. struct ggml_tensor * a,
  1858. int scale_factor,
  1859. enum ggml_scale_mode mode);
  1860. // interpolate
  1861. // interpolate scale to specified dimensions
  1862. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_upscale_ext(
  1863. struct ggml_context * ctx,
  1864. struct ggml_tensor * a,
  1865. int ne0,
  1866. int ne1,
  1867. int ne2,
  1868. int ne3,
  1869. enum ggml_scale_mode mode),
  1870. "use ggml_interpolate instead");
  1871. // Up- or downsamples the input to the specified size.
  1872. // 2D scale modes (eg. bilinear) are applied to the first two dimensions.
  1873. GGML_API struct ggml_tensor * ggml_interpolate(
  1874. struct ggml_context * ctx,
  1875. struct ggml_tensor * a,
  1876. int64_t ne0,
  1877. int64_t ne1,
  1878. int64_t ne2,
  1879. int64_t ne3,
  1880. uint32_t mode); // ggml_scale_mode [ | ggml_scale_flag...]
  1881. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1882. GGML_API struct ggml_tensor * ggml_pad(
  1883. struct ggml_context * ctx,
  1884. struct ggml_tensor * a,
  1885. int p0,
  1886. int p1,
  1887. int p2,
  1888. int p3);
  1889. // pad each dimension with values on the other side of the torus (looping around)
  1890. GGML_API struct ggml_tensor * ggml_pad_circular(
  1891. struct ggml_context * ctx,
  1892. struct ggml_tensor * a,
  1893. int p0,
  1894. int p1,
  1895. int p2,
  1896. int p3);
  1897. GGML_API struct ggml_tensor * ggml_pad_ext(
  1898. struct ggml_context * ctx,
  1899. struct ggml_tensor * a,
  1900. int lp0,
  1901. int rp0,
  1902. int lp1,
  1903. int rp1,
  1904. int lp2,
  1905. int rp2,
  1906. int lp3,
  1907. int rp3
  1908. );
  1909. // pad each dimension with values on the other side of the torus (looping around)
  1910. GGML_API struct ggml_tensor * ggml_pad_ext_circular(
  1911. struct ggml_context * ctx,
  1912. struct ggml_tensor * a,
  1913. int lp0,
  1914. int rp0,
  1915. int lp1,
  1916. int rp1,
  1917. int lp2,
  1918. int rp2,
  1919. int lp3,
  1920. int rp3);
  1921. // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
  1922. GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
  1923. struct ggml_context * ctx,
  1924. struct ggml_tensor * a,
  1925. int p0,
  1926. int p1);
  1927. // Move tensor elements by an offset given for each dimension. Elements that
  1928. // are shifted beyond the last position are wrapped around to the beginning.
  1929. GGML_API struct ggml_tensor * ggml_roll(
  1930. struct ggml_context * ctx,
  1931. struct ggml_tensor * a,
  1932. int shift0,
  1933. int shift1,
  1934. int shift2,
  1935. int shift3);
  1936. // Convert matrix into a triangular one (upper, strict upper, lower or strict lower) by writing
  1937. // zeroes everywhere outside the masked area
  1938. GGML_API struct ggml_tensor * ggml_tri(
  1939. struct ggml_context * ctx,
  1940. struct ggml_tensor * a,
  1941. enum ggml_tri_type type);
  1942. // Fill tensor a with constant c
  1943. GGML_API struct ggml_tensor * ggml_fill(
  1944. struct ggml_context * ctx,
  1945. struct ggml_tensor * a,
  1946. float c);
  1947. GGML_API struct ggml_tensor * ggml_fill_inplace(
  1948. struct ggml_context * ctx,
  1949. struct ggml_tensor * a,
  1950. float c);
  1951. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1952. // timesteps: [N,]
  1953. // return: [N, dim]
  1954. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1955. struct ggml_context * ctx,
  1956. struct ggml_tensor * timesteps,
  1957. int dim,
  1958. int max_period);
  1959. // sort rows
  1960. enum ggml_sort_order {
  1961. GGML_SORT_ORDER_ASC,
  1962. GGML_SORT_ORDER_DESC,
  1963. };
  1964. GGML_API struct ggml_tensor * ggml_argsort(
  1965. struct ggml_context * ctx,
  1966. struct ggml_tensor * a,
  1967. enum ggml_sort_order order);
  1968. // similar to ggml_top_k but implemented as `argsort` + `view`
  1969. GGML_API struct ggml_tensor * ggml_argsort_top_k(
  1970. struct ggml_context * ctx,
  1971. struct ggml_tensor * a,
  1972. int k);
  1973. // top k elements per row
  1974. // note: the resulting top k indices are in no particular order
  1975. GGML_API struct ggml_tensor * ggml_top_k(
  1976. struct ggml_context * ctx,
  1977. struct ggml_tensor * a,
  1978. int k);
  1979. GGML_API struct ggml_tensor * ggml_arange(
  1980. struct ggml_context * ctx,
  1981. float start,
  1982. float stop,
  1983. float step);
  1984. // q: [n_embd_k, n_batch, n_head, ne3 ]
  1985. // k: [n_embd_k, n_kv, n_head_kv, ne3 ]
  1986. // v: [n_embd_v, n_kv, n_head_kv, ne3 ] !! not transposed !!
