ggml.c 597 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // if C99 - static_assert is noop
  28. // ref: https://stackoverflow.com/a/53923785/4039976
  29. #ifndef static_assert
  30. #define static_assert(cond, msg) struct global_scope_noop_trick
  31. #endif
  32. #if defined(_MSC_VER)
  33. // disable "possible loss of data" to avoid hundreds of casts
  34. // we should just be careful :)
  35. #pragma warning(disable: 4244 4267)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int* ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int* ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void* unused) {
  66. (void) unused;
  67. return (int) WaitForSingleObject(thread, INFINITE);
  68. }
  69. static int sched_yield (void) {
  70. Sleep (0);
  71. return 0;
  72. }
  73. #else
  74. #include <pthread.h>
  75. #include <stdatomic.h>
  76. typedef void* thread_ret_t;
  77. #include <sys/types.h>
  78. #include <sys/stat.h>
  79. #include <unistd.h>
  80. #endif
  81. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  82. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  83. #ifndef __FMA__
  84. #define __FMA__
  85. #endif
  86. #ifndef __F16C__
  87. #define __F16C__
  88. #endif
  89. #ifndef __SSE3__
  90. #define __SSE3__
  91. #endif
  92. #endif
  93. #ifdef __HAIKU__
  94. #define static_assert(cond, msg) _Static_assert(cond, msg)
  95. #endif
  96. /*#define GGML_PERF*/
  97. #define GGML_DEBUG 0
  98. #define GGML_GELU_FP16
  99. #define GGML_GELU_QUICK_FP16
  100. #define GGML_SILU_FP16
  101. #define GGML_SOFT_MAX_UNROLL 4
  102. #define GGML_VEC_DOT_UNROLL 2
  103. //
  104. // logging
  105. //
  106. #if (GGML_DEBUG >= 1)
  107. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  108. #else
  109. #define GGML_PRINT_DEBUG(...)
  110. #endif
  111. #if (GGML_DEBUG >= 5)
  112. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  113. #else
  114. #define GGML_PRINT_DEBUG_5(...)
  115. #endif
  116. #if (GGML_DEBUG >= 10)
  117. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  118. #else
  119. #define GGML_PRINT_DEBUG_10(...)
  120. #endif
  121. #define GGML_PRINT(...) printf(__VA_ARGS__)
  122. #ifdef GGML_USE_ACCELERATE
  123. // uncomment to use vDSP for soft max computation
  124. // note: not sure if it is actually faster
  125. //#define GGML_SOFT_MAX_ACCELERATE
  126. #endif
  127. #if UINTPTR_MAX == 0xFFFFFFFF
  128. #define GGML_MEM_ALIGN 4
  129. #else
  130. #define GGML_MEM_ALIGN 16
  131. #endif
  132. //
  133. // logging
  134. //
  135. #if (GGML_DEBUG >= 1)
  136. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  137. #else
  138. #define GGML_PRINT_DEBUG(...)
  139. #endif
  140. #if (GGML_DEBUG >= 5)
  141. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  142. #else
  143. #define GGML_PRINT_DEBUG_5(...)
  144. #endif
  145. #if (GGML_DEBUG >= 10)
  146. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG_10(...)
  149. #endif
  150. #define GGML_PRINT(...) printf(__VA_ARGS__)
  151. //
  152. // end of logging block
  153. //
  154. #if defined(_MSC_VER) || defined(__MINGW32__)
  155. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  156. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  157. #else
  158. inline static void* ggml_aligned_malloc(size_t size) {
  159. void* aligned_memory = NULL;
  160. #ifdef GGML_USE_METAL
  161. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  162. #else
  163. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  164. #endif
  165. if (result != 0) {
  166. // Handle allocation failure
  167. const char *error_desc = "unknown allocation error";
  168. switch (result) {
  169. case EINVAL:
  170. error_desc = "invalid alignment value";
  171. break;
  172. case ENOMEM:
  173. error_desc = "insufficient memory";
  174. break;
  175. }
  176. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  177. __func__, error_desc, size/(1024.0*1024.0));
  178. return NULL;
  179. }
  180. return aligned_memory;
  181. }
  182. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  183. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  184. #endif
  185. #define UNUSED GGML_UNUSED
  186. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  187. //
  188. // tensor access macros
  189. //
  190. #define GGML_TENSOR_UNARY_OP_LOCALS \
  191. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  192. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  193. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  194. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  195. #define GGML_TENSOR_BINARY_OP_LOCALS \
  196. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  198. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  199. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  200. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  202. #if defined(GGML_USE_ACCELERATE)
  203. #include <Accelerate/Accelerate.h>
  204. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  205. #include "ggml-opencl.h"
  206. #endif
  207. #elif defined(GGML_USE_OPENBLAS)
  208. #include <cblas.h>
  209. #elif defined(GGML_USE_CUBLAS)
  210. #include "ggml-cuda.h"
  211. #elif defined(GGML_USE_CLBLAST)
  212. #include "ggml-opencl.h"
  213. #endif
  214. #undef MIN
  215. #undef MAX
  216. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  217. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  218. // floating point type used to accumulate sums
  219. typedef double ggml_float;
  220. // 16-bit float
  221. // on Arm, we use __fp16
  222. // on x86, we use uint16_t
  223. #ifdef __ARM_NEON
  224. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  225. //
  226. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  227. //
  228. #include <arm_neon.h>
  229. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  230. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  231. #define GGML_FP16_TO_FP32(x) ((float) (x))
  232. #define GGML_FP32_TO_FP16(x) (x)
  233. #else
  234. #ifdef __wasm_simd128__
  235. #include <wasm_simd128.h>
  236. #else
  237. #ifdef __POWER9_VECTOR__
  238. #include <altivec.h>
  239. #undef bool
  240. #define bool _Bool
  241. #else
  242. #if defined(_MSC_VER) || defined(__MINGW32__)
  243. #include <intrin.h>
  244. #else
  245. #if !defined(__riscv)
  246. #include <immintrin.h>
  247. #endif
  248. #endif
  249. #endif
  250. #endif
  251. #ifdef __F16C__
  252. #ifdef _MSC_VER
  253. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  254. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  255. #else
  256. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  257. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  258. #endif
  259. #elif defined(__POWER9_VECTOR__)
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. /* the inline asm below is about 12% faster than the lookup method */
  263. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  264. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  265. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  266. register float f;
  267. register double d;
  268. __asm__(
  269. "mtfprd %0,%2\n"
  270. "xscvhpdp %0,%0\n"
  271. "frsp %1,%0\n" :
  272. /* temp */ "=d"(d),
  273. /* out */ "=f"(f):
  274. /* in */ "r"(h));
  275. return f;
  276. }
  277. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  278. register double d;
  279. register ggml_fp16_t r;
  280. __asm__( /* xscvdphp can work on double or single precision */
  281. "xscvdphp %0,%2\n"
  282. "mffprd %1,%0\n" :
  283. /* temp */ "=d"(d),
  284. /* out */ "=r"(r):
  285. /* in */ "f"(f));
  286. return r;
  287. }
  288. #else
  289. // FP16 <-> FP32
  290. // ref: https://github.com/Maratyszcza/FP16
  291. static inline float fp32_from_bits(uint32_t w) {
  292. union {
  293. uint32_t as_bits;
  294. float as_value;
  295. } fp32;
  296. fp32.as_bits = w;
  297. return fp32.as_value;
  298. }
  299. static inline uint32_t fp32_to_bits(float f) {
  300. union {
  301. float as_value;
  302. uint32_t as_bits;
  303. } fp32;
  304. fp32.as_value = f;
  305. return fp32.as_bits;
  306. }
  307. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  308. const uint32_t w = (uint32_t) h << 16;
  309. const uint32_t sign = w & UINT32_C(0x80000000);
  310. const uint32_t two_w = w + w;
  311. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  312. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  313. const float exp_scale = 0x1.0p-112f;
  314. #else
  315. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  316. #endif
  317. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  318. const uint32_t magic_mask = UINT32_C(126) << 23;
  319. const float magic_bias = 0.5f;
  320. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  321. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  322. const uint32_t result = sign |
  323. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  324. return fp32_from_bits(result);
  325. }
  326. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  327. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  328. const float scale_to_inf = 0x1.0p+112f;
  329. const float scale_to_zero = 0x1.0p-110f;
  330. #else
  331. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  332. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  333. #endif
  334. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  335. const uint32_t w = fp32_to_bits(f);
  336. const uint32_t shl1_w = w + w;
  337. const uint32_t sign = w & UINT32_C(0x80000000);
  338. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  339. if (bias < UINT32_C(0x71000000)) {
  340. bias = UINT32_C(0x71000000);
  341. }
  342. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  343. const uint32_t bits = fp32_to_bits(base);
  344. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  345. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  346. const uint32_t nonsign = exp_bits + mantissa_bits;
  347. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  348. }
  349. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  350. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  351. #endif // __F16C__
  352. #endif // __ARM_NEON
  353. //
  354. // global data
  355. //
  356. // precomputed gelu table for f16 (128 KB)
  357. static ggml_fp16_t table_gelu_f16[1 << 16];
  358. // precomputed quick gelu table for f16 (128 KB)
  359. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  360. // precomputed silu table for f16 (128 KB)
  361. static ggml_fp16_t table_silu_f16[1 << 16];
  362. // precomputed exp table for f16 (128 KB)
  363. static ggml_fp16_t table_exp_f16[1 << 16];
  364. // precomputed f32 table for f16 (256 KB)
  365. static float table_f32_f16[1 << 16];
  366. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  367. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  368. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  369. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  370. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  371. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  372. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  373. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  374. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  375. // precomputed tables for expanding 8bits to 8 bytes:
  376. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  377. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  378. #endif
  379. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  380. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  381. // This is also true for POWER9.
  382. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  383. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  384. uint16_t s;
  385. memcpy(&s, &f, sizeof(uint16_t));
  386. return table_f32_f16[s];
  387. }
  388. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  389. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  390. #endif
  391. // note: do not use these inside ggml.c
  392. // these are meant to be used via the ggml.h API
  393. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  394. return (float) GGML_FP16_TO_FP32(x);
  395. }
  396. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  397. return GGML_FP32_TO_FP16(x);
  398. }
  399. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  400. for (size_t i = 0; i < n; i++) {
  401. y[i] = GGML_FP16_TO_FP32(x[i]);
  402. }
  403. }
  404. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  405. size_t i = 0;
  406. #if defined(__F16C__)
  407. for (; i + 7 < n; i += 8) {
  408. __m256 x_vec = _mm256_loadu_ps(x + i);
  409. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  410. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  411. }
  412. for(; i + 3 < n; i += 4) {
  413. __m128 x_vec = _mm_loadu_ps(x + i);
  414. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  415. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  416. }
  417. #endif
  418. for (; i < n; i++) {
  419. y[i] = GGML_FP32_TO_FP16(x[i]);
  420. }
  421. }
  422. //
  423. // timing
  424. //
  425. #if defined(_MSC_VER) || defined(__MINGW32__)
  426. static int64_t timer_freq, timer_start;
  427. void ggml_time_init(void) {
  428. LARGE_INTEGER t;
  429. QueryPerformanceFrequency(&t);
  430. timer_freq = t.QuadPart;
  431. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  432. // and the uptime is high enough.
  433. // We subtract the program start time to reduce the likelihood of that happening.
  434. QueryPerformanceCounter(&t);
  435. timer_start = t.QuadPart;
  436. }
  437. int64_t ggml_time_ms(void) {
  438. LARGE_INTEGER t;
  439. QueryPerformanceCounter(&t);
  440. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  441. }
  442. int64_t ggml_time_us(void) {
  443. LARGE_INTEGER t;
  444. QueryPerformanceCounter(&t);
  445. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  446. }
  447. #else
  448. void ggml_time_init(void) {}
  449. int64_t ggml_time_ms(void) {
  450. struct timespec ts;
  451. clock_gettime(CLOCK_MONOTONIC, &ts);
  452. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  453. }
  454. int64_t ggml_time_us(void) {
  455. struct timespec ts;
  456. clock_gettime(CLOCK_MONOTONIC, &ts);
  457. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  458. }
  459. #endif
  460. int64_t ggml_cycles(void) {
  461. return clock();
  462. }
  463. int64_t ggml_cycles_per_ms(void) {
  464. return CLOCKS_PER_SEC/1000;
  465. }
  466. #ifdef GGML_PERF
  467. #define ggml_perf_time_ms() ggml_time_ms()
  468. #define ggml_perf_time_us() ggml_time_us()
  469. #define ggml_perf_cycles() ggml_cycles()
  470. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  471. #else
  472. #define ggml_perf_time_ms() 0
  473. #define ggml_perf_time_us() 0
  474. #define ggml_perf_cycles() 0
  475. #define ggml_perf_cycles_per_ms() 0
  476. #endif
  477. //
  478. // cache line
  479. //
  480. #if defined(__cpp_lib_hardware_interference_size)
  481. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  482. #else
  483. #if defined(__POWER9_VECTOR__)
  484. #define CACHE_LINE_SIZE 128
  485. #else
  486. #define CACHE_LINE_SIZE 64
  487. #endif
  488. #endif
  489. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  490. //
  491. // quantization
  492. //
  493. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  494. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  495. // multiply int8_t, add results pairwise twice
  496. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  497. // Get absolute values of x vectors
  498. const __m128i ax = _mm_sign_epi8(x, x);
  499. // Sign the values of the y vectors
  500. const __m128i sy = _mm_sign_epi8(y, x);
  501. // Perform multiplication and create 16-bit values
  502. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  503. const __m128i ones = _mm_set1_epi16(1);
  504. return _mm_madd_epi16(ones, dot);
  505. }
  506. #if __AVX__ || __AVX2__ || __AVX512F__
  507. // horizontally add 8 floats
  508. static inline float hsum_float_8(const __m256 x) {
  509. __m128 res = _mm256_extractf128_ps(x, 1);
  510. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  511. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  512. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  513. return _mm_cvtss_f32(res);
  514. }
  515. // horizontally add 8 int32_t
  516. static inline int hsum_i32_8(const __m256i a) {
  517. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  518. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  519. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  520. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  521. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  522. }
  523. // horizontally add 4 int32_t
  524. static inline int hsum_i32_4(const __m128i a) {
  525. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  526. const __m128i sum64 = _mm_add_epi32(hi64, a);
  527. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  528. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  529. }
  530. #if defined(__AVX2__) || defined(__AVX512F__)
  531. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  532. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  533. uint32_t x32;
  534. memcpy(&x32, x, sizeof(uint32_t));
  535. const __m256i shuf_mask = _mm256_set_epi64x(
  536. 0x0303030303030303, 0x0202020202020202,
  537. 0x0101010101010101, 0x0000000000000000);
  538. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  539. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  540. bytes = _mm256_or_si256(bytes, bit_mask);
  541. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  542. }
  543. // Unpack 32 4-bit fields into 32 bytes
  544. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  545. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  546. {
  547. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  548. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  549. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  550. return _mm256_and_si256(lowMask, bytes);
  551. }
  552. // add int16_t pairwise and return as float vector
  553. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  554. const __m256i ones = _mm256_set1_epi16(1);
  555. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  556. return _mm256_cvtepi32_ps(summed_pairs);
  557. }
  558. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  559. #if __AVXVNNI__
  560. const __m256i zero = _mm256_setzero_si256();
  561. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  562. return _mm256_cvtepi32_ps(summed_pairs);
  563. #else
  564. // Perform multiplication and create 16-bit values
  565. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  566. return sum_i16_pairs_float(dot);
  567. #endif
  568. }
  569. // multiply int8_t, add results pairwise twice and return as float vector
  570. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  571. #if __AVXVNNIINT8__
  572. const __m256i zero = _mm256_setzero_si256();
  573. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  574. return _mm256_cvtepi32_ps(summed_pairs);
  575. #else
  576. // Get absolute values of x vectors
  577. const __m256i ax = _mm256_sign_epi8(x, x);
  578. // Sign the values of the y vectors
  579. const __m256i sy = _mm256_sign_epi8(y, x);
  580. return mul_sum_us8_pairs_float(ax, sy);
  581. #endif
  582. }
  583. static inline __m128i packNibbles( __m256i bytes )
  584. {
  585. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  586. #if __AVX512F__
  587. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  588. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  589. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  590. #else
  591. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  592. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  593. __m256i low = _mm256_and_si256( lowByte, bytes );
  594. high = _mm256_srli_epi16( high, 4 );
  595. bytes = _mm256_or_si256( low, high );
  596. // Compress uint16_t lanes into bytes
  597. __m128i r0 = _mm256_castsi256_si128( bytes );
  598. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  599. return _mm_packus_epi16( r0, r1 );
  600. #endif
  601. }
  602. #elif defined(__AVX__)
  603. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  604. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  605. uint32_t x32;
  606. memcpy(&x32, x, sizeof(uint32_t));
  607. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  608. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  609. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  610. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  611. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  612. bytesl = _mm_or_si128(bytesl, bit_mask);
  613. bytesh = _mm_or_si128(bytesh, bit_mask);
  614. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  615. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  616. return MM256_SET_M128I(bytesh, bytesl);
  617. }
  618. // Unpack 32 4-bit fields into 32 bytes
  619. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  620. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  621. {
  622. // Load 16 bytes from memory
  623. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  624. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  625. const __m128i lowMask = _mm_set1_epi8(0xF);
  626. tmpl = _mm_and_si128(lowMask, tmpl);
  627. tmph = _mm_and_si128(lowMask, tmph);
  628. return MM256_SET_M128I(tmph, tmpl);
  629. }
  630. // add int16_t pairwise and return as float vector
  631. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  632. const __m128i ones = _mm_set1_epi16(1);
  633. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  634. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  635. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  636. return _mm256_cvtepi32_ps(summed_pairs);
  637. }
  638. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  639. const __m128i axl = _mm256_castsi256_si128(ax);
  640. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  641. const __m128i syl = _mm256_castsi256_si128(sy);
  642. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  643. // Perform multiplication and create 16-bit values
  644. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  645. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  646. return sum_i16_pairs_float(doth, dotl);
  647. }
  648. // multiply int8_t, add results pairwise twice and return as float vector
  649. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  650. const __m128i xl = _mm256_castsi256_si128(x);
  651. const __m128i xh = _mm256_extractf128_si256(x, 1);
  652. const __m128i yl = _mm256_castsi256_si128(y);
  653. const __m128i yh = _mm256_extractf128_si256(y, 1);
  654. // Get absolute values of x vectors
  655. const __m128i axl = _mm_sign_epi8(xl, xl);
  656. const __m128i axh = _mm_sign_epi8(xh, xh);
  657. // Sign the values of the y vectors
  658. const __m128i syl = _mm_sign_epi8(yl, xl);
  659. const __m128i syh = _mm_sign_epi8(yh, xh);
  660. // Perform multiplication and create 16-bit values
  661. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  662. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  663. return sum_i16_pairs_float(doth, dotl);
  664. }
  665. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  666. {
  667. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  668. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  669. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  670. __m128i low = _mm_and_si128( lowByte, bytes1 );
  671. high = _mm_srli_epi16( high, 4 );
  672. bytes1 = _mm_or_si128( low, high );
  673. high = _mm_andnot_si128( lowByte, bytes2 );
  674. low = _mm_and_si128( lowByte, bytes2 );
  675. high = _mm_srli_epi16( high, 4 );
  676. bytes2 = _mm_or_si128( low, high );
  677. return _mm_packus_epi16( bytes1, bytes2);
  678. }
  679. #endif
  680. #elif defined(__SSSE3__)
  681. // horizontally add 4x4 floats
  682. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  683. __m128 res_0 =_mm_hadd_ps(a, b);
  684. __m128 res_1 =_mm_hadd_ps(c, d);
  685. __m128 res =_mm_hadd_ps(res_0, res_1);
  686. res =_mm_hadd_ps(res, res);
  687. res =_mm_hadd_ps(res, res);
  688. return _mm_cvtss_f32(res);
  689. }
  690. #endif // __AVX__ || __AVX2__ || __AVX512F__
  691. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  692. #if defined(__ARM_NEON)
  693. #if !defined(__aarch64__)
  694. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  695. return
  696. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  697. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  698. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  699. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  700. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  701. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  702. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  703. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  704. }
  705. inline static int16_t vaddvq_s8(int8x16_t v) {
  706. return
  707. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  708. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  709. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  710. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  711. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  712. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  713. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  714. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  715. }
  716. inline static int32_t vaddvq_s16(int16x8_t v) {
  717. return
  718. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  719. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  720. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  721. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  722. }
  723. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  724. return
  725. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  726. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  727. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  728. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  729. }
  730. inline static int32_t vaddvq_s32(int32x4_t v) {
  731. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  732. }
  733. inline static float vaddvq_f32(float32x4_t v) {
  734. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  735. }
  736. inline static float vminvq_f32(float32x4_t v) {
  737. return
  738. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  739. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  740. }
  741. inline static float vmaxvq_f32(float32x4_t v) {
  742. return
  743. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  744. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  745. }
  746. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  747. int32x4_t res;
  748. res[0] = roundf(vgetq_lane_f32(v, 0));
  749. res[1] = roundf(vgetq_lane_f32(v, 1));
  750. res[2] = roundf(vgetq_lane_f32(v, 2));
  751. res[3] = roundf(vgetq_lane_f32(v, 3));
  752. return res;
  753. }
  754. #endif
  755. #endif
  756. #define QK4_0 32
  757. typedef struct {
  758. ggml_fp16_t d; // delta
  759. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  760. } block_q4_0;
  761. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  762. #define QK4_1 32
  763. typedef struct {
  764. ggml_fp16_t d; // delta
  765. ggml_fp16_t m; // min
  766. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  767. } block_q4_1;
  768. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  769. #define QK5_0 32
  770. typedef struct {
  771. ggml_fp16_t d; // delta
  772. uint8_t qh[4]; // 5-th bit of quants
  773. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  774. } block_q5_0;
  775. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  776. #define QK5_1 32
  777. typedef struct {
  778. ggml_fp16_t d; // delta
  779. ggml_fp16_t m; // min
  780. uint8_t qh[4]; // 5-th bit of quants
  781. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  782. } block_q5_1;
  783. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  784. #define QK8_0 32
  785. typedef struct {
  786. ggml_fp16_t d; // delta
  787. int8_t qs[QK8_0]; // quants
  788. } block_q8_0;
  789. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  790. #define QK8_1 32
  791. typedef struct {
  792. float d; // delta
  793. float s; // d * sum(qs[i])
  794. int8_t qs[QK8_1]; // quants
  795. } block_q8_1;
  796. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  797. // reference implementation for deterministic creation of model files
  798. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  799. static const int qk = QK4_0;
  800. assert(k % qk == 0);
  801. const int nb = k / qk;
  802. for (int i = 0; i < nb; i++) {
  803. float amax = 0.0f; // absolute max
  804. float max = 0.0f;
  805. for (int j = 0; j < qk; j++) {
  806. const float v = x[i*qk + j];
  807. if (amax < fabsf(v)) {
  808. amax = fabsf(v);
  809. max = v;
  810. }
  811. }
  812. const float d = max / -8;
  813. const float id = d ? 1.0f/d : 0.0f;
  814. y[i].d = GGML_FP32_TO_FP16(d);
  815. for (int j = 0; j < qk/2; ++j) {
  816. const float x0 = x[i*qk + 0 + j]*id;
  817. const float x1 = x[i*qk + qk/2 + j]*id;
  818. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  819. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  820. y[i].qs[j] = xi0;
  821. y[i].qs[j] |= xi1 << 4;
  822. }
  823. }
  824. }
  825. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  826. quantize_row_q4_0_reference(x, y, k);
  827. }
  828. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  829. const int qk = QK4_1;
  830. assert(k % qk == 0);
  831. const int nb = k / qk;
  832. for (int i = 0; i < nb; i++) {
  833. float min = FLT_MAX;
  834. float max = -FLT_MAX;
  835. for (int j = 0; j < qk; j++) {
  836. const float v = x[i*qk + j];
  837. if (v < min) min = v;
  838. if (v > max) max = v;
  839. }
  840. const float d = (max - min) / ((1 << 4) - 1);
  841. const float id = d ? 1.0f/d : 0.0f;
  842. y[i].d = GGML_FP32_TO_FP16(d);
  843. y[i].m = GGML_FP32_TO_FP16(min);
  844. for (int j = 0; j < qk/2; ++j) {
  845. const float x0 = (x[i*qk + 0 + j] - min)*id;
  846. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  847. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  848. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  849. y[i].qs[j] = xi0;
  850. y[i].qs[j] |= xi1 << 4;
  851. }
  852. }
  853. }
  854. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  855. quantize_row_q4_1_reference(x, y, k);
  856. }
  857. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  858. static const int qk = QK5_0;
  859. assert(k % qk == 0);
  860. const int nb = k / qk;
  861. for (int i = 0; i < nb; i++) {
  862. float amax = 0.0f; // absolute max
  863. float max = 0.0f;
  864. for (int j = 0; j < qk; j++) {
  865. const float v = x[i*qk + j];
  866. if (amax < fabsf(v)) {
  867. amax = fabsf(v);
  868. max = v;
  869. }
  870. }
  871. const float d = max / -16;
  872. const float id = d ? 1.0f/d : 0.0f;
  873. y[i].d = GGML_FP32_TO_FP16(d);
  874. uint32_t qh = 0;
  875. for (int j = 0; j < qk/2; ++j) {
  876. const float x0 = x[i*qk + 0 + j]*id;
  877. const float x1 = x[i*qk + qk/2 + j]*id;
  878. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  879. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  880. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  881. // get the 5-th bit and store it in qh at the right position
  882. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  883. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  884. }
  885. memcpy(&y[i].qh, &qh, sizeof(qh));
  886. }
  887. }
  888. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  889. quantize_row_q5_0_reference(x, y, k);
  890. }
  891. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  892. const int qk = QK5_1;
  893. assert(k % qk == 0);
  894. const int nb = k / qk;
  895. for (int i = 0; i < nb; i++) {
  896. float min = FLT_MAX;
  897. float max = -FLT_MAX;
  898. for (int j = 0; j < qk; j++) {
  899. const float v = x[i*qk + j];
  900. if (v < min) min = v;
  901. if (v > max) max = v;
  902. }
  903. const float d = (max - min) / ((1 << 5) - 1);
  904. const float id = d ? 1.0f/d : 0.0f;
  905. y[i].d = GGML_FP32_TO_FP16(d);
  906. y[i].m = GGML_FP32_TO_FP16(min);
  907. uint32_t qh = 0;
  908. for (int j = 0; j < qk/2; ++j) {
  909. const float x0 = (x[i*qk + 0 + j] - min)*id;
  910. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  911. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  912. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  913. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  914. // get the 5-th bit and store it in qh at the right position
  915. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  916. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  917. }
  918. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  919. }
  920. }
  921. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  922. quantize_row_q5_1_reference(x, y, k);
  923. }
  924. // reference implementation for deterministic creation of model files
  925. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  926. assert(k % QK8_0 == 0);
  927. const int nb = k / QK8_0;
  928. for (int i = 0; i < nb; i++) {
  929. float amax = 0.0f; // absolute max
  930. for (int j = 0; j < QK8_0; j++) {
  931. const float v = x[i*QK8_0 + j];
  932. amax = MAX(amax, fabsf(v));
  933. }
  934. const float d = amax / ((1 << 7) - 1);
  935. const float id = d ? 1.0f/d : 0.0f;
  936. y[i].d = GGML_FP32_TO_FP16(d);
  937. for (int j = 0; j < QK8_0; ++j) {
  938. const float x0 = x[i*QK8_0 + j]*id;
  939. y[i].qs[j] = roundf(x0);
  940. }
  941. }
  942. }
  943. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  944. assert(QK8_0 == 32);
  945. assert(k % QK8_0 == 0);
  946. const int nb = k / QK8_0;
  947. block_q8_0 * restrict y = vy;
  948. #if defined(__ARM_NEON)
  949. for (int i = 0; i < nb; i++) {
  950. float32x4_t srcv [8];
  951. float32x4_t asrcv[8];
  952. float32x4_t amaxv[8];
  953. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  954. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  955. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  956. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  957. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  958. const float amax = vmaxvq_f32(amaxv[0]);
  959. const float d = amax / ((1 << 7) - 1);
  960. const float id = d ? 1.0f/d : 0.0f;
  961. y[i].d = GGML_FP32_TO_FP16(d);
  962. for (int j = 0; j < 8; j++) {
  963. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  964. const int32x4_t vi = vcvtnq_s32_f32(v);
  965. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  966. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  967. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  968. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  969. }
  970. }
  971. #elif defined(__wasm_simd128__)
  972. for (int i = 0; i < nb; i++) {
  973. v128_t srcv [8];
  974. v128_t asrcv[8];
  975. v128_t amaxv[8];
  976. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  977. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  978. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  979. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  980. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  981. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  982. wasm_f32x4_extract_lane(amaxv[0], 1)),
  983. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  984. wasm_f32x4_extract_lane(amaxv[0], 3)));
  985. const float d = amax / ((1 << 7) - 1);
  986. const float id = d ? 1.0f/d : 0.0f;
  987. y[i].d = GGML_FP32_TO_FP16(d);
  988. for (int j = 0; j < 8; j++) {
  989. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  990. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  991. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  992. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  993. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  994. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  995. }
  996. }
  997. #elif defined(__AVX2__) || defined(__AVX__)
  998. for (int i = 0; i < nb; i++) {
  999. // Load elements into 4 AVX vectors
  1000. __m256 v0 = _mm256_loadu_ps( x );
  1001. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1002. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1003. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1004. x += 32;
  1005. // Compute max(abs(e)) for the block
  1006. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1007. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1008. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1009. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1010. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1011. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1012. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1013. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1014. const float maxScalar = _mm_cvtss_f32( max4 );
  1015. // Quantize these floats
  1016. const float d = maxScalar / 127.f;
  1017. y[i].d = GGML_FP32_TO_FP16(d);
  1018. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1019. const __m256 mul = _mm256_set1_ps( id );
  1020. // Apply the multiplier
  1021. v0 = _mm256_mul_ps( v0, mul );
  1022. v1 = _mm256_mul_ps( v1, mul );
  1023. v2 = _mm256_mul_ps( v2, mul );
  1024. v3 = _mm256_mul_ps( v3, mul );
  1025. // Round to nearest integer
  1026. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1027. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1028. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1029. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1030. // Convert floats to integers
  1031. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1032. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1033. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1034. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1035. #if defined(__AVX2__)
  1036. // Convert int32 to int16
  1037. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1038. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1039. // Convert int16 to int8
  1040. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1041. // We got our precious signed bytes, but the order is now wrong
  1042. // These AVX2 pack instructions process 16-byte pieces independently
  1043. // The following instruction is fixing the order
  1044. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1045. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1046. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1047. #else
  1048. // Since we don't have in AVX some necessary functions,
  1049. // we split the registers in half and call AVX2 analogs from SSE
  1050. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1051. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1052. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1053. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1054. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1055. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1056. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1057. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1058. // Convert int32 to int16
  1059. ni0 = _mm_packs_epi32( ni0, ni1 );
  1060. ni2 = _mm_packs_epi32( ni2, ni3 );
  1061. ni4 = _mm_packs_epi32( ni4, ni5 );
  1062. ni6 = _mm_packs_epi32( ni6, ni7 );
  1063. // Convert int16 to int8
  1064. ni0 = _mm_packs_epi16( ni0, ni2 );
  1065. ni4 = _mm_packs_epi16( ni4, ni6 );
  1066. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1067. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1068. #endif
  1069. }
  1070. #else
  1071. // scalar
  1072. quantize_row_q8_0_reference(x, y, k);
  1073. #endif
  1074. }
  1075. // reference implementation for deterministic creation of model files
  1076. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1077. assert(QK8_1 == 32);
  1078. assert(k % QK8_1 == 0);
  1079. const int nb = k / QK8_1;
  1080. for (int i = 0; i < nb; i++) {
  1081. float amax = 0.0f; // absolute max
  1082. for (int j = 0; j < QK8_1; j++) {
  1083. const float v = x[i*QK8_1 + j];
  1084. amax = MAX(amax, fabsf(v));
  1085. }
  1086. const float d = amax / ((1 << 7) - 1);
  1087. const float id = d ? 1.0f/d : 0.0f;
  1088. y[i].d = d;
  1089. int sum = 0;
  1090. for (int j = 0; j < QK8_1/2; ++j) {
  1091. const float v0 = x[i*QK8_1 + j]*id;
  1092. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1093. y[i].qs[ j] = roundf(v0);
  1094. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1095. sum += y[i].qs[ j];
  1096. sum += y[i].qs[QK8_1/2 + j];
  1097. }
  1098. y[i].s = sum*d;
  1099. }
  1100. }
  1101. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1102. assert(k % QK8_1 == 0);
  1103. const int nb = k / QK8_1;
  1104. block_q8_1 * restrict y = vy;
  1105. #if defined(__ARM_NEON)
  1106. for (int i = 0; i < nb; i++) {
  1107. float32x4_t srcv [8];
  1108. float32x4_t asrcv[8];
  1109. float32x4_t amaxv[8];
  1110. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1111. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1112. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1113. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1114. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1115. const float amax = vmaxvq_f32(amaxv[0]);
  1116. const float d = amax / ((1 << 7) - 1);
  1117. const float id = d ? 1.0f/d : 0.0f;
  1118. y[i].d = d;
  1119. int32x4_t accv = vdupq_n_s32(0);
  1120. for (int j = 0; j < 8; j++) {
  1121. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1122. const int32x4_t vi = vcvtnq_s32_f32(v);
  1123. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1124. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1125. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1126. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1127. accv = vaddq_s32(accv, vi);
  1128. }
  1129. y[i].s = d * vaddvq_s32(accv);
  1130. }
  1131. #elif defined(__wasm_simd128__)
  1132. for (int i = 0; i < nb; i++) {
  1133. v128_t srcv [8];
  1134. v128_t asrcv[8];
  1135. v128_t amaxv[8];
  1136. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1137. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1138. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1139. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1140. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1141. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1142. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1143. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1144. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1145. const float d = amax / ((1 << 7) - 1);
  1146. const float id = d ? 1.0f/d : 0.0f;
  1147. y[i].d = d;
  1148. v128_t accv = wasm_i32x4_splat(0);
  1149. for (int j = 0; j < 8; j++) {
  1150. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1151. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1152. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1153. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1154. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1155. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1156. accv = wasm_i32x4_add(accv, vi);
  1157. }
  1158. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1159. wasm_i32x4_extract_lane(accv, 1) +
  1160. wasm_i32x4_extract_lane(accv, 2) +
  1161. wasm_i32x4_extract_lane(accv, 3));
  1162. }
  1163. #elif defined(__AVX2__) || defined(__AVX__)
  1164. for (int i = 0; i < nb; i++) {
  1165. // Load elements into 4 AVX vectors
  1166. __m256 v0 = _mm256_loadu_ps( x );
  1167. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1168. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1169. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1170. x += 32;
  1171. // Compute max(abs(e)) for the block
  1172. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1173. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1174. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1175. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1176. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1177. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1178. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1179. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1180. const float maxScalar = _mm_cvtss_f32( max4 );
  1181. // Quantize these floats
  1182. const float d = maxScalar / 127.f;
  1183. y[i].d = d;
  1184. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1185. const __m256 mul = _mm256_set1_ps( id );
  1186. // Apply the multiplier
  1187. v0 = _mm256_mul_ps( v0, mul );
  1188. v1 = _mm256_mul_ps( v1, mul );
  1189. v2 = _mm256_mul_ps( v2, mul );
  1190. v3 = _mm256_mul_ps( v3, mul );
  1191. // Round to nearest integer
  1192. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1193. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1194. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1195. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1196. // Convert floats to integers
  1197. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1198. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1199. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1200. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1201. #if defined(__AVX2__)
  1202. // Compute the sum of the quants and set y[i].s
  1203. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1204. // Convert int32 to int16
  1205. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1206. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1207. // Convert int16 to int8
  1208. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1209. // We got our precious signed bytes, but the order is now wrong
  1210. // These AVX2 pack instructions process 16-byte pieces independently
  1211. // The following instruction is fixing the order
  1212. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1213. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1214. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1215. #else
  1216. // Since we don't have in AVX some necessary functions,
  1217. // we split the registers in half and call AVX2 analogs from SSE
  1218. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1219. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1220. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1221. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1222. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1223. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1224. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1225. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1226. // Compute the sum of the quants and set y[i].s
  1227. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1228. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1229. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1230. // Convert int32 to int16
  1231. ni0 = _mm_packs_epi32( ni0, ni1 );
  1232. ni2 = _mm_packs_epi32( ni2, ni3 );
  1233. ni4 = _mm_packs_epi32( ni4, ni5 );
  1234. ni6 = _mm_packs_epi32( ni6, ni7 );
  1235. // Convert int16 to int8
  1236. ni0 = _mm_packs_epi16( ni0, ni2 );
  1237. ni4 = _mm_packs_epi16( ni4, ni6 );
  1238. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1239. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1240. #endif
  1241. }
  1242. #else
  1243. // scalar
  1244. quantize_row_q8_1_reference(x, y, k);
  1245. #endif
  1246. }
  1247. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1248. static const int qk = QK4_0;
  1249. assert(k % qk == 0);
  1250. const int nb = k / qk;
  1251. for (int i = 0; i < nb; i++) {
  1252. const float d = GGML_FP16_TO_FP32(x[i].d);
  1253. for (int j = 0; j < qk/2; ++j) {
  1254. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1255. const int x1 = (x[i].qs[j] >> 4) - 8;
  1256. y[i*qk + j + 0 ] = x0*d;
  1257. y[i*qk + j + qk/2] = x1*d;
  1258. }
  1259. }
  1260. }
  1261. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1262. static const int qk = QK4_1;
  1263. assert(k % qk == 0);
  1264. const int nb = k / qk;
  1265. for (int i = 0; i < nb; i++) {
  1266. const float d = GGML_FP16_TO_FP32(x[i].d);
  1267. const float m = GGML_FP16_TO_FP32(x[i].m);
  1268. for (int j = 0; j < qk/2; ++j) {
  1269. const int x0 = (x[i].qs[j] & 0x0F);
  1270. const int x1 = (x[i].qs[j] >> 4);
  1271. y[i*qk + j + 0 ] = x0*d + m;
  1272. y[i*qk + j + qk/2] = x1*d + m;
  1273. }
  1274. }
  1275. }
  1276. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1277. static const int qk = QK5_0;
  1278. assert(k % qk == 0);
  1279. const int nb = k / qk;
  1280. for (int i = 0; i < nb; i++) {
  1281. const float d = GGML_FP16_TO_FP32(x[i].d);
  1282. uint32_t qh;
  1283. memcpy(&qh, x[i].qh, sizeof(qh));
  1284. for (int j = 0; j < qk/2; ++j) {
  1285. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1286. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1287. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1288. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1289. y[i*qk + j + 0 ] = x0*d;
  1290. y[i*qk + j + qk/2] = x1*d;
  1291. }
  1292. }
  1293. }
  1294. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1295. static const int qk = QK5_1;
  1296. assert(k % qk == 0);
  1297. const int nb = k / qk;
  1298. for (int i = 0; i < nb; i++) {
  1299. const float d = GGML_FP16_TO_FP32(x[i].d);
  1300. const float m = GGML_FP16_TO_FP32(x[i].m);
  1301. uint32_t qh;
  1302. memcpy(&qh, x[i].qh, sizeof(qh));
  1303. for (int j = 0; j < qk/2; ++j) {
  1304. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1305. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1306. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1307. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1308. y[i*qk + j + 0 ] = x0*d + m;
  1309. y[i*qk + j + qk/2] = x1*d + m;
  1310. }
  1311. }
  1312. }
  1313. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1314. static const int qk = QK8_0;
  1315. assert(k % qk == 0);
  1316. const int nb = k / qk;
  1317. const block_q8_0 * restrict x = vx;
  1318. for (int i = 0; i < nb; i++) {
  1319. const float d = GGML_FP16_TO_FP32(x[i].d);
  1320. for (int j = 0; j < qk; ++j) {
  1321. y[i*qk + j] = x[i].qs[j]*d;
  1322. }
  1323. }
  1324. }
  1325. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1326. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1327. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1328. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1329. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1330. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1331. [GGML_TYPE_Q4_0] = {
  1332. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1333. .quantize_row_q = quantize_row_q4_0,
  1334. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1335. .quantize_row_q_dot = quantize_row_q8_0,
  1336. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1337. .vec_dot_type = GGML_TYPE_Q8_0,
  1338. },
  1339. [GGML_TYPE_Q4_1] = {
  1340. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1341. .quantize_row_q = quantize_row_q4_1,
  1342. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1343. .quantize_row_q_dot = quantize_row_q8_1,
  1344. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1345. .vec_dot_type = GGML_TYPE_Q8_1,
  1346. },
  1347. [GGML_TYPE_Q5_0] = {
  1348. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1349. .quantize_row_q = quantize_row_q5_0,
  1350. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1351. .quantize_row_q_dot = quantize_row_q8_0,
  1352. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1353. .vec_dot_type = GGML_TYPE_Q8_0,
  1354. },
  1355. [GGML_TYPE_Q5_1] = {
  1356. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1357. .quantize_row_q = quantize_row_q5_1,
  1358. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1359. .quantize_row_q_dot = quantize_row_q8_1,
  1360. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1361. .vec_dot_type = GGML_TYPE_Q8_1,
  1362. },
  1363. [GGML_TYPE_Q8_0] = {
  1364. .dequantize_row_q = dequantize_row_q8_0,
  1365. .quantize_row_q = quantize_row_q8_0,
  1366. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1367. .quantize_row_q_dot = quantize_row_q8_0,
  1368. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1369. .vec_dot_type = GGML_TYPE_Q8_0,
  1370. },
  1371. [GGML_TYPE_Q8_1] = {
  1372. .dequantize_row_q = NULL, // TODO
  1373. .quantize_row_q = quantize_row_q8_1,
  1374. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1375. .quantize_row_q_dot = quantize_row_q8_1,
  1376. .vec_dot_q = NULL, // TODO
  1377. .vec_dot_type = GGML_TYPE_Q8_1,
  1378. },
  1379. #ifdef GGML_USE_K_QUANTS
  1380. [GGML_TYPE_Q2_K] = {
  1381. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1382. .quantize_row_q = quantize_row_q2_K,
  1383. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1384. .quantize_row_q_dot = quantize_row_q8_K,
  1385. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1386. .vec_dot_type = GGML_TYPE_Q8_K,
  1387. },
  1388. [GGML_TYPE_Q3_K] = {
  1389. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1390. .quantize_row_q = quantize_row_q3_K,
  1391. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1392. .quantize_row_q_dot = quantize_row_q8_K,
  1393. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1394. .vec_dot_type = GGML_TYPE_Q8_K,
  1395. },
  1396. [GGML_TYPE_Q4_K] = {
  1397. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1398. .quantize_row_q = quantize_row_q4_K,
  1399. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1400. .quantize_row_q_dot = quantize_row_q8_K,
  1401. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1402. .vec_dot_type = GGML_TYPE_Q8_K,
  1403. },
  1404. [GGML_TYPE_Q5_K] = {
  1405. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1406. .quantize_row_q = quantize_row_q5_K,
  1407. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1408. .quantize_row_q_dot = quantize_row_q8_K,
  1409. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1410. .vec_dot_type = GGML_TYPE_Q8_K,
  1411. },
  1412. [GGML_TYPE_Q6_K] = {
  1413. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1414. .quantize_row_q = quantize_row_q6_K,
  1415. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1416. .quantize_row_q_dot = quantize_row_q8_K,
  1417. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1418. .vec_dot_type = GGML_TYPE_Q8_K,
  1419. },
  1420. #endif
  1421. };
  1422. // For internal test use
  1423. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1424. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1425. return quantize_fns[i];
  1426. }
  1427. //
  1428. // simd mappings
  1429. //
  1430. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1431. // we then implement the fundamental computation operations below using only these macros
  1432. // adding support for new architectures requires to define the corresponding SIMD macros
  1433. //
  1434. // GGML_F32_STEP / GGML_F16_STEP
  1435. // number of elements to process in a single step
  1436. //
  1437. // GGML_F32_EPR / GGML_F16_EPR
  1438. // number of elements to fit in a single register
  1439. //
  1440. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1441. #define GGML_SIMD
  1442. // F32 NEON
  1443. #define GGML_F32_STEP 16
  1444. #define GGML_F32_EPR 4
  1445. #define GGML_F32x4 float32x4_t
  1446. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1447. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1448. #define GGML_F32x4_LOAD vld1q_f32
  1449. #define GGML_F32x4_STORE vst1q_f32
  1450. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1451. #define GGML_F32x4_ADD vaddq_f32
  1452. #define GGML_F32x4_MUL vmulq_f32
  1453. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1454. #define GGML_F32x4_REDUCE(res, x) \
  1455. { \
  1456. int offset = GGML_F32_ARR >> 1; \
  1457. for (int i = 0; i < offset; ++i) { \
  1458. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1459. } \
  1460. offset >>= 1; \
  1461. for (int i = 0; i < offset; ++i) { \
  1462. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1463. } \
  1464. offset >>= 1; \
  1465. for (int i = 0; i < offset; ++i) { \
  1466. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1467. } \
  1468. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1469. }
  1470. #define GGML_F32_VEC GGML_F32x4
  1471. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1472. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1473. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1474. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1475. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1476. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1477. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1478. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1479. // F16 NEON
  1480. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1481. #define GGML_F16_STEP 32
  1482. #define GGML_F16_EPR 8
  1483. #define GGML_F16x8 float16x8_t
  1484. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1485. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1486. #define GGML_F16x8_LOAD vld1q_f16
  1487. #define GGML_F16x8_STORE vst1q_f16
  1488. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1489. #define GGML_F16x8_ADD vaddq_f16
  1490. #define GGML_F16x8_MUL vmulq_f16
  1491. #define GGML_F16x8_REDUCE(res, x) \
  1492. { \
  1493. int offset = GGML_F16_ARR >> 1; \
  1494. for (int i = 0; i < offset; ++i) { \
  1495. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1496. } \
  1497. offset >>= 1; \
  1498. for (int i = 0; i < offset; ++i) { \
  1499. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1500. } \
  1501. offset >>= 1; \
  1502. for (int i = 0; i < offset; ++i) { \
  1503. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1504. } \
  1505. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1506. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1507. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1508. }
  1509. #define GGML_F16_VEC GGML_F16x8
  1510. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1511. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1512. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1513. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1514. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1515. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1516. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1517. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1518. #else
  1519. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1520. // and take advantage of the vcvt_ functions to convert to/from FP16
  1521. #define GGML_F16_STEP 16
  1522. #define GGML_F16_EPR 4
  1523. #define GGML_F32Cx4 float32x4_t
  1524. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1525. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1526. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1527. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1528. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1529. #define GGML_F32Cx4_ADD vaddq_f32
  1530. #define GGML_F32Cx4_MUL vmulq_f32
  1531. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1532. #define GGML_F16_VEC GGML_F32Cx4
  1533. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1534. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1535. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1536. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1537. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1538. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1539. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1540. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1541. #endif
  1542. #elif defined(__AVX__)
  1543. #define GGML_SIMD
  1544. // F32 AVX
  1545. #define GGML_F32_STEP 32
  1546. #define GGML_F32_EPR 8
  1547. #define GGML_F32x8 __m256
  1548. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1549. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1550. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1551. #define GGML_F32x8_STORE _mm256_storeu_ps
  1552. #if defined(__FMA__)
  1553. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1554. #else
  1555. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1556. #endif
  1557. #define GGML_F32x8_ADD _mm256_add_ps
  1558. #define GGML_F32x8_MUL _mm256_mul_ps
  1559. #define GGML_F32x8_REDUCE(res, x) \
  1560. { \
  1561. int offset = GGML_F32_ARR >> 1; \
  1562. for (int i = 0; i < offset; ++i) { \
  1563. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1564. } \
  1565. offset >>= 1; \
  1566. for (int i = 0; i < offset; ++i) { \
  1567. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1568. } \
  1569. offset >>= 1; \
  1570. for (int i = 0; i < offset; ++i) { \
  1571. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1572. } \
  1573. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1574. _mm256_extractf128_ps(x[0], 1)); \
  1575. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1576. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1577. }
  1578. // TODO: is this optimal ?
  1579. #define GGML_F32_VEC GGML_F32x8
  1580. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1581. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1582. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1583. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1584. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1585. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1586. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1587. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1588. // F16 AVX
  1589. #define GGML_F16_STEP 32
  1590. #define GGML_F16_EPR 8
  1591. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1592. #define GGML_F32Cx8 __m256
  1593. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1594. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1595. #if defined(__F16C__)
  1596. // the _mm256_cvt intrinsics require F16C
  1597. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1598. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1599. #else
  1600. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1601. float tmp[8];
  1602. for (int i = 0; i < 8; i++) {
  1603. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1604. }
  1605. return _mm256_loadu_ps(tmp);
  1606. }
  1607. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1608. float arr[8];
  1609. _mm256_storeu_ps(arr, y);
  1610. for (int i = 0; i < 8; i++)
  1611. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1612. }
  1613. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1614. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1615. #endif
  1616. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1617. #define GGML_F32Cx8_ADD _mm256_add_ps
  1618. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1619. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1620. #define GGML_F16_VEC GGML_F32Cx8
  1621. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1622. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1623. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1624. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1625. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1626. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1627. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1628. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1629. #elif defined(__POWER9_VECTOR__)
  1630. #define GGML_SIMD
  1631. // F32 POWER9
  1632. #define GGML_F32_STEP 32
  1633. #define GGML_F32_EPR 4
  1634. #define GGML_F32x4 vector float
  1635. #define GGML_F32x4_ZERO 0.0f
  1636. #define GGML_F32x4_SET1 vec_splats
  1637. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1638. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1639. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1640. #define GGML_F32x4_ADD vec_add
  1641. #define GGML_F32x4_MUL vec_mul
  1642. #define GGML_F32x4_REDUCE(res, x) \
  1643. { \
  1644. int offset = GGML_F32_ARR >> 1; \
  1645. for (int i = 0; i < offset; ++i) { \
  1646. x[i] = vec_add(x[i], x[offset+i]); \
  1647. } \
  1648. offset >>= 1; \
  1649. for (int i = 0; i < offset; ++i) { \
  1650. x[i] = vec_add(x[i], x[offset+i]); \
  1651. } \
  1652. offset >>= 1; \
  1653. for (int i = 0; i < offset; ++i) { \
  1654. x[i] = vec_add(x[i], x[offset+i]); \
  1655. } \
  1656. res = vec_extract(x[0], 0) + \
  1657. vec_extract(x[0], 1) + \
  1658. vec_extract(x[0], 2) + \
  1659. vec_extract(x[0], 3); \
  1660. }
  1661. #define GGML_F32_VEC GGML_F32x4
  1662. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1663. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1664. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1665. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1666. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1667. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1668. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1669. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1670. // F16 POWER9
  1671. #define GGML_F16_STEP GGML_F32_STEP
  1672. #define GGML_F16_EPR GGML_F32_EPR
  1673. #define GGML_F16_VEC GGML_F32x4
  1674. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1675. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1676. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1677. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1678. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1679. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1680. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1681. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1682. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1683. #define GGML_F16_VEC_STORE(p, r, i) \
  1684. if (i & 0x1) \
  1685. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1686. r[i - GGML_ENDIAN_BYTE(0)]), \
  1687. 0, p - GGML_F16_EPR)
  1688. #elif defined(__wasm_simd128__)
  1689. #define GGML_SIMD
  1690. // F32 WASM
  1691. #define GGML_F32_STEP 16
  1692. #define GGML_F32_EPR 4
  1693. #define GGML_F32x4 v128_t
  1694. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1695. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1696. #define GGML_F32x4_LOAD wasm_v128_load
  1697. #define GGML_F32x4_STORE wasm_v128_store
  1698. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1699. #define GGML_F32x4_ADD wasm_f32x4_add
  1700. #define GGML_F32x4_MUL wasm_f32x4_mul
  1701. #define GGML_F32x4_REDUCE(res, x) \
  1702. { \
  1703. int offset = GGML_F32_ARR >> 1; \
  1704. for (int i = 0; i < offset; ++i) { \
  1705. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1706. } \
  1707. offset >>= 1; \
  1708. for (int i = 0; i < offset; ++i) { \
  1709. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1710. } \
  1711. offset >>= 1; \
  1712. for (int i = 0; i < offset; ++i) { \
  1713. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1714. } \
  1715. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1716. wasm_f32x4_extract_lane(x[0], 1) + \
  1717. wasm_f32x4_extract_lane(x[0], 2) + \
  1718. wasm_f32x4_extract_lane(x[0], 3); \
  1719. }
  1720. #define GGML_F32_VEC GGML_F32x4
  1721. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1722. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1723. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1724. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1725. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1726. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1727. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1728. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1729. // F16 WASM
  1730. #define GGML_F16_STEP 16
  1731. #define GGML_F16_EPR 4
  1732. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1733. float tmp[4];
  1734. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1735. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1736. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1737. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1738. return wasm_v128_load(tmp);
  1739. }
  1740. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1741. float tmp[4];
  1742. wasm_v128_store(tmp, x);
  1743. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1744. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1745. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1746. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1747. }
  1748. #define GGML_F16x4 v128_t
  1749. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1750. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1751. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1752. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1753. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1754. #define GGML_F16x4_ADD wasm_f32x4_add
  1755. #define GGML_F16x4_MUL wasm_f32x4_mul
  1756. #define GGML_F16x4_REDUCE(res, x) \
  1757. { \
  1758. int offset = GGML_F16_ARR >> 1; \
  1759. for (int i = 0; i < offset; ++i) { \
  1760. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1761. } \
  1762. offset >>= 1; \
  1763. for (int i = 0; i < offset; ++i) { \
  1764. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1765. } \
  1766. offset >>= 1; \
  1767. for (int i = 0; i < offset; ++i) { \
  1768. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1769. } \
  1770. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1771. wasm_f32x4_extract_lane(x[0], 1) + \
  1772. wasm_f32x4_extract_lane(x[0], 2) + \
  1773. wasm_f32x4_extract_lane(x[0], 3); \
  1774. }
  1775. #define GGML_F16_VEC GGML_F16x4
  1776. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1777. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1778. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1779. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1780. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1781. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1782. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1783. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1784. #elif defined(__SSE3__)
  1785. #define GGML_SIMD
  1786. // F32 SSE
  1787. #define GGML_F32_STEP 32
  1788. #define GGML_F32_EPR 4
  1789. #define GGML_F32x4 __m128
  1790. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1791. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1792. #define GGML_F32x4_LOAD _mm_loadu_ps
  1793. #define GGML_F32x4_STORE _mm_storeu_ps
  1794. #if defined(__FMA__)
  1795. // TODO: Does this work?
  1796. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1797. #else
  1798. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1799. #endif
  1800. #define GGML_F32x4_ADD _mm_add_ps
  1801. #define GGML_F32x4_MUL _mm_mul_ps
  1802. #define GGML_F32x4_REDUCE(res, x) \
  1803. { \
  1804. int offset = GGML_F32_ARR >> 1; \
  1805. for (int i = 0; i < offset; ++i) { \
  1806. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1807. } \
  1808. offset >>= 1; \
  1809. for (int i = 0; i < offset; ++i) { \
  1810. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1811. } \
  1812. offset >>= 1; \
  1813. for (int i = 0; i < offset; ++i) { \
  1814. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1815. } \
  1816. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1817. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1818. }
  1819. // TODO: is this optimal ?
