ggml-opencl.cpp 413 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796
  1. #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
  2. #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
  3. // suppress warnings in CL headers for GCC and Clang
  4. #pragma GCC diagnostic ignored "-Woverlength-strings"
  5. #ifdef __clang__
  6. #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
  7. #endif
  8. #include "ggml-opencl.h"
  9. #include "ggml-backend.h"
  10. #include "ggml-impl.h"
  11. #include "ggml-backend-impl.h"
  12. #include "ggml.h"
  13. #include <CL/cl.h>
  14. #include <inttypes.h>
  15. #include <string.h>
  16. #include <cstddef>
  17. #include <cstdint>
  18. #include <fstream>
  19. #include <vector>
  20. #include <string>
  21. #include <cmath>
  22. #include <map>
  23. #include <memory>
  24. #include <charconv>
  25. #include <mutex>
  26. #undef MIN
  27. #undef MAX
  28. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  29. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  30. #define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
  31. #define UNUSED(x) (void)(x)
  32. #define CL_CHECK(err) \
  33. do { \
  34. cl_int err_ = (err); \
  35. if (err_ != CL_SUCCESS) { \
  36. GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
  37. #err, err_, __FILE__, __LINE__); \
  38. GGML_ASSERT(0); \
  39. } \
  40. } while (0)
  41. //------------------------------------------------------------------------------
  42. // OpenCL
  43. //------------------------------------------------------------------------------
  44. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
  45. // See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
  46. // Precompute mp (m' in the paper) and L such that division
  47. // can be computed using a multiply (high 32b of 64b result)
  48. // and a shift:
  49. //
  50. // n/d = (mulhi(n, mp) + n) >> L;
  51. struct fastdiv_vals {
  52. uint32_t mp;
  53. uint32_t L;
  54. uint32_t d;
  55. uint32_t pad;
  56. };
  57. static_assert(sizeof(fastdiv_vals) == 16, "fastdiv_vals size incorrect");
  58. static fastdiv_vals init_fastdiv_values(uint64_t d_64) {
  59. GGML_ASSERT(d_64 != 0);
  60. GGML_ASSERT(d_64 <= std::numeric_limits<uint32_t>::max());
  61. uint32_t d = (uint32_t)d_64;
  62. // compute L = ceil(log2(d));
  63. uint32_t L = 0;
  64. while (L < 32 && (uint32_t{ 1 } << L) < d) {
  65. L++;
  66. }
  67. uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1);
  68. // pack divisor as well to reduce error surface
  69. return { mp, L, d, 0 };
  70. }
  71. enum GPU_FAMILY {
  72. ADRENO,
  73. INTEL,
  74. UNKNOWN,
  75. };
  76. enum ADRENO_GPU_GEN {
  77. ADRENO_UNKNOWN,
  78. A7X,
  79. A8X,
  80. X1E,
  81. };
  82. enum ADRENO_CL_COMPILER_TYPE {
  83. E031,
  84. DX,
  85. };
  86. struct ggml_cl_version {
  87. cl_uint major = 0;
  88. cl_uint minor = 0;
  89. };
  90. struct ggml_cl_compiler_version {
  91. ADRENO_CL_COMPILER_TYPE type;
  92. int major = -1;
  93. int minor = -1;
  94. int patch = -1;
  95. bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  96. return major == x && minor == y && patch == z && type == t;
  97. }
  98. bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  99. return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
  100. }
  101. bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  102. return same(t, x, y, z) || newer_than(t, x, y, z);
  103. }
  104. };
  105. static size_t align_to(size_t value, size_t to_alignment) {
  106. GGML_ASSERT(to_alignment && "Invalid alignment (must be non-zero)");
  107. GGML_ASSERT((to_alignment & (to_alignment - 1)) == 0 && "to_alignment must be power-of-two");
  108. return ((value + to_alignment - 1) / to_alignment) * to_alignment;
  109. }
  110. // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
  111. static ggml_cl_version parse_cl_version(std::string_view str) {
  112. size_t major_str_begin = 0;
  113. size_t major_str_end = str.find(".", major_str_begin);
  114. if (major_str_end == std::string::npos) {
  115. return {};
  116. }
  117. size_t minor_str_begin = major_str_end + 1;
  118. size_t minor_str_end = str.find(" ", minor_str_begin);
  119. if (minor_str_end == std::string::npos) {
  120. return {};
  121. }
  122. cl_uint version_major;
  123. if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
  124. return {};
  125. }
  126. cl_uint version_minor;
  127. if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
  128. return {};
  129. }
  130. return { version_major, version_minor };
  131. }
  132. // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
  133. static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
  134. size_t param_size;
  135. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, &param_size));
  136. std::unique_ptr<char[]> param_storage(new char[param_size]);
  137. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
  138. auto param_value = std::string_view(param_storage.get(), param_size);
  139. const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
  140. if (param_value.find(version_prefix) != 0) {
  141. return {};
  142. }
  143. param_value.remove_prefix(version_prefix.length());
  144. return parse_cl_version(param_value);
  145. }
  146. // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
  147. static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
  148. size_t param_size;
  149. #if CL_TARGET_OPENCL_VERSION >= 300
  150. if (platform_version.major >= 3) {
  151. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, &param_size));
  152. if (!param_size) {
  153. return {};
  154. }
  155. std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
  156. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
  157. unsigned versions_count = param_size / sizeof(cl_name_version);
  158. cl_version version_max = 0;
  159. for (unsigned i = 0; i < versions_count; i++) {
  160. version_max = std::max<cl_version>(versions[i].version, version_max);
  161. }
  162. return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
  163. }
  164. #else
  165. GGML_UNUSED(platform_version);
  166. #endif // CL_TARGET_OPENCL_VERSION >= 300
  167. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, &param_size));
  168. if (!param_size) {
  169. return {};
  170. }
  171. std::unique_ptr<char[]> param_storage(new char[param_size]);
  172. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
  173. auto param_value = std::string_view(param_storage.get(), param_size);
  174. const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
  175. if (param_value.find(version_prefix) != 0) {
  176. return {};
  177. }
  178. param_value.remove_prefix(version_prefix.length());
  179. return parse_cl_version(param_value);
  180. }
  181. static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
  182. if (strstr(device_name, "730") ||
  183. strstr(device_name, "740") ||
  184. strstr(device_name, "750")) {
  185. return ADRENO_GPU_GEN::A7X;
  186. }
  187. if (strstr(device_name, "830")) {
  188. return ADRENO_GPU_GEN::A8X;
  189. }
  190. if (strstr(device_name, "X1")) {
  191. return ADRENO_GPU_GEN::X1E;
  192. }
  193. return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
  194. }
  195. static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
  196. std::string driver_ver_str(driver_version);
  197. ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
  198. size_t compiler_ver_pos = driver_ver_str.find("E031");
  199. size_t compiler_ver_len = 13;
  200. size_t compiler_major_offset = 5;
  201. size_t compiler_minor_offset = 8;
  202. size_t compiler_patch_offset = 11;
  203. if (compiler_ver_pos == std::string::npos) {
  204. compiler_ver_pos = driver_ver_str.find("DX");
  205. if (compiler_ver_pos == std::string::npos) {
  206. return {};
  207. }
  208. type = ADRENO_CL_COMPILER_TYPE::DX;
  209. compiler_ver_len = 11;
  210. compiler_major_offset = 3;
  211. }
  212. std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
  213. int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
  214. int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
  215. int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
  216. return { type, major, minor, patch };
  217. }
  218. // cl buffer wrapper
  219. struct ggml_cl_buffer {
  220. cl_mem buffer;
  221. size_t size;
  222. ggml_cl_buffer()
  223. : buffer(nullptr), size(0) {}
  224. ~ggml_cl_buffer() {
  225. if (buffer) {
  226. CL_CHECK(clReleaseMemObject(buffer));
  227. }
  228. }
  229. void allocate(cl_context context, size_t new_size) {
  230. if (new_size > size) {
  231. size = new_size;
  232. if (buffer) {
  233. CL_CHECK(clReleaseMemObject(buffer));
  234. }
  235. cl_int err;
  236. CL_CHECK((buffer = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err));
  237. }
  238. }
  239. };
  240. // Profiling
  241. struct ProfilingInfo {
  242. std::string op_name;
  243. std::string kernel_name;
  244. cl_kernel kernel;
  245. cl_event evt;
  246. cl_ulong cmd_queued;
  247. cl_ulong cmd_submit;
  248. cl_ulong cmd_start;
  249. cl_ulong cmd_end;
  250. cl_ulong overhead_start;
  251. cl_ulong overhead_end;
  252. // For the times below, see spec for clGetEventProfilingInfo
  253. // The time kernel spent in cmd queue - SUBMIT - QUEUED
  254. cl_ulong cmd_queued_duration_ns;
  255. // The time kernel spent for submission - START - SUBMIT
  256. cl_ulong cmd_submit_duration_ns;
  257. // Kernel execution time in nanoseconds - END - START
  258. cl_ulong cmd_duration_ns;
  259. // The time for the kernel to complete - COMPLETE - END
  260. cl_ulong cmd_complete_duration_ns;
  261. // Total time to finish the kernel - COMPELTE - QUEUED
  262. cl_ulong cmd_total_duration_ns;
  263. // Global and local work sizes.
  264. size_t global_size[3];
  265. size_t local_size[3];
  266. // Op output size.
  267. size_t output_size[4];
  268. };
  269. static void populateProfilingInfo(
  270. ProfilingInfo& info, cl_event evt, cl_kernel kernel, cl_uint work_dim,
  271. size_t global_size[3], size_t local_size[3],
  272. const ggml_tensor * tensor) {
  273. info.op_name = tensor->name;
  274. info.kernel = kernel;
  275. info.evt = evt;
  276. // 0 means not specified, e.g., 2D workgroup, or NULL for driver to choose
  277. info.local_size[0] = 0;
  278. info.local_size[1] = 0;
  279. info.local_size[2] = 0;
  280. info.global_size[0] = 0;
  281. info.global_size[1] = 0;
  282. info.global_size[2] = 0;
  283. if (local_size) {
  284. for (cl_uint i = 0; i < work_dim; ++i) {
  285. info.local_size[i] = local_size[i];
  286. }
  287. }
  288. for (cl_uint i = 0; i < work_dim; ++i) {
  289. info.global_size[i] = global_size[i];
  290. }
  291. info.output_size[0] = tensor->ne[0];
  292. info.output_size[1] = tensor->ne[1];
  293. info.output_size[2] = tensor->ne[2];
  294. info.output_size[3] = tensor->ne[3];
  295. }
  296. struct ggml_backend_opencl_context;
  297. // backend device context
  298. struct ggml_backend_opencl_device_context {
  299. cl_platform_id platform;
  300. std::string platform_name;
  301. cl_device_id device;
  302. std::string device_name;
  303. cl_device_type device_type;
  304. std::string device_version;
  305. // Initialized by ggml_cl2_init().
  306. ggml_backend_opencl_context * backend_ctx = nullptr;
  307. // Initialized by ggml_backend_opencl_device_get_buffer_type()
  308. ggml_backend_buffer_type buffer_type;
  309. cl_context context = nullptr;
  310. };
  311. // backend context
  312. struct ggml_backend_opencl_context {
  313. int ref_count;
  314. cl_device_id device;
  315. std::string device_name;
  316. std::string driver_version;
  317. GPU_FAMILY gpu_family;
  318. ADRENO_GPU_GEN adreno_gen;
  319. cl_int alignment;
  320. size_t max_alloc_size;
  321. size_t max_workgroup_size;
  322. bool fp16_support;
  323. bool has_vector_subgroup_broadcast;
  324. bool disable_fusion;
  325. ggml_cl_compiler_version adreno_cl_compiler_version;
  326. int adreno_wave_size;
  327. cl_bool non_uniform_workgroups;
  328. cl_context context;
  329. cl_command_queue queue;
  330. // prealloc buffers for transposing weights and activations
  331. ggml_cl_buffer prealloc_quant_trans;
  332. ggml_cl_buffer prealloc_scales_trans;
  333. ggml_cl_buffer prealloc_act_trans;
  334. cl_program program_add;
  335. cl_program program_add_id;
  336. cl_program program_clamp;
  337. cl_program program_cpy;
  338. cl_program program_cvt;
  339. cl_program program_diag_mask_inf;
  340. cl_program program_gelu;
  341. cl_program program_gemv_noshuffle_general;
  342. cl_program program_gemv_noshuffle;
  343. cl_program program_get_rows;
  344. cl_program program_set_rows;
  345. cl_program program_glu;
  346. cl_program program_im2col_f16;
  347. cl_program program_im2col_f32;
  348. cl_program program_mul_mat_Ab_Bi_8x4;
  349. cl_program program_mul_mv_q4_0_f32;
  350. cl_program program_mul_mv_q4_0_f32_v;
  351. cl_program program_mul_mv_q4_0_f32_8x_flat;
  352. cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
  353. cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
  354. cl_program program_mul_mv_q6_K;
  355. cl_program program_mul_mv_q8_0_f32, program_mul_mv_q8_0_f32_flat;
  356. cl_program program_mul_mv_mxfp4_f32;
  357. cl_program program_mul_mv_mxfp4_f32_flat;
  358. cl_program program_mul_mv_f16_f16;
  359. cl_program program_mul_mv_f16_f32_1row;
  360. cl_program program_mul_mv_f16_f32_l4;
  361. cl_program program_mul_mv_f16_f32;
  362. cl_program program_mul_mv_f32_f32;
  363. cl_program program_mul;
  364. cl_program program_mul_mat_f16_f32_tiled;
  365. cl_program program_mul_mm_f16_f32_kqv;
  366. cl_program program_mul_mm_f16_f32_kq;
  367. cl_program program_div;
  368. cl_program program_sub;
  369. cl_program program_norm;
  370. cl_program program_relu;
  371. cl_program program_rms_norm;
  372. cl_program program_group_norm;
  373. cl_program program_rope;
  374. cl_program program_scale;
  375. cl_program program_silu;
  376. cl_program program_sigmoid;
  377. cl_program program_softmax_f32;
  378. cl_program program_softmax_f16;
  379. cl_program program_softmax_4_f32;
  380. cl_program program_softmax_4_f16;
  381. cl_program program_argsort_f32_i32;
  382. cl_program program_sum_rows_f32;
  383. cl_program program_repeat;
  384. cl_program program_pad;
  385. cl_program program_tanh;
  386. cl_program program_upscale;
  387. cl_program program_concat;
  388. cl_program program_conv_2d_f16;
  389. cl_program program_conv_2d_f32;
  390. cl_program program_conv_2d_f16_f32;
  391. cl_program program_tsembd;
  392. cl_program program_gemv_moe_mxfp4_f32, program_gemm_moe_mxfp4_f32;
  393. cl_program program_mul_mv_id_q4_0_f32_8x_flat;
  394. cl_program program_mul_mv_id_q8_0_f32, program_mul_mv_id_q8_0_f32_flat;
  395. cl_program program_mul_mv_id_mxfp4_f32;
  396. cl_program program_mul_mv_id_mxfp4_f32_flat;
  397. cl_program program_mul_mm_f32_f32_l4_lm;
  398. cl_program program_mul_mm_f16_f32_l4_lm;
  399. cl_program program_mul_mm_q8_0_f32_l4_lm;
  400. cl_kernel kernel_add, kernel_add_row, kernel_add_f16, kernel_add_row_f16;
  401. cl_kernel kernel_mul, kernel_mul_row, kernel_mul_f16, kernel_mul_row_f16;
  402. cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
  403. cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
  404. cl_kernel kernel_add_id;
  405. cl_kernel kernel_scale;
  406. cl_kernel kernel_sqr_cont_f32, kernel_sqr_cont_f32_4, kernel_sqr_cont_f16, kernel_sqr_cont_f16_4;
  407. cl_kernel kernel_sqrt_cont_f32, kernel_sqrt_cont_f32_4, kernel_sqrt_cont_f16, kernel_sqrt_cont_f16_4;
  408. cl_kernel kernel_mean_f32;
  409. cl_kernel kernel_silu, kernel_silu_4;
  410. cl_kernel kernel_gelu, kernel_gelu_4;
  411. cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
  412. cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
  413. cl_kernel kernel_relu;
  414. cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
  415. cl_kernel kernel_fill;
  416. cl_kernel kernel_clamp;
  417. cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
  418. kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
  419. cl_kernel kernel_norm, kernel_norm_mul_add;
  420. cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
  421. cl_kernel kernel_group_norm, kernel_group_norm_mul_add;
  422. cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
  423. cl_kernel kernel_soft_max, kernel_soft_max_4;
  424. cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
  425. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16;
  426. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16_q1;
  427. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32;
  428. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_q1;
  429. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16;
  430. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16_q1;
  431. std::map<std::pair<int, int>, int> kernels_flash_attn_bm;
  432. std::map<std::pair<int, int>, int> kernels_flash_attn_bn;
  433. cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
  434. cl_kernel kernel_set_rows_f32_i64, kernel_set_rows_f32_i32, kernel_set_rows_f16_i64, kernel_set_rows_f16_i32;
  435. cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
  436. cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
  437. cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
  438. cl_kernel kernel_mul_mat_f32_f32;
  439. cl_kernel kernel_mul_mat_f16_f16;
  440. cl_kernel kernel_mul_mat_f16_f32_1row;
  441. cl_kernel kernel_mul_mat_f16_f32;
  442. cl_kernel kernel_mul_mat_f16_f32_l4;
  443. cl_kernel kernel_mul_mat_f16_f32_tiled;
  444. cl_kernel kernel_mul_mm_f16_f32_kqv;
  445. cl_kernel kernel_mul_mm_f16_f32_kq;
  446. cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
  447. cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
  448. cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans;
  449. cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0;
  450. cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
  451. cl_kernel kernel_convert_block_q4_0_noshuffle;
  452. cl_kernel kernel_restore_block_q4_0_noshuffle;
  453. cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
  454. cl_kernel kernel_mul_mv_q6_K_f32;
  455. cl_kernel kernel_mul_mv_mxfp4_f32, kernel_mul_mv_mxfp4_f32_flat;
  456. cl_kernel kernel_mul_mv_q8_0_f32, kernel_mul_mv_q8_0_f32_flat;
  457. cl_kernel kernel_im2col_f32, kernel_im2col_f16;
  458. cl_kernel kernel_argsort_f32_i32;
  459. cl_kernel kernel_sum_rows_f32;
  460. cl_kernel kernel_repeat;
  461. cl_kernel kernel_pad;
  462. cl_kernel kernel_tanh_f32_nd;
  463. cl_kernel kernel_tanh_f16_nd;
  464. cl_kernel kernel_upscale;
  465. cl_kernel kernel_upscale_bilinear;
  466. cl_kernel kernel_concat_f32_contiguous;
  467. cl_kernel kernel_concat_f32_non_contiguous;
  468. cl_kernel kernel_conv_2d_f16;
  469. cl_kernel kernel_conv_2d_f32;
  470. cl_kernel kernel_conv_2d_f16_f32;
  471. cl_kernel kernel_ssm_conv_f32_f32, kernel_ssm_conv_f32_f32_4;
  472. cl_kernel kernel_timestep_embedding;
  473. cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
  474. cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
  475. cl_kernel kernel_mul_mv_id_q8_0_f32, kernel_mul_mv_id_q8_0_f32_flat;
  476. cl_kernel kernel_mul_mv_id_mxfp4_f32;
  477. cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
  478. cl_kernel kernel_mul_mm_f32_f32_l4_lm;
  479. cl_kernel kernel_mul_mm_f16_f32_l4_lm;
  480. cl_kernel kernel_mul_mm_q8_0_f32_l4_lm;
  481. std::vector<ProfilingInfo> profiling_info;
  482. void write_profiling_info() {
  483. FILE * fperf = fopen("cl_profiling.csv", "w");
  484. if (!fperf) {
  485. GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
  486. return;
  487. }
  488. // Populate profiling info
  489. for (ProfilingInfo & info : profiling_info) {
  490. cl_ulong cmd_queued;
  491. cl_ulong cmd_submit;
  492. cl_ulong cmd_start;
  493. cl_ulong cmd_end;
  494. cl_ulong cmd_complete;
  495. CL_CHECK(clWaitForEvents(1, &info.evt));
  496. CL_CHECK(clGetEventProfilingInfo(
  497. info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
  498. CL_CHECK(clGetEventProfilingInfo(
  499. info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
  500. CL_CHECK(clGetEventProfilingInfo(
  501. info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
  502. CL_CHECK(clGetEventProfilingInfo(
  503. info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
  504. CL_CHECK(clGetEventProfilingInfo(
  505. info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
  506. CL_CHECK(clReleaseEvent(info.evt));
  507. char kernel_name[512];
  508. CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
  509. sizeof(kernel_name), kernel_name, NULL));
  510. info.kernel_name = kernel_name;
  511. info.cmd_queued = cmd_queued;
  512. info.cmd_submit = cmd_submit;
  513. info.cmd_start = cmd_start;
  514. info.cmd_end = cmd_end;
  515. info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
  516. info.cmd_submit_duration_ns = cmd_start - cmd_submit;
  517. info.cmd_duration_ns = cmd_end - cmd_start;
  518. info.cmd_complete_duration_ns = cmd_complete - cmd_end;
  519. info.cmd_total_duration_ns = cmd_complete - cmd_queued;
  520. }
  521. // Dump a csv
  522. fprintf(fperf, "op name, kernel name, exec duration (ms), global size, local size, output size\n");
  523. for (const ProfilingInfo & info : profiling_info) {
  524. fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
  525. info.op_name.c_str(), info.kernel_name.c_str(),
  526. info.cmd_duration_ns/1.e6f,
  527. info.global_size[0], info.global_size[1], info.global_size[2],
  528. info.local_size[0], info.local_size[1], info.local_size[2],
  529. info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
  530. }
  531. fclose(fperf);
  532. // Dump a simple chrome trace
  533. FILE* ftrace = fopen("cl_trace.json", "w");
  534. if (!ftrace) {
  535. GGML_LOG_ERROR("Failed to open cl_trace.json\n");
  536. return;
  537. }
  538. fprintf(ftrace, "[\n");
  539. for (const ProfilingInfo & info : profiling_info) {
  540. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
  541. info.kernel_name.c_str(), info.cmd_queued/1000);
  542. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
  543. info.kernel_name.c_str(), info.cmd_submit/1000);
  544. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
  545. info.kernel_name.c_str(), info.cmd_start/1000);
  546. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
  547. info.kernel_name.c_str(), info.cmd_end/1000);
  548. }
  549. fclose(ftrace);
  550. }
  551. size_t get_kernel_workgroup_size(cl_kernel kernel) const {
  552. size_t workgroup_size = 0;
  553. size_t ret_size = 0;
  554. CL_CHECK(
  555. clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
  556. sizeof(size_t), &workgroup_size, &ret_size));
  557. GGML_ASSERT(sizeof(size_t) == ret_size);
  558. return workgroup_size;
  559. }
  560. void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
  561. #ifdef GGML_OPENCL_PROFILING
  562. cl_event evt;
  563. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  564. profiling_info.emplace_back();
  565. populateProfilingInfo(profiling_info.back(), evt, kernel, work_dim, global_work_size, local_work_size, tensor);
  566. #else
  567. GGML_UNUSED(tensor);
  568. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  569. #endif
  570. }
  571. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  572. // Transpose kernels
  573. cl_program program_transpose;
  574. cl_kernel kernel_transpose_32;
  575. cl_kernel kernel_transpose_32_16;
  576. cl_kernel kernel_transpose_16;
  577. cl_kernel kernel_transpose_16_buf;
  578. cl_kernel kernel_transpose_16_4x1;
  579. // Gemm and Gemv related programs, kernels, etc
  580. cl_program program_CL_gemm;
  581. cl_program program_CL_gemv_general;
  582. cl_program program_CL_gemv_4096_1_11008;
  583. cl_program program_CL_gemv_4096_1_4096;
  584. cl_program program_CL_gemv_11008_1_4096;
  585. cl_program program_CL_gemv_32000_1_4096;
  586. cl_kernel CL_mul_mat_Ab_Bi_8x4;
  587. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  588. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  589. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  590. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  591. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  592. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  593. void free() {
  594. ref_count--;
  595. if (ref_count == 0) {
  596. #ifdef GGML_OPENCL_PROFILING
  597. write_profiling_info();
  598. profiling_info.clear();
  599. #endif
  600. }
  601. }
  602. };
  603. // All registered devices with a default device in the front.
  604. static std::vector<ggml_backend_device> g_ggml_backend_opencl_devices;
  605. inline std::string read_file(const std::string &path) {
  606. std::ifstream ifs(path);
  607. if (!ifs) {
  608. return "";
  609. }
  610. std::string text;
  611. ifs.seekg(0, std::ios::end);
  612. text.resize(ifs.tellg());
  613. ifs.seekg(0, std::ios::beg);
  614. ifs.read(&text[0], text.size());
  615. return text;
  616. }
  617. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
  618. cl_program p;
  619. char *program_log;
  620. size_t program_size;
  621. size_t log_size;
  622. int err;
  623. program_size = strlen(program_buffer);
  624. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  625. if(err < 0) {
  626. GGML_LOG_ERROR("OpenCL error creating program");
  627. exit(1);
  628. }
  629. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  630. if(err < 0) {
  631. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  632. program_log = (char*) malloc(log_size + 1);
  633. program_log[log_size] = '\0';
  634. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  635. GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  636. free(program_log);
  637. exit(1);
  638. }
  639. return p;
  640. }
  641. static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
  642. cl_int err;
  643. // compiler options for general kernels
  644. auto opencl_c_std =
  645. std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
  646. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  647. " -cl-mad-enable -cl-unsafe-math-optimizations"
  648. " -cl-finite-math-only -cl-fast-relaxed-math";
  649. GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
  650. // add
  651. {
  652. #ifdef GGML_OPENCL_EMBED_KERNELS
  653. const std::string kernel_src {
  654. #include "add.cl.h"
  655. };
  656. #else
  657. const std::string kernel_src = read_file("add.cl");
  658. #endif
  659. backend_ctx->program_add =
  660. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  661. CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
  662. CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
  663. CL_CHECK((backend_ctx->kernel_add_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_f16", &err), err));
  664. CL_CHECK((backend_ctx->kernel_add_row_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_row_f16", &err), err));
  665. GGML_LOG_CONT(".");
  666. }
  667. // add_id
  668. {
  669. #ifdef GGML_OPENCL_EMBED_KERNELS
  670. const std::string kernel_src {
  671. #include "add_id.cl.h"
  672. };
  673. #else
  674. const std::string kernel_src = read_file("add_id.cl");
  675. #endif
  676. backend_ctx->program_add_id =
  677. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  678. CL_CHECK((backend_ctx->kernel_add_id = clCreateKernel(backend_ctx->program_add_id, "kernel_add_id", &err), err));
  679. GGML_LOG_CONT(".");
  680. }
  681. // fill
  682. {
  683. #ifdef GGML_OPENCL_EMBED_KERNELS
  684. const std::string kernel_src {
  685. #include "fill.cl.h"
  686. };
  687. #else
  688. const std::string kernel_src = read_file("fill.cl");
  689. #endif
  690. cl_program prog =
  691. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  692. CL_CHECK((backend_ctx->kernel_fill = clCreateKernel(prog, "kernel_fill_f32", &err), err));
  693. GGML_LOG_CONT(".");
  694. CL_CHECK(clReleaseProgram(prog));
  695. }
  696. // clamp
  697. {
  698. #ifdef GGML_OPENCL_EMBED_KERNELS
  699. const std::string kernel_src {
  700. #include "clamp.cl.h"
  701. };
  702. #else
  703. const std::string kernel_src = read_file("clamp.cl");
  704. #endif
  705. backend_ctx->program_clamp =
  706. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  707. CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
  708. GGML_LOG_CONT(".");
  709. }
  710. // cpy
  711. {
  712. #ifdef GGML_OPENCL_EMBED_KERNELS
  713. const std::string kernel_src {
  714. #include "cpy.cl.h"
  715. };
  716. #else
  717. const std::string kernel_src = read_file("cpy.cl");
  718. #endif
  719. backend_ctx->program_cpy =
  720. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  721. CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
  722. CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
  723. CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
  724. CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
  725. GGML_LOG_CONT(".");
  726. }
  727. // cvt
  728. {
  729. #ifdef GGML_OPENCL_EMBED_KERNELS
  730. const std::string kernel_src {
  731. #include "cvt.cl.h"
  732. };
  733. #else
  734. const std::string kernel_src = read_file("cvt.cl");
  735. #endif
  736. backend_ctx->program_cvt =
  737. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  738. CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
  739. CL_CHECK((backend_ctx->kernel_restore_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0_noshuffle", &err), err));
  740. CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
  741. CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
  742. CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
  743. CL_CHECK((backend_ctx->kernel_convert_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4_trans", &err), err));
  744. CL_CHECK((backend_ctx->kernel_restore_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4_trans", &err), err));
  745. CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
  746. CL_CHECK((backend_ctx->kernel_convert_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err));
  747. CL_CHECK((backend_ctx->kernel_restore_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err));
  748. GGML_LOG_CONT(".");
  749. }
  750. // diag_mask_inf
  751. {
  752. #ifdef GGML_OPENCL_EMBED_KERNELS
  753. const std::string kernel_src {
  754. #include "diag_mask_inf.cl.h"
  755. };
  756. #else
  757. const std::string kernel_src = read_file("diag_mask_inf.cl");
  758. #endif
  759. backend_ctx->program_diag_mask_inf =
  760. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  761. CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
  762. CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
  763. GGML_LOG_CONT(".");
  764. }
  765. // gelu
  766. {
  767. #ifdef GGML_OPENCL_EMBED_KERNELS
  768. const std::string kernel_src {
  769. #include "gelu.cl.h"
  770. };
  771. #else
  772. const std::string kernel_src = read_file("gelu.cl");
  773. #endif
  774. backend_ctx->program_gelu =
  775. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  776. CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
  777. CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
  778. CL_CHECK((backend_ctx->kernel_gelu_erf = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf", &err), err));
  779. CL_CHECK((backend_ctx->kernel_gelu_erf_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf_4", &err), err));
  780. CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
  781. CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
  782. GGML_LOG_CONT(".");
  783. }
  784. // glu
  785. {
  786. #ifdef GGML_OPENCL_EMBED_KERNELS
  787. const std::string kernel_src {
  788. #include "glu.cl.h"
  789. };
  790. #else
  791. const std::string kernel_src = read_file("glu.cl");
  792. #endif
  793. backend_ctx->program_glu =
  794. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  795. CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
  796. CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
  797. CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
  798. CL_CHECK((backend_ctx->kernel_swiglu_oai = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_oai", &err), err));
  799. CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
  800. CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
  801. CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
  802. CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
  803. CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
  804. CL_CHECK((backend_ctx->kernel_geglu_erf_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf_f16", &err), err));
  805. CL_CHECK((backend_ctx->kernel_geglu_quick_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick_f16", &err), err));
  806. GGML_LOG_CONT(".");
  807. }
  808. // get_rows
  809. {
  810. #ifdef GGML_OPENCL_EMBED_KERNELS
  811. const std::string kernel_src {
  812. #include "get_rows.cl.h"
  813. };
  814. #else
  815. const std::string kernel_src = read_file("get_rows.cl");
  816. #endif
  817. backend_ctx->program_get_rows =
  818. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  819. CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
  820. CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
  821. CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
  822. GGML_LOG_CONT(".");
  823. }
  824. // im2col_f32
  825. {
  826. #ifdef GGML_OPENCL_EMBED_KERNELS
  827. const std::string kernel_src {
  828. #include "im2col_f32.cl.h"
  829. };
  830. #else
  831. const std::string kernel_src = read_file("im2col_f32.cl");
  832. #endif
  833. backend_ctx->program_im2col_f32 =
  834. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  835. CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
  836. GGML_LOG_CONT(".");
  837. }
  838. // im2col_f16
  839. {
  840. #ifdef GGML_OPENCL_EMBED_KERNELS
  841. const std::string kernel_src {
  842. #include "im2col_f16.cl.h"
  843. };
  844. #else
  845. const std::string kernel_src = read_file("im2col_f16.cl");
  846. #endif
  847. backend_ctx->program_im2col_f16 =
  848. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  849. CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
  850. GGML_LOG_CONT(".");
  851. }
  852. // mul_mv_q4_0_f32
  853. {
  854. #ifdef GGML_OPENCL_EMBED_KERNELS
  855. const std::string kernel_src {
  856. #include "mul_mv_q4_0_f32.cl.h"
  857. };
  858. #else
  859. const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
  860. #endif
  861. backend_ctx->program_mul_mv_q4_0_f32 =
  862. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  863. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
  864. GGML_LOG_CONT(".");
  865. }
  866. // mul_mv_q4_0_f32_v
  867. {
  868. #ifdef GGML_OPENCL_EMBED_KERNELS
  869. const std::string kernel_src {
  870. #include "mul_mv_q4_0_f32_v.cl.h"
  871. };
  872. #else
  873. const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
  874. #endif
  875. backend_ctx->program_mul_mv_q4_0_f32_v =
  876. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  877. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
  878. GGML_LOG_CONT(".");
  879. }
  880. // mul_mv_q4_0_f32_8x_flat
  881. {
  882. #ifdef GGML_OPENCL_EMBED_KERNELS
  883. const std::string kernel_src {
  884. #include "mul_mv_q4_0_f32_8x_flat.cl.h"
  885. };
  886. #else
  887. const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
  888. #endif
  889. backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
  890. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  891. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
  892. GGML_LOG_CONT(".");
  893. }
  894. // mul_mv_q4_0_f32_1d_8x_flat
  895. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  896. // those compiler versions since it is anyway not used for Adreno.
  897. if (backend_ctx->gpu_family != ADRENO ||
  898. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  899. backend_ctx->adreno_cl_compiler_version.type == DX) {
  900. #ifdef GGML_OPENCL_EMBED_KERNELS
  901. const std::string kernel_src {
  902. #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
  903. };
  904. #else
  905. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
  906. #endif
  907. backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
  908. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  909. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
  910. GGML_LOG_CONT(".");
  911. }
  912. // mul_mv_q4_0_f32_1d_16x_flat
  913. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  914. // those compiler versions since it is anyway not used for Adreno.