  1987. // mask: [n_kv, n_batch, ne32, ne33]
  1988. // res: [n_embd_v, n_head, n_batch, ne3 ] !! permuted !!
  1989. //
  1990. // broadcast:
  1991. // n_head % n_head_kv == 0
  1992. // n_head % ne32 == 0
  1993. // ne3 % ne33 == 0
  1994. //
  1995. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1996. struct ggml_context * ctx,
  1997. struct ggml_tensor * q,
  1998. struct ggml_tensor * k,
  1999. struct ggml_tensor * v,
  2000. struct ggml_tensor * mask,
  2001. float scale,
  2002. float max_bias,
  2003. float logit_softcap);
  2004. GGML_API void ggml_flash_attn_ext_set_prec(
  2005. struct ggml_tensor * a,
  2006. enum ggml_prec prec);
  2007. GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
  2008. const struct ggml_tensor * a);
  2009. GGML_API void ggml_flash_attn_ext_add_sinks(
  2010. struct ggml_tensor * a,
  2011. struct ggml_tensor * sinks);
  2012. // TODO: needs to be adapted to ggml_flash_attn_ext
  2013. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  2014. struct ggml_context * ctx,
  2015. struct ggml_tensor * q,
  2016. struct ggml_tensor * k,
  2017. struct ggml_tensor * v,
  2018. struct ggml_tensor * d,
  2019. bool masked);
  2020. GGML_API struct ggml_tensor * ggml_ssm_conv(
  2021. struct ggml_context * ctx,
  2022. struct ggml_tensor * sx,
  2023. struct ggml_tensor * c);
  2024. GGML_API struct ggml_tensor * ggml_ssm_scan(
  2025. struct ggml_context * ctx,
  2026. struct ggml_tensor * s,
  2027. struct ggml_tensor * x,
  2028. struct ggml_tensor * dt,
  2029. struct ggml_tensor * A,
  2030. struct ggml_tensor * B,
  2031. struct ggml_tensor * C,
  2032. struct ggml_tensor * ids);
  2033. // partition into non-overlapping windows with padding if needed
  2034. // example:
  2035. // a: 768 64 64 1
  2036. // w: 14
  2037. // res: 768 14 14 25
  2038. // used in sam
  2039. GGML_API struct ggml_tensor * ggml_win_part(
  2040. struct ggml_context * ctx,
  2041. struct ggml_tensor * a,
  2042. int w);
  2043. // reverse of ggml_win_part
  2044. // used in sam
  2045. GGML_API struct ggml_tensor * ggml_win_unpart(
  2046. struct ggml_context * ctx,
  2047. struct ggml_tensor * a,
  2048. int w0,
  2049. int h0,
  2050. int w);
  2051. GGML_API struct ggml_tensor * ggml_unary(
  2052. struct ggml_context * ctx,
  2053. struct ggml_tensor * a,
  2054. enum ggml_unary_op op);
  2055. GGML_API struct ggml_tensor * ggml_unary_inplace(
  2056. struct ggml_context * ctx,
  2057. struct ggml_tensor * a,
  2058. enum ggml_unary_op op);
  2059. // used in sam
  2060. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  2061. struct ggml_context * ctx,
  2062. struct ggml_tensor * a,
  2063. int qh,
  2064. int kh);
  2065. // used in sam
  2066. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  2067. struct ggml_context * ctx,
  2068. struct ggml_tensor * a,
  2069. struct ggml_tensor * pw,
  2070. struct ggml_tensor * ph);
  2071. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  2072. struct ggml_context * ctx,
  2073. struct ggml_tensor * a,
  2074. struct ggml_tensor * pw,
  2075. struct ggml_tensor * ph);
  2076. GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
  2077. struct ggml_context * ctx,
  2078. struct ggml_tensor * k,
  2079. struct ggml_tensor * v,
  2080. struct ggml_tensor * r,
  2081. struct ggml_tensor * tf,
  2082. struct ggml_tensor * td,
  2083. struct ggml_tensor * state);
  2084. GGML_API struct ggml_tensor * ggml_gated_linear_attn(
  2085. struct ggml_context * ctx,
  2086. struct ggml_tensor * k,
  2087. struct ggml_tensor * v,
  2088. struct ggml_tensor * q,
  2089. struct ggml_tensor * g,
  2090. struct ggml_tensor * state,
  2091. float scale);
  2092. GGML_API struct ggml_tensor * ggml_rwkv_wkv7(
  2093. struct ggml_context * ctx,
  2094. struct ggml_tensor * r,
  2095. struct ggml_tensor * w,
  2096. struct ggml_tensor * k,
  2097. struct ggml_tensor * v,
  2098. struct ggml_tensor * a,
  2099. struct ggml_tensor * b,
  2100. struct ggml_tensor * state);
  2101. /* Solves a specific equation of the form Ax=B, where A is a triangular matrix
  2102. * without zeroes on the diagonal (i.e. invertible).