  1820. #define GGML_F32_VEC GGML_F32x4
  1821. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1822. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1823. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1824. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1825. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1826. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1827. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1828. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1829. // F16 SSE
  1830. #define GGML_F16_STEP 32
  1831. #define GGML_F16_EPR 4
  1832. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1833. float tmp[4];
  1834. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1835. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1836. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1837. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1838. return _mm_loadu_ps(tmp);
  1839. }
  1840. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1841. float arr[4];
  1842. _mm_storeu_ps(arr, y);
  1843. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1844. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1845. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1846. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1847. }
  1848. #define GGML_F32Cx4 __m128
  1849. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1850. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1851. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1852. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1853. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1854. #define GGML_F32Cx4_ADD _mm_add_ps
  1855. #define GGML_F32Cx4_MUL _mm_mul_ps
  1856. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1857. #define GGML_F16_VEC GGML_F32Cx4
  1858. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1859. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1860. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1861. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1862. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1863. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1864. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1865. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1866. #endif
  1867. // GGML_F32_ARR / GGML_F16_ARR
  1868. // number of registers to use per step
  1869. #ifdef GGML_SIMD
  1870. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1871. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1872. #endif
  1873. //
  1874. // fundamental operations
  1875. //
  1876. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1877. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1878. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1879. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1880. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1881. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1882. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1883. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1884. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1885. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1886. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1887. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1888. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1889. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1890. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1891. #ifdef GGML_SIMD
  1892. float sumf = 0.0f;
  1893. const int np = (n & ~(GGML_F32_STEP - 1));
  1894. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1895. GGML_F32_VEC ax[GGML_F32_ARR];
  1896. GGML_F32_VEC ay[GGML_F32_ARR];
  1897. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1898. for (int j = 0; j < GGML_F32_ARR; j++) {
  1899. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1900. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1901. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1902. }
  1903. }
  1904. // reduce sum0..sum3 to sum0
  1905. GGML_F32_VEC_REDUCE(sumf, sum);
  1906. // leftovers
  1907. for (int i = np; i < n; ++i) {
  1908. sumf += x[i]*y[i];
  1909. }
  1910. #else
  1911. // scalar
  1912. ggml_float sumf = 0.0;
  1913. for (int i = 0; i < n; ++i) {
  1914. sumf += (ggml_float)(x[i]*y[i]);
  1915. }
  1916. #endif
  1917. *s = sumf;
  1918. }
  1919. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1920. ggml_float sumf = 0.0;
  1921. #if defined(GGML_SIMD)
  1922. const int np = (n & ~(GGML_F16_STEP - 1));
  1923. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1924. GGML_F16_VEC ax[GGML_F16_ARR];
  1925. GGML_F16_VEC ay[GGML_F16_ARR];
  1926. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1927. for (int j = 0; j < GGML_F16_ARR; j++) {
  1928. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1929. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1930. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1931. }
  1932. }
  1933. // reduce sum0..sum3 to sum0
  1934. GGML_F16_VEC_REDUCE(sumf, sum);
  1935. // leftovers
  1936. for (int i = np; i < n; ++i) {
  1937. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1938. }
  1939. #else
  1940. for (int i = 0; i < n; ++i) {
  1941. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1942. }
  1943. #endif
  1944. *s = sumf;
  1945. }
  1946. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1947. const int qk = QK8_0;
  1948. const int nb = n / qk;
  1949. assert(n % qk == 0);
  1950. assert(nb % 2 == 0);
  1951. const block_q4_0 * restrict x = vx;
  1952. const block_q8_0 * restrict y = vy;
  1953. #if defined(__ARM_NEON)
  1954. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1955. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1956. for (int i = 0; i < nb; i += 2) {
  1957. const block_q4_0 * restrict x0 = &x[i + 0];
  1958. const block_q4_0 * restrict x1 = &x[i + 1];
  1959. const block_q8_0 * restrict y0 = &y[i + 0];
  1960. const block_q8_0 * restrict y1 = &y[i + 1];
  1961. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1962. const int8x16_t s8b = vdupq_n_s8(0x8);
  1963. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1964. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1965. // 4-bit -> 8-bit
  1966. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1967. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1968. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1969. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1970. // sub 8
  1971. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1972. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1973. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1974. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1975. // load y
  1976. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1977. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1978. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1979. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1980. #if defined(__ARM_FEATURE_DOTPROD)
  1981. // dot product into int32x4_t
  1982. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1983. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1984. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1985. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1986. #else
  1987. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1988. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1989. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1990. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1991. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1992. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1993. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1994. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1995. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1996. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1997. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1998. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1999. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2000. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2001. #endif
  2002. }
  2003. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2004. #elif defined(__AVX2__)
  2005. // Initialize accumulator with zeros
  2006. __m256 acc = _mm256_setzero_ps();
  2007. // Main loop
  2008. for (int i = 0; i < nb; ++i) {
  2009. /* Compute combined scale for the block */
  2010. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2011. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2012. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2013. const __m256i off = _mm256_set1_epi8( 8 );
  2014. bx = _mm256_sub_epi8( bx, off );
  2015. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2016. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2017. /* Multiply q with scale and accumulate */
  2018. acc = _mm256_fmadd_ps( d, q, acc );
  2019. }
  2020. *s = hsum_float_8(acc);
  2021. #elif defined(__AVX__)
  2022. // Initialize accumulator with zeros
  2023. __m256 acc = _mm256_setzero_ps();
  2024. // Main loop
  2025. for (int i = 0; i < nb; ++i) {
  2026. // Compute combined scale for the block
  2027. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2028. const __m128i lowMask = _mm_set1_epi8(0xF);
  2029. const __m128i off = _mm_set1_epi8(8);
  2030. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2031. __m128i bx = _mm_and_si128(lowMask, tmp);
  2032. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2033. bx = _mm_sub_epi8(bx, off);
  2034. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2035. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2036. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2037. bx = _mm_sub_epi8(bx, off);
  2038. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2039. // Convert int32_t to float
  2040. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2041. // Apply the scale, and accumulate
  2042. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2043. }
  2044. *s = hsum_float_8(acc);
  2045. #elif defined(__SSSE3__)
  2046. // set constants
  2047. const __m128i lowMask = _mm_set1_epi8(0xF);
  2048. const __m128i off = _mm_set1_epi8(8);
  2049. // Initialize accumulator with zeros
  2050. __m128 acc_0 = _mm_setzero_ps();
  2051. __m128 acc_1 = _mm_setzero_ps();
  2052. __m128 acc_2 = _mm_setzero_ps();
  2053. __m128 acc_3 = _mm_setzero_ps();
  2054. // First round without accumulation
  2055. {
  2056. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2057. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2058. // Compute combined scale for the block 0 and 1
  2059. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2060. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2061. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2062. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2063. bx_0 = _mm_sub_epi8(bx_0, off);
  2064. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2065. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2066. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2067. bx_1 = _mm_sub_epi8(bx_1, off);
  2068. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2069. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2070. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2071. // Compute combined scale for the block 2 and 3
  2072. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2073. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2074. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2075. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2076. bx_2 = _mm_sub_epi8(bx_2, off);
  2077. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2078. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2079. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2080. bx_3 = _mm_sub_epi8(bx_3, off);
  2081. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2082. // Convert int32_t to float
  2083. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2084. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2085. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2086. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2087. // Apply the scale
  2088. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2089. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2090. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2091. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2092. }
  2093. // Main loop
  2094. for (int i = 2; i < nb; i+=2) {
  2095. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2096. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2097. // Compute combined scale for the block 0 and 1
  2098. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2099. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2100. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2101. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2102. bx_0 = _mm_sub_epi8(bx_0, off);
  2103. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2104. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2105. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2106. bx_1 = _mm_sub_epi8(bx_1, off);
  2107. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2108. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2109. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2110. // Compute combined scale for the block 2 and 3
  2111. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2112. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2113. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2114. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2115. bx_2 = _mm_sub_epi8(bx_2, off);
  2116. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2117. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2118. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2119. bx_3 = _mm_sub_epi8(bx_3, off);
  2120. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2121. // Convert int32_t to float
  2122. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2123. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2124. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2125. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2126. // Apply the scale
  2127. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2128. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2129. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2130. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2131. // Acummulate
  2132. acc_0 = _mm_add_ps(p0_d, acc_0);
  2133. acc_1 = _mm_add_ps(p1_d, acc_1);
  2134. acc_2 = _mm_add_ps(p2_d, acc_2);
  2135. acc_3 = _mm_add_ps(p3_d, acc_3);
  2136. }
  2137. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2138. #else
  2139. // scalar
  2140. float sumf = 0.0;
  2141. for (int i = 0; i < nb; i++) {
  2142. int sumi = 0;
  2143. for (int j = 0; j < qk/2; ++j) {
  2144. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2145. const int v1 = (x[i].qs[j] >> 4) - 8;
  2146. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2147. }
  2148. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2149. }
  2150. *s = sumf;
  2151. #endif
  2152. }
  2153. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2154. const int qk = QK8_1;
  2155. const int nb = n / qk;
  2156. assert(n % qk == 0);
  2157. assert(nb % 2 == 0);
  2158. const block_q4_1 * restrict x = vx;
  2159. const block_q8_1 * restrict y = vy;
  2160. // TODO: add WASM SIMD
  2161. #if defined(__ARM_NEON)
  2162. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2163. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2164. float summs = 0;
  2165. for (int i = 0; i < nb; i += 2) {
  2166. const block_q4_1 * restrict x0 = &x[i + 0];
  2167. const block_q4_1 * restrict x1 = &x[i + 1];
  2168. const block_q8_1 * restrict y0 = &y[i + 0];
  2169. const block_q8_1 * restrict y1 = &y[i + 1];
  2170. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2171. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2172. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2173. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2174. // 4-bit -> 8-bit
  2175. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2176. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2177. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2178. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2179. // load y
  2180. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2181. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2182. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2183. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2184. #if defined(__ARM_FEATURE_DOTPROD)
  2185. // dot product into int32x4_t
  2186. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2187. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2188. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2189. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2190. #else
  2191. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2192. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2193. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2194. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2195. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2196. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2197. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2198. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2199. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2200. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2201. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2202. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2203. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2204. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2205. #endif
  2206. }
  2207. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2208. #elif defined(__AVX2__) || defined(__AVX__)
  2209. // Initialize accumulator with zeros
  2210. __m256 acc = _mm256_setzero_ps();
  2211. float summs = 0;
  2212. // Main loop
  2213. for (int i = 0; i < nb; ++i) {
  2214. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2215. const float d1 = y[i].d;
  2216. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2217. const __m256 d0v = _mm256_set1_ps( d0 );
  2218. const __m256 d1v = _mm256_set1_ps( d1 );
  2219. // Compute combined scales
  2220. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2221. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2222. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2223. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2224. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2225. // Accumulate d0*d1*x*y
  2226. #if defined(__AVX2__)
  2227. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2228. #else
  2229. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2230. #endif
  2231. }
  2232. *s = hsum_float_8(acc) + summs;
  2233. #else
  2234. // scalar
  2235. float sumf = 0.0;
  2236. for (int i = 0; i < nb; i++) {
  2237. int sumi = 0;
  2238. for (int j = 0; j < qk/2; ++j) {
  2239. const int v0 = (x[i].qs[j] & 0x0F);
  2240. const int v1 = (x[i].qs[j] >> 4);
  2241. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2242. }
  2243. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2244. }
  2245. *s = sumf;
  2246. #endif
  2247. }
  2248. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2249. const int qk = QK8_0;
  2250. const int nb = n / qk;
  2251. assert(n % qk == 0);
  2252. assert(nb % 2 == 0);
  2253. assert(qk == QK5_0);
  2254. const block_q5_0 * restrict x = vx;
  2255. const block_q8_0 * restrict y = vy;
  2256. #if defined(__ARM_NEON)
  2257. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2258. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2259. uint32_t qh0;
  2260. uint32_t qh1;
  2261. uint64_t tmp0[4];
  2262. uint64_t tmp1[4];
  2263. for (int i = 0; i < nb; i += 2) {
  2264. const block_q5_0 * restrict x0 = &x[i];
  2265. const block_q5_0 * restrict x1 = &x[i + 1];
  2266. const block_q8_0 * restrict y0 = &y[i];
  2267. const block_q8_0 * restrict y1 = &y[i + 1];
  2268. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2269. // extract the 5th bit via lookup table ((!b) << 4)
  2270. memcpy(&qh0, x0->qh, sizeof(qh0));
  2271. memcpy(&qh1, x1->qh, sizeof(qh1));
  2272. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2273. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2274. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2275. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2276. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2277. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2278. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2279. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2280. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2281. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2282. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2283. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2284. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2285. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2286. // 4-bit -> 8-bit
  2287. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2288. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2289. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2290. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2291. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2292. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2293. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2294. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2295. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2296. // load y
  2297. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2298. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2299. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2300. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2301. #if defined(__ARM_FEATURE_DOTPROD)
  2302. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2303. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2304. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2305. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2306. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2307. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2308. #else
  2309. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2310. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2311. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2312. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2313. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2314. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2315. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2316. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2317. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2318. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2319. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2320. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2321. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2322. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2323. #endif
  2324. }
  2325. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2326. #elif defined(__wasm_simd128__)
  2327. v128_t sumv = wasm_f32x4_splat(0.0f);
  2328. uint32_t qh;
  2329. uint64_t tmp[4];
  2330. // TODO: check if unrolling this is better
  2331. for (int i = 0; i < nb; ++i) {
  2332. const block_q5_0 * restrict x0 = &x[i];
  2333. const block_q8_0 * restrict y0 = &y[i];
  2334. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2335. // extract the 5th bit
  2336. memcpy(&qh, x0->qh, sizeof(qh));
  2337. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2338. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2339. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2340. tmp[3] = table_b2b_1[(qh >> 24) ];
  2341. const v128_t qhl = wasm_v128_load(tmp + 0);
  2342. const v128_t qhh = wasm_v128_load(tmp + 2);
  2343. const v128_t v0 = wasm_v128_load(x0->qs);
  2344. // 4-bit -> 8-bit
  2345. const v128_t v0l = wasm_v128_and (v0, m4b);
  2346. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2347. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2348. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2349. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2350. // load y
  2351. const v128_t v1l = wasm_v128_load(y0->qs);
  2352. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2353. // int8x16 -> int16x8
  2354. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2355. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2356. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2357. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2358. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2359. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2360. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2361. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2362. // dot product
  2363. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2364. wasm_i32x4_add(
  2365. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2366. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2367. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2368. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2369. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2370. }
  2371. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2372. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2373. #elif defined(__AVX2__)
  2374. // Initialize accumulator with zeros
  2375. __m256 acc = _mm256_setzero_ps();
  2376. // Main loop
  2377. for (int i = 0; i < nb; i++) {
  2378. /* Compute combined scale for the block */
  2379. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2380. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2381. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2382. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2383. bx = _mm256_or_si256(bx, bxhi);
  2384. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2385. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2386. /* Multiply q with scale and accumulate */
  2387. acc = _mm256_fmadd_ps(d, q, acc);
  2388. }
  2389. *s = hsum_float_8(acc);
  2390. #elif defined(__AVX__)
  2391. // Initialize accumulator with zeros
  2392. __m256 acc = _mm256_setzero_ps();
  2393. __m128i mask = _mm_set1_epi8((char)0xF0);
  2394. // Main loop
  2395. for (int i = 0; i < nb; i++) {
  2396. /* Compute combined scale for the block */
  2397. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2398. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2399. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2400. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2401. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2402. bxhil = _mm_andnot_si128(bxhil, mask);
  2403. bxhih = _mm_andnot_si128(bxhih, mask);
  2404. __m128i bxl = _mm256_castsi256_si128(bx);
  2405. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2406. bxl = _mm_or_si128(bxl, bxhil);
  2407. bxh = _mm_or_si128(bxh, bxhih);
  2408. bx = MM256_SET_M128I(bxh, bxl);
  2409. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2410. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2411. /* Multiply q with scale and accumulate */
  2412. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2413. }
  2414. *s = hsum_float_8(acc);
  2415. #else
  2416. // scalar
  2417. float sumf = 0.0;
  2418. for (int i = 0; i < nb; i++) {
  2419. uint32_t qh;
  2420. memcpy(&qh, x[i].qh, sizeof(qh));
  2421. int sumi = 0;
  2422. for (int j = 0; j < qk/2; ++j) {
  2423. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2424. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2425. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2426. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2427. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2428. }
  2429. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2430. }
  2431. *s = sumf;
  2432. #endif
  2433. }
  2434. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2435. const int qk = QK8_1;
  2436. const int nb = n / qk;
  2437. assert(n % qk == 0);
  2438. assert(nb % 2 == 0);
  2439. assert(qk == QK5_1);
  2440. const block_q5_1 * restrict x = vx;
  2441. const block_q8_1 * restrict y = vy;
  2442. #if defined(__ARM_NEON)
  2443. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2444. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2445. float summs0 = 0.0f;
  2446. float summs1 = 0.0f;
  2447. uint32_t qh0;
  2448. uint32_t qh1;
  2449. uint64_t tmp0[4];
  2450. uint64_t tmp1[4];
  2451. for (int i = 0; i < nb; i += 2) {
  2452. const block_q5_1 * restrict x0 = &x[i];
  2453. const block_q5_1 * restrict x1 = &x[i + 1];
  2454. const block_q8_1 * restrict y0 = &y[i];
  2455. const block_q8_1 * restrict y1 = &y[i + 1];
  2456. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2457. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2458. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2459. // extract the 5th bit via lookup table ((b) << 4)
  2460. memcpy(&qh0, x0->qh, sizeof(qh0));
  2461. memcpy(&qh1, x1->qh, sizeof(qh1));
  2462. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2463. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2464. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2465. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2466. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2467. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2468. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2469. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2470. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2471. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2472. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2473. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2474. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2475. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2476. // 4-bit -> 8-bit
  2477. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2478. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2479. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2480. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2481. // add high bit
  2482. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2483. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2484. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2485. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2486. // load y
  2487. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2488. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2489. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2490. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2491. #if defined(__ARM_FEATURE_DOTPROD)
  2492. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2493. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2494. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2495. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2496. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2497. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2498. #else
  2499. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2500. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2501. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2502. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2503. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2504. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2505. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2506. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2507. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2508. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2509. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2510. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2511. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2512. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2513. #endif
  2514. }
  2515. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2516. #elif defined(__wasm_simd128__)
  2517. v128_t sumv = wasm_f32x4_splat(0.0f);
  2518. float summs = 0.0f;
  2519. uint32_t qh;
  2520. uint64_t tmp[4];
  2521. // TODO: check if unrolling this is better
  2522. for (int i = 0; i < nb; ++i) {
  2523. const block_q5_1 * restrict x0 = &x[i];
  2524. const block_q8_1 * restrict y0 = &y[i];
  2525. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2526. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2527. // extract the 5th bit
  2528. memcpy(&qh, x0->qh, sizeof(qh));
  2529. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2530. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2531. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2532. tmp[3] = table_b2b_0[(qh >> 24) ];
  2533. const v128_t qhl = wasm_v128_load(tmp + 0);
  2534. const v128_t qhh = wasm_v128_load(tmp + 2);
  2535. const v128_t v0 = wasm_v128_load(x0->qs);
  2536. // 4-bit -> 8-bit
  2537. const v128_t v0l = wasm_v128_and (v0, m4b);
  2538. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2539. // add high bit
  2540. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2541. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2542. // load y
  2543. const v128_t v1l = wasm_v128_load(y0->qs);
  2544. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2545. // int8x16 -> int16x8
  2546. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2547. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2548. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2549. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2550. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2551. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2552. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2553. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2554. // dot product
  2555. sumv = wasm_f32x4_add(sumv,
  2556. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2557. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2558. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2559. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2560. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2561. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2562. }
  2563. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2564. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2565. #elif defined(__AVX2__)
  2566. // Initialize accumulator with zeros
  2567. __m256 acc = _mm256_setzero_ps();
  2568. float summs = 0.0f;
  2569. // Main loop
  2570. for (int i = 0; i < nb; i++) {
  2571. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2572. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2573. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2574. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2575. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2576. bx = _mm256_or_si256(bx, bxhi);
  2577. const __m256 dy = _mm256_set1_ps(y[i].d);
  2578. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2579. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2580. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2581. }
  2582. *s = hsum_float_8(acc) + summs;
  2583. #elif defined(__AVX__)
  2584. // Initialize accumulator with zeros
  2585. __m256 acc = _mm256_setzero_ps();
  2586. __m128i mask = _mm_set1_epi8(0x10);
  2587. float summs = 0.0f;
  2588. // Main loop
  2589. for (int i = 0; i < nb; i++) {
  2590. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2591. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2592. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2593. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2594. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2595. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2596. bxhil = _mm_and_si128(bxhil, mask);
  2597. bxhih = _mm_and_si128(bxhih, mask);
  2598. __m128i bxl = _mm256_castsi256_si128(bx);
  2599. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2600. bxl = _mm_or_si128(bxl, bxhil);
  2601. bxh = _mm_or_si128(bxh, bxhih);
  2602. bx = MM256_SET_M128I(bxh, bxl);
  2603. const __m256 dy = _mm256_set1_ps(y[i].d);
  2604. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2605. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2606. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2607. }
  2608. *s = hsum_float_8(acc) + summs;
  2609. #else
  2610. // scalar
  2611. float sumf = 0.0;
  2612. for (int i = 0; i < nb; i++) {
  2613. uint32_t qh;
  2614. memcpy(&qh, x[i].qh, sizeof(qh));
  2615. int sumi = 0;
  2616. for (int j = 0; j < qk/2; ++j) {
  2617. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2618. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2619. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2620. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2621. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2622. }
  2623. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2624. }
  2625. *s = sumf;
  2626. #endif
  2627. }
  2628. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2629. const int qk = QK8_0;
  2630. const int nb = n / qk;
  2631. assert(n % qk == 0);
  2632. assert(nb % 2 == 0);
  2633. const block_q8_0 * restrict x = vx;
  2634. const block_q8_0 * restrict y = vy;
  2635. #if defined(__ARM_NEON)
  2636. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2637. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2638. for (int i = 0; i < nb; i += 2) {
  2639. const block_q8_0 * restrict x0 = &x[i + 0];
  2640. const block_q8_0 * restrict x1 = &x[i + 1];
  2641. const block_q8_0 * restrict y0 = &y[i + 0];
  2642. const block_q8_0 * restrict y1 = &y[i + 1];
  2643. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2644. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2645. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2646. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2647. // load y
  2648. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2649. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2650. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2651. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2652. #if defined(__ARM_FEATURE_DOTPROD)
  2653. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2654. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2655. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2656. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2657. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2658. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2659. #else
  2660. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2661. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2662. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2663. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2664. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2665. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2666. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2667. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2668. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2669. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2670. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2671. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2672. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2673. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2674. #endif
  2675. }
  2676. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2677. #elif defined(__AVX2__) || defined(__AVX__)
  2678. // Initialize accumulator with zeros
  2679. __m256 acc = _mm256_setzero_ps();
  2680. // Main loop
  2681. for (int i = 0; i < nb; ++i) {
  2682. // Compute combined scale for the block
  2683. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2684. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2685. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2686. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2687. // Multiply q with scale and accumulate
  2688. #if defined(__AVX2__)
  2689. acc = _mm256_fmadd_ps( d, q, acc );
  2690. #else
  2691. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2692. #endif
  2693. }
  2694. *s = hsum_float_8(acc);
  2695. #else
  2696. // scalar
  2697. float sumf = 0.0;
  2698. for (int i = 0; i < nb; i++) {
  2699. int sumi = 0;
  2700. for (int j = 0; j < qk; j++) {
  2701. sumi += x[i].qs[j]*y[i].qs[j];
  2702. }
  2703. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2704. }
  2705. *s = sumf;
  2706. #endif
  2707. }
  2708. // compute GGML_VEC_DOT_UNROLL dot products at once
  2709. // xs - x row stride in bytes
  2710. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2711. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2712. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2713. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2714. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2715. }
  2716. #if defined(GGML_SIMD)
  2717. const int np = (n & ~(GGML_F16_STEP - 1));
  2718. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2719. GGML_F16_VEC ax[GGML_F16_ARR];
  2720. GGML_F16_VEC ay[GGML_F16_ARR];
  2721. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2722. for (int j = 0; j < GGML_F16_ARR; j++) {
  2723. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2724. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2725. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2726. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2727. }
  2728. }
  2729. }
  2730. // reduce sum0..sum3 to sum0
  2731. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2732. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2733. }
  2734. // leftovers
  2735. for (int i = np; i < n; ++i) {
  2736. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2737. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2738. }
  2739. }
  2740. #else
  2741. for (int i = 0; i < n; ++i) {
  2742. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2743. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2744. }
  2745. }
  2746. #endif
  2747. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2748. s[i] = sumf[i];
  2749. }
  2750. }
  2751. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2752. #if defined(GGML_SIMD)
  2753. const int np = (n & ~(GGML_F32_STEP - 1));
  2754. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2755. GGML_F32_VEC ax[GGML_F32_ARR];
  2756. GGML_F32_VEC ay[GGML_F32_ARR];
  2757. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2758. for (int j = 0; j < GGML_F32_ARR; j++) {
  2759. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2760. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2761. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2762. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2763. }
  2764. }
  2765. // leftovers
  2766. for (int i = np; i < n; ++i) {
  2767. y[i] += x[i]*v;
  2768. }
  2769. #else
  2770. // scalar
  2771. for (int i = 0; i < n; ++i) {
  2772. y[i] += x[i]*v;
  2773. }
  2774. #endif
  2775. }
  2776. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2777. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2778. #if defined(GGML_SIMD)
  2779. const int np = (n & ~(GGML_F32_STEP - 1));
  2780. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2781. GGML_F32_VEC ay[GGML_F32_ARR];
  2782. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2783. for (int j = 0; j < GGML_F32_ARR; j++) {
  2784. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2785. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2786. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2787. }
  2788. }
  2789. // leftovers
  2790. for (int i = np; i < n; ++i) {
  2791. y[i] *= v;
  2792. }
  2793. #else
  2794. // scalar
  2795. for (int i = 0; i < n; ++i) {
  2796. y[i] *= v;
  2797. }
  2798. #endif
  2799. }
  2800. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2801. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2802. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2803. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2804. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2805. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2806. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2807. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2808. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2809. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2810. static const float GELU_COEF_A = 0.044715f;
  2811. static const float GELU_QUICK_COEF = -1.702f;
  2812. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2813. inline static float ggml_gelu_f32(float x) {
  2814. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2815. }
  2816. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2817. const uint16_t * i16 = (const uint16_t *) x;
  2818. for (int i = 0; i < n; ++i) {
  2819. y[i] = table_gelu_f16[i16[i]];
  2820. }
  2821. }
  2822. #ifdef GGML_GELU_FP16
  2823. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2824. uint16_t t;
  2825. for (int i = 0; i < n; ++i) {
  2826. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2827. memcpy(&t, &fp16, sizeof(uint16_t));
  2828. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2829. }
  2830. }
  2831. #else
  2832. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2833. for (int i = 0; i < n; ++i) {
  2834. y[i] = ggml_gelu_f32(x[i]);
  2835. }
  2836. }
  2837. #endif
  2838. inline static float ggml_gelu_quick_f32(float x) {
  2839. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2840. }
  2841. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2842. // const uint16_t * i16 = (const uint16_t *) x;
  2843. // for (int i = 0; i < n; ++i) {
  2844. // y[i] = table_gelu_quick_f16[i16[i]];
  2845. // }
  2846. //}
  2847. #ifdef GGML_GELU_QUICK_FP16
  2848. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2849. uint16_t t;
  2850. for (int i = 0; i < n; ++i) {
  2851. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2852. memcpy(&t, &fp16, sizeof(uint16_t));
  2853. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2854. }
  2855. }
  2856. #else
  2857. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2858. for (int i = 0; i < n; ++i) {
  2859. y[i] = ggml_gelu_quick_f32(x[i]);
  2860. }
  2861. }
  2862. #endif
  2863. // Sigmoid Linear Unit (SiLU) function
  2864. inline static float ggml_silu_f32(float x) {
  2865. return x/(1.0f + expf(-x));
  2866. }
  2867. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2868. // const uint16_t * i16 = (const uint16_t *) x;
  2869. // for (int i = 0; i < n; ++i) {
  2870. // y[i] = table_silu_f16[i16[i]];
  2871. // }
  2872. //}
  2873. #ifdef GGML_SILU_FP16
  2874. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2875. uint16_t t;
  2876. for (int i = 0; i < n; ++i) {
  2877. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2878. memcpy(&t, &fp16, sizeof(uint16_t));
  2879. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2880. }
  2881. }
  2882. #else
  2883. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2884. for (int i = 0; i < n; ++i) {
  2885. y[i] = ggml_silu_f32(x[i]);
  2886. }
  2887. }
  2888. #endif
  2889. inline static float ggml_silu_backward_f32(float x, float dy) {
  2890. const float s = 1.0f/(1.0f + expf(-x));
  2891. return dy*s*(1.0f + x*(1.0f - s));
  2892. }
  2893. #ifdef GGML_SILU_FP16
  2894. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2895. for (int i = 0; i < n; ++i) {
  2896. // we did not use x[i] to compute forward silu but its f16 equivalent
  2897. // take derivative at f16 of x[i]:
  2898. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2899. float usedx = GGML_FP16_TO_FP32(fp16);
  2900. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2901. }
  2902. }
  2903. #else
  2904. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2905. for (int i = 0; i < n; ++i) {
  2906. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2907. }
  2908. }
  2909. #endif
  2910. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2911. #ifndef GGML_USE_ACCELERATE
  2912. ggml_float sum = 0.0;
  2913. for (int i = 0; i < n; ++i) {
  2914. sum += (ggml_float)x[i];
  2915. }
  2916. *s = sum;
  2917. #else
  2918. vDSP_sve(x, 1, s, n);
  2919. #endif
  2920. }
  2921. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2922. ggml_float sum = 0.0;
  2923. for (int i = 0; i < n; ++i) {
  2924. sum += (ggml_float)x[i];
  2925. }
  2926. *s = sum;
  2927. }
  2928. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2929. #ifndef GGML_USE_ACCELERATE
  2930. float max = -INFINITY;
  2931. for (int i = 0; i < n; ++i) {
  2932. max = MAX(max, x[i]);
  2933. }
  2934. *s = max;
  2935. #else
  2936. vDSP_maxv(x, 1, s, n);
  2937. #endif
  2938. }
  2939. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2940. ggml_vec_norm_f32(n, s, x);
  2941. *s = 1.f/(*s);
  2942. }
  2943. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2944. float max = -INFINITY;
  2945. int idx = 0;
  2946. for (int i = 0; i < n; ++i) {
  2947. max = MAX(max, x[i]);
  2948. if (max == x[i]) { idx = i; }
  2949. }
  2950. *s = idx;
  2951. }
  2952. //
  2953. // data types
  2954. //
  2955. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2956. [GGML_TYPE_F32] = 1,
  2957. [GGML_TYPE_F16] = 1,
  2958. [GGML_TYPE_Q4_0] = QK4_0,
  2959. [GGML_TYPE_Q4_1] = QK4_1,
  2960. [GGML_TYPE_Q5_0] = QK5_0,
  2961. [GGML_TYPE_Q5_1] = QK5_1,
  2962. [GGML_TYPE_Q8_0] = QK8_0,
  2963. [GGML_TYPE_Q8_1] = QK8_1,
  2964. #ifdef GGML_USE_K_QUANTS
  2965. [GGML_TYPE_Q2_K] = QK_K,
  2966. [GGML_TYPE_Q3_K] = QK_K,
  2967. [GGML_TYPE_Q4_K] = QK_K,
  2968. [GGML_TYPE_Q5_K] = QK_K,
  2969. [GGML_TYPE_Q6_K] = QK_K,
  2970. [GGML_TYPE_Q8_K] = QK_K,
  2971. #endif
  2972. [GGML_TYPE_I8] = 1,
  2973. [GGML_TYPE_I16] = 1,
  2974. [GGML_TYPE_I32] = 1,
  2975. };
  2976. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2977. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2978. [GGML_TYPE_F32] = sizeof(float),
  2979. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2980. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2981. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2982. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2983. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2984. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2985. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2986. #ifdef GGML_USE_K_QUANTS
  2987. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2988. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2989. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2990. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2991. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2992. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2993. #endif
  2994. [GGML_TYPE_I8] = sizeof(int8_t),
  2995. [GGML_TYPE_I16] = sizeof(int16_t),
  2996. [GGML_TYPE_I32] = sizeof(int32_t),
  2997. };
  2998. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2999. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3000. [GGML_TYPE_F32] = "f32",
  3001. [GGML_TYPE_F16] = "f16",
  3002. [GGML_TYPE_Q4_0] = "q4_0",
  3003. [GGML_TYPE_Q4_1] = "q4_1",
  3004. [GGML_TYPE_Q5_0] = "q5_0",
  3005. [GGML_TYPE_Q5_1] = "q5_1",
  3006. [GGML_TYPE_Q8_0] = "q8_0",
  3007. [GGML_TYPE_Q8_1] = "q8_1",
  3008. [GGML_TYPE_Q2_K] = "q2_K",
  3009. [GGML_TYPE_Q3_K] = "q3_K",
  3010. [GGML_TYPE_Q4_K] = "q4_K",
  3011. [GGML_TYPE_Q5_K] = "q5_K",
  3012. [GGML_TYPE_Q6_K] = "q6_K",
  3013. [GGML_TYPE_Q8_K] = "q8_K",
  3014. [GGML_TYPE_I8] = "i8",
  3015. [GGML_TYPE_I16] = "i16",
  3016. [GGML_TYPE_I32] = "i32",
  3017. };
  3018. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3019. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3020. [GGML_TYPE_F32] = false,
  3021. [GGML_TYPE_F16] = false,
  3022. [GGML_TYPE_Q4_0] = true,
  3023. [GGML_TYPE_Q4_1] = true,
  3024. [GGML_TYPE_Q5_0] = true,
  3025. [GGML_TYPE_Q5_1] = true,
  3026. [GGML_TYPE_Q8_0] = true,
  3027. [GGML_TYPE_Q8_1] = true,
  3028. [GGML_TYPE_Q2_K] = true,
  3029. [GGML_TYPE_Q3_K] = true,
  3030. [GGML_TYPE_Q4_K] = true,
  3031. [GGML_TYPE_Q5_K] = true,
  3032. [GGML_TYPE_Q6_K] = true,
  3033. [GGML_TYPE_Q8_K] = true,
  3034. [GGML_TYPE_I8] = false,
  3035. [GGML_TYPE_I16] = false,
  3036. [GGML_TYPE_I32] = false,
  3037. };
  3038. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3039. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3040. "NONE",
  3041. "DUP",
  3042. "ADD",
  3043. "ADD1",
  3044. "ACC",
  3045. "SUB",
  3046. "MUL",
  3047. "DIV",
  3048. "SQR",
  3049. "SQRT",
  3050. "LOG",
  3051. "SUM",
  3052. "SUM_ROWS",
  3053. "MEAN",
  3054. "ARGMAX",
  3055. "REPEAT",
  3056. "REPEAT_BACK",
  3057. "ABS",
  3058. "SGN",
  3059. "NEG",
  3060. "STEP",
  3061. "TANH",
  3062. "ELU",
  3063. "RELU",
  3064. "GELU",
  3065. "GELU_QUICK",
  3066. "SILU",
  3067. "SILU_BACK",
  3068. "NORM",
  3069. "RMS_NORM",
  3070. "RMS_NORM_BACK",
  3071. "MUL_MAT",
  3072. "OUT_PROD",
  3073. "SCALE",
  3074. "SET",
  3075. "CPY",
  3076. "CONT",
  3077. "RESHAPE",
  3078. "VIEW",
  3079. "PERMUTE",
  3080. "TRANSPOSE",
  3081. "GET_ROWS",
  3082. "GET_ROWS_BACK",
  3083. "DIAG",
  3084. "DIAG_MASK_INF",
  3085. "DIAG_MASK_ZERO",
  3086. "SOFT_MAX",
  3087. "SOFT_MAX_BACK",
  3088. "ROPE",
  3089. "ROPE_BACK",
  3090. "ALIBI",
  3091. "CLAMP",
  3092. "CONV_1D",
  3093. "CONV_2D",
  3094. "FLASH_ATTN",
  3095. "FLASH_FF",
  3096. "FLASH_ATTN_BACK",
  3097. "WIN_PART",
  3098. "WIN_UNPART",
  3099. "MAP_UNARY",
  3100. "MAP_BINARY",
  3101. "MAP_CUSTOM1",
  3102. "MAP_CUSTOM2",
  3103. "MAP_CUSTOM3",
  3104. "CROSS_ENTROPY_LOSS",
  3105. "CROSS_ENTROPY_LOSS_BACK",
  3106. };
  3107. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3108. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3109. "none",
  3110. "x",
  3111. "x+y",
  3112. "x+y",
  3113. "view(x,nb,offset)+=y->x",
  3114. "x-y",
  3115. "x*y",
  3116. "x/y",
  3117. "x^2",
  3118. "√x",
  3119. "log(x)",
  3120. "Σx",
  3121. "Σx_k",
  3122. "Σx/n",
  3123. "argmax(x)",
  3124. "repeat(x)",
  3125. "repeat_back(x)",
  3126. "abs(x)",
  3127. "sgn(x)",
  3128. "-x",
  3129. "step(x)",
  3130. "tanh(x)",
  3131. "elu(x)",
  3132. "relu(x)",
  3133. "gelu(x)",
  3134. "gelu_quick(x)",
  3135. "silu(x)",
  3136. "silu_back(x)",
  3137. "norm(x)",
  3138. "rms_norm(x)",
  3139. "rms_norm_back(x)",
  3140. "X*Y",
  3141. "X*Y",
  3142. "x*v",
  3143. "y-\\>view(x)",
  3144. "x-\\>y",
  3145. "cont(x)",
  3146. "reshape(x)",
  3147. "view(x)",
  3148. "permute(x)",
  3149. "transpose(x)",
  3150. "get_rows(x)",
  3151. "get_rows_back(x)",
  3152. "diag(x)",
  3153. "diag_mask_inf(x)",
  3154. "diag_mask_zero(x)",
  3155. "soft_max(x)",
  3156. "soft_max_back(x)",
  3157. "rope(x)",
  3158. "rope_back(x)",
  3159. "alibi(x)",
  3160. "clamp(x)",
  3161. "conv_1d(x)",
  3162. "conv_2d(x)",
  3163. "flash_attn(x)",
  3164. "flash_ff(x)",
  3165. "flash_attn_back(x)",
  3166. "win_part(x)",
  3167. "win_unpart(x)",
  3168. "f(x)",
  3169. "f(x,y)",
  3170. "custom(x)",
  3171. "custom(x,y)",
  3172. "custom(x,y,z)",
  3173. "cross_entropy_loss(x,y)",
  3174. "cross_entropy_loss_back(x,y)",
  3175. };
  3176. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3177. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3178. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3179. // WARN:
  3180. // Mis-confguration can lead to problem that's hard to reason about:
  3181. // * At best it crash or talks nosense.
  3182. // * At worst it talks slightly difference but hard to perceive.
  3183. //
  3184. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3185. // Take care about compile options (e.g., GGML_USE_xxx).