  915. if (backend_ctx->gpu_family != ADRENO ||
  916. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  917. backend_ctx->adreno_cl_compiler_version.type == DX) {
  918. #ifdef GGML_OPENCL_EMBED_KERNELS
  919. const std::string kernel_src {
  920. #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
  921. };
  922. #else
  923. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
  924. #endif
  925. backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
  926. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  927. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
  928. GGML_LOG_CONT(".");
  929. }
  930. // mul_mv_q6_k
  931. {
  932. #ifdef GGML_OPENCL_EMBED_KERNELS
  933. const std::string kernel_src {
  934. #include "mul_mv_q6_k.cl.h"
  935. };
  936. #else
  937. const std::string kernel_src = read_file("mul_mv_q6_k.cl");
  938. #endif
  939. backend_ctx->program_mul_mv_q6_K =
  940. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  941. CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
  942. GGML_LOG_CONT(".");
  943. }
  944. // mul_mv_q8_0_f32
  945. {
  946. #ifdef GGML_OPENCL_EMBED_KERNELS
  947. const std::string kernel_src {
  948. #include "mul_mv_q8_0_f32.cl.h"
  949. };
  950. #else
  951. const std::string kernel_src = read_file("mul_mv_q8_0_f32.cl");
  952. #endif
  953. backend_ctx->program_mul_mv_q8_0_f32 =
  954. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  955. CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32, "kernel_mul_mv_q8_0_f32", &err), err));
  956. GGML_LOG_CONT(".");
  957. }
  958. // mul_mv_q8_0_f32_flat
  959. {
  960. #ifdef GGML_OPENCL_EMBED_KERNELS
  961. const std::string kernel_src {
  962. #include "mul_mv_q8_0_f32_flat.cl.h"
  963. };
  964. #else
  965. const std::string kernel_src = read_file("mul_mv_q8_0_f32_flat.cl");
  966. #endif
  967. backend_ctx->program_mul_mv_q8_0_f32_flat =
  968. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  969. CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32_flat, "kernel_mul_mv_q8_0_f32_flat", &err), err));
  970. GGML_LOG_CONT(".");
  971. }
  972. // mul_mv_mxfp4_f32
  973. {
  974. #ifdef GGML_OPENCL_EMBED_KERNELS
  975. const std::string kernel_src {
  976. #include "mul_mv_mxfp4_f32.cl.h"
  977. };
  978. #else
  979. const std::string kernel_src = read_file("mul_mv_mxfp4_f32.cl");
  980. #endif
  981. backend_ctx->program_mul_mv_mxfp4_f32 =
  982. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  983. CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32, "kernel_mul_mv_mxfp4_f32", &err), err));
  984. GGML_LOG_CONT(".");
  985. }
  986. // mul_mv_mxfp4_f32_flat
  987. {
  988. #ifdef GGML_OPENCL_EMBED_KERNELS
  989. const std::string kernel_src {
  990. #include "mul_mv_mxfp4_f32_flat.cl.h"
  991. };
  992. #else
  993. const std::string kernel_src = read_file("mul_mv_mxfp4_f32_flat.cl");
  994. #endif
  995. backend_ctx->program_mul_mv_mxfp4_f32_flat =
  996. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  997. CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32_flat, "kernel_mul_mv_mxfp4_f32_flat", &err), err));
  998. GGML_LOG_CONT(".");
  999. }
  1000. // mul_mv_f16_f16
  1001. {
  1002. #ifdef GGML_OPENCL_EMBED_KERNELS
  1003. const std::string kernel_src {
  1004. #include "mul_mv_f16_f16.cl.h"
  1005. };
  1006. #else
  1007. const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
  1008. #endif
  1009. backend_ctx->program_mul_mv_f16_f16 =
  1010. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1011. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
  1012. GGML_LOG_CONT(".");
  1013. }
  1014. // mul_mv_f16_f32_1row
  1015. {
  1016. #ifdef GGML_OPENCL_EMBED_KERNELS
  1017. const std::string kernel_src {
  1018. #include "mul_mv_f16_f32_1row.cl.h"
  1019. };
  1020. #else
  1021. const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
  1022. #endif
  1023. backend_ctx->program_mul_mv_f16_f32_1row =
  1024. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1025. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
  1026. GGML_LOG_CONT(".");
  1027. }
  1028. // mul_mv_f16_f32_l4
  1029. {
  1030. #ifdef GGML_OPENCL_EMBED_KERNELS
  1031. const std::string kernel_src {
  1032. #include "mul_mv_f16_f32_l4.cl.h"
  1033. };
  1034. #else
  1035. const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
  1036. #endif
  1037. backend_ctx->program_mul_mv_f16_f32_l4 =
  1038. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1039. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
  1040. GGML_LOG_CONT(".");
  1041. }
  1042. // mul_mv_f16_f32
  1043. {
  1044. #ifdef GGML_OPENCL_EMBED_KERNELS
  1045. const std::string kernel_src {
  1046. #include "mul_mv_f16_f32.cl.h"
  1047. };
  1048. #else
  1049. const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
  1050. #endif
  1051. backend_ctx->program_mul_mv_f16_f32 =
  1052. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1053. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
  1054. GGML_LOG_CONT(".");
  1055. }
  1056. // mul_mv_f32_f32
  1057. {
  1058. #ifdef GGML_OPENCL_EMBED_KERNELS
  1059. const std::string kernel_src {
  1060. #include "mul_mv_f32_f32.cl.h"
  1061. };
  1062. #else
  1063. const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
  1064. #endif
  1065. backend_ctx->program_mul_mv_f32_f32 =
  1066. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1067. CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
  1068. GGML_LOG_CONT(".");
  1069. }
  1070. // mul_mat_f16_f32_tiled
  1071. {
  1072. #ifdef GGML_OPENCL_EMBED_KERNELS
  1073. const std::string kernel_src {
  1074. #include "mul_mat_f16_f32.cl.h"
  1075. };
  1076. #else
  1077. const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
  1078. #endif
  1079. backend_ctx->program_mul_mat_f16_f32_tiled =
  1080. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1081. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
  1082. GGML_LOG_CONT(".");
  1083. }
  1084. // mul_mm_f32_f32_l4_lm
  1085. {
  1086. #ifdef GGML_OPENCL_EMBED_KERNELS
  1087. const std::string kernel_src {
  1088. #include "mul_mm_f32_f32_l4_lm.cl.h"
  1089. };
  1090. #else
  1091. const std::string kernel_src = read_file("mul_mm_f32_f32_l4_lm.cl");
  1092. #endif
  1093. backend_ctx->program_mul_mm_f32_f32_l4_lm =
  1094. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1095. CL_CHECK((backend_ctx->kernel_mul_mm_f32_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f32_f32_l4_lm, "kernel_mul_mm_f32_f32_l4_lm", &err), err));
  1096. GGML_LOG_CONT(".");
  1097. }
  1098. // mul_mm_f16_f32_l4_lm
  1099. {
  1100. #ifdef GGML_OPENCL_EMBED_KERNELS
  1101. const std::string kernel_src {
  1102. #include "mul_mm_f16_f32_l4_lm.cl.h"
  1103. };
  1104. #else
  1105. const std::string kernel_src = read_file("mul_mm_f16_f32_l4_lm.cl");
  1106. #endif
  1107. backend_ctx->program_mul_mm_f16_f32_l4_lm =
  1108. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1109. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_l4_lm, "kernel_mul_mm_f16_f32_l4_lm", &err), err));
  1110. GGML_LOG_CONT(".");
  1111. }
  1112. // mul_mm_q8_0_f32_l4_lm
  1113. {
  1114. #ifdef GGML_OPENCL_EMBED_KERNELS
  1115. const std::string kernel_src {
  1116. #include "mul_mm_q8_0_f32_l4_lm.cl.h"
  1117. };
  1118. #else
  1119. const std::string kernel_src = read_file("mul_mm_q8_0_f32_l4_lm.cl");
  1120. #endif
  1121. backend_ctx->program_mul_mm_q8_0_f32_l4_lm =
  1122. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1123. CL_CHECK((backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_q8_0_f32_l4_lm, "kernel_mul_mm_q8_0_f32_l4_lm", &err), err));
  1124. GGML_LOG_CONT(".");
  1125. }
  1126. // mul_mm_f16_f32_kq_kqv
  1127. {
  1128. #ifdef GGML_OPENCL_EMBED_KERNELS
  1129. const std::string kernel_src {
  1130. #include "mul_mm_f16_f32_kq_kqv.cl.h"
  1131. };
  1132. #else
  1133. const std::string kernel_src = read_file("mul_mm_f16_f32_kq_kqv.cl");
  1134. #endif
  1135. backend_ctx->program_mul_mm_f16_f32_kqv =
  1136. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts+" -DKQV ");
  1137. backend_ctx->program_mul_mm_f16_f32_kq =
  1138. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1139. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_kqv = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_kqv, "mul_mm_f16_f32_kqv", &err), err));
  1140. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_kq = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_kq, "mul_mm_f16_f32_kq", &err), err));
  1141. GGML_LOG_CONT(".");
  1142. }
  1143. // mul
  1144. {
  1145. #ifdef GGML_OPENCL_EMBED_KERNELS
  1146. const std::string kernel_src {
  1147. #include "mul.cl.h"
  1148. };
  1149. #else
  1150. const std::string kernel_src = read_file("mul.cl");
  1151. #endif
  1152. backend_ctx->program_mul =
  1153. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1154. CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
  1155. CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
  1156. CL_CHECK((backend_ctx->kernel_mul_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_f16", &err), err));
  1157. CL_CHECK((backend_ctx->kernel_mul_row_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row_f16", &err), err));
  1158. GGML_LOG_CONT(".");
  1159. }
  1160. // norm
  1161. {
  1162. #ifdef GGML_OPENCL_EMBED_KERNELS
  1163. const std::string kernel_src {
  1164. #include "norm.cl.h"
  1165. };
  1166. #else
  1167. const std::string kernel_src = read_file("norm.cl");
  1168. #endif
  1169. backend_ctx->program_norm =
  1170. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1171. CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
  1172. CL_CHECK((backend_ctx->kernel_norm_mul_add = clCreateKernel(backend_ctx->program_norm, "kernel_norm_mul_add", &err), err));
  1173. GGML_LOG_CONT(".");
  1174. }
  1175. // relu
  1176. {
  1177. #ifdef GGML_OPENCL_EMBED_KERNELS
  1178. const std::string kernel_src {
  1179. #include "relu.cl.h"
  1180. };
  1181. #else
  1182. const std::string kernel_src = read_file("relu.cl");
  1183. #endif
  1184. backend_ctx->program_relu =
  1185. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1186. CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
  1187. GGML_LOG_CONT(".");
  1188. }
  1189. // rms_norm
  1190. {
  1191. #ifdef GGML_OPENCL_EMBED_KERNELS
  1192. const std::string kernel_src {
  1193. #include "rms_norm.cl.h"
  1194. };
  1195. #else
  1196. const std::string kernel_src = read_file("rms_norm.cl");
  1197. #endif
  1198. backend_ctx->program_rms_norm =
  1199. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1200. CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
  1201. CL_CHECK((backend_ctx->kernel_rms_norm_mul = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm_mul", &err), err));
  1202. GGML_LOG_CONT(".");
  1203. }
  1204. // rope
  1205. {
  1206. #ifdef GGML_OPENCL_EMBED_KERNELS
  1207. const std::string kernel_src {
  1208. #include "rope.cl.h"
  1209. };
  1210. #else
  1211. const std::string kernel_src = read_file("rope.cl");
  1212. #endif
  1213. backend_ctx->program_rope =
  1214. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1215. CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
  1216. CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
  1217. CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
  1218. CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
  1219. CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
  1220. CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
  1221. CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
  1222. CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
  1223. GGML_LOG_CONT(".");
  1224. }
  1225. // scale
  1226. {
  1227. #ifdef GGML_OPENCL_EMBED_KERNELS
  1228. const std::string kernel_src {
  1229. #include "scale.cl.h"
  1230. };
  1231. #else
  1232. const std::string kernel_src = read_file("scale.cl");
  1233. #endif
  1234. backend_ctx->program_scale =
  1235. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1236. CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
  1237. GGML_LOG_CONT(".");
  1238. }
  1239. // silu
  1240. {
  1241. #ifdef GGML_OPENCL_EMBED_KERNELS
  1242. const std::string kernel_src {
  1243. #include "silu.cl.h"
  1244. };
  1245. #else
  1246. const std::string kernel_src = read_file("silu.cl");
  1247. #endif
  1248. backend_ctx->program_silu =
  1249. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1250. CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
  1251. CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
  1252. GGML_LOG_CONT(".");
  1253. }
  1254. // softmax_f32
  1255. {
  1256. #ifdef GGML_OPENCL_EMBED_KERNELS
  1257. const std::string kernel_src {
  1258. #include "softmax_f32.cl.h"
  1259. };
  1260. #else
  1261. const std::string kernel_src = read_file("softmax_f32.cl");
  1262. #endif
  1263. backend_ctx->program_softmax_f32 =
  1264. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1265. CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
  1266. GGML_LOG_CONT(".");
  1267. }
  1268. // softmax_f16
  1269. {
  1270. #ifdef GGML_OPENCL_EMBED_KERNELS
  1271. const std::string kernel_src {
  1272. #include "softmax_f16.cl.h"
  1273. };
  1274. #else
  1275. const std::string kernel_src = read_file("softmax_f16.cl");
  1276. #endif
  1277. backend_ctx->program_softmax_f16 =
  1278. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1279. CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
  1280. GGML_LOG_CONT(".");
  1281. }
  1282. // softmax_4_f32
  1283. {
  1284. #ifdef GGML_OPENCL_EMBED_KERNELS
  1285. const std::string kernel_src {
  1286. #include "softmax_4_f32.cl.h"
  1287. };
  1288. #else
  1289. const std::string kernel_src = read_file("softmax_4_f32.cl");
  1290. #endif
  1291. backend_ctx->program_softmax_4_f32 =
  1292. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1293. CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
  1294. GGML_LOG_CONT(".");
  1295. }
  1296. // softmax_4_f16
  1297. {
  1298. #ifdef GGML_OPENCL_EMBED_KERNELS
  1299. const std::string kernel_src {
  1300. #include "softmax_4_f16.cl.h"
  1301. };
  1302. #else
  1303. const std::string kernel_src = read_file("softmax_4_f16.cl");
  1304. #endif
  1305. backend_ctx->program_softmax_4_f16 =
  1306. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1307. CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
  1308. GGML_LOG_CONT(".");
  1309. }
  1310. // flash_attn
  1311. {
  1312. #ifdef GGML_OPENCL_EMBED_KERNELS
  1313. const std::string kernel_src_f16 {
  1314. #include "flash_attn_f16.cl.h"
  1315. };
  1316. const std::string kernel_src_f32 {
  1317. #include "flash_attn_f32.cl.h"
  1318. };
  1319. const std::string kernel_src_f32_f16 {
  1320. #include "flash_attn_f32_f16.cl.h"
  1321. };
  1322. #else
  1323. const std::string kernel_src_f16 = read_file("flash_attn_f16.cl");
  1324. const std::string kernel_src_f32 = read_file("flash_attn_f32.cl");
  1325. const std::string kernel_src_f32_f16 = read_file("flash_attn_f32_f16.cl");
  1326. #endif
  1327. if (!kernel_src_f16.empty() && !kernel_src_f32.empty() && !kernel_src_f32_f16.empty()) {
  1328. const struct { int dk; int dv; int bm; int bn; } fa_dims[] = {
  1329. { 40, 40, 32, 32}, { 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32},
  1330. {112, 112, 32, 32}, {128, 128, 32, 32}, {192, 128, 16, 16},
  1331. {192, 192, 16, 16}, {256, 256, 16, 16},
  1332. };
  1333. for (size_t i = 0; i < sizeof(fa_dims)/sizeof(fa_dims[0]); ++i) {
  1334. const int dk = fa_dims[i].dk;
  1335. const int dv = fa_dims[i].dv;
  1336. const int bm = fa_dims[i].bm;
  1337. const int bn = fa_dims[i].bn;
  1338. std::string OPTS = compile_opts +
  1339. " -D DK=" + std::to_string(dk) +
  1340. " -D DV=" + std::to_string(dv) +
  1341. " -D BLOCK_M=" + std::to_string(bm) +
  1342. " -D BLOCK_N=" + std::to_string(bn);
  1343. cl_program prog_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16.c_str(), OPTS);
  1344. cl_kernel k_f16, k_f16_q1;
  1345. CL_CHECK((k_f16 = clCreateKernel(prog_f16, "flash_attn_f16", &err), err));
  1346. CL_CHECK((k_f16_q1 = clCreateKernel(prog_f16, "flash_attn_f16_q1", &err), err));
  1347. backend_ctx->kernels_flash_attn_f16[{dk, dv}] = k_f16;
  1348. backend_ctx->kernels_flash_attn_f16_q1[{dk, dv}] = k_f16_q1;
  1349. CL_CHECK(clReleaseProgram(prog_f16));
  1350. cl_program prog_f32 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32.c_str(), OPTS);
  1351. cl_kernel k_f32, k_f32_q1;
  1352. CL_CHECK((k_f32 = clCreateKernel(prog_f32, "flash_attn_f32", &err), err));
  1353. CL_CHECK((k_f32_q1 = clCreateKernel(prog_f32, "flash_attn_f32_q1", &err), err));
  1354. backend_ctx->kernels_flash_attn_f32[{dk, dv}] = k_f32;
  1355. backend_ctx->kernels_flash_attn_f32_q1[{dk, dv}] = k_f32_q1;
  1356. CL_CHECK(clReleaseProgram(prog_f32));
  1357. cl_program prog_f32_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32_f16.c_str(), OPTS);
  1358. cl_kernel k_f32_f16, k_f32_f16_q1;
  1359. CL_CHECK((k_f32_f16 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16", &err), err));
  1360. CL_CHECK((k_f32_f16_q1 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16_q1", &err), err));
  1361. backend_ctx->kernels_flash_attn_f32_f16[{dk, dv}] = k_f32_f16;
  1362. backend_ctx->kernels_flash_attn_f32_f16_q1[{dk, dv}] = k_f32_f16_q1;
  1363. CL_CHECK(clReleaseProgram(prog_f32_f16));
  1364. backend_ctx->kernels_flash_attn_bm[{dk, dv}] = bm;
  1365. backend_ctx->kernels_flash_attn_bn[{dk, dv}] = bn;
  1366. }
  1367. GGML_LOG_CONT(".");
  1368. }
  1369. }
  1370. // argsort
  1371. {
  1372. #ifdef GGML_OPENCL_EMBED_KERNELS
  1373. const std::string kernel_src {
  1374. #include "argsort.cl.h"
  1375. };
  1376. #else
  1377. const std::string kernel_src = read_file("argsort.cl");
  1378. #endif
  1379. backend_ctx->program_argsort_f32_i32 =
  1380. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1381. CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
  1382. GGML_LOG_CONT(".");
  1383. }
  1384. // div
  1385. {
  1386. #ifdef GGML_OPENCL_EMBED_KERNELS
  1387. const std::string kernel_src {
  1388. #include "div.cl.h"
  1389. };
  1390. #else
  1391. const std::string kernel_src = read_file("div.cl");
  1392. #endif
  1393. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  1394. " -cl-mad-enable -cl-finite-math-only ";
  1395. backend_ctx->program_div =
  1396. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1397. CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
  1398. CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
  1399. CL_CHECK((backend_ctx->kernel_div_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_f16", &err), err));
  1400. CL_CHECK((backend_ctx->kernel_div_row_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_row_f16", &err), err));
  1401. GGML_LOG_CONT(".");
  1402. }
  1403. // sqr
  1404. {
  1405. #ifdef GGML_OPENCL_EMBED_KERNELS
  1406. const std::string kernel_src {
  1407. #include "sqr.cl.h"
  1408. };
  1409. #else
  1410. const std::string kernel_src = read_file("sqr.cl");
  1411. #endif
  1412. cl_program prog =
  1413. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1414. CL_CHECK((backend_ctx->kernel_sqr_cont_f32 = clCreateKernel(prog, "kernel_sqr_cont_f32", &err), err));
  1415. CL_CHECK((backend_ctx->kernel_sqr_cont_f32_4 = clCreateKernel(prog, "kernel_sqr_cont_f32_4", &err), err));
  1416. CL_CHECK((backend_ctx->kernel_sqr_cont_f16 = clCreateKernel(prog, "kernel_sqr_cont_f16", &err), err));
  1417. CL_CHECK((backend_ctx->kernel_sqr_cont_f16_4 = clCreateKernel(prog, "kernel_sqr_cont_f16_4", &err), err));
  1418. CL_CHECK(clReleaseProgram(prog));
  1419. GGML_LOG_CONT(".");
  1420. }
  1421. // sqrt
  1422. {
  1423. #ifdef GGML_OPENCL_EMBED_KERNELS
  1424. const std::string kernel_src {
  1425. #include "sqrt.cl.h"
  1426. };
  1427. #else
  1428. const std::string kernel_src = read_file("sqrt.cl");
  1429. #endif
  1430. cl_program prog =
  1431. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1432. CL_CHECK((backend_ctx->kernel_sqrt_cont_f32 = clCreateKernel(prog, "kernel_sqrt_cont_f32", &err), err));
  1433. CL_CHECK((backend_ctx->kernel_sqrt_cont_f32_4 = clCreateKernel(prog, "kernel_sqrt_cont_f32_4", &err), err));
  1434. CL_CHECK((backend_ctx->kernel_sqrt_cont_f16 = clCreateKernel(prog, "kernel_sqrt_cont_f16", &err), err));
  1435. CL_CHECK((backend_ctx->kernel_sqrt_cont_f16_4 = clCreateKernel(prog, "kernel_sqrt_cont_f16_4", &err), err));
  1436. CL_CHECK(clReleaseProgram(prog));
  1437. GGML_LOG_CONT(".");
  1438. }
  1439. // mean
  1440. {
  1441. #ifdef GGML_OPENCL_EMBED_KERNELS
  1442. const std::string kernel_src {
  1443. #include "mean.cl.h"
  1444. };
  1445. #else
  1446. const std::string kernel_src = read_file("mean.cl");
  1447. #endif
  1448. cl_program prog =
  1449. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1450. CL_CHECK((backend_ctx->kernel_mean_f32 = clCreateKernel(prog, "kernel_mean_f32", &err), err));
  1451. CL_CHECK(clReleaseProgram(prog));
  1452. GGML_LOG_CONT(".");
  1453. }
  1454. // sub
  1455. {
  1456. #ifdef GGML_OPENCL_EMBED_KERNELS
  1457. const std::string kernel_src {
  1458. #include "sub.cl.h"
  1459. };
  1460. #else
  1461. const std::string kernel_src = read_file("sub.cl");
  1462. #endif
  1463. backend_ctx->program_sub =
  1464. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1465. CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
  1466. CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
  1467. CL_CHECK((backend_ctx->kernel_sub_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_f16", &err), err));
  1468. CL_CHECK((backend_ctx->kernel_sub_row_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row_f16", &err), err));
  1469. GGML_LOG_CONT(".");
  1470. }
  1471. // sum_rows
  1472. {
  1473. #ifdef GGML_OPENCL_EMBED_KERNELS
  1474. const std::string kernel_src {
  1475. #include "sum_rows.cl.h"
  1476. };
  1477. #else
  1478. const std::string kernel_src = read_file("sum_rows.cl");
  1479. #endif
  1480. backend_ctx->program_sum_rows_f32 =
  1481. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1482. CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
  1483. GGML_LOG_CONT(".");
  1484. }
  1485. // sigmoid
  1486. {
  1487. #ifdef GGML_OPENCL_EMBED_KERNELS
  1488. const std::string kernel_src {
  1489. #include "sigmoid.cl.h"
  1490. };
  1491. #else
  1492. const std::string kernel_src = read_file("sigmoid.cl");
  1493. #endif
  1494. backend_ctx->program_sigmoid =
  1495. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1496. CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
  1497. CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
  1498. GGML_LOG_CONT(".");
  1499. }
  1500. // group_norm
  1501. {
  1502. #ifdef GGML_OPENCL_EMBED_KERNELS
  1503. const std::string kernel_src {
  1504. #include "group_norm.cl.h"
  1505. };
  1506. #else
  1507. const std::string kernel_src = read_file("group_norm.cl");
  1508. #endif
  1509. backend_ctx->program_group_norm =
  1510. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1511. CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
  1512. CL_CHECK((backend_ctx->kernel_group_norm_mul_add = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm_mul_add", &err), err));
  1513. GGML_LOG_CONT(".");
  1514. }
  1515. // repeat
  1516. {
  1517. #ifdef GGML_OPENCL_EMBED_KERNELS
  1518. const std::string kernel_src {
  1519. #include "repeat.cl.h"
  1520. };
  1521. #else
  1522. const std::string kernel_src = read_file("repeat.cl");
  1523. #endif
  1524. if (!kernel_src.empty()) {
  1525. backend_ctx->program_repeat =
  1526. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1527. CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
  1528. GGML_LOG_CONT(".");
  1529. } else {
  1530. GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
  1531. backend_ctx->program_repeat = nullptr;
  1532. backend_ctx->kernel_repeat = nullptr;
  1533. }
  1534. }
  1535. // pad
  1536. {
  1537. #ifdef GGML_OPENCL_EMBED_KERNELS
  1538. const std::string kernel_src {
  1539. #include "pad.cl.h"
  1540. };
  1541. #else
  1542. const std::string kernel_src = read_file("pad.cl");
  1543. #endif
  1544. if (!kernel_src.empty()) {
  1545. backend_ctx->program_pad =
  1546. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1547. CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err));
  1548. GGML_LOG_CONT(".");
  1549. } else {
  1550. GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n");
  1551. backend_ctx->program_pad = nullptr;
  1552. backend_ctx->kernel_pad = nullptr;
  1553. }
  1554. }
  1555. // tanh
  1556. {
  1557. #ifdef GGML_OPENCL_EMBED_KERNELS
  1558. const std::string kernel_src {
  1559. #include "tanh.cl.h"
  1560. };
  1561. #else
  1562. const std::string kernel_src = read_file("tanh.cl");
  1563. #endif
  1564. if (!kernel_src.empty()) {
  1565. backend_ctx->program_tanh =
  1566. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1567. CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
  1568. CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
  1569. GGML_LOG_CONT(".");
  1570. } else {
  1571. GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
  1572. backend_ctx->program_tanh = nullptr;
  1573. backend_ctx->kernel_tanh_f32_nd = nullptr;
  1574. backend_ctx->kernel_tanh_f16_nd = nullptr;
  1575. }
  1576. }
  1577. // upscale
  1578. {
  1579. #ifdef GGML_OPENCL_EMBED_KERNELS
  1580. const std::string kernel_src {
  1581. #include "upscale.cl.h"
  1582. };
  1583. #else
  1584. const std::string kernel_src = read_file("upscale.cl");
  1585. #endif
  1586. if (!kernel_src.empty()) {
  1587. backend_ctx->program_upscale =
  1588. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1589. CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err));
  1590. if (backend_ctx->program_upscale) {
  1591. cl_int err_bilinear;
  1592. backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear);
  1593. if (err_bilinear != CL_SUCCESS) {
  1594. GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear);
  1595. backend_ctx->kernel_upscale_bilinear = nullptr;
  1596. }
  1597. } else {
  1598. backend_ctx->kernel_upscale_bilinear = nullptr;
  1599. }
  1600. GGML_LOG_CONT(".");
  1601. } else {
  1602. GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n");
  1603. backend_ctx->program_upscale = nullptr;
  1604. backend_ctx->kernel_upscale = nullptr;
  1605. backend_ctx->kernel_upscale_bilinear = nullptr;
  1606. }
  1607. }
  1608. // concat
  1609. {
  1610. #ifdef GGML_OPENCL_EMBED_KERNELS
  1611. const std::string kernel_src {
  1612. #include "concat.cl.h"
  1613. };
  1614. #else
  1615. const std::string kernel_src = read_file("concat.cl");
  1616. #endif
  1617. if (!kernel_src.empty()) {
  1618. backend_ctx->program_concat =
  1619. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1620. CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
  1621. CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
  1622. GGML_LOG_CONT(".");
  1623. } else {
  1624. GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
  1625. backend_ctx->program_concat = nullptr;
  1626. backend_ctx->kernel_concat_f32_contiguous = nullptr;
  1627. backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
  1628. }
  1629. }
  1630. // timestep_embedding
  1631. {
  1632. #ifdef GGML_OPENCL_EMBED_KERNELS
  1633. const std::string kernel_src {
  1634. #include "tsembd.cl.h"
  1635. };
  1636. #else
  1637. const std::string kernel_src = read_file("tsembd.cl");
  1638. #endif
  1639. if (!kernel_src.empty()) {
  1640. backend_ctx->program_tsembd =
  1641. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1642. CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err));
  1643. GGML_LOG_CONT(".");
  1644. } else {
  1645. GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n");
  1646. backend_ctx->program_tsembd = nullptr;
  1647. backend_ctx->kernel_timestep_embedding = nullptr;
  1648. }
  1649. }
  1650. // set_rows
  1651. {
  1652. #ifdef GGML_OPENCL_EMBED_KERNELS
  1653. const std::string kernel_src {
  1654. #include "set_rows.cl.h"
  1655. };
  1656. #else
  1657. const std::string kernel_src = read_file("set_rows.cl");
  1658. #endif
  1659. backend_ctx->program_set_rows =
  1660. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1661. CL_CHECK((backend_ctx->kernel_set_rows_f32_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i64", &err), err));
  1662. CL_CHECK((backend_ctx->kernel_set_rows_f32_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i32", &err), err));
  1663. CL_CHECK((backend_ctx->kernel_set_rows_f16_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i64", &err), err));
  1664. CL_CHECK((backend_ctx->kernel_set_rows_f16_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i32", &err), err));
  1665. GGML_LOG_CONT(".");
  1666. }
  1667. // conv2d
  1668. {
  1669. #ifdef GGML_OPENCL_EMBED_KERNELS
  1670. const std::string kernel_src {
  1671. #include "conv2d.cl.h"
  1672. };
  1673. const std::string kernel_src_f16_f32 {
  1674. #include "conv2d_f16_f32.cl.h"
  1675. };
  1676. #else
  1677. const std::string kernel_src = read_file("conv2d.cl");
  1678. const std::string kernel_src_f16_f32 = read_file("conv2d_f16_f32.cl");
  1679. #endif
  1680. if (!kernel_src.empty()) {
  1681. backend_ctx->program_conv_2d_f16 =
  1682. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), (std::string(compile_opts) + " -DUSE_FP16=1").c_str());
  1683. CL_CHECK((backend_ctx->kernel_conv_2d_f16 = clCreateKernel(backend_ctx->program_conv_2d_f16, "kernel_conv_2d", &err), err));
  1684. GGML_LOG_CONT(".");
  1685. backend_ctx->program_conv_2d_f32 =
  1686. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1687. CL_CHECK((backend_ctx->kernel_conv_2d_f32 = clCreateKernel(backend_ctx->program_conv_2d_f32, "kernel_conv_2d", &err), err));
  1688. GGML_LOG_CONT(".");
  1689. } else {
  1690. GGML_LOG_WARN("ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n");
  1691. backend_ctx->program_conv_2d_f16 = nullptr;
  1692. backend_ctx->kernel_conv_2d_f16 = nullptr;
  1693. backend_ctx->program_conv_2d_f32 = nullptr;
  1694. backend_ctx->kernel_conv_2d_f32 = nullptr;
  1695. }
  1696. if (!kernel_src_f16_f32.empty()) {
  1697. backend_ctx->program_conv_2d_f16_f32 =
  1698. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16_f32.c_str(), compile_opts);
  1699. CL_CHECK((backend_ctx->kernel_conv_2d_f16_f32 = clCreateKernel(backend_ctx->program_conv_2d_f16_f32, "kernel_conv_2d", &err), err));
  1700. GGML_LOG_CONT(".");
  1701. } else {
  1702. GGML_LOG_WARN("ggml_opencl: conv2d_f16_f32 kernel source not found or empty. This op will not be available.\n");
  1703. backend_ctx->program_conv_2d_f16_f32 = nullptr;
  1704. backend_ctx->kernel_conv_2d_f16_f32 = nullptr;
  1705. }
  1706. }
  1707. // ssm_conv
  1708. {
  1709. #ifdef GGML_OPENCL_EMBED_KERNELS
  1710. const std::string kernel_src {
  1711. #include "ssm_conv.cl.h"
  1712. };
  1713. #else
  1714. const std::string kernel_src = read_file("ssm_conv.cl");
  1715. #endif
  1716. cl_program prog =
  1717. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1718. CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32", &err), err));
  1719. CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32_4 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32_4", &err), err));
  1720. CL_CHECK(clReleaseProgram(prog));
  1721. GGML_LOG_CONT(".");
  1722. }
  1723. // mul_mv_id_q4_0_f32_8x_flat
  1724. {
  1725. #ifdef GGML_OPENCL_EMBED_KERNELS
  1726. const std::string kernel_src {
  1727. #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
  1728. };
  1729. #else
  1730. const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
  1731. #endif
  1732. backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
  1733. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1734. CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
  1735. GGML_LOG_CONT(".");
  1736. }
  1737. // mul_mv_id_q8_0_f32
  1738. {
  1739. #ifdef GGML_OPENCL_EMBED_KERNELS
  1740. const std::string kernel_src {
  1741. #include "mul_mv_id_q8_0_f32.cl.h"
  1742. };
  1743. #else
  1744. const std::string kernel_src = read_file("mul_mv_id_q8_0_f32.cl");
  1745. #endif
  1746. backend_ctx->program_mul_mv_id_q8_0_f32 =
  1747. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1748. CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32, "kernel_mul_mv_id_q8_0_f32", &err), err));
  1749. GGML_LOG_CONT(".");
  1750. }
  1751. // mul_mv_id_q8_0_f32_flat
  1752. {
  1753. #ifdef GGML_OPENCL_EMBED_KERNELS
  1754. const std::string kernel_src {
  1755. #include "mul_mv_id_q8_0_f32_flat.cl.h"
  1756. };
  1757. #else
  1758. const std::string kernel_src = read_file("mul_mv_id_q8_0_f32_flat.cl");
  1759. #endif
  1760. backend_ctx->program_mul_mv_id_q8_0_f32_flat =
  1761. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1762. CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32_flat, "kernel_mul_mv_id_q8_0_f32_flat", &err), err));
  1763. GGML_LOG_CONT(".");
  1764. }
  1765. // mul_mv_id_mxfp4_f32
  1766. {
  1767. #ifdef GGML_OPENCL_EMBED_KERNELS
  1768. const std::string kernel_src {
  1769. #include "mul_mv_id_mxfp4_f32.cl.h"
  1770. };
  1771. #else
  1772. const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32.cl");
  1773. #endif
  1774. backend_ctx->program_mul_mv_id_mxfp4_f32 =
  1775. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1776. CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32, "kernel_mul_mv_id_mxfp4_f32", &err), err));
  1777. GGML_LOG_CONT(".");
  1778. }
  1779. // mul_mv_id_mxfp4_f32_flat
  1780. {
  1781. #ifdef GGML_OPENCL_EMBED_KERNELS
  1782. const std::string kernel_src {
  1783. #include "mul_mv_id_mxfp4_f32_flat.cl.h"
  1784. };
  1785. #else
  1786. const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32_flat.cl");
  1787. #endif
  1788. backend_ctx->program_mul_mv_id_mxfp4_f32_flat =
  1789. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1790. CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32_flat, "kernel_mul_mv_id_mxfp4_f32_flat", &err), err));
  1791. GGML_LOG_CONT(".");
  1792. }
  1793. // Adreno kernels
  1794. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1795. // transpose
  1796. {
  1797. #ifdef GGML_OPENCL_EMBED_KERNELS
  1798. const std::string kernel_src {
  1799. #include "transpose.cl.h"
  1800. };
  1801. #else
  1802. const std::string kernel_src = read_file("transpose.cl");
  1803. #endif
  1804. backend_ctx->program_transpose =
  1805. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1806. CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
  1807. CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
  1808. CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
  1809. CL_CHECK((backend_ctx->kernel_transpose_16_buf = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16_buf", &err), err));
  1810. CL_CHECK((backend_ctx->kernel_transpose_16_4x1 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16_4x1", &err), err));
  1811. GGML_LOG_CONT(".");
  1812. }
  1813. // gemv_noshuffle_general
  1814. {
  1815. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1816. " -cl-mad-enable "
  1817. " -DSIMDGROUP_WIDTH=" +
  1818. std::to_string(backend_ctx->adreno_wave_size);
  1819. if (backend_ctx->has_vector_subgroup_broadcast) {
  1820. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1821. }
  1822. #ifdef GGML_OPENCL_EMBED_KERNELS
  1823. const std::string kernel_src_CL_gemv_general {
  1824. #include "gemv_noshuffle_general.cl.h"
  1825. };
  1826. #else
  1827. const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
  1828. #endif
  1829. backend_ctx->program_CL_gemv_general = build_program_from_source(
  1830. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
  1831. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
  1832. GGML_LOG_CONT(".");
  1833. }
  1834. // gemv_noshuffle
  1835. {
  1836. // Gemv 2048, 16384
  1837. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1838. " -cl-mad-enable "
  1839. " -DLINE_STRIDE_A=2048 "
  1840. " -DBLOCK_STRIDE_A=16384 "
  1841. " -DSIMDGROUP_WIDTH=" +
  1842. std::to_string(backend_ctx->adreno_wave_size);
  1843. if (backend_ctx->has_vector_subgroup_broadcast) {
  1844. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1845. }
  1846. #ifdef GGML_OPENCL_EMBED_KERNELS
  1847. const std::string kernel_src_CL_gemv {
  1848. #include "gemv_noshuffle.cl.h"
  1849. };
  1850. #else
  1851. const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
  1852. #endif
  1853. backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
  1854. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1855. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
  1856. GGML_LOG_CONT(".");
  1857. // Gemv 2048, 16384
  1858. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1859. " -cl-mad-enable "
  1860. " -DLINE_STRIDE_A=2048 "
  1861. " -DBLOCK_STRIDE_A=16384 "
  1862. " -DSIMDGROUP_WIDTH=" +
  1863. std::to_string(backend_ctx->adreno_wave_size);
  1864. if (backend_ctx->has_vector_subgroup_broadcast) {
  1865. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1866. }
  1867. backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
  1868. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1869. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
  1870. GGML_LOG_CONT(".");
  1871. // Gemv 5504, 44032
  1872. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1873. " -cl-mad-enable "
  1874. " -DLINE_STRIDE_A=5504 "
  1875. " -DBLOCK_STRIDE_A=44032 "
  1876. " -DSIMDGROUP_WIDTH=" +
  1877. std::to_string(backend_ctx->adreno_wave_size);
  1878. if (backend_ctx->has_vector_subgroup_broadcast) {
  1879. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1880. }
  1881. backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
  1882. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1883. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
  1884. GGML_LOG_CONT(".");
  1885. // Gemv 16000, 128000
  1886. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1887. " -cl-mad-enable "
  1888. " -DLINE_STRIDE_A=16000 "
  1889. " -DBLOCK_STRIDE_A=128000 "
  1890. " -DSIMDGROUP_WIDTH=" +
  1891. std::to_string(backend_ctx->adreno_wave_size);
  1892. if (backend_ctx->has_vector_subgroup_broadcast) {
  1893. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1894. }
  1895. backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
  1896. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1897. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
  1898. GGML_LOG_CONT(".");
  1899. }
  1900. // mul_mat_Ab_Bi_8x4
  1901. {
  1902. #ifdef GGML_OPENCL_EMBED_KERNELS
  1903. const std::string kernel_src_CL_gemm {
  1904. #include "mul_mat_Ab_Bi_8x4.cl.h"
  1905. };
  1906. #else
  1907. const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
  1908. #endif
  1909. backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
  1910. CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
  1911. GGML_LOG_CONT(".");
  1912. }
  1913. std::string CL_moe_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1914. " -cl-mad-enable "
  1915. " -cl-fast-relaxed-math";
  1916. // gemv_moe_mxfp4_f32
  1917. {
  1918. #ifdef GGML_OPENCL_EMBED_KERNELS
  1919. const std::string kernel_src {
  1920. #include "gemv_moe_mxfp4_f32.cl.h"
  1921. };
  1922. #else
  1923. const std::string kernel_src = read_file("gemv_moe_mxfp4_f32.cl");
  1924. #endif
  1925. backend_ctx->program_gemv_moe_mxfp4_f32 =
  1926. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
  1927. CL_CHECK((backend_ctx->kernel_gemv_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemv_moe_mxfp4_f32, "kernel_gemv_moe_mxfp4_f32", &err), err));
  1928. GGML_LOG_CONT(".");
  1929. }
  1930. // gemm_moe_mxfp4_f32
  1931. {
  1932. #ifdef GGML_OPENCL_EMBED_KERNELS
  1933. const std::string kernel_src {
  1934. #include "gemm_moe_mxfp4_f32.cl.h"
  1935. };
  1936. #else
  1937. const std::string kernel_src = read_file("gemm_moe_mxfp4_f32.cl");
  1938. #endif
  1939. backend_ctx->program_gemm_moe_mxfp4_f32 =
  1940. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
  1941. CL_CHECK((backend_ctx->kernel_gemm_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemm_moe_mxfp4_f32, "kernel_gemm_moe_mxfp4_f32", &err), err));
  1942. GGML_LOG_CONT(".");
  1943. }
  1944. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1945. GGML_LOG_CONT("\n");
  1946. }
  1947. // XXX static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1948. // XXX static bool initialized = false;
  1949. // XXX static ggml_backend_opencl_context *backend_ctx = nullptr;
  1950. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev);
  1951. namespace /* anonymous */ {
  1952. extern struct ggml_backend_device_i ggml_backend_opencl_device_i;
  1953. }
  1954. // Look for available and suitable devices.