  2103. * B can have any number of columns, but must have the same number of rows as A
  2104. * If A is [n, n] and B is [n, m], then the result will be [n, m] as well
  2105. * Has O(n^3) complexity (unlike most matrix ops out there), so use on cases
  2106. * where n > 100 sparingly, pre-chunk if necessary.
  2107. *
  2108. * If left = false, solves xA=B instead
  2109. * If lower = false, assumes upper triangular instead
  2110. * If uni = true, assumes diagonal of A to be all ones (will override actual values)
  2111. *
  2112. * TODO: currently only lower, right, non-unitriangular variant is implemented
  2113. */
  2114. GGML_API struct ggml_tensor * ggml_solve_tri(
  2115. struct ggml_context * ctx,
  2116. struct ggml_tensor * a,
  2117. struct ggml_tensor * b,
  2118. bool left,
  2119. bool lower,
  2120. bool uni);
  2121. // custom operators
  2122. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  2123. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  2124. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  2125. #define GGML_N_TASKS_MAX (-1)
  2126. // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
  2127. GGML_API struct ggml_tensor * ggml_map_custom1(
  2128. struct ggml_context * ctx,
  2129. struct ggml_tensor * a,
  2130. ggml_custom1_op_t fun,
  2131. int n_tasks,
  2132. void * userdata);
  2133. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  2134. struct ggml_context * ctx,
  2135. struct ggml_tensor * a,
  2136. ggml_custom1_op_t fun,
  2137. int n_tasks,
  2138. void * userdata);
  2139. GGML_API struct ggml_tensor * ggml_map_custom2(
  2140. struct ggml_context * ctx,
  2141. struct ggml_tensor * a,
  2142. struct ggml_tensor * b,
  2143. ggml_custom2_op_t fun,
  2144. int n_tasks,
  2145. void * userdata);
  2146. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  2147. struct ggml_context * ctx,
  2148. struct ggml_tensor * a,
  2149. struct ggml_tensor * b,
  2150. ggml_custom2_op_t fun,
  2151. int n_tasks,
  2152. void * userdata);
  2153. GGML_API struct ggml_tensor * ggml_map_custom3(
  2154. struct ggml_context * ctx,
  2155. struct ggml_tensor * a,
  2156. struct ggml_tensor * b,
  2157. struct ggml_tensor * c,
  2158. ggml_custom3_op_t fun,
  2159. int n_tasks,
  2160. void * userdata);
  2161. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  2162. struct ggml_context * ctx,
  2163. struct ggml_tensor * a,
  2164. struct ggml_tensor * b,
  2165. struct ggml_tensor * c,
  2166. ggml_custom3_op_t fun,
  2167. int n_tasks,
  2168. void * userdata);
  2169. typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
  2170. GGML_API struct ggml_tensor * ggml_custom_4d(
  2171. struct ggml_context * ctx,
  2172. enum ggml_type type,
  2173. int64_t ne0,
  2174. int64_t ne1,
  2175. int64_t ne2,
  2176. int64_t ne3,
  2177. struct ggml_tensor ** args,
  2178. int n_args,
  2179. ggml_custom_op_t fun,
  2180. int n_tasks,
  2181. void * userdata);
  2182. GGML_API struct ggml_tensor * ggml_custom_inplace(
  2183. struct ggml_context * ctx,
  2184. struct ggml_tensor * a,
  2185. struct ggml_tensor ** args,
  2186. int n_args,
  2187. ggml_custom_op_t fun,
  2188. int n_tasks,
  2189. void * userdata);
  2190. // loss function
  2191. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  2192. struct ggml_context * ctx,
  2193. struct ggml_tensor * a, // logits
  2194. struct ggml_tensor * b); // labels
  2195. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  2196. struct ggml_context * ctx,
  2197. struct ggml_tensor * a, // logits
  2198. struct ggml_tensor * b, // labels
  2199. struct ggml_tensor * c); // gradients of cross_entropy_loss result
  2200. // AdamW optimizer step
  2201. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  2202. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  2203. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  2204. struct ggml_context * ctx,
  2205. struct ggml_tensor * a,
  2206. struct ggml_tensor * grad,
  2207. struct ggml_tensor * m,
  2208. struct ggml_tensor * v,
  2209. struct ggml_tensor * adamw_params); // parameters such as the learning rate
  2210. // stochastic gradient descent step (with weight decay)
  2211. GGML_API struct ggml_tensor * ggml_opt_step_sgd(
  2212. struct ggml_context * ctx,
  2213. struct ggml_tensor * a,
  2214. struct ggml_tensor * grad,
  2215. struct ggml_tensor * sgd_params); // alpha, weight decay
  2216. //
  2217. // automatic differentiation
  2218. //
  2219. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  2220. GGML_API void ggml_build_backward_expand(
  2221. struct ggml_context * ctx, // context for gradient computation
  2222. struct ggml_cgraph * cgraph,
  2223. struct ggml_tensor ** grad_accs);
  2224. // graph allocation in a context
  2225. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  2226. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  2227. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