  3186. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3187. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3188. static void ggml_setup_op_has_task_pass(void) {
  3189. { // INIT
  3190. bool * p = GGML_OP_HAS_INIT;
  3191. p[GGML_OP_ACC ] = true;
  3192. p[GGML_OP_MUL_MAT ] = true;
  3193. p[GGML_OP_OUT_PROD ] = true;
  3194. p[GGML_OP_SET ] = true;
  3195. p[GGML_OP_GET_ROWS_BACK ] = true;
  3196. p[GGML_OP_DIAG_MASK_INF ] = true;
  3197. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3198. p[GGML_OP_CONV_1D ] = true;
  3199. p[GGML_OP_CONV_2D ] = true;
  3200. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3201. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3202. }
  3203. { // FINALIZE
  3204. bool * p = GGML_OP_HAS_FINALIZE;
  3205. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3206. }
  3207. }
  3208. //
  3209. // ggml context
  3210. //
  3211. struct ggml_context {
  3212. size_t mem_size;
  3213. void * mem_buffer;
  3214. bool mem_buffer_owned;
  3215. bool no_alloc;
  3216. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3217. int n_objects;
  3218. struct ggml_object * objects_begin;
  3219. struct ggml_object * objects_end;
  3220. struct ggml_scratch scratch;
  3221. struct ggml_scratch scratch_save;
  3222. };
  3223. struct ggml_context_container {
  3224. bool used;
  3225. struct ggml_context context;
  3226. };
  3227. //
  3228. // NUMA support
  3229. //
  3230. #define GGML_NUMA_MAX_NODES 8
  3231. #define GGML_NUMA_MAX_CPUS 512
  3232. struct ggml_numa_node {
  3233. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3234. uint32_t n_cpus;
  3235. };
  3236. struct ggml_numa_nodes {
  3237. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3238. uint32_t n_nodes;
  3239. uint32_t total_cpus; // hardware threads on system
  3240. };
  3241. //
  3242. // ggml state
  3243. //
  3244. struct ggml_state {
  3245. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3246. struct ggml_numa_nodes numa;
  3247. };
  3248. // global state
  3249. static struct ggml_state g_state;
  3250. static atomic_int g_state_barrier = 0;
  3251. // barrier via spin lock
  3252. inline static void ggml_critical_section_start(void) {
  3253. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3254. while (processing > 0) {
  3255. // wait for other threads to finish
  3256. atomic_fetch_sub(&g_state_barrier, 1);
  3257. sched_yield(); // TODO: reconsider this
  3258. processing = atomic_fetch_add(&g_state_barrier, 1);
  3259. }
  3260. }
  3261. // TODO: make this somehow automatically executed
  3262. // some sort of "sentry" mechanism
  3263. inline static void ggml_critical_section_end(void) {
  3264. atomic_fetch_sub(&g_state_barrier, 1);
  3265. }
  3266. void ggml_numa_init(void) {
  3267. if (g_state.numa.n_nodes > 0) {
  3268. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3269. return;
  3270. }
  3271. #ifdef __linux__
  3272. struct stat st;
  3273. char path[256];
  3274. int rv;
  3275. // enumerate nodes
  3276. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3277. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3278. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3279. if (stat(path, &st) != 0) { break; }
  3280. ++g_state.numa.n_nodes;
  3281. }
  3282. // enumerate CPUs
  3283. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3284. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3285. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3286. if (stat(path, &st) != 0) { break; }
  3287. ++g_state.numa.total_cpus;
  3288. }
  3289. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3290. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3291. g_state.numa.n_nodes = 0;
  3292. return;
  3293. }
  3294. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3295. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3296. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3297. node->n_cpus = 0;
  3298. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3299. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3300. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3301. if (stat(path, &st) == 0) {
  3302. node->cpus[node->n_cpus++] = c;
  3303. GGML_PRINT_DEBUG(" %u", c);
  3304. }
  3305. }
  3306. GGML_PRINT_DEBUG("\n");
  3307. }
  3308. if (ggml_is_numa()) {
  3309. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3310. if (fptr != NULL) {
  3311. char buf[42];
  3312. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3313. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3314. }
  3315. fclose(fptr);
  3316. }
  3317. }
  3318. #else
  3319. // TODO
  3320. #endif
  3321. }
  3322. bool ggml_is_numa(void) {
  3323. return g_state.numa.n_nodes > 1;
  3324. }
  3325. ////////////////////////////////////////////////////////////////////////////////
  3326. void ggml_print_object(const struct ggml_object * obj) {
  3327. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3328. obj->offs, obj->size, (const void *) obj->next);
  3329. }
  3330. void ggml_print_objects(const struct ggml_context * ctx) {
  3331. struct ggml_object * obj = ctx->objects_begin;
  3332. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3333. while (obj != NULL) {
  3334. ggml_print_object(obj);
  3335. obj = obj->next;
  3336. }
  3337. GGML_PRINT("%s: --- end ---\n", __func__);
  3338. }
  3339. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3340. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3341. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3342. }
  3343. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3344. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3345. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3346. }
  3347. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3348. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3349. // this should handle cases where the tensor is not contiguous in memory
  3350. // probaby just:
  3351. //
  3352. // return tensor->ne[3]*tensor->nb[3]
  3353. //
  3354. // is enough, but just in case, adding the second part
  3355. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3356. }
  3357. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3358. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3359. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3360. }
  3361. int ggml_blck_size(enum ggml_type type) {
  3362. return GGML_BLCK_SIZE[type];
  3363. }
  3364. size_t ggml_type_size(enum ggml_type type) {
  3365. return GGML_TYPE_SIZE[type];
  3366. }
  3367. float ggml_type_sizef(enum ggml_type type) {
  3368. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3369. }
  3370. const char * ggml_type_name(enum ggml_type type) {
  3371. return GGML_TYPE_NAME[type];
  3372. }
  3373. const char * ggml_op_name(enum ggml_op op) {
  3374. return GGML_OP_NAME[op];
  3375. }
  3376. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3377. return GGML_TYPE_SIZE[tensor->type];
  3378. }
  3379. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3380. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3381. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3382. }
  3383. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3384. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3385. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3386. }
  3387. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3388. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3389. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3390. }
  3391. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3392. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3393. return
  3394. (t0->ne[0] == t1->ne[0]) &&
  3395. (t0->ne[2] == t1->ne[2]) &&
  3396. (t0->ne[3] == t1->ne[3]);
  3397. }
  3398. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3399. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3400. return
  3401. (t0->ne[1] == t1->ne[1]) &&
  3402. (t0->ne[2] == t1->ne[2]) &&
  3403. (t0->ne[3] == t1->ne[3]);
  3404. }
  3405. bool ggml_is_quantized(enum ggml_type type) {
  3406. return GGML_IS_QUANTIZED[type];
  3407. }
  3408. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3409. enum ggml_type wtype = GGML_TYPE_COUNT;
  3410. switch (ftype) {
  3411. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3412. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3413. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3414. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3415. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3416. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3417. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3418. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3419. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3420. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3421. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3422. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3423. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3424. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3425. }
  3426. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3427. return wtype;
  3428. }
  3429. size_t ggml_tensor_overhead(void) {
  3430. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3431. }
  3432. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3433. return tensor->nb[0] > tensor->nb[1];
  3434. }
  3435. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3436. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3437. return
  3438. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3439. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3440. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3441. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3442. }
  3443. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3444. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3445. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3446. }
  3447. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3448. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3449. return
  3450. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3451. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3452. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3453. }
  3454. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3455. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3456. return
  3457. (t0->ne[0] == t1->ne[0] ) &&
  3458. (t0->ne[1] == t1->ne[1] ) &&
  3459. (t0->ne[2] == t1->ne[2] ) &&
  3460. (t0->ne[3] == t1->ne[3] );
  3461. }
  3462. // check if t1 can be represented as a repeatition of t0
  3463. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3464. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3465. return
  3466. (t1->ne[0]%t0->ne[0] == 0) &&
  3467. (t1->ne[1]%t0->ne[1] == 0) &&
  3468. (t1->ne[2]%t0->ne[2] == 0) &&
  3469. (t1->ne[3]%t0->ne[3] == 0);
  3470. }
  3471. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3472. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3473. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3474. }
  3475. static inline int ggml_up32(int n) {
  3476. return (n + 31) & ~31;
  3477. }
  3478. //static inline int ggml_up64(int n) {
  3479. // return (n + 63) & ~63;
  3480. //}
  3481. static inline int ggml_up(int n, int m) {
  3482. // assert m is a power of 2
  3483. GGML_ASSERT((m & (m - 1)) == 0);
  3484. return (n + m - 1) & ~(m - 1);
  3485. }
  3486. // assert that pointer is aligned to GGML_MEM_ALIGN
  3487. #define ggml_assert_aligned(ptr) \
  3488. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3489. ////////////////////////////////////////////////////////////////////////////////
  3490. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3491. // make this function thread safe
  3492. ggml_critical_section_start();
  3493. static bool is_first_call = true;
  3494. if (is_first_call) {
  3495. // initialize time system (required on Windows)
  3496. ggml_time_init();
  3497. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3498. {
  3499. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3500. ggml_fp16_t ii;
  3501. for (int i = 0; i < (1 << 16); ++i) {
  3502. uint16_t ui = i;
  3503. memcpy(&ii, &ui, sizeof(ii));
  3504. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3505. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3506. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3507. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3508. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3509. }
  3510. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3511. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3512. }
  3513. // initialize g_state
  3514. {
  3515. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3516. g_state = (struct ggml_state) {
  3517. /*.contexts =*/ { { 0 } },
  3518. /*.numa =*/ {
  3519. .n_nodes = 0,
  3520. .total_cpus = 0,
  3521. },
  3522. };
  3523. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3524. g_state.contexts[i].used = false;
  3525. }
  3526. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3527. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3528. }
  3529. #if defined(GGML_USE_CUBLAS)
  3530. ggml_init_cublas();
  3531. #elif defined(GGML_USE_CLBLAST)
  3532. ggml_cl_init();
  3533. #endif
  3534. ggml_setup_op_has_task_pass();
  3535. is_first_call = false;
  3536. }
  3537. // find non-used context in g_state
  3538. struct ggml_context * ctx = NULL;
  3539. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3540. if (!g_state.contexts[i].used) {
  3541. g_state.contexts[i].used = true;
  3542. ctx = &g_state.contexts[i].context;
  3543. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3544. break;
  3545. }
  3546. }
  3547. if (ctx == NULL) {
  3548. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3549. ggml_critical_section_end();
  3550. return NULL;
  3551. }
  3552. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3553. *ctx = (struct ggml_context) {
  3554. /*.mem_size =*/ mem_size,
  3555. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3556. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3557. /*.no_alloc =*/ params.no_alloc,
  3558. /*.no_alloc_save =*/ params.no_alloc,
  3559. /*.n_objects =*/ 0,
  3560. /*.objects_begin =*/ NULL,
  3561. /*.objects_end =*/ NULL,
  3562. /*.scratch =*/ { 0, 0, NULL, },
  3563. /*.scratch_save =*/ { 0, 0, NULL, },
  3564. };
  3565. GGML_ASSERT(ctx->mem_buffer != NULL);
  3566. ggml_assert_aligned(ctx->mem_buffer);
  3567. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3568. ggml_critical_section_end();
  3569. return ctx;
  3570. }
  3571. void ggml_free(struct ggml_context * ctx) {
  3572. // make this function thread safe
  3573. ggml_critical_section_start();
  3574. bool found = false;
  3575. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3576. if (&g_state.contexts[i].context == ctx) {
  3577. g_state.contexts[i].used = false;
  3578. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3579. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3580. if (ctx->mem_buffer_owned) {
  3581. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3582. }
  3583. found = true;
  3584. break;
  3585. }
  3586. }
  3587. if (!found) {
  3588. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3589. }
  3590. ggml_critical_section_end();
  3591. }
  3592. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3593. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3594. }
  3595. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3596. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3597. ctx->scratch = scratch;
  3598. return result;
  3599. }
  3600. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3601. ctx->no_alloc = no_alloc;
  3602. }
  3603. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3604. return ctx->mem_buffer;
  3605. }
  3606. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3607. return ctx->mem_size;
  3608. }
  3609. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3610. size_t max_size = 0;
  3611. struct ggml_object * obj = ctx->objects_begin;
  3612. while (obj != NULL) {
  3613. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3614. const size_t size = ggml_nbytes(tensor);
  3615. if (max_size < size) {
  3616. max_size = size;
  3617. }
  3618. obj = obj->next;
  3619. }
  3620. return max_size;
  3621. }
  3622. // IMPORTANT:
  3623. // when creating "opt" tensors, always save and load the scratch buffer
  3624. // this is an error prone process, but it is necessary to support inplace
  3625. // operators when using scratch buffers
  3626. // TODO: implement a better way
  3627. void ggml_scratch_save(struct ggml_context * ctx) {
  3628. // this is needed to allow opt tensors to store their data
  3629. // TODO: again, need to find a better way
  3630. ctx->no_alloc_save = ctx->no_alloc;
  3631. ctx->no_alloc = false;
  3632. ctx->scratch_save = ctx->scratch;
  3633. ctx->scratch.data = NULL;
  3634. }
  3635. void ggml_scratch_load(struct ggml_context * ctx) {
  3636. ctx->no_alloc = ctx->no_alloc_save;
  3637. ctx->scratch = ctx->scratch_save;
  3638. }
  3639. ////////////////////////////////////////////////////////////////////////////////
  3640. struct ggml_tensor * ggml_new_tensor_impl(
  3641. struct ggml_context * ctx,
  3642. enum ggml_type type,
  3643. int n_dims,
  3644. const int64_t* ne,
  3645. void* data) {
  3646. // always insert objects at the end of the context's memory pool
  3647. struct ggml_object * obj_cur = ctx->objects_end;
  3648. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3649. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3650. const size_t cur_end = cur_offs + cur_size;
  3651. size_t size_needed = 0;
  3652. if (data == NULL && !ctx->no_alloc) {
  3653. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3654. for (int i = 1; i < n_dims; i++) {
  3655. size_needed *= ne[i];
  3656. }
  3657. // align to GGML_MEM_ALIGN
  3658. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3659. }
  3660. char * const mem_buffer = ctx->mem_buffer;
  3661. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3662. if (ctx->scratch.data == NULL || data != NULL) {
  3663. size_needed += GGML_TENSOR_SIZE;
  3664. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3665. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3666. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3667. assert(false);
  3668. return NULL;
  3669. }
  3670. *obj_new = (struct ggml_object) {
  3671. .offs = cur_end + GGML_OBJECT_SIZE,
  3672. .size = size_needed,
  3673. .next = NULL,
  3674. };
  3675. } else {
  3676. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3677. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3678. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3679. assert(false);
  3680. return NULL;
  3681. }
  3682. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3683. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3684. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3685. assert(false);
  3686. return NULL;
  3687. }
  3688. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3689. *obj_new = (struct ggml_object) {
  3690. .offs = cur_end + GGML_OBJECT_SIZE,
  3691. .size = GGML_TENSOR_SIZE,
  3692. .next = NULL,
  3693. };
  3694. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3695. ctx->scratch.offs += size_needed;
  3696. }
  3697. if (obj_cur != NULL) {
  3698. obj_cur->next = obj_new;
  3699. } else {
  3700. // this is the first object in this context
  3701. ctx->objects_begin = obj_new;
  3702. }
  3703. ctx->objects_end = obj_new;
  3704. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3705. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3706. ggml_assert_aligned(result);
  3707. *result = (struct ggml_tensor) {
  3708. /*.type =*/ type,
  3709. /*.backend =*/ GGML_BACKEND_CPU,
  3710. /*.n_dims =*/ n_dims,
  3711. /*.ne =*/ { 1, 1, 1, 1 },
  3712. /*.nb =*/ { 0, 0, 0, 0 },
  3713. /*.op =*/ GGML_OP_NONE,
  3714. /*.is_param =*/ false,
  3715. /*.grad =*/ NULL,
  3716. /*.src0 =*/ NULL,
  3717. /*.src1 =*/ NULL,
  3718. /*.opt =*/ { NULL },
  3719. /*.n_tasks =*/ 0,
  3720. /*.perf_runs =*/ 0,
  3721. /*.perf_cycles =*/ 0,
  3722. /*.perf_time_us =*/ 0,
  3723. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3724. /*.name =*/ { 0 },
  3725. /*.extra =*/ NULL,
  3726. /*.pad =*/ { 0 },
  3727. };
  3728. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3729. //ggml_assert_aligned(result->data);
  3730. for (int i = 0; i < n_dims; i++) {
  3731. result->ne[i] = ne[i];
  3732. }
  3733. result->nb[0] = GGML_TYPE_SIZE[type];
  3734. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3735. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3736. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3737. }
  3738. ctx->n_objects++;
  3739. return result;
  3740. }
  3741. struct ggml_tensor * ggml_new_tensor(
  3742. struct ggml_context * ctx,
  3743. enum ggml_type type,
  3744. int n_dims,
  3745. const int64_t * ne) {
  3746. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3747. }
  3748. struct ggml_tensor * ggml_new_tensor_1d(
  3749. struct ggml_context * ctx,
  3750. enum ggml_type type,
  3751. int64_t ne0) {
  3752. return ggml_new_tensor(ctx, type, 1, &ne0);
  3753. }
  3754. struct ggml_tensor * ggml_new_tensor_2d(
  3755. struct ggml_context * ctx,
  3756. enum ggml_type type,
  3757. int64_t ne0,
  3758. int64_t ne1) {
  3759. const int64_t ne[2] = { ne0, ne1 };
  3760. return ggml_new_tensor(ctx, type, 2, ne);
  3761. }
  3762. struct ggml_tensor * ggml_new_tensor_3d(
  3763. struct ggml_context * ctx,
  3764. enum ggml_type type,
  3765. int64_t ne0,
  3766. int64_t ne1,
  3767. int64_t ne2) {
  3768. const int64_t ne[3] = { ne0, ne1, ne2 };
  3769. return ggml_new_tensor(ctx, type, 3, ne);
  3770. }
  3771. struct ggml_tensor * ggml_new_tensor_4d(
  3772. struct ggml_context * ctx,
  3773. enum ggml_type type,
  3774. int64_t ne0,
  3775. int64_t ne1,
  3776. int64_t ne2,
  3777. int64_t ne3) {
  3778. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3779. return ggml_new_tensor(ctx, type, 4, ne);
  3780. }
  3781. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3782. ggml_scratch_save(ctx);
  3783. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3784. ggml_scratch_load(ctx);
  3785. ggml_set_i32(result, value);
  3786. return result;
  3787. }
  3788. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3789. ggml_scratch_save(ctx);
  3790. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3791. ggml_scratch_load(ctx);
  3792. ggml_set_f32(result, value);
  3793. return result;
  3794. }
  3795. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3796. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3797. }
  3798. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3799. memset(tensor->data, 0, ggml_nbytes(tensor));
  3800. return tensor;
  3801. }
  3802. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3803. const int n = ggml_nrows(tensor);
  3804. const int nc = tensor->ne[0];
  3805. const size_t n1 = tensor->nb[1];
  3806. char * const data = tensor->data;
  3807. switch (tensor->type) {
  3808. case GGML_TYPE_I8:
  3809. {
  3810. assert(tensor->nb[0] == sizeof(int8_t));
  3811. for (int i = 0; i < n; i++) {
  3812. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3813. }
  3814. } break;
  3815. case GGML_TYPE_I16:
  3816. {
  3817. assert(tensor->nb[0] == sizeof(int16_t));
  3818. for (int i = 0; i < n; i++) {
  3819. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3820. }
  3821. } break;
  3822. case GGML_TYPE_I32:
  3823. {
  3824. assert(tensor->nb[0] == sizeof(int32_t));
  3825. for (int i = 0; i < n; i++) {
  3826. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3827. }
  3828. } break;
  3829. case GGML_TYPE_F16:
  3830. {
  3831. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3832. for (int i = 0; i < n; i++) {
  3833. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3834. }
  3835. } break;
  3836. case GGML_TYPE_F32:
  3837. {
  3838. assert(tensor->nb[0] == sizeof(float));
  3839. for (int i = 0; i < n; i++) {
  3840. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3841. }
  3842. } break;
  3843. default:
  3844. {
  3845. GGML_ASSERT(false);
  3846. } break;
  3847. }
  3848. return tensor;
  3849. }
  3850. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3851. const int n = ggml_nrows(tensor);
  3852. const int nc = tensor->ne[0];
  3853. const size_t n1 = tensor->nb[1];
  3854. char * const data = tensor->data;
  3855. switch (tensor->type) {
  3856. case GGML_TYPE_I8:
  3857. {
  3858. assert(tensor->nb[0] == sizeof(int8_t));
  3859. for (int i = 0; i < n; i++) {
  3860. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3861. }
  3862. } break;
  3863. case GGML_TYPE_I16:
  3864. {
  3865. assert(tensor->nb[0] == sizeof(int16_t));
  3866. for (int i = 0; i < n; i++) {
  3867. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3868. }
  3869. } break;
  3870. case GGML_TYPE_I32:
  3871. {
  3872. assert(tensor->nb[0] == sizeof(int32_t));
  3873. for (int i = 0; i < n; i++) {
  3874. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3875. }
  3876. } break;
  3877. case GGML_TYPE_F16:
  3878. {
  3879. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3880. for (int i = 0; i < n; i++) {
  3881. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3882. }
  3883. } break;
  3884. case GGML_TYPE_F32:
  3885. {
  3886. assert(tensor->nb[0] == sizeof(float));
  3887. for (int i = 0; i < n; i++) {
  3888. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3889. }
  3890. } break;
  3891. default:
  3892. {
  3893. GGML_ASSERT(false);
  3894. } break;
  3895. }
  3896. return tensor;
  3897. }
  3898. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3899. switch (tensor->type) {
  3900. case GGML_TYPE_I8:
  3901. {
  3902. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3903. return ((int8_t *)(tensor->data))[i];
  3904. } break;
  3905. case GGML_TYPE_I16:
  3906. {
  3907. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3908. return ((int16_t *)(tensor->data))[i];
  3909. } break;
  3910. case GGML_TYPE_I32:
  3911. {
  3912. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3913. return ((int32_t *)(tensor->data))[i];
  3914. } break;
  3915. case GGML_TYPE_F16:
  3916. {
  3917. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3918. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3919. } break;
  3920. case GGML_TYPE_F32:
  3921. {
  3922. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3923. return ((float *)(tensor->data))[i];
  3924. } break;
  3925. default:
  3926. {
  3927. GGML_ASSERT(false);
  3928. } break;
  3929. }
  3930. return 0.0f;
  3931. }
  3932. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3933. switch (tensor->type) {
  3934. case GGML_TYPE_I8:
  3935. {
  3936. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3937. ((int8_t *)(tensor->data))[i] = value;
  3938. } break;
  3939. case GGML_TYPE_I16:
  3940. {
  3941. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3942. ((int16_t *)(tensor->data))[i] = value;
  3943. } break;
  3944. case GGML_TYPE_I32:
  3945. {
  3946. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3947. ((int32_t *)(tensor->data))[i] = value;
  3948. } break;
  3949. case GGML_TYPE_F16:
  3950. {
  3951. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3952. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3953. } break;
  3954. case GGML_TYPE_F32:
  3955. {
  3956. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3957. ((float *)(tensor->data))[i] = value;
  3958. } break;
  3959. default:
  3960. {
  3961. GGML_ASSERT(false);
  3962. } break;
  3963. }
  3964. }
  3965. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3966. switch (tensor->type) {
  3967. case GGML_TYPE_I8:
  3968. {
  3969. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3970. return ((int8_t *)(tensor->data))[i];
  3971. } break;
  3972. case GGML_TYPE_I16:
  3973. {
  3974. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3975. return ((int16_t *)(tensor->data))[i];
  3976. } break;
  3977. case GGML_TYPE_I32:
  3978. {
  3979. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3980. return ((int32_t *)(tensor->data))[i];
  3981. } break;
  3982. case GGML_TYPE_F16:
  3983. {
  3984. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3985. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3986. } break;
  3987. case GGML_TYPE_F32:
  3988. {
  3989. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3990. return ((float *)(tensor->data))[i];
  3991. } break;
  3992. default:
  3993. {
  3994. GGML_ASSERT(false);
  3995. } break;
  3996. }
  3997. return 0.0f;
  3998. }
  3999. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4000. switch (tensor->type) {
  4001. case GGML_TYPE_I8:
  4002. {
  4003. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4004. ((int8_t *)(tensor->data))[i] = value;
  4005. } break;
  4006. case GGML_TYPE_I16:
  4007. {
  4008. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4009. ((int16_t *)(tensor->data))[i] = value;
  4010. } break;
  4011. case GGML_TYPE_I32:
  4012. {
  4013. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4014. ((int32_t *)(tensor->data))[i] = value;
  4015. } break;
  4016. case GGML_TYPE_F16:
  4017. {
  4018. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4019. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4020. } break;
  4021. case GGML_TYPE_F32:
  4022. {
  4023. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4024. ((float *)(tensor->data))[i] = value;
  4025. } break;
  4026. default:
  4027. {
  4028. GGML_ASSERT(false);
  4029. } break;
  4030. }
  4031. }
  4032. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4033. return tensor->data;
  4034. }
  4035. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4036. assert(tensor->type == GGML_TYPE_F32);
  4037. return (float *)(tensor->data);
  4038. }
  4039. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4040. return tensor->name;
  4041. }
  4042. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4043. strncpy(tensor->name, name, sizeof(tensor->name));
  4044. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4045. return tensor;
  4046. }
  4047. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4048. va_list args;
  4049. va_start(args, fmt);
  4050. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4051. va_end(args);
  4052. return tensor;
  4053. }
  4054. struct ggml_tensor * ggml_view_tensor(
  4055. struct ggml_context * ctx,
  4056. const struct ggml_tensor * src) {
  4057. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4058. ggml_format_name(result, "%s (view)", src->name);
  4059. result->nb[0] = src->nb[0];
  4060. result->nb[1] = src->nb[1];
  4061. result->nb[2] = src->nb[2];
  4062. result->nb[3] = src->nb[3];
  4063. return result;
  4064. }
  4065. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4066. struct ggml_object * obj = ctx->objects_begin;
  4067. char * const mem_buffer = ctx->mem_buffer;
  4068. while (obj != NULL) {
  4069. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4070. if (strcmp(cur->name, name) == 0) {
  4071. return cur;
  4072. }
  4073. obj = obj->next;
  4074. }
  4075. return NULL;
  4076. }
  4077. ////////////////////////////////////////////////////////////////////////////////
  4078. // ggml_dup
  4079. struct ggml_tensor * ggml_dup_impl(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a,
  4082. bool inplace) {
  4083. bool is_node = false;
  4084. if (!inplace && (a->grad)) {
  4085. is_node = true;
  4086. }
  4087. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4088. result->op = GGML_OP_DUP;
  4089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4090. result->src0 = a;
  4091. result->src1 = NULL;
  4092. return result;
  4093. }
  4094. struct ggml_tensor * ggml_dup(
  4095. struct ggml_context * ctx,
  4096. struct ggml_tensor * a) {
  4097. return ggml_dup_impl(ctx, a, false);
  4098. }
  4099. struct ggml_tensor * ggml_dup_inplace(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a) {
  4102. return ggml_dup_impl(ctx, a, true);
  4103. }
  4104. // ggml_add
  4105. struct ggml_tensor * ggml_add_impl(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a,
  4108. struct ggml_tensor * b,
  4109. bool inplace) {
  4110. GGML_ASSERT(ggml_are_same_shape(a, b));
  4111. bool is_node = false;
  4112. if (a->grad || b->grad) {
  4113. is_node = true;
  4114. }
  4115. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4116. result->op = GGML_OP_ADD;
  4117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4118. result->src0 = a;
  4119. result->src1 = b;
  4120. return result;
  4121. }
  4122. struct ggml_tensor * ggml_add(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a,
  4125. struct ggml_tensor * b) {
  4126. return ggml_add_impl(ctx, a, b, false);
  4127. }
  4128. struct ggml_tensor * ggml_add_inplace(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a,
  4131. struct ggml_tensor * b) {
  4132. return ggml_add_impl(ctx, a, b, true);
  4133. }
  4134. // ggml_add1
  4135. struct ggml_tensor * ggml_add1_impl(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a,
  4138. struct ggml_tensor * b,
  4139. bool inplace) {
  4140. GGML_ASSERT(ggml_is_scalar(b));
  4141. GGML_ASSERT(ggml_is_padded_1d(a));
  4142. bool is_node = false;
  4143. if (a->grad || b->grad) {
  4144. is_node = true;
  4145. }
  4146. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4147. result->op = GGML_OP_ADD1;
  4148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4149. result->src0 = a;
  4150. result->src1 = b;
  4151. return result;
  4152. }
  4153. struct ggml_tensor * ggml_add1(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a,
  4156. struct ggml_tensor * b) {
  4157. return ggml_add1_impl(ctx, a, b, false);
  4158. }
  4159. struct ggml_tensor * ggml_add1_inplace(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a,
  4162. struct ggml_tensor * b) {
  4163. return ggml_add1_impl(ctx, a, b, true);
  4164. }
  4165. // ggml_acc
  4166. struct ggml_tensor * ggml_acc_impl(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a,
  4169. struct ggml_tensor * b,
  4170. size_t nb1,
  4171. size_t nb2,
  4172. size_t nb3,
  4173. size_t offset,
  4174. bool inplace) {
  4175. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4176. GGML_ASSERT(ggml_is_contiguous(a));
  4177. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4178. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4179. bool is_node = false;
  4180. if (!inplace && (a->grad || b->grad)) {
  4181. is_node = true;
  4182. }
  4183. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4184. ggml_scratch_save(ctx);
  4185. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4186. ((int32_t *) c->data)[0] = nb1;
  4187. ((int32_t *) c->data)[1] = nb2;
  4188. ((int32_t *) c->data)[2] = nb3;
  4189. ((int32_t *) c->data)[3] = offset;
  4190. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4191. ggml_scratch_load(ctx);
  4192. result->op = GGML_OP_ACC;
  4193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4194. result->src0 = a;
  4195. result->src1 = b;
  4196. result->opt[0] = c;
  4197. return result;
  4198. }
  4199. struct ggml_tensor * ggml_acc(
  4200. struct ggml_context * ctx,
  4201. struct ggml_tensor * a,
  4202. struct ggml_tensor * b,
  4203. size_t nb1,
  4204. size_t nb2,
  4205. size_t nb3,
  4206. size_t offset) {
  4207. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4208. }
  4209. struct ggml_tensor * ggml_acc_inplace(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a,
  4212. struct ggml_tensor * b,
  4213. size_t nb1,
  4214. size_t nb2,
  4215. size_t nb3,
  4216. size_t offset) {
  4217. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4218. }
  4219. // ggml_sub
  4220. struct ggml_tensor * ggml_sub_impl(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a,
  4223. struct ggml_tensor * b,
  4224. bool inplace) {
  4225. GGML_ASSERT(ggml_are_same_shape(a, b));
  4226. bool is_node = false;
  4227. if (!inplace && (a->grad || b->grad)) {
  4228. is_node = true;
  4229. }
  4230. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4231. result->op = GGML_OP_SUB;
  4232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4233. result->src0 = a;
  4234. result->src1 = b;
  4235. return result;
  4236. }
  4237. struct ggml_tensor * ggml_sub(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a,
  4240. struct ggml_tensor * b) {
  4241. return ggml_sub_impl(ctx, a, b, false);
  4242. }
  4243. struct ggml_tensor * ggml_sub_inplace(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a,
  4246. struct ggml_tensor * b) {
  4247. return ggml_sub_impl(ctx, a, b, true);
  4248. }
  4249. // ggml_mul
  4250. struct ggml_tensor * ggml_mul_impl(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. struct ggml_tensor * b,
  4254. bool inplace) {
  4255. // TODO: support less-strict constraint
  4256. // GGML_ASSERT(ggml_can_repeat(b, a));
  4257. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4258. bool is_node = false;
  4259. if (!inplace && (a->grad || b->grad)) {
  4260. // TODO: support backward pass for broadcasting
  4261. GGML_ASSERT(ggml_are_same_shape(a, b));
  4262. is_node = true;
  4263. }
  4264. if (inplace) {
  4265. GGML_ASSERT(is_node == false);
  4266. }
  4267. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4268. result->op = GGML_OP_MUL;
  4269. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4270. result->src0 = a;
  4271. result->src1 = b;
  4272. return result;
  4273. }
  4274. struct ggml_tensor * ggml_mul(
  4275. struct ggml_context * ctx,
  4276. struct ggml_tensor * a,
  4277. struct ggml_tensor * b) {
  4278. return ggml_mul_impl(ctx, a, b, false);
  4279. }
  4280. struct ggml_tensor * ggml_mul_inplace(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a,
  4283. struct ggml_tensor * b) {
  4284. return ggml_mul_impl(ctx, a, b, true);
  4285. }
  4286. // ggml_div
  4287. struct ggml_tensor * ggml_div_impl(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a,
  4290. struct ggml_tensor * b,
  4291. bool inplace) {
  4292. GGML_ASSERT(ggml_are_same_shape(a, b));
  4293. bool is_node = false;
  4294. if (!inplace && (a->grad || b->grad)) {
  4295. is_node = true;
  4296. }
  4297. if (inplace) {
  4298. GGML_ASSERT(is_node == false);
  4299. }
  4300. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4301. result->op = GGML_OP_DIV;
  4302. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4303. result->src0 = a;
  4304. result->src1 = b;
  4305. return result;
  4306. }
  4307. struct ggml_tensor * ggml_div(
  4308. struct ggml_context * ctx,
  4309. struct ggml_tensor * a,
  4310. struct ggml_tensor * b) {
  4311. return ggml_div_impl(ctx, a, b, false);
  4312. }
  4313. struct ggml_tensor * ggml_div_inplace(
  4314. struct ggml_context * ctx,
  4315. struct ggml_tensor * a,
  4316. struct ggml_tensor * b) {
  4317. return ggml_div_impl(ctx, a, b, true);
  4318. }
  4319. // ggml_sqr
  4320. struct ggml_tensor * ggml_sqr_impl(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a,
  4323. bool inplace) {
  4324. bool is_node = false;
  4325. if (!inplace && (a->grad)) {
  4326. is_node = true;
  4327. }
  4328. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4329. result->op = GGML_OP_SQR;
  4330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4331. result->src0 = a;
  4332. result->src1 = NULL;
  4333. return result;
  4334. }
  4335. struct ggml_tensor * ggml_sqr(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a) {
  4338. return ggml_sqr_impl(ctx, a, false);
  4339. }
  4340. struct ggml_tensor * ggml_sqr_inplace(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a) {
  4343. return ggml_sqr_impl(ctx, a, true);
  4344. }
  4345. // ggml_sqrt
  4346. struct ggml_tensor * ggml_sqrt_impl(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a,
  4349. bool inplace) {
  4350. bool is_node = false;
  4351. if (!inplace && (a->grad)) {
  4352. is_node = true;
  4353. }
  4354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4355. result->op = GGML_OP_SQRT;
  4356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4357. result->src0 = a;
  4358. result->src1 = NULL;
  4359. return result;
  4360. }
  4361. struct ggml_tensor * ggml_sqrt(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a) {
  4364. return ggml_sqrt_impl(ctx, a, false);
  4365. }
  4366. struct ggml_tensor * ggml_sqrt_inplace(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * a) {
  4369. return ggml_sqrt_impl(ctx, a, true);
  4370. }
  4371. // ggml_log
  4372. struct ggml_tensor * ggml_log_impl(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a,
  4375. bool inplace) {
  4376. bool is_node = false;
  4377. if (!inplace && (a->grad)) {
  4378. is_node = true;
  4379. }
  4380. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4381. result->op = GGML_OP_LOG;
  4382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4383. result->src0 = a;
  4384. result->src1 = NULL;
  4385. return result;
  4386. }
  4387. struct ggml_tensor * ggml_log(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a) {
  4390. return ggml_log_impl(ctx, a, false);
  4391. }
  4392. struct ggml_tensor * ggml_log_inplace(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a) {
  4395. return ggml_log_impl(ctx, a, true);
  4396. }
  4397. // ggml_sum
  4398. struct ggml_tensor * ggml_sum(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a) {
  4401. bool is_node = false;
  4402. if (a->grad) {
  4403. is_node = true;
  4404. }
  4405. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4406. result->op = GGML_OP_SUM;
  4407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4408. result->src0 = a;
  4409. result->src1 = NULL;
  4410. return result;
  4411. }
  4412. // ggml_sum_rows
  4413. struct ggml_tensor * ggml_sum_rows(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a) {
  4416. bool is_node = false;
  4417. if (a->grad) {
  4418. is_node = true;
  4419. }
  4420. int64_t ne[4] = {1,1,1,1};
  4421. for (int i=1; i<a->n_dims; ++i) {
  4422. ne[i] = a->ne[i];
  4423. }
  4424. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4425. result->op = GGML_OP_SUM_ROWS;
  4426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4427. result->src0 = a;
  4428. result->src1 = NULL;
  4429. return result;
  4430. }
  4431. // ggml_mean
  4432. struct ggml_tensor * ggml_mean(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a) {
  4435. bool is_node = false;
  4436. if (a->grad) {
  4437. GGML_ASSERT(false); // TODO: implement
  4438. is_node = true;
  4439. }
  4440. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4441. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4442. result->op = GGML_OP_MEAN;
  4443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4444. result->src0 = a;
  4445. result->src1 = NULL;
  4446. return result;
  4447. }
  4448. // ggml_argmax
  4449. struct ggml_tensor * ggml_argmax(
  4450. struct ggml_context * ctx,
  4451. struct ggml_tensor * a) {
  4452. GGML_ASSERT(ggml_is_matrix(a));
  4453. bool is_node = false;
  4454. if (a->grad) {
  4455. GGML_ASSERT(false);
  4456. is_node = true;
  4457. }
  4458. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4459. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4460. result->op = GGML_OP_ARGMAX;
  4461. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4462. result->src0 = a;
  4463. result->src1 = NULL;
  4464. return result;
  4465. }
  4466. // ggml_repeat
  4467. struct ggml_tensor * ggml_repeat(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. struct ggml_tensor * b) {
  4471. GGML_ASSERT(ggml_can_repeat(a, b));
  4472. bool is_node = false;
  4473. if (a->grad) {
  4474. is_node = true;
  4475. }
  4476. if (ggml_are_same_shape(a, b) && !is_node) {
  4477. return a;
  4478. }
  4479. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4480. result->op = GGML_OP_REPEAT;
  4481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4482. result->src0 = a;
  4483. result->src1 = b;
  4484. return result;
  4485. }
  4486. // ggml_repeat_back
  4487. struct ggml_tensor * ggml_repeat_back(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * a,
  4490. struct ggml_tensor * b) {
  4491. GGML_ASSERT(ggml_can_repeat(b, a));
  4492. bool is_node = false;
  4493. if (a->grad) {
  4494. is_node = true;
  4495. }
  4496. if (ggml_are_same_shape(a, b) && !is_node) {
  4497. return a;
  4498. }
  4499. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4500. result->op = GGML_OP_REPEAT_BACK;
  4501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4502. result->src0 = a;
  4503. result->src1 = b;
  4504. return result;
  4505. }
  4506. // ggml_abs
  4507. struct ggml_tensor * ggml_abs_impl(
  4508. struct ggml_context * ctx,
  4509. struct ggml_tensor * a,
  4510. bool inplace) {
  4511. bool is_node = false;
  4512. if (!inplace && (a->grad)) {
  4513. is_node = true;
  4514. }
  4515. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4516. result->op = GGML_OP_ABS;
  4517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4518. result->src0 = a;
  4519. result->src1 = NULL;
  4520. return result;
  4521. }
  4522. struct ggml_tensor * ggml_abs(
  4523. struct ggml_context * ctx,
  4524. struct ggml_tensor * a) {
  4525. return ggml_abs_impl(ctx, a, false);
  4526. }
  4527. struct ggml_tensor * ggml_abs_inplace(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a) {
  4530. return ggml_abs_impl(ctx, a, true);
  4531. }
  4532. // ggml_sgn
  4533. struct ggml_tensor * ggml_sgn_impl(
  4534. struct ggml_context * ctx,
  4535. struct ggml_tensor * a,
  4536. bool inplace) {
  4537. bool is_node = false;
  4538. if (!inplace && (a->grad)) {
  4539. is_node = true;
  4540. }
  4541. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4542. result->op = GGML_OP_SGN;
  4543. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4544. result->src0 = a;
  4545. result->src1 = NULL;
  4546. return result;
  4547. }
  4548. struct ggml_tensor * ggml_sgn(
  4549. struct ggml_context * ctx,
  4550. struct ggml_tensor * a) {
  4551. return ggml_sgn_impl(ctx, a, false);
  4552. }
  4553. struct ggml_tensor * ggml_sgn_inplace(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a) {
  4556. return ggml_sgn_impl(ctx, a, true);
  4557. }
  4558. // ggml_neg
  4559. struct ggml_tensor * ggml_neg_impl(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a,
  4562. bool inplace) {
  4563. bool is_node = false;
  4564. if (!inplace && (a->grad)) {
  4565. is_node = true;
  4566. }
  4567. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4568. result->op = GGML_OP_NEG;
  4569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4570. result->src0 = a;
  4571. result->src1 = NULL;
  4572. return result;
  4573. }
  4574. struct ggml_tensor * ggml_neg(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a) {
  4577. return ggml_neg_impl(ctx, a, false);
  4578. }
  4579. struct ggml_tensor * ggml_neg_inplace(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a) {
  4582. return ggml_neg_impl(ctx, a, true);
  4583. }
  4584. // ggml_step
  4585. struct ggml_tensor * ggml_step_impl(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a,
  4588. bool inplace) {
  4589. bool is_node = false;
  4590. if (!inplace && (a->grad)) {
  4591. is_node = true;
  4592. }
  4593. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4594. result->op = GGML_OP_STEP;
  4595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4596. result->src0 = a;
  4597. result->src1 = NULL;
  4598. return result;
  4599. }
  4600. struct ggml_tensor * ggml_step(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a) {
  4603. return ggml_step_impl(ctx, a, false);
  4604. }
  4605. struct ggml_tensor * ggml_step_inplace(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a) {
  4608. return ggml_step_impl(ctx, a, true);
  4609. }
  4610. // ggml_tanh
  4611. struct ggml_tensor * ggml_tanh_impl(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. bool inplace) {
  4615. bool is_node = false;
  4616. if (!inplace && (a->grad)) {
  4617. is_node = true;
  4618. }
  4619. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4620. result->op = GGML_OP_TANH;
  4621. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4622. result->src0 = a;
  4623. result->src1 = NULL;
  4624. return result;
  4625. }
  4626. struct ggml_tensor * ggml_tanh(
  4627. struct ggml_context * ctx,
  4628. struct ggml_tensor * a) {
  4629. return ggml_tanh_impl(ctx, a, false);
  4630. }
  4631. struct ggml_tensor * ggml_tanh_inplace(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * a) {
  4634. return ggml_tanh_impl(ctx, a, true);
  4635. }
  4636. // ggml_elu
  4637. struct ggml_tensor * ggml_elu_impl(
  4638. struct ggml_context * ctx,
  4639. struct ggml_tensor * a,
  4640. bool inplace) {
  4641. bool is_node = false;
  4642. if (!inplace && (a->grad)) {
  4643. is_node = true;
  4644. }
  4645. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4646. result->op = GGML_OP_ELU;
  4647. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4648. result->src0 = a;
  4649. result->src1 = NULL;
  4650. return result;
  4651. }
  4652. struct ggml_tensor * ggml_elu(
  4653. struct ggml_context * ctx,
  4654. struct ggml_tensor * a) {
  4655. return ggml_elu_impl(ctx, a, false);
  4656. }
  4657. struct ggml_tensor * ggml_elu_inplace(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a) {
  4660. return ggml_elu_impl(ctx, a, true);
  4661. }
  4662. // ggml_relu
  4663. struct ggml_tensor * ggml_relu_impl(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a,
  4666. bool inplace) {
  4667. bool is_node = false;
  4668. if (!inplace && (a->grad)) {
  4669. is_node = true;
  4670. }
  4671. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4672. result->op = GGML_OP_RELU;
  4673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4674. result->src0 = a;
  4675. result->src1 = NULL;
  4676. return result;
  4677. }
  4678. struct ggml_tensor * ggml_relu(
  4679. struct ggml_context * ctx,
  4680. struct ggml_tensor * a) {
  4681. return ggml_relu_impl(ctx, a, false);
  4682. }
  4683. struct ggml_tensor * ggml_relu_inplace(
  4684. struct ggml_context * ctx,
  4685. struct ggml_tensor * a) {
  4686. return ggml_relu_impl(ctx, a, true);
  4687. }
  4688. // ggml_gelu
  4689. struct ggml_tensor * ggml_gelu_impl(
  4690. struct ggml_context * ctx,
  4691. struct ggml_tensor * a,
  4692. bool inplace) {
  4693. bool is_node = false;
  4694. if (!inplace && (a->grad)) {
  4695. is_node = true;
  4696. }
  4697. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4698. result->op = GGML_OP_GELU;
  4699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4700. result->src0 = a;
  4701. result->src1 = NULL;
  4702. return result;
  4703. }
  4704. struct ggml_tensor * ggml_gelu(
  4705. struct ggml_context * ctx,
  4706. struct ggml_tensor * a) {
  4707. return ggml_gelu_impl(ctx, a, false);
  4708. }
  4709. struct ggml_tensor * ggml_gelu_inplace(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a) {
  4712. return ggml_gelu_impl(ctx, a, true);
  4713. }
  4714. // ggml_gelu_quick
  4715. struct ggml_tensor * ggml_gelu_quick_impl(
  4716. struct ggml_context * ctx,
  4717. struct ggml_tensor * a,
  4718. bool inplace) {
  4719. bool is_node = false;
  4720. if (!inplace && (a->grad)) {
  4721. is_node = true;
  4722. }
  4723. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4724. result->op = GGML_OP_GELU_QUICK;
  4725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4726. result->src0 = a;
  4727. result->src1 = NULL;
  4728. return result;
  4729. }
  4730. struct ggml_tensor * ggml_gelu_quick(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a) {
  4733. return ggml_gelu_quick_impl(ctx, a, false);
  4734. }
  4735. struct ggml_tensor * ggml_gelu_quick_inplace(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * a) {
  4738. return ggml_gelu_quick_impl(ctx, a, true);
  4739. }
  4740. // ggml_silu
  4741. struct ggml_tensor * ggml_silu_impl(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. bool inplace) {
  4745. bool is_node = false;
  4746. if (!inplace && (a->grad)) {
  4747. is_node = true;
  4748. }
  4749. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4750. result->op = GGML_OP_SILU;
  4751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4752. result->src0 = a;
  4753. result->src1 = NULL;
  4754. return result;
  4755. }
  4756. struct ggml_tensor * ggml_silu(
  4757. struct ggml_context * ctx,
  4758. struct ggml_tensor * a) {
  4759. return ggml_silu_impl(ctx, a, false);
  4760. }
  4761. struct ggml_tensor * ggml_silu_inplace(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a) {
  4764. return ggml_silu_impl(ctx, a, true);
  4765. }
  4766. // ggml_silu_back
  4767. struct ggml_tensor * ggml_silu_back(
  4768. struct ggml_context * ctx,
  4769. struct ggml_tensor * a,
  4770. struct ggml_tensor * b) {
  4771. bool is_node = false;
  4772. if (a->grad || b->grad) {
  4773. // TODO: implement backward
  4774. is_node = true;
  4775. }
  4776. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4777. result->op = GGML_OP_SILU_BACK;
  4778. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4779. result->src0 = a;
  4780. result->src1 = b;
  4781. return result;
  4782. }
  4783. // ggml_norm
  4784. struct ggml_tensor * ggml_norm_impl(
  4785. struct ggml_context * ctx,
  4786. struct ggml_tensor * a,
  4787. bool inplace) {
  4788. bool is_node = false;
  4789. if (!inplace && (a->grad)) {
  4790. GGML_ASSERT(false); // TODO: implement backward
  4791. is_node = true;
  4792. }
  4793. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4794. result->op = GGML_OP_NORM;
  4795. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4796. result->src0 = a;
  4797. result->src1 = NULL; // TODO: maybe store epsilon here?
  4798. return result;
  4799. }
  4800. struct ggml_tensor * ggml_norm(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a) {
  4803. return ggml_norm_impl(ctx, a, false);
  4804. }
  4805. struct ggml_tensor * ggml_norm_inplace(
  4806. struct ggml_context * ctx,
  4807. struct ggml_tensor * a) {
  4808. return ggml_norm_impl(ctx, a, true);
  4809. }
  4810. struct ggml_tensor * ggml_rms_norm_impl(
  4811. struct ggml_context * ctx,
  4812. struct ggml_tensor * a,
  4813. bool inplace) {
  4814. bool is_node = false;
  4815. if (!inplace && (a->grad)) {
  4816. is_node = true;
  4817. }
  4818. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4819. result->op = GGML_OP_RMS_NORM;
  4820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4821. result->src0 = a;
  4822. result->src1 = NULL; // TODO: maybe store epsilon here?
  4823. return result;
  4824. }
  4825. struct ggml_tensor * ggml_rms_norm(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a) {
  4828. return ggml_rms_norm_impl(ctx, a, false);
  4829. }
  4830. struct ggml_tensor * ggml_rms_norm_inplace(
  4831. struct ggml_context * ctx,
  4832. struct ggml_tensor * a) {
  4833. return ggml_rms_norm_impl(ctx, a, true);
  4834. }
  4835. struct ggml_tensor * ggml_rms_norm_back(
  4836. struct ggml_context * ctx,
  4837. struct ggml_tensor * a,
  4838. struct ggml_tensor * b) {
  4839. bool is_node = false;
  4840. if (a->grad) {
  4841. // TODO: implement backward
  4842. is_node = true;
  4843. }
  4844. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4845. result->op = GGML_OP_RMS_NORM_BACK;
  4846. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4847. result->src0 = a;
  4848. result->src1 = b;
  4849. return result;
  4850. }
  4851. // ggml_mul_mat
  4852. struct ggml_tensor * ggml_mul_mat(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. struct ggml_tensor * b) {
  4856. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4857. GGML_ASSERT(!ggml_is_transposed(a));
  4858. bool is_node = false;
  4859. if (a->grad || b->grad) {
  4860. is_node = true;
  4861. }
  4862. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4863. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4864. result->op = GGML_OP_MUL_MAT;
  4865. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4866. result->src0 = a;
  4867. result->src1 = b;
  4868. return result;
  4869. }
  4870. // ggml_out_prod
  4871. struct ggml_tensor * ggml_out_prod(
  4872. struct ggml_context * ctx,
  4873. struct ggml_tensor * a,
  4874. struct ggml_tensor * b) {
  4875. GGML_ASSERT(ggml_can_out_prod(a, b));
  4876. GGML_ASSERT(!ggml_is_transposed(a));
  4877. bool is_node = false;
  4878. if (a->grad || b->grad) {
  4879. is_node = true;
  4880. }
  4881. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4882. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4883. result->op = GGML_OP_OUT_PROD;
  4884. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4885. result->src0 = a;
  4886. result->src1 = b;
  4887. return result;
  4888. }
  4889. // ggml_scale
  4890. struct ggml_tensor * ggml_scale_impl(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * a,
  4893. struct ggml_tensor * b,
  4894. bool inplace) {
  4895. GGML_ASSERT(ggml_is_scalar(b));
  4896. GGML_ASSERT(ggml_is_padded_1d(a));
  4897. bool is_node = false;
  4898. if (a->grad || b->grad) {
  4899. is_node = true;
  4900. }
  4901. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4902. result->op = GGML_OP_SCALE;
  4903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4904. result->src0 = a;
  4905. result->src1 = b;
  4906. return result;
  4907. }
  4908. struct ggml_tensor * ggml_scale(
  4909. struct ggml_context * ctx,
  4910. struct ggml_tensor * a,
  4911. struct ggml_tensor * b) {
  4912. return ggml_scale_impl(ctx, a, b, false);
  4913. }
  4914. struct ggml_tensor * ggml_scale_inplace(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. struct ggml_tensor * b) {
  4918. return ggml_scale_impl(ctx, a, b, true);
  4919. }
  4920. // ggml_set
  4921. struct ggml_tensor * ggml_set_impl(
  4922. struct ggml_context * ctx,
  4923. struct ggml_tensor * a,
  4924. struct ggml_tensor * b,
  4925. size_t nb1,
  4926. size_t nb2,
  4927. size_t nb3,
  4928. size_t offset,
  4929. bool inplace) {
  4930. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4931. bool is_node = false;
  4932. if (a->grad || b->grad) {
  4933. is_node = true;
  4934. }
  4935. // make a view of the destination
  4936. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4937. ggml_scratch_save(ctx);
  4938. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4939. (( int32_t * ) c->data)[0] = nb1;
  4940. (( int32_t * ) c->data)[1] = nb2;
  4941. (( int32_t * ) c->data)[2] = nb3;
  4942. (( int32_t * ) c->data)[3] = offset;
  4943. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4944. ggml_scratch_load(ctx);
  4945. result->op = GGML_OP_SET;
  4946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4947. result->src0 = a;
  4948. result->src1 = b;
  4949. result->opt[0] = c;
  4950. return result;
  4951. }
  4952. struct ggml_tensor * ggml_set(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. struct ggml_tensor * b,
  4956. size_t nb1,
  4957. size_t nb2,
  4958. size_t nb3,
  4959. size_t offset) {
  4960. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4961. }
  4962. struct ggml_tensor * ggml_set_inplace(
  4963. struct ggml_context * ctx,
  4964. struct ggml_tensor * a,
  4965. struct ggml_tensor * b,
  4966. size_t nb1,
  4967. size_t nb2,
  4968. size_t nb3,
  4969. size_t offset) {
  4970. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4971. }
  4972. struct ggml_tensor * ggml_set_1d(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. struct ggml_tensor * b,
  4976. size_t offset) {
  4977. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4978. }
  4979. struct ggml_tensor * ggml_set_1d_inplace(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * a,
  4982. struct ggml_tensor * b,
  4983. size_t offset) {
  4984. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4985. }
  4986. struct ggml_tensor * ggml_set_2d(
  4987. struct ggml_context * ctx,
  4988. struct ggml_tensor * a,
  4989. struct ggml_tensor * b,
  4990. size_t nb1,
  4991. size_t offset) {
  4992. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4993. }
  4994. struct ggml_tensor * ggml_set_2d_inplace(
  4995. struct ggml_context * ctx,
  4996. struct ggml_tensor * a,
  4997. struct ggml_tensor * b,
  4998. size_t nb1,
  4999. size_t offset) {
  5000. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5001. }
  5002. // ggml_cpy
  5003. struct ggml_tensor * ggml_cpy_impl(
  5004. struct ggml_context * ctx,
  5005. struct ggml_tensor * a,
  5006. struct ggml_tensor * b,
  5007. bool inplace) {
  5008. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5009. bool is_node = false;
  5010. if (!inplace && (a->grad || b->grad)) {
  5011. is_node = true;
  5012. }
  5013. // make a view of the destination
  5014. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5015. if (strlen(b->name) > 0) {
  5016. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5017. } else {
  5018. ggml_format_name(result, "%s (copy)", a->name);
  5019. }
  5020. result->op = GGML_OP_CPY;
  5021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5022. result->src0 = a;
  5023. result->src1 = b;
  5024. return result;
  5025. }
  5026. struct ggml_tensor * ggml_cpy(
  5027. struct ggml_context * ctx,
  5028. struct ggml_tensor * a,
  5029. struct ggml_tensor * b) {
  5030. return ggml_cpy_impl(ctx, a, b, false);
  5031. }
  5032. struct ggml_tensor * ggml_cpy_inplace(
  5033. struct ggml_context * ctx,
  5034. struct ggml_tensor * a,
  5035. struct ggml_tensor * b) {
  5036. return ggml_cpy_impl(ctx, a, b, true);
  5037. }
  5038. // ggml_cont
  5039. struct ggml_tensor * ggml_cont_impl(
  5040. struct ggml_context * ctx,
  5041. struct ggml_tensor * a,
  5042. bool inplace) {
  5043. bool is_node = false;
  5044. if (!inplace && a->grad) {
  5045. is_node = true;
  5046. }
  5047. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5048. ggml_format_name(result, "%s (cont)", a->name);
  5049. result->op = GGML_OP_CONT;
  5050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5051. result->src0 = a;
  5052. result->src1 = NULL;
  5053. return result;
  5054. }
  5055. struct ggml_tensor * ggml_cont(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a) {
  5058. return ggml_cont_impl(ctx, a, false);
  5059. }
  5060. struct ggml_tensor * ggml_cont_inplace(
  5061. struct ggml_context * ctx,
  5062. struct ggml_tensor * a) {
  5063. return ggml_cont_impl(ctx, a, true);
  5064. }
  5065. // ggml_reshape
  5066. struct ggml_tensor * ggml_reshape(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a,
  5069. struct ggml_tensor * b) {
  5070. GGML_ASSERT(ggml_is_contiguous(a));
  5071. GGML_ASSERT(ggml_is_contiguous(b));
  5072. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5073. bool is_node = false;
  5074. if (a->grad) {
  5075. is_node = true;
  5076. }
  5077. if (b->grad) {
  5078. // gradient propagation is not supported
  5079. //GGML_ASSERT(false);
  5080. }
  5081. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5082. ggml_format_name(result, "%s (reshaped)", a->name);
  5083. result->op = GGML_OP_RESHAPE;
  5084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5085. result->src0 = a;
  5086. result->src1 = NULL;
  5087. return result;
  5088. }
  5089. struct ggml_tensor * ggml_reshape_1d(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. int64_t ne0) {
  5093. GGML_ASSERT(ggml_is_contiguous(a));
  5094. GGML_ASSERT(ggml_nelements(a) == ne0);
  5095. bool is_node = false;
  5096. if (a->grad) {
  5097. is_node = true;
  5098. }
  5099. const int64_t ne[1] = { ne0 };
  5100. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5101. ggml_format_name(result, "%s (reshaped)", a->name);
  5102. result->op = GGML_OP_RESHAPE;
  5103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5104. result->src0 = a;
  5105. result->src1 = NULL;
  5106. return result;
  5107. }
  5108. struct ggml_tensor * ggml_reshape_2d(
  5109. struct ggml_context * ctx,
  5110. struct ggml_tensor * a,
  5111. int64_t ne0,
  5112. int64_t ne1) {
  5113. GGML_ASSERT(ggml_is_contiguous(a));
  5114. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5115. bool is_node = false;
  5116. if (a->grad) {
  5117. is_node = true;
  5118. }
  5119. const int64_t ne[2] = { ne0, ne1 };
  5120. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5121. ggml_format_name(result, "%s (reshaped)", a->name);
  5122. result->op = GGML_OP_RESHAPE;
  5123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5124. result->src0 = a;
  5125. result->src1 = NULL;
  5126. return result;
  5127. }
  5128. struct ggml_tensor * ggml_reshape_3d(
  5129. struct ggml_context * ctx,
  5130. struct ggml_tensor * a,
  5131. int64_t ne0,
  5132. int64_t ne1,
  5133. int64_t ne2) {
  5134. GGML_ASSERT(ggml_is_contiguous(a));
  5135. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5136. bool is_node = false;
  5137. if (a->grad) {
  5138. is_node = true;
  5139. }
  5140. const int64_t ne[3] = { ne0, ne1, ne2 };
  5141. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5142. ggml_format_name(result, "%s (reshaped)", a->name);
  5143. result->op = GGML_OP_RESHAPE;
  5144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5145. result->src0 = a;
  5146. result->src1 = NULL;
  5147. return result;
  5148. }
  5149. struct ggml_tensor * ggml_reshape_4d(
  5150. struct ggml_context * ctx,
  5151. struct ggml_tensor * a,
  5152. int64_t ne0,
  5153. int64_t ne1,
  5154. int64_t ne2,
  5155. int64_t ne3) {
  5156. GGML_ASSERT(ggml_is_contiguous(a));
  5157. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5158. bool is_node = false;
  5159. if (a->grad) {
  5160. is_node = true;
  5161. }
  5162. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5163. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5164. ggml_format_name(result, "%s (reshaped)", a->name);
  5165. result->op = GGML_OP_RESHAPE;
  5166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5167. result->src0 = a;
  5168. result->src1 = NULL;
  5169. return result;
  5170. }
  5171. // ggml_view_1d
  5172. struct ggml_tensor * ggml_view_1d(
  5173. struct ggml_context * ctx,
  5174. struct ggml_tensor * a,
  5175. int64_t ne0,
  5176. size_t offset) {
  5177. bool is_node = false;
  5178. if (a->grad) {
  5179. is_node = true;
  5180. }
  5181. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5182. ggml_format_name(result, "%s (view)", a->name);
  5183. ggml_scratch_save(ctx);
  5184. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5185. ggml_set_name(offs, "offset");
  5186. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5187. ggml_scratch_load(ctx);
  5188. result->op = GGML_OP_VIEW;
  5189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5190. result->src0 = a;
  5191. result->src1 = NULL;
  5192. result->opt[0] = offs;
  5193. return result;
  5194. }
  5195. // ggml_view_2d
  5196. struct ggml_tensor * ggml_view_2d(
  5197. struct ggml_context * ctx,
  5198. struct ggml_tensor * a,
  5199. int64_t ne0,
  5200. int64_t ne1,
  5201. size_t nb1,
  5202. size_t offset) {
  5203. bool is_node = false;
  5204. if (a->grad) {
  5205. is_node = true;
  5206. }
  5207. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5208. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5209. ggml_format_name(result, "%s (view)", a->name);
  5210. ggml_scratch_save(ctx);
  5211. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5212. ggml_set_name(offs, "offset");
  5213. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5214. ggml_scratch_load(ctx);
  5215. result->nb[1] = nb1;
  5216. result->nb[2] = result->nb[1]*ne1;
  5217. result->nb[3] = result->nb[2];
  5218. result->op = GGML_OP_VIEW;
  5219. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5220. result->src0 = a;
  5221. result->src1 = NULL;
  5222. result->opt[0] = offs;
  5223. return result;
  5224. }
  5225. // ggml_view_3d
  5226. struct ggml_tensor * ggml_view_3d(
  5227. struct ggml_context * ctx,
  5228. struct ggml_tensor * a,
  5229. int64_t ne0,
  5230. int64_t ne1,
  5231. int64_t ne2,
  5232. size_t nb1,
  5233. size_t nb2,
  5234. size_t offset) {
  5235. bool is_node = false;
  5236. if (a->grad) {
  5237. is_node = true;
  5238. }
  5239. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5240. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5241. ggml_format_name(result, "%s (view)", a->name);
  5242. ggml_scratch_save(ctx);
  5243. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5244. ggml_set_name(offs, "offset");
  5245. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5246. ggml_scratch_load(ctx);
  5247. result->nb[1] = nb1;
  5248. result->nb[2] = nb2;
  5249. result->nb[3] = result->nb[2]*ne2;
  5250. result->op = GGML_OP_VIEW;
  5251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5252. result->src0 = a;
  5253. result->src1 = NULL;
  5254. result->opt[0] = offs;
  5255. return result;
  5256. }
  5257. // ggml_view_4d
  5258. struct ggml_tensor * ggml_view_4d(
  5259. struct ggml_context * ctx,
  5260. struct ggml_tensor * a,
  5261. int64_t ne0,
  5262. int64_t ne1,
  5263. int64_t ne2,
  5264. int64_t ne3,
  5265. size_t nb1,
  5266. size_t nb2,
  5267. size_t nb3,
  5268. size_t offset) {
  5269. bool is_node = false;
  5270. if (a->grad) {
  5271. is_node = true;
  5272. }
  5273. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5274. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5275. ggml_format_name(result, "%s (view)", a->name);
  5276. ggml_scratch_save(ctx);
  5277. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5278. ggml_set_name(offs, "offset");
  5279. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5280. ggml_scratch_load(ctx);
  5281. result->nb[1] = nb1;
  5282. result->nb[2] = nb2;
  5283. result->nb[3] = nb3;
  5284. result->op = GGML_OP_VIEW;
  5285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5286. result->src0 = a;
  5287. result->src1 = NULL;
  5288. result->opt[0] = offs;
  5289. return result;
  5290. }
  5291. // ggml_permute
  5292. struct ggml_tensor * ggml_permute(
  5293. struct ggml_context * ctx,
  5294. struct ggml_tensor * a,
  5295. int axis0,
  5296. int axis1,
  5297. int axis2,
  5298. int axis3) {
  5299. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5300. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5301. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5302. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5303. GGML_ASSERT(axis0 != axis1);
  5304. GGML_ASSERT(axis0 != axis2);
  5305. GGML_ASSERT(axis0 != axis3);
  5306. GGML_ASSERT(axis1 != axis2);
  5307. GGML_ASSERT(axis1 != axis3);
  5308. GGML_ASSERT(axis2 != axis3);
  5309. bool is_node = false;
  5310. if (a->grad) {
  5311. is_node = true;
  5312. }
  5313. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5314. ggml_format_name(result, "%s (permuted)", a->name);
  5315. int ne[GGML_MAX_DIMS];
  5316. int nb[GGML_MAX_DIMS];
  5317. ne[axis0] = a->ne[0];
  5318. ne[axis1] = a->ne[1];
  5319. ne[axis2] = a->ne[2];
  5320. ne[axis3] = a->ne[3];
  5321. nb[axis0] = a->nb[0];
  5322. nb[axis1] = a->nb[1];
  5323. nb[axis2] = a->nb[2];
  5324. nb[axis3] = a->nb[3];
  5325. result->ne[0] = ne[0];
  5326. result->ne[1] = ne[1];
  5327. result->ne[2] = ne[2];
  5328. result->ne[3] = ne[3];
  5329. result->nb[0] = nb[0];
  5330. result->nb[1] = nb[1];
  5331. result->nb[2] = nb[2];
  5332. result->nb[3] = nb[3];
  5333. result->op = GGML_OP_PERMUTE;
  5334. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5335. result->src0 = a;
  5336. result->src1 = NULL;
  5337. if (is_node) {
  5338. ggml_scratch_save(ctx);
  5339. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5340. ((int32_t *) b->data)[0] = axis0;
  5341. ((int32_t *) b->data)[1] = axis1;
  5342. ((int32_t *) b->data)[2] = axis2;
  5343. ((int32_t *) b->data)[3] = axis3;
  5344. ggml_scratch_load(ctx);
  5345. result->opt[0] = b;
  5346. }
  5347. return result;
  5348. }
  5349. // ggml_transpose
  5350. struct ggml_tensor * ggml_transpose(
  5351. struct ggml_context * ctx,
  5352. struct ggml_tensor * a) {
  5353. bool is_node = false;
  5354. if (a->grad) {
  5355. is_node = true;
  5356. }
  5357. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5358. ggml_format_name(result, "%s (transposed)", a->name);
  5359. result->ne[0] = a->ne[1];
  5360. result->ne[1] = a->ne[0];
  5361. result->nb[0] = a->nb[1];
  5362. result->nb[1] = a->nb[0];
  5363. result->op = GGML_OP_TRANSPOSE;
  5364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5365. result->src0 = a;
  5366. result->src1 = NULL;
  5367. return result;
  5368. }
  5369. // ggml_get_rows
  5370. struct ggml_tensor * ggml_get_rows(
  5371. struct ggml_context * ctx,
  5372. struct ggml_tensor * a,
  5373. struct ggml_tensor * b) {
  5374. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5375. bool is_node = false;
  5376. if (a->grad || b->grad) {
  5377. is_node = true;
  5378. }
  5379. // TODO: implement non F32 return
  5380. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5381. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5382. result->op = GGML_OP_GET_ROWS;
  5383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5384. result->src0 = a;
  5385. result->src1 = b;
  5386. return result;
  5387. }
  5388. // ggml_get_rows_back
  5389. struct ggml_tensor * ggml_get_rows_back(
  5390. struct ggml_context * ctx,
  5391. struct ggml_tensor * a,
  5392. struct ggml_tensor * b,
  5393. struct ggml_tensor * c) {
  5394. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5395. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5396. bool is_node = false;
  5397. if (a->grad || b->grad) {
  5398. is_node = true;
  5399. }
  5400. // TODO: implement non F32 return
  5401. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5402. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5403. result->op = GGML_OP_GET_ROWS_BACK;
  5404. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5405. result->src0 = a;
  5406. result->src1 = b;
  5407. result->opt[0] = c;
  5408. return result;
  5409. }
  5410. // ggml_diag
  5411. struct ggml_tensor * ggml_diag(
  5412. struct ggml_context * ctx,
  5413. struct ggml_tensor * a) {
  5414. GGML_ASSERT(a->ne[1] == 1);
  5415. bool is_node = false;
  5416. if (a->grad) {
  5417. is_node = true;
  5418. }
  5419. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5420. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5421. result->op = GGML_OP_DIAG;
  5422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5423. result->src0 = a;
  5424. result->src1 = NULL;
  5425. return result;
  5426. }
  5427. // ggml_diag_mask_inf
  5428. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5429. struct ggml_context * ctx,
  5430. struct ggml_tensor * a,
  5431. int n_past,
  5432. bool inplace) {
  5433. bool is_node = false;
  5434. if (a->grad) {
  5435. is_node = true;
  5436. }
  5437. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5438. ggml_scratch_save(ctx);
  5439. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5440. ((int32_t *) b->data)[0] = n_past;
  5441. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5442. ggml_scratch_load(ctx);
  5443. result->op = GGML_OP_DIAG_MASK_INF;
  5444. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5445. result->src0 = a;
  5446. result->src1 = b;
  5447. return result;
  5448. }
  5449. struct ggml_tensor * ggml_diag_mask_inf(
  5450. struct ggml_context * ctx,
  5451. struct ggml_tensor * a,
  5452. int n_past) {
  5453. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5454. }
  5455. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5456. struct ggml_context * ctx,
  5457. struct ggml_tensor * a,
  5458. int n_past) {
  5459. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5460. }
  5461. // ggml_diag_mask_zero
  5462. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5463. struct ggml_context * ctx,
  5464. struct ggml_tensor * a,
  5465. int n_past,
  5466. bool inplace) {
  5467. bool is_node = false;
  5468. if (a->grad) {
  5469. is_node = true;
  5470. }
  5471. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5472. ggml_scratch_save(ctx);
  5473. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5474. ggml_set_name(b, "n_past, inplace");
  5475. ((int32_t *) b->data)[0] = n_past;
  5476. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5477. ggml_scratch_load(ctx);
  5478. result->op = GGML_OP_DIAG_MASK_ZERO;
  5479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5480. result->src0 = a;
  5481. result->src1 = b;
  5482. return result;
  5483. }
  5484. struct ggml_tensor * ggml_diag_mask_zero(
  5485. struct ggml_context * ctx,
  5486. struct ggml_tensor * a,
  5487. int n_past) {
  5488. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5489. }
  5490. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5491. struct ggml_context * ctx,
  5492. struct ggml_tensor * a,
  5493. int n_past) {
  5494. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5495. }
  5496. // ggml_soft_max
  5497. struct ggml_tensor * ggml_soft_max_impl(
  5498. struct ggml_context * ctx,
  5499. struct ggml_tensor * a,
  5500. bool inplace) {
  5501. bool is_node = false;
  5502. if (a->grad) {
  5503. is_node = true;
  5504. }
  5505. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5506. result->op = GGML_OP_SOFT_MAX;
  5507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5508. result->src0 = a;
  5509. result->src1 = NULL;
  5510. return result;
  5511. }
  5512. struct ggml_tensor * ggml_soft_max(
  5513. struct ggml_context * ctx,
  5514. struct ggml_tensor * a) {
  5515. return ggml_soft_max_impl(ctx, a, false);
  5516. }
  5517. struct ggml_tensor * ggml_soft_max_inplace(
  5518. struct ggml_context * ctx,
  5519. struct ggml_tensor * a) {
  5520. return ggml_soft_max_impl(ctx, a, true);
  5521. }
  5522. // ggml_soft_max_back
  5523. struct ggml_tensor * ggml_soft_max_back_impl(
  5524. struct ggml_context * ctx,
  5525. struct ggml_tensor * a,
  5526. struct ggml_tensor * b,
  5527. bool inplace) {
  5528. bool is_node = false;
  5529. if (a->grad || b->grad) {
  5530. is_node = true; // TODO : implement backward pass
  5531. }
  5532. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5533. result->op = GGML_OP_SOFT_MAX_BACK;
  5534. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5535. result->src0 = a;
  5536. result->src1 = b;
  5537. return result;
  5538. }
  5539. struct ggml_tensor * ggml_soft_max_back(
  5540. struct ggml_context * ctx,
  5541. struct ggml_tensor * a,
  5542. struct ggml_tensor * b) {
  5543. return ggml_soft_max_back_impl(ctx, a, b, false);
  5544. }
  5545. struct ggml_tensor * ggml_soft_max_back_inplace(
  5546. struct ggml_context * ctx,
  5547. struct ggml_tensor * a,
  5548. struct ggml_tensor * b) {
  5549. return ggml_soft_max_back_impl(ctx, a, b, true);
  5550. }
  5551. // ggml_rope
  5552. struct ggml_tensor * ggml_rope_impl(
  5553. struct ggml_context * ctx,
  5554. struct ggml_tensor * a,
  5555. int n_past,
  5556. int n_dims,
  5557. int mode,
  5558. int n_ctx,
  5559. bool inplace) {
  5560. GGML_ASSERT(n_past >= 0);
  5561. bool is_node = false;
  5562. if (a->grad) {
  5563. is_node = true;
  5564. }
  5565. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5566. ggml_scratch_save(ctx);
  5567. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5568. ((int32_t *) b->data)[0] = n_past;
  5569. ((int32_t *) b->data)[1] = n_dims;
  5570. ((int32_t *) b->data)[2] = mode;
  5571. ((int32_t *) b->data)[3] = n_ctx;
  5572. ggml_scratch_load(ctx);
  5573. result->op = GGML_OP_ROPE;
  5574. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5575. result->src0 = a;
  5576. result->src1 = b;
  5577. return result;
  5578. }
  5579. struct ggml_tensor * ggml_rope(
  5580. struct ggml_context * ctx,
  5581. struct ggml_tensor * a,
  5582. int n_past,
  5583. int n_dims,
  5584. int mode,
  5585. int n_ctx) {
  5586. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
  5587. }
  5588. struct ggml_tensor * ggml_rope_inplace(
  5589. struct ggml_context * ctx,
  5590. struct ggml_tensor * a,
  5591. int n_past,
  5592. int n_dims,
  5593. int mode,
  5594. int n_ctx) {
  5595. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
  5596. }
  5597. // ggml_rope_back
  5598. struct ggml_tensor * ggml_rope_back(
  5599. struct ggml_context * ctx,
  5600. struct ggml_tensor * a,
  5601. int n_past,
  5602. int n_dims,
  5603. int mode) {
  5604. GGML_ASSERT(n_past >= 0);
  5605. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5606. bool is_node = false;
  5607. if (a->grad) {
  5608. is_node = false; // TODO: implement backward
  5609. }
  5610. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5611. ggml_scratch_save(ctx);
  5612. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5613. ggml_set_name(b, "n_past, n_dims, mode");
  5614. ((int32_t *) b->data)[0] = n_past;
  5615. ((int32_t *) b->data)[1] = n_dims;
  5616. ((int32_t *) b->data)[2] = mode;
  5617. ggml_scratch_load(ctx);
  5618. result->op = GGML_OP_ROPE_BACK;
  5619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5620. result->src0 = a;
  5621. result->src1 = b;
  5622. return result;
  5623. }
  5624. // ggml_alibi
  5625. struct ggml_tensor * ggml_alibi(
  5626. struct ggml_context * ctx,
  5627. struct ggml_tensor * a,
  5628. int n_past,
  5629. int n_head,
  5630. float bias_max) {
  5631. GGML_ASSERT(n_past >= 0);
  5632. bool is_node = false;
  5633. if (a->grad) {
  5634. GGML_ASSERT(false); // TODO: implement backward
  5635. is_node = true;
  5636. }
  5637. // TODO: when implement backward, fix this:
  5638. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5639. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5640. ggml_scratch_save(ctx);
  5641. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5642. ((int32_t *) b->data)[0] = n_past;
  5643. ((int32_t *) b->data)[1] = n_head;
  5644. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5645. (((float *) b->data)[2]) = bias_max;
  5646. ggml_scratch_load(ctx);
  5647. result->op = GGML_OP_ALIBI;
  5648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5649. result->src0 = a;
  5650. result->src1 = b;
  5651. return result;
  5652. }
  5653. // ggml_clamp
  5654. struct ggml_tensor * ggml_clamp(
  5655. struct ggml_context * ctx,
  5656. struct ggml_tensor * a,
  5657. float min,
  5658. float max) {
  5659. bool is_node = false;
  5660. if (a->grad) {
  5661. GGML_ASSERT(false); // TODO: implement backward
  5662. is_node = true;
  5663. }
  5664. // TODO: when implement backward, fix this:
  5665. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5666. ggml_scratch_save(ctx);
  5667. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5668. ((float *) b->data)[0] = min;
  5669. ((float *) b->data)[1] = max;
  5670. ggml_scratch_load(ctx);
  5671. result->op = GGML_OP_CLAMP;
  5672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5673. result->src0 = a;
  5674. result->src1 = b;
  5675. return result;
  5676. }
  5677. // ggml_conv_1d
  5678. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5679. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5680. }
  5681. GGML_API struct ggml_tensor * ggml_conv_1d(
  5682. struct ggml_context * ctx,
  5683. struct ggml_tensor * a,
  5684. struct ggml_tensor * b,
  5685. int s0,
  5686. int p0,
  5687. int d0) {
  5688. GGML_ASSERT(ggml_is_matrix(b));
  5689. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5690. bool is_node = false;
  5691. if (a->grad || b->grad) {
  5692. GGML_ASSERT(false); // TODO: implement backward
  5693. is_node = true;
  5694. }
  5695. const int64_t ne[4] = {
  5696. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5697. a->ne[2], 1, 1,
  5698. };
  5699. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5700. ggml_scratch_save(ctx);
  5701. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5702. ((int32_t*)c->data)[0] = s0;
  5703. ((int32_t*)c->data)[1] = p0;
  5704. ((int32_t*)c->data)[2] = d0;
  5705. ggml_scratch_load(ctx);
  5706. result->op = GGML_OP_CONV_1D;
  5707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5708. result->src0 = a;
  5709. result->src1 = b;
  5710. result->opt[0] = c;
  5711. return result;
  5712. }
  5713. // ggml_conv_2d
  5714. struct ggml_tensor* ggml_conv_2d(
  5715. struct ggml_context* ctx,
  5716. struct ggml_tensor * a,
  5717. struct ggml_tensor * b,
  5718. int s0,
  5719. int s1,
  5720. int p0,
  5721. int p1,
  5722. int d0,
  5723. int d1) {
  5724. GGML_ASSERT(b->ne[3] == 1);
  5725. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5726. bool is_node = false;
  5727. if (a->grad || b->grad) {
  5728. GGML_ASSERT(false); // TODO: implement backward
  5729. is_node = true;
  5730. }
  5731. const int64_t ne[4] = {
  5732. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5733. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5734. a->ne[3], 1,
  5735. };
  5736. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5737. ggml_scratch_save(ctx);
  5738. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5739. ((int32_t*)c->data)[0] = s0;
  5740. ((int32_t*)c->data)[1] = s1;
  5741. ((int32_t*)c->data)[2] = p0;
  5742. ((int32_t*)c->data)[3] = p1;
  5743. ((int32_t*)c->data)[4] = d0;
  5744. ((int32_t*)c->data)[5] = d1;
  5745. ggml_scratch_load(ctx);
  5746. result->op = GGML_OP_CONV_2D;
  5747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5748. result->src0 = a;
  5749. result->src1 = b;
  5750. result->opt[0] = c;
  5751. return result;
  5752. }
  5753. // ggml_conv_1d_ph
  5754. struct ggml_tensor* ggml_conv_1d_ph(
  5755. struct ggml_context * ctx,
  5756. struct ggml_tensor * a,
  5757. struct ggml_tensor * b,
  5758. int s,
  5759. int d) {
  5760. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5761. }
  5762. // ggml_flash_attn
  5763. struct ggml_tensor * ggml_flash_attn(
  5764. struct ggml_context * ctx,
  5765. struct ggml_tensor * q,
  5766. struct ggml_tensor * k,
  5767. struct ggml_tensor * v,
  5768. bool masked) {
  5769. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5770. // TODO: check if vT can be multiplied by (k*qT)
  5771. bool is_node = false;
  5772. if (q->grad || k->grad || v->grad) {
  5773. is_node = true;
  5774. }
  5775. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5776. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5777. result->op = GGML_OP_FLASH_ATTN;
  5778. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5779. result->src0 = q;
  5780. result->src1 = k;
  5781. result->opt[0] = v;
  5782. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5783. return result;
  5784. }
  5785. // ggml_flash_ff
  5786. struct ggml_tensor * ggml_flash_ff(
  5787. struct ggml_context * ctx,
  5788. struct ggml_tensor * a,
  5789. struct ggml_tensor * b0,
  5790. struct ggml_tensor * b1,
  5791. struct ggml_tensor * c0,
  5792. struct ggml_tensor * c1) {
  5793. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5794. // TODO: more checks
  5795. bool is_node = false;
  5796. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5797. is_node = true;
  5798. }
  5799. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5800. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5801. result->op = GGML_OP_FLASH_FF;
  5802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5803. result->src0 = a;
  5804. result->src1 = b0;
  5805. result->opt[0] = b1;
  5806. result->opt[1] = c0;
  5807. result->opt[2] = c1;
  5808. return result;
  5809. }
  5810. // ggml_flash_attn_back
  5811. struct ggml_tensor * ggml_flash_attn_back(
  5812. struct ggml_context * ctx,
  5813. struct ggml_tensor * q,
  5814. struct ggml_tensor * k,
  5815. struct ggml_tensor * v,
  5816. struct ggml_tensor * d,
  5817. bool masked) {
  5818. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5819. // TODO: check if vT can be multiplied by (k*qT)
  5820. // d shape [D,N,ne2,ne3]
  5821. // q shape [D,N,ne2,ne3]
  5822. // k shape [D,M,ne2,ne3]
  5823. // v shape [M,D,ne2,ne3]
  5824. const int64_t D = q->ne[0];
  5825. const int64_t N = q->ne[1];
  5826. const int64_t M = k->ne[1];
  5827. const int64_t ne2 = q->ne[2];
  5828. const int64_t ne3 = q->ne[3];
  5829. GGML_ASSERT(k->ne[0] == D);
  5830. GGML_ASSERT(v->ne[0] == M);
  5831. GGML_ASSERT(v->ne[1] == D);
  5832. GGML_ASSERT(d->ne[0] == D);
  5833. GGML_ASSERT(d->ne[1] == N);
  5834. GGML_ASSERT(k->ne[2] == ne2);
  5835. GGML_ASSERT(k->ne[3] == ne3);
  5836. GGML_ASSERT(v->ne[2] == ne2);
  5837. GGML_ASSERT(v->ne[3] == ne3);
  5838. GGML_ASSERT(d->ne[2] == ne2);
  5839. GGML_ASSERT(d->ne[3] == ne3);
  5840. bool is_node = false;
  5841. if (q->grad || k->grad || v->grad) {
  5842. // when using this operation (in backwards pass) these grads are set.