  1955. static std::vector<ggml_backend_device> ggml_opencl_probe_devices(ggml_backend_reg * reg) {
  1956. std::vector<ggml_backend_device> found_devices;
  1957. #ifdef GGML_OPENCL_PROFILING
  1958. GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
  1959. #endif
  1960. struct cl_device;
  1961. struct cl_platform {
  1962. cl_platform_id id;
  1963. unsigned number;
  1964. char name[128];
  1965. char vendor[128];
  1966. struct cl_device * devices;
  1967. unsigned n_devices;
  1968. struct cl_device * default_device;
  1969. };
  1970. struct cl_device {
  1971. struct cl_platform * platform;
  1972. cl_device_id id;
  1973. unsigned number;
  1974. cl_device_type type;
  1975. char name[128];
  1976. char version[128];
  1977. };
  1978. enum { NPLAT = 16, NDEV = 16 };
  1979. struct cl_platform platforms[NPLAT];
  1980. unsigned n_platforms = 0;
  1981. struct cl_device devices[NDEV];
  1982. unsigned n_devices = 0;
  1983. struct cl_device * default_device = NULL;
  1984. unsigned default_platform_number = 0;
  1985. cl_platform_id platform_ids[NPLAT];
  1986. if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
  1987. GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
  1988. return found_devices;
  1989. }
  1990. for (unsigned i = 0; i < n_platforms; i++) {
  1991. struct cl_platform * p = &platforms[i];
  1992. p->number = i;
  1993. p->id = platform_ids[i];
  1994. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  1995. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  1996. cl_device_id device_ids[NDEV];
  1997. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  1998. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  1999. p->n_devices = 0;
  2000. } else {
  2001. CL_CHECK(clGetDeviceIDsError);
  2002. }
  2003. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  2004. p->default_device = NULL;
  2005. for (unsigned j = 0; j < p->n_devices; j++) {
  2006. struct cl_device * d = &devices[n_devices];
  2007. d->number = n_devices++;
  2008. d->id = device_ids[j];
  2009. d->platform = p;
  2010. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  2011. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  2012. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
  2013. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  2014. p->default_device = d;
  2015. }
  2016. }
  2017. if (default_device == NULL && p->default_device != NULL) {
  2018. default_device = p->default_device;
  2019. default_platform_number = i;
  2020. }
  2021. }
  2022. if (n_devices == 0) {
  2023. GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
  2024. return found_devices;
  2025. }
  2026. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  2027. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  2028. int user_platform_number = -1;
  2029. int user_device_number = -1;
  2030. cl_device * candidate_devices = nullptr;
  2031. unsigned n_candidate_devices = 0;
  2032. unsigned n;
  2033. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  2034. user_platform_number = (int)n;
  2035. }
  2036. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  2037. user_device_number = (int)n;
  2038. }
  2039. if (user_platform_number != -1 && user_device_number != -1) {
  2040. cl_platform* platform = &platforms[user_platform_number];
  2041. if ((unsigned)user_device_number >= platform->n_devices) {
  2042. GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
  2043. exit(1);
  2044. }
  2045. default_device = &platform->devices[user_device_number];
  2046. candidate_devices = platform->devices;
  2047. n_candidate_devices = platform->n_devices;
  2048. } else {
  2049. // Choose a platform by matching a substring.
  2050. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  2051. for (unsigned i = 0; i < n_platforms; i++) {
  2052. struct cl_platform * p = &platforms[i];
  2053. if (strstr(p->name, user_platform_string) != NULL ||
  2054. strstr(p->vendor, user_platform_string) != NULL) {
  2055. user_platform_number = (int)i;
  2056. break;
  2057. }
  2058. }
  2059. if (user_platform_number == -1) {
  2060. GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  2061. exit(1);
  2062. }
  2063. }
  2064. int platform_idx = user_platform_number != -1 ? user_platform_number : default_platform_number;
  2065. struct cl_platform * p = &platforms[platform_idx];
  2066. candidate_devices = p->devices;
  2067. n_candidate_devices = p->n_devices;
  2068. default_device = p->default_device;
  2069. if (n_candidate_devices == 0) {
  2070. GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  2071. exit(1);
  2072. }
  2073. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  2074. for (unsigned i = 0; i < n_candidate_devices; i++) {
  2075. struct cl_device * d = &candidate_devices[i];
  2076. if (strstr(d->name, user_device_string) != NULL) {
  2077. user_device_number = d->number;
  2078. break;
  2079. }
  2080. }
  2081. if (user_device_number == -1) {
  2082. GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  2083. exit(1);
  2084. }
  2085. }
  2086. if (user_device_number != -1) {
  2087. candidate_devices = &devices[user_device_number];
  2088. n_candidate_devices = 1;
  2089. default_device = &candidate_devices[0];
  2090. }
  2091. GGML_ASSERT(n_candidate_devices > 0);
  2092. if (default_device == NULL) {
  2093. default_device = &candidate_devices[0];
  2094. }
  2095. }
  2096. GGML_ASSERT(n_candidate_devices != 0 && candidate_devices);
  2097. // Put the default device in front.
  2098. for (unsigned i = 1; i < n_candidate_devices; i++) {
  2099. if (&candidate_devices[i] == default_device) {
  2100. std::swap(candidate_devices[0], candidate_devices[i]);
  2101. default_device = &candidate_devices[0];
  2102. break;
  2103. }
  2104. }
  2105. GGML_LOG_INFO("ggml_opencl: selected platform: '%s'\n", default_device->platform->name);
  2106. std::vector<cl_device_id> device_ids;
  2107. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  2108. device_ids.push_back(dev->id);
  2109. }
  2110. cl_int err;
  2111. cl_context shared_context;
  2112. cl_context_properties properties[] = { (intptr_t) CL_CONTEXT_PLATFORM, (intptr_t) default_device->platform->id, 0 };
  2113. CL_CHECK(
  2114. (shared_context = clCreateContext(properties, device_ids.size(), device_ids.data(), NULL, NULL, &err), err));
  2115. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  2116. GGML_LOG_INFO("\nggml_opencl: device: '%s (%s)'\n", dev->name, dev->version);
  2117. auto dev_ctx = std::unique_ptr<ggml_backend_opencl_device_context>(new ggml_backend_opencl_device_context{
  2118. /*.platform =*/dev->platform->id,
  2119. /*.platform_nane =*/dev->platform->name,
  2120. /*.device =*/dev->id,
  2121. /*.device_name =*/dev->name,
  2122. /*.device_type =*/dev->type,
  2123. /*.device_version =*/dev->version,
  2124. /*.backend_ctx =*/nullptr,
  2125. /*.buffer_type =*/{},
  2126. /*.context =*/shared_context,
  2127. });
  2128. found_devices.push_back(ggml_backend_device{
  2129. /* .iface = */ ggml_backend_opencl_device_i,
  2130. /* .reg = */ reg,
  2131. /* .context = */ dev_ctx.get(),
  2132. });
  2133. if (!ggml_cl2_init(&found_devices.back())) {
  2134. found_devices.pop_back();
  2135. GGML_LOG_INFO("ggml_opencl: drop unsupported device.\n");
  2136. continue;
  2137. }
  2138. dev_ctx.release();
  2139. }
  2140. if (found_devices.size()) {
  2141. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(found_devices.front().context);
  2142. GGML_LOG_INFO("ggml_opencl: default device: '%s (%s)'\n", dev_ctx->device_name.c_str(),
  2143. dev_ctx->device_version.c_str());
  2144. if (dev_ctx->device_type != CL_DEVICE_TYPE_GPU) {
  2145. GGML_LOG_WARN("ggml_opencl: warning, the default device is not a GPU: '%s'.\n",
  2146. dev_ctx->device_name.c_str());
  2147. }
  2148. }
  2149. return found_devices;
  2150. }
  2151. // Initialize device if it is supported (returns nullptr if it is not).
  2152. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  2153. GGML_ASSERT(dev);
  2154. GGML_ASSERT(dev->context);
  2155. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  2156. GGML_ASSERT(dev_ctx->platform);
  2157. GGML_ASSERT(dev_ctx->device);
  2158. if (dev_ctx->backend_ctx) {
  2159. return dev_ctx->backend_ctx;
  2160. }
  2161. auto backend_ctx = std::make_unique<ggml_backend_opencl_context>();
  2162. backend_ctx->device = dev_ctx->device;
  2163. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  2164. // ref_count get increased in ggml_backend_opencl_device_init
  2165. // This function is also used to retrieve backend context, so we don't want
  2166. // to increase ref_count for each call. We only want to increase ref_count
  2167. // when the associated device is initialized
  2168. backend_ctx->ref_count = 0;
  2169. if (strstr(dev_ctx->device_name.c_str(), "Adreno") ||
  2170. strstr(dev_ctx->device_name.c_str(), "Qualcomm") ||
  2171. strstr(dev_ctx->device_version.c_str(), "Adreno")) {
  2172. backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
  2173. // Usually device version contains the detailed device name
  2174. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_version.c_str());
  2175. if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
  2176. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_name.c_str());
  2177. }
  2178. // Use wave size of 64 for all Adreno GPUs.
  2179. backend_ctx->adreno_wave_size = 64;
  2180. } else if (strstr(dev_ctx->device_name.c_str(), "Intel")) {
  2181. backend_ctx->gpu_family = GPU_FAMILY::INTEL;
  2182. } else {
  2183. GGML_LOG_ERROR("Unsupported GPU: %s\n", dev_ctx->device_name.c_str());
  2184. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  2185. return nullptr;
  2186. }
  2187. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2188. if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
  2189. GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
  2190. "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
  2191. return nullptr;
  2192. }
  2193. #endif
  2194. // Populate backend device name
  2195. backend_ctx->device_name = dev_ctx->device_name;
  2196. // A local ref of cl_device_id for convenience
  2197. cl_device_id device = backend_ctx->device;
  2198. ggml_cl_version platform_version = get_opencl_platform_version(dev_ctx->platform);
  2199. // Check device OpenCL version, OpenCL 2.0 or above is required
  2200. ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
  2201. if (opencl_c_version.major < 2) {
  2202. GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
  2203. return nullptr;
  2204. }
  2205. // Check driver version
  2206. size_t driver_version_str_size;
  2207. clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
  2208. char *driver_version = (char *)alloca(driver_version_str_size + 1);
  2209. clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
  2210. driver_version[driver_version_str_size] = '\0';
  2211. GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
  2212. backend_ctx->driver_version = driver_version;
  2213. backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
  2214. backend_ctx->has_vector_subgroup_broadcast =
  2215. (backend_ctx->adreno_cl_compiler_version.type == E031 && backend_ctx->adreno_cl_compiler_version.major >= 47) ||
  2216. (backend_ctx->adreno_cl_compiler_version.type == DX && backend_ctx->adreno_cl_compiler_version.major >= 17);
  2217. GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
  2218. backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
  2219. size_t ext_str_size;
  2220. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  2221. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  2222. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  2223. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  2224. // Check if ext_buffer contains cl_khr_fp16
  2225. backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  2226. GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
  2227. // fp16 is required
  2228. if (!backend_ctx->fp16_support) {
  2229. GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
  2230. return nullptr;
  2231. }
  2232. // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
  2233. // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
  2234. if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
  2235. strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
  2236. GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
  2237. "(note that subgroups is an optional feature in OpenCL 3.0)\n");
  2238. return nullptr;
  2239. }
  2240. cl_uint base_align_in_bits;
  2241. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
  2242. GGML_ASSERT(base_align_in_bits % 8u == 0);
  2243. backend_ctx->alignment = base_align_in_bits / 8u;
  2244. GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
  2245. clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
  2246. GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
  2247. clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &backend_ctx->max_workgroup_size, NULL);
  2248. GGML_LOG_INFO("ggml_opencl: device max workgroup size: %lu\n", backend_ctx->max_workgroup_size);
  2249. // Check SVM.
  2250. cl_device_svm_capabilities svm_caps;
  2251. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
  2252. GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
  2253. svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
  2254. GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
  2255. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
  2256. GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
  2257. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
  2258. GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
  2259. svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
  2260. if (opencl_c_version.major >= 3) {
  2261. // Assume it is not available for 3.0, since it is optional in 3.0.
  2262. // If compiling against 3.0, then we can query.
  2263. backend_ctx->non_uniform_workgroups = false;
  2264. #if CL_TARGET_OPENCL_VERSION >= 300
  2265. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, sizeof(cl_bool),
  2266. &backend_ctx->non_uniform_workgroups, 0));
  2267. #endif
  2268. } else {
  2269. GGML_ASSERT(opencl_c_version.major == 2);
  2270. // Non-uniform workgroup sizes is mandatory feature in v2.x.
  2271. backend_ctx->non_uniform_workgroups = true;
  2272. }
  2273. // Print out configurations
  2274. #ifdef GGML_OPENCL_SOA_Q
  2275. GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
  2276. #endif // GGML_OPENCL_SOA_Q
  2277. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2278. GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
  2279. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2280. cl_int err;
  2281. // A local ref of cl_context for convenience
  2282. cl_context context = backend_ctx->context = dev_ctx->context;
  2283. //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  2284. // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  2285. // (queue = clCreateCommandQueue(context, device, 0, &err), err)
  2286. //)));
  2287. cl_command_queue_properties command_queue_props = 0;
  2288. #ifdef GGML_OPENCL_PROFILING
  2289. command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
  2290. #endif
  2291. CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
  2292. // Load kernels
  2293. load_cl_kernels(backend_ctx.get(), opencl_c_version);
  2294. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2295. // Allocate intermediate buffers and images
  2296. size_t required_A_q_d_bytes = 311164928;
  2297. size_t required_A_s_d_bytes = 38895616;
  2298. size_t required_B_d_bytes = 45088768;
  2299. // Ensure buffer sizes do not exceed the maximum allocation size
  2300. size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
  2301. size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
  2302. size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
  2303. if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
  2304. GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2305. required_A_q_d_bytes, max_A_q_d_bytes);
  2306. }
  2307. if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
  2308. GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2309. required_A_s_d_bytes, max_A_s_d_bytes);
  2310. }
  2311. if (required_B_d_bytes > backend_ctx->max_alloc_size) {
  2312. GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2313. required_B_d_bytes, max_B_d_bytes);
  2314. }
  2315. backend_ctx->prealloc_quant_trans.allocate(context, max_A_q_d_bytes);
  2316. backend_ctx->prealloc_scales_trans.allocate(context, max_A_s_d_bytes);
  2317. backend_ctx->prealloc_act_trans.allocate(context, max_B_d_bytes);
  2318. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2319. backend_ctx->disable_fusion = getenv("GGML_OPENCL_DISABLE_FUSION") != nullptr;
  2320. dev_ctx->backend_ctx = backend_ctx.release();
  2321. return dev_ctx->backend_ctx;
  2322. }
  2323. static void ggml_cl2_free(ggml_backend_t backend) {
  2324. ggml_backend_opencl_context * ctx = (ggml_backend_opencl_context *) backend->context;
  2325. ctx->free();
  2326. // The CL context is shared by all backends, release it if all backends have been released
  2327. bool should_release_opencl = true;
  2328. for (auto device : g_ggml_backend_opencl_devices) {
  2329. ggml_backend_opencl_device_context * ctx_dev = (ggml_backend_opencl_device_context *) device.context;
  2330. if (ctx_dev->backend_ctx->ref_count > 0) {
  2331. should_release_opencl = false;
  2332. }
  2333. }
  2334. if (should_release_opencl) {
  2335. CL_CHECK(clReleaseContext(ctx->context));
  2336. }
  2337. }
  2338. //------------------------------------------------------------------------------
  2339. // Tensor extra management
  2340. //------------------------------------------------------------------------------
  2341. struct ggml_tensor_extra_cl {
  2342. // The buffer object that holds the data.
  2343. cl_mem data_device;
  2344. // The offset into the buffer object. This is primarily for scratch buffer
  2345. // and view operation.
  2346. // NB: this offset no longer includes view offset (view_offs). Whenever this
  2347. // offset is used, view_offs should be considered.
  2348. cl_ulong offset;
  2349. // The actual size of the cl_mem object. This is needed when returning the
  2350. // block to the pool.
  2351. size_t actual_size;
  2352. void reset() {
  2353. data_device = nullptr;
  2354. offset = 0;
  2355. actual_size = 0;
  2356. }
  2357. };
  2358. // Additional tensor extra structs for quantized tensors.
  2359. // These tensors are loaded from files and should not be allocated in scratch --
  2360. // they should always be allocated from the pool. Hence, they do not have an
  2361. // `offset`, which indicate their locations in the scratch buffer.
  2362. struct ggml_tensor_extra_cl_q4_0 {
  2363. // Quantized values.
  2364. cl_mem q = nullptr;
  2365. // Quantized values in image1d_buffer_t.
  2366. cl_mem q_img = nullptr;
  2367. // Scales.
  2368. cl_mem d = nullptr;
  2369. // Scales in image1d_buffer_t.
  2370. cl_mem d_img = nullptr;
  2371. // Size of quantized values.
  2372. size_t size_q = 0;
  2373. // Size of scales.
  2374. size_t size_d = 0;
  2375. ~ggml_tensor_extra_cl_q4_0() {
  2376. reset();
  2377. }
  2378. void reset() {
  2379. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2380. // They must be properly released so that the original buffer can be
  2381. // properly released to avoid memory leak.
  2382. if (q != nullptr) {
  2383. CL_CHECK(clReleaseMemObject(q));
  2384. q = nullptr;
  2385. }
  2386. if (d != nullptr) {
  2387. CL_CHECK(clReleaseMemObject(d));
  2388. d = nullptr;
  2389. }
  2390. // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
  2391. // enabled. They point to the images in ggml_backend_opencl_buffer_context.
  2392. // So, there is no need to release them here.
  2393. // TODO: initialize them for non SMALL_PATH path, or remove them.
  2394. q_img = nullptr;
  2395. d_img = nullptr;
  2396. size_q = 0;
  2397. size_d = 0;
  2398. }
  2399. };
  2400. struct ggml_tensor_extra_cl_mxfp4 {
  2401. // Quantized values.
  2402. cl_mem q = nullptr;
  2403. // Quantized values in image1d_buffer_t.
  2404. cl_mem q_img = nullptr;
  2405. // Scales in E8M0.
  2406. cl_mem e = nullptr;
  2407. // Scales in image1d_buffer_t.
  2408. cl_mem e_img = nullptr;
  2409. // Size of quantized values.
  2410. size_t size_q = 0;
  2411. // Size of scales.
  2412. size_t size_e = 0;
  2413. ~ggml_tensor_extra_cl_mxfp4() {
  2414. reset();
  2415. }
  2416. void reset() {
  2417. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2418. // They must be properly released so that the original buffer can be
  2419. // properly released to avoid memory leak.
  2420. if (q != nullptr) {
  2421. CL_CHECK(clReleaseMemObject(q));
  2422. q = nullptr;
  2423. }
  2424. if (e != nullptr) {
  2425. CL_CHECK(clReleaseMemObject(e));
  2426. e = nullptr;
  2427. }
  2428. if (q != nullptr) {
  2429. CL_CHECK(clReleaseMemObject(q_img));
  2430. q = nullptr;
  2431. }
  2432. // Currently, q_img and d_img are not used. They can be image1d_buffer_t
  2433. // that wraps around q and d to utilize image access path.
  2434. q_img = nullptr;
  2435. e_img = nullptr;
  2436. size_q = 0;
  2437. size_e = 0;
  2438. }
  2439. };
  2440. struct ggml_tensor_extra_cl_q8_0 {
  2441. cl_mem q = nullptr;
  2442. cl_mem q_img = nullptr;
  2443. cl_mem d = nullptr;
  2444. cl_mem d_img = nullptr;
  2445. size_t size_q = 0;
  2446. size_t size_d = 0;
  2447. ~ggml_tensor_extra_cl_q8_0() {
  2448. reset();
  2449. }
  2450. void reset() {
  2451. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2452. // They must be properly released so that the original buffer can be
  2453. // properly released to avoid memory leak.
  2454. if (q != nullptr) {
  2455. CL_CHECK(clReleaseMemObject(q));
  2456. q = nullptr;
  2457. }
  2458. if (d != nullptr) {
  2459. CL_CHECK(clReleaseMemObject(d));
  2460. d = nullptr;
  2461. }
  2462. // Currently, q_img and d_img are not used. They can be image1d_buffer_t
  2463. // that wraps around q and d to utilize image access path.
  2464. q_img = nullptr;
  2465. d_img = nullptr;
  2466. size_q = 0;
  2467. size_d = 0;
  2468. }
  2469. };
  2470. //------------------------------------------------------------------------------
  2471. // Backend API
  2472. //------------------------------------------------------------------------------
  2473. //
  2474. // backend
  2475. //
  2476. static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
  2477. return "OpenCL";
  2478. UNUSED(backend);
  2479. }
  2480. static void ggml_backend_opencl_free(ggml_backend_t backend) {
  2481. ggml_cl2_free(backend);
  2482. }
  2483. static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2484. GGML_UNUSED(backend);
  2485. GGML_UNUSED(tensor);
  2486. GGML_UNUSED(data);
  2487. GGML_UNUSED(offset);
  2488. GGML_UNUSED(size);
  2489. }
  2490. static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  2491. GGML_UNUSED(backend);
  2492. GGML_UNUSED(tensor);
  2493. GGML_UNUSED(data);
  2494. GGML_UNUSED(offset);
  2495. GGML_UNUSED(size);
  2496. }
  2497. static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  2498. GGML_UNUSED(backend);
  2499. GGML_UNUSED(src);
  2500. GGML_UNUSED(dst);
  2501. return false;
  2502. }
  2503. static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
  2504. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2505. cl_event evt;
  2506. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt));
  2507. CL_CHECK(clWaitForEvents(1, &evt));
  2508. CL_CHECK(clReleaseEvent(evt));
  2509. }
  2510. // Syncronizes the 'backend_ctx's device with others so that commands
  2511. // enqueued to it won't start until commands in the other devices have
  2512. // completed.
  2513. static void sync_with_other_backends(ggml_backend_opencl_context * backend_ctx) {
  2514. if (g_ggml_backend_opencl_devices.size() < 2)
  2515. return; // No other devices to synchronize with.
  2516. std::vector<cl_event> events;
  2517. events.reserve(g_ggml_backend_opencl_devices.size());
  2518. for (ggml_backend_device & backend_dev : g_ggml_backend_opencl_devices) {
  2519. auto * other_backend_ctx = ggml_cl2_init(&backend_dev);
  2520. if (backend_ctx != other_backend_ctx) {
  2521. cl_event ev;
  2522. CL_CHECK(clEnqueueMarkerWithWaitList(other_backend_ctx->queue, 0, nullptr, &ev));
  2523. CL_CHECK(clFlush(other_backend_ctx->queue));
  2524. events.push_back(ev);
  2525. }
  2526. }
  2527. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, events.size(), events.data(), nullptr));
  2528. for (auto ev : events) {
  2529. CL_CHECK(clReleaseEvent(ev));
  2530. }
  2531. }
  2532. static void sync_with_other_backends(ggml_backend_t backend) {
  2533. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2534. sync_with_other_backends(backend_ctx);
  2535. }
  2536. static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
  2537. if (!ggml_can_fuse(cgraph, node_idx, ops)) {
  2538. return false;
  2539. }
  2540. if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
  2541. const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
  2542. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2543. GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
  2544. GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
  2545. // rms_norm only supports f32
  2546. if (mul->src[0]->type != GGML_TYPE_F32 ||
  2547. mul->src[1]->type != GGML_TYPE_F32 ||
  2548. mul->type != GGML_TYPE_F32) {
  2549. return false;
  2550. }
  2551. // if rms_norm is the B operand, then we don't handle broadcast
  2552. if (rms_norm == mul->src[1] &&
  2553. !ggml_are_same_shape(mul->src[0], rms_norm)) {
  2554. return false;
  2555. }
  2556. // rms_norm assumes contiguous rows
  2557. if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
  2558. return false;
  2559. }
  2560. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2561. const ggml_tensor *norm = cgraph->nodes[node_idx];
  2562. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2563. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2564. const ggml_tensor *w = mul->src[0] == norm ? mul->src[1] : mul->src[0];
  2565. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2566. // norm fusion only supports F32
  2567. if (norm->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2568. return false;
  2569. }
  2570. if (norm->src[0]->ne[0] % 4 != 0) {
  2571. return false;
  2572. }
  2573. if (!ggml_is_contiguous(norm->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2574. return false;
  2575. }
  2576. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_GROUP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2577. const ggml_tensor *gn = cgraph->nodes[node_idx];
  2578. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2579. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2580. const ggml_tensor *w = mul->src[0] == gn ? mul->src[1] : mul->src[0];
  2581. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2582. if (gn->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2583. return false;
  2584. }
  2585. if (!ggml_is_contiguous(gn->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2586. return false;
  2587. }
  2588. }
  2589. return true;
  2590. }
  2591. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor);
  2592. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2593. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2594. static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  2595. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2596. for (int i = 0; i < cgraph->n_nodes; i++) {
  2597. ggml_tensor * node = cgraph->nodes[i];
  2598. // NOTE: this may oversynchronize by synchronizing with
  2599. // backends/devices which don't compute 'cgraph's
  2600. // dependencies.
  2601. sync_with_other_backends(backend);
  2602. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  2603. continue;
  2604. }
  2605. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2606. ggml_opencl_op_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2607. i += 2;
  2608. continue;
  2609. }
  2610. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_GROUP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2611. ggml_opencl_op_group_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2612. i += 2;
  2613. continue;
  2614. }
  2615. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
  2616. ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]);
  2617. i++;
  2618. continue;
  2619. }
  2620. bool ok = ggml_cl_compute_forward(backend, node);
  2621. if (!ok) {
  2622. GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  2623. }
  2624. GGML_ASSERT(ok);
  2625. }
  2626. return GGML_STATUS_SUCCESS;
  2627. }
  2628. static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  2629. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
  2630. ggml_backend_opencl_context * backend_ctx = dev_ctx->backend_ctx;
  2631. switch (op->op) {
  2632. case GGML_OP_NONE:
  2633. return true;
  2634. case GGML_OP_GET_ROWS:
  2635. switch (op->src[0]->type) {
  2636. case GGML_TYPE_F32:
  2637. case GGML_TYPE_F16:
  2638. return true;
  2639. case GGML_TYPE_Q4_0:
  2640. #ifdef GGML_OPENCL_SOA_Q
  2641. // We do not support flattened Q4_0 (and possibly other Q's)
  2642. return false;
  2643. #else // GGML_OPENCL_SOA_Q
  2644. return true;
  2645. #endif // GGML_OPENCL_SOA_Q
  2646. default:
  2647. return false;
  2648. }
  2649. case GGML_OP_SET_ROWS:
  2650. {
  2651. // TODO: add support
  2652. // ref: https://github.com/ggml-org/llama.cpp/pull/14274
  2653. #pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
  2654. if (op->src[0]->type != GGML_TYPE_F32) {
  2655. return false;
  2656. }
  2657. switch (op->type) {
  2658. case GGML_TYPE_F16:
  2659. case GGML_TYPE_F32:
  2660. return (op->src[1]->type == GGML_TYPE_I64 || op->src[1]->type == GGML_TYPE_I32);
  2661. default:
  2662. return false;
  2663. }
  2664. }
  2665. case GGML_OP_CPY:
  2666. case GGML_OP_DUP:
  2667. case GGML_OP_CONT:
  2668. switch (op->src[0]->type) {
  2669. case GGML_TYPE_F32:
  2670. switch (op->type) {
  2671. case GGML_TYPE_F16:
  2672. case GGML_TYPE_F32:
  2673. return true;
  2674. default:
  2675. return false;
  2676. }
  2677. case GGML_TYPE_F16:
  2678. switch (op->type) {
  2679. case GGML_TYPE_F16:
  2680. case GGML_TYPE_F32:
  2681. return true;
  2682. default:
  2683. return false;
  2684. }
  2685. default:
  2686. return false;
  2687. }
  2688. case GGML_OP_SCALE:
  2689. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2690. case GGML_OP_ADD:
  2691. if (op->type == GGML_TYPE_F16) {
  2692. const bool src0_ok = op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32;
  2693. const bool src1_ok = op->src[1]->type == GGML_TYPE_F16 || op->src[1]->type == GGML_TYPE_F32;
  2694. if (src0_ok && src1_ok) {
  2695. return true;
  2696. }
  2697. }
  2698. case GGML_OP_MUL:
  2699. case GGML_OP_DIV:
  2700. case GGML_OP_SUB:
  2701. return (op->src[0]->type == op->src[1]->type) &&
  2702. (op->src[0]->type == op->type) &&
  2703. (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
  2704. case GGML_OP_ADD_ID:
  2705. return op->src[0]->type == GGML_TYPE_F32;
  2706. case GGML_OP_SQR:
  2707. case GGML_OP_SQRT:
  2708. return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
  2709. ggml_is_contiguous(op->src[0]);
  2710. case GGML_OP_UNARY:
  2711. switch (ggml_get_unary_op(op)) {
  2712. case GGML_UNARY_OP_GELU:
  2713. case GGML_UNARY_OP_SILU:
  2714. case GGML_UNARY_OP_RELU:
  2715. case GGML_UNARY_OP_GELU_ERF:
  2716. case GGML_UNARY_OP_GELU_QUICK:
  2717. return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
  2718. case GGML_UNARY_OP_SIGMOID:
  2719. return ggml_is_contiguous(op->src[0]);
  2720. case GGML_UNARY_OP_TANH:
  2721. return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2722. (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
  2723. default:
  2724. return false;
  2725. }
  2726. case GGML_OP_GLU:
  2727. switch (ggml_get_glu_op(op)) {
  2728. case GGML_GLU_OP_GEGLU:
  2729. case GGML_GLU_OP_REGLU:
  2730. case GGML_GLU_OP_SWIGLU:
  2731. case GGML_GLU_OP_SWIGLU_OAI:
  2732. case GGML_GLU_OP_GEGLU_ERF:
  2733. case GGML_GLU_OP_GEGLU_QUICK:
  2734. return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
  2735. default:
  2736. return false;
  2737. }
  2738. case GGML_OP_FILL:
  2739. return op->type == GGML_TYPE_F32 && ggml_is_contiguous(op);
  2740. case GGML_OP_CLAMP:
  2741. return op->src[0]->type == GGML_TYPE_F32;
  2742. case GGML_OP_SOFT_MAX:
  2743. case GGML_OP_NORM:
  2744. return true;
  2745. case GGML_OP_RMS_NORM:
  2746. return op->ne[0] % 4 == 0 && ggml_is_contiguous_rows(op->src[0]);
  2747. case GGML_OP_REPEAT:
  2748. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
  2749. case GGML_OP_PAD:
  2750. // TODO: add circular padding support for opencl, see https://github.com/ggml-org/llama.cpp/pull/16985
  2751. if (ggml_get_op_params_i32(op, 8) != 0) {
  2752. return false;
  2753. }
  2754. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2755. case GGML_OP_UPSCALE: {
  2756. ggml_scale_mode mode = (ggml_scale_mode)(ggml_get_op_params_i32(op, 0) & 0xFF);
  2757. const bool antialias = (ggml_scale_mode)(ggml_get_op_params_i32(op, 0) & GGML_SCALE_FLAG_ANTIALIAS);
  2758. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 &&
  2759. (mode == GGML_SCALE_MODE_NEAREST || mode == GGML_SCALE_MODE_BILINEAR) && !antialias;
  2760. }
  2761. case GGML_OP_CONV_2D:
  2762. return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
  2763. (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2764. (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
  2765. case GGML_OP_SSM_CONV:
  2766. return (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
  2767. case GGML_OP_CONCAT:
  2768. return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2769. case GGML_OP_TIMESTEP_EMBEDDING:
  2770. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2771. case GGML_OP_GROUP_NORM:
  2772. return ggml_is_contiguous(op->src[0]);
  2773. case GGML_OP_MUL_MAT:
  2774. if (op->src[0]->type == GGML_TYPE_F16) {
  2775. return true;
  2776. } else if (op->src[0]->type == GGML_TYPE_F32) {
  2777. return op->src[1]->type == GGML_TYPE_F32;
  2778. } else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
  2779. op->src[0]->type == GGML_TYPE_Q6_K) {
  2780. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2781. } else if (op->src[0]->type == GGML_TYPE_Q8_0) {
  2782. return op->src[1]->type == GGML_TYPE_F32;
  2783. }
  2784. return false;
  2785. case GGML_OP_MUL_MAT_ID:
  2786. if (op->src[0]->type == GGML_TYPE_Q4_0 ||
  2787. op->src[0]->type == GGML_TYPE_Q8_0 ||
  2788. op->src[0]->type == GGML_TYPE_MXFP4) {
  2789. if (op->src[1]->type == GGML_TYPE_F32) {
  2790. return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2791. }
  2792. }
  2793. return false;
  2794. case GGML_OP_RESHAPE:
  2795. case GGML_OP_VIEW:
  2796. case GGML_OP_PERMUTE:
  2797. case GGML_OP_TRANSPOSE:
  2798. return true;
  2799. case GGML_OP_DIAG_MASK_INF:
  2800. return op->ne[3] == 1;
  2801. case GGML_OP_ROPE: {
  2802. const int mode = ((const int32_t *) op->op_params)[2];
  2803. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2804. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2805. if (is_mrope && !is_vision) {
  2806. if (op->src[0]->type == GGML_TYPE_F32 ||
  2807. op->src[0]->type == GGML_TYPE_F16) {
  2808. return true;
  2809. }
  2810. return false;
  2811. }
  2812. if (is_vision) {
  2813. if (op->src[0]->type == GGML_TYPE_F32 ||
  2814. op->src[0]->type == GGML_TYPE_F16) {
  2815. return true;
  2816. }
  2817. return false;
  2818. }
  2819. return true;
  2820. }
  2821. case GGML_OP_IM2COL:
  2822. return true;
  2823. case GGML_OP_ARGSORT: {
  2824. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  2825. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  2826. int cols = 1;
  2827. while (cols < op->ne[0]) {
  2828. cols *= 2;
  2829. }
  2830. return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
  2831. }
  2832. case GGML_OP_SUM_ROWS:
  2833. case GGML_OP_MEAN:
  2834. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2835. case GGML_OP_FLASH_ATTN_EXT:
  2836. {
  2837. const ggml_tensor * q = op->src[0];
  2838. const ggml_tensor * k = op->src[1];
  2839. const ggml_tensor * v = op->src[2];
  2840. const int dk = q->ne[0];
  2841. const int dv = v->ne[0];
  2842. const struct { int dk; int dv; } supported_dims[] = {
  2843. { 40, 40}, { 64, 64}, { 80, 80}, { 96, 96},
  2844. {112, 112}, {128, 128}, {192, 128},
  2845. {192, 192}, {256, 256},
  2846. };
  2847. bool dims_supported = false;
  2848. for (size_t i = 0; i < sizeof(supported_dims)/sizeof(supported_dims[0]); ++i) {
  2849. if (supported_dims[i].dk == dk && supported_dims[i].dv == dv) {
  2850. dims_supported = true;
  2851. break;
  2852. }
  2853. }
  2854. if (!dims_supported) {
  2855. return false;
  2856. }
  2857. const bool is_f32_f32 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F32 &&
  2858. v->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2859. const bool is_f16_f16 = q->type == GGML_TYPE_F16 && k->type == GGML_TYPE_F16 &&
  2860. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16;
  2861. const bool is_f32_f16 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16 &&
  2862. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F32;
  2863. return is_f32_f32 || is_f16_f16 || is_f32_f16;
  2864. }
  2865. default:
  2866. return false;
  2867. }
  2868. }
  2869. // Forward declaration - implementation appears later in the file.