  2228. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  2229. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  2230. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  2231. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  2232. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  2233. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  2234. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  2235. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  2236. GGML_API size_t ggml_graph_overhead(void);
  2237. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  2238. GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
  2239. GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  2240. GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  2241. // print info and performance information for the graph
  2242. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  2243. // dump the graph into a file using the dot format
  2244. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  2245. // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
  2246. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  2247. // Set callback for all future logging events.
  2248. // If this is not called, or NULL is supplied, everything is output on stderr.
  2249. GGML_API void ggml_log_get(ggml_log_callback * log_callback, void ** user_data);
  2250. GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
  2251. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  2252. //
  2253. // quantization
  2254. //
  2255. // - ggml_quantize_init can be called multiple times with the same type
  2256. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  2257. // automatically called by ggml_quantize_chunk for convenience
  2258. //
  2259. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  2260. // call this at the end of the program to avoid memory leaks
  2261. //
  2262. // note: these are thread-safe
  2263. //
  2264. GGML_API void ggml_quantize_init(enum ggml_type type);
  2265. GGML_API void ggml_quantize_free(void);
  2266. // some quantization type cannot be used without an importance matrix
  2267. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  2268. // calls ggml_quantize_init internally (i.e. can allocate memory)
  2269. GGML_API size_t ggml_quantize_chunk(
  2270. enum ggml_type type,
  2271. const float * src,
  2272. void * dst,
  2273. int64_t start,
  2274. int64_t nrows,
  2275. int64_t n_per_row,
  2276. const float * imatrix);
  2277. #ifdef __cplusplus
  2278. // restrict not standard in C++
  2279. # if defined(__GNUC__)
  2280. # define GGML_RESTRICT __restrict__
  2281. # elif defined(__clang__)
  2282. # define GGML_RESTRICT __restrict
  2283. # elif defined(_MSC_VER)
  2284. # define GGML_RESTRICT __restrict
  2285. # else
  2286. # define GGML_RESTRICT
  2287. # endif
  2288. #else
  2289. # if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
  2290. # define GGML_RESTRICT __restrict
  2291. # else
  2292. # define GGML_RESTRICT restrict
  2293. # endif
  2294. #endif
  2295. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2296. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2297. struct ggml_type_traits {
  2298. const char * type_name;
  2299. int64_t blck_size;
  2300. int64_t blck_size_interleave; // interleave elements in blocks
  2301. size_t type_size;
  2302. bool is_quantized;
  2303. ggml_to_float_t to_float;
  2304. ggml_from_float_t from_float_ref;
  2305. };
  2306. GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
  2307. // ggml threadpool
  2308. // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
  2309. // the goal should be to create an API that other backends can use move everything to the ggml base
  2310. // scheduling priorities
  2311. enum ggml_sched_priority {
  2312. GGML_SCHED_PRIO_LOW = -1,
  2313. GGML_SCHED_PRIO_NORMAL,
  2314. GGML_SCHED_PRIO_MEDIUM,
  2315. GGML_SCHED_PRIO_HIGH,
  2316. GGML_SCHED_PRIO_REALTIME
  2317. };
  2318. // threadpool params
  2319. // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
  2320. struct ggml_threadpool_params {
  2321. bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
  2322. int n_threads; // number of threads
  2323. enum ggml_sched_priority prio; // thread priority
  2324. uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
  2325. bool strict_cpu; // strict cpu placement
  2326. bool paused; // start in paused state
  2327. };
  2328. struct ggml_threadpool; // forward declaration, see ggml.c
  2329. typedef struct ggml_threadpool * ggml_threadpool_t;
  2330. GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
  2331. GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
  2332. GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
  2333. #ifdef __cplusplus
  2334. }
  2335. #endif