  5843. // we don't want to create (big) grad of our result, so is_node is false.
  5844. is_node = false;
  5845. }
  5846. // store gradients of q, k and v as continuous tensors concatenated in result.
  5847. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5848. // gradq->data = result->data
  5849. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5850. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5851. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5852. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5853. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5854. result->op = GGML_OP_FLASH_ATTN_BACK;
  5855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5856. result->src0 = q;
  5857. result->src1 = k;
  5858. result->opt[0] = v;
  5859. result->opt[1] = d;
  5860. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5861. return result;
  5862. }
  5863. // ggml_win_part
  5864. struct ggml_tensor * ggml_win_part(
  5865. struct ggml_context * ctx,
  5866. struct ggml_tensor * a,
  5867. int w) {
  5868. GGML_ASSERT(a->ne[3] == 1);
  5869. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5870. bool is_node = false;
  5871. if (a->grad) {
  5872. GGML_ASSERT(false); // TODO: implement backward
  5873. is_node = true;
  5874. }
  5875. // padding
  5876. const int px = (w - a->ne[1]%w)%w;
  5877. const int py = (w - a->ne[2]%w)%w;
  5878. const int npx = (px + a->ne[1])/w;
  5879. const int npy = (py + a->ne[2])/w;
  5880. const int np = npx*npy;
  5881. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5882. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5883. ggml_scratch_save(ctx);
  5884. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5885. ((int32_t *) b->data)[0] = npx;
  5886. ((int32_t *) b->data)[1] = npy;
  5887. ((int32_t *) b->data)[2] = w;
  5888. ggml_scratch_load(ctx);
  5889. result->op = GGML_OP_WIN_PART;
  5890. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5891. result->src0 = a;
  5892. result->src1 = NULL;
  5893. result->opt[0] = b;
  5894. return result;
  5895. }
  5896. // ggml_win_unpart
  5897. struct ggml_tensor * ggml_win_unpart(
  5898. struct ggml_context * ctx,
  5899. struct ggml_tensor * a,
  5900. int w0,
  5901. int h0,
  5902. int w) {
  5903. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5904. bool is_node = false;
  5905. if (a->grad) {
  5906. GGML_ASSERT(false); // TODO: implement backward
  5907. is_node = true;
  5908. }
  5909. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5910. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5911. ggml_scratch_save(ctx);
  5912. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5913. ((int32_t *) b->data)[0] = w;
  5914. ggml_scratch_load(ctx);
  5915. result->op = GGML_OP_WIN_UNPART;
  5916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5917. result->src0 = a;
  5918. result->src1 = NULL;
  5919. result->opt[0] = b;
  5920. return result;
  5921. }
  5922. // ggml_map_unary
  5923. struct ggml_tensor * ggml_map_unary_impl_f32(
  5924. struct ggml_context * ctx,
  5925. struct ggml_tensor * a,
  5926. const ggml_unary_op_f32_t fun,
  5927. bool inplace) {
  5928. bool is_node = false;
  5929. if (!inplace && a->grad) {
  5930. is_node = true;
  5931. }
  5932. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5933. ggml_scratch_save(ctx);
  5934. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5935. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5936. ggml_scratch_load(ctx);
  5937. result->op = GGML_OP_MAP_UNARY;
  5938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5939. result->src0 = a;
  5940. result->opt[0] = addr_tensor;
  5941. return result;
  5942. }
  5943. struct ggml_tensor * ggml_map_unary_f32(
  5944. struct ggml_context * ctx,
  5945. struct ggml_tensor * a,
  5946. const ggml_unary_op_f32_t fun) {
  5947. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5948. }
  5949. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5950. struct ggml_context * ctx,
  5951. struct ggml_tensor * a,
  5952. const ggml_unary_op_f32_t fun) {
  5953. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5954. }
  5955. // ggml_map_binary
  5956. struct ggml_tensor * ggml_map_binary_impl_f32(
  5957. struct ggml_context * ctx,
  5958. struct ggml_tensor * a,
  5959. struct ggml_tensor * b,
  5960. const ggml_binary_op_f32_t fun,
  5961. bool inplace) {
  5962. GGML_ASSERT(ggml_are_same_shape(a, b));
  5963. bool is_node = false;
  5964. if (!inplace && (a->grad || b->grad)) {
  5965. is_node = true;
  5966. }
  5967. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5968. ggml_scratch_save(ctx);
  5969. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5970. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5971. ggml_scratch_load(ctx);
  5972. result->op = GGML_OP_MAP_BINARY;
  5973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5974. result->src0 = a;
  5975. result->src1 = b;
  5976. result->opt[0] = addr_tensor;
  5977. return result;
  5978. }
  5979. struct ggml_tensor * ggml_map_binary_f32(
  5980. struct ggml_context * ctx,
  5981. struct ggml_tensor * a,
  5982. struct ggml_tensor * b,
  5983. const ggml_binary_op_f32_t fun) {
  5984. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5985. }
  5986. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5987. struct ggml_context * ctx,
  5988. struct ggml_tensor * a,
  5989. struct ggml_tensor * b,
  5990. const ggml_binary_op_f32_t fun) {
  5991. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5992. }
  5993. // ggml_map_custom1
  5994. struct ggml_tensor * ggml_map_custom1_impl_f32(
  5995. struct ggml_context * ctx,
  5996. struct ggml_tensor * a,
  5997. const ggml_custom1_op_f32_t fun,
  5998. bool inplace) {
  5999. bool is_node = false;
  6000. if (!inplace && a->grad) {
  6001. is_node = true;
  6002. }
  6003. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6004. ggml_scratch_save(ctx);
  6005. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6006. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6007. ggml_scratch_load(ctx);
  6008. result->op = GGML_OP_MAP_CUSTOM1;
  6009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6010. result->src0 = a;
  6011. result->opt[0] = addr_tensor;
  6012. return result;
  6013. }
  6014. struct ggml_tensor * ggml_map_custom1_f32(
  6015. struct ggml_context * ctx,
  6016. struct ggml_tensor * a,
  6017. const ggml_custom1_op_f32_t fun) {
  6018. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6019. }
  6020. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6021. struct ggml_context * ctx,
  6022. struct ggml_tensor * a,
  6023. const ggml_custom1_op_f32_t fun) {
  6024. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6025. }
  6026. // ggml_map_custom2
  6027. struct ggml_tensor * ggml_map_custom2_impl_f32(
  6028. struct ggml_context * ctx,
  6029. struct ggml_tensor * a,
  6030. struct ggml_tensor * b,
  6031. const ggml_custom2_op_f32_t fun,
  6032. bool inplace) {
  6033. bool is_node = false;
  6034. if (!inplace && (a->grad || b->grad)) {
  6035. is_node = true;
  6036. }
  6037. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6038. ggml_scratch_save(ctx);
  6039. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6040. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6041. ggml_scratch_load(ctx);
  6042. result->op = GGML_OP_MAP_CUSTOM2;
  6043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6044. result->src0 = a;
  6045. result->src1 = b;
  6046. result->opt[0] = addr_tensor;
  6047. return result;
  6048. }
  6049. struct ggml_tensor * ggml_map_custom2_f32(
  6050. struct ggml_context * ctx,
  6051. struct ggml_tensor * a,
  6052. struct ggml_tensor * b,
  6053. const ggml_custom2_op_f32_t fun) {
  6054. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6055. }
  6056. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6057. struct ggml_context * ctx,
  6058. struct ggml_tensor * a,
  6059. struct ggml_tensor * b,
  6060. const ggml_custom2_op_f32_t fun) {
  6061. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6062. }
  6063. // ggml_map_custom3
  6064. struct ggml_tensor * ggml_map_custom3_impl_f32(
  6065. struct ggml_context * ctx,
  6066. struct ggml_tensor * a,
  6067. struct ggml_tensor * b,
  6068. struct ggml_tensor * c,
  6069. const ggml_custom3_op_f32_t fun,
  6070. bool inplace) {
  6071. bool is_node = false;
  6072. if (!inplace && (a->grad || b->grad || c->grad)) {
  6073. is_node = true;
  6074. }
  6075. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6076. ggml_scratch_save(ctx);
  6077. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6078. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6079. ggml_scratch_load(ctx);
  6080. result->op = GGML_OP_MAP_CUSTOM3;
  6081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6082. result->src0 = a;
  6083. result->src1 = b;
  6084. result->opt[0] = addr_tensor;
  6085. result->opt[1] = c;
  6086. return result;
  6087. }
  6088. struct ggml_tensor * ggml_map_custom3_f32(
  6089. struct ggml_context * ctx,
  6090. struct ggml_tensor * a,
  6091. struct ggml_tensor * b,
  6092. struct ggml_tensor * c,
  6093. const ggml_custom3_op_f32_t fun) {
  6094. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6095. }
  6096. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6097. struct ggml_context * ctx,
  6098. struct ggml_tensor * a,
  6099. struct ggml_tensor * b,
  6100. struct ggml_tensor * c,
  6101. const ggml_custom3_op_f32_t fun) {
  6102. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6103. }
  6104. // ggml_cross_entropy_loss
  6105. struct ggml_tensor * ggml_cross_entropy_loss(
  6106. struct ggml_context * ctx,
  6107. struct ggml_tensor * a,
  6108. struct ggml_tensor * b) {
  6109. GGML_ASSERT(ggml_are_same_shape(a, b));
  6110. bool is_node = false;
  6111. if (a->grad || b->grad) {
  6112. is_node = true;
  6113. }
  6114. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6115. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6117. result->src0 = a;
  6118. result->src1 = b;
  6119. return result;
  6120. }
  6121. // ggml_cross_entropy_loss_back
  6122. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6123. struct ggml_context * ctx,
  6124. struct ggml_tensor * a,
  6125. struct ggml_tensor * b,
  6126. struct ggml_tensor * c) {
  6127. GGML_ASSERT(ggml_are_same_shape(a, b));
  6128. GGML_ASSERT(ggml_is_scalar(c));
  6129. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6130. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6131. result->grad = NULL;
  6132. result->src0 = a;
  6133. result->src1 = b;
  6134. result->opt[0] = c;
  6135. return result;
  6136. }
  6137. ////////////////////////////////////////////////////////////////////////////////
  6138. void ggml_set_param(
  6139. struct ggml_context * ctx,
  6140. struct ggml_tensor * tensor) {
  6141. tensor->is_param = true;
  6142. GGML_ASSERT(tensor->grad == NULL);
  6143. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6144. }
  6145. // ggml_compute_forward_dup
  6146. static void ggml_compute_forward_dup_same_cont(
  6147. const struct ggml_compute_params * params,
  6148. const struct ggml_tensor * src0,
  6149. struct ggml_tensor * dst) {
  6150. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6151. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6152. GGML_ASSERT(src0->type == dst->type);
  6153. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6154. return;
  6155. }
  6156. const size_t nb00 = src0->nb[0];
  6157. const size_t nb0 = dst->nb[0];
  6158. const int ith = params->ith; // thread index
  6159. const int nth = params->nth; // number of threads
  6160. // parallelize by elements
  6161. const int ne = ggml_nelements(dst);
  6162. const int dr = (ne + nth - 1) / nth;
  6163. const int ie0 = dr * ith;
  6164. const int ie1 = MIN(ie0 + dr, ne);
  6165. if (ie0 < ie1) {
  6166. memcpy(
  6167. ((char *) dst->data + ie0*nb0),
  6168. ((char *) src0->data + ie0*nb00),
  6169. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6170. }
  6171. }
  6172. static void ggml_compute_forward_dup_f16(
  6173. const struct ggml_compute_params * params,
  6174. const struct ggml_tensor * src0,
  6175. struct ggml_tensor * dst) {
  6176. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6177. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6178. return;
  6179. }
  6180. GGML_TENSOR_UNARY_OP_LOCALS;
  6181. const int ith = params->ith; // thread index
  6182. const int nth = params->nth; // number of threads
  6183. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6184. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6185. return;
  6186. }
  6187. // parallelize by rows
  6188. const int nr = ne01;
  6189. // number of rows per thread
  6190. const int dr = (nr + nth - 1) / nth;
  6191. // row range for this thread
  6192. const int ir0 = dr * ith;
  6193. const int ir1 = MIN(ir0 + dr, nr);
  6194. if (src0->type == dst->type &&
  6195. ne00 == ne0 &&
  6196. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6197. // copy by rows
  6198. const size_t rs = ne00*nb00;
  6199. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6200. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6201. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6202. memcpy(
  6203. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6204. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6205. rs);
  6206. }
  6207. }
  6208. }
  6209. return;
  6210. }
  6211. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6212. if (ggml_is_contiguous(dst)) {
  6213. if (nb00 == sizeof(ggml_fp16_t)) {
  6214. if (dst->type == GGML_TYPE_F16) {
  6215. size_t id = 0;
  6216. const size_t rs = ne00 * nb00;
  6217. char * dst_ptr = (char *) dst->data;
  6218. for (int i03 = 0; i03 < ne03; i03++) {
  6219. for (int i02 = 0; i02 < ne02; i02++) {
  6220. id += rs * ir0;
  6221. for (int i01 = ir0; i01 < ir1; i01++) {
  6222. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6223. memcpy(dst_ptr + id, src0_ptr, rs);
  6224. id += rs;
  6225. }
  6226. id += rs * (ne01 - ir1);
  6227. }
  6228. }
  6229. } else if (dst->type == GGML_TYPE_F32) {
  6230. size_t id = 0;
  6231. float * dst_ptr = (float *) dst->data;
  6232. for (int i03 = 0; i03 < ne03; i03++) {
  6233. for (int i02 = 0; i02 < ne02; i02++) {
  6234. id += ne00 * ir0;
  6235. for (int i01 = ir0; i01 < ir1; i01++) {
  6236. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6237. for (int i00 = 0; i00 < ne00; i00++) {
  6238. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6239. id++;
  6240. }
  6241. }
  6242. id += ne00 * (ne01 - ir1);
  6243. }
  6244. }
  6245. } else if (ggml_is_quantized(dst->type)) {
  6246. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  6247. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6248. size_t id = 0;
  6249. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6250. char * dst_ptr = (char *) dst->data;
  6251. for (int i03 = 0; i03 < ne03; i03++) {
  6252. for (int i02 = 0; i02 < ne02; i02++) {
  6253. id += rs * ir0;
  6254. for (int i01 = ir0; i01 < ir1; i01++) {
  6255. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6256. for (int i00 = 0; i00 < ne00; i00++) {
  6257. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6258. }
  6259. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6260. id += rs;
  6261. }
  6262. id += rs * (ne01 - ir1);
  6263. }
  6264. }
  6265. } else {
  6266. GGML_ASSERT(false); // TODO: implement
  6267. }
  6268. } else {
  6269. //printf("%s: this is not optimal - fix me\n", __func__);
  6270. if (dst->type == GGML_TYPE_F32) {
  6271. size_t id = 0;
  6272. float * dst_ptr = (float *) dst->data;
  6273. for (int i03 = 0; i03 < ne03; i03++) {
  6274. for (int i02 = 0; i02 < ne02; i02++) {
  6275. id += ne00 * ir0;
  6276. for (int i01 = ir0; i01 < ir1; i01++) {
  6277. for (int i00 = 0; i00 < ne00; i00++) {
  6278. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6279. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6280. id++;
  6281. }
  6282. }
  6283. id += ne00 * (ne01 - ir1);
  6284. }
  6285. }
  6286. } else if (dst->type == GGML_TYPE_F16) {
  6287. size_t id = 0;
  6288. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6289. for (int i03 = 0; i03 < ne03; i03++) {
  6290. for (int i02 = 0; i02 < ne02; i02++) {
  6291. id += ne00 * ir0;
  6292. for (int i01 = ir0; i01 < ir1; i01++) {
  6293. for (int i00 = 0; i00 < ne00; i00++) {
  6294. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6295. dst_ptr[id] = *src0_ptr;
  6296. id++;
  6297. }
  6298. }
  6299. id += ne00 * (ne01 - ir1);
  6300. }
  6301. }
  6302. } else {
  6303. GGML_ASSERT(false); // TODO: implement
  6304. }
  6305. }
  6306. return;
  6307. }
  6308. // dst counters
  6309. int64_t i10 = 0;
  6310. int64_t i11 = 0;
  6311. int64_t i12 = 0;
  6312. int64_t i13 = 0;
  6313. if (dst->type == GGML_TYPE_F16) {
  6314. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6315. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6316. i10 += ne00 * ir0;
  6317. while (i10 >= ne0) {
  6318. i10 -= ne0;
  6319. if (++i11 == ne1) {
  6320. i11 = 0;
  6321. if (++i12 == ne2) {
  6322. i12 = 0;
  6323. if (++i13 == ne3) {
  6324. i13 = 0;
  6325. }
  6326. }
  6327. }
  6328. }
  6329. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6330. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6331. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6332. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6333. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6334. if (++i10 == ne00) {
  6335. i10 = 0;
  6336. if (++i11 == ne01) {
  6337. i11 = 0;
  6338. if (++i12 == ne02) {
  6339. i12 = 0;
  6340. if (++i13 == ne03) {
  6341. i13 = 0;
  6342. }
  6343. }
  6344. }
  6345. }
  6346. }
  6347. }
  6348. i10 += ne00 * (ne01 - ir1);
  6349. while (i10 >= ne0) {
  6350. i10 -= ne0;
  6351. if (++i11 == ne1) {
  6352. i11 = 0;
  6353. if (++i12 == ne2) {
  6354. i12 = 0;
  6355. if (++i13 == ne3) {
  6356. i13 = 0;
  6357. }
  6358. }
  6359. }
  6360. }
  6361. }
  6362. }
  6363. } else if (dst->type == GGML_TYPE_F32) {
  6364. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6365. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6366. i10 += ne00 * ir0;
  6367. while (i10 >= ne0) {
  6368. i10 -= ne0;
  6369. if (++i11 == ne1) {
  6370. i11 = 0;
  6371. if (++i12 == ne2) {
  6372. i12 = 0;
  6373. if (++i13 == ne3) {
  6374. i13 = 0;
  6375. }
  6376. }
  6377. }
  6378. }
  6379. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6380. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6381. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6382. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6383. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6384. if (++i10 == ne0) {
  6385. i10 = 0;
  6386. if (++i11 == ne1) {
  6387. i11 = 0;
  6388. if (++i12 == ne2) {
  6389. i12 = 0;
  6390. if (++i13 == ne3) {
  6391. i13 = 0;
  6392. }
  6393. }
  6394. }
  6395. }
  6396. }
  6397. }
  6398. i10 += ne00 * (ne01 - ir1);
  6399. while (i10 >= ne0) {
  6400. i10 -= ne0;
  6401. if (++i11 == ne1) {
  6402. i11 = 0;
  6403. if (++i12 == ne2) {
  6404. i12 = 0;
  6405. if (++i13 == ne3) {
  6406. i13 = 0;
  6407. }
  6408. }
  6409. }
  6410. }
  6411. }
  6412. }
  6413. } else {
  6414. GGML_ASSERT(false); // TODO: implement
  6415. }
  6416. }
  6417. static void ggml_compute_forward_dup_f32(
  6418. const struct ggml_compute_params * params,
  6419. const struct ggml_tensor * src0,
  6420. struct ggml_tensor * dst) {
  6421. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6422. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6423. return;
  6424. }
  6425. GGML_TENSOR_UNARY_OP_LOCALS;
  6426. const int ith = params->ith; // thread index
  6427. const int nth = params->nth; // number of threads
  6428. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6429. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6430. return;
  6431. }
  6432. // parallelize by rows
  6433. const int nr = ne01;
  6434. // number of rows per thread
  6435. const int dr = (nr + nth - 1) / nth;
  6436. // row range for this thread
  6437. const int ir0 = dr * ith;
  6438. const int ir1 = MIN(ir0 + dr, nr);
  6439. if (src0->type == dst->type &&
  6440. ne00 == ne0 &&
  6441. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6442. // copy by rows
  6443. const size_t rs = ne00*nb00;
  6444. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6445. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6446. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6447. memcpy(
  6448. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6449. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6450. rs);
  6451. }
  6452. }
  6453. }
  6454. return;
  6455. }
  6456. if (ggml_is_contiguous(dst)) {
  6457. // TODO: simplify
  6458. if (nb00 == sizeof(float)) {
  6459. if (dst->type == GGML_TYPE_F32) {
  6460. size_t id = 0;
  6461. const size_t rs = ne00 * nb00;
  6462. char * dst_ptr = (char *) dst->data;
  6463. for (int i03 = 0; i03 < ne03; i03++) {
  6464. for (int i02 = 0; i02 < ne02; i02++) {
  6465. id += rs * ir0;
  6466. for (int i01 = ir0; i01 < ir1; i01++) {
  6467. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6468. memcpy(dst_ptr + id, src0_ptr, rs);
  6469. id += rs;
  6470. }
  6471. id += rs * (ne01 - ir1);
  6472. }
  6473. }
  6474. } else if (dst->type == GGML_TYPE_F16) {
  6475. size_t id = 0;
  6476. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6477. for (int i03 = 0; i03 < ne03; i03++) {
  6478. for (int i02 = 0; i02 < ne02; i02++) {
  6479. id += ne00 * ir0;
  6480. for (int i01 = ir0; i01 < ir1; i01++) {
  6481. for (int i00 = 0; i00 < ne00; i00++) {
  6482. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6483. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6484. id++;
  6485. }
  6486. }
  6487. id += ne00 * (ne01 - ir1);
  6488. }
  6489. }
  6490. } else if (ggml_is_quantized(dst->type)) {
  6491. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  6492. size_t id = 0;
  6493. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6494. char * dst_ptr = (char *) dst->data;
  6495. for (int i03 = 0; i03 < ne03; i03++) {
  6496. for (int i02 = 0; i02 < ne02; i02++) {
  6497. id += rs * ir0;
  6498. for (int i01 = ir0; i01 < ir1; i01++) {
  6499. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6500. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6501. id += rs;
  6502. }
  6503. id += rs * (ne01 - ir1);
  6504. }
  6505. }
  6506. } else {
  6507. GGML_ASSERT(false); // TODO: implement
  6508. }
  6509. } else {
  6510. //printf("%s: this is not optimal - fix me\n", __func__);
  6511. if (dst->type == GGML_TYPE_F32) {
  6512. size_t id = 0;
  6513. float * dst_ptr = (float *) dst->data;
  6514. for (int i03 = 0; i03 < ne03; i03++) {
  6515. for (int i02 = 0; i02 < ne02; i02++) {
  6516. id += ne00 * ir0;
  6517. for (int i01 = ir0; i01 < ir1; i01++) {
  6518. for (int i00 = 0; i00 < ne00; i00++) {
  6519. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6520. dst_ptr[id] = *src0_ptr;
  6521. id++;
  6522. }
  6523. }
  6524. id += ne00 * (ne01 - ir1);
  6525. }
  6526. }
  6527. } else if (dst->type == GGML_TYPE_F16) {
  6528. size_t id = 0;
  6529. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6530. for (int i03 = 0; i03 < ne03; i03++) {
  6531. for (int i02 = 0; i02 < ne02; i02++) {
  6532. id += ne00 * ir0;
  6533. for (int i01 = ir0; i01 < ir1; i01++) {
  6534. for (int i00 = 0; i00 < ne00; i00++) {
  6535. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6536. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6537. id++;
  6538. }
  6539. }
  6540. id += ne00 * (ne01 - ir1);
  6541. }
  6542. }
  6543. } else {
  6544. GGML_ASSERT(false); // TODO: implement
  6545. }
  6546. }
  6547. return;
  6548. }
  6549. // dst counters
  6550. int64_t i10 = 0;
  6551. int64_t i11 = 0;
  6552. int64_t i12 = 0;
  6553. int64_t i13 = 0;
  6554. if (dst->type == GGML_TYPE_F32) {
  6555. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6556. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6557. i10 += ne00 * ir0;
  6558. while (i10 >= ne0) {
  6559. i10 -= ne0;
  6560. if (++i11 == ne1) {
  6561. i11 = 0;
  6562. if (++i12 == ne2) {
  6563. i12 = 0;
  6564. if (++i13 == ne3) {
  6565. i13 = 0;
  6566. }
  6567. }
  6568. }
  6569. }
  6570. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6571. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6572. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6573. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6574. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6575. if (++i10 == ne0) {
  6576. i10 = 0;
  6577. if (++i11 == ne1) {
  6578. i11 = 0;
  6579. if (++i12 == ne2) {
  6580. i12 = 0;
  6581. if (++i13 == ne3) {
  6582. i13 = 0;
  6583. }
  6584. }
  6585. }
  6586. }
  6587. }
  6588. }
  6589. i10 += ne00 * (ne01 - ir1);
  6590. while (i10 >= ne0) {
  6591. i10 -= ne0;
  6592. if (++i11 == ne1) {
  6593. i11 = 0;
  6594. if (++i12 == ne2) {
  6595. i12 = 0;
  6596. if (++i13 == ne3) {
  6597. i13 = 0;
  6598. }
  6599. }
  6600. }
  6601. }
  6602. }
  6603. }
  6604. } else if (dst->type == GGML_TYPE_F16) {
  6605. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6606. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6607. i10 += ne00 * ir0;
  6608. while (i10 >= ne0) {
  6609. i10 -= ne0;
  6610. if (++i11 == ne1) {
  6611. i11 = 0;
  6612. if (++i12 == ne2) {
  6613. i12 = 0;
  6614. if (++i13 == ne3) {
  6615. i13 = 0;
  6616. }
  6617. }
  6618. }
  6619. }
  6620. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6621. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6622. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6623. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6624. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6625. if (++i10 == ne0) {
  6626. i10 = 0;
  6627. if (++i11 == ne1) {
  6628. i11 = 0;
  6629. if (++i12 == ne2) {
  6630. i12 = 0;
  6631. if (++i13 == ne3) {
  6632. i13 = 0;
  6633. }
  6634. }
  6635. }
  6636. }
  6637. }
  6638. }
  6639. i10 += ne00 * (ne01 - ir1);
  6640. while (i10 >= ne0) {
  6641. i10 -= ne0;
  6642. if (++i11 == ne1) {
  6643. i11 = 0;
  6644. if (++i12 == ne2) {
  6645. i12 = 0;
  6646. if (++i13 == ne3) {
  6647. i13 = 0;
  6648. }
  6649. }
  6650. }
  6651. }
  6652. }
  6653. }
  6654. } else {
  6655. GGML_ASSERT(false); // TODO: implement
  6656. }
  6657. }
  6658. static void ggml_compute_forward_dup(
  6659. const struct ggml_compute_params * params,
  6660. const struct ggml_tensor * src0,
  6661. struct ggml_tensor * dst) {
  6662. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6663. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6664. return;
  6665. }
  6666. switch (src0->type) {
  6667. case GGML_TYPE_F16:
  6668. {
  6669. ggml_compute_forward_dup_f16(params, src0, dst);
  6670. } break;
  6671. case GGML_TYPE_F32:
  6672. {
  6673. ggml_compute_forward_dup_f32(params, src0, dst);
  6674. } break;
  6675. default:
  6676. {
  6677. GGML_ASSERT(false);
  6678. } break;
  6679. }
  6680. }
  6681. // ggml_compute_forward_add
  6682. static void ggml_compute_forward_add_f32(
  6683. const struct ggml_compute_params * params,
  6684. const struct ggml_tensor * src0,
  6685. const struct ggml_tensor * src1,
  6686. struct ggml_tensor * dst) {
  6687. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6688. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6689. return;
  6690. }
  6691. const int ith = params->ith;
  6692. const int nth = params->nth;
  6693. const int nr = ggml_nrows(src0);
  6694. GGML_TENSOR_BINARY_OP_LOCALS;
  6695. GGML_ASSERT( nb0 == sizeof(float));
  6696. GGML_ASSERT(nb00 == sizeof(float));
  6697. // rows per thread
  6698. const int dr = (nr + nth - 1)/nth;
  6699. // row range for this thread
  6700. const int ir0 = dr*ith;
  6701. const int ir1 = MIN(ir0 + dr, nr);
  6702. if (nb10 == sizeof(float)) {
  6703. for (int ir = ir0; ir < ir1; ++ir) {
  6704. // src0, src1 and dst are same shape => same indices
  6705. const int i3 = ir/(ne2*ne1);
  6706. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6707. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6708. #ifdef GGML_USE_ACCELERATE
  6709. vDSP_vadd(
  6710. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6711. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6712. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6713. ne0);
  6714. #else
  6715. ggml_vec_add_f32(ne0,
  6716. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6717. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6718. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6719. #endif
  6720. // }
  6721. // }
  6722. }
  6723. } else {
  6724. // src1 is not contiguous
  6725. for (int ir = ir0; ir < ir1; ++ir) {
  6726. // src0, src1 and dst are same shape => same indices
  6727. const int i3 = ir/(ne2*ne1);
  6728. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6729. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6730. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6731. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6732. for (int i0 = 0; i0 < ne0; i0++) {
  6733. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6734. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6735. }
  6736. }
  6737. }
  6738. }
  6739. static void ggml_compute_forward_add_f16_f32(
  6740. const struct ggml_compute_params * params,
  6741. const struct ggml_tensor * src0,
  6742. const struct ggml_tensor * src1,
  6743. struct ggml_tensor * dst) {
  6744. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6745. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6746. return;
  6747. }
  6748. const int ith = params->ith;
  6749. const int nth = params->nth;
  6750. const int nr = ggml_nrows(src0);
  6751. GGML_TENSOR_BINARY_OP_LOCALS;
  6752. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6753. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6754. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6755. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6756. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6757. // rows per thread
  6758. const int dr = (nr + nth - 1)/nth;
  6759. // row range for this thread
  6760. const int ir0 = dr*ith;
  6761. const int ir1 = MIN(ir0 + dr, nr);
  6762. if (nb10 == sizeof(float)) {
  6763. for (int ir = ir0; ir < ir1; ++ir) {
  6764. // src0, src1 and dst are same shape => same indices
  6765. const int i3 = ir/(ne2*ne1);
  6766. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6767. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6768. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6769. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6770. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6771. for (int i = 0; i < ne0; i++) {
  6772. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6773. }
  6774. }
  6775. }
  6776. else {
  6777. // src1 is not contiguous
  6778. GGML_ASSERT(false);
  6779. }
  6780. }
  6781. static void ggml_compute_forward_add_f16_f16(
  6782. const struct ggml_compute_params * params,
  6783. const struct ggml_tensor * src0,
  6784. const struct ggml_tensor * src1,
  6785. struct ggml_tensor * dst) {
  6786. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6787. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6788. return;
  6789. }
  6790. const int ith = params->ith;
  6791. const int nth = params->nth;
  6792. const int nr = ggml_nrows(src0);
  6793. GGML_TENSOR_BINARY_OP_LOCALS;
  6794. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6795. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6796. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6797. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6798. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6799. // rows per thread
  6800. const int dr = (nr + nth - 1)/nth;
  6801. // row range for this thread
  6802. const int ir0 = dr*ith;
  6803. const int ir1 = MIN(ir0 + dr, nr);
  6804. if (nb10 == sizeof(ggml_fp16_t)) {
  6805. for (int ir = ir0; ir < ir1; ++ir) {
  6806. // src0, src1 and dst are same shape => same indices
  6807. const int i3 = ir/(ne2*ne1);
  6808. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6809. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6810. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6811. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6812. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6813. for (int i = 0; i < ne0; i++) {
  6814. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6815. }
  6816. }
  6817. }
  6818. else {
  6819. // src1 is not contiguous
  6820. GGML_ASSERT(false);
  6821. }
  6822. }
  6823. static void ggml_compute_forward_add_q_f32(
  6824. const struct ggml_compute_params * params,
  6825. const struct ggml_tensor * src0,
  6826. const struct ggml_tensor * src1,
  6827. struct ggml_tensor * dst) {
  6828. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6829. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6830. return;
  6831. }
  6832. const int nr = ggml_nrows(src0);
  6833. GGML_TENSOR_BINARY_OP_LOCALS;
  6834. const int ith = params->ith;
  6835. const int nth = params->nth;
  6836. const enum ggml_type type = src0->type;
  6837. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6838. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6839. // we don't support permuted src0 or src1
  6840. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6841. GGML_ASSERT(nb10 == sizeof(float));
  6842. // dst cannot be transposed or permuted
  6843. GGML_ASSERT(nb0 <= nb1);
  6844. GGML_ASSERT(nb1 <= nb2);
  6845. GGML_ASSERT(nb2 <= nb3);
  6846. GGML_ASSERT(ggml_is_quantized(src0->type));
  6847. GGML_ASSERT(dst->type == src0->type);
  6848. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6849. // rows per thread
  6850. const int dr = (nr + nth - 1)/nth;
  6851. // row range for this thread
  6852. const int ir0 = dr*ith;
  6853. const int ir1 = MIN(ir0 + dr, nr);
  6854. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6855. for (int ir = ir0; ir < ir1; ++ir) {
  6856. // src0 indices
  6857. const int i03 = ir/(ne02*ne01);
  6858. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6859. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6860. // src1 and dst are same shape as src0 => same indices
  6861. const int i13 = i03;
  6862. const int i12 = i02;
  6863. const int i11 = i01;
  6864. const int i3 = i03;
  6865. const int i2 = i02;
  6866. const int i1 = i01;
  6867. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6868. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6869. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6870. assert(ne00 % 32 == 0);
  6871. // unquantize row from src0 to temp buffer
  6872. dequantize_row_q(src0_row, wdata, ne00);
  6873. // add src1
  6874. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6875. // quantize row to dst
  6876. quantize_row_q(wdata, dst_row, ne00);
  6877. }
  6878. }
  6879. static void ggml_compute_forward_add(
  6880. const struct ggml_compute_params * params,
  6881. const struct ggml_tensor * src0,
  6882. const struct ggml_tensor * src1,
  6883. struct ggml_tensor * dst) {
  6884. switch (src0->type) {
  6885. case GGML_TYPE_F32:
  6886. {
  6887. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6888. } break;
  6889. case GGML_TYPE_F16:
  6890. {
  6891. if (src1->type == GGML_TYPE_F16) {
  6892. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6893. }
  6894. else if (src1->type == GGML_TYPE_F32) {
  6895. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6896. }
  6897. else {
  6898. GGML_ASSERT(false);
  6899. }
  6900. } break;
  6901. case GGML_TYPE_Q4_0:
  6902. case GGML_TYPE_Q4_1:
  6903. case GGML_TYPE_Q5_0:
  6904. case GGML_TYPE_Q5_1:
  6905. case GGML_TYPE_Q8_0:
  6906. case GGML_TYPE_Q2_K:
  6907. case GGML_TYPE_Q3_K:
  6908. case GGML_TYPE_Q4_K:
  6909. case GGML_TYPE_Q5_K:
  6910. case GGML_TYPE_Q6_K:
  6911. {
  6912. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6913. } break;
  6914. default:
  6915. {
  6916. GGML_ASSERT(false);
  6917. } break;
  6918. }
  6919. }
  6920. // ggml_compute_forward_add1
  6921. static void ggml_compute_forward_add1_f32(
  6922. const struct ggml_compute_params * params,
  6923. const struct ggml_tensor * src0,
  6924. const struct ggml_tensor * src1,
  6925. struct ggml_tensor * dst) {
  6926. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6927. GGML_ASSERT(ggml_is_scalar(src1));
  6928. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6929. return;
  6930. }
  6931. const int ith = params->ith;
  6932. const int nth = params->nth;
  6933. const int nr = ggml_nrows(src0);
  6934. GGML_TENSOR_UNARY_OP_LOCALS;
  6935. GGML_ASSERT( nb0 == sizeof(float));
  6936. GGML_ASSERT(nb00 == sizeof(float));
  6937. // rows per thread
  6938. const int dr = (nr + nth - 1)/nth;
  6939. // row range for this thread
  6940. const int ir0 = dr*ith;
  6941. const int ir1 = MIN(ir0 + dr, nr);
  6942. for (int ir = ir0; ir < ir1; ++ir) {
  6943. // src0 and dst are same shape => same indices
  6944. const int i3 = ir/(ne2*ne1);
  6945. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6946. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6947. #ifdef GGML_USE_ACCELERATE
  6948. UNUSED(ggml_vec_add1_f32);
  6949. vDSP_vadd(
  6950. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6951. (float *) ((char *) src1->data), 0,
  6952. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6953. ne0);
  6954. #else
  6955. ggml_vec_add1_f32(ne0,
  6956. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6957. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6958. *(float *) src1->data);
  6959. #endif
  6960. }
  6961. }
  6962. static void ggml_compute_forward_add1_f16_f32(
  6963. const struct ggml_compute_params * params,
  6964. const struct ggml_tensor * src0,
  6965. const struct ggml_tensor * src1,
  6966. struct ggml_tensor * dst) {
  6967. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6968. GGML_ASSERT(ggml_is_scalar(src1));
  6969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6970. return;
  6971. }
  6972. // scalar to add
  6973. const float v = *(float *) src1->data;
  6974. const int ith = params->ith;
  6975. const int nth = params->nth;
  6976. const int nr = ggml_nrows(src0);
  6977. GGML_TENSOR_UNARY_OP_LOCALS;
  6978. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6979. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6980. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6981. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6982. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6983. // rows per thread
  6984. const int dr = (nr + nth - 1)/nth;
  6985. // row range for this thread
  6986. const int ir0 = dr*ith;
  6987. const int ir1 = MIN(ir0 + dr, nr);
  6988. for (int ir = ir0; ir < ir1; ++ir) {
  6989. // src0 and dst are same shape => same indices
  6990. const int i3 = ir/(ne2*ne1);
  6991. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6992. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6993. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6994. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6995. for (int i = 0; i < ne0; i++) {
  6996. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6997. }
  6998. }
  6999. }
  7000. static void ggml_compute_forward_add1_f16_f16(
  7001. const struct ggml_compute_params * params,
  7002. const struct ggml_tensor * src0,
  7003. const struct ggml_tensor * src1,
  7004. struct ggml_tensor * dst) {
  7005. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7006. GGML_ASSERT(ggml_is_scalar(src1));
  7007. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7008. return;
  7009. }
  7010. // scalar to add
  7011. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7012. const int ith = params->ith;
  7013. const int nth = params->nth;
  7014. const int nr = ggml_nrows(src0);
  7015. GGML_TENSOR_UNARY_OP_LOCALS;
  7016. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7017. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7018. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7019. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7020. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7021. // rows per thread
  7022. const int dr = (nr + nth - 1)/nth;
  7023. // row range for this thread
  7024. const int ir0 = dr*ith;
  7025. const int ir1 = MIN(ir0 + dr, nr);
  7026. for (int ir = ir0; ir < ir1; ++ir) {
  7027. // src0 and dst are same shape => same indices
  7028. const int i3 = ir/(ne2*ne1);
  7029. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7030. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7031. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7032. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7033. for (int i = 0; i < ne0; i++) {
  7034. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7035. }
  7036. }
  7037. }
  7038. static void ggml_compute_forward_add1_q_f32(
  7039. const struct ggml_compute_params * params,
  7040. const struct ggml_tensor * src0,
  7041. const struct ggml_tensor * src1,
  7042. struct ggml_tensor * dst) {
  7043. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7044. GGML_ASSERT(ggml_is_scalar(src1));
  7045. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7046. return;
  7047. }
  7048. // scalar to add
  7049. const float v = *(float *) src1->data;
  7050. const int ith = params->ith;
  7051. const int nth = params->nth;
  7052. const int nr = ggml_nrows(src0);
  7053. GGML_TENSOR_UNARY_OP_LOCALS;
  7054. const enum ggml_type type = src0->type;
  7055. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7056. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  7057. // we don't support permuted src0
  7058. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7059. // dst cannot be transposed or permuted
  7060. GGML_ASSERT(nb0 <= nb1);
  7061. GGML_ASSERT(nb1 <= nb2);
  7062. GGML_ASSERT(nb2 <= nb3);
  7063. GGML_ASSERT(ggml_is_quantized(src0->type));
  7064. GGML_ASSERT(dst->type == src0->type);
  7065. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7066. // rows per thread
  7067. const int dr = (nr + nth - 1)/nth;
  7068. // row range for this thread
  7069. const int ir0 = dr*ith;
  7070. const int ir1 = MIN(ir0 + dr, nr);
  7071. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7072. for (int ir = ir0; ir < ir1; ++ir) {
  7073. // src0 and dst are same shape => same indices
  7074. const int i3 = ir/(ne2*ne1);
  7075. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7076. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7077. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7078. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7079. assert(ne0 % 32 == 0);
  7080. // unquantize row from src0 to temp buffer
  7081. dequantize_row_q(src0_row, wdata, ne0);
  7082. // add src1
  7083. ggml_vec_acc1_f32(ne0, wdata, v);
  7084. // quantize row to dst
  7085. quantize_row_q(wdata, dst_row, ne0);
  7086. }
  7087. }
  7088. static void ggml_compute_forward_add1(
  7089. const struct ggml_compute_params * params,
  7090. const struct ggml_tensor * src0,
  7091. const struct ggml_tensor * src1,
  7092. struct ggml_tensor * dst) {
  7093. switch (src0->type) {
  7094. case GGML_TYPE_F32:
  7095. {
  7096. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7097. } break;
  7098. case GGML_TYPE_F16:
  7099. {
  7100. if (src1->type == GGML_TYPE_F16) {
  7101. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7102. }
  7103. else if (src1->type == GGML_TYPE_F32) {
  7104. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7105. }
  7106. else {
  7107. GGML_ASSERT(false);
  7108. }
  7109. } break;
  7110. case GGML_TYPE_Q4_0:
  7111. case GGML_TYPE_Q4_1:
  7112. case GGML_TYPE_Q5_0:
  7113. case GGML_TYPE_Q5_1:
  7114. case GGML_TYPE_Q8_0:
  7115. case GGML_TYPE_Q8_1:
  7116. case GGML_TYPE_Q2_K:
  7117. case GGML_TYPE_Q3_K:
  7118. case GGML_TYPE_Q4_K:
  7119. case GGML_TYPE_Q5_K:
  7120. case GGML_TYPE_Q6_K:
  7121. {
  7122. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7123. } break;
  7124. default:
  7125. {
  7126. GGML_ASSERT(false);
  7127. } break;
  7128. }
  7129. }
  7130. // ggml_compute_forward_acc
  7131. static void ggml_compute_forward_acc_f32(
  7132. const struct ggml_compute_params * params,
  7133. const struct ggml_tensor * src0,
  7134. const struct ggml_tensor * src1,
  7135. const struct ggml_tensor * opt0,
  7136. struct ggml_tensor * dst) {
  7137. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7138. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7139. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7140. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7141. // view src0 and dst with these strides and data offset inbytes during acc
  7142. // nb0 is implicitely element_size because src0 and dst are contiguous
  7143. size_t nb1 = ((int32_t *) opt0->data)[0];
  7144. size_t nb2 = ((int32_t *) opt0->data)[1];
  7145. size_t nb3 = ((int32_t *) opt0->data)[2];
  7146. size_t offset = ((int32_t *) opt0->data)[3];
  7147. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7148. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7149. // memcpy needs to be synchronized across threads to avoid race conditions.