  2870. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
  2871. static ggml_guid_t ggml_backend_opencl_guid() {
  2872. static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
  2873. return &guid;
  2874. }
  2875. static ggml_backend_i ggml_backend_opencl_i = {
  2876. /* .get_name = */ ggml_backend_opencl_name,
  2877. /* .free = */ ggml_backend_opencl_free,
  2878. /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
  2879. /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
  2880. /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
  2881. /* .synchronize = */ ggml_backend_opencl_synchronize,
  2882. /* .graph_plan_create = */ NULL,
  2883. /* .graph_plan_free = */ NULL,
  2884. /* .graph_plan_update = */ NULL,
  2885. /* .graph_plan_compute = */ NULL,
  2886. /* .graph_compute = */ ggml_backend_opencl_graph_compute,
  2887. /* .event_record = */ NULL,
  2888. /* .event_wait = */ NULL,
  2889. /* .graph_optimize = */ NULL,
  2890. };
  2891. ggml_backend_t ggml_backend_opencl_init(void) {
  2892. ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
  2893. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2894. ggml_backend_t backend = new ggml_backend {
  2895. /* .guid = */ ggml_backend_opencl_guid(),
  2896. /* .iface = */ ggml_backend_opencl_i,
  2897. /* .device = */ dev,
  2898. /* .context = */ backend_ctx
  2899. };
  2900. return backend;
  2901. }
  2902. bool ggml_backend_is_opencl(ggml_backend_t backend) {
  2903. return backend && backend->iface.get_name == ggml_backend_opencl_name;
  2904. }
  2905. //
  2906. // buffer
  2907. //
  2908. struct ggml_backend_opencl_buffer_context {
  2909. // A buffer context can hold multiple cl_mem objects. This is for flattening
  2910. // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
  2911. // each tensor is allocated a separate buffer. When flattening is enabled
  2912. // with small allocation, each tensor is backed by two cl_mem objects (for
  2913. // quants and scales) packed into a backend_opencl_buffer.
  2914. ggml_backend_opencl_buffer_context(cl_mem buf)
  2915. : name("OpenCL") {
  2916. buffer.push_back(buf);
  2917. }
  2918. ~ggml_backend_opencl_buffer_context() {
  2919. for (cl_mem buf : buffer) {
  2920. CL_CHECK(clReleaseMemObject(buf));
  2921. }
  2922. for (cl_mem im : img) {
  2923. CL_CHECK(clReleaseMemObject(im));
  2924. }
  2925. // Delete all extras to trigger their destructors
  2926. for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
  2927. delete e;
  2928. }
  2929. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2930. delete e;
  2931. }
  2932. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
  2933. delete e;
  2934. }
  2935. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2936. delete e;
  2937. }
  2938. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4) {
  2939. delete e;
  2940. }
  2941. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
  2942. delete e;
  2943. }
  2944. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0) {
  2945. delete e;
  2946. }
  2947. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
  2948. delete e;
  2949. }
  2950. }
  2951. ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
  2952. ggml_tensor_extra_cl * extra;
  2953. if (temp_tensor_extras.empty()) {
  2954. extra = new ggml_tensor_extra_cl();
  2955. } else {
  2956. extra = temp_tensor_extras.back();
  2957. temp_tensor_extras.pop_back();
  2958. }
  2959. temp_tensor_extras_in_use.push_back(extra);
  2960. extra->reset();
  2961. return extra;
  2962. }
  2963. ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
  2964. ggml_tensor_extra_cl_q4_0 * extra;
  2965. if (temp_tensor_extras_q4_0.empty()) {
  2966. extra = new ggml_tensor_extra_cl_q4_0();
  2967. } else {
  2968. extra = temp_tensor_extras_q4_0.back();
  2969. temp_tensor_extras_q4_0.pop_back();
  2970. }
  2971. temp_tensor_extras_q4_0_in_use.push_back(extra);
  2972. extra->reset();
  2973. return extra;
  2974. }
  2975. ggml_tensor_extra_cl_mxfp4 * ggml_opencl_alloc_temp_tensor_extra_mxfp4() {
  2976. ggml_tensor_extra_cl_mxfp4 * extra;
  2977. if (temp_tensor_extras_mxfp4.empty()) {
  2978. extra = new ggml_tensor_extra_cl_mxfp4();
  2979. } else {
  2980. extra = temp_tensor_extras_mxfp4.back();
  2981. temp_tensor_extras_mxfp4.pop_back();
  2982. }
  2983. temp_tensor_extras_mxfp4_in_use.push_back(extra);
  2984. extra->reset();
  2985. return extra;
  2986. }
  2987. ggml_tensor_extra_cl_q8_0 * ggml_opencl_alloc_temp_tensor_extra_q8_0() {
  2988. ggml_tensor_extra_cl_q8_0 * extra;
  2989. if (temp_tensor_extras_q8_0.empty()) {
  2990. extra = new ggml_tensor_extra_cl_q8_0();
  2991. } else {
  2992. extra = temp_tensor_extras_q8_0.back();
  2993. temp_tensor_extras_q8_0.pop_back();
  2994. }
  2995. temp_tensor_extras_q8_0_in_use.push_back(extra);
  2996. extra->reset();
  2997. return extra;
  2998. }
  2999. void reset() {
  3000. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  3001. temp_tensor_extras.push_back(e);
  3002. }
  3003. temp_tensor_extras_in_use.clear();
  3004. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  3005. temp_tensor_extras_q4_0.push_back(e);
  3006. }
  3007. temp_tensor_extras_q4_0_in_use.clear();
  3008. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
  3009. temp_tensor_extras_mxfp4.push_back(e);
  3010. }
  3011. temp_tensor_extras_mxfp4_in_use.clear();
  3012. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
  3013. temp_tensor_extras_q8_0.push_back(e);
  3014. }
  3015. temp_tensor_extras_q8_0_in_use.clear();
  3016. }
  3017. // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
  3018. // being used are in `temp_tensor_extras_in_use`. At the first run, new
  3019. // extras get created and put in `in_use`. When the buffer is reset via
  3020. // the `reset` callback, all extras in `in_use` get moved to available extras
  3021. // for reuse.
  3022. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
  3023. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
  3024. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
  3025. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
  3026. std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4;
  3027. std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4_in_use;
  3028. std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0;
  3029. std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0_in_use;
  3030. // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
  3031. // before any tensor is initialized (at the beginning of alloc_tensor_range).
  3032. // Hence, there is alway a buffer object in this vector. When each tensor is
  3033. // being initialized, this original buffer object will be released if both
  3034. // flattening and small allocation are enabled, and additional buffer
  3035. // objects will be created in init_tensor to represent flattened quantized
  3036. // weights.
  3037. std::vector<cl_mem> buffer;
  3038. // These are image1d_buffer_t objects that wrap around the quants and scales.
  3039. // For Q4_0 quantization, there should be two of them - one for quants and
  3040. // one for scales. They should be populated only when flattening and small
  3041. // allocation are enabled.
  3042. std::vector<cl_mem> img;
  3043. std::string name;
  3044. };
  3045. static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  3046. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3047. delete ctx;
  3048. }
  3049. static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
  3050. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
  3051. return (void *) (uintptr_t) backend_ctx->alignment;
  3052. }
  3053. static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  3054. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3055. ggml_cl2_init(buffer->buft->device);
  3056. if (tensor->view_src != nullptr) {
  3057. GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
  3058. ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
  3059. GGML_ASSERT(view_extra && "view_extra is nullptr?");
  3060. // Reuse extra of the parent tensor. The offset of this view tensor
  3061. // becomes `extra->offset + view_offs` and needs to be calculated when
  3062. // it is used. This changes is needed because of the change to
  3063. // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
  3064. // `buffer` passed in here will always be `tensor->buffer`. It is OK
  3065. // to allocate extras from the same buffer context for ordinary
  3066. // intermediate tensors. But for views into kv cache tensors, doing so
  3067. // would mess up the extras used by kv cache.
  3068. // Before #7640, `buffer` is for intermediate tensors, which is always
  3069. // different from that of kv cache tensors.
  3070. //
  3071. // NB: now extra->offset no longer accounts for view_offs.
  3072. // NB: this should not apply to weight tensors (for end-to-end runs, but
  3073. // may apply for test-backend-ops).
  3074. // FIXME: if any unexpected results are seen, double check the offset -
  3075. // there could be other places that need fix.
  3076. tensor->extra = view_extra;
  3077. } else {
  3078. {
  3079. size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
  3080. ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
  3081. extra->offset = offset;
  3082. extra->data_device = ctx->buffer[0];
  3083. extra->actual_size = ggml_nbytes(tensor);
  3084. tensor->extra = extra;
  3085. }
  3086. }
  3087. return GGML_STATUS_SUCCESS;
  3088. }
  3089. // The optimized gemm and gemv kernels are used for large matrices without batch.
  3090. // tensor is the quantized weights matrix.
  3091. inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  3092. int64_t threshold_ne0 = 512;
  3093. int64_t threshold_ne1 = 512;
  3094. if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
  3095. backend_ctx->adreno_cl_compiler_version.type != DX) {
  3096. threshold_ne0 = 128;
  3097. threshold_ne1 = 128;
  3098. }
  3099. return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
  3100. tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3101. }
  3102. inline bool use_adreno_moe_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  3103. GGML_UNUSED(backend_ctx);
  3104. int ne01 = tensor->ne[1];
  3105. return ((strstr(tensor->name, "ffn") != NULL) || (strstr(tensor->name, "as") != NULL)) && (ne01 % 64 == 0);
  3106. }
  3107. static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  3108. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  3109. cl_context context = backend_ctx->context;
  3110. cl_command_queue queue = backend_ctx->queue;
  3111. #ifdef GGML_OPENCL_SOA_Q
  3112. // We separate the quantized bits and scale from block_q4_0 by using an
  3113. // additional kernel, where each thread handles a block. We first read the
  3114. // original weights into a temporary buffer, then create two separate
  3115. // buffers for quantized bits and scales, which are then populated by the
  3116. // conversion kernel.
  3117. if (tensor->type == GGML_TYPE_Q4_0) {
  3118. // Tensors should have been preallocated, therefore they should
  3119. // already have ggml_tensor_extra_cl as extra.
  3120. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3121. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3122. // Allocate the new extra and create aliases from the original.
  3123. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3124. ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
  3125. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  3126. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  3127. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3128. cl_int err;
  3129. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3130. ggml_nbytes(tensor), NULL, &err);
  3131. CL_CHECK(err);
  3132. CL_CHECK(clEnqueueWriteBuffer(
  3133. queue, data_device, CL_TRUE, 0,
  3134. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3135. // We consider the specified offset arg as always, although For weights
  3136. // the offset arg should be 0 (we do not assert this).
  3137. //GGML_ASSERT(offset == 0);
  3138. // We create subbuffers from the original tensor buffer for scales and
  3139. // quants - i.e., scales and quants are aliases into the buffer obejct
  3140. // that backs the original tensor. This is a cleaner way to adapt to the
  3141. // new memory management.
  3142. // In the old code, we allocate new buffers for scales and quants
  3143. // respectively, which could still be done but would result in double
  3144. // allocation; properly deallocating the preallocated buffer that backs
  3145. // the tensors is tricky and would leak the backend specific information
  3146. // into the general backend code.
  3147. // Does this create misaligned subbuffers (alignment is 1024) in certain
  3148. // cases ?
  3149. cl_buffer_region region;
  3150. // The original tensor memory is divided into scales and quants, i.e.,
  3151. // we first store scales, then quants.
  3152. // Create subbuffer for scales.
  3153. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3154. region.size = size_d;
  3155. extra->d = clCreateSubBuffer(
  3156. extra_orig->data_device, CL_MEM_READ_WRITE,
  3157. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3158. CL_CHECK(err);
  3159. auto previous_origin = region.origin;
  3160. // Create subbuffer for quants.
  3161. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  3162. region.size = size_q;
  3163. extra->q = clCreateSubBuffer(
  3164. extra_orig->data_device, CL_MEM_READ_WRITE,
  3165. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3166. CL_CHECK(err);
  3167. //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  3168. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3169. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  3170. // The optimized kernels need weights in natural order, so unshuffle.
  3171. if (use_adreno_kernels(backend_ctx, tensor)) {
  3172. kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
  3173. }
  3174. #else
  3175. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  3176. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  3177. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3178. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3179. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  3180. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3181. size_t local_work_size[] = {64, 1, 1};
  3182. cl_event evt;
  3183. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3184. CL_CHECK(clWaitForEvents(1, &evt));
  3185. CL_CHECK(clReleaseMemObject(data_device));
  3186. tensor->extra = extra;
  3187. // transpose the weights and scales
  3188. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3189. // Only do transpose for large, non batched matrix
  3190. // TODO: use preallocated images instead of sub-buffer then image
  3191. if (use_adreno_kernels(backend_ctx, tensor)) {
  3192. // <----------------------------------------------------------------------------------> //
  3193. // start transpose
  3194. // <----------------------------------------------------------------------------------> //
  3195. int M = tensor->ne[1]; // ne01
  3196. int K = tensor->ne[0]; // ne00
  3197. //For matrix-vector multiplication kernel, we assume K is a multiple of 32
  3198. GGML_ASSERT(K % 32 == 0);
  3199. //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
  3200. GGML_ASSERT(M % 4 == 0);
  3201. // transpose is out of place, so we need to allocate transposed buffers
  3202. // <----------------------------------------------------------------------------------> //
  3203. // use sub_buffer of max buffer size instead
  3204. size_t q_size_bytes = K * M / 8 * sizeof(float);
  3205. backend_ctx->prealloc_quant_trans.allocate(context, q_size_bytes);
  3206. cl_buffer_region region;
  3207. region.origin = 0;
  3208. region.size = q_size_bytes;
  3209. cl_mem qT_d = clCreateSubBuffer(
  3210. backend_ctx->prealloc_quant_trans.buffer,
  3211. 0,
  3212. CL_BUFFER_CREATE_TYPE_REGION,
  3213. &region,
  3214. &err);
  3215. CL_CHECK(err);
  3216. bool K_tile_trans = true;
  3217. if ((K / 32) % 4 != 0){
  3218. K_tile_trans =false;
  3219. }
  3220. size_t d_size_bytes = M * (K / 32) * 2;
  3221. backend_ctx->prealloc_scales_trans.allocate(context, d_size_bytes);
  3222. region.origin = 0;
  3223. region.size = d_size_bytes;
  3224. cl_mem dT_d = clCreateSubBuffer(
  3225. backend_ctx->prealloc_scales_trans.buffer,
  3226. 0,
  3227. CL_BUFFER_CREATE_TYPE_REGION,
  3228. &region,
  3229. &err);
  3230. CL_CHECK(err);
  3231. // <----------------------------------------------------------------------------------> //
  3232. // create images from the buffers
  3233. // <----------------------------------------------------------------------------------> //
  3234. cl_mem q_d_image1D;
  3235. cl_mem d_d_image1D;
  3236. cl_mem qT_d_image1D;
  3237. cl_mem dT_d_image1D;
  3238. cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3239. cl_image_desc img_desc_1d;
  3240. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3241. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3242. img_desc_1d.image_width = M * K / 4 / 4;
  3243. img_desc_1d.buffer = extra->q;
  3244. q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3245. CL_CHECK(err);
  3246. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3247. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3248. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3249. img_desc_1d.image_width = M * K / 4 / 4;
  3250. img_desc_1d.buffer = qT_d;
  3251. qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3252. CL_CHECK(err);
  3253. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3254. if (K_tile_trans) {
  3255. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3256. img_desc_1d.image_width = M * K / 32 / 4;
  3257. } else {
  3258. img_fmt_1d = { CL_R, CL_HALF_FLOAT };
  3259. img_desc_1d.image_width = M * K / 32;
  3260. }
  3261. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3262. img_desc_1d.buffer = extra->d;
  3263. d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3264. CL_CHECK(err);
  3265. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3266. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3267. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3268. img_desc_1d.image_width = M * K / 32 / 4;
  3269. img_desc_1d.buffer = dT_d;
  3270. dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3271. CL_CHECK(err);
  3272. // <----------------------------------------------------------------------------------> //
  3273. // set up and call the transpose kernels
  3274. // <----------------------------------------------------------------------------------> //
  3275. // weights
  3276. int height_q = M / 4;
  3277. int width_q = K / 4 / 4;
  3278. kernel = backend_ctx->kernel_transpose_16;
  3279. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
  3280. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
  3281. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
  3282. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
  3283. size_t local_size_q[3] = {4, 16, 1};
  3284. size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
  3285. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
  3286. CL_CHECK(clWaitForEvents(1, &evt));
  3287. // scales
  3288. int height_s = M / 4;
  3289. int width_s = K / 32 / 4;
  3290. kernel = backend_ctx->kernel_transpose_16;
  3291. if (!K_tile_trans) {
  3292. kernel = backend_ctx->kernel_transpose_16_4x1;
  3293. width_s = K / 32;
  3294. }
  3295. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
  3296. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
  3297. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
  3298. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
  3299. size_t local_size_s[3] = {4, 16, 1};
  3300. size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
  3301. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
  3302. CL_CHECK(clWaitForEvents(1, &evt));
  3303. // <----------------------------------------------------------------------------------> //
  3304. // copy transposed buffer contents to original buffers
  3305. // <----------------------------------------------------------------------------------> //
  3306. // weights
  3307. CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
  3308. CL_CHECK(clWaitForEvents(1, &evt));
  3309. // scales
  3310. CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
  3311. CL_CHECK(clWaitForEvents(1, &evt));
  3312. // <----------------------------------------------------------------------------------> //
  3313. // deallocate transpose buffers
  3314. // <----------------------------------------------------------------------------------> //
  3315. CL_CHECK(clReleaseMemObject(qT_d));
  3316. CL_CHECK(clReleaseMemObject(dT_d));
  3317. // deallocate temporary images
  3318. CL_CHECK(clReleaseMemObject(q_d_image1D));
  3319. CL_CHECK(clReleaseMemObject(d_d_image1D));
  3320. CL_CHECK(clReleaseMemObject(qT_d_image1D));
  3321. CL_CHECK(clReleaseMemObject(dT_d_image1D));
  3322. // <----------------------------------------------------------------------------------> //
  3323. // end transpose
  3324. // <----------------------------------------------------------------------------------> //
  3325. }
  3326. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  3327. return;
  3328. }
  3329. if (tensor->type == GGML_TYPE_MXFP4) {
  3330. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3331. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3332. // Allocate the new extra and create aliases from the original.
  3333. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3334. ggml_tensor_extra_cl_mxfp4 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_mxfp4();
  3335. size_t size_e = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(char);
  3336. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  3337. GGML_ASSERT(size_e + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3338. cl_int err;
  3339. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3340. ggml_nbytes(tensor), NULL, &err);
  3341. CL_CHECK(err);
  3342. CL_CHECK(clEnqueueWriteBuffer(
  3343. queue, data_device, CL_TRUE, 0,
  3344. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3345. // The original tensor memory is divided into scales and quants, i.e.,
  3346. // we first store scales, then quants.
  3347. cl_buffer_region region;
  3348. // Create subbuffer for scales.
  3349. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3350. region.size = size_e;
  3351. extra->e = clCreateSubBuffer(
  3352. extra_orig->data_device, CL_MEM_READ_WRITE,
  3353. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3354. CL_CHECK(err);
  3355. auto previous_origin = region.origin;
  3356. // Create subbuffer for quants.
  3357. region.origin = align_to(previous_origin + size_e, backend_ctx->alignment);
  3358. region.size = size_q;
  3359. extra->q = clCreateSubBuffer(
  3360. extra_orig->data_device, CL_MEM_READ_WRITE,
  3361. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3362. CL_CHECK(err);
  3363. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3364. if (use_adreno_moe_kernels(backend_ctx, tensor)) {
  3365. cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4_trans;
  3366. int ne00 = tensor->ne[0];
  3367. int ne01 = tensor->ne[1];
  3368. int ne02 = tensor->ne[2];
  3369. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3370. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3371. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
  3372. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &ne00));
  3373. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01));
  3374. size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
  3375. size_t local_work_size[3] = {64, 2, 1};
  3376. cl_event evt;
  3377. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3378. CL_CHECK(clWaitForEvents(1, &evt));
  3379. CL_CHECK(clReleaseMemObject(data_device));
  3380. tensor->extra = extra;
  3381. return;
  3382. }
  3383. #endif
  3384. cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4;
  3385. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3386. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3387. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
  3388. size_t global_work_size[3] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3389. size_t local_work_size[3] = {64, 1, 1};
  3390. cl_event evt;
  3391. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3392. CL_CHECK(clWaitForEvents(1, &evt));
  3393. CL_CHECK(clReleaseMemObject(data_device));
  3394. // Create image for Q
  3395. cl_image_format img_format_q = {CL_RG, CL_UNSIGNED_INT32};
  3396. cl_image_desc img_desc_q = {
  3397. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  3398. static_cast<size_t>(ggml_nelements(tensor)/32*2),
  3399. 0, 0, 0, 0, 0, 0, 0,
  3400. { extra->q }
  3401. };
  3402. extra->q_img = clCreateImage(context, CL_MEM_READ_ONLY, &img_format_q, &img_desc_q, NULL, &err);
  3403. tensor->extra = extra;
  3404. return;
  3405. }
  3406. if (tensor->type == GGML_TYPE_Q8_0) {
  3407. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3408. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3409. // Allocate the new extra and create aliases from the original.
  3410. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3411. ggml_tensor_extra_cl_q8_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q8_0();
  3412. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  3413. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*(ggml_blck_size(tensor->type)*sizeof(char));
  3414. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3415. cl_int err;
  3416. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3417. ggml_nbytes(tensor), NULL, &err);
  3418. CL_CHECK(err);
  3419. CL_CHECK(clEnqueueWriteBuffer(
  3420. queue, data_device, CL_TRUE, 0,
  3421. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3422. // The original tensor memory is divided into scales and quants, i.e.,
  3423. // we first store scales, then quants.
  3424. cl_buffer_region region;
  3425. // Create subbuffer for scales.
  3426. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3427. region.size = size_d;
  3428. extra->d = clCreateSubBuffer(
  3429. extra_orig->data_device, CL_MEM_READ_WRITE,
  3430. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3431. CL_CHECK(err);
  3432. auto previous_origin = region.origin;
  3433. // Create subbuffer for quants.
  3434. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  3435. region.size = size_q;
  3436. extra->q = clCreateSubBuffer(
  3437. extra_orig->data_device, CL_MEM_READ_WRITE,
  3438. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3439. CL_CHECK(err);
  3440. cl_kernel kernel = backend_ctx->kernel_convert_block_q8_0;
  3441. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3442. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3443. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  3444. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3445. size_t local_work_size[] = {64, 1, 1};
  3446. cl_event evt;
  3447. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3448. CL_CHECK(clWaitForEvents(1, &evt));
  3449. CL_CHECK(clReleaseMemObject(data_device));
  3450. tensor->extra = extra;
  3451. return;
  3452. }
  3453. #endif // GGML_OPENCL_SOA_Q
  3454. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3455. GGML_ASSERT(extra);
  3456. CL_CHECK(clEnqueueWriteBuffer(
  3457. queue, extra->data_device, CL_TRUE, extra->offset + offset,
  3458. size, data, 0, NULL, NULL));
  3459. GGML_UNUSED(buffer);
  3460. }
  3461. static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  3462. GGML_ASSERT(tensor->extra);
  3463. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  3464. cl_context context = backend_ctx->context;
  3465. cl_command_queue queue = backend_ctx->queue;
  3466. // Make sure all previously submitted commands in other devices are finished.
  3467. sync_with_other_backends(backend_ctx);
  3468. #ifdef GGML_OPENCL_SOA_Q
  3469. // In end-to-end runs, get_tensor is usually used to get back the logits,
  3470. // where we can simply do clEnqueueReadBuffer since they are f32.
  3471. // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
  3472. // which requires reading back quantized weight tensors.
  3473. // To properly support this, we need to restore block_q4_0 struct arrays
  3474. // from the flattened buffers.
  3475. if (tensor->type == GGML_TYPE_Q4_0) {
  3476. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
  3477. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3478. if (use_adreno_kernels(backend_ctx, tensor)) {
  3479. cl_int err;
  3480. cl_kernel kernel;
  3481. cl_int M = tensor->ne[1]; // ne01
  3482. cl_int K = tensor->ne[0]; // ne00
  3483. GGML_ASSERT(K % 32 == 0);
  3484. GGML_ASSERT(M % 4 == 0);
  3485. size_t size_q = (ggml_nelements(tensor)/ggml_blck_size(tensor->type))*ggml_blck_size(tensor->type)/2;
  3486. size_t size_d = (ggml_nelements(tensor)/ggml_blck_size(tensor->type))*sizeof(ggml_fp16_t);
  3487. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3488. cl_mem buf_trans_q;
  3489. cl_mem buf_trans_d;
  3490. CL_CHECK((buf_trans_q = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3491. size_q, NULL, &err), err));
  3492. CL_CHECK((buf_trans_d = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3493. size_d, NULL, &err), err));
  3494. kernel = backend_ctx->kernel_transpose_16_buf;
  3495. // transpose q back
  3496. cl_int stride_k_q = K/4;
  3497. size_t local_size_q[3] = {64, 1, 1};
  3498. size_t global_size_q[3] = {(size_t)M, (size_t)stride_k_q, 1};
  3499. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3500. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &buf_trans_q));
  3501. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_int), &M));
  3502. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &stride_k_q));
  3503. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3504. global_size_q, local_size_q, 0, NULL, NULL));
  3505. // transpose scales back
  3506. cl_int stride_k_d = K/32;
  3507. size_t local_size_d[3] = {64, 1, 1};
  3508. size_t global_size_d[3] = {(size_t)M, (size_t)stride_k_d, 1};
  3509. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->d));
  3510. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &buf_trans_d));
  3511. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_int), &M));
  3512. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &stride_k_d));
  3513. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3514. global_size_d, local_size_d, 0, NULL, NULL));
  3515. // unpack
  3516. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3517. ggml_nbytes(tensor), NULL, &err);
  3518. CL_CHECK(err);
  3519. cl_uchar mask_0F = 0x0F;
  3520. cl_uchar mask_F0 = 0xF0;
  3521. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3522. size_t local_work_size[] = {1, 1, 1};
  3523. kernel = backend_ctx->kernel_restore_block_q4_0_noshuffle;
  3524. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &buf_trans_q));
  3525. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &buf_trans_d));
  3526. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3527. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_uchar), &mask_0F));
  3528. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_uchar), &mask_F0));
  3529. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3530. global_work_size, local_work_size, 0, NULL, NULL));
  3531. // read back to host
  3532. CL_CHECK(clEnqueueReadBuffer(
  3533. queue, data_device, CL_TRUE, offset,
  3534. size, data, 0, NULL, NULL));
  3535. CL_CHECK(clReleaseMemObject(data_device));
  3536. CL_CHECK(clReleaseMemObject(buf_trans_q));
  3537. CL_CHECK(clReleaseMemObject(buf_trans_d));
  3538. return;
  3539. }
  3540. #endif
  3541. cl_int err;
  3542. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3543. ggml_nbytes(tensor), NULL, &err);
  3544. CL_CHECK(err);
  3545. cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
  3546. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3547. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  3548. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3549. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3550. size_t local_work_size[] = {1, 1, 1};
  3551. cl_event evt;
  3552. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3553. global_work_size, local_work_size, 0, NULL, &evt));
  3554. CL_CHECK(clWaitForEvents(1, &evt));
  3555. CL_CHECK(clEnqueueReadBuffer(
  3556. queue, data_device, CL_TRUE, offset,
  3557. size, data, 0, NULL, NULL));
  3558. CL_CHECK(clReleaseMemObject(data_device));
  3559. return;
  3560. } else if (tensor->type == GGML_TYPE_MXFP4) {
  3561. ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *)tensor->extra;
  3562. cl_int err;
  3563. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3564. ggml_nbytes(tensor), NULL, &err);
  3565. CL_CHECK(err);
  3566. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3567. if (use_adreno_moe_kernels(backend_ctx, tensor)) {
  3568. cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4_trans;
  3569. int ne00 = tensor->ne[0];
  3570. int ne01 = tensor->ne[1];
  3571. int ne02 = tensor->ne[2];
  3572. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3573. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
  3574. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3575. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &ne00));
  3576. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_int), &ne01));
  3577. size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
  3578. size_t local_work_size[3] = {64, 2, 1};
  3579. cl_event evt;
  3580. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3581. global_work_size, local_work_size, 0, NULL, &evt));
  3582. CL_CHECK(clWaitForEvents(1, &evt));
  3583. CL_CHECK(clEnqueueReadBuffer(
  3584. queue, data_device, CL_TRUE, offset,
  3585. size, data, 0, NULL, NULL));
  3586. CL_CHECK(clReleaseMemObject(data_device));
  3587. return;
  3588. }
  3589. #endif
  3590. cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4;
  3591. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3592. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
  3593. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3594. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3595. size_t local_work_size[] = {1, 1, 1};
  3596. cl_event evt;
  3597. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3598. global_work_size, local_work_size, 0, NULL, &evt));
  3599. CL_CHECK(clWaitForEvents(1, &evt));
  3600. CL_CHECK(clEnqueueReadBuffer(
  3601. queue, data_device, CL_TRUE, offset,
  3602. size, data, 0, NULL, NULL));
  3603. CL_CHECK(clReleaseMemObject(data_device));
  3604. return;
  3605. }
  3606. if (tensor->type == GGML_TYPE_Q8_0) {
  3607. ggml_tensor_extra_cl_q8_0 * extra = (ggml_tensor_extra_cl_q8_0 *)tensor->extra;
  3608. cl_int err;
  3609. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3610. ggml_nbytes(tensor), NULL, &err);
  3611. CL_CHECK(err);
  3612. cl_kernel kernel = backend_ctx->kernel_restore_block_q8_0;
  3613. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3614. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  3615. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3616. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3617. size_t local_work_size[] = {1, 1, 1};
  3618. cl_event evt;
  3619. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3620. global_work_size, local_work_size, 0, NULL, &evt));
  3621. CL_CHECK(clWaitForEvents(1, &evt));
  3622. CL_CHECK(clEnqueueReadBuffer(
  3623. queue, data_device, CL_TRUE, offset,
  3624. size, data, 0, NULL, NULL));
  3625. CL_CHECK(clReleaseMemObject(data_device));
  3626. return;
  3627. }
  3628. #endif // GGML_OPENCL_SOA_Q
  3629. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3630. CL_CHECK(clEnqueueReadBuffer(
  3631. queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
  3632. size, data, 0, NULL, NULL));
  3633. GGML_UNUSED(buffer);
  3634. }
  3635. static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  3636. ggml_backend_dev_t dev = buffer->buft->device;
  3637. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  3638. cl_command_queue queue = backend_ctx->queue;
  3639. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3640. for (cl_mem buf : ctx->buffer) {
  3641. CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
  3642. }
  3643. CL_CHECK(clFinish(queue));
  3644. }
  3645. static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
  3646. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3647. ctx->reset();
  3648. }
  3649. static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
  3650. /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
  3651. /* .get_base = */ ggml_backend_opencl_buffer_get_base,
  3652. /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
  3653. /* .memset_tensor = */ NULL,
  3654. /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
  3655. /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
  3656. /* .cpy_tensor = */ NULL,
  3657. /* .clear = */ ggml_backend_opencl_buffer_clear,
  3658. /* .reset = */ ggml_backend_opencl_buffer_reset,
  3659. };
  3660. //
  3661. // buffer type
  3662. //
  3663. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
  3664. return "OpenCL";
  3665. GGML_UNUSED(buffer_type);
  3666. }
  3667. static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
  3668. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
  3669. // clCreateBuffer returns -61 for size 0
  3670. size = std::max(size, (size_t)1);
  3671. cl_int err;
  3672. cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
  3673. if (err != CL_SUCCESS) {
  3674. GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
  3675. return nullptr;
  3676. }
  3677. ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
  3678. return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
  3679. }
  3680. static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
  3681. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  3682. return backend_ctx->alignment;
  3683. }
  3684. static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
  3685. static size_t max_size = -1;
  3686. if (max_size == (size_t)-1) {
  3687. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  3688. max_size = backend_ctx->max_alloc_size;
  3689. }
  3690. return max_size;
  3691. }
  3692. static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  3693. return ggml_backend_is_opencl(backend);
  3694. UNUSED(buft);
  3695. }
  3696. static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
  3697. /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
  3698. /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
  3699. /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
  3700. /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
  3701. /* .get_alloc_size = */ NULL,
  3702. /* .is_host = */ NULL,
  3703. };
  3704. //
  3705. // backend device
  3706. //
  3707. static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
  3708. return "GPUOpenCL";
  3709. GGML_UNUSED(dev);
  3710. }
  3711. static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
  3712. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  3713. return dev_ctx->device_name.c_str();
  3714. }
  3715. static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  3716. *free = 0;
  3717. *total = 0;
  3718. GGML_UNUSED(dev);
  3719. }
  3720. static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
  3721. return GGML_BACKEND_DEVICE_TYPE_GPU;
  3722. GGML_UNUSED(dev);
  3723. }
  3724. static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  3725. props->name = ggml_backend_opencl_device_get_name(dev);
  3726. props->description = ggml_backend_opencl_device_get_description(dev);
  3727. props->type = ggml_backend_opencl_device_get_type(dev);
  3728. ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
  3729. props->caps = ggml_backend_dev_caps {
  3730. /* .async = */ false,
  3731. /* .host_buffer = */ false,
  3732. /* .buffer_from_host_ptr = */ false,
  3733. /* .events = */ false,
  3734. };
  3735. }
  3736. static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
  3737. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
  3738. // Getting a new reference to the backend, increase ref_count
  3739. backend_ctx->ref_count++;
  3740. ggml_backend_t backend = new ggml_backend {
  3741. /* .guid = */ ggml_backend_opencl_guid(),
  3742. /* .interface = */ ggml_backend_opencl_i,
  3743. /* .device = */ dev,
  3744. /* .context = */ backend_ctx,
  3745. };
  3746. return backend;
  3747. GGML_UNUSED(params);
  3748. }
  3749. static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
  3750. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(dev->context);
  3751. dev_ctx->buffer_type = ggml_backend_buffer_type{
  3752. /* .iface = */ ggml_backend_opencl_buffer_type_interface,
  3753. /* .device = */ dev,
  3754. /* .context = */ nullptr,
  3755. };
  3756. return &dev_ctx->buffer_type;
  3757. }
  3758. static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  3759. GGML_UNUSED(dev);
  3760. GGML_UNUSED(ptr);
  3761. GGML_UNUSED(size);
  3762. GGML_UNUSED(max_tensor_size);
  3763. return nullptr;
  3764. }
  3765. static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  3766. return ggml_opencl_supports_op(dev, op);
  3767. }
  3768. static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  3769. // Check 'dev' and 'buffer_type' are not objects belonging to this backend.
  3770. if (dev->iface.get_name != ggml_backend_opencl_device_get_name ||
  3771. buft->iface.get_name != ggml_backend_opencl_buffer_type_get_name) {
  3772. return false;
  3773. }
  3774. // Check cl_context is the same. clEnqueue* commands may not use
  3775. // buffers from another cl_context.
  3776. ggml_backend_opencl_context * backend_ctx0 = ggml_cl2_init(dev);
  3777. ggml_backend_opencl_context * backend_ctx1 = ggml_cl2_init(buft->device);
  3778. return backend_ctx0->context == backend_ctx1->context;
  3779. }
  3780. namespace /* anonymous */ {
  3781. struct ggml_backend_device_i ggml_backend_opencl_device_i = {
  3782. /* .get_name = */ ggml_backend_opencl_device_get_name,
  3783. /* .get_description = */ ggml_backend_opencl_device_get_description,
  3784. /* .get_memory = */ ggml_backend_opencl_device_get_memory,
  3785. /* .get_type = */ ggml_backend_opencl_device_get_type,
  3786. /* .get_props = */ ggml_backend_opencl_device_get_props,
  3787. /* .init_backend = */ ggml_backend_opencl_device_init,
  3788. /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
  3789. /* .get_host_buffer_type = */ NULL,
  3790. /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
  3791. /* .supports_op = */ ggml_backend_opencl_device_supports_op,
  3792. /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
  3793. /* .offload_op = */ NULL,
  3794. /* .event_new = */ NULL,
  3795. /* .event_free = */ NULL,
  3796. /* .event_synchronize = */ NULL,
  3797. };
  3798. }
  3799. // Backend registry
  3800. static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
  3801. return "OpenCL";
  3802. GGML_UNUSED(reg);
  3803. }
  3804. static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
  3805. return g_ggml_backend_opencl_devices.size();
  3806. GGML_UNUSED(reg);
  3807. }
  3808. static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
  3809. GGML_ASSERT(index < ggml_backend_opencl_reg_device_count(reg));
  3810. return &g_ggml_backend_opencl_devices[index];
  3811. GGML_UNUSED(reg);
  3812. GGML_UNUSED(index);
  3813. }
  3814. static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
  3815. /* .get_name = */ ggml_backend_opencl_reg_get_name,
  3816. /* .device_count = */ ggml_backend_opencl_reg_device_count,
  3817. /* .device_get = */ ggml_backend_opencl_reg_device_get,
  3818. /* .get_proc_address = */ NULL,
  3819. };
  3820. ggml_backend_reg_t ggml_backend_opencl_reg(void) {
  3821. static std::mutex mutex;
  3822. static ggml_backend_reg reg;
  3823. static bool initialized = false;
  3824. std::lock_guard<std::mutex> lock(mutex);
  3825. if (initialized) {
  3826. return &reg;
  3827. }
  3828. initialized = true;
  3829. g_ggml_backend_opencl_devices = ggml_opencl_probe_devices(&reg);
  3830. reg = ggml_backend_reg{
  3831. /* .api_version = */ GGML_BACKEND_API_VERSION,
  3832. /* .iface = */ ggml_backend_opencl_reg_i,
  3833. /* .context = */ NULL,
  3834. };
  3835. return &reg;
  3836. }
  3837. GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
  3838. //------------------------------------------------------------------------------
  3839. // Debugging utils
  3840. //------------------------------------------------------------------------------
  3841. #if 0
  3842. #define QK4_0 32
  3843. typedef struct {
  3844. ggml_fp16_t d; // delta
  3845. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  3846. } block_q4_0;
  3847. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
  3848. "wrong q4_0 block size/padding");
  3849. #include <math.h>
  3850. #ifdef __cplusplus
  3851. #include "half.hpp"
  3852. #endif
  3853. static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
  3854. void * buf = malloc(ggml_nbytes(tensor));
  3855. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3856. cl_command_queue queue = backend_ctx->queue;
  3857. #ifdef GGML_OPENCL_SOA_Q
  3858. void * buf_q;
  3859. void * buf_d;
  3860. #endif
  3861. // Make sure everything is done.
  3862. CL_CHECK(clFinish(queue));
  3863. #ifdef GGML_OPENCL_SOA_Q
  3864. if (tensor->type == GGML_TYPE_Q4_0) {
  3865. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
  3866. GGML_ASSERT(extra);
  3867. size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
  3868. size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
  3869. GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
  3870. buf_q = malloc(size_q);
  3871. buf_d = malloc(size_d);
  3872. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  3873. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
  3874. CL_CHECK(clFinish(queue));
  3875. } else if (tensor->type == GGML_TYPE_MXFP4) {
  3876. ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *) tensor->extra;
  3877. GGML_ASSERT(extra);
  3878. size_t size_q = ggml_nelements(tensor)/QK_MXFP4 * QK_MXFP4/2;
  3879. size_t size_e = ggml_nelements(tensor)/QK_MXFP4 * sizeof(char);
  3880. GGML_ASSERT(size_q + size_e == ggml_nbytes(tensor));
  3881. buf_q = malloc(size_q);
  3882. buf_d = malloc(size_e);
  3883. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  3884. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_e, buf_d, 0, NULL, NULL));
  3885. CL_CHECK(clFinish(queue));
  3886. } else {
  3887. // Read out the tensor from GPU memory.
  3888. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3889. GGML_ASSERT(extra);
  3890. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3891. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3892. CL_CHECK(clFinish(queue));
  3893. }
  3894. #else
  3895. // Read out the tensor from GPU memory.
  3896. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3897. GGML_ASSERT(extra);
  3898. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3899. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3900. CL_CHECK(clFinish(queue));
  3901. #endif // GGML_OPENCL_SOA_Q
  3902. // Open file and dump.
  3903. char fname[512];
  3904. snprintf(fname, sizeof(fname), "./tensor-dumps/%s.txt", tensor->name);
  3905. FILE * f = fopen(fname, "w");
  3906. if (!f) {
  3907. printf("Failed to open %s\n", fname);
  3908. return;
  3909. }
  3910. if (tensor->type == GGML_TYPE_F32) {
  3911. float * data = (float *) buf;
  3912. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3913. if (isnan(data[i])) {
  3914. printf("NaN found: %s\n", tensor->name);
  3915. break;
  3916. }
  3917. fprintf(f, "%f\n", data[i]);
  3918. }
  3919. } else if (tensor->type == GGML_TYPE_I32) {
  3920. int * data = (int *) buf;
  3921. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3922. if (isnan(data[i])) {
  3923. printf("NaN found: %s\n", tensor->name);
  3924. break;
  3925. }
  3926. fprintf(f, "%d\n", data[i]);
  3927. }
  3928. } else if (tensor->type == GGML_TYPE_F16) {
  3929. #ifdef __cplusplus
  3930. half_float::half * data = (half_float::half *) buf;
  3931. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3932. if (std::isnan(data[i])) {
  3933. printf("NaN found: %s\n", tensor->name);
  3934. break;
  3935. }
  3936. fprintf(f, "%f\n", float(data[i]));
  3937. }
  3938. #endif
  3939. } else if (tensor->type == GGML_TYPE_Q4_0) {
  3940. #ifdef GGML_OPENCL_SOA_Q
  3941. ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
  3942. unsigned char * data_q = (unsigned char *)buf_q;
  3943. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3944. fprintf(f, "%04x, ", data_d[i]);
  3945. for (int k = 0; k < QK4_0/2; ++k) {
  3946. fprintf(f, "%02x, ", data_q[k]);
  3947. }
  3948. fprintf(f, "\n");
  3949. data_q += QK4_0/2;
  3950. }
  3951. free(buf_d);
  3952. free(buf_q);
  3953. #else
  3954. block_q4_0 * data = (block_q4_0 *) buf;
  3955. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3956. fprintf(f, "%04x, ", data[i].d);
  3957. for (int k = 0; k < QK4_0/2; ++k) {
  3958. fprintf(f, "%02x, ", data[i].qs[k]);
  3959. }
  3960. fprintf(f, "\n");
  3961. }
  3962. #endif // GGML_OPENCL_SOA_Q
  3963. }
  3964. free(buf);
  3965. fflush(f);
  3966. fclose(f);
  3967. }
  3968. #else
  3969. #define dump_tensor(tensor)
  3970. #endif
  3971. //------------------------------------------------------------------------------
  3972. // Ops
  3973. //------------------------------------------------------------------------------
  3974. static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  3975. const int64_t ne10 = src1->ne[0];
  3976. const int64_t ne0 = dst->ne[0];
  3977. const int64_t ne1 = dst->ne[1];
  3978. // TODO: find the optimal values for these
  3979. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  3980. src1->type == GGML_TYPE_F32 &&
  3981. dst->type == GGML_TYPE_F32 &&
  3982. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
  3983. }
  3984. static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3985. UNUSED(backend);
  3986. UNUSED(src0);
  3987. UNUSED(src1);
  3988. UNUSED(dst);
  3989. }
  3990. static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3991. GGML_ASSERT(src0);
  3992. GGML_ASSERT(src0->extra);
  3993. GGML_ASSERT(src1);
  3994. GGML_ASSERT(src1->extra);
  3995. GGML_ASSERT(dst);
  3996. GGML_ASSERT(dst->extra);
  3997. const int ne00 = src0->ne[0];
  3998. const cl_ulong nb01 = src0->nb[1];
  3999. const cl_ulong nb02 = src0->nb[2];
  4000. const cl_ulong nb03 = src0->nb[3];
  4001. const int ne10 = src1->ne[0];
  4002. const cl_ulong nb10 = src1->nb[0];
  4003. const int ne11 = src1->ne[1];
  4004. const int ne12 = src1->ne[2];
  4005. const cl_ulong nb11 = src1->nb[1];
  4006. const cl_ulong nb12 = src1->nb[2];
  4007. const cl_ulong nb1 = dst->nb[1];
  4008. const cl_ulong nb2 = dst->nb[2];
  4009. const cl_ulong nb3 = dst->nb[3];
  4010. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4011. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4012. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4013. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4014. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4015. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4016. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4017. cl_kernel kernel;
  4018. switch (src0->type) {
  4019. case GGML_TYPE_F32:
  4020. kernel = backend_ctx->kernel_get_rows_f32;
  4021. break;
  4022. case GGML_TYPE_F16:
  4023. kernel = backend_ctx->kernel_get_rows_f16;
  4024. break;
  4025. case GGML_TYPE_Q4_0:
  4026. kernel = backend_ctx->kernel_get_rows_q4_0;
  4027. break;
  4028. default:
  4029. GGML_ASSERT(false && "not implemented");
  4030. }
  4031. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4032. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4033. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4034. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4035. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4036. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4037. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4038. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4039. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4040. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4041. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  4042. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb10));
  4043. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  4044. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  4045. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb1));
  4046. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb2));
  4047. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb3));
  4048. size_t global_work_size[] = {(size_t)ne10*64, (size_t)ne11, (size_t)ne12};
  4049. size_t local_work_size[] = {64, 1, 1};
  4050. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4051. }
  4052. static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4053. GGML_ASSERT(src0);
  4054. GGML_ASSERT(src0->extra);
  4055. GGML_ASSERT(src1);
  4056. GGML_ASSERT(src1->extra);
  4057. GGML_ASSERT(dst);
  4058. GGML_ASSERT(dst->extra);
  4059. GGML_ASSERT(src1->type == GGML_TYPE_I64 || src1->type == GGML_TYPE_I32);
  4060. // ne0 = ne00
  4061. // ne2 = ne02
  4062. // ne3 = ne03
  4063. const int ne01 = src0->ne[1];
  4064. const int ne02 = src0->ne[2];
  4065. const int ne03 = src0->ne[3];
  4066. const cl_ulong nb01 = src0->nb[1];
  4067. const cl_ulong nb02 = src0->nb[2];
  4068. const cl_ulong nb03 = src0->nb[3];
  4069. const int ne11 = src1->ne[1];
  4070. const int ne12 = src1->ne[2];
  4071. const cl_ulong nb10 = src1->nb[0];
  4072. const cl_ulong nb11 = src1->nb[1];
  4073. const cl_ulong nb12 = src1->nb[2];
  4074. const int ne0 = dst->ne[0];
  4075. const cl_ulong nb1 = dst->nb[1];
  4076. const cl_ulong nb2 = dst->nb[2];
  4077. const cl_ulong nb3 = dst->nb[3];
  4078. const int nblk0 = ne0/ggml_blck_size(dst->type);
  4079. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4080. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4081. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4082. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4083. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4084. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4085. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4086. cl_kernel kernel;
  4087. switch (dst->type) {
  4088. case GGML_TYPE_F32:
  4089. if (src1->type == GGML_TYPE_I64) {
  4090. kernel = backend_ctx->kernel_set_rows_f32_i64;
  4091. } else {
  4092. kernel = backend_ctx->kernel_set_rows_f32_i32;
  4093. }
  4094. break;
  4095. case GGML_TYPE_F16:
  4096. if (src1->type == GGML_TYPE_I64) {
  4097. kernel = backend_ctx->kernel_set_rows_f16_i64;
  4098. } else {
  4099. kernel = backend_ctx->kernel_set_rows_f16_i32;
  4100. }
  4101. break;
  4102. default:
  4103. GGML_ABORT("not implemented");
  4104. }
  4105. fastdiv_vals ne11_ = init_fastdiv_values(ne11);
  4106. fastdiv_vals ne12_ = init_fastdiv_values(ne12);
  4107. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4108. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4109. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4110. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4111. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4112. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4113. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
  4114. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4115. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4116. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4117. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(fastdiv_vals), &ne11_));
  4118. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(fastdiv_vals), &ne12_));
  4119. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
  4120. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
  4121. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
  4122. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
  4123. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
  4124. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
  4125. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
  4126. int nth0 = 64;
  4127. if (backend_ctx->gpu_family == INTEL) {
  4128. nth0 = 32;
  4129. } else if (backend_ctx->gpu_family == ADRENO) {
  4130. nth0 = 64;
  4131. }
  4132. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4133. while (nth0 < nblk0 && nth0 < max_workgroup_size) {
  4134. nth0 *= 2;
  4135. }
  4136. int rows_per_workgroup = 1;
  4137. if (nth0 > nblk0) {
  4138. rows_per_workgroup = nth0 / nblk0;
  4139. nth0 = nblk0;
  4140. }
  4141. size_t global_work_size[] = {
  4142. (size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
  4143. (size_t)ne02*rows_per_workgroup,
  4144. (size_t)ne03};
  4145. size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
  4146. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4147. }
  4148. static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4149. GGML_ASSERT(src0);
  4150. GGML_ASSERT(src0->extra);
  4151. GGML_ASSERT(src1);
  4152. GGML_ASSERT(src1->extra);
  4153. GGML_ASSERT(dst);
  4154. GGML_ASSERT(dst->extra);
  4155. const int ne00 = src0->ne[0];
  4156. const int ne01 = src0->ne[1];
  4157. const int ne02 = src0->ne[2];
  4158. const int ne03 = src0->ne[3];
  4159. const cl_ulong nb00 = src0->nb[0];
  4160. const cl_ulong nb01 = src0->nb[1];
  4161. const cl_ulong nb02 = src0->nb[2];
  4162. const cl_ulong nb03 = src0->nb[3];
  4163. const int ne10 = src1->ne[0];
  4164. const int ne11 = src1->ne[1];
  4165. const int ne12 = src1->ne[2];
  4166. const int ne13 = src1->ne[3];
  4167. const cl_ulong nb10 = src1->nb[0];
  4168. const cl_ulong nb11 = src1->nb[1];
  4169. const cl_ulong nb12 = src1->nb[2];
  4170. const cl_ulong nb13 = src1->nb[3];
  4171. const int ne0 = dst->ne[0];
  4172. const int ne1 = dst->ne[1];
  4173. const int ne2 = dst->ne[2];
  4174. const int ne3 = dst->ne[3];
  4175. const cl_ulong nb0 = dst->nb[0];
  4176. const cl_ulong nb1 = dst->nb[1];
  4177. const cl_ulong nb2 = dst->nb[2];
  4178. const cl_ulong nb3 = dst->nb[3];
  4179. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4180. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4181. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4182. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4183. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4184. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4185. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4186. cl_kernel kernel;
  4187. const bool bcast_row = ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0;
  4188. if (bcast_row) {
  4189. GGML_ASSERT(ggml_is_contiguous(src0));
  4190. GGML_ASSERT(ne11 == 1);
  4191. }
  4192. if (dst->type == GGML_TYPE_F32) {
  4193. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32);
  4194. if (bcast_row) {
  4195. kernel = backend_ctx->kernel_add_row;
  4196. const int ne = ne00 / 4;
  4197. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4198. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4199. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4200. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4201. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4202. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4203. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4204. } else {
  4205. kernel = backend_ctx->kernel_add;
  4206. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4207. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4208. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4209. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4210. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4211. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4212. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4213. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4214. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4215. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4216. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4217. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4218. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4219. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4220. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4221. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4222. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4223. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4224. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4225. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4226. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4227. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4228. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4229. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4230. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4231. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4232. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4233. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4234. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4235. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4236. }
  4237. } else if (dst->type == GGML_TYPE_F16) {
  4238. GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F32);
  4239. GGML_ASSERT(src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
  4240. const int type_src0 = (src0->type == GGML_TYPE_F32);
  4241. const int type_src1 = (src1->type == GGML_TYPE_F32);
  4242. if (bcast_row) {
  4243. kernel = backend_ctx->kernel_add_row_f16;
  4244. const int ne = ne00 / 4;
  4245. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4246. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4247. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4248. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4249. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4250. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4251. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4252. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &type_src0));
  4253. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &type_src1));
  4254. } else {
  4255. kernel = backend_ctx->kernel_add_f16;
  4256. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4257. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4258. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4259. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4260. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4261. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4262. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4263. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4264. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4265. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4266. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4267. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4268. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4269. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4270. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4271. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4272. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4273. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4274. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4275. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4276. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4277. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4278. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4279. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4280. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4281. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4282. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4283. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4284. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4285. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4286. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &type_src0));
  4287. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(int), &type_src1));
  4288. }
  4289. } else {
  4290. GGML_ASSERT(false && "unsupported data types for add");
  4291. }
  4292. if (bcast_row) {
  4293. int n = ggml_nelements(dst)/4;
  4294. size_t global_work_size[] = {(size_t)n, 1, 1};
  4295. size_t local_work_size[] = {64, 1, 1};
  4296. size_t * local_work_size_ptr = local_work_size;
  4297. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4298. local_work_size_ptr = nullptr;
  4299. }
  4300. backend_ctx->enqueue_ndrange_kernel(kernel, 1, global_work_size, local_work_size_ptr, dst);
  4301. } else {
  4302. unsigned int nth = MIN(64, ne0);
  4303. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4304. size_t local_work_size[] = {nth, 1, 1};
  4305. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4306. }
  4307. }
  4308. static void ggml_cl_add_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4309. GGML_ASSERT(src0);
  4310. GGML_ASSERT(src0->extra);
  4311. GGML_ASSERT(src1);
  4312. GGML_ASSERT(src1->extra);
  4313. GGML_ASSERT(dst);
  4314. GGML_ASSERT(dst->extra);
  4315. const ggml_tensor * src2 = dst->src[2];
  4316. GGML_ASSERT(src2);
  4317. GGML_ASSERT(src2->extra);
  4318. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4319. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4320. GGML_ASSERT(src2->type == GGML_TYPE_I32);
  4321. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4322. GGML_ASSERT(ggml_is_contiguous_rows(src0));
  4323. const int ne00 = src0->ne[0];
  4324. const int ne01 = src0->ne[1];
  4325. const int ne02 = src0->ne[2];
  4326. const cl_ulong nb01 = src0->nb[1];
  4327. const cl_ulong nb02 = src0->nb[2];
  4328. const cl_ulong nb11 = src1->nb[1];
  4329. const cl_ulong nb21 = src2->nb[1];
  4330. const int ne0 = dst->ne[0];
  4331. const int ne1 = dst->ne[1];
  4332. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4333. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4334. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4335. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4336. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4337. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4338. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4339. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4340. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4341. cl_kernel kernel = backend_ctx->kernel_add_id;
  4342. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4343. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4344. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4345. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4346. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4347. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4348. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4349. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4350. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4351. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4352. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
  4353. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb21));
  4354. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
  4355. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne1));
  4356. int nth = MIN(ne00, (int) backend_ctx->get_kernel_workgroup_size(kernel));
  4357. size_t global_work_size[] = { (size_t)ne01*nth, (size_t)ne02, 1 };
  4358. size_t local_work_size[] = { (size_t)nth, 1, 1 };
  4359. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4360. }
  4361. static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4362. GGML_ASSERT(src0);
  4363. GGML_ASSERT(src0->extra);
  4364. GGML_ASSERT(src1);
  4365. GGML_ASSERT(src1->extra);
  4366. GGML_ASSERT(dst);
  4367. GGML_ASSERT(dst->extra);
  4368. GGML_ASSERT(src0->type == src1->type);
  4369. GGML_ASSERT(src0->type == dst->type);
  4370. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4371. const int ne00 = src0->ne[0];
  4372. const int ne01 = src0->ne[1];
  4373. const int ne02 = src0->ne[2];
  4374. const int ne03 = src0->ne[3];
  4375. const cl_ulong nb00 = src0->nb[0];
  4376. const cl_ulong nb01 = src0->nb[1];
  4377. const cl_ulong nb02 = src0->nb[2];
  4378. const cl_ulong nb03 = src0->nb[3];
  4379. const int ne10 = src1->ne[0];
  4380. const int ne11 = src1->ne[1];
  4381. const int ne12 = src1->ne[2];
  4382. const int ne13 = src1->ne[3]; UNUSED(ne13);
  4383. const cl_ulong nb10 = src1->nb[0];
  4384. const cl_ulong nb11 = src1->nb[1];
  4385. const cl_ulong nb12 = src1->nb[2];
  4386. const cl_ulong nb13 = src1->nb[3]; UNUSED(nb13);
  4387. const int ne0 = dst->ne[0];
  4388. const int ne1 = dst->ne[1];
  4389. const int ne2 = dst->ne[2];
  4390. const int ne3 = dst->ne[3];
  4391. const cl_ulong nb0 = dst->nb[0];
  4392. const cl_ulong nb1 = dst->nb[1];
  4393. const cl_ulong nb2 = dst->nb[2];
  4394. const cl_ulong nb3 = dst->nb[3];
  4395. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4396. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4397. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4398. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4399. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4400. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4401. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4402. bool bcast_row = false;
  4403. cl_kernel kernel;
  4404. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4405. GGML_ASSERT(ggml_is_contiguous(src0));
  4406. // src1 is a row
  4407. GGML_ASSERT(ne11 == 1);
  4408. bcast_row = true;
  4409. int ne = ne00 / 4;
  4410. if (src0->type == GGML_TYPE_F32) {
  4411. kernel = backend_ctx->kernel_mul_row;
  4412. } else {
  4413. kernel = backend_ctx->kernel_mul_row_f16;
  4414. }
  4415. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4416. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4417. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4418. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4419. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4420. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4421. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4422. } else {
  4423. if (src0->type == GGML_TYPE_F32) {
  4424. kernel = backend_ctx->kernel_mul;
  4425. } else {
  4426. kernel = backend_ctx->kernel_mul_f16;
  4427. }
  4428. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4429. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4430. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4431. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4432. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4433. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4434. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4435. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4436. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4437. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4438. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4439. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4440. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4441. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4442. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4443. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4444. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4445. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4446. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4447. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4448. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4449. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4450. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4451. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4452. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4453. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4454. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4455. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4456. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4457. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4458. }
  4459. if (bcast_row) {
  4460. int n = ggml_nelements(dst)/4;
  4461. size_t global_work_size[] = {(size_t)n, 1, 1};
  4462. size_t local_work_size[] = {64, 1, 1};
  4463. size_t * local_work_size_ptr = local_work_size;
  4464. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4465. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4466. }
  4467. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4468. } else {
  4469. unsigned int nth = MIN(64, ne0);
  4470. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4471. size_t local_work_size[] = {nth, 1, 1};
  4472. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4473. }
  4474. }
  4475. static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4476. GGML_ASSERT(src0);
  4477. GGML_ASSERT(src0->extra);
  4478. GGML_ASSERT(src1);
  4479. GGML_ASSERT(src1->extra);
  4480. GGML_ASSERT(dst);
  4481. GGML_ASSERT(dst->extra);
  4482. GGML_ASSERT(src0->type == src1->type);
  4483. GGML_ASSERT(src0->type == dst->type);
  4484. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4485. const int ne00 = src0->ne[0];
  4486. const int ne01 = src0->ne[1];
  4487. const int ne02 = src0->ne[2];
  4488. const int ne03 = src0->ne[3];
  4489. const cl_ulong nb00 = src0->nb[0];
  4490. const cl_ulong nb01 = src0->nb[1];
  4491. const cl_ulong nb02 = src0->nb[2];
  4492. const cl_ulong nb03 = src0->nb[3];
  4493. const int ne10 = src1->ne[0];
  4494. const int ne11 = src1->ne[1];
  4495. const int ne12 = src1->ne[2];
  4496. const int ne13 = src1->ne[3];
  4497. const cl_ulong nb10 = src1->nb[0];
  4498. const cl_ulong nb11 = src1->nb[1];
  4499. const cl_ulong nb12 = src1->nb[2];
  4500. const cl_ulong nb13 = src1->nb[3];
  4501. const int ne0 = dst->ne[0];
  4502. const cl_ulong nb0 = dst->nb[0];
  4503. const cl_ulong nb1 = dst->nb[1];
  4504. const cl_ulong nb2 = dst->nb[2];
  4505. const cl_ulong nb3 = dst->nb[3];
  4506. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4507. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4508. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4509. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4510. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4511. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4512. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4513. bool bcast_row = false;
  4514. cl_kernel kernel;
  4515. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4516. GGML_ASSERT(ggml_is_contiguous(src0));
  4517. // src1 is a row
  4518. GGML_ASSERT(ne11 == 1);
  4519. bcast_row = true;
  4520. int ne = ne00 / 4;
  4521. if (src0->type == GGML_TYPE_F32) {
  4522. kernel = backend_ctx->kernel_div_row;
  4523. } else {
  4524. kernel = backend_ctx->kernel_div_row_f16;
  4525. }
  4526. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4527. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4528. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4529. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4530. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4531. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4532. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4533. } else {
  4534. if (src0->type == GGML_TYPE_F32) {
  4535. kernel = backend_ctx->kernel_div;
  4536. } else {
  4537. kernel = backend_ctx->kernel_div_f16;
  4538. }
  4539. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4540. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4541. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4542. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4543. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4544. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4545. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4546. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4547. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4548. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4549. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  4550. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  4551. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  4552. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  4553. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4554. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4555. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4556. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4557. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  4558. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  4559. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4560. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4561. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4562. }
  4563. if (bcast_row) {
  4564. int n = ggml_nelements(dst)/4;
  4565. size_t global_work_size[] = {(size_t)n, 1, 1};
  4566. size_t local_work_size[] = {64, 1, 1};
  4567. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4568. } else {
  4569. unsigned int nth = MIN(64, ne0);
  4570. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4571. size_t local_work_size[] = {nth, 1, 1};
  4572. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4573. }
  4574. }
  4575. static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4576. GGML_ASSERT(src0);
  4577. GGML_ASSERT(src0->extra);
  4578. GGML_ASSERT(src1);
  4579. GGML_ASSERT(src1->extra);
  4580. GGML_ASSERT(dst);
  4581. GGML_ASSERT(dst->extra);
  4582. GGML_ASSERT(src0->type == src1->type);
  4583. GGML_ASSERT(src0->type == dst->type);
  4584. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4585. const int ne00 = src0->ne[0];
  4586. const int ne01 = src0->ne[1];
  4587. const int ne02 = src0->ne[2];
  4588. const int ne03 = src0->ne[3];
  4589. const cl_ulong nb00 = src0->nb[0];
  4590. const cl_ulong nb01 = src0->nb[1];
  4591. const cl_ulong nb02 = src0->nb[2];
  4592. const cl_ulong nb03 = src0->nb[3];
  4593. const int ne10 = src1->ne[0];
  4594. const int ne11 = src1->ne[1];
  4595. const int ne12 = src1->ne[2];
  4596. const int ne13 = src1->ne[3];
  4597. const cl_ulong nb10 = src1->nb[0];
  4598. const cl_ulong nb11 = src1->nb[1];
  4599. const cl_ulong nb12 = src1->nb[2];
  4600. const cl_ulong nb13 = src1->nb[3];
  4601. const int ne0 = dst->ne[0];
  4602. const cl_ulong nb0 = dst->nb[0];
  4603. const cl_ulong nb1 = dst->nb[1];
  4604. const cl_ulong nb2 = dst->nb[2];
  4605. const cl_ulong nb3 = dst->nb[3];
  4606. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4607. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4608. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4609. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4610. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4611. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4612. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4613. bool bcast_row = false;
  4614. cl_kernel kernel;
  4615. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4616. GGML_ASSERT(ggml_is_contiguous(src0));
  4617. // src1 is a row
  4618. GGML_ASSERT(ne11 == 1);
  4619. bcast_row = true;
  4620. int ne = ne00 / 4;
  4621. if (src0->type == GGML_TYPE_F32) {
  4622. kernel = backend_ctx->kernel_sub_row;
  4623. } else {
  4624. kernel = backend_ctx->kernel_sub_row_f16;
  4625. }
  4626. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4627. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4628. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4629. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4630. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4631. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4632. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4633. } else {
  4634. if (src0->type == GGML_TYPE_F32) {
  4635. kernel = backend_ctx->kernel_sub;
  4636. } else {
  4637. kernel = backend_ctx->kernel_sub_f16;
  4638. }
  4639. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4640. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4641. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4642. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4643. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4644. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4645. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4646. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4647. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4648. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4649. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  4650. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  4651. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  4652. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  4653. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4654. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4655. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4656. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4657. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  4658. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  4659. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4660. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4661. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4662. }
  4663. if (bcast_row) {
  4664. int n = ggml_nelements(dst)/4;
  4665. size_t global_work_size[] = {(size_t)n, 1, 1};
  4666. size_t local_work_size[] = {64, 1, 1};
  4667. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4668. } else {
  4669. unsigned int nth = MIN(64, ne0);
  4670. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4671. size_t local_work_size[] = {nth, 1, 1};
  4672. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4673. }
  4674. }
  4675. static void ggml_cl_sqr(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4676. GGML_ASSERT(src0);
  4677. GGML_ASSERT(src0->extra);
  4678. GGML_ASSERT(dst);
  4679. GGML_ASSERT(dst->extra);
  4680. UNUSED(src1);
  4681. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4682. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4683. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4684. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4685. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4686. cl_kernel kernel;
  4687. // Currently assumes src0 is contiguous
  4688. int n = ggml_nelements(dst);
  4689. if (n % 4 == 0) {
  4690. if (src0->type == GGML_TYPE_F32) {
  4691. kernel = backend_ctx->kernel_sqr_cont_f32_4;
  4692. } else {
  4693. kernel = backend_ctx->kernel_sqr_cont_f16_4;
  4694. }
  4695. n /= 4;
  4696. } else {
  4697. if (src0->type == GGML_TYPE_F32) {
  4698. kernel = backend_ctx->kernel_sqr_cont_f32;
  4699. } else {
  4700. kernel = backend_ctx->kernel_sqr_cont_f16;
  4701. }
  4702. }
  4703. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4704. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4705. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4706. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4707. size_t global_work_size[] = {(size_t)n, 1, 1};
  4708. size_t local_work_size[] = {64, 1, 1};
  4709. size_t * local_work_size_ptr = local_work_size;
  4710. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4711. local_work_size_ptr = nullptr;
  4712. }
  4713. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4714. }
  4715. static void ggml_cl_sqrt(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4716. GGML_ASSERT(src0);
  4717. GGML_ASSERT(src0->extra);
  4718. GGML_ASSERT(dst);
  4719. GGML_ASSERT(dst->extra);
  4720. UNUSED(src1);
  4721. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4722. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4723. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4724. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4725. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4726. cl_kernel kernel;
  4727. // Currently assumes src0 is contiguous
  4728. int n = ggml_nelements(dst);
  4729. if (n % 4 == 0) {
  4730. if (src0->type == GGML_TYPE_F32) {
  4731. kernel = backend_ctx->kernel_sqrt_cont_f32_4;
  4732. } else {
  4733. kernel = backend_ctx->kernel_sqrt_cont_f16_4;
  4734. }
  4735. n /= 4;
  4736. } else {
  4737. if (src0->type == GGML_TYPE_F32) {
  4738. kernel = backend_ctx->kernel_sqrt_cont_f32;
  4739. } else {
  4740. kernel = backend_ctx->kernel_sqrt_cont_f16;
  4741. }
  4742. }
  4743. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4744. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4745. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4746. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4747. size_t global_work_size[] = {(size_t)n, 1, 1};
  4748. size_t local_work_size[] = {64, 1, 1};
  4749. size_t * local_work_size_ptr = local_work_size;
  4750. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4751. local_work_size_ptr = nullptr;
  4752. }
  4753. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4754. }
  4755. static void ggml_cl_mean(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4756. GGML_ASSERT(src0);
  4757. GGML_ASSERT(src0->extra);
  4758. GGML_ASSERT(dst);
  4759. GGML_ASSERT(dst->extra);
  4760. GGML_UNUSED(src1);
  4761. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  4762. GGML_ASSERT(ggml_is_contiguous(src0));
  4763. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4764. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4765. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4766. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4767. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4768. const int ne00 = src0->ne[0];
  4769. const int ne01 = src0->ne[1];
  4770. const int ne02 = src0->ne[2];
  4771. const int ne03 = src0->ne[3];
  4772. const cl_ulong nb01 = src0->nb[1];
  4773. const cl_ulong nb02 = src0->nb[2];
  4774. const cl_ulong nb03 = src0->nb[3];
  4775. const cl_ulong nb1 = dst->nb[1];
  4776. const cl_ulong nb2 = dst->nb[2];
  4777. const cl_ulong nb3 = dst->nb[3];
  4778. cl_kernel kernel = backend_ctx->kernel_mean_f32;
  4779. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4780. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4781. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4782. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4783. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4784. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4785. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4786. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4787. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4788. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4789. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  4790. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
  4791. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
  4792. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
  4793. size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
  4794. size_t local_work_size[] = {(size_t)64, 1, 1};
  4795. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4796. }
  4797. static void ggml_cl_ssm_conv(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4798. GGML_ASSERT(src0);
  4799. GGML_ASSERT(src0->extra);
  4800. GGML_ASSERT(src1);
  4801. GGML_ASSERT(src1->extra);
  4802. GGML_ASSERT(dst);
  4803. GGML_ASSERT(dst->extra);
  4804. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4805. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4806. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4807. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4808. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4809. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4810. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4811. int ne01 = src0->ne[1];
  4812. cl_ulong nb00 = src0->nb[0];
  4813. cl_ulong nb01 = src0->nb[1];
  4814. cl_ulong nb02 = src0->nb[2];
  4815. int ne10 = src1->ne[0];
  4816. cl_ulong nb11 = src1->nb[1];
  4817. int ne1 = dst->ne[1];
  4818. int ne2 = dst->ne[2];
  4819. cl_ulong nb0 = dst->nb[0];
  4820. cl_ulong nb1 = dst->nb[1];
  4821. cl_ulong nb2 = dst->nb[2];
  4822. cl_kernel kernel = backend_ctx->kernel_ssm_conv_f32_f32;
  4823. if (ne10 % 4 == 0) {
  4824. kernel = backend_ctx->kernel_ssm_conv_f32_f32_4;
  4825. }
  4826. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4827. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4828. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4829. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4830. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4831. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4832. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4833. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4834. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4835. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  4836. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
  4837. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb0));
  4838. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
  4839. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
  4840. size_t global_work_size[] = {(size_t)ne01, (size_t)ne1, (size_t)ne2};
  4841. size_t local_work_size[] = {64, 1, 1};
  4842. size_t * local_work_size_ptr = local_work_size;
  4843. if (ne01 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4844. local_work_size_ptr = nullptr;
  4845. }
  4846. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4847. }
  4848. static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4849. GGML_ASSERT(src0);
  4850. GGML_ASSERT(src0->extra);
  4851. GGML_ASSERT(dst);
  4852. GGML_ASSERT(dst->extra);
  4853. UNUSED(src1);
  4854. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4855. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4856. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4857. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4858. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4859. cl_kernel kernel;
  4860. int n = ggml_nelements(dst);
  4861. if (n % 4 == 0) {
  4862. kernel = backend_ctx->kernel_gelu_4;
  4863. n /= 4;
  4864. } else {
  4865. kernel = backend_ctx->kernel_gelu;
  4866. }
  4867. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4868. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4869. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4870. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4871. size_t global_work_size[] = {(size_t)n, 1, 1};
  4872. size_t local_work_size[] = {64, 1, 1};
  4873. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4874. }
  4875. static void ggml_cl_gelu_erf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4876. GGML_ASSERT(src0);
  4877. GGML_ASSERT(src0->extra);
  4878. GGML_ASSERT(dst);
  4879. GGML_ASSERT(dst->extra);
  4880. UNUSED(src1);
  4881. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4882. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4883. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4884. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4885. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4886. cl_kernel kernel;
  4887. int n = ggml_nelements(dst);
  4888. if (n % 4 == 0) {
  4889. kernel = backend_ctx->kernel_gelu_erf_4;
  4890. n /= 4;
  4891. } else {
  4892. kernel = backend_ctx->kernel_gelu_erf;
  4893. }
  4894. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4895. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4896. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4897. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4898. size_t global_work_size[] = {(size_t)n, 1, 1};
  4899. size_t local_work_size[] = {64, 1, 1};
  4900. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4901. }
  4902. static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4903. GGML_ASSERT(src0);
  4904. GGML_ASSERT(src0->extra);
  4905. GGML_ASSERT(dst);
  4906. GGML_ASSERT(dst->extra);
  4907. UNUSED(src1);
  4908. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4909. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4910. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4911. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4912. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4913. cl_kernel kernel;
  4914. int n = ggml_nelements(dst);
  4915. if (n % 4 == 0) {
  4916. kernel = backend_ctx->kernel_gelu_quick_4;
  4917. n /= 4;
  4918. } else {
  4919. kernel = backend_ctx->kernel_gelu_quick;
  4920. }
  4921. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4922. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4923. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4924. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4925. size_t global_work_size[] = {(size_t)n, 1, 1};
  4926. size_t local_work_size[] = {64, 1, 1};
  4927. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4928. }
  4929. static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4930. GGML_ASSERT(src0);
  4931. GGML_ASSERT(src0->extra);
  4932. GGML_ASSERT(dst);
  4933. GGML_ASSERT(dst->extra);
  4934. UNUSED(src1);
  4935. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4936. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4937. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4938. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4939. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4940. cl_kernel kernel;
  4941. int n = ggml_nelements(dst);
  4942. if (n % 4 == 0) {
  4943. kernel = backend_ctx->kernel_silu_4;
  4944. n /= 4;
  4945. } else {
  4946. kernel = backend_ctx->kernel_silu;
  4947. }
  4948. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4949. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4950. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4951. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4952. size_t global_work_size[] = {(size_t)n, 1, 1};
  4953. size_t local_work_size[] = {64, 1, 1};
  4954. size_t * local_work_size_ptr = local_work_size;
  4955. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4956. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4957. }
  4958. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4959. }
  4960. static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4961. GGML_ASSERT(src0);
  4962. GGML_ASSERT(src0->extra);
  4963. GGML_ASSERT(dst);
  4964. GGML_ASSERT(dst->extra);
  4965. UNUSED(src1);
  4966. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4967. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4968. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4969. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4970. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4971. cl_kernel kernel = backend_ctx->kernel_relu;
  4972. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4973. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4974. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4975. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4976. const int64_t n = ggml_nelements(dst);
  4977. size_t global_work_size[] = {(size_t)n, 1, 1};
  4978. size_t local_work_size[] = {64, 1, 1};
  4979. size_t * local_work_size_ptr = local_work_size;
  4980. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4981. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4982. }
  4983. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4984. }
  4985. static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4986. GGML_ASSERT(src0);
  4987. GGML_ASSERT(src0->extra);
  4988. GGML_ASSERT(dst);
  4989. GGML_ASSERT(dst->extra);
  4990. UNUSED(src1);
  4991. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4992. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4993. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4994. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4995. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4996. cl_kernel kernel;
  4997. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  4998. kernel = backend_ctx->kernel_sigmoid_f32;
  4999. } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  5000. kernel = backend_ctx->kernel_sigmoid_f16;
  5001. } else {
  5002. GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
  5003. }
  5004. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5005. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5006. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5007. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5008. const int64_t n = ggml_nelements(dst);
  5009. size_t global_work_size[] = {(size_t)n, 1, 1};
  5010. size_t local_work_size[] = {64, 1, 1};
  5011. size_t * local_work_size_ptr = local_work_size;
  5012. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  5013. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  5014. }
  5015. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5016. }
  5017. static void ggml_cl_fill(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5018. GGML_ASSERT(dst);
  5019. GGML_ASSERT(dst->extra);
  5020. UNUSED(src0);
  5021. UNUSED(src1);
  5022. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5023. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5024. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5025. float v = 0.0f;
  5026. memcpy(&v, ((int32_t *) dst->op_params), sizeof(float));
  5027. const int64_t n = ggml_nelements(dst);
  5028. cl_kernel kernel = backend_ctx->kernel_fill;
  5029. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extrad->data_device));
  5030. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offsetd));
  5031. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(float), &v));
  5032. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(float), &n));
  5033. size_t local_work_size[1] = { 256 };
  5034. size_t global_work_size[1] = { ((size_t)n + local_work_size[0] - 1) / local_work_size[0] * local_work_size[0] };
  5035. backend_ctx->enqueue_ndrange_kernel(kernel, 1, global_work_size, local_work_size, dst);
  5036. }
  5037. static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5038. GGML_ASSERT(src0);
  5039. GGML_ASSERT(src0->extra);
  5040. GGML_ASSERT(dst);
  5041. GGML_ASSERT(dst->extra);
  5042. UNUSED(src1);
  5043. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5044. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5045. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5046. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5047. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5048. float min;
  5049. float max;
  5050. memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
  5051. memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
  5052. cl_kernel kernel = backend_ctx->kernel_clamp;
  5053. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5054. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5055. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5056. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5057. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
  5058. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
  5059. const int64_t n = ggml_nelements(dst);
  5060. size_t global_work_size[] = {(size_t)n, 1, 1};
  5061. size_t local_work_size[] = {64, 1, 1};
  5062. size_t * local_work_size_ptr = local_work_size;
  5063. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  5064. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  5065. }
  5066. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5067. }
  5068. static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5069. GGML_ASSERT(src0);
  5070. GGML_ASSERT(src0->extra);
  5071. GGML_ASSERT(dst);
  5072. GGML_ASSERT(dst->extra);
  5073. UNUSED(src1);
  5074. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5075. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5076. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5077. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5078. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5079. float eps;
  5080. memcpy(&eps, dst->op_params, sizeof(float));
  5081. const int ne00 = src0 ? src0->ne[0] : 0;
  5082. const int ne01 = src0 ? src0->ne[1] : 0;
  5083. const int ne02 = src0 ? src0->ne[2] : 0;
  5084. const int ne03 = src0 ? src0->ne[3] : 0;
  5085. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  5086. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  5087. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  5088. const int nth = MIN(64, ne00);
  5089. cl_kernel kernel = backend_ctx->kernel_norm;
  5090. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5091. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5092. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5093. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5094. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5095. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5096. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5097. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5098. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  5099. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  5100. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  5101. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  5102. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
  5103. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5104. size_t local_work_size[] = {(size_t)nth, 1, 1};
  5105. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5106. }
  5107. static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5108. GGML_ASSERT(src0);
  5109. GGML_ASSERT(src0->extra);
  5110. GGML_ASSERT(dst);
  5111. GGML_ASSERT(dst->extra);
  5112. UNUSED(src1);
  5113. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5114. //ggml_backend_opencl_device_context * dev_ctx =
  5115. // (ggml_backend_opencl_device_context *)backend->device->context;
  5116. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5117. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5118. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5119. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5120. float eps;
  5121. memcpy(&eps, dst->op_params, sizeof(float));
  5122. const int ne00 = src0 ? src0->ne[0] : 0;
  5123. const int ne01 = src0 ? src0->ne[1] : 0;
  5124. const int ne02 = src0 ? src0->ne[2] : 0;
  5125. const int ne03 = src0 ? src0->ne[3] : 0;
  5126. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  5127. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  5128. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  5129. GGML_ASSERT(ne00 % 4 == 0);
  5130. const int nth = MIN(64, ne00);
  5131. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5132. size_t local_work_size[] = {(size_t)nth, 1, 1};
  5133. cl_kernel kernel = backend_ctx->kernel_rms_norm;
  5134. // Note, this kernel declares local memory in kernel args and the size
  5135. // depends on subgroup size.