  7150. // => do it in INIT phase
  7151. memcpy(
  7152. ((char *) dst->data),
  7153. ((char *) src0->data),
  7154. ggml_nbytes(dst));
  7155. }
  7156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7157. return;
  7158. }
  7159. const int ith = params->ith;
  7160. const int nth = params->nth;
  7161. const int nr = ggml_nrows(src1);
  7162. const int nc = src1->ne[0];
  7163. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7164. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7165. // src0 and dst as viewed during acc
  7166. const size_t nb0 = ggml_element_size(src0);
  7167. const size_t nb00 = nb0;
  7168. const size_t nb01 = nb1;
  7169. const size_t nb02 = nb2;
  7170. const size_t nb03 = nb3;
  7171. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7172. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7173. GGML_ASSERT(nb10 == sizeof(float));
  7174. // rows per thread
  7175. const int dr = (nr + nth - 1)/nth;
  7176. // row range for this thread
  7177. const int ir0 = dr*ith;
  7178. const int ir1 = MIN(ir0 + dr, nr);
  7179. for (int ir = ir0; ir < ir1; ++ir) {
  7180. // src0 and dst are viewed with shape of src1 and offset
  7181. // => same indices
  7182. const int i3 = ir/(ne12*ne11);
  7183. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7184. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7185. #ifdef GGML_USE_ACCELERATE
  7186. vDSP_vadd(
  7187. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7188. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7189. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7190. #else
  7191. ggml_vec_add_f32(nc,
  7192. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7193. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7194. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7195. #endif
  7196. }
  7197. }
  7198. static void ggml_compute_forward_acc(
  7199. const struct ggml_compute_params * params,
  7200. const struct ggml_tensor * src0,
  7201. const struct ggml_tensor * src1,
  7202. const struct ggml_tensor * opt0,
  7203. struct ggml_tensor * dst) {
  7204. switch (src0->type) {
  7205. case GGML_TYPE_F32:
  7206. {
  7207. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7208. } break;
  7209. case GGML_TYPE_F16:
  7210. case GGML_TYPE_Q4_0:
  7211. case GGML_TYPE_Q4_1:
  7212. case GGML_TYPE_Q5_0:
  7213. case GGML_TYPE_Q5_1:
  7214. case GGML_TYPE_Q8_0:
  7215. case GGML_TYPE_Q8_1:
  7216. case GGML_TYPE_Q2_K:
  7217. case GGML_TYPE_Q3_K:
  7218. case GGML_TYPE_Q4_K:
  7219. case GGML_TYPE_Q5_K:
  7220. case GGML_TYPE_Q6_K:
  7221. default:
  7222. {
  7223. GGML_ASSERT(false);
  7224. } break;
  7225. }
  7226. }
  7227. // ggml_compute_forward_sub
  7228. static void ggml_compute_forward_sub_f32(
  7229. const struct ggml_compute_params * params,
  7230. const struct ggml_tensor * src0,
  7231. const struct ggml_tensor * src1,
  7232. struct ggml_tensor * dst) {
  7233. assert(params->ith == 0);
  7234. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7236. return;
  7237. }
  7238. const int nr = ggml_nrows(src0);
  7239. GGML_TENSOR_BINARY_OP_LOCALS;
  7240. GGML_ASSERT( nb0 == sizeof(float));
  7241. GGML_ASSERT(nb00 == sizeof(float));
  7242. if (nb10 == sizeof(float)) {
  7243. for (int ir = 0; ir < nr; ++ir) {
  7244. // src0, src1 and dst are same shape => same indices
  7245. const int i3 = ir/(ne2*ne1);
  7246. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7247. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7248. #ifdef GGML_USE_ACCELERATE
  7249. vDSP_vsub(
  7250. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7251. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7252. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7253. ne0);
  7254. #else
  7255. ggml_vec_sub_f32(ne0,
  7256. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7257. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7258. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7259. #endif
  7260. // }
  7261. // }
  7262. }
  7263. } else {
  7264. // src1 is not contiguous
  7265. for (int ir = 0; ir < nr; ++ir) {
  7266. // src0, src1 and dst are same shape => same indices
  7267. const int i3 = ir/(ne2*ne1);
  7268. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7269. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7270. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7271. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7272. for (int i0 = 0; i0 < ne0; i0++) {
  7273. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7274. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7275. }
  7276. }
  7277. }
  7278. }
  7279. static void ggml_compute_forward_sub(
  7280. const struct ggml_compute_params * params,
  7281. const struct ggml_tensor * src0,
  7282. const struct ggml_tensor * src1,
  7283. struct ggml_tensor * dst) {
  7284. switch (src0->type) {
  7285. case GGML_TYPE_F32:
  7286. {
  7287. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7288. } break;
  7289. default:
  7290. {
  7291. GGML_ASSERT(false);
  7292. } break;
  7293. }
  7294. }
  7295. // ggml_compute_forward_mul
  7296. static void ggml_compute_forward_mul_f32(
  7297. const struct ggml_compute_params * params,
  7298. const struct ggml_tensor * src0,
  7299. const struct ggml_tensor * src1,
  7300. struct ggml_tensor * dst) {
  7301. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7303. return;
  7304. }
  7305. const int ith = params->ith;
  7306. const int nth = params->nth;
  7307. #ifdef GGML_USE_CLBLAST
  7308. if (src1->backend == GGML_BACKEND_GPU) {
  7309. if (ith == 0) {
  7310. ggml_cl_mul(src0, src1, dst);
  7311. }
  7312. return;
  7313. }
  7314. #endif
  7315. const int64_t nr = ggml_nrows(src0);
  7316. GGML_TENSOR_BINARY_OP_LOCALS;
  7317. GGML_ASSERT( nb0 == sizeof(float));
  7318. GGML_ASSERT(nb00 == sizeof(float));
  7319. GGML_ASSERT(ne00 == ne10);
  7320. if (nb10 == sizeof(float)) {
  7321. for (int64_t ir = ith; ir < nr; ir += nth) {
  7322. // src0 and dst are same shape => same indices
  7323. const int64_t i03 = ir/(ne02*ne01);
  7324. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7325. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7326. const int64_t i13 = i03 % ne13;
  7327. const int64_t i12 = i02 % ne12;
  7328. const int64_t i11 = i01 % ne11;
  7329. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7330. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7331. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7332. #ifdef GGML_USE_ACCELERATE
  7333. UNUSED(ggml_vec_mul_f32);
  7334. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7335. #else
  7336. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7337. #endif
  7338. // }
  7339. // }
  7340. }
  7341. } else {
  7342. // src1 is not contiguous
  7343. for (int64_t ir = ith; ir < nr; ir += nth) {
  7344. // src0 and dst are same shape => same indices
  7345. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7346. const int64_t i03 = ir/(ne02*ne01);
  7347. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7348. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7349. const int64_t i13 = i03 % ne13;
  7350. const int64_t i12 = i02 % ne12;
  7351. const int64_t i11 = i01 % ne11;
  7352. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7353. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7354. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7355. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7356. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7357. }
  7358. }
  7359. }
  7360. }
  7361. static void ggml_compute_forward_mul(
  7362. const struct ggml_compute_params * params,
  7363. const struct ggml_tensor * src0,
  7364. const struct ggml_tensor * src1,
  7365. struct ggml_tensor * dst) {
  7366. switch (src0->type) {
  7367. case GGML_TYPE_F32:
  7368. {
  7369. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7370. } break;
  7371. default:
  7372. {
  7373. GGML_ASSERT(false);
  7374. } break;
  7375. }
  7376. }
  7377. // ggml_compute_forward_div
  7378. static void ggml_compute_forward_div_f32(
  7379. const struct ggml_compute_params * params,
  7380. const struct ggml_tensor * src0,
  7381. const struct ggml_tensor * src1,
  7382. struct ggml_tensor * dst) {
  7383. assert(params->ith == 0);
  7384. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7385. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7386. return;
  7387. }
  7388. const int nr = ggml_nrows(src0);
  7389. GGML_TENSOR_BINARY_OP_LOCALS;
  7390. GGML_ASSERT( nb0 == sizeof(float));
  7391. GGML_ASSERT(nb00 == sizeof(float));
  7392. if (nb10 == sizeof(float)) {
  7393. for (int ir = 0; ir < nr; ++ir) {
  7394. // src0, src1 and dst are same shape => same indices
  7395. const int i3 = ir/(ne2*ne1);
  7396. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7397. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7398. #ifdef GGML_USE_ACCELERATE
  7399. vDSP_vdiv(
  7400. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7401. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7402. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7403. ne0);
  7404. #else
  7405. ggml_vec_div_f32(ne0,
  7406. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7407. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7408. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7409. #endif
  7410. // }
  7411. // }
  7412. }
  7413. } else {
  7414. // src1 is not contiguous
  7415. for (int ir = 0; ir < nr; ++ir) {
  7416. // src0, src1 and dst are same shape => same indices
  7417. const int i3 = ir/(ne2*ne1);
  7418. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7419. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7420. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7421. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7422. for (int i0 = 0; i0 < ne0; i0++) {
  7423. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7424. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7425. }
  7426. }
  7427. }
  7428. }
  7429. static void ggml_compute_forward_div(
  7430. const struct ggml_compute_params * params,
  7431. const struct ggml_tensor * src0,
  7432. const struct ggml_tensor * src1,
  7433. struct ggml_tensor * dst) {
  7434. switch (src0->type) {
  7435. case GGML_TYPE_F32:
  7436. {
  7437. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7438. } break;
  7439. default:
  7440. {
  7441. GGML_ASSERT(false);
  7442. } break;
  7443. }
  7444. }
  7445. // ggml_compute_forward_sqr
  7446. static void ggml_compute_forward_sqr_f32(
  7447. const struct ggml_compute_params * params,
  7448. const struct ggml_tensor * src0,
  7449. struct ggml_tensor * dst) {
  7450. assert(params->ith == 0);
  7451. assert(ggml_are_same_shape(src0, dst));
  7452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7453. return;
  7454. }
  7455. const int n = ggml_nrows(src0);
  7456. const int nc = src0->ne[0];
  7457. assert( dst->nb[0] == sizeof(float));
  7458. assert(src0->nb[0] == sizeof(float));
  7459. for (int i = 0; i < n; i++) {
  7460. ggml_vec_sqr_f32(nc,
  7461. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7462. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7463. }
  7464. }
  7465. static void ggml_compute_forward_sqr(
  7466. const struct ggml_compute_params * params,
  7467. const struct ggml_tensor * src0,
  7468. struct ggml_tensor * dst) {
  7469. switch (src0->type) {
  7470. case GGML_TYPE_F32:
  7471. {
  7472. ggml_compute_forward_sqr_f32(params, src0, dst);
  7473. } break;
  7474. default:
  7475. {
  7476. GGML_ASSERT(false);
  7477. } break;
  7478. }
  7479. }
  7480. // ggml_compute_forward_sqrt
  7481. static void ggml_compute_forward_sqrt_f32(
  7482. const struct ggml_compute_params * params,
  7483. const struct ggml_tensor * src0,
  7484. struct ggml_tensor * dst) {
  7485. assert(params->ith == 0);
  7486. assert(ggml_are_same_shape(src0, dst));
  7487. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7488. return;
  7489. }
  7490. const int n = ggml_nrows(src0);
  7491. const int nc = src0->ne[0];
  7492. assert( dst->nb[0] == sizeof(float));
  7493. assert(src0->nb[0] == sizeof(float));
  7494. for (int i = 0; i < n; i++) {
  7495. ggml_vec_sqrt_f32(nc,
  7496. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7497. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7498. }
  7499. }
  7500. static void ggml_compute_forward_sqrt(
  7501. const struct ggml_compute_params * params,
  7502. const struct ggml_tensor * src0,
  7503. struct ggml_tensor * dst) {
  7504. switch (src0->type) {
  7505. case GGML_TYPE_F32:
  7506. {
  7507. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7508. } break;
  7509. default:
  7510. {
  7511. GGML_ASSERT(false);
  7512. } break;
  7513. }
  7514. }
  7515. // ggml_compute_forward_log
  7516. static void ggml_compute_forward_log_f32(
  7517. const struct ggml_compute_params * params,
  7518. const struct ggml_tensor * src0,
  7519. struct ggml_tensor * dst) {
  7520. GGML_ASSERT(params->ith == 0);
  7521. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7522. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7523. return;
  7524. }
  7525. const int n = ggml_nrows(src0);
  7526. const int nc = src0->ne[0];
  7527. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7528. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7529. for (int i = 0; i < n; i++) {
  7530. ggml_vec_log_f32(nc,
  7531. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7532. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7533. }
  7534. }
  7535. static void ggml_compute_forward_log(
  7536. const struct ggml_compute_params * params,
  7537. const struct ggml_tensor * src0,
  7538. struct ggml_tensor * dst) {
  7539. switch (src0->type) {
  7540. case GGML_TYPE_F32:
  7541. {
  7542. ggml_compute_forward_log_f32(params, src0, dst);
  7543. } break;
  7544. default:
  7545. {
  7546. GGML_ASSERT(false);
  7547. } break;
  7548. }
  7549. }
  7550. // ggml_compute_forward_sum
  7551. static void ggml_compute_forward_sum_f32(
  7552. const struct ggml_compute_params * params,
  7553. const struct ggml_tensor * src0,
  7554. struct ggml_tensor * dst) {
  7555. assert(params->ith == 0);
  7556. assert(ggml_is_scalar(dst));
  7557. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7558. return;
  7559. }
  7560. assert(ggml_is_scalar(dst));
  7561. assert(src0->nb[0] == sizeof(float));
  7562. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7563. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7564. ggml_float sum = 0;
  7565. ggml_float row_sum = 0;
  7566. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7567. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7568. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7569. ggml_vec_sum_ggf(ne00,
  7570. &row_sum,
  7571. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7572. sum += row_sum;
  7573. }
  7574. }
  7575. }
  7576. ((float *) dst->data)[0] = sum;
  7577. }
  7578. static void ggml_compute_forward_sum(
  7579. const struct ggml_compute_params * params,
  7580. const struct ggml_tensor * src0,
  7581. struct ggml_tensor * dst) {
  7582. switch (src0->type) {
  7583. case GGML_TYPE_F32:
  7584. {
  7585. ggml_compute_forward_sum_f32(params, src0, dst);
  7586. } break;
  7587. default:
  7588. {
  7589. GGML_ASSERT(false);
  7590. } break;
  7591. }
  7592. }
  7593. // ggml_compute_forward_sum_rows
  7594. static void ggml_compute_forward_sum_rows_f32(
  7595. const struct ggml_compute_params * params,
  7596. const struct ggml_tensor * src0,
  7597. struct ggml_tensor * dst) {
  7598. GGML_ASSERT(params->ith == 0);
  7599. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7600. return;
  7601. }
  7602. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7603. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7604. GGML_TENSOR_UNARY_OP_LOCALS;
  7605. GGML_ASSERT(ne0 == 1);
  7606. GGML_ASSERT(ne1 == ne01);
  7607. GGML_ASSERT(ne2 == ne02);
  7608. GGML_ASSERT(ne3 == ne03);
  7609. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7610. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7611. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7612. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7613. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7614. float row_sum = 0;
  7615. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7616. dst_row[0] = row_sum;
  7617. }
  7618. }
  7619. }
  7620. }
  7621. static void ggml_compute_forward_sum_rows(
  7622. const struct ggml_compute_params * params,
  7623. const struct ggml_tensor * src0,
  7624. struct ggml_tensor * dst) {
  7625. switch (src0->type) {
  7626. case GGML_TYPE_F32:
  7627. {
  7628. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7629. } break;
  7630. default:
  7631. {
  7632. GGML_ASSERT(false);
  7633. } break;
  7634. }
  7635. }
  7636. // ggml_compute_forward_mean
  7637. static void ggml_compute_forward_mean_f32(
  7638. const struct ggml_compute_params * params,
  7639. const struct ggml_tensor * src0,
  7640. struct ggml_tensor * dst) {
  7641. assert(params->ith == 0);
  7642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7643. return;
  7644. }
  7645. assert(src0->nb[0] == sizeof(float));
  7646. GGML_TENSOR_UNARY_OP_LOCALS;
  7647. assert(ne0 == 1);
  7648. assert(ne1 == ne01);
  7649. assert(ne2 == ne02);
  7650. assert(ne3 == ne03);
  7651. UNUSED(ne0);
  7652. UNUSED(ne1);
  7653. UNUSED(ne2);
  7654. UNUSED(ne3);
  7655. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7656. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7657. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7658. ggml_vec_sum_f32(ne00,
  7659. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7660. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7661. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7662. }
  7663. }
  7664. }
  7665. }
  7666. static void ggml_compute_forward_mean(
  7667. const struct ggml_compute_params * params,
  7668. const struct ggml_tensor * src0,
  7669. struct ggml_tensor * dst) {
  7670. switch (src0->type) {
  7671. case GGML_TYPE_F32:
  7672. {
  7673. ggml_compute_forward_mean_f32(params, src0, dst);
  7674. } break;
  7675. default:
  7676. {
  7677. GGML_ASSERT(false);
  7678. } break;
  7679. }
  7680. }
  7681. // ggml_compute_forward_argmax
  7682. static void ggml_compute_forward_argmax_f32(
  7683. const struct ggml_compute_params * params,
  7684. const struct ggml_tensor * src0,
  7685. struct ggml_tensor * dst) {
  7686. assert(params->ith == 0);
  7687. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7688. return;
  7689. }
  7690. assert(src0->nb[0] == sizeof(float));
  7691. assert(dst->nb[0] == sizeof(float));
  7692. const int64_t ne00 = src0->ne[0];
  7693. const int64_t ne01 = src0->ne[1];
  7694. const size_t nb01 = src0->nb[1];
  7695. const size_t nb0 = dst->nb[0];
  7696. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7697. float * src = (float *) ((char *) src0->data + i1*nb01);
  7698. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7699. int v = 0;
  7700. ggml_vec_argmax_f32(ne00, &v, src);
  7701. dst_[0] = v;
  7702. }
  7703. }
  7704. static void ggml_compute_forward_argmax(
  7705. const struct ggml_compute_params * params,
  7706. const struct ggml_tensor * src0,
  7707. struct ggml_tensor * dst) {
  7708. switch (src0->type) {
  7709. case GGML_TYPE_F32:
  7710. {
  7711. ggml_compute_forward_argmax_f32(params, src0, dst);
  7712. } break;
  7713. default:
  7714. {
  7715. GGML_ASSERT(false);
  7716. } break;
  7717. }
  7718. }
  7719. // ggml_compute_forward_repeat
  7720. static void ggml_compute_forward_repeat_f32(
  7721. const struct ggml_compute_params * params,
  7722. const struct ggml_tensor * src0,
  7723. struct ggml_tensor * dst) {
  7724. GGML_ASSERT(params->ith == 0);
  7725. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7726. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7727. return;
  7728. }
  7729. GGML_TENSOR_UNARY_OP_LOCALS;
  7730. // guaranteed to be an integer due to the check in ggml_can_repeat
  7731. const int nr0 = (int)(ne0/ne00);
  7732. const int nr1 = (int)(ne1/ne01);
  7733. const int nr2 = (int)(ne2/ne02);
  7734. const int nr3 = (int)(ne3/ne03);
  7735. // TODO: support for transposed / permuted tensors
  7736. GGML_ASSERT(nb0 == sizeof(float));
  7737. GGML_ASSERT(nb00 == sizeof(float));
  7738. // TODO: maybe this is not optimal?
  7739. for (int i3 = 0; i3 < nr3; i3++) {
  7740. for (int k3 = 0; k3 < ne03; k3++) {
  7741. for (int i2 = 0; i2 < nr2; i2++) {
  7742. for (int k2 = 0; k2 < ne02; k2++) {
  7743. for (int i1 = 0; i1 < nr1; i1++) {
  7744. for (int k1 = 0; k1 < ne01; k1++) {
  7745. for (int i0 = 0; i0 < nr0; i0++) {
  7746. ggml_vec_cpy_f32(ne00,
  7747. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7748. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7749. }
  7750. }
  7751. }
  7752. }
  7753. }
  7754. }
  7755. }
  7756. }
  7757. static void ggml_compute_forward_repeat(
  7758. const struct ggml_compute_params * params,
  7759. const struct ggml_tensor * src0,
  7760. struct ggml_tensor * dst) {
  7761. switch (src0->type) {
  7762. case GGML_TYPE_F32:
  7763. {
  7764. ggml_compute_forward_repeat_f32(params, src0, dst);
  7765. } break;
  7766. default:
  7767. {
  7768. GGML_ASSERT(false);
  7769. } break;
  7770. }
  7771. }
  7772. // ggml_compute_forward_repeat_back
  7773. static void ggml_compute_forward_repeat_back_f32(
  7774. const struct ggml_compute_params * params,
  7775. const struct ggml_tensor * src0,
  7776. struct ggml_tensor * dst) {
  7777. GGML_ASSERT(params->ith == 0);
  7778. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7779. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7780. return;
  7781. }
  7782. GGML_TENSOR_UNARY_OP_LOCALS;
  7783. // guaranteed to be an integer due to the check in ggml_can_repeat
  7784. const int nr0 = (int)(ne00/ne0);
  7785. const int nr1 = (int)(ne01/ne1);
  7786. const int nr2 = (int)(ne02/ne2);
  7787. const int nr3 = (int)(ne03/ne3);
  7788. // TODO: support for transposed / permuted tensors
  7789. GGML_ASSERT(nb0 == sizeof(float));
  7790. GGML_ASSERT(nb00 == sizeof(float));
  7791. if (ggml_is_contiguous(dst)) {
  7792. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7793. } else {
  7794. for (int k3 = 0; k3 < ne3; k3++) {
  7795. for (int k2 = 0; k2 < ne2; k2++) {
  7796. for (int k1 = 0; k1 < ne1; k1++) {
  7797. ggml_vec_set_f32(ne0,
  7798. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7799. 0);
  7800. }
  7801. }
  7802. }
  7803. }
  7804. // TODO: maybe this is not optimal?
  7805. for (int i3 = 0; i3 < nr3; i3++) {
  7806. for (int k3 = 0; k3 < ne3; k3++) {
  7807. for (int i2 = 0; i2 < nr2; i2++) {
  7808. for (int k2 = 0; k2 < ne2; k2++) {
  7809. for (int i1 = 0; i1 < nr1; i1++) {
  7810. for (int k1 = 0; k1 < ne1; k1++) {
  7811. for (int i0 = 0; i0 < nr0; i0++) {
  7812. ggml_vec_acc_f32(ne0,
  7813. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7814. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7815. }
  7816. }
  7817. }
  7818. }
  7819. }
  7820. }
  7821. }
  7822. }
  7823. static void ggml_compute_forward_repeat_back(
  7824. const struct ggml_compute_params * params,
  7825. const struct ggml_tensor * src0,
  7826. struct ggml_tensor * dst) {
  7827. switch (src0->type) {
  7828. case GGML_TYPE_F32:
  7829. {
  7830. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7831. } break;
  7832. default:
  7833. {
  7834. GGML_ASSERT(false);
  7835. } break;
  7836. }
  7837. }
  7838. // ggml_compute_forward_abs
  7839. static void ggml_compute_forward_abs_f32(
  7840. const struct ggml_compute_params * params,
  7841. const struct ggml_tensor * src0,
  7842. struct ggml_tensor * dst) {
  7843. assert(params->ith == 0);
  7844. assert(ggml_are_same_shape(src0, dst));
  7845. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7846. return;
  7847. }
  7848. const int n = ggml_nrows(src0);
  7849. const int nc = src0->ne[0];
  7850. assert(dst->nb[0] == sizeof(float));
  7851. assert(src0->nb[0] == sizeof(float));
  7852. for (int i = 0; i < n; i++) {
  7853. ggml_vec_abs_f32(nc,
  7854. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7855. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7856. }
  7857. }
  7858. static void ggml_compute_forward_abs(
  7859. const struct ggml_compute_params * params,
  7860. const struct ggml_tensor * src0,
  7861. struct ggml_tensor * dst) {
  7862. switch (src0->type) {
  7863. case GGML_TYPE_F32:
  7864. {
  7865. ggml_compute_forward_abs_f32(params, src0, dst);
  7866. } break;
  7867. default:
  7868. {
  7869. GGML_ASSERT(false);
  7870. } break;
  7871. }
  7872. }
  7873. // ggml_compute_forward_sgn
  7874. static void ggml_compute_forward_sgn_f32(
  7875. const struct ggml_compute_params * params,
  7876. const struct ggml_tensor * src0,
  7877. struct ggml_tensor * dst) {
  7878. assert(params->ith == 0);
  7879. assert(ggml_are_same_shape(src0, dst));
  7880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7881. return;
  7882. }
  7883. const int n = ggml_nrows(src0);
  7884. const int nc = src0->ne[0];
  7885. assert(dst->nb[0] == sizeof(float));
  7886. assert(src0->nb[0] == sizeof(float));
  7887. for (int i = 0; i < n; i++) {
  7888. ggml_vec_sgn_f32(nc,
  7889. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7890. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7891. }
  7892. }
  7893. static void ggml_compute_forward_sgn(
  7894. const struct ggml_compute_params * params,
  7895. const struct ggml_tensor * src0,
  7896. struct ggml_tensor * dst) {
  7897. switch (src0->type) {
  7898. case GGML_TYPE_F32:
  7899. {
  7900. ggml_compute_forward_sgn_f32(params, src0, dst);
  7901. } break;
  7902. default:
  7903. {
  7904. GGML_ASSERT(false);
  7905. } break;
  7906. }
  7907. }
  7908. // ggml_compute_forward_neg
  7909. static void ggml_compute_forward_neg_f32(
  7910. const struct ggml_compute_params * params,
  7911. const struct ggml_tensor * src0,
  7912. struct ggml_tensor * dst) {
  7913. assert(params->ith == 0);
  7914. assert(ggml_are_same_shape(src0, dst));
  7915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7916. return;
  7917. }
  7918. const int n = ggml_nrows(src0);
  7919. const int nc = src0->ne[0];
  7920. assert(dst->nb[0] == sizeof(float));
  7921. assert(src0->nb[0] == sizeof(float));
  7922. for (int i = 0; i < n; i++) {
  7923. ggml_vec_neg_f32(nc,
  7924. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7925. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7926. }
  7927. }
  7928. static void ggml_compute_forward_neg(
  7929. const struct ggml_compute_params * params,
  7930. const struct ggml_tensor * src0,
  7931. struct ggml_tensor * dst) {
  7932. switch (src0->type) {
  7933. case GGML_TYPE_F32:
  7934. {
  7935. ggml_compute_forward_neg_f32(params, src0, dst);
  7936. } break;
  7937. default:
  7938. {
  7939. GGML_ASSERT(false);
  7940. } break;
  7941. }
  7942. }
  7943. // ggml_compute_forward_step
  7944. static void ggml_compute_forward_step_f32(
  7945. const struct ggml_compute_params * params,
  7946. const struct ggml_tensor * src0,
  7947. struct ggml_tensor * dst) {
  7948. assert(params->ith == 0);
  7949. assert(ggml_are_same_shape(src0, dst));
  7950. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7951. return;
  7952. }
  7953. const int n = ggml_nrows(src0);
  7954. const int nc = src0->ne[0];
  7955. assert(dst->nb[0] == sizeof(float));
  7956. assert(src0->nb[0] == sizeof(float));
  7957. for (int i = 0; i < n; i++) {
  7958. ggml_vec_step_f32(nc,
  7959. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7960. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7961. }
  7962. }
  7963. static void ggml_compute_forward_step(
  7964. const struct ggml_compute_params * params,
  7965. const struct ggml_tensor * src0,
  7966. struct ggml_tensor * dst) {
  7967. switch (src0->type) {
  7968. case GGML_TYPE_F32:
  7969. {
  7970. ggml_compute_forward_step_f32(params, src0, dst);
  7971. } break;
  7972. default:
  7973. {
  7974. GGML_ASSERT(false);
  7975. } break;
  7976. }
  7977. }
  7978. // ggml_compute_forward_tanh
  7979. static void ggml_compute_forward_tanh_f32(
  7980. const struct ggml_compute_params * params,
  7981. const struct ggml_tensor * src0,
  7982. struct ggml_tensor * dst) {
  7983. assert(params->ith == 0);
  7984. assert(ggml_are_same_shape(src0, dst));
  7985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7986. return;
  7987. }
  7988. const int n = ggml_nrows(src0);
  7989. const int nc = src0->ne[0];
  7990. assert(dst->nb[0] == sizeof(float));
  7991. assert(src0->nb[0] == sizeof(float));
  7992. for (int i = 0; i < n; i++) {
  7993. ggml_vec_tanh_f32(nc,
  7994. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7995. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7996. }
  7997. }
  7998. static void ggml_compute_forward_tanh(
  7999. const struct ggml_compute_params * params,
  8000. const struct ggml_tensor * src0,
  8001. struct ggml_tensor * dst) {
  8002. switch (src0->type) {
  8003. case GGML_TYPE_F32:
  8004. {
  8005. ggml_compute_forward_tanh_f32(params, src0, dst);
  8006. } break;
  8007. default:
  8008. {
  8009. GGML_ASSERT(false);
  8010. } break;
  8011. }
  8012. }
  8013. // ggml_compute_forward_elu
  8014. static void ggml_compute_forward_elu_f32(
  8015. const struct ggml_compute_params * params,
  8016. const struct ggml_tensor * src0,
  8017. struct ggml_tensor * dst) {
  8018. assert(params->ith == 0);
  8019. assert(ggml_are_same_shape(src0, dst));
  8020. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8021. return;
  8022. }
  8023. const int n = ggml_nrows(src0);
  8024. const int nc = src0->ne[0];
  8025. assert(dst->nb[0] == sizeof(float));
  8026. assert(src0->nb[0] == sizeof(float));
  8027. for (int i = 0; i < n; i++) {
  8028. ggml_vec_elu_f32(nc,
  8029. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8030. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8031. }
  8032. }
  8033. static void ggml_compute_forward_elu(
  8034. const struct ggml_compute_params * params,
  8035. const struct ggml_tensor * src0,
  8036. struct ggml_tensor * dst) {
  8037. switch (src0->type) {
  8038. case GGML_TYPE_F32:
  8039. {
  8040. ggml_compute_forward_elu_f32(params, src0, dst);
  8041. } break;
  8042. default:
  8043. {
  8044. GGML_ASSERT(false);
  8045. } break;
  8046. }
  8047. }
  8048. // ggml_compute_forward_relu
  8049. static void ggml_compute_forward_relu_f32(
  8050. const struct ggml_compute_params * params,
  8051. const struct ggml_tensor * src0,
  8052. struct ggml_tensor * dst) {
  8053. assert(params->ith == 0);
  8054. assert(ggml_are_same_shape(src0, dst));
  8055. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8056. return;
  8057. }
  8058. const int n = ggml_nrows(src0);
  8059. const int nc = src0->ne[0];
  8060. assert(dst->nb[0] == sizeof(float));
  8061. assert(src0->nb[0] == sizeof(float));
  8062. for (int i = 0; i < n; i++) {
  8063. ggml_vec_relu_f32(nc,
  8064. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8065. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8066. }
  8067. }
  8068. static void ggml_compute_forward_relu(
  8069. const struct ggml_compute_params * params,
  8070. const struct ggml_tensor * src0,
  8071. struct ggml_tensor * dst) {
  8072. switch (src0->type) {
  8073. case GGML_TYPE_F32:
  8074. {
  8075. ggml_compute_forward_relu_f32(params, src0, dst);
  8076. } break;
  8077. default:
  8078. {
  8079. GGML_ASSERT(false);
  8080. } break;
  8081. }
  8082. }
  8083. // ggml_compute_forward_gelu
  8084. static void ggml_compute_forward_gelu_f32(
  8085. const struct ggml_compute_params * params,
  8086. const struct ggml_tensor * src0,
  8087. struct ggml_tensor * dst) {
  8088. GGML_ASSERT(ggml_is_contiguous(src0));
  8089. GGML_ASSERT(ggml_is_contiguous(dst));
  8090. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8091. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8092. return;
  8093. }
  8094. const int ith = params->ith;
  8095. const int nth = params->nth;
  8096. const int nc = src0->ne[0];
  8097. const int nr = ggml_nrows(src0);
  8098. // rows per thread
  8099. const int dr = (nr + nth - 1)/nth;
  8100. // row range for this thread
  8101. const int ir0 = dr*ith;
  8102. const int ir1 = MIN(ir0 + dr, nr);
  8103. for (int i1 = ir0; i1 < ir1; i1++) {
  8104. ggml_vec_gelu_f32(nc,
  8105. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8106. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8107. #ifndef NDEBUG
  8108. for (int k = 0; k < nc; k++) {
  8109. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8110. UNUSED(x);
  8111. assert(!isnan(x));
  8112. assert(!isinf(x));
  8113. }
  8114. #endif
  8115. }
  8116. }
  8117. static void ggml_compute_forward_gelu(
  8118. const struct ggml_compute_params * params,
  8119. const struct ggml_tensor * src0,
  8120. struct ggml_tensor * dst) {
  8121. switch (src0->type) {
  8122. case GGML_TYPE_F32:
  8123. {
  8124. ggml_compute_forward_gelu_f32(params, src0, dst);
  8125. } break;
  8126. default:
  8127. {
  8128. GGML_ASSERT(false);
  8129. } break;
  8130. }
  8131. }
  8132. // ggml_compute_forward_gelu_quick
  8133. static void ggml_compute_forward_gelu_quick_f32(
  8134. const struct ggml_compute_params * params,
  8135. const struct ggml_tensor * src0,
  8136. struct ggml_tensor * dst) {
  8137. GGML_ASSERT(ggml_is_contiguous(src0));
  8138. GGML_ASSERT(ggml_is_contiguous(dst));
  8139. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8140. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8141. return;
  8142. }
  8143. const int ith = params->ith;
  8144. const int nth = params->nth;
  8145. const int nc = src0->ne[0];
  8146. const int nr = ggml_nrows(src0);
  8147. // rows per thread
  8148. const int dr = (nr + nth - 1)/nth;
  8149. // row range for this thread
  8150. const int ir0 = dr*ith;
  8151. const int ir1 = MIN(ir0 + dr, nr);
  8152. for (int i1 = ir0; i1 < ir1; i1++) {
  8153. ggml_vec_gelu_quick_f32(nc,
  8154. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8155. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8156. #ifndef NDEBUG
  8157. for (int k = 0; k < nc; k++) {
  8158. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8159. UNUSED(x);
  8160. assert(!isnan(x));
  8161. assert(!isinf(x));
  8162. }
  8163. #endif
  8164. }
  8165. }
  8166. static void ggml_compute_forward_gelu_quick(
  8167. const struct ggml_compute_params * params,
  8168. const struct ggml_tensor * src0,
  8169. struct ggml_tensor * dst) {
  8170. switch (src0->type) {
  8171. case GGML_TYPE_F32:
  8172. {
  8173. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8174. } break;
  8175. default:
  8176. {
  8177. GGML_ASSERT(false);
  8178. } break;
  8179. }
  8180. }
  8181. // ggml_compute_forward_silu
  8182. static void ggml_compute_forward_silu_f32(
  8183. const struct ggml_compute_params * params,
  8184. const struct ggml_tensor * src0,
  8185. struct ggml_tensor * dst) {
  8186. GGML_ASSERT(ggml_is_contiguous(src0));
  8187. GGML_ASSERT(ggml_is_contiguous(dst));
  8188. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8189. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8190. return;
  8191. }
  8192. const int ith = params->ith;
  8193. const int nth = params->nth;
  8194. const int nc = src0->ne[0];
  8195. const int nr = ggml_nrows(src0);
  8196. // rows per thread
  8197. const int dr = (nr + nth - 1)/nth;
  8198. // row range for this thread
  8199. const int ir0 = dr*ith;
  8200. const int ir1 = MIN(ir0 + dr, nr);
  8201. for (int i1 = ir0; i1 < ir1; i1++) {
  8202. ggml_vec_silu_f32(nc,
  8203. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8204. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8205. #ifndef NDEBUG
  8206. for (int k = 0; k < nc; k++) {
  8207. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8208. UNUSED(x);
  8209. assert(!isnan(x));
  8210. assert(!isinf(x));
  8211. }
  8212. #endif
  8213. }
  8214. }
  8215. static void ggml_compute_forward_silu(
  8216. const struct ggml_compute_params * params,
  8217. const struct ggml_tensor * src0,
  8218. struct ggml_tensor * dst) {
  8219. switch (src0->type) {
  8220. case GGML_TYPE_F32:
  8221. {
  8222. ggml_compute_forward_silu_f32(params, src0, dst);
  8223. } break;
  8224. default:
  8225. {
  8226. GGML_ASSERT(false);
  8227. } break;
  8228. }
  8229. }
  8230. // ggml_compute_forward_silu_back
  8231. static void ggml_compute_forward_silu_back_f32(
  8232. const struct ggml_compute_params * params,
  8233. const struct ggml_tensor * src0,
  8234. const struct ggml_tensor * grad,
  8235. struct ggml_tensor * dst) {
  8236. GGML_ASSERT(ggml_is_contiguous(grad));
  8237. GGML_ASSERT(ggml_is_contiguous(src0));
  8238. GGML_ASSERT(ggml_is_contiguous(dst));
  8239. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8240. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8241. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8242. return;
  8243. }
  8244. const int ith = params->ith;
  8245. const int nth = params->nth;
  8246. const int nc = src0->ne[0];
  8247. const int nr = ggml_nrows(src0);
  8248. // rows per thread
  8249. const int dr = (nr + nth - 1)/nth;
  8250. // row range for this thread
  8251. const int ir0 = dr*ith;
  8252. const int ir1 = MIN(ir0 + dr, nr);
  8253. for (int i1 = ir0; i1 < ir1; i1++) {
  8254. ggml_vec_silu_backward_f32(nc,
  8255. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8256. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8257. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8258. #ifndef NDEBUG
  8259. for (int k = 0; k < nc; k++) {
  8260. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8261. UNUSED(x);
  8262. assert(!isnan(x));
  8263. assert(!isinf(x));
  8264. }
  8265. #endif
  8266. }
  8267. }
  8268. static void ggml_compute_forward_silu_back(
  8269. const struct ggml_compute_params * params,
  8270. const struct ggml_tensor * src0,
  8271. const struct ggml_tensor * grad,
  8272. struct ggml_tensor * dst) {
  8273. switch (src0->type) {
  8274. case GGML_TYPE_F32:
  8275. {
  8276. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8277. } break;
  8278. default:
  8279. {
  8280. GGML_ASSERT(false);
  8281. } break;
  8282. }
  8283. }
  8284. // ggml_compute_forward_norm
  8285. static void ggml_compute_forward_norm_f32(
  8286. const struct ggml_compute_params * params,
  8287. const struct ggml_tensor * src0,
  8288. struct ggml_tensor * dst) {
  8289. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8290. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8291. return;
  8292. }
  8293. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8294. const int ith = params->ith;
  8295. const int nth = params->nth;
  8296. GGML_TENSOR_UNARY_OP_LOCALS;
  8297. const float eps = 1e-5f; // TODO: make this a parameter
  8298. // TODO: optimize
  8299. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8300. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8301. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8302. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8303. ggml_float sum = 0.0;
  8304. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8305. sum += (ggml_float)x[i00];
  8306. }
  8307. float mean = sum/ne00;
  8308. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8309. ggml_float sum2 = 0.0;
  8310. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8311. float v = x[i00] - mean;
  8312. y[i00] = v;
  8313. sum2 += (ggml_float)(v*v);
  8314. }
  8315. float variance = sum2/ne00;
  8316. const float scale = 1.0f/sqrtf(variance + eps);
  8317. ggml_vec_scale_f32(ne00, y, scale);
  8318. }
  8319. }
  8320. }
  8321. }
  8322. static void ggml_compute_forward_norm(
  8323. const struct ggml_compute_params * params,
  8324. const struct ggml_tensor * src0,
  8325. struct ggml_tensor * dst) {
  8326. switch (src0->type) {
  8327. case GGML_TYPE_F32:
  8328. {
  8329. ggml_compute_forward_norm_f32(params, src0, dst);
  8330. } break;
  8331. default:
  8332. {
  8333. GGML_ASSERT(false);
  8334. } break;
  8335. }
  8336. }
  8337. static void ggml_compute_forward_rms_norm_f32(
  8338. const struct ggml_compute_params * params,
  8339. const struct ggml_tensor * src0,
  8340. struct ggml_tensor * dst) {
  8341. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8343. return;
  8344. }
  8345. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8346. const int ith = params->ith;
  8347. const int nth = params->nth;
  8348. GGML_TENSOR_UNARY_OP_LOCALS;
  8349. const float eps = 1e-6f; // TODO: make this a parameter
  8350. // TODO: optimize
  8351. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8352. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8353. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8354. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8355. ggml_float sum = 0.0;
  8356. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8357. sum += (ggml_float)(x[i00] * x[i00]);
  8358. }
  8359. const float mean = sum/ne00;
  8360. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8361. memcpy(y, x, ne00 * sizeof(float));
  8362. // for (int i00 = 0; i00 < ne00; i00++) {
  8363. // y[i00] = x[i00];
  8364. // }
  8365. const float scale = 1.0f/sqrtf(mean + eps);
  8366. ggml_vec_scale_f32(ne00, y, scale);
  8367. }
  8368. }
  8369. }
  8370. }
  8371. static void ggml_compute_forward_rms_norm(
  8372. const struct ggml_compute_params * params,
  8373. const struct ggml_tensor * src0,
  8374. struct ggml_tensor * dst) {
  8375. switch (src0->type) {
  8376. case GGML_TYPE_F32:
  8377. {
  8378. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8379. } break;
  8380. default:
  8381. {
  8382. GGML_ASSERT(false);
  8383. } break;
  8384. }
  8385. }
  8386. static void ggml_compute_forward_rms_norm_back_f32(
  8387. const struct ggml_compute_params * params,
  8388. const struct ggml_tensor * src0,
  8389. const struct ggml_tensor * src1,
  8390. struct ggml_tensor * dst) {
  8391. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8392. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8393. return;
  8394. }
  8395. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8396. const int ith = params->ith;
  8397. const int nth = params->nth;
  8398. GGML_TENSOR_BINARY_OP_LOCALS;
  8399. const float eps = 1e-6f; // TODO: make this a parameter
  8400. // TODO: optimize
  8401. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8402. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8403. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8404. // src1 is same shape as src0 => same indices
  8405. const int64_t i11 = i01;
  8406. const int64_t i12 = i02;
  8407. const int64_t i13 = i03;
  8408. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8409. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8410. ggml_float sum_xx = 0.0;
  8411. ggml_float sum_xdz = 0.0;
  8412. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8413. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8414. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8415. }
  8416. //const float mean = (float)(sum_xx)/ne00;
  8417. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8418. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8419. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8420. // we could cache rms from forward pass to improve performance.
  8421. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8422. //const float rms = sqrtf(mean_eps);
  8423. const float rrms = 1.0f / sqrtf(mean_eps);
  8424. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8425. {
  8426. // z = rms_norm(x)
  8427. //
  8428. // rms_norm(src0) =
  8429. // scale(
  8430. // src0,
  8431. // div(
  8432. // 1,
  8433. // sqrt(
  8434. // add(
  8435. // scale(
  8436. // sum(
  8437. // sqr(
  8438. // src0)),
  8439. // (1.0/N)),
  8440. // eps))));
  8441. // postorder:
  8442. // ## op args grad
  8443. // 00 param src0 grad[#00]
  8444. // 01 const 1
  8445. // 02 sqr (#00) grad[#02]
  8446. // 03 sum (#02) grad[#03]
  8447. // 04 const 1/N
  8448. // 05 scale (#03, #04) grad[#05]
  8449. // 06 const eps
  8450. // 07 add (#05, #06) grad[#07]
  8451. // 08 sqrt (#07) grad[#08]
  8452. // 09 div (#01,#08) grad[#09]
  8453. // 10 scale (#00,#09) grad[#10]
  8454. //
  8455. // backward pass, given grad[#10]
  8456. // #10: scale
  8457. // grad[#00] += scale(grad[#10],#09)
  8458. // grad[#09] += sum(mul(grad[#10],#00))
  8459. // #09: div
  8460. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8461. // #08: sqrt
  8462. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8463. // #07: add
  8464. // grad[#05] += grad[#07]
  8465. // #05: scale
  8466. // grad[#03] += scale(grad[#05],#04)
  8467. // #03: sum
  8468. // grad[#02] += repeat(grad[#03], #02)
  8469. // #02:
  8470. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8471. //
  8472. // substitute and simplify:
  8473. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8474. // grad[#02] = repeat(grad[#03], #02)
  8475. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8476. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8477. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8478. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8479. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8480. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8481. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8482. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8483. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8484. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8485. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8486. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8487. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8488. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8489. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8490. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8491. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8492. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8493. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8494. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8495. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8496. // a = b*c + d*e
  8497. // a = b*c*f/f + d*e*f/f
  8498. // a = (b*c*f + d*e*f)*(1/f)
  8499. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8500. // a = (b + d*e/c)*c
  8501. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8502. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8503. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8504. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8505. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8506. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8507. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8508. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8509. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8510. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8511. }
  8512. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8513. // post-order:
  8514. // dx := x
  8515. // dx := scale(dx,-mean_xdz/mean_eps)
  8516. // dx := add(dx, dz)
  8517. // dx := scale(dx, rrms)
  8518. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8519. ggml_vec_cpy_f32 (ne00, dx, x);
  8520. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8521. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8522. ggml_vec_acc_f32 (ne00, dx, dz);
  8523. ggml_vec_scale_f32(ne00, dx, rrms);
  8524. }
  8525. }
  8526. }
  8527. }
  8528. static void ggml_compute_forward_rms_norm_back(
  8529. const struct ggml_compute_params * params,
  8530. const struct ggml_tensor * src0,
  8531. const struct ggml_tensor * src1,
  8532. struct ggml_tensor * dst) {
  8533. switch (src0->type) {
  8534. case GGML_TYPE_F32:
  8535. {
  8536. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8537. } break;
  8538. default:
  8539. {
  8540. GGML_ASSERT(false);
  8541. } break;
  8542. }
  8543. }
  8544. // ggml_compute_forward_mul_mat
  8545. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8546. // helper function to determine if it is better to use BLAS or not
  8547. // for large matrices, BLAS is faster
  8548. static bool ggml_compute_forward_mul_mat_use_blas(
  8549. const struct ggml_tensor * src0,
  8550. const struct ggml_tensor * src1,
  8551. struct ggml_tensor * dst) {
  8552. //const int64_t ne00 = src0->ne[0];
  8553. //const int64_t ne01 = src0->ne[1];
  8554. const int64_t ne10 = src1->ne[0];
  8555. const int64_t ne0 = dst->ne[0];
  8556. const int64_t ne1 = dst->ne[1];
  8557. // TODO: find the optimal values for these
  8558. if (ggml_is_contiguous(src0) &&
  8559. ggml_is_contiguous(src1) &&
  8560. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8561. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8562. return true;
  8563. }
  8564. return false;
  8565. }
  8566. #endif
  8567. static void ggml_compute_forward_mul_mat_f32(
  8568. const struct ggml_compute_params * params,
  8569. const struct ggml_tensor * src0,
  8570. const struct ggml_tensor * src1,
  8571. struct ggml_tensor * dst) {
  8572. int64_t t0 = ggml_perf_time_us();
  8573. UNUSED(t0);
  8574. GGML_TENSOR_BINARY_OP_LOCALS;
  8575. const int ith = params->ith;
  8576. const int nth = params->nth;
  8577. assert(ne02 == ne12);
  8578. assert(ne03 == ne13);
  8579. assert(ne2 == ne12);
  8580. assert(ne3 == ne13);
  8581. // we don't support permuted src0 or src1
  8582. assert(nb00 == sizeof(float));
  8583. assert(nb10 == sizeof(float));
  8584. // dst cannot be transposed or permuted
  8585. assert(nb0 == sizeof(float));
  8586. assert(nb0 <= nb1);
  8587. assert(nb1 <= nb2);
  8588. assert(nb2 <= nb3);
  8589. assert(ne0 == ne01);
  8590. assert(ne1 == ne11);
  8591. assert(ne2 == ne02);
  8592. assert(ne3 == ne03);
  8593. // nb01 >= nb00 - src0 is not transposed
  8594. // compute by src0 rows
  8595. #if defined(GGML_USE_CLBLAST)
  8596. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8597. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8598. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8599. }
  8600. return;
  8601. }
  8602. #endif
  8603. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8604. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8605. if (params->ith != 0) {
  8606. return;
  8607. }
  8608. if (params->type == GGML_TASK_INIT) {
  8609. return;
  8610. }
  8611. if (params->type == GGML_TASK_FINALIZE) {
  8612. return;
  8613. }
  8614. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8615. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8616. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  8617. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8618. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8619. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8620. ne11, ne01, ne10,
  8621. 1.0f, y, ne10,
  8622. x, ne00,
  8623. 0.0f, d, ne01);
  8624. }
  8625. }
  8626. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8627. return;
  8628. }
  8629. #endif
  8630. if (params->type == GGML_TASK_INIT) {
  8631. return;
  8632. }
  8633. if (params->type == GGML_TASK_FINALIZE) {
  8634. return;
  8635. }
  8636. // parallelize by src0 rows using ggml_vec_dot_f32
  8637. // total rows in src0
  8638. const int nr = ne01*ne02*ne03;
  8639. // rows per thread
  8640. const int dr = (nr + nth - 1)/nth;
  8641. // row range for this thread
  8642. const int ir0 = dr*ith;
  8643. const int ir1 = MIN(ir0 + dr, nr);
  8644. for (int ir = ir0; ir < ir1; ++ir) {
  8645. // src0 indices
  8646. const int i03 = ir/(ne02*ne01);
  8647. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8648. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8649. for (int64_t ic = 0; ic < ne11; ++ic) {
  8650. // src1 indices
  8651. const int i13 = i03;
  8652. const int i12 = i02;
  8653. const int i11 = ic;
  8654. // dst indices
  8655. const int i0 = i01;
  8656. const int i1 = i11;
  8657. const int i2 = i02;
  8658. const int i3 = i03;
  8659. ggml_vec_dot_f32(ne00,
  8660. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8661. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  8662. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  8663. }
  8664. }
  8665. //int64_t t1 = ggml_perf_time_us();
  8666. //static int64_t acc = 0;
  8667. //acc += t1 - t0;
  8668. //if (t1 - t0 > 10) {
  8669. // printf("\n");
  8670. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8671. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8672. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8673. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8674. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8675. //}
  8676. }
  8677. static void ggml_compute_forward_mul_mat_f16_f32(
  8678. const struct ggml_compute_params * params,
  8679. const struct ggml_tensor * src0,
  8680. const struct ggml_tensor * src1,
  8681. struct ggml_tensor * dst) {
  8682. int64_t t0 = ggml_perf_time_us();
  8683. UNUSED(t0);
  8684. GGML_TENSOR_BINARY_OP_LOCALS;
  8685. //const int64_t ne = ne0*ne1*ne2*ne3;
  8686. const int ith = params->ith;
  8687. const int nth = params->nth;
  8688. GGML_ASSERT(ne02 == ne12);
  8689. GGML_ASSERT(ne03 == ne13);
  8690. GGML_ASSERT(ne2 == ne12);
  8691. GGML_ASSERT(ne3 == ne13);
  8692. // TODO: we don't support permuted src0
  8693. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8694. // dst cannot be transposed or permuted
  8695. GGML_ASSERT(nb0 == sizeof(float));
  8696. GGML_ASSERT(nb0 <= nb1);
  8697. GGML_ASSERT(nb1 <= nb2);
  8698. GGML_ASSERT(nb2 <= nb3);
  8699. GGML_ASSERT(ne0 == ne01);
  8700. GGML_ASSERT(ne1 == ne11);
  8701. GGML_ASSERT(ne2 == ne02);
  8702. GGML_ASSERT(ne3 == ne03);
  8703. // nb01 >= nb00 - src0 is not transposed
  8704. // compute by src0 rows
  8705. #if defined(GGML_USE_CLBLAST)
  8706. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8707. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8708. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8709. }
  8710. return;
  8711. }
  8712. #endif
  8713. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8714. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8715. GGML_ASSERT(nb10 == sizeof(float));
  8716. if (params->ith != 0) {
  8717. return;
  8718. }
  8719. if (params->type == GGML_TASK_INIT) {
  8720. return;
  8721. }
  8722. if (params->type == GGML_TASK_FINALIZE) {
  8723. return;
  8724. }
  8725. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8726. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8727. float * const wdata = params->wdata;
  8728. {
  8729. size_t id = 0;
  8730. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8731. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8732. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8733. }
  8734. }
  8735. assert(id*sizeof(float) <= params->wsize);
  8736. }
  8737. const float * x = wdata;
  8738. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8739. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8740. // zT = y * xT
  8741. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8742. ne11, ne01, ne10,
  8743. 1.0f, y, ne10,
  8744. x, ne00,
  8745. 0.0f, d, ne01);
  8746. }
  8747. }
  8748. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8749. return;
  8750. }
  8751. #endif
  8752. if (params->type == GGML_TASK_INIT) {
  8753. ggml_fp16_t * const wdata = params->wdata;
  8754. size_t id = 0;
  8755. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8756. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8757. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8758. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8759. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8760. }
  8761. }
  8762. }
  8763. }
  8764. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8765. return;
  8766. }
  8767. if (params->type == GGML_TASK_FINALIZE) {
  8768. return;
  8769. }
  8770. // fp16 -> half the size, so divide by 2
  8771. // TODO: do not support transposed src1
  8772. assert(nb10/2 == sizeof(ggml_fp16_t));
  8773. // parallelize by src0 rows using ggml_vec_dot_f16
  8774. // total rows in src0
  8775. const int nr = ne01*ne02*ne03;
  8776. // rows per thread
  8777. const int dr = (nr + nth - 1)/nth;
  8778. // row range for this thread
  8779. const int ir0 = dr*ith;
  8780. const int ir1 = MIN(ir0 + dr, nr);
  8781. ggml_fp16_t * wdata = params->wdata;
  8782. for (int ir = ir0; ir < ir1; ++ir) {
  8783. // src0 indices
  8784. const int i03 = ir/(ne02*ne01);
  8785. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8786. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8787. const int i13 = i03;
  8788. const int i12 = i02;
  8789. const int i0 = i01;
  8790. const int i2 = i02;
  8791. const int i3 = i03;
  8792. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8793. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8794. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8795. for (int64_t ic = 0; ic < ne11; ++ic) {
  8796. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8797. }
  8798. }
  8799. //int64_t t1 = ggml_time_us();
  8800. //static int64_t acc = 0;
  8801. //acc += t1 - t0;
  8802. //if (t1 - t0 > 10) {
  8803. // printf("\n");
  8804. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8805. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8806. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8807. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8808. //}
  8809. }
  8810. static void ggml_compute_forward_mul_mat_q_f32(
  8811. const struct ggml_compute_params * params,
  8812. const struct ggml_tensor * src0,
  8813. const struct ggml_tensor * src1,
  8814. struct ggml_tensor * dst) {
  8815. int64_t t0 = ggml_perf_time_us();
  8816. UNUSED(t0);
  8817. GGML_TENSOR_BINARY_OP_LOCALS;
  8818. const int ith = params->ith;
  8819. const int nth = params->nth;
  8820. GGML_ASSERT(ne02 == ne12);
  8821. GGML_ASSERT(ne03 == ne13);
  8822. GGML_ASSERT(ne2 == ne12);
  8823. GGML_ASSERT(ne3 == ne13);
  8824. const enum ggml_type type = src0->type;
  8825. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8826. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8827. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8828. // we don't support permuted src0 or src1
  8829. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8830. GGML_ASSERT(nb10 == sizeof(float));
  8831. // dst cannot be transposed or permuted
  8832. GGML_ASSERT(nb0 == sizeof(float));
  8833. GGML_ASSERT(nb0 <= nb1);
  8834. GGML_ASSERT(nb1 <= nb2);
  8835. GGML_ASSERT(nb2 <= nb3);
  8836. GGML_ASSERT(ne0 == ne01);
  8837. GGML_ASSERT(ne1 == ne11);
  8838. GGML_ASSERT(ne2 == ne02);
  8839. GGML_ASSERT(ne3 == ne03);
  8840. // nb01 >= nb00 - src0 is not transposed
  8841. // compute by src0 rows
  8842. #if defined(GGML_USE_CLBLAST)
  8843. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8844. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8845. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8846. }
  8847. return;
  8848. }
  8849. #endif
  8850. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8851. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8852. if (params->ith != 0) {
  8853. return;
  8854. }
  8855. if (params->type == GGML_TASK_INIT) {
  8856. return;
  8857. }
  8858. if (params->type == GGML_TASK_FINALIZE) {
  8859. return;
  8860. }
  8861. float * const wdata = params->wdata;
  8862. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8863. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8864. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8865. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8866. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8867. {
  8868. size_t id = 0;
  8869. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8870. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8871. id += ne00;
  8872. }
  8873. assert(id*sizeof(float) <= params->wsize);
  8874. }
  8875. const float * x = wdata;
  8876. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8877. ne11, ne01, ne10,
  8878. 1.0f, y, ne10,
  8879. x, ne00,
  8880. 0.0f, d, ne01);
  8881. }
  8882. }
  8883. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8884. return;
  8885. }
  8886. #endif
  8887. if (params->type == GGML_TASK_INIT) {
  8888. char * wdata = params->wdata;
  8889. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8890. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8891. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8892. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8893. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8894. wdata += row_size;
  8895. }
  8896. }
  8897. }
  8898. return;
  8899. }
  8900. if (params->type == GGML_TASK_FINALIZE) {
  8901. return;
  8902. }
  8903. // parallelize by src0 rows using ggml_vec_dot_q
  8904. // total rows in src0
  8905. const int nr = ne01*ne02*ne03;
  8906. // rows per thread
  8907. const int dr = (nr + nth - 1)/nth;
  8908. // row range for this thread
  8909. const int ir0 = dr*ith;
  8910. const int ir1 = MIN(ir0 + dr, nr);
  8911. void * wdata = params->wdata;
  8912. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8913. for (int ir = ir0; ir < ir1; ++ir) {
  8914. // src0 indices
  8915. const int i03 = ir/(ne02*ne01);
  8916. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8917. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8918. const int i13 = i03;
  8919. const int i12 = i02;
  8920. const int i0 = i01;
  8921. const int i2 = i02;
  8922. const int i3 = i03;
  8923. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8924. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8925. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8926. assert(ne00 % 32 == 0);
  8927. for (int64_t ic = 0; ic < ne11; ++ic) {
  8928. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8929. }
  8930. }
  8931. //int64_t t1 = ggml_time_us();
  8932. //static int64_t acc = 0;
  8933. //acc += t1 - t0;
  8934. //if (t1 - t0 > 10) {
  8935. // printf("\n");
  8936. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8937. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8938. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8939. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8940. //}
  8941. }
  8942. static void ggml_compute_forward_mul_mat(
  8943. const struct ggml_compute_params * params,
  8944. const struct ggml_tensor * src0,
  8945. const struct ggml_tensor * src1,
  8946. struct ggml_tensor * dst) {
  8947. switch (src0->type) {
  8948. case GGML_TYPE_Q4_0:
  8949. case GGML_TYPE_Q4_1:
  8950. case GGML_TYPE_Q5_0:
  8951. case GGML_TYPE_Q5_1:
  8952. case GGML_TYPE_Q8_0:
  8953. case GGML_TYPE_Q8_1:
  8954. case GGML_TYPE_Q2_K:
  8955. case GGML_TYPE_Q3_K:
  8956. case GGML_TYPE_Q4_K:
  8957. case GGML_TYPE_Q5_K:
  8958. case GGML_TYPE_Q6_K:
  8959. {
  8960. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8961. } break;
  8962. case GGML_TYPE_F16:
  8963. {
  8964. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8965. } break;
  8966. case GGML_TYPE_F32:
  8967. {
  8968. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8969. } break;
  8970. default:
  8971. {
  8972. GGML_ASSERT(false);
  8973. } break;
  8974. }
  8975. }
  8976. // ggml_compute_forward_out_prod
  8977. static void ggml_compute_forward_out_prod_f32(
  8978. const struct ggml_compute_params * params,
  8979. const struct ggml_tensor * src0,
  8980. const struct ggml_tensor * src1,
  8981. struct ggml_tensor * dst) {
  8982. int64_t t0 = ggml_perf_time_us();
  8983. UNUSED(t0);
  8984. GGML_TENSOR_BINARY_OP_LOCALS;
  8985. const int ith = params->ith;
  8986. const int nth = params->nth;
  8987. GGML_ASSERT(ne02 == ne12);
  8988. GGML_ASSERT(ne03 == ne13);
  8989. GGML_ASSERT(ne2 == ne12);
  8990. GGML_ASSERT(ne3 == ne13);
  8991. // we don't support permuted src0 or src1
  8992. GGML_ASSERT(nb00 == sizeof(float));
  8993. // dst cannot be transposed or permuted
  8994. GGML_ASSERT(nb0 == sizeof(float));
  8995. // GGML_ASSERT(nb0 <= nb1);
  8996. // GGML_ASSERT(nb1 <= nb2);
  8997. // GGML_ASSERT(nb2 <= nb3);
  8998. GGML_ASSERT(ne0 == ne00);
  8999. GGML_ASSERT(ne1 == ne10);
  9000. GGML_ASSERT(ne2 == ne02);
  9001. GGML_ASSERT(ne3 == ne03);
  9002. // nb01 >= nb00 - src0 is not transposed
  9003. // compute by src0 rows
  9004. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9005. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9006. if (params->type == GGML_TASK_INIT) {
  9007. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9008. return;
  9009. }
  9010. if (params->type == GGML_TASK_FINALIZE) {
  9011. return;
  9012. }
  9013. // parallelize by last three dimensions
  9014. // total rows in dst
  9015. const int64_t nr = ne1*ne2*ne3;
  9016. // rows per thread
  9017. const int64_t dr = (nr + nth - 1)/nth;
  9018. // row range for this thread
  9019. const int64_t ir0 = dr*ith;
  9020. const int64_t ir1 = MIN(ir0 + dr, nr);
  9021. // dst[:,:,:,:] = 0
  9022. // for i2,i3:
  9023. // for i1:
  9024. // for i01:
  9025. // for i0:
  9026. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9027. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9028. // dst indices
  9029. const int64_t i3 = ir/(ne2*ne1);
  9030. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9031. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9032. const int64_t i02 = i2;
  9033. const int64_t i03 = i3;
  9034. //const int64_t i10 = i1;
  9035. const int64_t i12 = i2;
  9036. const int64_t i13 = i3;
  9037. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9038. const int64_t i11 = i01;
  9039. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9040. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9041. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9042. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9043. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9044. // d[i0] += s0[i0] * s1[i1];
  9045. // }
  9046. }
  9047. }
  9048. //int64_t t1 = ggml_perf_time_us();
  9049. //static int64_t acc = 0;
  9050. //acc += t1 - t0;
  9051. //if (t1 - t0 > 10) {
  9052. // printf("\n");
  9053. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9054. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9055. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9056. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9057. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9058. //}
  9059. }
  9060. static void ggml_compute_forward_out_prod(
  9061. const struct ggml_compute_params * params,
  9062. const struct ggml_tensor * src0,
  9063. const struct ggml_tensor * src1,
  9064. struct ggml_tensor * dst) {
  9065. switch (src0->type) {
  9066. case GGML_TYPE_Q4_0:
  9067. case GGML_TYPE_Q4_1:
  9068. case GGML_TYPE_Q5_0:
  9069. case GGML_TYPE_Q5_1:
  9070. case GGML_TYPE_Q8_0:
  9071. case GGML_TYPE_Q8_1:
  9072. {
  9073. GGML_ASSERT(false); // todo
  9074. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9075. } break;
  9076. case GGML_TYPE_F16:
  9077. {
  9078. GGML_ASSERT(false); // todo
  9079. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9080. } break;
  9081. case GGML_TYPE_F32:
  9082. {
  9083. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9084. } break;
  9085. default:
  9086. {
  9087. GGML_ASSERT(false);
  9088. } break;
  9089. }
  9090. }
  9091. // ggml_compute_forward_scale
  9092. static void ggml_compute_forward_scale_f32(
  9093. const struct ggml_compute_params * params,
  9094. const struct ggml_tensor * src0,
  9095. const struct ggml_tensor * src1,
  9096. struct ggml_tensor * dst) {
  9097. GGML_ASSERT(ggml_is_contiguous(src0));
  9098. GGML_ASSERT(ggml_is_contiguous(dst));
  9099. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9100. GGML_ASSERT(ggml_is_scalar(src1));
  9101. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9102. return;
  9103. }
  9104. // scale factor
  9105. const float v = *(float *) src1->data;
  9106. const int ith = params->ith;
  9107. const int nth = params->nth;
  9108. const int nc = src0->ne[0];
  9109. const int nr = ggml_nrows(src0);
  9110. // rows per thread
  9111. const int dr = (nr + nth - 1)/nth;
  9112. // row range for this thread
  9113. const int ir0 = dr*ith;
  9114. const int ir1 = MIN(ir0 + dr, nr);
  9115. const size_t nb01 = src0->nb[1];
  9116. const size_t nb1 = dst->nb[1];
  9117. for (int i1 = ir0; i1 < ir1; i1++) {
  9118. if (dst->data != src0->data) {
  9119. // src0 is same shape as dst => same indices
  9120. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9121. }
  9122. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9123. }
  9124. }
  9125. static void ggml_compute_forward_scale(
  9126. const struct ggml_compute_params * params,
  9127. const struct ggml_tensor * src0,
  9128. const struct ggml_tensor * src1,
  9129. struct ggml_tensor * dst) {
  9130. switch (src0->type) {
  9131. case GGML_TYPE_F32:
  9132. {
  9133. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9134. } break;
  9135. default:
  9136. {
  9137. GGML_ASSERT(false);
  9138. } break;
  9139. }
  9140. }
  9141. // ggml_compute_forward_set
  9142. static void ggml_compute_forward_set_f32(
  9143. const struct ggml_compute_params * params,
  9144. const struct ggml_tensor * src0,
  9145. const struct ggml_tensor * src1,
  9146. const struct ggml_tensor * opt0,
  9147. struct ggml_tensor * dst) {
  9148. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9149. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9150. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  9151. GGML_ASSERT(ggml_nelements(opt0) == 5);
  9152. // view src0 and dst with these strides and data offset inbytes during set
  9153. // nb0 is implicitely element_size because src0 and dst are contiguous
  9154. size_t nb1 = ((int32_t *) opt0->data)[0];
  9155. size_t nb2 = ((int32_t *) opt0->data)[1];
  9156. size_t nb3 = ((int32_t *) opt0->data)[2];
  9157. size_t offset = ((int32_t *) opt0->data)[3];
  9158. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  9159. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9160. // memcpy needs to be synchronized across threads to avoid race conditions.
  9161. // => do it in INIT phase
  9162. memcpy(
  9163. ((char *) dst->data),
  9164. ((char *) src0->data),
  9165. ggml_nbytes(dst));
  9166. }
  9167. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9168. return;
  9169. }
  9170. const int ith = params->ith;
  9171. const int nth = params->nth;
  9172. const int nr = ggml_nrows(src1);
  9173. const int nc = src1->ne[0];
  9174. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9175. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9176. // src0 and dst as viewed during set
  9177. const size_t nb0 = ggml_element_size(src0);
  9178. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9179. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9180. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9181. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9182. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9183. GGML_ASSERT(nb10 == sizeof(float));
  9184. // rows per thread
  9185. const int dr = (nr + nth - 1)/nth;
  9186. // row range for this thread
  9187. const int ir0 = dr*ith;
  9188. const int ir1 = MIN(ir0 + dr, nr);
  9189. for (int ir = ir0; ir < ir1; ++ir) {
  9190. // src0 and dst are viewed with shape of src1 and offset
  9191. // => same indices
  9192. const int i3 = ir/(ne12*ne11);
  9193. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9194. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9195. ggml_vec_cpy_f32(nc,
  9196. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9197. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9198. }
  9199. }
  9200. static void ggml_compute_forward_set(
  9201. const struct ggml_compute_params * params,
  9202. const struct ggml_tensor * src0,
  9203. const struct ggml_tensor * src1,
  9204. const struct ggml_tensor * opt0,
  9205. struct ggml_tensor * dst) {
  9206. switch (src0->type) {
  9207. case GGML_TYPE_F32:
  9208. {
  9209. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  9210. } break;
  9211. case GGML_TYPE_F16:
  9212. case GGML_TYPE_Q4_0:
  9213. case GGML_TYPE_Q4_1:
  9214. case GGML_TYPE_Q5_0:
  9215. case GGML_TYPE_Q5_1:
  9216. case GGML_TYPE_Q8_0:
  9217. case GGML_TYPE_Q8_1:
  9218. case GGML_TYPE_Q2_K:
  9219. case GGML_TYPE_Q3_K:
  9220. case GGML_TYPE_Q4_K:
  9221. case GGML_TYPE_Q5_K:
  9222. case GGML_TYPE_Q6_K:
  9223. default:
  9224. {
  9225. GGML_ASSERT(false);
  9226. } break;
  9227. }
  9228. }
  9229. // ggml_compute_forward_cpy
  9230. static void ggml_compute_forward_cpy(
  9231. const struct ggml_compute_params * params,
  9232. const struct ggml_tensor * src0,
  9233. struct ggml_tensor * dst) {
  9234. ggml_compute_forward_dup(params, src0, dst);
  9235. }
  9236. // ggml_compute_forward_cont
  9237. static void ggml_compute_forward_cont(
  9238. const struct ggml_compute_params * params,
  9239. const struct ggml_tensor * src0,
  9240. struct ggml_tensor * dst) {
  9241. ggml_compute_forward_dup(params, src0, dst);
  9242. }
  9243. // ggml_compute_forward_reshape
  9244. static void ggml_compute_forward_reshape(
  9245. const struct ggml_compute_params * params,
  9246. const struct ggml_tensor * src0,
  9247. struct ggml_tensor * dst) {
  9248. // NOP
  9249. UNUSED(params);
  9250. UNUSED(src0);
  9251. UNUSED(dst);
  9252. }
  9253. // ggml_compute_forward_view
  9254. static void ggml_compute_forward_view(
  9255. const struct ggml_compute_params * params,
  9256. const struct ggml_tensor * src0) {
  9257. // NOP
  9258. UNUSED(params);
  9259. UNUSED(src0);
  9260. }
  9261. // ggml_compute_forward_permute
  9262. static void ggml_compute_forward_permute(
  9263. const struct ggml_compute_params * params,
  9264. const struct ggml_tensor * src0) {
  9265. // NOP
  9266. UNUSED(params);
  9267. UNUSED(src0);
  9268. }
  9269. // ggml_compute_forward_transpose
  9270. static void ggml_compute_forward_transpose(
  9271. const struct ggml_compute_params * params,
  9272. const struct ggml_tensor * src0) {
  9273. // NOP
  9274. UNUSED(params);
  9275. UNUSED(src0);
  9276. }
  9277. // ggml_compute_forward_get_rows
  9278. static void ggml_compute_forward_get_rows_q(
  9279. const struct ggml_compute_params * params,
  9280. const struct ggml_tensor * src0,
  9281. const struct ggml_tensor * src1,
  9282. struct ggml_tensor * dst) {
  9283. assert(params->ith == 0);
  9284. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9285. return;
  9286. }
  9287. const int nc = src0->ne[0];
  9288. const int nr = ggml_nelements(src1);
  9289. const enum ggml_type type = src0->type;
  9290. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  9291. assert( dst->ne[0] == nc);
  9292. assert( dst->ne[1] == nr);
  9293. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9294. for (int i = 0; i < nr; ++i) {
  9295. const int r = ((int32_t *) src1->data)[i];
  9296. dequantize_row_q(
  9297. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9298. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9299. }
  9300. }
  9301. static void ggml_compute_forward_get_rows_f16(
  9302. const struct ggml_compute_params * params,
  9303. const struct ggml_tensor * src0,
  9304. const struct ggml_tensor * src1,
  9305. struct ggml_tensor * dst) {
  9306. assert(params->ith == 0);
  9307. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9308. return;
  9309. }
  9310. const int nc = src0->ne[0];
  9311. const int nr = ggml_nelements(src1);
  9312. assert( dst->ne[0] == nc);
  9313. assert( dst->ne[1] == nr);
  9314. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9315. for (int i = 0; i < nr; ++i) {
  9316. const int r = ((int32_t *) src1->data)[i];
  9317. for (int j = 0; j < nc; ++j) {
  9318. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9319. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9320. }
  9321. }
  9322. }
  9323. static void ggml_compute_forward_get_rows_f32(
  9324. const struct ggml_compute_params * params,
  9325. const struct ggml_tensor * src0,
  9326. const struct ggml_tensor * src1,
  9327. struct ggml_tensor * dst) {
  9328. assert(params->ith == 0);
  9329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9330. return;
  9331. }
  9332. const int nc = src0->ne[0];
  9333. const int nr = ggml_nelements(src1);
  9334. assert( dst->ne[0] == nc);
  9335. assert( dst->ne[1] == nr);
  9336. assert(src0->nb[0] == sizeof(float));
  9337. for (int i = 0; i < nr; ++i) {
  9338. const int r = ((int32_t *) src1->data)[i];
  9339. ggml_vec_cpy_f32(nc,
  9340. (float *) ((char *) dst->data + i*dst->nb[1]),
  9341. (float *) ((char *) src0->data + r*src0->nb[1]));
  9342. }
  9343. }
  9344. static void ggml_compute_forward_get_rows(
  9345. const struct ggml_compute_params * params,
  9346. const struct ggml_tensor * src0,
  9347. const struct ggml_tensor * src1,
  9348. struct ggml_tensor * dst) {
  9349. switch (src0->type) {
  9350. case GGML_TYPE_Q4_0:
  9351. case GGML_TYPE_Q4_1:
  9352. case GGML_TYPE_Q5_0:
  9353. case GGML_TYPE_Q5_1:
  9354. case GGML_TYPE_Q8_0:
  9355. case GGML_TYPE_Q8_1:
  9356. case GGML_TYPE_Q2_K:
  9357. case GGML_TYPE_Q3_K:
  9358. case GGML_TYPE_Q4_K:
  9359. case GGML_TYPE_Q5_K:
  9360. case GGML_TYPE_Q6_K:
  9361. {
  9362. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9363. } break;
  9364. case GGML_TYPE_F16:
  9365. {
  9366. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9367. } break;
  9368. case GGML_TYPE_F32:
  9369. {
  9370. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9371. } break;
  9372. default:
  9373. {
  9374. GGML_ASSERT(false);
  9375. } break;
  9376. }
  9377. //static bool first = true;
  9378. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9379. //if (first) {
  9380. // first = false;
  9381. //} else {
  9382. // for (int k = 0; k < dst->ne[1]; ++k) {
  9383. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9384. // for (int i = 0; i < 16; ++i) {
  9385. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9386. // }
  9387. // printf("\n");
  9388. // }
  9389. // printf("\n");
  9390. // }
  9391. // printf("\n");
  9392. // exit(0);
  9393. //}
  9394. }
  9395. // ggml_compute_forward_get_rows_back
  9396. static void ggml_compute_forward_get_rows_back_f32_f16(
  9397. const struct ggml_compute_params * params,
  9398. const struct ggml_tensor * src0,
  9399. const struct ggml_tensor * src1,
  9400. const struct ggml_tensor * opt0,
  9401. struct ggml_tensor * dst) {
  9402. GGML_ASSERT(params->ith == 0);
  9403. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9404. GGML_ASSERT(ggml_is_contiguous(opt0));
  9405. GGML_ASSERT(ggml_is_contiguous(dst));
  9406. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9407. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9408. return;
  9409. }
  9410. const int nc = src0->ne[0];
  9411. const int nr = ggml_nelements(src1);
  9412. GGML_ASSERT( dst->ne[0] == nc);
  9413. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9414. for (int i = 0; i < nr; ++i) {
  9415. const int r = ((int32_t *) src1->data)[i];
  9416. for (int j = 0; j < nc; ++j) {
  9417. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9418. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9419. }
  9420. }
  9421. }
  9422. static void ggml_compute_forward_get_rows_back_f32(
  9423. const struct ggml_compute_params * params,
  9424. const struct ggml_tensor * src0,
  9425. const struct ggml_tensor * src1,
  9426. const struct ggml_tensor * opt0,
  9427. struct ggml_tensor * dst) {
  9428. GGML_ASSERT(params->ith == 0);
  9429. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9430. GGML_ASSERT(ggml_is_contiguous(opt0));
  9431. GGML_ASSERT(ggml_is_contiguous(dst));
  9432. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9433. if (params->type == GGML_TASK_INIT) {
  9434. memset(dst->data, 0, ggml_nbytes(dst));
  9435. }
  9436. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9437. return;
  9438. }
  9439. const int nc = src0->ne[0];
  9440. const int nr = ggml_nelements(src1);
  9441. GGML_ASSERT( dst->ne[0] == nc);
  9442. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9443. for (int i = 0; i < nr; ++i) {
  9444. const int r = ((int32_t *) src1->data)[i];
  9445. ggml_vec_add_f32(nc,
  9446. (float *) ((char *) dst->data + r*dst->nb[1]),
  9447. (float *) ((char *) dst->data + r*dst->nb[1]),
  9448. (float *) ((char *) src0->data + i*src0->nb[1]));
  9449. }
  9450. }
  9451. static void ggml_compute_forward_get_rows_back(
  9452. const struct ggml_compute_params * params,
  9453. const struct ggml_tensor * src0,
  9454. const struct ggml_tensor * src1,
  9455. const struct ggml_tensor * opt0,
  9456. struct ggml_tensor * dst) {
  9457. switch (src0->type) {
  9458. case GGML_TYPE_F16:
  9459. {
  9460. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9461. } break;
  9462. case GGML_TYPE_F32:
  9463. {
  9464. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9465. } break;
  9466. default:
  9467. {
  9468. GGML_ASSERT(false);
  9469. } break;
  9470. }
  9471. //static bool first = true;
  9472. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9473. //if (first) {
  9474. // first = false;
  9475. //} else {
  9476. // for (int k = 0; k < dst->ne[1]; ++k) {
  9477. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9478. // for (int i = 0; i < 16; ++i) {
  9479. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9480. // }
  9481. // printf("\n");
  9482. // }
  9483. // printf("\n");
  9484. // }
  9485. // printf("\n");
  9486. // exit(0);
  9487. //}
  9488. }
  9489. // ggml_compute_forward_diag
  9490. static void ggml_compute_forward_diag_f32(
  9491. const struct ggml_compute_params * params,
  9492. const struct ggml_tensor * src0,
  9493. struct ggml_tensor * dst) {
  9494. GGML_ASSERT(params->ith == 0);
  9495. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9496. return;
  9497. }
  9498. // TODO: handle transposed/permuted matrices
  9499. GGML_TENSOR_UNARY_OP_LOCALS;
  9500. GGML_ASSERT(ne00 == ne0);
  9501. GGML_ASSERT(ne00 == ne1);
  9502. GGML_ASSERT(ne01 == 1);
  9503. GGML_ASSERT(ne02 == ne2);
  9504. GGML_ASSERT(ne03 == ne3);
  9505. GGML_ASSERT(nb00 == sizeof(float));
  9506. GGML_ASSERT(nb0 == sizeof(float));
  9507. for (int i3 = 0; i3 < ne3; i3++) {
  9508. for (int i2 = 0; i2 < ne2; i2++) {
  9509. for (int i1 = 0; i1 < ne1; i1++) {
  9510. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9511. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9512. for (int i0 = 0; i0 < i1; i0++) {
  9513. d[i0] = 0;
  9514. }
  9515. d[i1] = s[i1];
  9516. for (int i0 = i1+1; i0 < ne0; i0++) {
  9517. d[i0] = 0;
  9518. }
  9519. }
  9520. }
  9521. }
  9522. }
  9523. static void ggml_compute_forward_diag(
  9524. const struct ggml_compute_params * params,
  9525. const struct ggml_tensor * src0,
  9526. struct ggml_tensor * dst) {
  9527. switch (src0->type) {
  9528. case GGML_TYPE_F32:
  9529. {
  9530. ggml_compute_forward_diag_f32(params, src0, dst);
  9531. } break;
  9532. default:
  9533. {
  9534. GGML_ASSERT(false);
  9535. } break;
  9536. }
  9537. }
  9538. // ggml_compute_forward_diag_mask_inf
  9539. static void ggml_compute_forward_diag_mask_f32(
  9540. const struct ggml_compute_params * params,
  9541. const struct ggml_tensor * src0,
  9542. const struct ggml_tensor * src1,
  9543. struct ggml_tensor * dst,
  9544. const float value) {
  9545. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9546. GGML_ASSERT(ggml_nelements(src1) == 2);
  9547. const int ith = params->ith;
  9548. const int nth = params->nth;
  9549. const int n_past = ((int32_t *) src1->data)[0];
  9550. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9551. GGML_ASSERT(n_past >= 0);
  9552. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9553. // memcpy needs to be synchronized across threads to avoid race conditions.
  9554. // => do it in INIT phase
  9555. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9556. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9557. memcpy(
  9558. ((char *) dst->data),
  9559. ((char *) src0->data),
  9560. ggml_nbytes(dst));
  9561. }
  9562. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9563. return;
  9564. }
  9565. // TODO: handle transposed/permuted matrices
  9566. const int n = ggml_nrows(src0);
  9567. const int nc = src0->ne[0];
  9568. const int nr = src0->ne[1];
  9569. const int nz = n/nr;
  9570. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9571. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9572. for (int k = 0; k < nz; k++) {
  9573. for (int j = ith; j < nr; j += nth) {
  9574. for (int i = n_past; i < nc; i++) {
  9575. if (i > n_past + j) {
  9576. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9577. }
  9578. }
  9579. }
  9580. }
  9581. }
  9582. static void ggml_compute_forward_diag_mask_inf(
  9583. const struct ggml_compute_params * params,
  9584. const struct ggml_tensor * src0,
  9585. const struct ggml_tensor * src1,
  9586. struct ggml_tensor * dst) {
  9587. switch (src0->type) {
  9588. case GGML_TYPE_F32:
  9589. {
  9590. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9591. } break;
  9592. default:
  9593. {
  9594. GGML_ASSERT(false);
  9595. } break;
  9596. }
  9597. }
  9598. static void ggml_compute_forward_diag_mask_zero(
  9599. const struct ggml_compute_params * params,
  9600. const struct ggml_tensor * src0,
  9601. const struct ggml_tensor * src1,
  9602. struct ggml_tensor * dst) {
  9603. switch (src0->type) {
  9604. case GGML_TYPE_F32:
  9605. {
  9606. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9607. } break;
  9608. default:
  9609. {
  9610. GGML_ASSERT(false);
  9611. } break;
  9612. }
  9613. }
  9614. // ggml_compute_forward_soft_max
  9615. static void ggml_compute_forward_soft_max_f32(
  9616. const struct ggml_compute_params * params,
  9617. const struct ggml_tensor * src0,
  9618. struct ggml_tensor * dst) {
  9619. GGML_ASSERT(ggml_is_contiguous(src0));
  9620. GGML_ASSERT(ggml_is_contiguous(dst));
  9621. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9622. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9623. return;
  9624. }
  9625. // TODO: handle transposed/permuted matrices
  9626. const int ith = params->ith;
  9627. const int nth = params->nth;
  9628. const int nc = src0->ne[0];
  9629. const int nr = ggml_nrows(src0);
  9630. // rows per thread
  9631. const int dr = (nr + nth - 1)/nth;
  9632. // row range for this thread
  9633. const int ir0 = dr*ith;
  9634. const int ir1 = MIN(ir0 + dr, nr);
  9635. for (int i1 = ir0; i1 < ir1; i1++) {
  9636. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9637. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9638. #ifndef NDEBUG
  9639. for (int i = 0; i < nc; ++i) {
  9640. //printf("p[%d] = %f\n", i, p[i]);
  9641. assert(!isnan(sp[i]));
  9642. }
  9643. #endif
  9644. float max = -INFINITY;
  9645. ggml_vec_max_f32(nc, &max, sp);
  9646. ggml_float sum = 0.0;
  9647. uint16_t scvt;
  9648. for (int i = 0; i < nc; i++) {
  9649. if (sp[i] == -INFINITY) {
  9650. dp[i] = 0.0f;
  9651. } else {
  9652. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9653. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9654. memcpy(&scvt, &s, sizeof(scvt));
  9655. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9656. sum += (ggml_float)val;
  9657. dp[i] = val;
  9658. }
  9659. }
  9660. assert(sum > 0.0);
  9661. sum = 1.0/sum;
  9662. ggml_vec_scale_f32(nc, dp, sum);
  9663. #ifndef NDEBUG
  9664. for (int i = 0; i < nc; ++i) {
  9665. assert(!isnan(dp[i]));
  9666. assert(!isinf(dp[i]));
  9667. }
  9668. #endif
  9669. }
  9670. }
  9671. static void ggml_compute_forward_soft_max(
  9672. const struct ggml_compute_params * params,
  9673. const struct ggml_tensor * src0,
  9674. struct ggml_tensor * dst) {
  9675. switch (src0->type) {
  9676. case GGML_TYPE_F32:
  9677. {
  9678. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9679. } break;
  9680. default:
  9681. {
  9682. GGML_ASSERT(false);
  9683. } break;
  9684. }
  9685. }
  9686. // ggml_compute_forward_soft_max_back
  9687. static void ggml_compute_forward_soft_max_back_f32(
  9688. const struct ggml_compute_params * params,
  9689. const struct ggml_tensor * src0,
  9690. const struct ggml_tensor * src1,
  9691. struct ggml_tensor * dst) {
  9692. GGML_ASSERT(ggml_is_contiguous(src0));
  9693. GGML_ASSERT(ggml_is_contiguous(src1));
  9694. GGML_ASSERT(ggml_is_contiguous(dst));
  9695. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9696. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9697. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9698. return;
  9699. }
  9700. // TODO: handle transposed/permuted matrices
  9701. const int ith = params->ith;
  9702. const int nth = params->nth;
  9703. const int nc = src0->ne[0];
  9704. const int nr = ggml_nrows(src0);
  9705. // rows per thread
  9706. const int dr = (nr + nth - 1)/nth;
  9707. // row range for this thread
  9708. const int ir0 = dr*ith;
  9709. const int ir1 = MIN(ir0 + dr, nr);
  9710. for (int i1 = ir0; i1 < ir1; i1++) {
  9711. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9712. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9713. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9714. #ifndef NDEBUG
  9715. for (int i = 0; i < nc; ++i) {
  9716. //printf("p[%d] = %f\n", i, p[i]);
  9717. assert(!isnan(dy[i]));
  9718. assert(!isnan(y[i]));
  9719. }
  9720. #endif
  9721. // Jii = yi - yi*yi
  9722. // Jij = -yi*yj
  9723. // J = diag(y)-y.T*y
  9724. // dx = J * dy
  9725. // dxk = sum_i(Jki * dyi)
  9726. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9727. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9728. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9729. // dxk = -yk * dot(y, dy) + yk*dyk
  9730. // dxk = yk * (- dot(y, dy) + dyk)
  9731. // dxk = yk * (dyk - dot(y, dy))
  9732. //
  9733. // post-order:
  9734. // dot_y_dy := dot(y, dy)
  9735. // dx := dy
  9736. // dx := dx - dot_y_dy
  9737. // dx := dx * y
  9738. // linear runtime, no additional memory
  9739. float dot_y_dy = 0;
  9740. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9741. ggml_vec_cpy_f32 (nc, dx, dy);
  9742. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9743. ggml_vec_mul_f32 (nc, dx, dx, y);
  9744. #ifndef NDEBUG
  9745. for (int i = 0; i < nc; ++i) {
  9746. assert(!isnan(dx[i]));
  9747. assert(!isinf(dx[i]));
  9748. }
  9749. #endif
  9750. }
  9751. }
  9752. static void ggml_compute_forward_soft_max_back(
  9753. const struct ggml_compute_params * params,
  9754. const struct ggml_tensor * src0,
  9755. const struct ggml_tensor * src1,
  9756. struct ggml_tensor * dst) {
  9757. switch (src0->type) {
  9758. case GGML_TYPE_F32:
  9759. {
  9760. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9761. } break;
  9762. default:
  9763. {
  9764. GGML_ASSERT(false);
  9765. } break;
  9766. }
  9767. }
  9768. // ggml_compute_forward_alibi
  9769. static void ggml_compute_forward_alibi_f32(
  9770. const struct ggml_compute_params * params,
  9771. const struct ggml_tensor * src0,
  9772. const struct ggml_tensor * src1,
  9773. struct ggml_tensor * dst) {
  9774. assert(params->ith == 0);
  9775. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9776. GGML_ASSERT(ggml_nelements(src1) == 3);
  9777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9778. return;
  9779. }
  9780. const int n_past = ((int32_t *) src1->data)[0];
  9781. const int n_head = ((int32_t *) src1->data)[1];
  9782. const float max_bias = ((float *) src1->data)[2];
  9783. assert(n_past >= 0);
  9784. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9785. const int ne1 = src0->ne[1]; // seq_len_without_past
  9786. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9787. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9788. const int n = ggml_nrows(src0);
  9789. const int ne2_ne3 = n/ne1; // ne2*ne3
  9790. const int nb0 = src0->nb[0];
  9791. const int nb1 = src0->nb[1];
  9792. const int nb2 = src0->nb[2];
  9793. //const int nb3 = src0->nb[3];
  9794. assert(nb0 == sizeof(float));
  9795. assert(ne1 + n_past == ne0); (void) n_past;
  9796. // add alibi to src0 (KQ_scaled)
  9797. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9798. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9799. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9800. for (int i = 0; i < ne0; i++) {
  9801. for (int j = 0; j < ne1; j++) {
  9802. for (int k = 0; k < ne2_ne3; k++) {
  9803. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9804. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9805. // TODO: k*nb2 or k*nb3
  9806. float m_k;
  9807. if (k < n_heads_log2_floor) {
  9808. m_k = powf(m0, k + 1);
  9809. } else {
  9810. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9811. }
  9812. pdst[0] = (i-ne0+1) * m_k + src[0];
  9813. }
  9814. }
  9815. }
  9816. }
  9817. static void ggml_compute_forward_alibi_f16(
  9818. const struct ggml_compute_params * params,
  9819. const struct ggml_tensor * src0,
  9820. const struct ggml_tensor * src1,
  9821. struct ggml_tensor * dst) {
  9822. assert(params->ith == 0);
  9823. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9824. GGML_ASSERT(ggml_nelements(src1) == 3);
  9825. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9826. return;
  9827. }
  9828. const int n_past = ((int32_t *) src1->data)[0];
  9829. const int n_head = ((int32_t *) src1->data)[1];
  9830. const float max_bias = ((float *) src1->data)[2];
  9831. assert(n_past >= 0);
  9832. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9833. const int ne1 = src0->ne[1]; // seq_len_without_past
  9834. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9835. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9836. const int n = ggml_nrows(src0);
  9837. const int ne2_ne3 = n/ne1; // ne2*ne3
  9838. const int nb0 = src0->nb[0];
  9839. const int nb1 = src0->nb[1];
  9840. const int nb2 = src0->nb[2];
  9841. //const int nb3 = src0->nb[3];
  9842. assert(nb0 == sizeof(ggml_fp16_t));
  9843. assert(ne1 + n_past == ne0); (void) n_past;
  9844. // add alibi to src0 (KQ_scaled)
  9845. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9846. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9847. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9848. for (int i = 0; i < ne0; i++) {
  9849. for (int j = 0; j < ne1; j++) {
  9850. for (int k = 0; k < ne2_ne3; k++) {
  9851. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9852. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9853. // TODO: k*nb2 or k*nb3
  9854. float m_k;
  9855. if (k < n_heads_log2_floor) {
  9856. m_k = powf(m0, k + 1);
  9857. } else {
  9858. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9859. }
  9860. // we return F32
  9861. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9862. }
  9863. }
  9864. }
  9865. }
  9866. static void ggml_compute_forward_alibi(
  9867. const struct ggml_compute_params * params,
  9868. const struct ggml_tensor * src0,
  9869. const struct ggml_tensor * src1,
  9870. struct ggml_tensor * dst) {
  9871. switch (src0->type) {
  9872. case GGML_TYPE_F16:
  9873. {
  9874. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9875. } break;
  9876. case GGML_TYPE_F32:
  9877. {
  9878. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9879. } break;
  9880. case GGML_TYPE_Q4_0:
  9881. case GGML_TYPE_Q4_1:
  9882. case GGML_TYPE_Q5_0:
  9883. case GGML_TYPE_Q5_1:
  9884. case GGML_TYPE_Q8_0:
  9885. case GGML_TYPE_Q8_1:
  9886. case GGML_TYPE_Q2_K:
  9887. case GGML_TYPE_Q3_K:
  9888. case GGML_TYPE_Q4_K:
  9889. case GGML_TYPE_Q5_K:
  9890. case GGML_TYPE_Q6_K:
  9891. case GGML_TYPE_Q8_K:
  9892. case GGML_TYPE_I8:
  9893. case GGML_TYPE_I16:
  9894. case GGML_TYPE_I32:
  9895. case GGML_TYPE_COUNT:
  9896. {
  9897. GGML_ASSERT(false);
  9898. } break;
  9899. }
  9900. }
  9901. // ggml_compute_forward_clamp
  9902. static void ggml_compute_forward_clamp_f32(
  9903. const struct ggml_compute_params * params,
  9904. const struct ggml_tensor * src0,
  9905. const struct ggml_tensor * src1,
  9906. struct ggml_tensor * dst) {
  9907. assert(params->ith == 0);
  9908. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9909. GGML_ASSERT(ggml_nelements(src1) == 2);
  9910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9911. return;
  9912. }
  9913. const float min = ((float *) src1->data)[0];
  9914. const float max = ((float *) src1->data)[1];
  9915. const int ith = params->ith;
  9916. const int nth = params->nth;
  9917. const int n = ggml_nrows(src0);
  9918. const int nc = src0->ne[0];
  9919. const size_t nb00 = src0->nb[0];
  9920. const size_t nb01 = src0->nb[1];
  9921. const size_t nb0 = dst->nb[0];
  9922. const size_t nb1 = dst->nb[1];
  9923. GGML_ASSERT( nb0 == sizeof(float));
  9924. GGML_ASSERT(nb00 == sizeof(float));
  9925. for (int j = ith; j < n; j += nth) {
  9926. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9927. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9928. for (int i = 0; i < nc; i++) {
  9929. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9930. }
  9931. }
  9932. }
  9933. static void ggml_compute_forward_clamp(
  9934. const struct ggml_compute_params * params,
  9935. const struct ggml_tensor * src0,
  9936. const struct ggml_tensor * src1,
  9937. struct ggml_tensor * dst) {
  9938. switch (src0->type) {
  9939. case GGML_TYPE_F32:
  9940. {
  9941. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9942. } break;
  9943. case GGML_TYPE_F16:
  9944. case GGML_TYPE_Q4_0:
  9945. case GGML_TYPE_Q4_1:
  9946. case GGML_TYPE_Q5_0:
  9947. case GGML_TYPE_Q5_1:
  9948. case GGML_TYPE_Q8_0:
  9949. case GGML_TYPE_Q8_1:
  9950. case GGML_TYPE_Q2_K:
  9951. case GGML_TYPE_Q3_K:
  9952. case GGML_TYPE_Q4_K:
  9953. case GGML_TYPE_Q5_K:
  9954. case GGML_TYPE_Q6_K:
  9955. case GGML_TYPE_Q8_K:
  9956. case GGML_TYPE_I8:
  9957. case GGML_TYPE_I16:
  9958. case GGML_TYPE_I32:
  9959. case GGML_TYPE_COUNT:
  9960. {
  9961. GGML_ASSERT(false);
  9962. } break;
  9963. }
  9964. }
  9965. // ggml_compute_forward_rope
  9966. static void ggml_compute_forward_rope_f32(
  9967. const struct ggml_compute_params * params,
  9968. const struct ggml_tensor * src0,
  9969. const struct ggml_tensor * src1,
  9970. struct ggml_tensor * dst) {
  9971. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9972. GGML_ASSERT(ggml_nelements(src1) == 4);
  9973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9974. return;
  9975. }
  9976. const int n_past = ((int32_t *) src1->data)[0];
  9977. const int n_dims = ((int32_t *) src1->data)[1];
  9978. const int mode = ((int32_t *) src1->data)[2];
  9979. const int n_ctx = ((int32_t *) src1->data)[3];
  9980. assert(n_past >= 0);
  9981. GGML_TENSOR_UNARY_OP_LOCALS;
  9982. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9983. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9984. GGML_ASSERT(nb00 == sizeof(float));
  9985. const int ith = params->ith;
  9986. const int nth = params->nth;
  9987. const int nr = ggml_nrows(dst);
  9988. GGML_ASSERT(n_dims <= ne0);
  9989. GGML_ASSERT(n_dims % 2 == 0);
  9990. // rows per thread
  9991. const int dr = (nr + nth - 1)/nth;
  9992. // row range for this thread
  9993. const int ir0 = dr*ith;
  9994. const int ir1 = MIN(ir0 + dr, nr);
  9995. // row index used to determine which thread to use
  9996. int ir = 0;
  9997. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9998. const bool is_neox = mode & 2;
  9999. const bool is_glm = mode & 4;
  10000. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10001. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10002. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10003. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10004. if (ir++ < ir0) continue;
  10005. if (ir > ir1) break;
  10006. float theta = (float)p;
  10007. if (is_glm) {
  10008. theta = MIN(p, n_ctx - 2);
  10009. float block_theta = MAX(p - (n_ctx - 2), 0);
  10010. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10011. const float cos_theta = cosf(theta);
  10012. const float sin_theta = sinf(theta);
  10013. const float cos_block_theta = cosf(block_theta);
  10014. const float sin_block_theta = sinf(block_theta);
  10015. theta *= theta_scale;
  10016. block_theta *= theta_scale;
  10017. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10018. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10019. const float x0 = src[0];
  10020. const float x1 = src[n_dims/2];
  10021. const float x2 = src[n_dims];
  10022. const float x3 = src[n_dims/2*3];
  10023. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10024. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10025. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10026. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10027. }
  10028. } else if (!is_neox) {
  10029. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10030. const float cos_theta = cosf(theta);
  10031. const float sin_theta = sinf(theta);
  10032. theta *= theta_scale;
  10033. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10034. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10035. const float x0 = src[0];
  10036. const float x1 = src[1];
  10037. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10038. dst_data[1] = x0*sin_theta + x1*cos_theta;
  10039. }
  10040. } else {
  10041. // TODO: this is probably wrong, but I can't figure it out ..
  10042. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10043. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10044. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10045. const float cos_theta = cosf(theta);
  10046. const float sin_theta = sinf(theta);
  10047. theta *= theta_scale;
  10048. const int64_t i0 = ib*n_dims + ic/2;
  10049. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10050. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10051. const float x0 = src[0];
  10052. const float x1 = src[n_dims/2];
  10053. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10054. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10055. }
  10056. }
  10057. }
  10058. }
  10059. }
  10060. }
  10061. }
  10062. static void ggml_compute_forward_rope_f16(
  10063. const struct ggml_compute_params * params,
  10064. const struct ggml_tensor * src0,
  10065. const struct ggml_tensor * src1,
  10066. struct ggml_tensor * dst) {
  10067. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  10068. GGML_ASSERT(ggml_nelements(src1) == 4);
  10069. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10070. return;
  10071. }
  10072. const int n_past = ((int32_t *) src1->data)[0];
  10073. const int n_dims = ((int32_t *) src1->data)[1];
  10074. const int mode = ((int32_t *) src1->data)[2];
  10075. const int n_ctx = ((int32_t *) src1->data)[3];
  10076. assert(n_past >= 0);
  10077. GGML_TENSOR_UNARY_OP_LOCALS;
  10078. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10079. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10080. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10081. const int ith = params->ith;
  10082. const int nth = params->nth;
  10083. const int nr = ggml_nrows(dst);
  10084. GGML_ASSERT(n_dims <= ne0);
  10085. GGML_ASSERT(n_dims % 2 == 0);
  10086. // rows per thread
  10087. const int dr = (nr + nth - 1)/nth;
  10088. // row range for this thread
  10089. const int ir0 = dr*ith;
  10090. const int ir1 = MIN(ir0 + dr, nr);
  10091. // row index used to determine which thread to use
  10092. int ir = 0;
  10093. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10094. const bool is_neox = mode & 2;
  10095. const bool is_glm = mode & 4;
  10096. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10097. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10098. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10099. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10100. if (ir++ < ir0) continue;
  10101. if (ir > ir1) break;
  10102. float theta = (float)p;
  10103. if (is_glm) {
  10104. theta = MIN(p, n_ctx - 2);
  10105. float block_theta = MAX(p - (n_ctx - 2), 0);
  10106. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10107. const float cos_theta = cosf(theta);
  10108. const float sin_theta = sinf(theta);
  10109. const float cos_block_theta = cosf(block_theta);
  10110. const float sin_block_theta = sinf(block_theta);
  10111. theta *= theta_scale;
  10112. block_theta *= theta_scale;
  10113. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10114. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10115. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10116. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10117. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10118. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10119. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10120. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10121. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10122. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10123. }
  10124. } if (!is_neox) {
  10125. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10126. const float cos_theta = cosf(theta);
  10127. const float sin_theta = sinf(theta);
  10128. theta *= theta_scale;
  10129. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10130. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10131. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10132. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10133. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10134. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10135. }
  10136. } else {
  10137. // TODO: this is probably wrong, but I can't figure it out ..