  5136. // Note, this requires OpenCL 2.1 and above
  5137. // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
  5138. size_t sgs;
  5139. //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
  5140. // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
  5141. // sizeof(local_work_size), local_work_size,
  5142. // sizeof(size_t), &sgs, NULL));
  5143. if (backend_ctx->gpu_family == ADRENO) {
  5144. sgs = 64;
  5145. } else if (backend_ctx->gpu_family == INTEL) {
  5146. sgs = 32;
  5147. } else {
  5148. GGML_ASSERT(false && "Unsupported GPU");
  5149. }
  5150. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5151. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5152. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5153. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5154. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5155. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5156. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5157. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5158. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  5159. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  5160. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  5161. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  5162. // This is local memory - the size depends on subgroup size.
  5163. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
  5164. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5165. }
  5166. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor) {
  5167. GGML_ASSERT(mul_tensor);
  5168. GGML_ASSERT(rms_norm_tensor);
  5169. // src0 is the src of rms_norm, src1 is the other src of mul (one being rms_norm)
  5170. const ggml_tensor * src0 = rms_norm_tensor->src[0];
  5171. const ggml_tensor * src1;
  5172. if (mul_tensor->src[0] == rms_norm_tensor) {
  5173. src1 = mul_tensor->src[1];
  5174. } else if (mul_tensor->src[1] == rms_norm_tensor) {
  5175. src1 = mul_tensor->src[0];
  5176. } else {
  5177. GGML_ASSERT(false && "Invalid args for rms_norm and mul");
  5178. }
  5179. const ggml_tensor * dst = mul_tensor;
  5180. GGML_ASSERT(src0);
  5181. GGML_ASSERT(src0->extra);
  5182. GGML_ASSERT(src1);
  5183. GGML_ASSERT(src1->extra);
  5184. GGML_ASSERT(dst);
  5185. GGML_ASSERT(dst->extra);
  5186. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5187. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5188. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5189. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5190. cl_ulong offset1 = extra1->offset + src0->view_offs;
  5191. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5192. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5193. float eps;
  5194. memcpy(&eps, rms_norm_tensor->op_params, sizeof(float));
  5195. const int ne00 = src0->ne[0];
  5196. const int ne01 = src0->ne[1];
  5197. const int ne02 = src0->ne[2];
  5198. const int ne03 = src0->ne[3];
  5199. const cl_ulong nb01 = src0->nb[1];
  5200. const cl_ulong nb02 = src0->nb[2];
  5201. const cl_ulong nb03 = src0->nb[3];
  5202. const int ne10 = src1->ne[0];
  5203. const int ne11 = src1->ne[1];
  5204. const int ne12 = src1->ne[2];
  5205. const int ne13 = src1->ne[3];
  5206. const cl_ulong nb11 = src1->nb[1];
  5207. const cl_ulong nb12 = src1->nb[2];
  5208. const cl_ulong nb13 = src1->nb[3];
  5209. const cl_ulong nb1 = dst->nb[1];
  5210. const cl_ulong nb2 = dst->nb[2];
  5211. const cl_ulong nb3 = dst->nb[3];
  5212. GGML_ASSERT(ne00 % 4 == 0);
  5213. size_t sgs;
  5214. if (backend_ctx->gpu_family == ADRENO) {
  5215. sgs = 64;
  5216. } else if (backend_ctx->gpu_family == INTEL) {
  5217. sgs = 32;
  5218. } else {
  5219. GGML_ASSERT(false && "Unsupported GPU");
  5220. }
  5221. cl_kernel kernel = backend_ctx->kernel_rms_norm_mul;
  5222. int nth = sgs;
  5223. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  5224. while (nth < ne00 && nth < max_workgroup_size) {
  5225. nth *= 2;
  5226. }
  5227. nth = MIN(nth, max_workgroup_size);
  5228. nth = MIN(nth, ne00);
  5229. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5230. size_t local_work_size[] = {(size_t)nth, 1, 1};
  5231. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5232. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5233. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5234. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5235. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5236. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5237. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5238. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5239. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5240. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  5241. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  5242. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  5243. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  5244. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  5245. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  5246. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  5247. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne13));
  5248. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  5249. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  5250. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  5251. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  5252. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  5253. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  5254. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &eps));
  5255. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs, NULL));
  5256. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5257. }
  5258. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  5259. GGML_ASSERT(norm_tensor && mul_tensor && add_tensor);
  5260. const ggml_tensor * src0 = norm_tensor->src[0];
  5261. const ggml_tensor * src1 = mul_tensor->src[0] == norm_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  5262. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  5263. const ggml_tensor * dst = add_tensor;
  5264. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5265. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5266. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  5267. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5268. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5269. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5270. cl_ulong offset2 = extra2->offset + src2->view_offs;
  5271. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5272. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5273. float eps;
  5274. memcpy(&eps, norm_tensor->op_params, sizeof(float));
  5275. const int ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  5276. const cl_ulong nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  5277. const int ne10 = src1->ne[0], ne11 = src1->ne[1], ne12 = src1->ne[2], ne13 = src1->ne[3];
  5278. const cl_ulong nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  5279. const int ne20 = src2->ne[0], ne21 = src2->ne[1], ne22 = src2->ne[2], ne23 = src2->ne[3];
  5280. const cl_ulong nb21 = src2->nb[1], nb22 = src2->nb[2], nb23 = src2->nb[3];
  5281. const cl_ulong nbd1 = dst->nb[1], nbd2 = dst->nb[2], nbd3 = dst->nb[3];
  5282. size_t sgs;
  5283. if (backend_ctx->gpu_family == ADRENO) sgs = 64;
  5284. else if (backend_ctx->gpu_family == INTEL) sgs = 32;
  5285. else GGML_ASSERT(false && "Unsupported GPU");
  5286. cl_kernel kernel = backend_ctx->kernel_norm_mul_add;
  5287. int nth = sgs;
  5288. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  5289. while (nth < ne00/4 && nth < max_workgroup_size) nth *= 2;
  5290. nth = MIN(nth, max_workgroup_size);
  5291. nth = MIN(nth, ne00/4);
  5292. size_t gws[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5293. size_t lws[] = {(size_t)nth, 1, 1};
  5294. size_t num_subgroups = (nth + sgs - 1) / sgs;
  5295. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5296. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5297. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5298. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5299. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  5300. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  5301. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  5302. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  5303. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5304. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  5305. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  5306. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  5307. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb01));
  5308. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb02));
  5309. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb03));
  5310. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne10));
  5311. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne11));
  5312. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne12));
  5313. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne13));
  5314. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  5315. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  5316. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  5317. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne20));
  5318. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne21));
  5319. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne22));
  5320. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne23));
  5321. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb21));
  5322. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb22));
  5323. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb23));
  5324. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nbd1));
  5325. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(cl_ulong), &nbd2));
  5326. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_ulong), &nbd3));
  5327. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &eps));
  5328. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_float2) * num_subgroups, NULL));
  5329. backend_ctx->enqueue_ndrange_kernel(kernel, 3, gws, lws, dst);
  5330. }
  5331. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  5332. GGML_ASSERT(gn_tensor && mul_tensor && add_tensor);
  5333. const ggml_tensor * src0 = gn_tensor->src[0];
  5334. const ggml_tensor * src1 = mul_tensor->src[0] == gn_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  5335. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  5336. const ggml_tensor * dst = add_tensor;
  5337. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5338. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5339. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  5340. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5341. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5342. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5343. cl_ulong offset2 = extra2->offset + src2->view_offs;
  5344. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5345. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5346. int groups;
  5347. float eps;
  5348. memcpy(&groups, gn_tensor->op_params, sizeof(int));
  5349. memcpy(&eps, (char *)gn_tensor->op_params + sizeof(int), sizeof(float));
  5350. cl_kernel kernel = backend_ctx->kernel_group_norm_mul_add;
  5351. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  5352. int ne = ggml_nelements(src0);
  5353. int group_size = ne / groups;
  5354. size_t lws[] = { (size_t)MIN(max_workgroup_size, group_size) };
  5355. size_t gws[] = { (size_t)groups * lws[0] };
  5356. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5357. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5358. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5359. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5360. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  5361. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  5362. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  5363. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  5364. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne));
  5365. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &group_size));
  5366. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &eps));
  5367. backend_ctx->enqueue_ndrange_kernel(kernel, 1, gws, lws, dst);
  5368. }
  5369. static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5370. GGML_ASSERT(src0);
  5371. GGML_ASSERT(src0->extra);
  5372. GGML_ASSERT(dst);
  5373. GGML_ASSERT(dst->extra);
  5374. UNUSED(src1);
  5375. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5376. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5377. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5378. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5379. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5380. int32_t n_groups = ((const int32_t *) dst->op_params)[0];
  5381. int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
  5382. float eps = ((const float *) dst->op_params)[1];
  5383. const int ne00 = src0->ne[0];
  5384. const int ne01 = src0->ne[1];
  5385. const int ne02 = src0->ne[2];
  5386. const int ne = ne00*ne01*ne02;
  5387. cl_kernel kernel = backend_ctx->kernel_group_norm;
  5388. size_t sgs = 64;
  5389. if (backend_ctx->gpu_family == ADRENO) {
  5390. sgs = 64;
  5391. } else if (backend_ctx->gpu_family == INTEL) {
  5392. sgs = 32;
  5393. } else {
  5394. GGML_ASSERT(false && "Unsupported GPU");
  5395. }
  5396. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5397. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5398. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5399. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5400. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
  5401. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
  5402. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
  5403. size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
  5404. size_t local_work_size[] = {(size_t)sgs, 1, 1};
  5405. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5406. }
  5407. static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5408. GGML_ASSERT(src0);
  5409. GGML_ASSERT(src0->extra);
  5410. GGML_ASSERT(dst);
  5411. GGML_ASSERT(dst->extra);
  5412. UNUSED(src1);
  5413. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5414. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5415. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5416. cl_ulong offset0_abs = extra0->offset + src0->view_offs;
  5417. cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
  5418. cl_kernel kernel;
  5419. if (dst->type == GGML_TYPE_F32) {
  5420. kernel = backend_ctx->kernel_tanh_f32_nd;
  5421. } else if (dst->type == GGML_TYPE_F16) {
  5422. kernel = backend_ctx->kernel_tanh_f16_nd;
  5423. } else {
  5424. GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
  5425. }
  5426. GGML_ASSERT(kernel != nullptr);
  5427. const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
  5428. const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
  5429. const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
  5430. const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
  5431. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5432. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
  5433. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5434. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
  5435. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5436. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5437. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5438. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5439. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  5440. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  5441. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
  5442. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
  5443. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  5444. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  5445. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  5446. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  5447. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
  5448. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
  5449. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
  5450. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
  5451. size_t global_work_size[3];
  5452. if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
  5453. return;
  5454. }
  5455. global_work_size[0] = (size_t)ne10;
  5456. global_work_size[1] = (size_t)ne11;
  5457. global_work_size[2] = (size_t)ne12;
  5458. size_t lws0 = 16, lws1 = 4, lws2 = 1;
  5459. if (ne10 < 16) lws0 = ne10;
  5460. if (ne11 < 4) lws1 = ne11;
  5461. if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
  5462. while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
  5463. while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
  5464. while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
  5465. size_t local_work_size[] = {lws0, lws1, lws2};
  5466. size_t* local_work_size_ptr = local_work_size;
  5467. if (!backend_ctx->non_uniform_workgroups) {
  5468. if (global_work_size[0] % local_work_size[0] != 0 ||
  5469. global_work_size[1] % local_work_size[1] != 0 ||
  5470. global_work_size[2] % local_work_size[2] != 0) {
  5471. local_work_size_ptr = NULL;
  5472. }
  5473. }
  5474. if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
  5475. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5476. }
  5477. static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
  5478. GGML_ASSERT(src0);
  5479. GGML_ASSERT(src0->extra);
  5480. GGML_ASSERT(dst);
  5481. GGML_ASSERT(dst->extra);
  5482. GGML_ASSERT(dst->type == src0->type);
  5483. UNUSED(src1_shape_def);
  5484. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5485. if (backend_ctx->kernel_repeat == nullptr) {
  5486. GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
  5487. return;
  5488. }
  5489. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5490. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5491. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5492. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5493. const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
  5494. const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
  5495. const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
  5496. const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
  5497. cl_kernel kernel = backend_ctx->kernel_repeat;
  5498. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5499. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
  5500. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
  5501. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5502. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
  5503. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
  5504. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
  5505. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
  5506. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
  5507. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
  5508. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
  5509. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
  5510. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
  5511. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
  5512. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
  5513. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
  5514. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
  5515. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
  5516. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
  5517. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
  5518. size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
  5519. size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
  5520. size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
  5521. size_t global_work_size[] = { gws0, gws1, gws2 };
  5522. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5523. }
  5524. static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5525. GGML_ASSERT(src0);
  5526. GGML_ASSERT(src0->extra);
  5527. GGML_ASSERT(dst);
  5528. GGML_ASSERT(dst->extra);
  5529. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5530. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5531. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5532. if (backend_ctx->kernel_pad == nullptr) {
  5533. GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__);
  5534. return;
  5535. }
  5536. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5537. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5538. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5539. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5540. const int s_ne0 = src0->ne[0];
  5541. const int s_ne1 = src0->ne[1];
  5542. const int s_ne2 = src0->ne[2];
  5543. const int s_ne3 = src0->ne[3];
  5544. const int s_nb0 = src0->nb[0];
  5545. const int s_nb1 = src0->nb[1];
  5546. const int s_nb2 = src0->nb[2];
  5547. const int s_nb3 = src0->nb[3];
  5548. const int d_ne0 = dst->ne[0];
  5549. const int d_ne1 = dst->ne[1];
  5550. const int d_ne2 = dst->ne[2];
  5551. const int d_ne3 = dst->ne[3];
  5552. const int d_nb0 = dst->nb[0];
  5553. const int d_nb1 = dst->nb[1];
  5554. const int d_nb2 = dst->nb[2];
  5555. const int d_nb3 = dst->nb[3];
  5556. const int lp0 = ((const int*)(dst->op_params))[0];
  5557. const int rp0 = ((const int*)(dst->op_params))[1];
  5558. const int lp1 = ((const int*)(dst->op_params))[2];
  5559. const int rp1 = ((const int*)(dst->op_params))[3];
  5560. const int lp2 = ((const int*)(dst->op_params))[4];
  5561. const int rp2 = ((const int*)(dst->op_params))[5];
  5562. const int lp3 = ((const int*)(dst->op_params))[6];
  5563. const int rp3 = ((const int*)(dst->op_params))[7];
  5564. cl_kernel kernel = backend_ctx->kernel_pad;
  5565. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5566. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5567. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5568. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5569. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0));
  5570. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1));
  5571. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2));
  5572. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &s_ne3));
  5573. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &s_nb0));
  5574. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &s_nb1));
  5575. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &s_nb2));
  5576. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &s_nb3));
  5577. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  5578. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  5579. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  5580. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &d_ne3));
  5581. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &d_nb0));
  5582. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &d_nb1));
  5583. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &d_nb2));
  5584. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &d_nb3));
  5585. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &lp0));
  5586. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &rp0));
  5587. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &lp1));
  5588. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &rp1));
  5589. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &lp2));
  5590. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &rp2));
  5591. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &lp3));
  5592. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(int), &rp3));
  5593. size_t lws0 = 64;
  5594. size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0;
  5595. size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2*d_ne3 };
  5596. size_t local_work_size[] = { lws0, 1, 1 };
  5597. size_t * local_work_size_ptr = local_work_size;
  5598. if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) {
  5599. local_work_size_ptr = nullptr;
  5600. }
  5601. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5602. }
  5603. static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5604. GGML_ASSERT(src0);
  5605. GGML_ASSERT(src0->extra);
  5606. GGML_ASSERT(dst);
  5607. GGML_ASSERT(dst->extra);
  5608. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5609. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5610. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5611. const int mode_flags = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
  5612. const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
  5613. cl_kernel kernel = nullptr;
  5614. if (mode == GGML_SCALE_MODE_NEAREST) {
  5615. kernel = backend_ctx->kernel_upscale;
  5616. if (kernel == nullptr) {
  5617. GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__);
  5618. return;
  5619. }
  5620. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  5621. kernel = backend_ctx->kernel_upscale_bilinear;
  5622. if (kernel == nullptr) {
  5623. GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__);
  5624. return;
  5625. }
  5626. } else {
  5627. GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode);
  5628. return;
  5629. }
  5630. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5631. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5632. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5633. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5634. const cl_ulong nb00 = src0->nb[0];
  5635. const cl_ulong nb01 = src0->nb[1];
  5636. const cl_ulong nb02 = src0->nb[2];
  5637. const cl_ulong nb03 = src0->nb[3];
  5638. const int ne00 = src0->ne[0];
  5639. const int ne01 = src0->ne[1];
  5640. const int ne02 = src0->ne[2];
  5641. const int ne03 = src0->ne[3];
  5642. const int ne0 = dst->ne[0];
  5643. const int ne1 = dst->ne[1];
  5644. const int ne2 = dst->ne[2];
  5645. const int ne3 = dst->ne[3];
  5646. float sf0 = (float)ne0 / ne00;
  5647. float sf1 = (float)ne1 / ne01;
  5648. float sf2 = (float)ne2 / ne02;
  5649. float sf3 = (float)ne3 / ne03;
  5650. float pixel_offset = 0.5f;
  5651. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5652. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5653. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5654. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5655. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00));
  5656. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
  5657. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02));
  5658. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03));
  5659. if (mode == GGML_SCALE_MODE_NEAREST) {
  5660. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  5661. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne1));
  5662. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne2));
  5663. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne3));
  5664. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0));
  5665. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1));
  5666. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2));
  5667. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3));
  5668. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  5669. if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  5670. sf0 = ne0 > 1 && ne00 > 1 ? (float)(ne0 - 1) / (ne00 - 1) : sf0;
  5671. sf1 = ne1 > 1 && ne01 > 1 ? (float)(ne1 - 1) / (ne01 - 1) : sf1;
  5672. pixel_offset = 0.0f;
  5673. }
  5674. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5675. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  5676. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne0));
  5677. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne1));
  5678. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne2));
  5679. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne3));
  5680. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0));
  5681. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1));
  5682. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2));
  5683. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3));
  5684. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &pixel_offset));
  5685. }
  5686. size_t dst_total_elements = (size_t)ne0 * ne1 * ne2 * ne3;
  5687. if (dst_total_elements == 0) {
  5688. return;
  5689. }
  5690. size_t global_work_size[] = { dst_total_elements, 1, 1 };
  5691. size_t local_work_size_pref = 256;
  5692. size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1};
  5693. size_t * local_work_size_ptr = local_work_size;
  5694. if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) {
  5695. local_work_size_ptr = nullptr;
  5696. }
  5697. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5698. }
  5699. static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5700. GGML_ASSERT(src0);
  5701. GGML_ASSERT(src0->extra);
  5702. GGML_ASSERT(src1);
  5703. GGML_ASSERT(src1->extra);
  5704. GGML_ASSERT(dst);
  5705. GGML_ASSERT(dst->extra);
  5706. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5707. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5708. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5709. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5710. cl_command_queue queue = backend_ctx->queue;
  5711. if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
  5712. GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
  5713. return;
  5714. }
  5715. ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
  5716. ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
  5717. ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
  5718. cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
  5719. cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
  5720. cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
  5721. const int32_t dim = ((const int32_t *) dst->op_params)[0];
  5722. GGML_ASSERT(dim >= 0 && dim <= 3);
  5723. if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
  5724. if (dim == 3) {
  5725. size_t nbytes_src0 = ggml_nbytes(src0);
  5726. size_t nbytes_src1 = ggml_nbytes(src1);
  5727. CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
  5728. off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
  5729. CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
  5730. off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
  5731. } else {
  5732. cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
  5733. size_t global_work_size[3];
  5734. for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
  5735. cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
  5736. cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
  5737. cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
  5738. int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
  5739. int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
  5740. int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
  5741. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  5742. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &current_off_src0));
  5743. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  5744. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &current_off_src1));
  5745. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  5746. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &current_off_dst));
  5747. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
  5748. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
  5749. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
  5750. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
  5751. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
  5752. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
  5753. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  5754. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  5755. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  5756. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
  5757. global_work_size[0] = d_ne0;
  5758. global_work_size[1] = d_ne1;
  5759. global_work_size[2] = d_ne2;
  5760. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5761. }
  5762. }
  5763. } else {
  5764. cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
  5765. cl_long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  5766. cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  5767. cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  5768. cl_long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
  5769. cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
  5770. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  5771. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5772. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  5773. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
  5774. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  5775. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
  5776. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &ne00));
  5777. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &ne01));
  5778. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &ne02));
  5779. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &ne03));
  5780. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  5781. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  5782. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  5783. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  5784. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  5785. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  5786. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  5787. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  5788. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_long), &d_ne0));
  5789. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_long), &d_ne1));
  5790. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_long), &d_ne2));
  5791. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_long), &d_ne3));
  5792. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
  5793. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
  5794. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
  5795. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
  5796. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
  5797. size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
  5798. d_ne2 > 0 ? (size_t)d_ne2 : 1,
  5799. d_ne3 > 0 ? (size_t)d_ne3 : 1 };
  5800. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
  5801. }
  5802. }
  5803. static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5804. GGML_ASSERT(src0);
  5805. GGML_ASSERT(src0->extra);
  5806. GGML_ASSERT(dst);
  5807. GGML_ASSERT(dst->extra);
  5808. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5809. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5810. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5811. if (backend_ctx->kernel_timestep_embedding == nullptr) {
  5812. GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__);
  5813. return;
  5814. }
  5815. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5816. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5817. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5818. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5819. const int logical_dim = dst->op_params[0];
  5820. const int max_period = dst->op_params[1];
  5821. const int dst_nb1_bytes = dst->nb[1];
  5822. cl_kernel kernel = backend_ctx->kernel_timestep_embedding;
  5823. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5824. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5825. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5826. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5827. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes));
  5828. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim));
  5829. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period));
  5830. size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1);
  5831. size_t gws1 = (size_t)src0->ne[0];
  5832. size_t global_work_size[] = {gws0, gws1, 1};
  5833. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5834. }
  5835. static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, const ggml_tensor * k, ggml_tensor * dst) {
  5836. const ggml_tensor * v = dst->src[2];
  5837. const ggml_tensor * mask = dst->src[3];
  5838. const ggml_tensor * sinks = dst->src[4];
  5839. GGML_ASSERT(q->extra);
  5840. GGML_ASSERT(k->extra);
  5841. GGML_ASSERT(v->extra);
  5842. GGML_ASSERT(dst->extra);
  5843. if (mask) {
  5844. GGML_ASSERT(mask->extra);
  5845. }
  5846. if (sinks) {
  5847. GGML_ASSERT(sinks->extra);
  5848. }
  5849. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5850. const int n_q = q->ne[1];
  5851. const int n_kv = k->ne[1];
  5852. const int d_head_q = q->ne[0];
  5853. const int d_head_v = v->ne[0];
  5854. const int n_head = q->ne[2];
  5855. const int n_head_kv = k->ne[2];
  5856. const int n_batch = q->ne[3];
  5857. cl_kernel kernel = NULL;
  5858. const bool is_f16 = q->type == GGML_TYPE_F16;
  5859. const bool is_mixed = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16;
  5860. const std::pair<int, int> dk_dv = {d_head_q, d_head_v};
  5861. if (n_q == 1) {
  5862. if (is_mixed) {
  5863. kernel = backend_ctx->kernels_flash_attn_f32_f16_q1.at(dk_dv);
  5864. } else if (is_f16) {
  5865. kernel = backend_ctx->kernels_flash_attn_f16_q1.at(dk_dv);
  5866. } else {
  5867. kernel = backend_ctx->kernels_flash_attn_f32_q1.at(dk_dv);
  5868. }
  5869. } else {
  5870. if (is_mixed) {
  5871. kernel = backend_ctx->kernels_flash_attn_f32_f16.at(dk_dv);
  5872. } else if (is_f16) {
  5873. kernel = backend_ctx->kernels_flash_attn_f16.at(dk_dv);
  5874. } else {
  5875. kernel = backend_ctx->kernels_flash_attn_f32.at(dk_dv);
  5876. }
  5877. }
  5878. GGML_ASSERT(kernel != NULL);
  5879. ggml_tensor_extra_cl * extra_q = (ggml_tensor_extra_cl *)q->extra;
  5880. ggml_tensor_extra_cl * extra_k = (ggml_tensor_extra_cl *)k->extra;
  5881. ggml_tensor_extra_cl * extra_v = (ggml_tensor_extra_cl *)v->extra;
  5882. ggml_tensor_extra_cl * extra_o = (ggml_tensor_extra_cl *)dst->extra;
  5883. ggml_tensor_extra_cl * extra_mask = mask ? (ggml_tensor_extra_cl *)mask->extra : NULL;
  5884. ggml_tensor_extra_cl * extra_sinks = sinks ? (ggml_tensor_extra_cl *)sinks->extra : NULL;
  5885. cl_ulong offset_q = extra_q->offset + q->view_offs;
  5886. cl_ulong offset_k = extra_k->offset + k->view_offs;
  5887. cl_ulong offset_v = extra_v->offset + v->view_offs;
  5888. cl_ulong offset_o = extra_o->offset + dst->view_offs;
  5889. cl_mem mask_buffer = extra_mask ? extra_mask->data_device : NULL;
  5890. cl_ulong offset_mask = extra_mask ? extra_mask->offset + mask->view_offs : 0;
  5891. cl_mem sinks_buffer = extra_sinks ? extra_sinks->data_device : NULL;
  5892. cl_ulong offset_sinks = extra_sinks ? extra_sinks->offset + sinks->view_offs : 0;
  5893. const cl_ulong q_nb1 = q->nb[1], q_nb2 = q->nb[2], q_nb3 = q->nb[3];
  5894. const cl_ulong k_nb1 = k->nb[1], k_nb2 = k->nb[2], k_nb3 = k->nb[3];
  5895. const cl_ulong v_nb1 = v->nb[1], v_nb2 = v->nb[2], v_nb3 = v->nb[3];
  5896. const cl_ulong o_nb1 = dst->nb[1], o_nb2 = dst->nb[2], o_nb3 = dst->nb[3];
  5897. const cl_ulong mask_nb1 = mask ? mask->nb[1] : 0;
  5898. const cl_ulong mask_nb2 = mask ? mask->nb[2] : 0;
  5899. const cl_ulong mask_nb3 = mask ? mask->nb[3] : 0;
  5900. const int mask_ne2 = mask ? mask->ne[2] : 0;
  5901. const int mask_ne3 = mask ? mask->ne[3] : 0;
  5902. float scale, max_bias, logit_softcap;
  5903. const float * params = (const float *)dst->op_params;
  5904. scale = params[0];
  5905. max_bias = params[1];
  5906. logit_softcap = params[2];
  5907. const int is_causal = (mask == NULL && n_q > 1 && n_q == n_kv);
  5908. const int n_head_log2_val = n_head > 0 ? 1u << (int)floorf(log2f((float)n_head)) : 0;
  5909. const float n_head_log2_f = n_head_log2_val > 0 ? (float)n_head_log2_val : 1.0f;
  5910. const float m0 = powf(2.0f, -(max_bias) / n_head_log2_f);
  5911. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2_f);
  5912. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_q->data_device));
  5913. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset_q));
  5914. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_k->data_device));
  5915. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset_k));
  5916. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra_v->data_device));
  5917. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset_v));
  5918. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extra_o->data_device));
  5919. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offset_o));
  5920. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(float), &scale));
  5921. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &n_q));
  5922. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &n_kv));
  5923. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &is_causal));
  5924. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &n_head));
  5925. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &q_nb1)); CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &q_nb2)); CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &q_nb3));
  5926. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &k_nb1)); CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &k_nb2)); CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &k_nb3));
  5927. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &v_nb1)); CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &v_nb2)); CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &v_nb3));
  5928. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &o_nb1)); CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &o_nb2)); CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &o_nb3));
  5929. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(float), &max_bias));
  5930. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(float), &m0));
  5931. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &m1));
  5932. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(int), &n_head_log2_val));
  5933. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &logit_softcap));
  5934. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &n_head_kv));
  5935. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_mem), &mask_buffer));
  5936. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(cl_ulong), &offset_mask));
  5937. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_ulong), &mask_nb1));
  5938. CL_CHECK(clSetKernelArg(kernel, 34, sizeof(cl_ulong), &mask_nb2));
  5939. CL_CHECK(clSetKernelArg(kernel, 35, sizeof(cl_ulong), &mask_nb3));
  5940. CL_CHECK(clSetKernelArg(kernel, 36, sizeof(int), &mask_ne2));
  5941. CL_CHECK(clSetKernelArg(kernel, 37, sizeof(int), &mask_ne3));
  5942. CL_CHECK(clSetKernelArg(kernel, 38, sizeof(cl_mem), &sinks_buffer));
  5943. CL_CHECK(clSetKernelArg(kernel, 39, sizeof(cl_ulong), &offset_sinks));
  5944. if (n_q == 1) {
  5945. const size_t wg_size = 64;
  5946. size_t local_work_size[] = { wg_size, 1 };
  5947. size_t global_work_size[] = { wg_size, (size_t)(n_head * n_batch) };
  5948. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5949. } else {
  5950. const int block_m = backend_ctx->kernels_flash_attn_bm.at(dk_dv);
  5951. const size_t wg_size = block_m;
  5952. size_t local_work_size[] = { wg_size, 1 };
  5953. size_t global_work_size[] = { (size_t)((n_q + block_m - 1) / block_m) * wg_size, (size_t)(n_head * n_batch) };
  5954. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5955. }
  5956. }
  5957. static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5958. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5959. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5960. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5961. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5962. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5963. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5964. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5965. const int M = src0->ne[1];
  5966. const int N = src1->ne[1];
  5967. const int K = src0->ne[0];
  5968. cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
  5969. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
  5970. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
  5971. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
  5972. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
  5973. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
  5974. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
  5975. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
  5976. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
  5977. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
  5978. // Tiling parameters. These need to be tuned for optimal performance.
  5979. // They must match the #defines in the kernel mul_mat_f16_f32.cl.
  5980. //
  5981. // OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
  5982. // TPWM / TPWN: Threads per Work-group. This is the work-group size.