  10138. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10139. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10140. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10141. const float cos_theta = cosf(theta);
  10142. const float sin_theta = sinf(theta);
  10143. theta *= theta_scale;
  10144. const int64_t i0 = ib*n_dims + ic/2;
  10145. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10146. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10147. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10148. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10149. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10150. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10151. }
  10152. }
  10153. }
  10154. }
  10155. }
  10156. }
  10157. }
  10158. static void ggml_compute_forward_rope(
  10159. const struct ggml_compute_params * params,
  10160. const struct ggml_tensor * src0,
  10161. const struct ggml_tensor * src1,
  10162. struct ggml_tensor * dst) {
  10163. switch (src0->type) {
  10164. case GGML_TYPE_F16:
  10165. {
  10166. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10167. } break;
  10168. case GGML_TYPE_F32:
  10169. {
  10170. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10171. } break;
  10172. default:
  10173. {
  10174. GGML_ASSERT(false);
  10175. } break;
  10176. }
  10177. }
  10178. // ggml_compute_forward_rope_back
  10179. static void ggml_compute_forward_rope_back_f32(
  10180. const struct ggml_compute_params * params,
  10181. const struct ggml_tensor * src0,
  10182. const struct ggml_tensor * src1,
  10183. struct ggml_tensor * dst) {
  10184. assert(src1->type == GGML_TYPE_I32);
  10185. assert(ggml_nelements(src1) == 3);
  10186. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10187. return;
  10188. }
  10189. // y = rope(x, src1)
  10190. // dx = rope_back(dy, src1)
  10191. // src0 is dy, src1 contains options
  10192. const int n_past = ((int32_t *) src1->data)[0];
  10193. const int n_dims = ((int32_t *) src1->data)[1];
  10194. const int mode = ((int32_t *) src1->data)[2];
  10195. assert(n_past >= 0);
  10196. GGML_TENSOR_UNARY_OP_LOCALS;
  10197. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10198. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10199. assert(nb0 == sizeof(float));
  10200. const int ith = params->ith;
  10201. const int nth = params->nth;
  10202. const int nr = ggml_nrows(dst);
  10203. // rows per thread
  10204. const int dr = (nr + nth - 1)/nth;
  10205. // row range for this thread
  10206. const int ir0 = dr*ith;
  10207. const int ir1 = MIN(ir0 + dr, nr);
  10208. // row index used to determine which thread to use
  10209. int ir = 0;
  10210. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10211. const bool is_neox = mode & 2;
  10212. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10213. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10214. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10215. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10216. if (ir++ < ir0) continue;
  10217. if (ir > ir1) break;
  10218. float theta = (float)p;
  10219. if (!is_neox) {
  10220. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10221. const float cos_theta = cosf(theta);
  10222. const float sin_theta = sinf(theta);
  10223. theta *= theta_scale;
  10224. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10225. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10226. const float dy0 = dy[0];
  10227. const float dy1 = dy[1];
  10228. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10229. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  10230. }
  10231. } else {
  10232. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10233. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10234. const float cos_theta = cosf(theta);
  10235. const float sin_theta = sinf(theta);
  10236. theta *= theta_scale;
  10237. const int64_t i0 = ib*n_dims + ic/2;
  10238. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10239. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10240. const float dy0 = dy[0];
  10241. const float dy1 = dy[n_dims/2];
  10242. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10243. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10244. }
  10245. }
  10246. }
  10247. }
  10248. }
  10249. }
  10250. }
  10251. static void ggml_compute_forward_rope_back_f16(
  10252. const struct ggml_compute_params * params,
  10253. const struct ggml_tensor * src0,
  10254. const struct ggml_tensor * src1,
  10255. struct ggml_tensor * dst) {
  10256. assert(src1->type == GGML_TYPE_I32);
  10257. assert(ggml_nelements(src1) == 3);
  10258. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10259. return;
  10260. }
  10261. // y = rope(x, src1)
  10262. // dx = rope_back(dy, src1)
  10263. // src0 is dy, src1 contains options
  10264. const int n_past = ((int32_t *) src1->data)[0];
  10265. const int n_dims = ((int32_t *) src1->data)[1];
  10266. const int mode = ((int32_t *) src1->data)[2];
  10267. assert(n_past >= 0);
  10268. GGML_TENSOR_UNARY_OP_LOCALS;
  10269. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10270. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10271. assert(nb0 == sizeof(ggml_fp16_t));
  10272. const int ith = params->ith;
  10273. const int nth = params->nth;
  10274. const int nr = ggml_nrows(dst);
  10275. // rows per thread
  10276. const int dr = (nr + nth - 1)/nth;
  10277. // row range for this thread
  10278. const int ir0 = dr*ith;
  10279. const int ir1 = MIN(ir0 + dr, nr);
  10280. // row index used to determine which thread to use
  10281. int ir = 0;
  10282. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10283. const bool is_neox = mode & 2;
  10284. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10285. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10286. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10287. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10288. if (ir++ < ir0) continue;
  10289. if (ir > ir1) break;
  10290. float theta = (float)p;
  10291. if (!is_neox) {
  10292. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10293. const float cos_theta = cosf(theta);
  10294. const float sin_theta = sinf(theta);
  10295. theta *= theta_scale;
  10296. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10297. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10298. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10299. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10300. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10301. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10302. }
  10303. } else {
  10304. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10305. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10306. const float cos_theta = cosf(theta);
  10307. const float sin_theta = sinf(theta);
  10308. theta *= theta_scale;
  10309. const int64_t i0 = ib*n_dims + ic/2;
  10310. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10311. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10312. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10313. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10314. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10315. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10316. }
  10317. }
  10318. }
  10319. }
  10320. }
  10321. }
  10322. }
  10323. static void ggml_compute_forward_rope_back(
  10324. const struct ggml_compute_params * params,
  10325. const struct ggml_tensor * src0,
  10326. const struct ggml_tensor * src1,
  10327. struct ggml_tensor * dst) {
  10328. switch (src0->type) {
  10329. case GGML_TYPE_F16:
  10330. {
  10331. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10332. } break;
  10333. case GGML_TYPE_F32:
  10334. {
  10335. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10336. } break;
  10337. default:
  10338. {
  10339. GGML_ASSERT(false);
  10340. } break;
  10341. }
  10342. }
  10343. // ggml_compute_forward_conv_1d
  10344. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10345. const struct ggml_compute_params * params,
  10346. const struct ggml_tensor * src0,
  10347. const struct ggml_tensor * src1,
  10348. struct ggml_tensor * dst) {
  10349. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10350. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10351. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10352. int64_t t0 = ggml_perf_time_us();
  10353. UNUSED(t0);
  10354. GGML_TENSOR_BINARY_OP_LOCALS;
  10355. const int ith = params->ith;
  10356. const int nth = params->nth;
  10357. const int nk = ne00;
  10358. const int nh = nk/2;
  10359. const int ew0 = ggml_up32(ne01);
  10360. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10361. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10362. GGML_ASSERT(nb10 == sizeof(float));
  10363. if (params->type == GGML_TASK_INIT) {
  10364. // TODO: fix this memset (wsize is overestimated)
  10365. memset(params->wdata, 0, params->wsize);
  10366. // prepare kernel data (src0)
  10367. {
  10368. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10369. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10370. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10371. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10372. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10373. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10374. dst_data[i00*ew0 + i01] = src[i00];
  10375. }
  10376. }
  10377. }
  10378. }
  10379. // prepare source data (src1)
  10380. {
  10381. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10382. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10383. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10384. ggml_fp16_t * dst_data = wdata;
  10385. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10386. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10387. }
  10388. }
  10389. }
  10390. return;
  10391. }
  10392. if (params->type == GGML_TASK_FINALIZE) {
  10393. return;
  10394. }
  10395. // total rows in dst
  10396. const int nr = ne02;
  10397. // rows per thread
  10398. const int dr = (nr + nth - 1)/nth;
  10399. // row range for this thread
  10400. const int ir0 = dr*ith;
  10401. const int ir1 = MIN(ir0 + dr, nr);
  10402. for (int i1 = ir0; i1 < ir1; i1++) {
  10403. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10404. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10405. dst_data[i0] = 0;
  10406. for (int k = -nh; k <= nh; k++) {
  10407. float v = 0.0f;
  10408. ggml_vec_dot_f16(ew0, &v,
  10409. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10410. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10411. dst_data[i0] += v;
  10412. }
  10413. }
  10414. }
  10415. }
  10416. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10417. const struct ggml_compute_params * params,
  10418. const struct ggml_tensor * src0,
  10419. const struct ggml_tensor * src1,
  10420. struct ggml_tensor * dst) {
  10421. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10422. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10423. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10424. int64_t t0 = ggml_perf_time_us();
  10425. UNUSED(t0);
  10426. GGML_TENSOR_BINARY_OP_LOCALS;
  10427. const int ith = params->ith;
  10428. const int nth = params->nth;
  10429. const int nk = ne00;
  10430. const int nh = nk/2;
  10431. const int ew0 = ggml_up32(ne01);
  10432. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10433. GGML_ASSERT(nb00 == sizeof(float));
  10434. GGML_ASSERT(nb10 == sizeof(float));
  10435. if (params->type == GGML_TASK_INIT) {
  10436. // TODO: fix this memset (wsize is overestimated)
  10437. memset(params->wdata, 0, params->wsize);
  10438. // prepare kernel data (src0)
  10439. {
  10440. float * const wdata = (float *) params->wdata + 0;
  10441. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10442. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10443. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10444. float * dst_data = wdata + i02*ew0*ne00;
  10445. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10446. dst_data[i00*ew0 + i01] = src[i00];
  10447. }
  10448. }
  10449. }
  10450. }
  10451. // prepare source data (src1)
  10452. {
  10453. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10454. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10455. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10456. float * dst_data = wdata;
  10457. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10458. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10459. }
  10460. }
  10461. }
  10462. return;
  10463. }
  10464. if (params->type == GGML_TASK_FINALIZE) {
  10465. return;
  10466. }
  10467. // total rows in dst
  10468. const int nr = ne02;
  10469. // rows per thread
  10470. const int dr = (nr + nth - 1)/nth;
  10471. // row range for this thread
  10472. const int ir0 = dr*ith;
  10473. const int ir1 = MIN(ir0 + dr, nr);
  10474. for (int i1 = ir0; i1 < ir1; i1++) {
  10475. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10476. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10477. dst_data[i0] = 0;
  10478. for (int k = -nh; k <= nh; k++) {
  10479. float v = 0.0f;
  10480. ggml_vec_dot_f32(ew0, &v,
  10481. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10482. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10483. dst_data[i0] += v;
  10484. }
  10485. }
  10486. }
  10487. }
  10488. static void ggml_compute_forward_conv_1d_s1_ph(
  10489. const struct ggml_compute_params * params,
  10490. const struct ggml_tensor * src0,
  10491. const struct ggml_tensor * src1,
  10492. struct ggml_tensor * dst) {
  10493. switch (src0->type) {
  10494. case GGML_TYPE_F16:
  10495. {
  10496. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10497. } break;
  10498. case GGML_TYPE_F32:
  10499. {
  10500. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10501. } break;
  10502. default:
  10503. {
  10504. GGML_ASSERT(false);
  10505. } break;
  10506. }
  10507. }
  10508. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10509. const struct ggml_compute_params * params,
  10510. const struct ggml_tensor * src0,
  10511. const struct ggml_tensor * src1,
  10512. struct ggml_tensor * dst) {
  10513. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10514. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10515. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10516. int64_t t0 = ggml_perf_time_us();
  10517. UNUSED(t0);
  10518. GGML_TENSOR_BINARY_OP_LOCALS;
  10519. const int ith = params->ith;
  10520. const int nth = params->nth;
  10521. const int nk = ne00;
  10522. const int nh = nk/2;
  10523. const int ew0 = ggml_up32(ne01);
  10524. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10525. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10526. GGML_ASSERT(nb10 == sizeof(float));
  10527. if (params->type == GGML_TASK_INIT) {
  10528. // TODO: fix this memset (wsize is overestimated)
  10529. memset(params->wdata, 0, params->wsize);
  10530. // prepare kernel data (src0)
  10531. {
  10532. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10533. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10534. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10535. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10536. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10537. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10538. dst_data[i00*ew0 + i01] = src[i00];
  10539. }
  10540. }
  10541. }
  10542. }
  10543. // prepare source data (src1)
  10544. {
  10545. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10546. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10547. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10548. ggml_fp16_t * dst_data = wdata;
  10549. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10550. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10551. }
  10552. }
  10553. }
  10554. return;
  10555. }
  10556. if (params->type == GGML_TASK_FINALIZE) {
  10557. return;
  10558. }
  10559. // total rows in dst
  10560. const int nr = ne02;
  10561. // rows per thread
  10562. const int dr = (nr + nth - 1)/nth;
  10563. // row range for this thread
  10564. const int ir0 = dr*ith;
  10565. const int ir1 = MIN(ir0 + dr, nr);
  10566. for (int i1 = ir0; i1 < ir1; i1++) {
  10567. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10568. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10569. dst_data[i0/2] = 0;
  10570. for (int k = -nh; k <= nh; k++) {
  10571. float v = 0.0f;
  10572. ggml_vec_dot_f16(ew0, &v,
  10573. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10574. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10575. dst_data[i0/2] += v;
  10576. }
  10577. }
  10578. }
  10579. }
  10580. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10581. const struct ggml_compute_params * params,
  10582. const struct ggml_tensor * src0,
  10583. const struct ggml_tensor * src1,
  10584. struct ggml_tensor * dst) {
  10585. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10586. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10587. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10588. int64_t t0 = ggml_perf_time_us();
  10589. UNUSED(t0);
  10590. GGML_TENSOR_BINARY_OP_LOCALS;
  10591. const int ith = params->ith;
  10592. const int nth = params->nth;
  10593. const int nk = ne00;
  10594. const int nh = nk/2;
  10595. const int ew0 = ggml_up32(ne01);
  10596. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10597. GGML_ASSERT(nb00 == sizeof(float));
  10598. GGML_ASSERT(nb10 == sizeof(float));
  10599. if (params->type == GGML_TASK_INIT) {
  10600. // TODO: fix this memset (wsize is overestimated)
  10601. memset(params->wdata, 0, params->wsize);
  10602. // prepare kernel data (src0)
  10603. {
  10604. float * const wdata = (float *) params->wdata + 0;
  10605. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10606. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10607. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10608. float * dst_data = wdata + i02*ew0*ne00;
  10609. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10610. dst_data[i00*ew0 + i01] = src[i00];
  10611. }
  10612. }
  10613. }
  10614. }
  10615. // prepare source data (src1)
  10616. {
  10617. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10618. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10619. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10620. float * dst_data = wdata;
  10621. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10622. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10623. }
  10624. }
  10625. }
  10626. return;
  10627. }
  10628. if (params->type == GGML_TASK_FINALIZE) {
  10629. return;
  10630. }
  10631. // total rows in dst
  10632. const int nr = ne02;
  10633. // rows per thread
  10634. const int dr = (nr + nth - 1)/nth;
  10635. // row range for this thread
  10636. const int ir0 = dr*ith;
  10637. const int ir1 = MIN(ir0 + dr, nr);
  10638. for (int i1 = ir0; i1 < ir1; i1++) {
  10639. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10640. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10641. dst_data[i0/2] = 0;
  10642. for (int k = -nh; k <= nh; k++) {
  10643. float v = 0.0f;
  10644. ggml_vec_dot_f32(ew0, &v,
  10645. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10646. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10647. dst_data[i0/2] += v;
  10648. }
  10649. }
  10650. }
  10651. }
  10652. static void ggml_compute_forward_conv_1d_s2_ph(
  10653. const struct ggml_compute_params * params,
  10654. const struct ggml_tensor * src0,
  10655. const struct ggml_tensor * src1,
  10656. struct ggml_tensor * dst) {
  10657. switch (src0->type) {
  10658. case GGML_TYPE_F16:
  10659. {
  10660. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10661. } break;
  10662. case GGML_TYPE_F32:
  10663. {
  10664. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10665. } break;
  10666. default:
  10667. {
  10668. GGML_ASSERT(false);
  10669. } break;
  10670. }
  10671. }
  10672. // ggml_compute_forward_conv_1d
  10673. static void ggml_compute_forward_conv_1d(
  10674. const struct ggml_compute_params * params,
  10675. const struct ggml_tensor * src0,
  10676. const struct ggml_tensor * src1,
  10677. const struct ggml_tensor * opt0,
  10678. struct ggml_tensor * dst) {
  10679. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10680. const int32_t p0 = ((const int32_t*)(opt0->data))[1];
  10681. const int32_t d0 = ((const int32_t*)(opt0->data))[2];
  10682. GGML_ASSERT(d0 == 1); // dilation not supported
  10683. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10684. if (s0 == 1) {
  10685. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10686. } else if (s0 == 2) {
  10687. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10688. } else {
  10689. GGML_ASSERT(false); // only stride 1 and 2 supported
  10690. };
  10691. }
  10692. // ggml_compute_forward_conv_2d_sk_p0
  10693. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10694. const struct ggml_compute_params * params,
  10695. const struct ggml_tensor * src0,
  10696. const struct ggml_tensor * src1,
  10697. struct ggml_tensor * dst) {
  10698. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10699. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10700. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10701. int64_t t0 = ggml_perf_time_us();
  10702. UNUSED(t0);
  10703. GGML_TENSOR_BINARY_OP_LOCALS;
  10704. const int ith = params->ith;
  10705. const int nth = params->nth;
  10706. const int nk0 = ne00;
  10707. const int nk1 = ne01;
  10708. // size of the convolution row - the kernel size unrolled across all channels
  10709. const int ew0 = nk0*nk1*ne02;
  10710. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10711. GGML_ASSERT(nb10 == sizeof(float));
  10712. if (params->type == GGML_TASK_INIT) {
  10713. // TODO: fix this memset (wsize is overestimated)
  10714. memset(params->wdata, 0, params->wsize);
  10715. // prepare source data (src1)
  10716. {
  10717. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10718. for (int i12 = 0; i12 < ne12; i12++) {
  10719. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10720. ggml_fp16_t * dst_data = wdata;
  10721. for (int i1 = 0; i1 < ne1; i1++) {
  10722. for (int i0 = 0; i0 < ne0; i0++) {
  10723. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10724. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10725. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10726. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  10727. }
  10728. }
  10729. }
  10730. }
  10731. }
  10732. }
  10733. return;
  10734. }
  10735. if (params->type == GGML_TASK_FINALIZE) {
  10736. return;
  10737. }
  10738. // total patches in dst
  10739. const int np = ne2;
  10740. // patches per thread
  10741. const int dp = (np + nth - 1)/nth;
  10742. // patch range for this thread
  10743. const int ip0 = dp*ith;
  10744. const int ip1 = MIN(ip0 + dp, np);
  10745. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10746. for (int i2 = ip0; i2 < ip1; i2++) {
  10747. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10748. for (int i1 = 0; i1 < ne1; ++i1) {
  10749. for (int i0 = 0; i0 < ne0; ++i0) {
  10750. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10751. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10752. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  10753. }
  10754. }
  10755. }
  10756. }
  10757. static void ggml_compute_forward_conv_2d_sk_p0(
  10758. const struct ggml_compute_params * params,
  10759. const struct ggml_tensor * src0,
  10760. const struct ggml_tensor * src1,
  10761. struct ggml_tensor * dst) {
  10762. switch (src0->type) {
  10763. case GGML_TYPE_F16:
  10764. {
  10765. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  10766. } break;
  10767. case GGML_TYPE_F32:
  10768. {
  10769. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  10770. GGML_ASSERT(false);
  10771. } break;
  10772. default:
  10773. {
  10774. GGML_ASSERT(false);
  10775. } break;
  10776. }
  10777. }
  10778. // ggml_compute_forward_conv_2d
  10779. static void ggml_compute_forward_conv_2d(
  10780. const struct ggml_compute_params* params,
  10781. const struct ggml_tensor* src0,
  10782. const struct ggml_tensor* src1,
  10783. const struct ggml_tensor* opt0,
  10784. struct ggml_tensor* dst) {
  10785. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10786. const int32_t s1 = ((const int32_t*)(opt0->data))[1];
  10787. const int32_t p0 = ((const int32_t*)(opt0->data))[2];
  10788. const int32_t p1 = ((const int32_t*)(opt0->data))[3];
  10789. const int32_t d0 = ((const int32_t*)(opt0->data))[4];
  10790. const int32_t d1 = ((const int32_t*)(opt0->data))[5];
  10791. GGML_ASSERT(d0 == 1); // dilation not supported
  10792. GGML_ASSERT(d1 == 1);
  10793. GGML_ASSERT(p0 == 0); // padding not supported
  10794. GGML_ASSERT(p1 == 0);
  10795. if (s0 == src0->ne[0] && s1 == src0->ne[1]) {
  10796. ggml_compute_forward_conv_2d_sk_p0(params, src0, src1, dst);
  10797. }
  10798. else {
  10799. GGML_ASSERT(false); // only stride equal to kernel size is supported
  10800. };
  10801. }
  10802. // ggml_compute_forward_flash_attn
  10803. static void ggml_compute_forward_flash_attn_f32(
  10804. const struct ggml_compute_params * params,
  10805. const struct ggml_tensor * q,
  10806. const struct ggml_tensor * k,
  10807. const struct ggml_tensor * v,
  10808. const bool masked,
  10809. struct ggml_tensor * dst) {
  10810. int64_t t0 = ggml_perf_time_us();
  10811. UNUSED(t0);
  10812. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10813. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10814. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10815. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10816. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10817. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10818. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10819. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10820. const int ith = params->ith;
  10821. const int nth = params->nth;
  10822. const int64_t D = neq0;
  10823. const int64_t N = neq1;
  10824. const int64_t P = nek1 - N;
  10825. const int64_t M = P + N;
  10826. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10827. GGML_ASSERT(ne0 == D);
  10828. GGML_ASSERT(ne1 == N);
  10829. GGML_ASSERT(P >= 0);
  10830. GGML_ASSERT(nbq0 == sizeof(float));
  10831. GGML_ASSERT(nbk0 == sizeof(float));
  10832. GGML_ASSERT(nbv0 == sizeof(float));
  10833. GGML_ASSERT(neq0 == D);
  10834. GGML_ASSERT(nek0 == D);
  10835. GGML_ASSERT(nev1 == D);
  10836. GGML_ASSERT(neq1 == N);
  10837. GGML_ASSERT(nek1 == N + P);
  10838. GGML_ASSERT(nev1 == D);
  10839. // dst cannot be transposed or permuted
  10840. GGML_ASSERT(nb0 == sizeof(float));
  10841. GGML_ASSERT(nb0 <= nb1);
  10842. GGML_ASSERT(nb1 <= nb2);
  10843. GGML_ASSERT(nb2 <= nb3);
  10844. if (params->type == GGML_TASK_INIT) {
  10845. return;
  10846. }
  10847. if (params->type == GGML_TASK_FINALIZE) {
  10848. return;
  10849. }
  10850. // parallelize by q rows using ggml_vec_dot_f32
  10851. // total rows in q
  10852. const int nr = neq1*neq2*neq3;
  10853. // rows per thread
  10854. const int dr = (nr + nth - 1)/nth;
  10855. // row range for this thread
  10856. const int ir0 = dr*ith;
  10857. const int ir1 = MIN(ir0 + dr, nr);
  10858. const float scale = 1.0f/sqrtf(D);
  10859. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10860. for (int ir = ir0; ir < ir1; ++ir) {
  10861. // q indices
  10862. const int iq3 = ir/(neq2*neq1);
  10863. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10864. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10865. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10866. for (int i = M; i < Mup; ++i) {
  10867. S[i] = -INFINITY;
  10868. }
  10869. for (int64_t ic = 0; ic < nek1; ++ic) {
  10870. // k indices
  10871. const int ik3 = iq3;
  10872. const int ik2 = iq2;
  10873. const int ik1 = ic;
  10874. // S indices
  10875. const int i1 = ik1;
  10876. ggml_vec_dot_f32(neq0,
  10877. S + i1,
  10878. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10879. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10880. }
  10881. // scale
  10882. ggml_vec_scale_f32(nek1, S, scale);
  10883. if (masked) {
  10884. for (int64_t i = P; i < M; i++) {
  10885. if (i > P + iq1) {
  10886. S[i] = -INFINITY;
  10887. }
  10888. }
  10889. }
  10890. // softmax
  10891. {
  10892. float max = -INFINITY;
  10893. ggml_vec_max_f32(M, &max, S);
  10894. ggml_float sum = 0.0;
  10895. {
  10896. #ifdef GGML_SOFT_MAX_ACCELERATE
  10897. max = -max;
  10898. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10899. vvexpf(S, S, &Mup);
  10900. ggml_vec_sum_f32(Mup, &sum, S);
  10901. #else
  10902. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10903. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10904. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10905. float * SS = S + i;
  10906. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10907. if (SS[j] == -INFINITY) {
  10908. SS[j] = 0.0f;
  10909. } else {
  10910. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10911. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10912. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10913. sump[j] += (ggml_float)val;
  10914. SS[j] = val;
  10915. }
  10916. }
  10917. }
  10918. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10919. sum += sump[i];
  10920. }
  10921. #endif
  10922. }
  10923. assert(sum > 0.0);
  10924. sum = 1.0/sum;
  10925. ggml_vec_scale_f32(M, S, sum);
  10926. #ifndef NDEBUG
  10927. for (int i = 0; i < M; ++i) {
  10928. assert(!isnan(S[i]));
  10929. assert(!isinf(S[i]));
  10930. }
  10931. #endif
  10932. }
  10933. for (int64_t ic = 0; ic < nev1; ++ic) {
  10934. // dst indices
  10935. const int i1 = iq1;
  10936. const int i2 = iq2;
  10937. const int i3 = iq3;
  10938. ggml_vec_dot_f32(nek1,
  10939. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10940. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10941. S);
  10942. }
  10943. }
  10944. }
  10945. static void ggml_compute_forward_flash_attn_f16(
  10946. const struct ggml_compute_params * params,
  10947. const struct ggml_tensor * q,
  10948. const struct ggml_tensor * k,
  10949. const struct ggml_tensor * v,
  10950. const bool masked,
  10951. struct ggml_tensor * dst) {
  10952. int64_t t0 = ggml_perf_time_us();
  10953. UNUSED(t0);
  10954. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10955. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10956. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10957. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10958. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10959. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10960. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10961. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10962. const int ith = params->ith;
  10963. const int nth = params->nth;
  10964. const int64_t D = neq0;
  10965. const int64_t N = neq1;
  10966. const int64_t P = nek1 - N;
  10967. const int64_t M = P + N;
  10968. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10969. GGML_ASSERT(ne0 == D);
  10970. GGML_ASSERT(ne1 == N);
  10971. GGML_ASSERT(P >= 0);
  10972. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10973. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10974. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10975. GGML_ASSERT(neq0 == D);
  10976. GGML_ASSERT(nek0 == D);
  10977. GGML_ASSERT(nev1 == D);
  10978. GGML_ASSERT(neq1 == N);
  10979. GGML_ASSERT(nek1 == N + P);
  10980. GGML_ASSERT(nev1 == D);
  10981. // dst cannot be transposed or permuted
  10982. GGML_ASSERT(nb0 == sizeof(float));
  10983. GGML_ASSERT(nb0 <= nb1);
  10984. GGML_ASSERT(nb1 <= nb2);
  10985. GGML_ASSERT(nb2 <= nb3);
  10986. if (params->type == GGML_TASK_INIT) {
  10987. return;
  10988. }
  10989. if (params->type == GGML_TASK_FINALIZE) {
  10990. return;
  10991. }
  10992. // parallelize by q rows using ggml_vec_dot_f32
  10993. // total rows in q
  10994. const int nr = neq1*neq2*neq3;
  10995. // rows per thread
  10996. const int dr = (nr + nth - 1)/nth;
  10997. // row range for this thread
  10998. const int ir0 = dr*ith;
  10999. const int ir1 = MIN(ir0 + dr, nr);
  11000. const float scale = 1.0f/sqrtf(D);
  11001. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11002. for (int ir = ir0; ir < ir1; ++ir) {
  11003. // q indices
  11004. const int iq3 = ir/(neq2*neq1);
  11005. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11006. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11007. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11008. for (int i = M; i < Mup; ++i) {
  11009. S[i] = -INFINITY;
  11010. }
  11011. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11012. for (int64_t ic = 0; ic < nek1; ++ic) {
  11013. // k indices
  11014. const int ik3 = iq3;
  11015. const int ik2 = iq2;
  11016. const int ik1 = ic;
  11017. // S indices
  11018. const int i1 = ik1;
  11019. ggml_vec_dot_f16(neq0,
  11020. S + i1,
  11021. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11022. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11023. }
  11024. } else {
  11025. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11026. // k indices
  11027. const int ik3 = iq3;
  11028. const int ik2 = iq2;
  11029. const int ik1 = ic;
  11030. // S indices
  11031. const int i1 = ik1;
  11032. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11033. S + i1,
  11034. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11035. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11036. }
  11037. }
  11038. // scale
  11039. ggml_vec_scale_f32(nek1, S, scale);
  11040. if (masked) {
  11041. for (int64_t i = P; i < M; i++) {
  11042. if (i > P + iq1) {
  11043. S[i] = -INFINITY;
  11044. }
  11045. }
  11046. }
  11047. // softmax
  11048. {
  11049. float max = -INFINITY;
  11050. ggml_vec_max_f32(M, &max, S);
  11051. ggml_float sum = 0.0;
  11052. {
  11053. #ifdef GGML_SOFT_MAX_ACCELERATE
  11054. max = -max;
  11055. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11056. vvexpf(S, S, &Mup);
  11057. ggml_vec_sum_f32(Mup, &sum, S);
  11058. #else
  11059. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11060. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11061. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11062. float * SS = S + i;
  11063. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11064. if (SS[j] == -INFINITY) {
  11065. SS[j] = 0.0f;
  11066. } else {
  11067. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11068. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11069. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11070. sump[j] += (ggml_float)val;
  11071. SS[j] = val;
  11072. }
  11073. }
  11074. }
  11075. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11076. sum += sump[i];
  11077. }
  11078. #endif
  11079. }
  11080. assert(sum > 0.0);
  11081. sum = 1.0/sum;
  11082. ggml_vec_scale_f32(M, S, sum);
  11083. #ifndef NDEBUG
  11084. for (int i = 0; i < M; ++i) {
  11085. assert(!isnan(S[i]));
  11086. assert(!isinf(S[i]));
  11087. }
  11088. #endif
  11089. }
  11090. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11091. for (int64_t i = 0; i < M; i++) {
  11092. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11093. }
  11094. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11095. for (int64_t ic = 0; ic < nev1; ++ic) {
  11096. // dst indices
  11097. const int i1 = iq1;
  11098. const int i2 = iq2;
  11099. const int i3 = iq3;
  11100. ggml_vec_dot_f16(nek1,
  11101. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11102. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11103. S16);
  11104. }
  11105. } else {
  11106. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11107. // dst indices
  11108. const int i1 = iq1;
  11109. const int i2 = iq2;
  11110. const int i3 = iq3;
  11111. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11112. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11113. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11114. S16);
  11115. }
  11116. }
  11117. }
  11118. }
  11119. static void ggml_compute_forward_flash_attn(
  11120. const struct ggml_compute_params * params,
  11121. const struct ggml_tensor * q,
  11122. const struct ggml_tensor * k,
  11123. const struct ggml_tensor * v,
  11124. const bool masked,
  11125. struct ggml_tensor * dst) {
  11126. switch (q->type) {
  11127. case GGML_TYPE_F16:
  11128. {
  11129. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11130. } break;
  11131. case GGML_TYPE_F32:
  11132. {
  11133. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11134. } break;
  11135. default:
  11136. {
  11137. GGML_ASSERT(false);
  11138. } break;
  11139. }
  11140. }
  11141. // ggml_compute_forward_flash_ff
  11142. static void ggml_compute_forward_flash_ff_f16(
  11143. const struct ggml_compute_params * params,
  11144. const struct ggml_tensor * a, // F16
  11145. const struct ggml_tensor * b0, // F16 fc_w
  11146. const struct ggml_tensor * b1, // F32 fc_b
  11147. const struct ggml_tensor * c0, // F16 proj_w
  11148. const struct ggml_tensor * c1, // F32 proj_b
  11149. struct ggml_tensor * dst) {
  11150. int64_t t0 = ggml_perf_time_us();
  11151. UNUSED(t0);
  11152. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11153. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11154. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11155. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11156. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11157. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11158. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11159. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11160. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11161. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11162. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11163. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11164. const int ith = params->ith;
  11165. const int nth = params->nth;
  11166. const int64_t D = nea0;
  11167. //const int64_t N = nea1;
  11168. const int64_t M = neb01;
  11169. GGML_ASSERT(ne0 == nea0);
  11170. GGML_ASSERT(ne1 == nea1);
  11171. GGML_ASSERT(ne2 == nea2);
  11172. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11173. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11174. GGML_ASSERT(nbb10 == sizeof(float));
  11175. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11176. GGML_ASSERT(nbc10 == sizeof(float));
  11177. GGML_ASSERT(neb00 == D);
  11178. GGML_ASSERT(neb01 == M);
  11179. GGML_ASSERT(neb10 == M);
  11180. GGML_ASSERT(neb11 == 1);
  11181. GGML_ASSERT(nec00 == M);
  11182. GGML_ASSERT(nec01 == D);
  11183. GGML_ASSERT(nec10 == D);
  11184. GGML_ASSERT(nec11 == 1);
  11185. // dst cannot be transposed or permuted
  11186. GGML_ASSERT(nb0 == sizeof(float));
  11187. GGML_ASSERT(nb0 <= nb1);
  11188. GGML_ASSERT(nb1 <= nb2);
  11189. GGML_ASSERT(nb2 <= nb3);
  11190. if (params->type == GGML_TASK_INIT) {
  11191. return;
  11192. }
  11193. if (params->type == GGML_TASK_FINALIZE) {
  11194. return;
  11195. }
  11196. // parallelize by a rows using ggml_vec_dot_f32
  11197. // total rows in a
  11198. const int nr = nea1*nea2*nea3;
  11199. // rows per thread
  11200. const int dr = (nr + nth - 1)/nth;
  11201. // row range for this thread
  11202. const int ir0 = dr*ith;
  11203. const int ir1 = MIN(ir0 + dr, nr);
  11204. for (int ir = ir0; ir < ir1; ++ir) {
  11205. // a indices
  11206. const int ia3 = ir/(nea2*nea1);
  11207. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11208. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11209. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11210. for (int64_t ic = 0; ic < neb01; ++ic) {
  11211. // b0 indices
  11212. const int ib03 = ia3;
  11213. const int ib02 = ia2;
  11214. const int ib01 = ic;
  11215. // S indices
  11216. const int i1 = ib01;
  11217. ggml_vec_dot_f16(nea0,
  11218. S + i1,
  11219. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11220. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11221. }
  11222. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11223. //ggml_vec_gelu_f32(neb01, S, S);
  11224. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11225. for (int64_t i = 0; i < M; i++) {
  11226. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11227. }
  11228. ggml_vec_gelu_f16(neb01, S16, S16);
  11229. {
  11230. // dst indices
  11231. const int i1 = ia1;
  11232. const int i2 = ia2;
  11233. const int i3 = ia3;
  11234. for (int64_t ic = 0; ic < nec01; ++ic) {
  11235. ggml_vec_dot_f16(neb01,
  11236. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11237. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11238. S16);
  11239. }
  11240. ggml_vec_add_f32(nec01,
  11241. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11242. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11243. (float *) c1->data);
  11244. }
  11245. }
  11246. }
  11247. static void ggml_compute_forward_flash_ff(
  11248. const struct ggml_compute_params * params,
  11249. const struct ggml_tensor * a,
  11250. const struct ggml_tensor * b0,
  11251. const struct ggml_tensor * b1,
  11252. const struct ggml_tensor * c0,
  11253. const struct ggml_tensor * c1,
  11254. struct ggml_tensor * dst) {
  11255. switch (b0->type) {
  11256. case GGML_TYPE_F16:
  11257. {
  11258. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11259. } break;
  11260. case GGML_TYPE_F32:
  11261. {
  11262. GGML_ASSERT(false); // TODO
  11263. } break;
  11264. default:
  11265. {
  11266. GGML_ASSERT(false);
  11267. } break;
  11268. }
  11269. }
  11270. // ggml_compute_forward_flash_attn_back
  11271. static void ggml_compute_forward_flash_attn_back_f32(
  11272. const struct ggml_compute_params * params,
  11273. const struct ggml_tensor * q,
  11274. const struct ggml_tensor * k,
  11275. const struct ggml_tensor * v,
  11276. const struct ggml_tensor * d,
  11277. const bool masked,
  11278. struct ggml_tensor * dst) {
  11279. int64_t t0 = ggml_perf_time_us();
  11280. UNUSED(t0);
  11281. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11282. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11283. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11284. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11285. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11286. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11287. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11288. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11289. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11290. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11291. const int ith = params->ith;
  11292. const int nth = params->nth;
  11293. const int64_t D = neq0;
  11294. const int64_t N = neq1;
  11295. const int64_t P = nek1 - N;
  11296. const int64_t M = P + N;
  11297. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11298. const int mxDM = MAX(D, Mup);
  11299. // GGML_ASSERT(ne0 == D);
  11300. // GGML_ASSERT(ne1 == N);
  11301. GGML_ASSERT(P >= 0);
  11302. GGML_ASSERT(nbq0 == sizeof(float));
  11303. GGML_ASSERT(nbk0 == sizeof(float));
  11304. GGML_ASSERT(nbv0 == sizeof(float));
  11305. GGML_ASSERT(neq0 == D);
  11306. GGML_ASSERT(nek0 == D);
  11307. GGML_ASSERT(nev1 == D);
  11308. GGML_ASSERT(ned0 == D);
  11309. GGML_ASSERT(neq1 == N);
  11310. GGML_ASSERT(nek1 == N + P);
  11311. GGML_ASSERT(nev1 == D);
  11312. GGML_ASSERT(ned1 == N);
  11313. // dst cannot be transposed or permuted
  11314. GGML_ASSERT(nb0 == sizeof(float));
  11315. GGML_ASSERT(nb0 <= nb1);
  11316. GGML_ASSERT(nb1 <= nb2);
  11317. GGML_ASSERT(nb2 <= nb3);
  11318. if (params->type == GGML_TASK_INIT) {
  11319. if (ith == 0) {
  11320. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11321. }
  11322. return;
  11323. }
  11324. if (params->type == GGML_TASK_FINALIZE) {
  11325. return;
  11326. }
  11327. // parallelize by q rows using ggml_vec_dot_f32
  11328. // total rows in q
  11329. const int nr = neq2*neq3;
  11330. // rows per thread
  11331. const int dr = (nr + nth - 1)/nth;
  11332. // row range for this thread
  11333. const int ir0 = dr*ith;
  11334. const int ir1 = MIN(ir0 + dr, nr);
  11335. const float scale = 1.0f/sqrtf(D);
  11336. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11337. for (int ir = ir0; ir < ir1; ++ir) {
  11338. // q indices
  11339. const int iq3 = ir/(neq2);
  11340. const int iq2 = ir - iq3*neq2;
  11341. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11342. // not sure about CACHE_LINE_SIZE_F32..
  11343. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11344. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11345. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11346. for (int i = M; i < Mup; ++i) {
  11347. S[i] = -INFINITY;
  11348. }
  11349. for (int64_t ic = 0; ic < nek1; ++ic) {
  11350. // k indices
  11351. const int ik3 = iq3;
  11352. const int ik2 = iq2;
  11353. const int ik1 = ic;
  11354. // S indices
  11355. const int i1 = ik1;
  11356. ggml_vec_dot_f32(neq0,
  11357. S + i1,
  11358. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11359. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11360. }
  11361. // scale
  11362. ggml_vec_scale_f32(nek1, S, scale);
  11363. if (masked) {
  11364. for (int64_t i = P; i < M; i++) {
  11365. if (i > P + iq1) {
  11366. S[i] = -INFINITY;
  11367. }
  11368. }
  11369. }
  11370. // softmax
  11371. {
  11372. float max = -INFINITY;
  11373. ggml_vec_max_f32(M, &max, S);
  11374. ggml_float sum = 0.0;
  11375. {
  11376. #ifdef GGML_SOFT_MAX_ACCELERATE
  11377. max = -max;
  11378. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11379. vvexpf(SM, SM, &Mup);
  11380. ggml_vec_sum_f32(Mup, &sum, SM);
  11381. #else
  11382. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11383. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11384. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11385. float * SR = S + i;
  11386. float * SW = SM + i;
  11387. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11388. if (SR[j] == -INFINITY) {
  11389. SW[j] = 0.0f;
  11390. } else {
  11391. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11392. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11393. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11394. sump[j] += (ggml_float)val;
  11395. SW[j] = val;
  11396. }
  11397. }
  11398. }
  11399. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11400. sum += sump[i];
  11401. }
  11402. #endif
  11403. }
  11404. assert(sum > 0.0);
  11405. sum = 1.0/sum;
  11406. ggml_vec_scale_f32(M, SM, sum);
  11407. }
  11408. // step-by-step explanation
  11409. {
  11410. // forward-process shape grads from backward process
  11411. // parallel_for iq2,iq3:
  11412. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11413. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11414. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11415. // for iq1:
  11416. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11417. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11418. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11419. // S0 = -Inf [D,1,1,1]
  11420. // ~S1[i] = dot(kcur[:D,i], qcur)
  11421. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11422. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11423. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11424. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11425. // ~S5[i] = dot(vcur[:,i], S4)
  11426. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11427. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11428. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11429. // dst backward-/ grad[dst] = d
  11430. //
  11431. // output gradients with their dependencies:
  11432. //
  11433. // grad[kcur] = grad[S1].T @ qcur
  11434. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11435. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11436. // grad[S4] = grad[S5] @ vcur
  11437. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11438. // grad[qcur] = grad[S1] @ kcur
  11439. // grad[vcur] = grad[S5].T @ S4
  11440. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11441. //
  11442. // in post-order:
  11443. //
  11444. // S1 = qcur @ kcur.T
  11445. // S2 = S1 * scale
  11446. // S3 = diag_mask_inf(S2, P)
  11447. // S4 = softmax(S3)
  11448. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11449. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11450. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11451. // grad[qcur] = grad[S1] @ kcur
  11452. // grad[kcur] = grad[S1].T @ qcur
  11453. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11454. //
  11455. // using less variables (SM=S4):
  11456. //
  11457. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11458. // SM = softmax(S)
  11459. // S = d[:D,iq1,iq2,iq3] @ vcur
  11460. // dot_SM_gradSM = dot(SM, S)
  11461. // S = SM * (S - dot(SM, S))
  11462. // S = diag_mask_zero(S, P) * scale
  11463. //
  11464. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11465. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11466. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11467. }
  11468. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11469. // S = d[:D,iq1,iq2,iq3] @ vcur
  11470. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11471. ggml_vec_set_f32(M, S, 0);
  11472. for (int64_t ic = 0; ic < D; ++ic) {
  11473. // dst indices
  11474. const int i1 = iq1;
  11475. const int i2 = iq2;
  11476. const int i3 = iq3;
  11477. ggml_vec_mad_f32(M,
  11478. S,
  11479. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11480. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11481. }
  11482. // S = SM * (S - dot(SM, S))
  11483. float dot_SM_gradSM = 0;
  11484. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11485. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11486. ggml_vec_mul_f32 (M, S, S, SM);
  11487. // S = diag_mask_zero(S, P) * scale
  11488. if (masked) {
  11489. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11490. // S[i] = 0;
  11491. // }
  11492. for (int64_t i = P; i < M; i++) {
  11493. if (i > P + iq1) {
  11494. S[i] = 0;
  11495. }
  11496. }
  11497. }
  11498. ggml_vec_scale_f32(M, S, scale);
  11499. void * grad_q = (char *) dst->data;
  11500. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11501. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11502. const size_t nbgq1 = nb0*neq0;
  11503. const size_t nbgq2 = nb0*neq0*neq1;
  11504. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11505. const size_t nbgk1 = nb0*nek0;
  11506. const size_t nbgk2 = nb0*nek0*nek1;
  11507. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11508. const size_t nbgv1 = nb0*nev0;
  11509. const size_t nbgv2 = nb0*nev0*nev1;
  11510. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11511. // S shape [M,1]
  11512. // SM shape [M,1]
  11513. // kcur shape [D,M]
  11514. // qcur shape [D,1]
  11515. // vcur shape [M,D]
  11516. //
  11517. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11518. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11519. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11520. //
  11521. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11522. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11523. for (int64_t ic = 0; ic < M; ++ic) {
  11524. // dst indices
  11525. const int i1 = iq1;
  11526. const int i2 = iq2;
  11527. const int i3 = iq3;
  11528. ggml_vec_mad_f32(D,
  11529. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11530. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11531. S[ic]);
  11532. }
  11533. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11534. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11535. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11536. for (int64_t ic = 0; ic < M; ++ic) {
  11537. // dst indices
  11538. const int i1 = iq1;
  11539. const int i2 = iq2;
  11540. const int i3 = iq3;
  11541. // ggml_vec_set_f32(D,
  11542. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11543. // 0);
  11544. ggml_vec_mad_f32(D,
  11545. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11546. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11547. S[ic]);
  11548. }
  11549. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11550. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11551. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11552. for (int64_t ic = 0; ic < D; ++ic) {
  11553. // dst indices
  11554. const int i1 = iq1;
  11555. const int i2 = iq2;
  11556. const int i3 = iq3;
  11557. // ggml_vec_set_f32(M,
  11558. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11559. // 0);
  11560. ggml_vec_mad_f32(M,
  11561. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11562. SM,
  11563. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11564. }
  11565. }
  11566. }
  11567. }
  11568. static void ggml_compute_forward_flash_attn_back(
  11569. const struct ggml_compute_params * params,
  11570. const struct ggml_tensor * q,
  11571. const struct ggml_tensor * k,
  11572. const struct ggml_tensor * v,
  11573. const struct ggml_tensor * d,
  11574. const bool masked,
  11575. struct ggml_tensor * dst) {
  11576. switch (q->type) {
  11577. case GGML_TYPE_F32:
  11578. {
  11579. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11580. } break;
  11581. default:
  11582. {
  11583. GGML_ASSERT(false);
  11584. } break;
  11585. }
  11586. }
  11587. // ggml_compute_forward_win_part
  11588. static void ggml_compute_forward_win_part_f32(
  11589. const struct ggml_compute_params * params,
  11590. const struct ggml_tensor * src0,
  11591. const struct ggml_tensor * opt0,
  11592. struct ggml_tensor * dst) {
  11593. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11594. return;
  11595. }
  11596. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11597. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11598. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11599. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11600. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11601. assert(ne00 == ne0);
  11602. assert(ne3 == nep0*nep1);
  11603. // TODO: optimize / multi-thread
  11604. for (int py = 0; py < nep1; ++py) {
  11605. for (int px = 0; px < nep0; ++px) {
  11606. const int64_t i3 = py*nep0 + px;
  11607. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11608. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11609. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11610. const int64_t i02 = py*w + i2;
  11611. const int64_t i01 = px*w + i1;
  11612. const int64_t i00 = i0;
  11613. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11614. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11615. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11616. ((float *) dst->data)[i] = 0.0f;
  11617. } else {
  11618. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11619. }
  11620. }
  11621. }
  11622. }
  11623. }
  11624. }
  11625. }
  11626. static void ggml_compute_forward_win_part(
  11627. const struct ggml_compute_params * params,
  11628. const struct ggml_tensor * src0,
  11629. const struct ggml_tensor * opt0,
  11630. struct ggml_tensor * dst) {
  11631. switch (src0->type) {
  11632. case GGML_TYPE_F32:
  11633. {
  11634. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11635. } break;
  11636. default:
  11637. {
  11638. GGML_ASSERT(false);
  11639. } break;
  11640. }
  11641. }
  11642. // ggml_compute_forward_win_unpart
  11643. static void ggml_compute_forward_win_unpart_f32(
  11644. const struct ggml_compute_params * params,
  11645. const struct ggml_tensor * src0,
  11646. const struct ggml_tensor * opt0,
  11647. struct ggml_tensor * dst) {
  11648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11649. return;
  11650. }
  11651. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11652. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11653. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11654. // padding
  11655. const int px = (w - ne1%w)%w;
  11656. //const int py = (w - ne2%w)%w;
  11657. const int npx = (px + ne1)/w;
  11658. //const int npy = (py + ne2)/w;
  11659. assert(ne0 == ne00);
  11660. // TODO: optimize / multi-thread
  11661. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11662. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11663. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11664. const int ip2 = i2/w;
  11665. const int ip1 = i1/w;
  11666. const int64_t i02 = i2%w;
  11667. const int64_t i01 = i1%w;
  11668. const int64_t i00 = i0;
  11669. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11670. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11671. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11672. }
  11673. }
  11674. }
  11675. }
  11676. static void ggml_compute_forward_win_unpart(
  11677. const struct ggml_compute_params * params,
  11678. const struct ggml_tensor * src0,
  11679. const struct ggml_tensor * opt0,
  11680. struct ggml_tensor * dst) {
  11681. switch (src0->type) {
  11682. case GGML_TYPE_F32:
  11683. {
  11684. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11685. } break;
  11686. default:
  11687. {
  11688. GGML_ASSERT(false);
  11689. } break;
  11690. }
  11691. }
  11692. // ggml_compute_forward_map_unary
  11693. static void ggml_compute_forward_map_unary_f32(
  11694. const struct ggml_compute_params * params,
  11695. const struct ggml_tensor * src0,
  11696. struct ggml_tensor * dst,
  11697. const ggml_unary_op_f32_t fun) {
  11698. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11699. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11700. return;
  11701. }
  11702. const int n = ggml_nrows(src0);
  11703. const int nc = src0->ne[0];
  11704. assert( dst->nb[0] == sizeof(float));
  11705. assert(src0->nb[0] == sizeof(float));
  11706. for (int i = 0; i < n; i++) {
  11707. fun(nc,
  11708. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11709. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11710. }
  11711. }
  11712. static void ggml_compute_forward_map_unary(
  11713. const struct ggml_compute_params * params,
  11714. const struct ggml_tensor * src0,
  11715. struct ggml_tensor * dst,
  11716. const ggml_unary_op_f32_t fun) {
  11717. switch (src0->type) {
  11718. case GGML_TYPE_F32:
  11719. {
  11720. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11721. } break;
  11722. default:
  11723. {
  11724. GGML_ASSERT(false);
  11725. } break;
  11726. }
  11727. }
  11728. // ggml_compute_forward_map_binary
  11729. static void ggml_compute_forward_map_binary_f32(
  11730. const struct ggml_compute_params * params,
  11731. const struct ggml_tensor * src0,
  11732. const struct ggml_tensor * src1,
  11733. struct ggml_tensor * dst,
  11734. const ggml_binary_op_f32_t fun) {
  11735. assert(params->ith == 0);
  11736. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11737. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11738. return;
  11739. }
  11740. const int n = ggml_nrows(src0);
  11741. const int nc = src0->ne[0];
  11742. assert( dst->nb[0] == sizeof(float));
  11743. assert(src0->nb[0] == sizeof(float));
  11744. assert(src1->nb[0] == sizeof(float));
  11745. for (int i = 0; i < n; i++) {
  11746. fun(nc,
  11747. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11748. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11749. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11750. }
  11751. }
  11752. static void ggml_compute_forward_map_binary(
  11753. const struct ggml_compute_params * params,
  11754. const struct ggml_tensor * src0,
  11755. const struct ggml_tensor * src1,
  11756. struct ggml_tensor * dst,
  11757. const ggml_binary_op_f32_t fun) {
  11758. switch (src0->type) {
  11759. case GGML_TYPE_F32:
  11760. {
  11761. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11762. } break;
  11763. default:
  11764. {
  11765. GGML_ASSERT(false);
  11766. } break;
  11767. }
  11768. }
  11769. // ggml_compute_forward_map_custom1
  11770. static void ggml_compute_forward_map_custom1_f32(
  11771. const struct ggml_compute_params * params,
  11772. const struct ggml_tensor * a,
  11773. struct ggml_tensor * dst,
  11774. const ggml_custom1_op_f32_t fun) {
  11775. assert(params->ith == 0);
  11776. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11777. return;
  11778. }
  11779. fun(dst, a);
  11780. }
  11781. static void ggml_compute_forward_map_custom1(
  11782. const struct ggml_compute_params * params,
  11783. const struct ggml_tensor * a,
  11784. struct ggml_tensor * dst,
  11785. const ggml_custom1_op_f32_t fun) {
  11786. switch (a->type) {
  11787. case GGML_TYPE_F32:
  11788. {
  11789. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11790. } break;
  11791. default:
  11792. {
  11793. GGML_ASSERT(false);
  11794. } break;
  11795. }
  11796. }
  11797. // ggml_compute_forward_map_custom2
  11798. static void ggml_compute_forward_map_custom2_f32(
  11799. const struct ggml_compute_params * params,
  11800. const struct ggml_tensor * a,
  11801. const struct ggml_tensor * b,
  11802. struct ggml_tensor * dst,
  11803. const ggml_custom2_op_f32_t fun) {
  11804. assert(params->ith == 0);
  11805. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11806. return;
  11807. }
  11808. fun(dst, a, b);
  11809. }
  11810. static void ggml_compute_forward_map_custom2(
  11811. const struct ggml_compute_params * params,
  11812. const struct ggml_tensor * a,
  11813. const struct ggml_tensor * b,
  11814. struct ggml_tensor * dst,
  11815. const ggml_custom2_op_f32_t fun) {
  11816. switch (a->type) {
  11817. case GGML_TYPE_F32:
  11818. {
  11819. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11820. } break;
  11821. default:
  11822. {
  11823. GGML_ASSERT(false);
  11824. } break;
  11825. }
  11826. }
  11827. // ggml_compute_forward_map_custom3
  11828. static void ggml_compute_forward_map_custom3_f32(
  11829. const struct ggml_compute_params * params,
  11830. const struct ggml_tensor * a,
  11831. const struct ggml_tensor * b,
  11832. const struct ggml_tensor * c,
  11833. struct ggml_tensor * dst,
  11834. const ggml_custom3_op_f32_t fun) {
  11835. assert(params->ith == 0);
  11836. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11837. return;
  11838. }
  11839. fun(dst, a, b, c);
  11840. }
  11841. static void ggml_compute_forward_map_custom3(
  11842. const struct ggml_compute_params * params,
  11843. const struct ggml_tensor * a,
  11844. const struct ggml_tensor * b,
  11845. const struct ggml_tensor * c,
  11846. struct ggml_tensor * dst,
  11847. const ggml_custom3_op_f32_t fun) {
  11848. switch (a->type) {
  11849. case GGML_TYPE_F32:
  11850. {
  11851. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11852. } break;
  11853. default:
  11854. {
  11855. GGML_ASSERT(false);
  11856. } break;
  11857. }
  11858. }
  11859. // ggml_compute_forward_cross_entropy_loss
  11860. static void ggml_compute_forward_cross_entropy_loss_f32(