  5983. // OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
  5984. //
  5985. // The following relationships must hold:
  5986. // OPWM = TPWM * OPTM
  5987. // OPWN = TPWN * OPTN
  5988. //
  5989. const int OPWM = 64;
  5990. const int OPWN = 64;
  5991. const int TPWM = 16;
  5992. const int TPWN = 8;
  5993. size_t local_work_size[2] = { TPWM, TPWN };
  5994. size_t global_work_size[2] = {
  5995. (size_t) ((M + OPWM - 1) / OPWM) * TPWM,
  5996. (size_t) ((N + OPWN - 1) / OPWN) * TPWN,
  5997. };
  5998. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5999. }
  6000. static void ggml_cl_conv_2d(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6001. GGML_TENSOR_BINARY_OP_LOCALS;
  6002. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6003. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6004. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6005. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6006. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6007. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6008. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6009. const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13;
  6010. const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1;
  6011. const cl_uint s0 = dst->op_params[0]; const cl_uint s1 = dst->op_params[1];
  6012. const cl_uint p0 = dst->op_params[2]; const cl_uint p1 = dst->op_params[3];
  6013. const cl_uint d0 = dst->op_params[4]; const cl_uint d1 = dst->op_params[5];
  6014. const cl_uint cl_nb01 = nb01/ggml_type_size(src0->type); const cl_uint cl_nb02 = nb02/ggml_type_size(src0->type); const cl_uint cl_nb03 = nb03/ggml_type_size(src0->type);
  6015. const cl_uint cl_nb11 = nb11/ggml_type_size(src1->type); const cl_uint cl_nb12 = nb12/ggml_type_size(src1->type); const cl_uint cl_nb13 = nb13/ggml_type_size(src1->type);
  6016. const cl_uint cl_nb1 = nb1/ggml_type_size(dst->type); const cl_uint cl_nb2 = nb2/ggml_type_size(dst->type); const cl_uint cl_nb3 = nb3/ggml_type_size(dst->type);
  6017. const int64_t NPQ = (int64_t)N * OW * OH;
  6018. const uint32_t BS_K = 64;
  6019. const uint32_t BS_NPQ = 64;
  6020. const uint32_t BS_CRS = 16;
  6021. const uint32_t VEC_SIZE = 4;
  6022. const uint32_t TS_K = 4;
  6023. const uint32_t TS_NPQ = 8;
  6024. const uint32_t WG_K = BS_K / TS_K;
  6025. const uint32_t WG_NPQ = BS_NPQ / TS_NPQ;
  6026. auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1) / block_size; };
  6027. const uint32_t NB_K = splitWork(Cout, BS_K);
  6028. const uint32_t NB_NPQ = splitWork(NPQ, BS_NPQ);
  6029. cl_kernel kernel;
  6030. size_t shmem_size;
  6031. if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
  6032. kernel = backend_ctx->kernel_conv_2d_f16;
  6033. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_half4));
  6034. } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
  6035. kernel = backend_ctx->kernel_conv_2d_f32;
  6036. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_float) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  6037. } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
  6038. kernel = backend_ctx->kernel_conv_2d_f16_f32;
  6039. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  6040. } else {
  6041. GGML_ASSERT(false && "Unsupported data type combination for conv2d");
  6042. }
  6043. cl_uint idx = 0;
  6044. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset0));
  6045. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra1->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset1));
  6046. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extrad->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offsetd));
  6047. CL_CHECK(clSetKernelArg(kernel, idx++, shmem_size, NULL));
  6048. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cout)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cin)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &N));
  6049. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KH)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &W)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &H));
  6050. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OH));
  6051. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p1));
  6052. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d1));
  6053. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb01)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb02)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb03));
  6054. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb11)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb12)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb13));
  6055. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb2)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb3));
  6056. size_t global_work_size[] = { (size_t)NB_K * WG_K, (size_t)NB_NPQ * WG_NPQ, 1 };
  6057. size_t local_work_size[] = { (size_t)WG_K, (size_t)WG_NPQ, 1 };
  6058. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  6059. }
  6060. static void ggml_cl_mul_mat_kq_kqv_adreno(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6061. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6062. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6063. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6064. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6065. const int ne00 = src0->ne[0];
  6066. const int ne01 = src0->ne[1];
  6067. const int ne02 = src0->ne[2];
  6068. const cl_ulong nb01 = src0->nb[1];
  6069. const cl_ulong nb02 = src0->nb[2];
  6070. const int ne10 = src1->ne[0];
  6071. const int ne11 = src1->ne[1];
  6072. const int ne12 = src1->ne[2];
  6073. const cl_ulong nb10 = src1->nb[0];
  6074. const int ne0 = dst->ne[0];
  6075. const int ne1 = dst->ne[1];
  6076. GGML_ASSERT(ne00 == ne10);
  6077. cl_kernel kernel;
  6078. cl_context context = backend_ctx->context;
  6079. cl_int status;
  6080. cl_image_format img_fmt_1d;
  6081. cl_image_desc img_desc_1d;
  6082. cl_buffer_region region;
  6083. cl_mem A_image1d;
  6084. cl_mem A_sub_buffer;
  6085. cl_mem B_sub_buffer;
  6086. cl_mem D_image1d;
  6087. cl_mem D_sub_buffer;
  6088. int M = ne01;
  6089. int N = ne1;
  6090. int K = ne00;
  6091. if (nb01 > nb02) {
  6092. // KQ
  6093. kernel = backend_ctx->kernel_mul_mm_f16_f32_kq;
  6094. } else {
  6095. // KQV
  6096. kernel = backend_ctx->kernel_mul_mm_f16_f32_kqv;
  6097. }
  6098. // create sub-buffer for A
  6099. // <--------------------------------------------> //
  6100. extra0 = src0->view_src ? (ggml_tensor_extra_cl *)src0->view_src->extra : (ggml_tensor_extra_cl *)src0->extra;
  6101. region.origin = (extra0->offset);
  6102. if (nb01 > nb02) {
  6103. // KQ
  6104. region.size = nb01 * ne01;
  6105. } else {
  6106. // KQV
  6107. region.size = nb02 * ne02;
  6108. }
  6109. A_sub_buffer = clCreateSubBuffer((extra0->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6110. CL_CHECK(status);
  6111. // <--------------------------------------------> //
  6112. // create sub-buffer for B
  6113. // <--------------------------------------------> //
  6114. region.origin = (extra1->offset);
  6115. region.size = nb10 * ne10 * ne11 * ne12;
  6116. B_sub_buffer = clCreateSubBuffer((extra1->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6117. CL_CHECK(status);
  6118. // <--------------------------------------------> //
  6119. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  6120. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  6121. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  6122. if (nb01 > nb02) {
  6123. img_desc_1d.image_width = (nb01 * ne01 / 4)/4;
  6124. }
  6125. else {
  6126. img_desc_1d.image_width = (nb02 * ne02 / 4)/4;
  6127. }
  6128. img_desc_1d.buffer = A_sub_buffer;
  6129. A_image1d = clCreateImage(context, CL_MEM_READ_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
  6130. CL_CHECK(status);
  6131. // create sub-buffer for output C
  6132. // <--------------------------------------------> //
  6133. region.origin = (extrad->offset);
  6134. region.size = ne0 * ne1 * dst->ne[2] * dst->nb[0]; // size of C in bytes
  6135. D_sub_buffer = clCreateSubBuffer((extrad->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6136. CL_CHECK(status);
  6137. // <--------------------------------------------> //
  6138. // create image for C output
  6139. // <--------------------------------------------> //
  6140. img_fmt_1d = {CL_R, CL_FLOAT};
  6141. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  6142. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  6143. img_desc_1d.image_width = ne0 * ne1 * dst->ne[2] * dst->nb[0] / 4;
  6144. img_desc_1d.buffer = D_sub_buffer;
  6145. D_image1d = clCreateImage(context, CL_MEM_WRITE_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
  6146. CL_CHECK(status);
  6147. // <--------------------------------------------> //
  6148. int offset_src0 = 0;
  6149. int offset_src1 = 0;
  6150. // set kernel args
  6151. // <--------------------------------------------> //
  6152. cl_uint k_arg = 0;
  6153. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  6154. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &offset_src0));
  6155. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_sub_buffer));
  6156. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &offset_src1));
  6157. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &D_image1d));
  6158. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &extrad->offset));
  6159. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &M));
  6160. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &K));
  6161. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &N));
  6162. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  6163. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  6164. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &nb01));
  6165. size_t global_work_size[3] = {64, static_cast<size_t>(((M+63)/64)), static_cast<size_t>(((N+31)/32)*ne12)};
  6166. size_t local_work_size[3] = {64, 1, 2};
  6167. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6168. // deallocate sub buffers and images
  6169. // <--------------------------------------------> //
  6170. CL_CHECK(clReleaseMemObject(A_image1d));
  6171. CL_CHECK(clReleaseMemObject(D_image1d));
  6172. CL_CHECK(clReleaseMemObject(A_sub_buffer));
  6173. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  6174. CL_CHECK(clReleaseMemObject(D_sub_buffer));
  6175. }
  6176. static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6177. GGML_ASSERT(src0);
  6178. GGML_ASSERT(src0->extra);
  6179. GGML_ASSERT(src1);
  6180. GGML_ASSERT(src1->extra);
  6181. GGML_ASSERT(dst);
  6182. GGML_ASSERT(dst->extra);
  6183. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  6184. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  6185. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6186. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6187. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6188. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6189. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6190. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6191. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6192. #ifdef GGML_OPENCL_SOA_Q
  6193. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  6194. ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
  6195. ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
  6196. #endif
  6197. const int ne00 = src0 ? src0->ne[0] : 0;
  6198. const int ne01 = src0 ? src0->ne[1] : 0;
  6199. const int ne02 = src0 ? src0->ne[2] : 0;
  6200. const int ne03 = src0 ? src0->ne[3] : 0;
  6201. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  6202. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  6203. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  6204. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  6205. const int ne10 = src1 ? src1->ne[0] : 0;
  6206. const int ne11 = src1 ? src1->ne[1] : 0;
  6207. const int ne12 = src1 ? src1->ne[2] : 0;
  6208. const int ne13 = src1 ? src1->ne[3] : 0;
  6209. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  6210. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  6211. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  6212. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  6213. const int ne0 = dst ? dst->ne[0] : 0;
  6214. const int ne1 = dst ? dst->ne[1] : 0;
  6215. int r2 = ne12/ne02;
  6216. int r3 = ne13/ne03;
  6217. GGML_ASSERT(ne00 == ne10);
  6218. int nth0 = 32;
  6219. int nth1 = 1;
  6220. int nrows = 1;
  6221. // The number of values produced by each subgroup
  6222. int ndst = 4;
  6223. cl_kernel kernel;
  6224. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  6225. cl_context context = backend_ctx->context;
  6226. if(src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32){
  6227. if (ne01 >= 64 && ne1 >= 32 && ne00 >= 16 && (ne12 % ne02) == 0) {
  6228. // For KQ
  6229. if (ggml_is_permuted(src0) && ggml_is_permuted(src1) &&
  6230. nb00 <= nb02 &&
  6231. nb02 <= nb01 &&
  6232. nb01 <= nb03 &&
  6233. nb10 <= nb12 &&
  6234. nb12 <= nb11 &&
  6235. nb11 <= nb13) {
  6236. ggml_cl_mul_mat_kq_kqv_adreno(backend, src0, src1, dst);
  6237. return;
  6238. }
  6239. // For KQV
  6240. if (!ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
  6241. ggml_cl_mul_mat_kq_kqv_adreno(backend, src0, src1, dst);
  6242. return;
  6243. }
  6244. }
  6245. }
  6246. if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
  6247. // init CL objects
  6248. // <--------------------------------------------> //
  6249. cl_int status;
  6250. cl_image_format img_fmt_1d;
  6251. cl_image_desc img_desc_1d;
  6252. cl_buffer_region region;
  6253. cl_mem A_image1d = nullptr;
  6254. cl_mem B_image1d = nullptr;
  6255. cl_mem B_sub_buffer = nullptr;
  6256. cl_mem C_d = nullptr;
  6257. // for B transpose
  6258. cl_mem B_d = nullptr;
  6259. cl_mem B_d_input_image = nullptr;
  6260. // <--------------------------------------------> //
  6261. // define matrix dimensions
  6262. // <--------------------------------------------> //
  6263. int M = ne01;
  6264. int N = ne1;
  6265. int K = ne00;
  6266. int padding;
  6267. // <--------------------------------------------> //
  6268. // q4_0 x fp32
  6269. if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
  6270. // TODO: remove duplicate definitions of image description + format -- move to top
  6271. // create an image for A
  6272. // <--------------------------------------------> //
  6273. if (N == 1) {
  6274. img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
  6275. } else {
  6276. img_fmt_1d = { CL_R, CL_FLOAT};
  6277. }
  6278. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  6279. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  6280. img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
  6281. img_desc_1d.buffer = extra0_q4_0->q;
  6282. A_image1d = clCreateImage(
  6283. context,
  6284. CL_MEM_READ_ONLY,
  6285. &img_fmt_1d,
  6286. &img_desc_1d,
  6287. NULL,
  6288. &status);
  6289. CL_CHECK(status);
  6290. // <--------------------------------------------> //
  6291. // create a sub_buffer for B
  6292. // <--------------------------------------------> //
  6293. region.origin = (extra1->offset);
  6294. region.size = K * N * sizeof(float);
  6295. B_sub_buffer = clCreateSubBuffer(
  6296. extra1->data_device,
  6297. 0,
  6298. CL_BUFFER_CREATE_TYPE_REGION,
  6299. &region,
  6300. &status);
  6301. CL_CHECK(status);
  6302. // <--------------------------------------------> //
  6303. // transpose activation for Skyler's gemm
  6304. if (N != 1) {
  6305. //how many extra elements beyond multiple of 8
  6306. int extra_elements = N % 8;
  6307. //how much padding to add
  6308. padding = 0;
  6309. if (extra_elements > 0){
  6310. padding = 8 - extra_elements;
  6311. }
  6312. // Specify the starting offset (in bytes)
  6313. region.origin = 0;
  6314. // Specify the size of the sub-buffer (divide by 2 for FP16)
  6315. region.size = K * (N + padding) * sizeof(float)/2;
  6316. backend_ctx->prealloc_act_trans.allocate(context, region.size);
  6317. B_d = clCreateSubBuffer(
  6318. backend_ctx->prealloc_act_trans.buffer,
  6319. 0,
  6320. CL_BUFFER_CREATE_TYPE_REGION,
  6321. &region,
  6322. &status);
  6323. CL_CHECK(status);
  6324. cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
  6325. cl_image_desc image_desc_B_d_input = {
  6326. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  6327. static_cast<size_t>(K * N / 4),
  6328. 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
  6329. };
  6330. B_d_input_image = clCreateImage(
  6331. context,
  6332. 0,
  6333. &image_format_B_d_input,
  6334. &image_desc_B_d_input,
  6335. NULL,
  6336. &status);
  6337. CL_CHECK(status);
  6338. cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
  6339. cl_image_desc image_desc_B_d_output = {
  6340. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  6341. static_cast<size_t>(K * (N + padding)/4),
  6342. 0, 0, 0, 0, 0, 0, 0, { B_d }
  6343. };
  6344. B_image1d = clCreateImage(
  6345. context,
  6346. 0,
  6347. &image_format_B_d_output,
  6348. &image_desc_B_d_output,
  6349. NULL,
  6350. &status);
  6351. CL_CHECK(status);
  6352. int height_B = N/4;
  6353. if (height_B == 0) {
  6354. height_B = 1;
  6355. }
  6356. int width_B = K/4;
  6357. int padded_height_B = (N + padding)/4;
  6358. kernel = backend_ctx->kernel_transpose_32_16;
  6359. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
  6360. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
  6361. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
  6362. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
  6363. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
  6364. size_t local_size_t[2] = { 1, 16 };
  6365. //WGS tuning
  6366. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  6367. local_size_t[0]=4;
  6368. local_size_t[1]=8;
  6369. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  6370. local_size_t[0]=2;
  6371. local_size_t[1]=8;
  6372. } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  6373. local_size_t[0]=1;
  6374. local_size_t[1]=8;
  6375. } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  6376. local_size_t[0]=2;
  6377. local_size_t[1]=8;
  6378. }
  6379. size_t global_size_t[2] = {
  6380. static_cast<size_t>(width_B),
  6381. static_cast<size_t>(padded_height_B)
  6382. };
  6383. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
  6384. } else {
  6385. // no need to transpose B in other cases
  6386. // create an image for B from sub_buffer
  6387. // <--------------------------------------------> //
  6388. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  6389. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  6390. img_desc_1d.image_width = K * N / 4;
  6391. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  6392. img_desc_1d.buffer = B_sub_buffer;
  6393. B_image1d = clCreateImage(
  6394. context,
  6395. CL_MEM_READ_ONLY,
  6396. &img_fmt_1d,
  6397. &img_desc_1d,
  6398. NULL,
  6399. &status);
  6400. CL_CHECK(status);
  6401. // <--------------------------------------------> //
  6402. }
  6403. // choose gemm or gemv kernel
  6404. // <--------------------------------------------> //
  6405. if (N == 1) {
  6406. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  6407. if (M == 4096 && K == 4096) {
  6408. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  6409. } else if (M == 4096 && K == 11008) {
  6410. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  6411. } else if (M == 11008 && K == 4096) {
  6412. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  6413. } else if (M == 32000 && K == 4096) {
  6414. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  6415. }
  6416. } else {
  6417. kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
  6418. }
  6419. // <--------------------------------------------> //
  6420. // set kernel args
  6421. // <--------------------------------------------> //
  6422. cl_uint k_arg = 0;
  6423. if (N == 1) {
  6424. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  6425. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
  6426. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
  6427. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
  6428. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
  6429. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
  6430. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
  6431. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
  6432. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  6433. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
  6434. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  6435. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
  6436. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
  6437. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
  6438. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
  6439. } else {
  6440. region.origin = extrad->offset; // Specify the starting offset (in bytes)
  6441. region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
  6442. C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6443. CL_CHECK(status);
  6444. int padded_N = ne1 + padding;
  6445. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
  6446. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
  6447. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
  6448. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
  6449. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
  6450. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
  6451. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
  6452. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
  6453. }
  6454. // <--------------------------------------------> //
  6455. // choose workgroup size
  6456. // <--------------------------------------------> //
  6457. size_t global_work_size[3] = {
  6458. 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
  6459. size_t local_work_size[3] = {64, 2, 4};
  6460. global_work_size[0] = (size_t)(ceil((float)ne1/8));
  6461. global_work_size[1] = (size_t)(ne01/4);
  6462. global_work_size[2] = (size_t)(1);
  6463. local_work_size[0] = (size_t)(1); //4x32 for FP32
  6464. local_work_size[1] = (size_t)(128);
  6465. local_work_size[2] = (size_t)(1);
  6466. //WGS tuning
  6467. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  6468. local_work_size[0] = 1;
  6469. local_work_size[1] = 128;
  6470. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  6471. local_work_size[0] = 2;
  6472. local_work_size[1] = 64;
  6473. } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  6474. local_work_size[0] = 2;
  6475. local_work_size[1] = 64;
  6476. } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  6477. local_work_size[0] = 2;
  6478. local_work_size[1] = 64;
  6479. }
  6480. if (N == 1) {
  6481. size_t wavesize = backend_ctx->adreno_wave_size;
  6482. local_work_size[0] = wavesize; // localsize
  6483. local_work_size[1] = 4; // reduce factor
  6484. local_work_size[2] = 1;
  6485. global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
  6486. global_work_size[1] = 4; // reduce factor
  6487. global_work_size[2] = 1;
  6488. }
  6489. // <--------------------------------------------> //
  6490. // enqueue kernel with profiling
  6491. // <--------------------------------------------> //
  6492. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6493. // <--------------------------------------------> //
  6494. // deallocate sub buffers and images
  6495. // <--------------------------------------------> //
  6496. CL_CHECK(clReleaseMemObject(A_image1d));
  6497. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  6498. CL_CHECK(clReleaseMemObject(B_image1d));
  6499. if (N != 1) {
  6500. CL_CHECK(clReleaseMemObject(B_d));
  6501. CL_CHECK(clReleaseMemObject(B_d_input_image));
  6502. CL_CHECK(clReleaseMemObject(C_d));
  6503. }
  6504. // <--------------------------------------------> //
  6505. return;
  6506. }
  6507. } // if (ne01 && ne1)
  6508. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  6509. // GEMM using local memory
  6510. // Current BK = 16, so ne00 % 16 == 0
  6511. if (ggml_is_contiguous(src0) &&
  6512. ggml_is_contiguous(src1) &&
  6513. src1t == GGML_TYPE_F32 &&
  6514. ne00 % 16 == 0 &&
  6515. ne11 > 1) {
  6516. switch(src0t) {
  6517. case GGML_TYPE_F32: {
  6518. kernel = backend_ctx->kernel_mul_mm_f32_f32_l4_lm;
  6519. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  6520. int batch_stride_a = ne00*ne01;
  6521. int batch_stride_b = ne10*ne11;
  6522. int batch_stride_d = ne0*ne1;
  6523. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6524. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6525. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6526. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6527. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6528. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6529. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6530. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6531. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6532. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  6533. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6534. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6535. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6536. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6537. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6538. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6539. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6540. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6541. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6542. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6543. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6544. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6545. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6546. return;
  6547. }
  6548. case GGML_TYPE_F16: {
  6549. kernel = backend_ctx->kernel_mul_mm_f16_f32_l4_lm;
  6550. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  6551. int batch_stride_a = ne00*ne01;
  6552. int batch_stride_b = ne10*ne11;
  6553. int batch_stride_d = ne0*ne1;
  6554. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6555. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6556. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6557. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6558. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6559. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6560. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6561. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6562. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6563. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  6564. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6565. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6566. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6567. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6568. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6569. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6570. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6571. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6572. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6573. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6574. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6575. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6576. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6577. return;
  6578. }
  6579. case GGML_TYPE_Q8_0: {
  6580. if (ne11 < 32) {
  6581. break;
  6582. }
  6583. kernel = backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm;
  6584. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  6585. int batch_stride_a = ne00*ne01;
  6586. int batch_stride_b = ne10*ne11;
  6587. int batch_stride_d = ne0*ne1;
  6588. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6589. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6590. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6591. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6592. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6593. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6594. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6595. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6596. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6597. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  6598. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6599. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6600. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6601. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6602. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6603. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6604. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6605. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6606. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6607. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6608. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6609. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6610. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6611. return;
  6612. }
  6613. default:
  6614. break;
  6615. }
  6616. }
  6617. if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
  6618. src0->ne[1] > 32 && // M > 32
  6619. src1->ne[1] > 32 && // N > 32
  6620. src0->ne[0] > 32 && // K > 32
  6621. src0->ne[2] == 1 && src0->ne[3] == 1 &&
  6622. src1->ne[2] == 1 && src1->ne[3] == 1 &&
  6623. ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
  6624. backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
  6625. ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
  6626. return;
  6627. }
  6628. if (!ggml_is_transposed(src0) &&
  6629. !ggml_is_transposed(src1) &&
  6630. src1t == GGML_TYPE_F32 &&
  6631. ne00%32 == 0 &&
  6632. ne11 > 2) {
  6633. #ifdef GGML_OPENCL_SOA_Q
  6634. // Set up kernel.
  6635. switch(src0t) {
  6636. case GGML_TYPE_Q4_0:
  6637. // This should have been satisfied.
  6638. GGML_ASSERT(ne11 == ne1);
  6639. GGML_ASSERT(ne01 == ne0);
  6640. if (backend_ctx->gpu_family == INTEL) {
  6641. nth0 = 16;
  6642. nth1 = 1;
  6643. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
  6644. } else if (backend_ctx->gpu_family == ADRENO) {
  6645. nth0 = 64;
  6646. nth1 = 1;
  6647. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
  6648. } else {
  6649. GGML_ASSERT(false && "TODO: Unknown GPU");
  6650. }
  6651. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6652. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6653. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6654. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6655. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6656. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6657. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6658. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6659. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6660. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6661. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6662. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6663. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6664. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6665. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6666. break;
  6667. default:
  6668. break;
  6669. }
  6670. // Launch kernel.
  6671. if (src0t == GGML_TYPE_Q4_0) {
  6672. size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6673. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6674. if (backend_ctx->gpu_family == INTEL) {
  6675. // Set global size for Intel. It uses 16x output values.
  6676. global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
  6677. global_work_size[1] = (size_t)ne11*nth1;
  6678. global_work_size[2] = (size_t)ne12*ne13;
  6679. }
  6680. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6681. return;
  6682. }
  6683. #else // GGML_OPENCL_SOA_Q
  6684. // TODO: add block_q4_0 variant.
  6685. #endif // GGML_OPENCL_SOA_Q
  6686. }
  6687. // use custom matrix x vector kernel
  6688. switch (src0t) {
  6689. case GGML_TYPE_F32:
  6690. //GGML_ASSERT(ne02 == ne12);
  6691. GGML_ASSERT(src1t == GGML_TYPE_F32);
  6692. kernel = backend_ctx->kernel_mul_mat_f32_f32;
  6693. nrows = 4;
  6694. if (backend_ctx->gpu_family == INTEL) {
  6695. nth0 = 32;
  6696. nth1 = 1;
  6697. } else if (backend_ctx->gpu_family == ADRENO) {
  6698. nth0 = 64;
  6699. nth1 = 1;
  6700. } else {
  6701. GGML_ASSERT(false && "TODO: Unknown GPU");
  6702. }
  6703. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6704. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6705. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6706. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6707. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6708. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6709. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6710. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6711. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6712. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  6713. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6714. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6715. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  6716. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6717. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6718. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6719. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6720. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6721. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6722. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6723. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6724. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6725. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6726. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6727. break;
  6728. case GGML_TYPE_F16:
  6729. //GGML_ASSERT(ne02 == ne12);
  6730. if (backend_ctx->gpu_family == INTEL) {
  6731. nth0 = 32;
  6732. nth1 = 1;
  6733. } else if (backend_ctx->gpu_family == ADRENO) {
  6734. nth0 = 64;
  6735. nth1 = 1;
  6736. } else {
  6737. GGML_ASSERT(false && "TODO: Unknown GPU");
  6738. }
  6739. if (src1t == GGML_TYPE_F32) {
  6740. if (ne11 * ne12 < 4) {
  6741. kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
  6742. } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
  6743. kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
  6744. nrows = ne11;
  6745. } else {
  6746. kernel = backend_ctx->kernel_mul_mat_f16_f32;
  6747. nrows = 4;
  6748. }
  6749. } else {
  6750. kernel = backend_ctx->kernel_mul_mat_f16_f16;
  6751. nrows = 4;
  6752. }
  6753. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6754. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6755. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6756. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6757. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6758. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6759. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6760. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6761. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6762. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  6763. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6764. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6765. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  6766. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6767. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6768. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6769. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6770. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6771. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6772. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6773. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6774. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6775. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6776. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6777. break;
  6778. case GGML_TYPE_Q4_0:
  6779. // This should have been satisfied.
  6780. GGML_ASSERT(ne11 == ne1);
  6781. GGML_ASSERT(ne01 == ne0);
  6782. #ifdef GGML_OPENCL_SOA_Q
  6783. if (backend_ctx->gpu_family == INTEL) {
  6784. nth0 = 16;
  6785. nth1 = 1;
  6786. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  6787. ndst = 8;
  6788. } else if (backend_ctx->gpu_family == ADRENO) {
  6789. nth0 = 64;
  6790. nth1 = 1;
  6791. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  6792. ndst =8;
  6793. } else {
  6794. GGML_ASSERT(false && "TODO: Unknown GPU");
  6795. }
  6796. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6797. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6798. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6799. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6800. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6801. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6802. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6803. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6804. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6805. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6806. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6807. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6808. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6809. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6810. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6811. #else // GGML_OPENCL_SOA_Q
  6812. if (backend_ctx->gpu_family == INTEL) {
  6813. // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
  6814. // group produces N_DST (4 for Q4_0 kernel) values in the result.
  6815. // The number of workgroups on dim 0 (the leading dimension) is
  6816. // the nearest multiple of 4 that covers ne0 (equals ne01).
  6817. nth0 = 16;
  6818. nth1 = 1;
  6819. kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
  6820. ndst = 4;
  6821. } else if (backend_ctx->gpu_family == ADRENO) {
  6822. nth0 = 64;
  6823. nth1 = 1;
  6824. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
  6825. ndst = 4;
  6826. } else {
  6827. GGML_ASSERT(false && "TODO: Unknown GPU");
  6828. }
  6829. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6830. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6831. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6832. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6833. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6834. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6835. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6836. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6837. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6838. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6839. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6840. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6841. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6842. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6843. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6844. #endif // GGML_OPENCL_SOA_Q
  6845. break;
  6846. case GGML_TYPE_Q4_1:
  6847. case GGML_TYPE_Q8_0: {
  6848. #ifdef GGML_OPENCL_SOA_Q
  6849. kernel = backend_ctx->kernel_mul_mv_q8_0_f32_flat;
  6850. // nth0 - subgroup size
  6851. // nth1 - number of subgroups per workgroup
  6852. // ndst - number of output values per workgroup = output per subgroup * number of subgroups
  6853. if (backend_ctx->gpu_family == INTEL) {
  6854. nth0 = 16;
  6855. nth1 = 2;
  6856. ndst = nth1*4;
  6857. } else if (backend_ctx->gpu_family == ADRENO) {
  6858. nth0 = 64;
  6859. nth1 = 2;
  6860. ndst = nth1*4;
  6861. } else {
  6862. GGML_ASSERT(false && "TODO: Unknown GPU");
  6863. }
  6864. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6865. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6866. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6867. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6868. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6869. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6870. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6871. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6872. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  6873. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  6874. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  6875. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  6876. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  6877. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  6878. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  6879. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
  6880. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
  6881. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6882. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6883. #else
  6884. kernel = backend_ctx->kernel_mul_mv_q8_0_f32;
  6885. // nth0 - subgroup size
  6886. // nth1 - number of subgroups per workgroup
  6887. // ndst - number of output values per workgroup = output per subgroup * number of subgroups
  6888. if (backend_ctx->gpu_family == INTEL) {
  6889. nth0 = 16;
  6890. nth1 = 2;
  6891. ndst = nth1*4;
  6892. } else if (backend_ctx->gpu_family == ADRENO) {
  6893. nth0 = 64;
  6894. nth1 = 2;
  6895. ndst = nth1*4;
  6896. } else {
  6897. GGML_ASSERT(false && "TODO: Unknown GPU");
  6898. }
  6899. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6900. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6901. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6902. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6903. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6904. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6905. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6906. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6907. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  6908. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  6909. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  6910. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  6911. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  6912. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  6913. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  6914. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
  6915. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
  6916. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6917. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6918. #endif // GGML_OPENCL_SOA_Q
  6919. break;
  6920. }
  6921. case GGML_TYPE_Q2_K:
  6922. case GGML_TYPE_Q3_K:
  6923. case GGML_TYPE_Q4_K:
  6924. case GGML_TYPE_Q5_K:
  6925. case GGML_TYPE_Q6_K:
  6926. kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
  6927. if (backend_ctx->gpu_family == INTEL) {
  6928. nth0 = 2;
  6929. nth1 = 16;
  6930. } else if (backend_ctx->gpu_family == ADRENO) {
  6931. nth0 = 2;
  6932. nth1 = 64;
  6933. } else {
  6934. GGML_ASSERT(false && "TODO: Unknown GPU");
  6935. }
  6936. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6937. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6938. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6939. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6940. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6941. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6942. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6943. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6944. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6945. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6946. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6947. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6948. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6949. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6950. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6951. break;
  6952. case GGML_TYPE_MXFP4: {
  6953. #ifdef GGML_OPENCL_SOA_Q
  6954. kernel = backend_ctx->kernel_mul_mv_mxfp4_f32_flat;
  6955. cl_mem q;
  6956. if (backend_ctx->gpu_family == INTEL) {
  6957. nth0 = 16;
  6958. nth1 = 2;
  6959. ndst = nth1*2;
  6960. q = extra0_mxfp4->q;
  6961. } else if (backend_ctx->gpu_family == ADRENO) {
  6962. nth0 = 64;
  6963. nth1 = 2;
  6964. ndst = nth1*2;
  6965. q = extra0_mxfp4->q_img;
  6966. } else {
  6967. GGML_ASSERT(false && "TODO: Unknown GPU");
  6968. }
  6969. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
  6970. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
  6971. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6972. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6973. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6974. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6975. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6976. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  6977. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  6978. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  6979. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6980. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  6981. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
  6982. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
  6983. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
  6984. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
  6985. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
  6986. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
  6987. #else
  6988. kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
  6989. if (backend_ctx->gpu_family == INTEL) {
  6990. nth0 = 16;
  6991. nth1 = 2;
  6992. ndst = nth1*2;
  6993. } else if (backend_ctx->gpu_family == ADRENO) {
  6994. nth0 = 64;
  6995. nth1 = 2;
  6996. ndst = nth1*2;
  6997. } else {
  6998. GGML_ASSERT(false && "TODO: Unknown GPU");
  6999. }
  7000. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7001. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7002. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7003. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7004. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  7005. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  7006. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  7007. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  7008. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  7009. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  7010. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  7011. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  7012. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
  7013. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
  7014. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
  7015. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
  7016. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
  7017. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
  7018. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
  7019. #endif
  7020. break;
  7021. }
  7022. default:
  7023. GGML_ASSERT(false && "not implemented");
  7024. }
  7025. if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_MXFP4 ||
  7026. src0t == GGML_TYPE_Q4_1 ||
  7027. src0t == GGML_TYPE_Q8_0 ||
  7028. src0t == GGML_TYPE_Q2_K) {
  7029. // Each SIMD group produces N_DST values in the result. Assuming each
  7030. // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
  7031. // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
  7032. // (number of workgroups) will be a nearest multiple of
  7033. // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
  7034. // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
  7035. size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  7036. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  7037. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7038. } else if (src0t == GGML_TYPE_Q4_K) {
  7039. GGML_ASSERT(false && "not implemented");
  7040. } else if (src0t == GGML_TYPE_Q3_K) {
  7041. GGML_ASSERT(false && "not implemented");
  7042. } else if (src0t == GGML_TYPE_Q5_K) {
  7043. GGML_ASSERT(false && "not implemented");
  7044. } else if (src0t == GGML_TYPE_Q6_K) {
  7045. size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  7046. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  7047. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7048. } else {
  7049. int64_t ny = (ne11 + nrows - 1)/nrows;
  7050. size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
  7051. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  7052. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7053. }
  7054. }
  7055. static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7056. GGML_ASSERT(src0);
  7057. GGML_ASSERT(src0->extra);
  7058. GGML_ASSERT(src1);
  7059. GGML_ASSERT(src1->extra);
  7060. GGML_ASSERT(dst);
  7061. GGML_ASSERT(dst->extra);
  7062. const ggml_tensor * src2 = dst->src[2];
  7063. GGML_ASSERT(src2);
  7064. GGML_ASSERT(src2->extra);
  7065. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7066. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7067. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7068. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  7069. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7070. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7071. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7072. cl_ulong offset2 = extra2->offset + src2->view_offs;
  7073. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7074. GGML_UNUSED(offset0);
  7075. #ifdef GGML_OPENCL_SOA_Q
  7076. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  7077. ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
  7078. ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
  7079. #endif
  7080. const int ne00 = src0->ne[0];
  7081. const int ne01 = src0->ne[1];
  7082. const int ne02 = src0->ne[2];
  7083. const int ne03 = src0->ne[3];
  7084. const cl_ulong nb00 = src0->nb[0];
  7085. const cl_ulong nb01 = src0->nb[1];
  7086. const cl_ulong nb02 = src0->nb[2];
  7087. const cl_ulong nb03 = src0->nb[3];
  7088. const int ne10 = src1->ne[0];
  7089. const int ne11 = src1->ne[1];
  7090. const int ne12 = src1->ne[2];
  7091. const int ne13 = src1->ne[3];
  7092. const cl_ulong nb11 = src1->nb[1];
  7093. const cl_ulong nb12 = src1->nb[2];
  7094. const cl_ulong nb13 = src1->nb[3];
  7095. const int ne20 = src2->ne[0];
  7096. const int ne21 = src2->ne[1];
  7097. const cl_ulong nb21 = src2->nb[1];
  7098. const cl_ulong nb20 = src2->nb[0];
  7099. UNUSED(nb20);
  7100. const int ne0 = dst->ne[0];
  7101. const int ne1 = dst->ne[1];
  7102. const int r2 = ne12/ne02;
  7103. const int r3 = ne13/ne03;
  7104. const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
  7105. GGML_ASSERT(ne00 == ne10);
  7106. int sgs = 32; // subgroup size
  7107. int nsg = 1; // number of subgroups
  7108. int nrows = 1; // number of row in src1
  7109. int ndst = 4; // number of values produced by each subgroup
  7110. cl_kernel kernel;
  7111. // subgroup mat vec
  7112. switch (src0->type) {
  7113. case GGML_TYPE_Q4_0: {
  7114. kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
  7115. if (backend_ctx->gpu_family == INTEL) {
  7116. sgs = 16;
  7117. nsg = 1;
  7118. ndst = 8;
  7119. } else if (backend_ctx->gpu_family == ADRENO) {
  7120. sgs = 64;
  7121. nsg = 1;
  7122. ndst = 8;
  7123. } else {
  7124. GGML_ASSERT(false && "TODO: Unknown GPU");
  7125. }
  7126. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  7127. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  7128. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7129. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7130. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  7131. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7132. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7133. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7134. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7135. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  7136. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  7137. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
  7138. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  7139. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  7140. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  7141. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  7142. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
  7143. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
  7144. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
  7145. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
  7146. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
  7147. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
  7148. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
  7149. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
  7150. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
  7151. break;
  7152. }
  7153. case GGML_TYPE_Q8_0: {
  7154. #ifdef GGML_OPENCL_SOA_Q
  7155. kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32_flat;
  7156. if (backend_ctx->gpu_family == INTEL) {
  7157. sgs = 16;
  7158. nsg = 2;
  7159. ndst = 4;
  7160. } else if (backend_ctx->gpu_family == ADRENO) {
  7161. sgs = 64;
  7162. nsg = 2;
  7163. ndst = 4;
  7164. } else {
  7165. GGML_ASSERT(false && "TODO: Unknown GPU");
  7166. }
  7167. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  7168. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  7169. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7170. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7171. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  7172. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7173. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7174. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7175. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7176. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  7177. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  7178. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  7179. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  7180. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  7181. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7182. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7183. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
  7184. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
  7185. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
  7186. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
  7187. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
  7188. #else
  7189. kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32;
  7190. if (backend_ctx->gpu_family == INTEL) {
  7191. sgs = 16;
  7192. nsg = 2;
  7193. ndst = 4;
  7194. } else if (backend_ctx->gpu_family == ADRENO) {
  7195. sgs = 64;
  7196. nsg = 2;
  7197. ndst = 4;
  7198. } else {
  7199. GGML_ASSERT(false && "TODO: Unknown GPU");
  7200. }
  7201. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7202. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7203. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7204. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7205. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  7206. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7207. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7208. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7209. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7210. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  7211. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  7212. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  7213. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  7214. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  7215. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7216. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7217. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
  7218. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
  7219. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
  7220. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
  7221. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
  7222. #endif // GGML_OPENCL_SOA_Q
  7223. break;
  7224. }
  7225. case GGML_TYPE_MXFP4: {
  7226. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  7227. if (use_adreno_moe_kernels(backend_ctx, src0)) {
  7228. cl_int status;
  7229. size_t local_size[3] = {64, 2, 1};
  7230. size_t global_size[3] = {64, 2, 1};
  7231. cl_mem src1_sub_buffer, buf_src1_image, buf_src2;
  7232. int tile_size = 320;
  7233. if (ne12 == 1) { // for gemv
  7234. kernel = backend_ctx->kernel_gemv_moe_mxfp4_f32;
  7235. // create a sub_buffer for src2
  7236. cl_buffer_region region;
  7237. region.origin = offset2;
  7238. region.size = ne20 * ne21 * sizeof(int);
  7239. buf_src2 = clCreateSubBuffer(extra2->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  7240. CL_CHECK(status);
  7241. // set thread grid
  7242. global_size[0] = static_cast<size_t>(ne01);
  7243. global_size[1] = 4;
  7244. global_size[2] = static_cast<size_t>(ne20);
  7245. local_size[1] = 4;
  7246. } else { // for gemm
  7247. kernel = backend_ctx->kernel_gemm_moe_mxfp4_f32;
  7248. // preprocess router table
  7249. int num_tiles_per_expert = (ne01 + tile_size - 1) / tile_size;
  7250. void * host_src2_reorder = malloc(ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short));
  7251. void * host_src2 = malloc(ne21 * nb21);
  7252. CL_CHECK(clEnqueueReadBuffer(backend_ctx->queue, extra2->data_device, CL_TRUE, offset2, ne21 * nb21, host_src2, 0, NULL, NULL));
  7253. int total_experts = nb21 / nb20;
  7254. int out_idx = 0;
  7255. for (int i_expert = 0; i_expert < ne02; i_expert++) {
  7256. for (int i_tile = 0; i_tile < num_tiles_per_expert; i_tile++) {
  7257. for (int j = 0; j < ne21; j++) {
  7258. for (int i = 0; i < ne20; i++) {
  7259. int expert = ((int *)host_src2)[j * total_experts + i];
  7260. if (i_expert == expert) {
  7261. ((short *)host_src2_reorder)[out_idx] = static_cast<short>(expert);
  7262. ((short *)host_src2_reorder)[out_idx + 1] = static_cast<short>(j * ne11 + (i % ne11));
  7263. ((short *)host_src2_reorder)[out_idx + 2] = static_cast<short>(j * ne20 + i);
  7264. ((short *)host_src2_reorder)[out_idx + 3] = static_cast<short>(i_tile);
  7265. out_idx += 4;
  7266. }
  7267. }
  7268. }
  7269. }
  7270. }
  7271. buf_src2 = clCreateBuffer(backend_ctx->context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short), host_src2_reorder, &status);
  7272. CL_CHECK(status);
  7273. // set thread grid
  7274. global_size[0] = static_cast<size_t>(tile_size);
  7275. global_size[2] = static_cast<size_t>(ne20 * ne21 * num_tiles_per_expert);
  7276. }
  7277. // create a sub_buffer for src1
  7278. cl_buffer_region region;
  7279. region.origin = offset1;
  7280. region.size = ne10 * ne11 * ne12 * sizeof(float);
  7281. src1_sub_buffer = clCreateSubBuffer(extra1->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  7282. CL_CHECK(status);
  7283. // create image for src1
  7284. cl_image_format image_format_buf_src1 = {CL_RGBA, CL_FLOAT};
  7285. cl_image_desc image_desc_buf_src1 = {CL_MEM_OBJECT_IMAGE1D_BUFFER, static_cast<size_t>(ne10 * ne11 * ne12 / 4), 0,0,0,0,0,0,0, {src1_sub_buffer}};
  7286. buf_src1_image = clCreateImage(backend_ctx->context, CL_MEM_READ_ONLY, &image_format_buf_src1, &image_desc_buf_src1, NULL, &status);
  7287. CL_CHECK(status);
  7288. // Set kernel args
  7289. int arg_idx = 0;
  7290. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->q));
  7291. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->e));
  7292. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src1_image));
  7293. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src2));
  7294. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extrad->data_device));
  7295. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_ulong), &offsetd));
  7296. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne00));
  7297. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne01));
  7298. if (ne12 == 1) {
  7299. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne11));
  7300. } else {
  7301. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &tile_size));
  7302. }
  7303. // launch kernel
  7304. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_size, local_size, dst);
  7305. // deallocate sub buffers and images
  7306. CL_CHECK(clReleaseMemObject(src1_sub_buffer));
  7307. CL_CHECK(clReleaseMemObject(buf_src1_image));
  7308. CL_CHECK(clReleaseMemObject(buf_src2));
  7309. return;
  7310. } // else fallback to generic kernel
  7311. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  7312. #ifdef GGML_OPENCL_SOA_Q
  7313. kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat;
  7314. cl_mem q;
  7315. if (backend_ctx->gpu_family == INTEL) {
  7316. sgs = 16;
  7317. nsg = 2;
  7318. ndst = 2;
  7319. q = extra0_mxfp4->q;
  7320. } else if (backend_ctx->gpu_family == ADRENO) {
  7321. sgs = 64;
  7322. nsg = 1;
  7323. ndst = 4;
  7324. q = extra0_mxfp4->q_img;
  7325. } else {
  7326. GGML_ASSERT(false && "TODO: Unknown GPU");
  7327. }
  7328. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
  7329. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
  7330. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7331. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7332. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  7333. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7334. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7335. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7336. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7337. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7338. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7339. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7340. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  7341. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  7342. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7343. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7344. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  7345. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
  7346. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
  7347. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
  7348. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  7349. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  7350. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  7351. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  7352. #else // GGML_OPENCL_SOA_Q
  7353. kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
  7354. if (backend_ctx->gpu_family == INTEL) {
  7355. sgs = 16;
  7356. nsg = 2;
  7357. ndst = 2;
  7358. } else if (backend_ctx->gpu_family == ADRENO) {
  7359. sgs = 64;
  7360. nsg = 2;
  7361. ndst = 2;
  7362. } else {
  7363. GGML_ASSERT(false && "TODO: Unknown GPU");
  7364. }
  7365. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7366. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7367. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7368. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7369. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  7370. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7371. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7372. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7373. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7374. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7375. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7376. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7377. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  7378. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  7379. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7380. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7381. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  7382. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
  7383. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
  7384. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
  7385. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  7386. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  7387. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  7388. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  7389. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
  7390. #endif // GGML_OPENCL_SOA_Q
  7391. break;
  7392. }
  7393. default:
  7394. GGML_ASSERT(false && "not implemented");;
  7395. }
  7396. int _ne1 = 1;
  7397. int ne123 = dst_rows;
  7398. size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
  7399. size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
  7400. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7401. }
  7402. static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7403. GGML_ASSERT(src0);
  7404. GGML_ASSERT(src0->extra);
  7405. GGML_ASSERT(dst);
  7406. GGML_ASSERT(dst->extra);
  7407. GGML_UNUSED(src1);
  7408. GGML_ASSERT(ggml_is_contiguous(src0));
  7409. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7410. float scale;
  7411. float bias;
  7412. memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(float));
  7413. memcpy(&bias, ((int32_t *) dst->op_params) + 1, sizeof(float));
  7414. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7415. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7416. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7417. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7418. cl_kernel kernel = backend_ctx->kernel_scale;
  7419. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7420. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7421. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7422. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7423. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
  7424. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
  7425. int n = ggml_nelements(dst)/4;
  7426. size_t global_work_size[] = {(size_t)n, 1, 1};
  7427. size_t local_work_size[] = {64, 1, 1};
  7428. size_t * local_work_size_ptr = local_work_size;
  7429. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  7430. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  7431. }
  7432. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  7433. }
  7434. static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7435. GGML_ASSERT(src0);
  7436. GGML_ASSERT(src0->extra);
  7437. GGML_ASSERT(src1);
  7438. GGML_ASSERT(src1->extra);
  7439. // GGML_OP_CPY happens between src0 and src1.
  7440. // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
  7441. UNUSED(dst);
  7442. const int ne00 = src0 ? src0->ne[0] : 0;
  7443. const int ne01 = src0 ? src0->ne[1] : 0;
  7444. const int ne02 = src0 ? src0->ne[2] : 0;
  7445. const int ne03 = src0 ? src0->ne[3] : 0;
  7446. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  7447. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  7448. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  7449. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  7450. const int ne10 = src1 ? src1->ne[0] : 0;
  7451. const int ne11 = src1 ? src1->ne[1] : 0;
  7452. const int ne12 = src1 ? src1->ne[2] : 0;
  7453. const int ne13 = src1 ? src1->ne[3] : 0;
  7454. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  7455. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  7456. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  7457. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  7458. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  7459. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  7460. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7461. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7462. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7463. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7464. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7465. cl_kernel kernel;
  7466. switch (src0t) {
  7467. case GGML_TYPE_F32:
  7468. switch (src1t) {
  7469. case GGML_TYPE_F16:
  7470. kernel = backend_ctx->kernel_cpy_f32_f16;
  7471. break;
  7472. case GGML_TYPE_F32:
  7473. kernel = backend_ctx->kernel_cpy_f32_f32;
  7474. break;
  7475. default:
  7476. GGML_ASSERT(false && "not implemented");
  7477. }
  7478. break;
  7479. case GGML_TYPE_F16:
  7480. switch (src1t) {
  7481. case GGML_TYPE_F16:
  7482. kernel = backend_ctx->kernel_cpy_f16_f16;
  7483. break;
  7484. case GGML_TYPE_F32:
  7485. kernel = backend_ctx->kernel_cpy_f16_f32;
  7486. break;
  7487. default:
  7488. GGML_ASSERT(false && "not implemented");
  7489. }
  7490. break;
  7491. default:
  7492. GGML_ASSERT(false && "not implemented");
  7493. }
  7494. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7495. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7496. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7497. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7498. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7499. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7500. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  7501. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  7502. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  7503. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7504. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7505. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7506. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  7507. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  7508. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  7509. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  7510. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  7511. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  7512. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  7513. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  7514. const int nth = MIN(64, ne00);
  7515. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7516. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7517. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, src1);
  7518. }
  7519. static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7520. ggml_cl_cpy(backend, src0, dst, nullptr);
  7521. UNUSED(src1);
  7522. }
  7523. static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7524. GGML_ASSERT(src0);
  7525. GGML_ASSERT(src0->extra);
  7526. GGML_ASSERT(dst);
  7527. GGML_ASSERT(dst->extra);
  7528. UNUSED(src1);
  7529. int n_past = ((int32_t *)(dst->op_params))[0];
  7530. const int ne00 = src0 ? src0->ne[0] : 0;
  7531. const int ne01 = src0 ? src0->ne[1] : 0;
  7532. const int ne02 = src0 ? src0->ne[2] : 0;
  7533. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7534. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7535. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7536. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7537. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7538. cl_kernel kernel;
  7539. if (ne00%8 == 0) {
  7540. kernel = backend_ctx->kernel_diag_mask_inf_8;
  7541. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7542. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7543. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7544. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7545. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7546. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7547. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  7548. size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
  7549. size_t local_work_size[] = {64, 1, 1};
  7550. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7551. } else {
  7552. kernel = backend_ctx->kernel_diag_mask_inf;
  7553. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7554. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7555. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7556. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7557. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7558. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7559. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  7560. size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
  7561. size_t local_work_size[] = {64, 1, 1};
  7562. size_t * local_work_size_ptr = local_work_size;
  7563. if (ne00 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  7564. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  7565. }
  7566. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  7567. }
  7568. }
  7569. static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7570. GGML_ASSERT(src0);
  7571. GGML_ASSERT(src0->extra);
  7572. GGML_ASSERT(dst);
  7573. GGML_ASSERT(dst->extra);
  7574. // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
  7575. // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
  7576. // alibi is not used; however, for some other models, it is used.
  7577. // KQ_mask
  7578. if (src1) {
  7579. GGML_ASSERT(src1);
  7580. GGML_ASSERT(src1->extra);
  7581. }
  7582. const ggml_tensor * src2 = dst->src[2];
  7583. if (src2) {
  7584. GGML_ASSERT(src2->extra);
  7585. }
  7586. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7587. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7588. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7589. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  7590. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  7591. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7592. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7593. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  7594. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  7595. const int ne00 = src0->ne[0];
  7596. const int ne01 = src0->ne[1];
  7597. const int ne02 = src0->ne[2];
  7598. const int ne03 = src0->ne[3];
  7599. const cl_long nb01 = src0->nb[1];
  7600. const cl_long nb02 = src0->nb[2];
  7601. const cl_long nb03 = src0->nb[3];
  7602. const int ne12 = src1 ? src1->ne[2] : 0;
  7603. const int ne13 = src1 ? src1->ne[3] : 0;
  7604. const cl_long nb11 = src1 ? src1->nb[1] : 0;
  7605. const cl_long nb12 = src1 ? src1->nb[2] : 0;
  7606. const cl_long nb13 = src1 ? src1->nb[3] : 0;
  7607. const cl_long nb1 = dst->nb[1];
  7608. const cl_long nb2 = dst->nb[2];
  7609. const cl_long nb3 = dst->nb[3];
  7610. float scale, max_bias;
  7611. memcpy(&scale, dst->op_params + 0, sizeof(float));
  7612. memcpy(&max_bias, dst->op_params + 1, sizeof(float));
  7613. const int n_head = src0->ne[2];
  7614. const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
  7615. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  7616. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  7617. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  7618. // Local size must be wave size. Each workgroup is a wave, working on a row,
  7619. // where a row corresponds to leading dimension.
  7620. int nth = MIN(32, ne00);
  7621. if (backend_ctx->gpu_family == INTEL) {
  7622. // This is the same as the initial value.
  7623. nth = MIN(32, ne00);
  7624. }
  7625. else if (backend_ctx->gpu_family == ADRENO) {
  7626. nth = 64;
  7627. } else {
  7628. GGML_ASSERT(false && "TODO: Unknown GPU");
  7629. }
  7630. cl_kernel kernel;
  7631. if (ne00%4 == 0) {
  7632. if (use_f16) {
  7633. kernel = backend_ctx->kernel_soft_max_4_f16;
  7634. } else {
  7635. kernel = backend_ctx->kernel_soft_max_4;
  7636. }
  7637. } else {
  7638. if (use_f16) {
  7639. kernel = backend_ctx->kernel_soft_max_f16;
  7640. } else {
  7641. kernel = backend_ctx->kernel_soft_max;
  7642. }
  7643. }
  7644. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7645. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7646. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
  7647. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7648. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  7649. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7650. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7651. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7652. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7653. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7654. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7655. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7656. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  7657. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  7658. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7659. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7660. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  7661. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb1));
  7662. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb2));
  7663. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb3));
  7664. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &scale));
  7665. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &max_bias));
  7666. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(float), &m0));
  7667. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &m1));
  7668. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_head_log2));
  7669. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7670. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7671. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7672. }
  7673. static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7674. GGML_ASSERT(src0);
  7675. GGML_ASSERT(src0->extra);
  7676. GGML_ASSERT(src1);
  7677. GGML_ASSERT(src1->extra);
  7678. GGML_ASSERT(dst);
  7679. GGML_ASSERT(dst->extra);
  7680. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7681. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7682. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7683. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7684. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7685. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7686. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7687. ggml_tensor * src2 = dst->src[2];
  7688. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  7689. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  7690. const int ne00 = src0 ? src0->ne[0] : 0;
  7691. const int ne01 = src0 ? src0->ne[1] : 0;
  7692. const int ne02 = src0 ? src0->ne[2] : 0;
  7693. const int ne03 = src0 ? src0->ne[3] : 0;
  7694. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  7695. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  7696. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  7697. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  7698. const int ne10 = src1 ? src1->ne[0] : 0;
  7699. const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
  7700. const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
  7701. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  7702. const int ne0 = dst ? dst->ne[0] : 0;
  7703. const int ne1 = dst ? dst->ne[1] : 0;
  7704. const int ne2 = dst ? dst->ne[2] : 0;
  7705. const int ne3 = dst ? dst->ne[3] : 0;
  7706. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  7707. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  7708. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  7709. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  7710. GGML_ASSERT(ne10 % ne02 == 0);
  7711. GGML_ASSERT(ne10 >= ne02);
  7712. int nth = MIN(64, ne00);
  7713. const int n_past = ((int *) dst->op_params)[0];
  7714. const int n_dims = ((int *) dst->op_params)[1];
  7715. const int mode = ((int *) dst->op_params)[2];
  7716. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  7717. float freq_base;
  7718. float freq_scale;
  7719. float ext_factor;
  7720. float attn_factor;
  7721. float beta_fast;
  7722. float beta_slow;
  7723. int32_t sections[4];
  7724. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  7725. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  7726. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  7727. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  7728. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  7729. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  7730. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
  7731. const bool is_neox = mode & 2;
  7732. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  7733. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  7734. const int is_imrope = mode == GGML_ROPE_TYPE_IMROPE;
  7735. if (is_mrope) {
  7736. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  7737. }
  7738. if (is_vision) {
  7739. GGML_ASSERT(n_dims == ne00/2);
  7740. }
  7741. cl_kernel kernel;
  7742. if (is_neox) {
  7743. switch (src0->type) {
  7744. case GGML_TYPE_F32:
  7745. kernel = backend_ctx->kernel_rope_neox_f32;
  7746. break;
  7747. case GGML_TYPE_F16:
  7748. kernel = backend_ctx->kernel_rope_neox_f16;
  7749. break;
  7750. default:
  7751. GGML_ASSERT(false);
  7752. };
  7753. } else if (is_mrope && !is_vision) {
  7754. switch (src0->type) {
  7755. case GGML_TYPE_F32:
  7756. kernel = backend_ctx->kernel_rope_multi_f32;
  7757. break;
  7758. case GGML_TYPE_F16:
  7759. kernel = backend_ctx->kernel_rope_multi_f16;
  7760. break;
  7761. default:
  7762. GGML_ASSERT(false);
  7763. };
  7764. } else if (is_vision) {
  7765. switch (src0->type) {
  7766. case GGML_TYPE_F32:
  7767. kernel = backend_ctx->kernel_rope_vision_f32;
  7768. break;
  7769. case GGML_TYPE_F16:
  7770. kernel = backend_ctx->kernel_rope_vision_f16;
  7771. break;
  7772. default:
  7773. GGML_ASSERT(false);
  7774. }
  7775. } else {
  7776. switch (src0->type) {
  7777. case GGML_TYPE_F32:
  7778. kernel = backend_ctx->kernel_rope_norm_f32;
  7779. break;
  7780. case GGML_TYPE_F16:
  7781. kernel = backend_ctx->kernel_rope_norm_f16;
  7782. break;
  7783. default:
  7784. GGML_ASSERT(false);
  7785. };
  7786. }
  7787. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7788. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7789. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7790. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7791. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  7792. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7793. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7794. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7795. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7796. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  7797. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  7798. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  7799. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
  7800. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
  7801. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
  7802. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
  7803. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
  7804. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
  7805. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
  7806. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
  7807. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
  7808. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
  7809. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
  7810. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
  7811. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
  7812. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
  7813. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
  7814. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
  7815. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
  7816. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
  7817. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
  7818. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
  7819. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
  7820. // both mrope and vision kernels have sections
  7821. if (is_mrope || is_vision) {
  7822. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, &sections));
  7823. }
  7824. // only mrope has is_imrope
  7825. if (is_mrope && !is_vision) {
  7826. CL_CHECK(clSetKernelArg(kernel, 34, sizeof(int), &is_imrope));
  7827. }
  7828. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7829. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7830. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7831. }
  7832. static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7833. GGML_ASSERT(src0);
  7834. GGML_ASSERT(src1);
  7835. GGML_ASSERT(src1->extra);
  7836. GGML_ASSERT(dst);
  7837. GGML_ASSERT(dst->extra);
  7838. // src0 - filter, src1 - input
  7839. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7840. GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
  7841. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7842. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7843. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7844. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7845. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7846. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  7847. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  7848. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  7849. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  7850. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  7851. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  7852. const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
  7853. const cl_long IC = src1->ne[is_2D ? 2 : 1];
  7854. const cl_long IH = is_2D ? src1->ne[1] : 1;
  7855. const cl_long IW = src1->ne[0];
  7856. const cl_long KH = is_2D ? src0->ne[1] : 1;
  7857. const cl_long KW = src0->ne[0];
  7858. const cl_long OH = is_2D ? dst->ne[2] : 1;
  7859. const cl_long OW = dst->ne[1];
  7860. // nb is byte offset, src is type float32
  7861. const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
  7862. const cl_long batch = src1->ne[is_2D ? 3 : 2];
  7863. const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
  7864. const cl_long pelements = OW*KW*KH;
  7865. const cl_long CHW = IC*KH*KW;
  7866. cl_kernel kernel;
  7867. if(dst->type == GGML_TYPE_F16) {
  7868. kernel = backend_ctx->kernel_im2col_f16;
  7869. } else {
  7870. kernel = backend_ctx->kernel_im2col_f32;
  7871. }
  7872. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
  7873. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
  7874. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7875. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7876. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
  7877. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
  7878. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
  7879. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
  7880. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
  7881. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
  7882. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
  7883. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
  7884. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
  7885. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
  7886. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
  7887. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
  7888. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
  7889. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
  7890. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
  7891. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
  7892. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
  7893. const int num_blocks = (pelements + 256 - 1) / 256;
  7894. size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
  7895. size_t local_work_size[] = {256, 1, 1};
  7896. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7897. }
  7898. static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7899. GGML_ASSERT(src0);
  7900. GGML_ASSERT(src0->extra);
  7901. GGML_ASSERT(dst);
  7902. GGML_ASSERT(dst->extra);
  7903. GGML_UNUSED(src1);
  7904. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7905. GGML_ASSERT( dst->type == GGML_TYPE_I32);
  7906. GGML_ASSERT(ggml_is_contiguous(src0));
  7907. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7908. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7909. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7910. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7911. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7912. const int ne00 = src0->ne[0];
  7913. const int nrows = ggml_nrows(src0);
  7914. int ne00_padded = 1;
  7915. while (ne00_padded < ne00) {
  7916. ne00_padded *= 2;
  7917. }
  7918. int order = (enum ggml_sort_order) dst->op_params[0];
  7919. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  7920. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7921. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7922. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7923. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7924. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7925. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
  7926. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
  7927. CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
  7928. size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
  7929. size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
  7930. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7931. }
  7932. static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7933. GGML_ASSERT(src0);
  7934. GGML_ASSERT(src0->extra);
  7935. GGML_ASSERT(dst);
  7936. GGML_ASSERT(dst->extra);
  7937. GGML_UNUSED(src1);
  7938. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  7939. GGML_ASSERT(ggml_is_contiguous(src0));
  7940. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7941. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7942. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7943. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7944. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7945. const int ne00 = src0->ne[0];
  7946. const int ne01 = src0->ne[1];
  7947. const int ne02 = src0->ne[2];
  7948. const int ne03 = src0->ne[3];
  7949. const cl_ulong nb01 = src0->nb[1];
  7950. const cl_ulong nb02 = src0->nb[2];
  7951. const cl_ulong nb03 = src0->nb[3];
  7952. const cl_ulong nb1 = dst->nb[1];
  7953. const cl_ulong nb2 = dst->nb[2];
  7954. const cl_ulong nb3 = dst->nb[3];
  7955. cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
  7956. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7957. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7958. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7959. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7960. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7961. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7962. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  7963. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  7964. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  7965. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  7966. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  7967. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
  7968. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
  7969. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
  7970. size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
  7971. size_t local_work_size[] = {(size_t)64, 1, 1};
  7972. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7973. }
  7974. static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7975. GGML_ASSERT(src0);
  7976. GGML_ASSERT(src0->extra);
  7977. GGML_ASSERT(dst);
  7978. GGML_ASSERT(dst->extra);
  7979. GGML_ASSERT(ggml_is_contiguous_1(src0));
  7980. if (src1) {
  7981. GGML_ASSERT(src1);
  7982. GGML_ASSERT(src1->extra);
  7983. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  7984. }
  7985. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7986. cl_kernel kernel;
  7987. switch (ggml_get_glu_op(dst)) {
  7988. case GGML_GLU_OP_GEGLU:
  7989. if (dst->type == GGML_TYPE_F32) {
  7990. kernel = backend_ctx->kernel_geglu;
  7991. } else {
  7992. kernel = backend_ctx->kernel_geglu_f16;
  7993. }
  7994. break;
  7995. case GGML_GLU_OP_REGLU:
  7996. if (dst->type == GGML_TYPE_F32) {
  7997. kernel = backend_ctx->kernel_reglu;
  7998. } else {
  7999. kernel = backend_ctx->kernel_reglu_f16;
  8000. }
  8001. break;
  8002. case GGML_GLU_OP_SWIGLU:
  8003. if (dst->type == GGML_TYPE_F32) {
  8004. kernel = backend_ctx->kernel_swiglu;
  8005. } else {
  8006. kernel = backend_ctx->kernel_swiglu_f16;
  8007. }
  8008. break;
  8009. case GGML_GLU_OP_SWIGLU_OAI:
  8010. kernel = backend_ctx->kernel_swiglu_oai;
  8011. break;
  8012. case GGML_GLU_OP_GEGLU_ERF:
  8013. if (dst->type == GGML_TYPE_F32) {
  8014. kernel = backend_ctx->kernel_geglu_erf;
  8015. } else {
  8016. kernel = backend_ctx->kernel_geglu_erf_f16;
  8017. }
  8018. break;
  8019. case GGML_GLU_OP_GEGLU_QUICK:
  8020. if (dst->type == GGML_TYPE_F32) {
  8021. kernel = backend_ctx->kernel_geglu_quick;
  8022. } else {
  8023. kernel = backend_ctx->kernel_geglu_quick_f16;
  8024. }
  8025. break;
  8026. default:
  8027. GGML_ABORT("Unsupported glu op");
  8028. }
  8029. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  8030. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  8031. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  8032. cl_ulong offset0 = extra0->offset + src0->view_offs;
  8033. cl_ulong offsetd = extrad->offset + dst->view_offs;
  8034. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  8035. const int ne0 = dst->ne[0];
  8036. const cl_ulong nb01 = src0->nb[1];
  8037. const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
  8038. const cl_ulong nb1 = dst->nb[1];
  8039. const int swp = ggml_get_op_params_i32(dst, 1);
  8040. const float alpha = ggml_get_op_params_f32(dst, 2);
  8041. const float limit = ggml_get_op_params_f32(dst, 3);
  8042. const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
  8043. const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
  8044. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  8045. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  8046. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
  8047. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  8048. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  8049. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  8050. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
  8051. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
  8052. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  8053. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
  8054. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
  8055. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
  8056. if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) {
  8057. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &limit));
  8058. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &alpha));
  8059. }
  8060. const size_t nrows = ggml_nrows(src0);
  8061. size_t nth = 512;
  8062. size_t global_work_size[] = {nrows*nth, 1, 1};
  8063. size_t local_work_size[] = {nth, 1, 1};
  8064. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  8065. }
  8066. //------------------------------------------------------------------------------
  8067. // Op offloading
  8068. //------------------------------------------------------------------------------
  8069. typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  8070. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
  8071. ggml_cl_func_t func = nullptr;
  8072. ggml_tensor * src0 = tensor->src[0];
  8073. ggml_tensor * src1 = tensor->src[1];
  8074. const bool any_on_device = tensor->extra
  8075. || (src0 != nullptr && src0->extra)
  8076. || (src1 != nullptr && src1->extra);
  8077. switch (tensor->op) {
  8078. case GGML_OP_GET_ROWS:
  8079. if (!any_on_device) {
  8080. return false;
  8081. }
  8082. func = ggml_cl_get_rows;
  8083. break;
  8084. case GGML_OP_SET_ROWS:
  8085. if (!any_on_device) {
  8086. return false;
  8087. }
  8088. func = ggml_cl_set_rows;
  8089. break;
  8090. case GGML_OP_CPY:
  8091. if (!any_on_device) {
  8092. return false;
  8093. }
  8094. func = ggml_cl_cpy;
  8095. break;
  8096. case GGML_OP_DUP:
  8097. case GGML_OP_CONT:
  8098. if (!any_on_device) {
  8099. return false;
  8100. }
  8101. func = ggml_cl_dup;
  8102. break;
  8103. case GGML_OP_ADD:
  8104. if (!any_on_device) {
  8105. return false;
  8106. }
  8107. func = ggml_cl_add;
  8108. break;
  8109. case GGML_OP_ADD_ID:
  8110. if (!any_on_device) {
  8111. return false;
  8112. }
  8113. func = ggml_cl_add_id;
  8114. break;
  8115. case GGML_OP_MUL:
  8116. if (!any_on_device) {
  8117. return false;
  8118. }
  8119. func = ggml_cl_mul;
  8120. break;
  8121. case GGML_OP_DIV:
  8122. if (!any_on_device) {
  8123. return false;
  8124. }
  8125. func = ggml_cl_div;
  8126. break;
  8127. case GGML_OP_SUB:
  8128. if (!any_on_device) {
  8129. return false;
  8130. }
  8131. func = ggml_cl_sub;
  8132. break;
  8133. case GGML_OP_SQR:
  8134. if (!any_on_device) {
  8135. return false;
  8136. }
  8137. func = ggml_cl_sqr;
  8138. break;
  8139. case GGML_OP_SQRT:
  8140. if (!any_on_device) {
  8141. return false;
  8142. }
  8143. func = ggml_cl_sqrt;
  8144. break;
  8145. case GGML_OP_MEAN:
  8146. if (!any_on_device) {
  8147. return false;
  8148. }
  8149. func = ggml_cl_mean;
  8150. break;
  8151. case GGML_OP_UNARY:
  8152. switch (ggml_get_unary_op(tensor)) {
  8153. case GGML_UNARY_OP_GELU:
  8154. if (!any_on_device) {
  8155. return false;
  8156. }
  8157. func = ggml_cl_gelu;
  8158. break;
  8159. case GGML_UNARY_OP_GELU_ERF:
  8160. if (!any_on_device) {
  8161. return false;
  8162. }
  8163. func = ggml_cl_gelu_erf;
  8164. break;
  8165. case GGML_UNARY_OP_GELU_QUICK:
  8166. if (!any_on_device) {
  8167. return false;
  8168. }
  8169. func = ggml_cl_gelu_quick;
  8170. break;
  8171. case GGML_UNARY_OP_SILU:
  8172. if (!any_on_device) {
  8173. return false;
  8174. }
  8175. func = ggml_cl_silu;
  8176. break;
  8177. case GGML_UNARY_OP_RELU:
  8178. if (!any_on_device) {
  8179. return false;
  8180. }
  8181. func = ggml_cl_relu;
  8182. break;
  8183. case GGML_UNARY_OP_SIGMOID:
  8184. if (!any_on_device) {
  8185. return false;
  8186. }
  8187. func = ggml_cl_sigmoid;
  8188. break;
  8189. case GGML_UNARY_OP_TANH:
  8190. if (!any_on_device) {
  8191. return false;
  8192. }
  8193. func = ggml_cl_tanh;
  8194. break;
  8195. default:
  8196. return false;
  8197. } break;
  8198. case GGML_OP_GLU:
  8199. if (!any_on_device) {
  8200. return false;
  8201. }
  8202. func = ggml_cl_glu;
  8203. break;
  8204. case GGML_OP_FILL:
  8205. if (!any_on_device) {
  8206. return false;
  8207. }
  8208. func = ggml_cl_fill;
  8209. break;
  8210. case GGML_OP_CLAMP:
  8211. if (!any_on_device) {
  8212. return false;
  8213. }
  8214. func = ggml_cl_clamp;
  8215. break;
  8216. case GGML_OP_NORM:
  8217. if (!any_on_device) {
  8218. return false;
  8219. }
  8220. func = ggml_cl_norm;
  8221. break;
  8222. case GGML_OP_RMS_NORM:
  8223. if (!any_on_device) {
  8224. return false;
  8225. }
  8226. func = ggml_cl_rms_norm;
  8227. break;
  8228. case GGML_OP_GROUP_NORM:
  8229. if (!any_on_device) {
  8230. return false;
  8231. }
  8232. func = ggml_cl_group_norm;
  8233. break;
  8234. case GGML_OP_REPEAT:
  8235. if (!any_on_device) {
  8236. return false;
  8237. }
  8238. func = ggml_cl_repeat;
  8239. break;
  8240. case GGML_OP_PAD:
  8241. if (!any_on_device) {
  8242. return false;
  8243. }
  8244. ggml_cl_pad(backend, tensor->src[0], tensor);
  8245. return true;
  8246. case GGML_OP_UPSCALE:
  8247. if (!any_on_device) {
  8248. return false;
  8249. }
  8250. ggml_cl_upscale(backend, tensor->src[0], tensor);
  8251. return true;
  8252. case GGML_OP_CONV_2D:
  8253. if (!any_on_device) {
  8254. return false;
  8255. }
  8256. func = ggml_cl_conv_2d;
  8257. break;
  8258. case GGML_OP_SSM_CONV:
  8259. if (!any_on_device) {
  8260. return false;
  8261. }
  8262. func = ggml_cl_ssm_conv;
  8263. break;
  8264. case GGML_OP_CONCAT:
  8265. if (!any_on_device) {
  8266. return false;
  8267. }
  8268. func = ggml_cl_concat;
  8269. break;
  8270. case GGML_OP_TIMESTEP_EMBEDDING:
  8271. if (!any_on_device) {
  8272. return false;
  8273. }
  8274. ggml_cl_timestep_embedding(backend, tensor->src[0], tensor);
  8275. return true;
  8276. case GGML_OP_MUL_MAT:
  8277. if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  8278. return false;
  8279. }
  8280. func = ggml_cl_mul_mat;
  8281. break;
  8282. case GGML_OP_MUL_MAT_ID:
  8283. if (!any_on_device) {
  8284. return false;
  8285. }
  8286. func = ggml_cl_mul_mat_id;
  8287. break;
  8288. case GGML_OP_SCALE:
  8289. if (!any_on_device) {
  8290. return false;
  8291. }
  8292. func = ggml_cl_scale;
  8293. break;
  8294. case GGML_OP_RESHAPE:
  8295. case GGML_OP_VIEW:
  8296. case GGML_OP_PERMUTE:
  8297. case GGML_OP_TRANSPOSE:
  8298. if (!any_on_device) {
  8299. return false;
  8300. }
  8301. func = ggml_cl_nop;
  8302. break;
  8303. case GGML_OP_DIAG_MASK_INF:
  8304. if (!any_on_device) {
  8305. return false;
  8306. }
  8307. func = ggml_cl_diag_mask_inf;
  8308. break;
  8309. case GGML_OP_SOFT_MAX:
  8310. if (!any_on_device) {
  8311. return false;
  8312. }
  8313. func = ggml_cl_soft_max;
  8314. break;
  8315. case GGML_OP_ROPE:
  8316. if (!any_on_device) {
  8317. return false;
  8318. }
  8319. func = ggml_cl_rope;
  8320. break;
  8321. case GGML_OP_IM2COL:
  8322. if (!any_on_device) {
  8323. return false;
  8324. }
  8325. func = ggml_cl_im2col;
  8326. break;
  8327. case GGML_OP_ARGSORT:
  8328. if (!any_on_device) {
  8329. return false;
  8330. }
  8331. func = ggml_cl_argsort;
  8332. break;
  8333. case GGML_OP_SUM_ROWS:
  8334. if (!any_on_device) {
  8335. return false;
  8336. }
  8337. func = ggml_cl_sum_rows;
  8338. break;
  8339. case GGML_OP_FLASH_ATTN_EXT:
  8340. if (!any_on_device) {
  8341. return false;
  8342. }
  8343. ggml_cl_flash_attn(backend, tensor->src[0], tensor->src[1], tensor);
  8344. return true;
  8345. default:
  8346. return false;
  8347. }
  8348. func(backend, tensor->src[0], tensor->src[1], tensor);
  8349. return true;
  8350. }