  11861. const struct ggml_compute_params * params,
  11862. const struct ggml_tensor * src0,
  11863. const struct ggml_tensor * src1,
  11864. struct ggml_tensor * dst) {
  11865. GGML_ASSERT(ggml_is_contiguous(src0));
  11866. GGML_ASSERT(ggml_is_contiguous(src1));
  11867. GGML_ASSERT(ggml_is_scalar(dst));
  11868. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11869. const int ith = params->ith;
  11870. const int nth = params->nth;
  11871. float * sums = (float *) params->wdata;
  11872. // TODO: handle transposed/permuted matrices
  11873. const int nc = src0->ne[0];
  11874. const int nr = ggml_nrows(src0);
  11875. if (params->type == GGML_TASK_INIT) {
  11876. if (ith == 0) {
  11877. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11878. }
  11879. return;
  11880. }
  11881. if (params->type == GGML_TASK_FINALIZE) {
  11882. if (ith == 0) {
  11883. float * dp = (float *) dst->data;
  11884. ggml_vec_sum_f32(nth, dp, sums);
  11885. dp[0] *= -1.0f;
  11886. }
  11887. return;
  11888. }
  11889. const double eps = 1e-9;
  11890. // rows per thread
  11891. const int dr = (nr + nth - 1)/nth;
  11892. // row range for this thread
  11893. const int ir0 = dr*ith;
  11894. const int ir1 = MIN(ir0 + dr, nr);
  11895. for (int i1 = ir0; i1 < ir1; i1++) {
  11896. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11897. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11898. float * st = (float *) params->wdata + nth + ith*nc;
  11899. #ifndef NDEBUG
  11900. for (int i = 0; i < nc; ++i) {
  11901. //printf("p[%d] = %f\n", i, p[i]);
  11902. assert(!isnan(s0[i]));
  11903. assert(!isnan(s1[i]));
  11904. }
  11905. #endif
  11906. // soft_max
  11907. ggml_float sum = 0.0;
  11908. {
  11909. float max = -INFINITY;
  11910. ggml_vec_max_f32(nc, &max, s0);
  11911. uint16_t scvt;
  11912. for (int i = 0; i < nc; i++) {
  11913. if (s0[i] == -INFINITY) {
  11914. st[i] = 0.0f;
  11915. } else {
  11916. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11917. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11918. memcpy(&scvt, &s, sizeof(scvt));
  11919. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11920. sum += (ggml_float)val;
  11921. st[i] = val;
  11922. }
  11923. }
  11924. assert(sum > 0.0);
  11925. // sum = 1.0/sum;
  11926. }
  11927. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11928. sum = (1.0 - eps) / sum;
  11929. ggml_vec_scale_f32(nc, st, sum);
  11930. ggml_vec_add1_f32(nc, st, st, eps);
  11931. ggml_vec_log_f32(nc, st, st);
  11932. ggml_vec_mul_f32(nc, st, st, s1);
  11933. ggml_vec_sum_f32(nc, sums + ith, st);
  11934. #ifndef NDEBUG
  11935. for (int i = 0; i < nc; ++i) {
  11936. assert(!isnan(st[i]));
  11937. assert(!isinf(st[i]));
  11938. }
  11939. #endif
  11940. }
  11941. }
  11942. static void ggml_compute_forward_cross_entropy_loss(
  11943. const struct ggml_compute_params * params,
  11944. const struct ggml_tensor * src0,
  11945. const struct ggml_tensor * src1,
  11946. struct ggml_tensor * dst) {
  11947. switch (src0->type) {
  11948. case GGML_TYPE_F32:
  11949. {
  11950. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11951. } break;
  11952. default:
  11953. {
  11954. GGML_ASSERT(false);
  11955. } break;
  11956. }
  11957. }
  11958. // ggml_compute_forward_cross_entropy_loss_back
  11959. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11960. const struct ggml_compute_params * params,
  11961. const struct ggml_tensor * src0,
  11962. const struct ggml_tensor * src1,
  11963. const struct ggml_tensor * opt0,
  11964. struct ggml_tensor * dst) {
  11965. GGML_ASSERT(ggml_is_contiguous(dst));
  11966. GGML_ASSERT(ggml_is_contiguous(src0));
  11967. GGML_ASSERT(ggml_is_contiguous(src1));
  11968. GGML_ASSERT(ggml_is_contiguous(opt0));
  11969. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11970. const int64_t ith = params->ith;
  11971. const int64_t nth = params->nth;
  11972. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11973. return;
  11974. }
  11975. const float eps = 1e-9f;
  11976. // TODO: handle transposed/permuted matrices
  11977. const int64_t nc = src0->ne[0];
  11978. const int64_t nr = ggml_nrows(src0);
  11979. // rows per thread
  11980. const int64_t dr = (nr + nth - 1)/nth;
  11981. // row range for this thread
  11982. const int64_t ir0 = dr*ith;
  11983. const int64_t ir1 = MIN(ir0 + dr, nr);
  11984. float * d = (float *) opt0->data;
  11985. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11986. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11987. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11988. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11989. float * sm = (float *) params->wdata + ith*nc;
  11990. #ifndef NDEBUG
  11991. for (int i = 0; i < nc; ++i) {
  11992. //printf("p[%d] = %f\n", i, p[i]);
  11993. assert(!isnan(s0[i]));
  11994. assert(!isnan(s1[i]));
  11995. }
  11996. #endif
  11997. // step by step explanation:
  11998. {
  11999. //float * sums = (float *) params->wdata;
  12000. // forward pass with annotated gradients from backward pass
  12001. // (built by going in reverse operation order, adding to gradients of current operation args)
  12002. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  12003. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12004. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  12005. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  12006. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  12007. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  12008. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  12009. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  12010. // substitute into grad[st1], because we can reuse softmax_back from this point on
  12011. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  12012. // postorder:
  12013. // grad[st1] := softmax(s0)
  12014. // grad[st1] := grad[st1]*(1.0 - eps)
  12015. // grad[st1] := grad[st1] + eps
  12016. // grad[st1] := s1 / grad[st1]
  12017. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  12018. // src0 gradients by going through softmax_back
  12019. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12020. // from softmax_back:
  12021. // dxk = yk * (dyk - dot(y, dy))
  12022. // dot_y_dy := dot(y, dy)
  12023. // dx := dy
  12024. // dx := dx - dot_y_dy
  12025. // dx := dx * y
  12026. // postorder:
  12027. // dot_st1_dst1 := dot(st1, grad[st1])
  12028. // grad[s0] := grad[st1]
  12029. // grad[s0] := grad[s0] - dot_st1_dst1
  12030. // grad[s0] := grad[s0] * st1
  12031. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  12032. // sm := softmax(s0)
  12033. // grad[s0] := sm*(1.0 - eps)
  12034. // grad[s0] := grad[s0] + eps
  12035. // grad[s0] := s1 / grad[s0]
  12036. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  12037. // dot_st1_dst1 := dot(sm, grad[s0])
  12038. // grad[s0] := grad[s0] - dot_st1_dst1
  12039. // grad[s0] := grad[s0] * sm
  12040. }
  12041. // soft_max
  12042. ggml_float sum = 0.0;
  12043. {
  12044. float max = -INFINITY;
  12045. ggml_vec_max_f32(nc, &max, s0);
  12046. uint16_t scvt;
  12047. for (int i = 0; i < nc; i++) {
  12048. if (s0[i] == -INFINITY) {
  12049. sm[i] = 0.0f;
  12050. } else {
  12051. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12052. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12053. memcpy(&scvt, &s, sizeof(scvt));
  12054. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12055. sum += (ggml_float)val;
  12056. sm[i] = val;
  12057. }
  12058. }
  12059. assert(sum > 0.0);
  12060. sum = 1.0/sum;
  12061. }
  12062. float dot_st1_dst1 = 0;
  12063. ggml_vec_scale_f32(nc, sm, sum);
  12064. ggml_vec_cpy_f32 (nc, ds0, sm);
  12065. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12066. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12067. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12068. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12069. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12070. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12071. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12072. #ifndef NDEBUG
  12073. for (int i = 0; i < nc; ++i) {
  12074. assert(!isnan(sm[i]));
  12075. assert(!isinf(sm[i]));
  12076. assert(!isnan(ds0[i]));
  12077. assert(!isinf(ds0[i]));
  12078. }
  12079. #endif
  12080. }
  12081. }
  12082. static void ggml_compute_forward_cross_entropy_loss_back(
  12083. const struct ggml_compute_params * params,
  12084. const struct ggml_tensor * src0,
  12085. const struct ggml_tensor * src1,
  12086. const struct ggml_tensor * opt0,
  12087. struct ggml_tensor * dst) {
  12088. switch (src0->type) {
  12089. case GGML_TYPE_F32:
  12090. {
  12091. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12092. } break;
  12093. default:
  12094. {
  12095. GGML_ASSERT(false);
  12096. } break;
  12097. }
  12098. }
  12099. /////////////////////////////////
  12100. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12101. GGML_ASSERT(params);
  12102. #ifdef GGML_USE_CUBLAS
  12103. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12104. if (skip_cpu) {
  12105. return;
  12106. }
  12107. GGML_ASSERT(tensor->src0 == NULL || tensor->src0->backend == GGML_BACKEND_CPU);
  12108. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  12109. #endif // GGML_USE_CUBLAS
  12110. switch (tensor->op) {
  12111. case GGML_OP_DUP:
  12112. {
  12113. ggml_compute_forward_dup(params, tensor->src0, tensor);
  12114. } break;
  12115. case GGML_OP_ADD:
  12116. {
  12117. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  12118. } break;
  12119. case GGML_OP_ADD1:
  12120. {
  12121. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  12122. } break;
  12123. case GGML_OP_ACC:
  12124. {
  12125. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12126. } break;
  12127. case GGML_OP_SUB:
  12128. {
  12129. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  12130. } break;
  12131. case GGML_OP_MUL:
  12132. {
  12133. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  12134. } break;
  12135. case GGML_OP_DIV:
  12136. {
  12137. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  12138. } break;
  12139. case GGML_OP_SQR:
  12140. {
  12141. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  12142. } break;
  12143. case GGML_OP_SQRT:
  12144. {
  12145. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  12146. } break;
  12147. case GGML_OP_LOG:
  12148. {
  12149. ggml_compute_forward_log(params, tensor->src0, tensor);
  12150. } break;
  12151. case GGML_OP_SUM:
  12152. {
  12153. ggml_compute_forward_sum(params, tensor->src0, tensor);
  12154. } break;
  12155. case GGML_OP_SUM_ROWS:
  12156. {
  12157. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  12158. } break;
  12159. case GGML_OP_MEAN:
  12160. {
  12161. ggml_compute_forward_mean(params, tensor->src0, tensor);
  12162. } break;
  12163. case GGML_OP_ARGMAX:
  12164. {
  12165. ggml_compute_forward_argmax(params, tensor->src0, tensor);
  12166. } break;
  12167. case GGML_OP_REPEAT:
  12168. {
  12169. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  12170. } break;
  12171. case GGML_OP_REPEAT_BACK:
  12172. {
  12173. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  12174. } break;
  12175. case GGML_OP_ABS:
  12176. {
  12177. ggml_compute_forward_abs(params, tensor->src0, tensor);
  12178. } break;
  12179. case GGML_OP_SGN:
  12180. {
  12181. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  12182. } break;
  12183. case GGML_OP_NEG:
  12184. {
  12185. ggml_compute_forward_neg(params, tensor->src0, tensor);
  12186. } break;
  12187. case GGML_OP_STEP:
  12188. {
  12189. ggml_compute_forward_step(params, tensor->src0, tensor);
  12190. } break;
  12191. case GGML_OP_TANH:
  12192. {
  12193. ggml_compute_forward_tanh(params, tensor->src0, tensor);
  12194. } break;
  12195. case GGML_OP_ELU:
  12196. {
  12197. ggml_compute_forward_elu(params, tensor->src0, tensor);
  12198. } break;
  12199. case GGML_OP_RELU:
  12200. {
  12201. ggml_compute_forward_relu(params, tensor->src0, tensor);
  12202. } break;
  12203. case GGML_OP_GELU:
  12204. {
  12205. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  12206. } break;
  12207. case GGML_OP_GELU_QUICK:
  12208. {
  12209. ggml_compute_forward_gelu_quick(params, tensor->src0, tensor);
  12210. } break;
  12211. case GGML_OP_SILU:
  12212. {
  12213. ggml_compute_forward_silu(params, tensor->src0, tensor);
  12214. } break;
  12215. case GGML_OP_SILU_BACK:
  12216. {
  12217. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  12218. } break;
  12219. case GGML_OP_NORM:
  12220. {
  12221. ggml_compute_forward_norm(params, tensor->src0, tensor);
  12222. } break;
  12223. case GGML_OP_RMS_NORM:
  12224. {
  12225. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  12226. } break;
  12227. case GGML_OP_RMS_NORM_BACK:
  12228. {
  12229. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  12230. } break;
  12231. case GGML_OP_MUL_MAT:
  12232. {
  12233. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  12234. } break;
  12235. case GGML_OP_OUT_PROD:
  12236. {
  12237. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  12238. } break;
  12239. case GGML_OP_SCALE:
  12240. {
  12241. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  12242. } break;
  12243. case GGML_OP_SET:
  12244. {
  12245. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12246. } break;
  12247. case GGML_OP_CPY:
  12248. {
  12249. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  12250. } break;
  12251. case GGML_OP_CONT:
  12252. {
  12253. ggml_compute_forward_cont(params, tensor->src0, tensor);
  12254. } break;
  12255. case GGML_OP_RESHAPE:
  12256. {
  12257. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  12258. } break;
  12259. case GGML_OP_VIEW:
  12260. {
  12261. ggml_compute_forward_view(params, tensor->src0);
  12262. } break;
  12263. case GGML_OP_PERMUTE:
  12264. {
  12265. ggml_compute_forward_permute(params, tensor->src0);
  12266. } break;
  12267. case GGML_OP_TRANSPOSE:
  12268. {
  12269. ggml_compute_forward_transpose(params, tensor->src0);
  12270. } break;
  12271. case GGML_OP_GET_ROWS:
  12272. {
  12273. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  12274. } break;
  12275. case GGML_OP_GET_ROWS_BACK:
  12276. {
  12277. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12278. } break;
  12279. case GGML_OP_DIAG:
  12280. {
  12281. ggml_compute_forward_diag(params, tensor->src0, tensor);
  12282. } break;
  12283. case GGML_OP_DIAG_MASK_INF:
  12284. {
  12285. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  12286. } break;
  12287. case GGML_OP_DIAG_MASK_ZERO:
  12288. {
  12289. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  12290. } break;
  12291. case GGML_OP_SOFT_MAX:
  12292. {
  12293. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  12294. } break;
  12295. case GGML_OP_SOFT_MAX_BACK:
  12296. {
  12297. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  12298. } break;
  12299. case GGML_OP_ROPE:
  12300. {
  12301. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  12302. } break;
  12303. case GGML_OP_ROPE_BACK:
  12304. {
  12305. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  12306. } break;
  12307. case GGML_OP_ALIBI:
  12308. {
  12309. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  12310. } break;
  12311. case GGML_OP_CLAMP:
  12312. {
  12313. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  12314. } break;
  12315. case GGML_OP_CONV_1D:
  12316. {
  12317. ggml_compute_forward_conv_1d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12318. } break;
  12319. case GGML_OP_CONV_2D:
  12320. {
  12321. ggml_compute_forward_conv_2d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12322. } break;
  12323. case GGML_OP_FLASH_ATTN:
  12324. {
  12325. const int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12326. GGML_ASSERT(t == 0 || t == 1);
  12327. const bool masked = t != 0;
  12328. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  12329. } break;
  12330. case GGML_OP_FLASH_FF:
  12331. {
  12332. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  12333. } break;
  12334. case GGML_OP_FLASH_ATTN_BACK:
  12335. {
  12336. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  12337. GGML_ASSERT(t == 0 || t == 1);
  12338. bool masked = t != 0;
  12339. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  12340. } break;
  12341. case GGML_OP_WIN_PART:
  12342. {
  12343. ggml_compute_forward_win_part(params, tensor->src0, tensor->opt[0], tensor);
  12344. } break;
  12345. case GGML_OP_WIN_UNPART:
  12346. {
  12347. ggml_compute_forward_win_unpart(params, tensor->src0, tensor->opt[0], tensor);
  12348. } break;
  12349. case GGML_OP_MAP_UNARY:
  12350. {
  12351. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  12352. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  12353. }
  12354. break;
  12355. case GGML_OP_MAP_BINARY:
  12356. {
  12357. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  12358. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  12359. }
  12360. break;
  12361. case GGML_OP_MAP_CUSTOM1:
  12362. {
  12363. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->opt[0]->data);
  12364. ggml_compute_forward_map_custom1(params, tensor->src0, tensor, fun);
  12365. }
  12366. break;
  12367. case GGML_OP_MAP_CUSTOM2:
  12368. {
  12369. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->opt[0]->data);
  12370. ggml_compute_forward_map_custom2(params, tensor->src0, tensor->src1, tensor, fun);
  12371. }
  12372. break;
  12373. case GGML_OP_MAP_CUSTOM3:
  12374. {
  12375. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->opt[0]->data);
  12376. ggml_compute_forward_map_custom3(params, tensor->src0, tensor->src1, tensor->opt[1], tensor, fun);
  12377. }
  12378. break;
  12379. case GGML_OP_CROSS_ENTROPY_LOSS:
  12380. {
  12381. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  12382. }
  12383. break;
  12384. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12385. {
  12386. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12387. }
  12388. break;
  12389. case GGML_OP_NONE:
  12390. {
  12391. // nop
  12392. } break;
  12393. case GGML_OP_COUNT:
  12394. {
  12395. GGML_ASSERT(false);
  12396. } break;
  12397. }
  12398. }
  12399. ////////////////////////////////////////////////////////////////////////////////
  12400. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12401. struct ggml_tensor * src0 = tensor->src0;
  12402. struct ggml_tensor * src1 = tensor->src1;
  12403. switch (tensor->op) {
  12404. case GGML_OP_DUP:
  12405. {
  12406. if (src0->grad) {
  12407. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12408. }
  12409. } break;
  12410. case GGML_OP_ADD:
  12411. {
  12412. if (src0->grad) {
  12413. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12414. }
  12415. if (src1->grad) {
  12416. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12417. }
  12418. } break;
  12419. case GGML_OP_ADD1:
  12420. {
  12421. if (src0->grad) {
  12422. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12423. }
  12424. if (src1->grad) {
  12425. src1->grad = ggml_add_impl(ctx,
  12426. src1->grad,
  12427. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12428. inplace);
  12429. }
  12430. } break;
  12431. case GGML_OP_ACC:
  12432. {
  12433. if (src0->grad) {
  12434. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12435. }
  12436. if (src1->grad) {
  12437. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12438. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12439. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12440. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12441. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12442. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12443. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12444. tensor->grad,
  12445. src1->grad->ne[0],
  12446. src1->grad->ne[1],
  12447. src1->grad->ne[2],
  12448. src1->grad->ne[3],
  12449. nb1, nb2, nb3, offset);
  12450. src1->grad =
  12451. ggml_add_impl(ctx,
  12452. src1->grad,
  12453. ggml_reshape(ctx,
  12454. ggml_cont(ctx, tensor_grad_view),
  12455. src1->grad),
  12456. inplace);
  12457. }
  12458. } break;
  12459. case GGML_OP_SUB:
  12460. {
  12461. if (src0->grad) {
  12462. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12463. }
  12464. if (src1->grad) {
  12465. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12466. }
  12467. } break;
  12468. case GGML_OP_MUL:
  12469. {
  12470. if (src0->grad) {
  12471. src0->grad =
  12472. ggml_add_impl(ctx,
  12473. src0->grad,
  12474. ggml_mul(ctx, src1, tensor->grad),
  12475. inplace);
  12476. }
  12477. if (src1->grad) {
  12478. src1->grad =
  12479. ggml_add_impl(ctx,
  12480. src1->grad,
  12481. ggml_mul(ctx, src0, tensor->grad),
  12482. inplace);
  12483. }
  12484. } break;
  12485. case GGML_OP_DIV:
  12486. {
  12487. if (src0->grad) {
  12488. src0->grad =
  12489. ggml_add_impl(ctx,
  12490. src0->grad,
  12491. ggml_div(ctx, tensor->grad, src1),
  12492. inplace);
  12493. }
  12494. if (src1->grad) {
  12495. src1->grad =
  12496. ggml_sub_impl(ctx,
  12497. src1->grad,
  12498. ggml_mul(ctx,
  12499. tensor->grad,
  12500. ggml_div(ctx, tensor, src1)),
  12501. inplace);
  12502. }
  12503. } break;
  12504. case GGML_OP_SQR:
  12505. {
  12506. if (src0->grad) {
  12507. src0->grad =
  12508. ggml_add_impl(ctx,
  12509. src0->grad,
  12510. ggml_scale(ctx,
  12511. ggml_mul(ctx, src0, tensor->grad),
  12512. ggml_new_f32(ctx, 2.0f)),
  12513. inplace);
  12514. }
  12515. } break;
  12516. case GGML_OP_SQRT:
  12517. {
  12518. if (src0->grad) {
  12519. src0->grad =
  12520. ggml_add_impl(ctx,
  12521. src0->grad,
  12522. ggml_scale(ctx,
  12523. ggml_div(ctx,
  12524. tensor->grad,
  12525. tensor),
  12526. ggml_new_f32(ctx, 0.5f)),
  12527. inplace);
  12528. }
  12529. } break;
  12530. case GGML_OP_LOG:
  12531. {
  12532. if (src0->grad) {
  12533. src0->grad =
  12534. ggml_add_impl(ctx,
  12535. src0->grad,
  12536. ggml_div(ctx,
  12537. tensor->grad,
  12538. src0),
  12539. inplace);
  12540. }
  12541. } break;
  12542. case GGML_OP_SUM:
  12543. {
  12544. if (src0->grad) {
  12545. src0->grad =
  12546. ggml_add1_impl(ctx,
  12547. src0->grad,
  12548. tensor->grad,
  12549. inplace);
  12550. }
  12551. } break;
  12552. case GGML_OP_SUM_ROWS:
  12553. {
  12554. if (src0->grad) {
  12555. src0->grad =
  12556. ggml_add_impl(ctx,
  12557. src0->grad,
  12558. ggml_repeat(ctx,
  12559. tensor->grad,
  12560. src0->grad),
  12561. inplace);
  12562. }
  12563. } break;
  12564. case GGML_OP_MEAN:
  12565. case GGML_OP_ARGMAX:
  12566. {
  12567. GGML_ASSERT(false); // TODO: implement
  12568. } break;
  12569. case GGML_OP_REPEAT:
  12570. {
  12571. // necessary for llama
  12572. if (src0->grad) {
  12573. src0->grad = ggml_add_impl(ctx,
  12574. src0->grad,
  12575. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12576. inplace);
  12577. }
  12578. } break;
  12579. case GGML_OP_REPEAT_BACK:
  12580. {
  12581. if (src0->grad) {
  12582. // TODO: test this
  12583. src0->grad = ggml_add_impl(ctx,
  12584. src0->grad,
  12585. ggml_repeat(ctx, tensor->grad, src0->grad),
  12586. inplace);
  12587. }
  12588. } break;
  12589. case GGML_OP_ABS:
  12590. {
  12591. if (src0->grad) {
  12592. src0->grad =
  12593. ggml_add_impl(ctx,
  12594. src0->grad,
  12595. ggml_mul(ctx,
  12596. ggml_sgn(ctx, src0),
  12597. tensor->grad),
  12598. inplace);
  12599. }
  12600. } break;
  12601. case GGML_OP_SGN:
  12602. {
  12603. if (src0->grad) {
  12604. // noop
  12605. }
  12606. } break;
  12607. case GGML_OP_NEG:
  12608. {
  12609. if (src0->grad) {
  12610. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12611. }
  12612. } break;
  12613. case GGML_OP_STEP:
  12614. {
  12615. if (src0->grad) {
  12616. // noop
  12617. }
  12618. } break;
  12619. case GGML_OP_TANH:
  12620. {
  12621. GGML_ASSERT(false); // TODO: not implemented
  12622. } break;
  12623. case GGML_OP_ELU:
  12624. {
  12625. GGML_ASSERT(false); // TODO: not implemented
  12626. } break;
  12627. case GGML_OP_RELU:
  12628. {
  12629. if (src0->grad) {
  12630. src0->grad = ggml_sub_impl(ctx,
  12631. src0->grad,
  12632. ggml_mul(ctx,
  12633. ggml_step(ctx, src0),
  12634. tensor->grad),
  12635. inplace);
  12636. }
  12637. } break;
  12638. case GGML_OP_GELU:
  12639. {
  12640. GGML_ASSERT(false); // TODO: not implemented
  12641. } break;
  12642. case GGML_OP_GELU_QUICK:
  12643. {
  12644. GGML_ASSERT(false); // TODO: not implemented
  12645. } break;
  12646. case GGML_OP_SILU:
  12647. {
  12648. // necessary for llama
  12649. if (src0->grad) {
  12650. src0->grad = ggml_add_impl(ctx,
  12651. src0->grad,
  12652. ggml_silu_back(ctx, src0, tensor->grad),
  12653. inplace);
  12654. }
  12655. } break;
  12656. case GGML_OP_SILU_BACK:
  12657. {
  12658. GGML_ASSERT(false); // TODO: not implemented
  12659. } break;
  12660. case GGML_OP_NORM:
  12661. {
  12662. GGML_ASSERT(false); // TODO: not implemented
  12663. } break;
  12664. case GGML_OP_RMS_NORM:
  12665. {
  12666. // necessary for llama
  12667. if (src0->grad) {
  12668. src0->grad = ggml_add_impl(ctx,
  12669. src0->grad,
  12670. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12671. inplace);
  12672. }
  12673. } break;
  12674. case GGML_OP_RMS_NORM_BACK:
  12675. {
  12676. GGML_ASSERT(false); // TODO: not implemented
  12677. } break;
  12678. case GGML_OP_MUL_MAT:
  12679. {
  12680. // https://cs231n.github.io/optimization-2/#staged
  12681. // # forward pass
  12682. // s0 = np.random.randn(5, 10)
  12683. // s1 = np.random.randn(10, 3)
  12684. // t = s0.dot(s1)
  12685. // # now suppose we had the gradient on t from above in the circuit
  12686. // dt = np.random.randn(*t.shape) # same shape as t
  12687. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12688. // ds1 = t.T.dot(dt)
  12689. // tensor.shape [m,p]
  12690. // src0.shape [n,m]
  12691. // src1.shape [n,p]
  12692. // necessary for llama
  12693. if (src0->grad) {
  12694. src0->grad =
  12695. ggml_add_impl(ctx,
  12696. src0->grad,
  12697. ggml_out_prod(ctx, // [n,m]
  12698. src1, // [n,p]
  12699. tensor->grad), // [m,p]
  12700. inplace);
  12701. }
  12702. if (src1->grad) {
  12703. src1->grad =
  12704. ggml_add_impl(ctx,
  12705. src1->grad,
  12706. // ggml_mul_mat(ctx, // [n,p]
  12707. // ggml_cont(ctx, // [m,n]
  12708. // ggml_transpose(ctx, src0)), // [m,n]
  12709. // tensor->grad), // [m,p]
  12710. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12711. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12712. // // and then use ggml_out_prod
  12713. ggml_out_prod(ctx, // [n,p]
  12714. src0, // [n,m]
  12715. ggml_transpose(ctx, // [p,m]
  12716. tensor->grad)), // [m,p]
  12717. inplace);
  12718. }
  12719. } break;
  12720. case GGML_OP_OUT_PROD:
  12721. {
  12722. GGML_ASSERT(false); // TODO: not implemented
  12723. } break;
  12724. case GGML_OP_SCALE:
  12725. {
  12726. // necessary for llama
  12727. if (src0->grad) {
  12728. src0->grad =
  12729. ggml_add_impl(ctx,
  12730. src0->grad,
  12731. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12732. inplace);
  12733. }
  12734. if (src1->grad) {
  12735. src1->grad =
  12736. ggml_add_impl(ctx,
  12737. src1->grad,
  12738. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12739. inplace);
  12740. }
  12741. } break;
  12742. case GGML_OP_SET:
  12743. {
  12744. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12745. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12746. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12747. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12748. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12749. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12750. struct ggml_tensor * tensor_grad_view = NULL;
  12751. if (src0->grad || src1->grad) {
  12752. GGML_ASSERT(src0->type == tensor->type);
  12753. GGML_ASSERT(tensor->grad->type == tensor->type);
  12754. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12755. tensor_grad_view = ggml_view_4d(ctx,
  12756. tensor->grad,
  12757. src1->grad->ne[0],
  12758. src1->grad->ne[1],
  12759. src1->grad->ne[2],
  12760. src1->grad->ne[3],
  12761. nb1, nb2, nb3, offset);
  12762. }
  12763. if (src0->grad) {
  12764. src0->grad = ggml_add_impl(ctx,
  12765. src0->grad,
  12766. ggml_acc_impl(ctx,
  12767. tensor->grad,
  12768. ggml_neg(ctx, tensor_grad_view),
  12769. nb1, nb2, nb3, offset, false),
  12770. inplace);
  12771. }
  12772. if (src1->grad) {
  12773. src1->grad =
  12774. ggml_add_impl(ctx,
  12775. src1->grad,
  12776. ggml_reshape(ctx,
  12777. ggml_cont(ctx, tensor_grad_view),
  12778. src1->grad),
  12779. inplace);
  12780. }
  12781. } break;
  12782. case GGML_OP_CPY:
  12783. {
  12784. // necessary for llama
  12785. // cpy overwrites value of src1 by src0 and returns view(src1)
  12786. // the overwriting is mathematically equivalent to:
  12787. // tensor = src0 * 1 + src1 * 0
  12788. if (src0->grad) {
  12789. // dsrc0 = dtensor * 1
  12790. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12791. }
  12792. if (src1->grad) {
  12793. // dsrc1 = dtensor * 0 -> noop
  12794. }
  12795. } break;
  12796. case GGML_OP_CONT:
  12797. {
  12798. // same as cpy
  12799. if (src0->grad) {
  12800. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12801. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12802. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12803. }
  12804. } break;
  12805. case GGML_OP_RESHAPE:
  12806. {
  12807. // necessary for llama
  12808. if (src0->grad) {
  12809. src0->grad =
  12810. ggml_add_impl(ctx, src0->grad,
  12811. ggml_reshape(ctx, tensor->grad, src0->grad),
  12812. inplace);
  12813. }
  12814. } break;
  12815. case GGML_OP_VIEW:
  12816. {
  12817. // necessary for llama
  12818. if (src0->grad) {
  12819. size_t offset;
  12820. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  12821. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  12822. size_t nb1 = tensor->nb[1];
  12823. size_t nb2 = tensor->nb[2];
  12824. size_t nb3 = tensor->nb[3];
  12825. if (src0->type != src0->grad->type) {
  12826. // gradient is typically F32, but src0 could be other type
  12827. size_t ng = ggml_element_size(src0->grad);
  12828. size_t n0 = ggml_element_size(src0);
  12829. GGML_ASSERT(offset % n0 == 0);
  12830. GGML_ASSERT(nb1 % n0 == 0);
  12831. GGML_ASSERT(nb2 % n0 == 0);
  12832. GGML_ASSERT(nb3 % n0 == 0);
  12833. offset = (offset / n0) * ng;
  12834. nb1 = (nb1 / n0) * ng;
  12835. nb2 = (nb2 / n0) * ng;
  12836. nb3 = (nb3 / n0) * ng;
  12837. }
  12838. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12839. }
  12840. } break;
  12841. case GGML_OP_PERMUTE:
  12842. {
  12843. // necessary for llama
  12844. if (src0->grad) {
  12845. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  12846. int axis0 = axes[0] & 0x3;
  12847. int axis1 = axes[1] & 0x3;
  12848. int axis2 = axes[2] & 0x3;
  12849. int axis3 = axes[3] & 0x3;
  12850. int axes_backward[4] = {0,0,0,0};
  12851. axes_backward[axis0] = 0;
  12852. axes_backward[axis1] = 1;
  12853. axes_backward[axis2] = 2;
  12854. axes_backward[axis3] = 3;
  12855. src0->grad =
  12856. ggml_add_impl(ctx, src0->grad,
  12857. ggml_permute(ctx,
  12858. tensor->grad,
  12859. axes_backward[0],
  12860. axes_backward[1],
  12861. axes_backward[2],
  12862. axes_backward[3]),
  12863. inplace);
  12864. }
  12865. } break;
  12866. case GGML_OP_TRANSPOSE:
  12867. {
  12868. // necessary for llama
  12869. if (src0->grad) {
  12870. src0->grad =
  12871. ggml_add_impl(ctx, src0->grad,
  12872. ggml_transpose(ctx, tensor->grad),
  12873. inplace);
  12874. }
  12875. } break;
  12876. case GGML_OP_GET_ROWS:
  12877. {
  12878. // necessary for llama (only for tokenizer)
  12879. if (src0->grad) {
  12880. src0->grad =
  12881. ggml_add_impl(ctx, src0->grad,
  12882. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12883. inplace);
  12884. }
  12885. if (src1->grad) {
  12886. // noop
  12887. }
  12888. } break;
  12889. case GGML_OP_GET_ROWS_BACK:
  12890. {
  12891. GGML_ASSERT(false); // TODO: not implemented
  12892. } break;
  12893. case GGML_OP_DIAG:
  12894. {
  12895. GGML_ASSERT(false); // TODO: not implemented
  12896. } break;
  12897. case GGML_OP_DIAG_MASK_INF:
  12898. {
  12899. // necessary for llama
  12900. if (src0->grad) {
  12901. assert(src1->type == GGML_TYPE_I32);
  12902. assert(ggml_nelements(src1) == 2);
  12903. const int n_past = ((int32_t *) src1->data)[0];
  12904. src0->grad =
  12905. ggml_add_impl(ctx, src0->grad,
  12906. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12907. inplace);
  12908. }
  12909. if (src1->grad) {
  12910. // noop
  12911. }
  12912. } break;
  12913. case GGML_OP_DIAG_MASK_ZERO:
  12914. {
  12915. // necessary for llama
  12916. if (src0->grad) {
  12917. assert(src1->type == GGML_TYPE_I32);
  12918. assert(ggml_nelements(src1) == 2);
  12919. const int n_past = ((int32_t *) src1->data)[0];
  12920. src0->grad =
  12921. ggml_add_impl(ctx, src0->grad,
  12922. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12923. inplace);
  12924. }
  12925. if (src1->grad) {
  12926. // noop
  12927. }
  12928. } break;
  12929. case GGML_OP_SOFT_MAX:
  12930. {
  12931. // necessary for llama
  12932. if (src0->grad) {
  12933. src0->grad =
  12934. ggml_add_impl(ctx, src0->grad,
  12935. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12936. inplace);
  12937. }
  12938. } break;
  12939. case GGML_OP_SOFT_MAX_BACK:
  12940. {
  12941. GGML_ASSERT(false); // TODO: not implemented
  12942. } break;
  12943. case GGML_OP_ROPE:
  12944. {
  12945. // necessary for llama
  12946. if (src0->grad) {
  12947. assert(src1->type == GGML_TYPE_I32);
  12948. assert(ggml_nelements(src1) == 4);
  12949. const int n_past = ((int32_t *) src1->data)[0];
  12950. const int n_dims = ((int32_t *) src1->data)[1];
  12951. const int mode = ((int32_t *) src1->data)[2];
  12952. src0->grad = ggml_add_impl(ctx,
  12953. src0->grad,
  12954. ggml_rope_back(ctx,
  12955. tensor->grad,
  12956. n_past,
  12957. n_dims,
  12958. mode),
  12959. inplace);
  12960. }
  12961. if (src1->grad) {
  12962. // noop
  12963. }
  12964. } break;
  12965. case GGML_OP_ROPE_BACK:
  12966. {
  12967. if (src0->grad) {
  12968. assert(src1->type == GGML_TYPE_I32);
  12969. assert(ggml_nelements(src1) == 4);
  12970. const int n_past = ((int32_t *) src1->data)[0];
  12971. const int n_dims = ((int32_t *) src1->data)[1];
  12972. const int mode = ((int32_t *) src1->data)[2];
  12973. const int n_ctx = ((int32_t *) src1->data)[3];
  12974. src0->grad = ggml_add_impl(ctx,
  12975. src0->grad,
  12976. ggml_rope(ctx,
  12977. tensor->grad,
  12978. n_past,
  12979. n_dims,
  12980. mode,
  12981. n_ctx),
  12982. inplace);
  12983. }
  12984. if (src1->grad) {
  12985. // noop
  12986. }
  12987. } break;
  12988. case GGML_OP_ALIBI:
  12989. {
  12990. GGML_ASSERT(false); // TODO: not implemented
  12991. } break;
  12992. case GGML_OP_CLAMP:
  12993. {
  12994. GGML_ASSERT(false); // TODO: not implemented
  12995. } break;
  12996. case GGML_OP_CONV_1D:
  12997. {
  12998. GGML_ASSERT(false); // TODO: not implemented
  12999. } break;
  13000. case GGML_OP_CONV_2D:
  13001. {
  13002. GGML_ASSERT(false); // TODO: not implemented
  13003. } break;
  13004. case GGML_OP_FLASH_ATTN:
  13005. {
  13006. struct ggml_tensor * flash_grad = NULL;
  13007. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  13008. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  13009. GGML_ASSERT(t == 0 || t == 1);
  13010. bool masked = t != 0;
  13011. flash_grad =
  13012. ggml_flash_attn_back(ctx,
  13013. src0,
  13014. src1,
  13015. tensor->opt[0],
  13016. tensor->grad,
  13017. masked);
  13018. }
  13019. if (src0->grad) {
  13020. struct ggml_tensor * grad_q = NULL;
  13021. const size_t nb0 = flash_grad->nb[0];
  13022. const size_t offset = 0;
  13023. switch(src0->n_dims) {
  13024. case 2:
  13025. {
  13026. grad_q = ggml_view_2d(ctx,
  13027. flash_grad,
  13028. src0->ne[0],
  13029. src0->ne[1],
  13030. nb0*src0->ne[0],
  13031. offset);
  13032. } break;
  13033. case 3:
  13034. {
  13035. grad_q = ggml_view_3d(ctx,
  13036. flash_grad,
  13037. src0->ne[0],
  13038. src0->ne[1],
  13039. src0->ne[2],
  13040. nb0*src0->ne[0],
  13041. nb0*src0->ne[0]*src0->ne[1],
  13042. offset);
  13043. } break;
  13044. case 4:
  13045. {
  13046. grad_q = ggml_view_4d(ctx,
  13047. flash_grad,
  13048. src0->ne[0],
  13049. src0->ne[1],
  13050. src0->ne[2],
  13051. src0->ne[3],
  13052. nb0*src0->ne[0],
  13053. nb0*src0->ne[0]*src0->ne[1],
  13054. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13055. offset);
  13056. } break;
  13057. }
  13058. src0->grad = ggml_add_impl(ctx,
  13059. src0->grad,
  13060. grad_q,
  13061. inplace);
  13062. }
  13063. if (src1->grad) {
  13064. struct ggml_tensor * grad_k = NULL;
  13065. const size_t nb0 = flash_grad->nb[0];
  13066. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13067. switch(src1->n_dims) {
  13068. case 2:
  13069. {
  13070. grad_k = ggml_view_2d(ctx,
  13071. flash_grad,
  13072. src1->ne[0],
  13073. src1->ne[1],
  13074. nb0*src1->ne[0],
  13075. offset);
  13076. } break;
  13077. case 3:
  13078. {
  13079. grad_k = ggml_view_3d(ctx,
  13080. flash_grad,
  13081. src1->ne[0],
  13082. src1->ne[1],
  13083. src1->ne[2],
  13084. nb0*src1->ne[0],
  13085. nb0*src1->ne[0]*src1->ne[1],
  13086. offset);
  13087. } break;
  13088. case 4:
  13089. {
  13090. grad_k = ggml_view_4d(ctx,
  13091. flash_grad,
  13092. src1->ne[0],
  13093. src1->ne[1],
  13094. src1->ne[2],
  13095. src1->ne[3],
  13096. nb0*src1->ne[0],
  13097. nb0*src1->ne[0]*src1->ne[1],
  13098. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13099. offset);
  13100. } break;
  13101. }
  13102. src1->grad = ggml_add_impl(ctx,
  13103. src1->grad,
  13104. grad_k,
  13105. inplace);
  13106. }
  13107. struct ggml_tensor * opt0 = tensor->opt[0];
  13108. if (opt0->grad) {
  13109. struct ggml_tensor * grad_v = NULL;
  13110. const size_t nb0 = flash_grad->nb[0];
  13111. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13112. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13113. switch(opt0->n_dims) {
  13114. case 2:
  13115. {
  13116. grad_v = ggml_view_2d(ctx,
  13117. flash_grad,
  13118. opt0->ne[0],
  13119. opt0->ne[1],
  13120. nb0*opt0->ne[0],
  13121. offset);
  13122. } break;
  13123. case 3:
  13124. {
  13125. grad_v = ggml_view_3d(ctx,
  13126. flash_grad,
  13127. opt0->ne[0],
  13128. opt0->ne[1],
  13129. opt0->ne[2],
  13130. nb0*opt0->ne[0],
  13131. nb0*opt0->ne[0]*opt0->ne[1],
  13132. offset);
  13133. } break;
  13134. case 4:
  13135. {
  13136. grad_v = ggml_view_4d(ctx,
  13137. flash_grad,
  13138. opt0->ne[0],
  13139. opt0->ne[1],
  13140. opt0->ne[2],
  13141. opt0->ne[3],
  13142. nb0*opt0->ne[0],
  13143. nb0*opt0->ne[0]*opt0->ne[1],
  13144. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13145. offset);
  13146. } break;
  13147. }
  13148. opt0->grad = ggml_add_impl(ctx,
  13149. opt0->grad,
  13150. grad_v,
  13151. inplace);
  13152. }
  13153. } break;
  13154. case GGML_OP_FLASH_FF:
  13155. {
  13156. GGML_ASSERT(false); // not supported
  13157. } break;
  13158. case GGML_OP_FLASH_ATTN_BACK:
  13159. {
  13160. GGML_ASSERT(false); // not supported
  13161. } break;
  13162. case GGML_OP_WIN_PART:
  13163. case GGML_OP_WIN_UNPART:
  13164. case GGML_OP_MAP_UNARY:
  13165. case GGML_OP_MAP_BINARY:
  13166. case GGML_OP_MAP_CUSTOM1:
  13167. case GGML_OP_MAP_CUSTOM2:
  13168. case GGML_OP_MAP_CUSTOM3:
  13169. {
  13170. GGML_ASSERT(false); // not supported
  13171. } break;
  13172. case GGML_OP_CROSS_ENTROPY_LOSS:
  13173. {
  13174. if (src0->grad) {
  13175. src0->grad = ggml_add_impl(ctx,
  13176. src0->grad,
  13177. ggml_cross_entropy_loss_back(ctx,
  13178. src0,
  13179. src1,
  13180. tensor->grad),
  13181. inplace);
  13182. }
  13183. } break;
  13184. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13185. {
  13186. GGML_ASSERT(false); // not supported
  13187. } break;
  13188. case GGML_OP_NONE:
  13189. {
  13190. // nop
  13191. } break;
  13192. case GGML_OP_COUNT:
  13193. {
  13194. GGML_ASSERT(false);
  13195. } break;
  13196. }
  13197. }
  13198. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13199. if (node->grad == NULL) {
  13200. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13201. // it can also happen during forward pass, if the user performs computations with constants
  13202. if (node->op != GGML_OP_NONE) {
  13203. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13204. }
  13205. }
  13206. // check if already visited
  13207. for (int i = 0; i < cgraph->n_nodes; i++) {
  13208. if (cgraph->nodes[i] == node) {
  13209. return;
  13210. }
  13211. }
  13212. for (int i = 0; i < cgraph->n_leafs; i++) {
  13213. if (cgraph->leafs[i] == node) {
  13214. return;
  13215. }
  13216. }
  13217. if (node->src0) {
  13218. ggml_visit_parents(cgraph, node->src0);
  13219. }
  13220. if (node->src1) {
  13221. ggml_visit_parents(cgraph, node->src1);
  13222. }
  13223. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  13224. if (node->opt[i]) {
  13225. ggml_visit_parents(cgraph, node->opt[i]);
  13226. }
  13227. }
  13228. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13229. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13230. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13231. if (strlen(node->name) == 0) {
  13232. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13233. }
  13234. cgraph->leafs[cgraph->n_leafs] = node;
  13235. cgraph->n_leafs++;
  13236. } else {
  13237. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13238. if (strlen(node->name) == 0) {
  13239. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13240. }
  13241. cgraph->nodes[cgraph->n_nodes] = node;
  13242. cgraph->grads[cgraph->n_nodes] = node->grad;
  13243. cgraph->n_nodes++;
  13244. }
  13245. }
  13246. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13247. if (!expand) {
  13248. cgraph->n_nodes = 0;
  13249. cgraph->n_leafs = 0;
  13250. }
  13251. const int n0 = cgraph->n_nodes;
  13252. UNUSED(n0);
  13253. ggml_visit_parents(cgraph, tensor);
  13254. const int n_new = cgraph->n_nodes - n0;
  13255. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13256. if (n_new > 0) {
  13257. // the last added node should always be starting point
  13258. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13259. }
  13260. }
  13261. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13262. ggml_build_forward_impl(cgraph, tensor, true);
  13263. }
  13264. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13265. struct ggml_cgraph result = {
  13266. /*.n_nodes =*/ 0,
  13267. /*.n_leafs =*/ 0,
  13268. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  13269. /*.work_size =*/ 0,
  13270. /*.work =*/ NULL,
  13271. /*.nodes =*/ { NULL },
  13272. /*.grads =*/ { NULL },
  13273. /*.leafs =*/ { NULL },
  13274. /*.perf_runs =*/ 0,
  13275. /*.perf_cycles =*/ 0,
  13276. /*.perf_time_us =*/ 0,
  13277. };
  13278. ggml_build_forward_impl(&result, tensor, false);
  13279. return result;
  13280. }
  13281. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13282. struct ggml_cgraph result = *gf;
  13283. GGML_ASSERT(gf->n_nodes > 0);
  13284. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13285. if (keep) {
  13286. for (int i = 0; i < gf->n_nodes; i++) {
  13287. struct ggml_tensor * node = gf->nodes[i];
  13288. if (node->grad) {
  13289. node->grad = ggml_dup_tensor(ctx, node);
  13290. gf->grads[i] = node->grad;
  13291. }
  13292. }
  13293. }
  13294. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13295. struct ggml_tensor * node = gf->nodes[i];
  13296. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13297. if (node->grad) {
  13298. ggml_compute_backward(ctx, node, keep);
  13299. }
  13300. }
  13301. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13302. struct ggml_tensor * node = gf->nodes[i];
  13303. if (node->is_param) {
  13304. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13305. ggml_build_forward_impl(&result, node->grad, true);
  13306. }
  13307. }
  13308. return result;
  13309. }
  13310. //
  13311. // thread data
  13312. //
  13313. // synchronization is done via busy loops
  13314. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13315. //
  13316. #ifdef __APPLE__
  13317. //#include <os/lock.h>
  13318. //
  13319. //typedef os_unfair_lock ggml_lock_t;
  13320. //
  13321. //#define ggml_lock_init(x) UNUSED(x)
  13322. //#define ggml_lock_destroy(x) UNUSED(x)
  13323. //#define ggml_lock_lock os_unfair_lock_lock
  13324. //#define ggml_lock_unlock os_unfair_lock_unlock
  13325. //
  13326. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13327. typedef int ggml_lock_t;
  13328. #define ggml_lock_init(x) UNUSED(x)
  13329. #define ggml_lock_destroy(x) UNUSED(x)
  13330. #define ggml_lock_lock(x) UNUSED(x)
  13331. #define ggml_lock_unlock(x) UNUSED(x)
  13332. #define GGML_LOCK_INITIALIZER 0
  13333. typedef pthread_t ggml_thread_t;
  13334. #define ggml_thread_create pthread_create
  13335. #define ggml_thread_join pthread_join
  13336. #else
  13337. //typedef pthread_spinlock_t ggml_lock_t;
  13338. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13339. //#define ggml_lock_destroy pthread_spin_destroy
  13340. //#define ggml_lock_lock pthread_spin_lock
  13341. //#define ggml_lock_unlock pthread_spin_unlock
  13342. typedef int ggml_lock_t;
  13343. #define ggml_lock_init(x) UNUSED(x)
  13344. #define ggml_lock_destroy(x) UNUSED(x)
  13345. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13346. #define ggml_lock_lock(x) _mm_pause()
  13347. #else
  13348. #define ggml_lock_lock(x) UNUSED(x)
  13349. #endif
  13350. #define ggml_lock_unlock(x) UNUSED(x)
  13351. #define GGML_LOCK_INITIALIZER 0
  13352. typedef pthread_t ggml_thread_t;
  13353. #define ggml_thread_create pthread_create
  13354. #define ggml_thread_join pthread_join
  13355. #endif
  13356. // Android's libc implementation "bionic" does not support setting affinity
  13357. #if defined(__linux__) && !defined(__BIONIC__)
  13358. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13359. if (!ggml_is_numa()) {
  13360. return;
  13361. }
  13362. // run thread on node_num thread_n / (threads per node)
  13363. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13364. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13365. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13366. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13367. CPU_ZERO_S(setsize, cpus);
  13368. for (size_t i = 0; i < node->n_cpus; ++i) {
  13369. CPU_SET_S(node->cpus[i], setsize, cpus);
  13370. }
  13371. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13372. if (rv) {
  13373. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13374. strerror(rv));
  13375. }
  13376. CPU_FREE(cpus);
  13377. }
  13378. void clear_numa_thread_affinity(void) {
  13379. if (!ggml_is_numa()) {
  13380. return;
  13381. }
  13382. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13383. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13384. CPU_ZERO_S(setsize, cpus);
  13385. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13386. CPU_SET_S(i, setsize, cpus);
  13387. }
  13388. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13389. if (rv) {
  13390. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13391. strerror(rv));
  13392. }
  13393. CPU_FREE(cpus);
  13394. }
  13395. #else
  13396. // TODO: Windows etc.
  13397. // (the linux implementation may also work on BSD, someone should test)
  13398. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13399. void clear_numa_thread_affinity(void) {}
  13400. #endif
  13401. struct ggml_compute_state_shared {
  13402. struct ggml_cgraph * cgraph;
  13403. int64_t perf_node_start_cycles;
  13404. int64_t perf_node_start_time_us;
  13405. int n_threads;
  13406. // synchronization primitives
  13407. atomic_int n_active; // num active threads
  13408. atomic_int node_n; // active graph node
  13409. };
  13410. struct ggml_compute_state {
  13411. ggml_thread_t thrd;
  13412. int ith;
  13413. struct ggml_compute_state_shared * shared;
  13414. };
  13415. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13416. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13417. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13418. node->perf_runs++;
  13419. node->perf_cycles += cycles_cur;
  13420. node->perf_time_us += time_us_cur;
  13421. }
  13422. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13423. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13424. struct ggml_cgraph * cgraph = state->shared->cgraph;
  13425. const int n_threads = state->shared->n_threads;
  13426. set_numa_thread_affinity(state->ith, n_threads);
  13427. int node_n = -1;
  13428. while (true) {
  13429. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13430. // all other threads are finished and spinning
  13431. // do finalize and init here so we don't have synchronize again
  13432. struct ggml_compute_params params = {
  13433. /*.type =*/ GGML_TASK_FINALIZE,
  13434. /*.ith =*/ 0,
  13435. /*.nth =*/ 0,
  13436. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13437. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13438. };
  13439. if (node_n != -1) {
  13440. /* FINALIZE */
  13441. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13442. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13443. params.nth = node->n_tasks;
  13444. ggml_compute_forward(&params, node);
  13445. ggml_graph_compute_perf_stats_node(node, state->shared);
  13446. }
  13447. }
  13448. // distribute new work or execute it direct if 1T
  13449. while (++node_n < cgraph->n_nodes) {
  13450. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13451. struct ggml_tensor * node = cgraph->nodes[node_n];
  13452. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13453. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13454. params.nth = node->n_tasks;
  13455. /* INIT */
  13456. if (GGML_OP_HAS_INIT[node->op]) {
  13457. params.type = GGML_TASK_INIT;
  13458. ggml_compute_forward(&params, node);
  13459. }
  13460. if (node->n_tasks == 1) {
  13461. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13462. // they do something more efficient than spinning (?)
  13463. params.type = GGML_TASK_COMPUTE;
  13464. ggml_compute_forward(&params, node);
  13465. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13466. params.type = GGML_TASK_FINALIZE;
  13467. ggml_compute_forward(&params, node);
  13468. ggml_graph_compute_perf_stats_node(node, state->shared);
  13469. }
  13470. } else {
  13471. break;
  13472. }
  13473. }
  13474. atomic_store(&state->shared->n_active, n_threads);
  13475. atomic_store(&state->shared->node_n, node_n);
  13476. } else {
  13477. // wait for other threads to finish
  13478. const int last = node_n;
  13479. do {
  13480. sched_yield();
  13481. node_n = atomic_load(&state->shared->node_n);
  13482. } while (node_n == last);
  13483. }
  13484. // check if we should stop
  13485. if (node_n >= cgraph->n_nodes) break;
  13486. /* COMPUTE */
  13487. struct ggml_tensor * node = cgraph->nodes[node_n];
  13488. struct ggml_compute_params params = {
  13489. /*.type =*/ GGML_TASK_COMPUTE,
  13490. /*.ith =*/ state->ith,
  13491. /*.nth =*/ node->n_tasks,
  13492. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13493. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13494. };
  13495. if (state->ith < node->n_tasks) {
  13496. ggml_compute_forward(&params, node);
  13497. }
  13498. }
  13499. return 0;
  13500. }
  13501. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13502. const int n_threads = cgraph->n_threads;
  13503. struct ggml_compute_state_shared state_shared = {
  13504. /*.cgraph =*/ cgraph,
  13505. /*.perf_node_start_cycles =*/ 0,
  13506. /*.perf_node_start_time_us =*/ 0,
  13507. /*.n_threads =*/ n_threads,
  13508. /*.n_active =*/ n_threads,
  13509. /*.node_n =*/ -1,
  13510. };
  13511. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13512. // initialize tasks + work buffer
  13513. {
  13514. size_t work_size = 0;
  13515. // thread scheduling for the different operations
  13516. for (int i = 0; i < cgraph->n_nodes; i++) {
  13517. struct ggml_tensor * node = cgraph->nodes[i];
  13518. switch (node->op) {
  13519. case GGML_OP_CPY:
  13520. case GGML_OP_DUP:
  13521. {
  13522. node->n_tasks = n_threads;
  13523. size_t cur = 0;
  13524. if (ggml_is_quantized(node->type)) {
  13525. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  13526. }
  13527. work_size = MAX(work_size, cur);
  13528. } break;
  13529. case GGML_OP_ADD:
  13530. case GGML_OP_ADD1:
  13531. {
  13532. node->n_tasks = n_threads;
  13533. size_t cur = 0;
  13534. if (ggml_is_quantized(node->src0->type)) {
  13535. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  13536. }
  13537. work_size = MAX(work_size, cur);
  13538. } break;
  13539. case GGML_OP_ACC:
  13540. {
  13541. node->n_tasks = n_threads;
  13542. size_t cur = 0;
  13543. if (ggml_is_quantized(node->src0->type)) {
  13544. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  13545. }
  13546. work_size = MAX(work_size, cur);
  13547. } break;
  13548. case GGML_OP_SUB:
  13549. case GGML_OP_DIV:
  13550. case GGML_OP_SQR:
  13551. case GGML_OP_SQRT:
  13552. case GGML_OP_LOG:
  13553. case GGML_OP_SUM:
  13554. case GGML_OP_SUM_ROWS:
  13555. case GGML_OP_MEAN:
  13556. case GGML_OP_ARGMAX:
  13557. case GGML_OP_REPEAT:
  13558. case GGML_OP_REPEAT_BACK:
  13559. case GGML_OP_ABS:
  13560. case GGML_OP_SGN:
  13561. case GGML_OP_NEG:
  13562. case GGML_OP_STEP:
  13563. case GGML_OP_TANH:
  13564. case GGML_OP_ELU:
  13565. case GGML_OP_RELU:
  13566. {
  13567. node->n_tasks = 1;
  13568. } break;
  13569. case GGML_OP_MUL:
  13570. case GGML_OP_GELU:
  13571. case GGML_OP_GELU_QUICK:
  13572. case GGML_OP_SILU:
  13573. case GGML_OP_SILU_BACK:
  13574. case GGML_OP_NORM:
  13575. case GGML_OP_RMS_NORM:
  13576. case GGML_OP_RMS_NORM_BACK:
  13577. {
  13578. node->n_tasks = n_threads;
  13579. } break;
  13580. case GGML_OP_MUL_MAT:
  13581. case GGML_OP_OUT_PROD:
  13582. {
  13583. node->n_tasks = n_threads;
  13584. // TODO: use different scheduling for different matrix sizes
  13585. //const int nr0 = ggml_nrows(node->src0);
  13586. //const int nr1 = ggml_nrows(node->src1);
  13587. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13588. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  13589. size_t cur = 0;
  13590. #if defined(GGML_USE_CUBLAS)
  13591. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  13592. node->n_tasks = 1; // TODO: this actually is doing nothing
  13593. // the threads are still spinning
  13594. }
  13595. else
  13596. #elif defined(GGML_USE_CLBLAST)
  13597. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  13598. node->n_tasks = 1; // TODO: this actually is doing nothing
  13599. // the threads are still spinning
  13600. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  13601. }
  13602. else
  13603. #endif
  13604. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  13605. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13606. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13607. node->n_tasks = 1; // TODO: this actually is doing nothing
  13608. // the threads are still spinning
  13609. // here we need memory just for single 2D matrix from src0
  13610. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13611. } else {
  13612. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13613. }
  13614. #else
  13615. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13616. #endif
  13617. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  13618. cur = 0;
  13619. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13620. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13621. node->n_tasks = 1;
  13622. }
  13623. #endif
  13624. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  13625. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13626. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13627. node->n_tasks = 1;
  13628. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13629. } else
  13630. #endif
  13631. {
  13632. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  13633. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  13634. }
  13635. } else {
  13636. GGML_ASSERT(false);
  13637. }
  13638. work_size = MAX(work_size, cur);
  13639. } break;
  13640. case GGML_OP_SCALE:
  13641. {
  13642. node->n_tasks = 1;
  13643. } break;
  13644. case GGML_OP_SET:
  13645. case GGML_OP_CONT:
  13646. case GGML_OP_RESHAPE:
  13647. case GGML_OP_VIEW:
  13648. case GGML_OP_PERMUTE:
  13649. case GGML_OP_TRANSPOSE:
  13650. case GGML_OP_GET_ROWS:
  13651. case GGML_OP_GET_ROWS_BACK:
  13652. case GGML_OP_DIAG:
  13653. case GGML_OP_DIAG_MASK_ZERO:
  13654. {
  13655. node->n_tasks = 1;
  13656. } break;
  13657. case GGML_OP_DIAG_MASK_INF:
  13658. case GGML_OP_SOFT_MAX:
  13659. case GGML_OP_SOFT_MAX_BACK:
  13660. case GGML_OP_ROPE:
  13661. case GGML_OP_ROPE_BACK:
  13662. {
  13663. node->n_tasks = n_threads;
  13664. } break;
  13665. case GGML_OP_ALIBI:
  13666. {
  13667. node->n_tasks = 1; //TODO
  13668. } break;
  13669. case GGML_OP_CLAMP:
  13670. {
  13671. node->n_tasks = 1; //TODO
  13672. } break;
  13673. case GGML_OP_CONV_1D:
  13674. {
  13675. node->n_tasks = n_threads;
  13676. GGML_ASSERT(node->src0->ne[3] == 1);
  13677. GGML_ASSERT(node->src1->ne[2] == 1);
  13678. GGML_ASSERT(node->src1->ne[3] == 1);
  13679. size_t cur = 0;
  13680. const int nk = node->src0->ne[0];
  13681. if (node->src0->type == GGML_TYPE_F16 &&
  13682. node->src1->type == GGML_TYPE_F32) {
  13683. cur = sizeof(ggml_fp16_t)*(
  13684. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13685. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13686. );
  13687. } else if (node->src0->type == GGML_TYPE_F32 &&
  13688. node->src1->type == GGML_TYPE_F32) {
  13689. cur = sizeof(float)*(
  13690. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13691. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13692. );
  13693. } else {
  13694. GGML_ASSERT(false);
  13695. }
  13696. work_size = MAX(work_size, cur);
  13697. } break;
  13698. case GGML_OP_CONV_2D:
  13699. {
  13700. node->n_tasks = n_threads;
  13701. GGML_ASSERT(node->src1->ne[3] == 1);
  13702. const int64_t ne00 = node->src0->ne[0]; // W
  13703. const int64_t ne01 = node->src0->ne[1]; // H
  13704. const int64_t ne02 = node->src0->ne[2]; // C
  13705. const int64_t ne03 = node->src0->ne[3]; // N
  13706. const int64_t ne10 = node->src1->ne[0]; // W
  13707. const int64_t ne11 = node->src1->ne[1]; // H
  13708. const int64_t ne12 = node->src1->ne[2]; // C
  13709. const int64_t nk = ne00*ne01;
  13710. UNUSED(ne02);
  13711. UNUSED(ne03);
  13712. UNUSED(nk);
  13713. size_t cur = 0;
  13714. if (node->src0->type == GGML_TYPE_F16 &&
  13715. node->src1->type == GGML_TYPE_F32) {
  13716. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  13717. } else if (node->src0->type == GGML_TYPE_F32 &&
  13718. node->src1->type == GGML_TYPE_F32) {
  13719. cur = sizeof(float)* (ne10*ne11*ne12);
  13720. } else {
  13721. GGML_ASSERT(false);
  13722. }
  13723. work_size = MAX(work_size, cur);
  13724. } break;
  13725. case GGML_OP_FLASH_ATTN:
  13726. {
  13727. node->n_tasks = n_threads;
  13728. size_t cur = 0;
  13729. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13730. if (node->src1->type == GGML_TYPE_F32) {
  13731. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13732. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13733. }
  13734. if (node->src1->type == GGML_TYPE_F16) {
  13735. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13736. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13737. }
  13738. work_size = MAX(work_size, cur);
  13739. } break;
  13740. case GGML_OP_FLASH_FF:
  13741. {
  13742. node->n_tasks = n_threads;
  13743. size_t cur = 0;
  13744. if (node->src1->type == GGML_TYPE_F32) {
  13745. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13746. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13747. }
  13748. if (node->src1->type == GGML_TYPE_F16) {
  13749. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13750. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13751. }
  13752. work_size = MAX(work_size, cur);
  13753. } break;
  13754. case GGML_OP_FLASH_ATTN_BACK:
  13755. {
  13756. node->n_tasks = n_threads;
  13757. size_t cur = 0;
  13758. const int64_t D = node->src0->ne[0];
  13759. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13760. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13761. if (node->src1->type == GGML_TYPE_F32) {
  13762. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13763. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13764. }
  13765. if (node->src1->type == GGML_TYPE_F16) {
  13766. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13767. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13768. }
  13769. work_size = MAX(work_size, cur);
  13770. } break;
  13771. case GGML_OP_WIN_PART:
  13772. case GGML_OP_WIN_UNPART:
  13773. case GGML_OP_MAP_UNARY:
  13774. case GGML_OP_MAP_BINARY:
  13775. case GGML_OP_MAP_CUSTOM1:
  13776. case GGML_OP_MAP_CUSTOM2:
  13777. case GGML_OP_MAP_CUSTOM3:
  13778. {
  13779. node->n_tasks = 1;
  13780. } break;
  13781. case GGML_OP_CROSS_ENTROPY_LOSS:
  13782. {
  13783. node->n_tasks = n_threads;
  13784. size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
  13785. work_size = MAX(work_size, cur);
  13786. } break;
  13787. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13788. {
  13789. node->n_tasks = n_threads;
  13790. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
  13791. work_size = MAX(work_size, cur);
  13792. } break;
  13793. case GGML_OP_NONE:
  13794. {
  13795. node->n_tasks = 1;
  13796. } break;
  13797. case GGML_OP_COUNT:
  13798. {
  13799. GGML_ASSERT(false);
  13800. } break;
  13801. }
  13802. }
  13803. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  13804. GGML_ASSERT(false); // TODO: better handling
  13805. }
  13806. if (work_size > 0 && cgraph->work == NULL) {
  13807. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  13808. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  13809. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  13810. }
  13811. }
  13812. // create thread pool
  13813. if (n_threads > 1) {
  13814. for (int j = 1; j < n_threads; ++j) {
  13815. workers[j] = (struct ggml_compute_state) {
  13816. .thrd = 0,
  13817. .ith = j,
  13818. .shared = &state_shared,
  13819. };
  13820. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13821. GGML_ASSERT(rc == 0);
  13822. }
  13823. }
  13824. workers[0].ith = 0;
  13825. workers[0].shared = &state_shared;
  13826. const int64_t perf_start_cycles = ggml_perf_cycles();
  13827. const int64_t perf_start_time_us = ggml_perf_time_us();
  13828. // this is a work thread too
  13829. ggml_graph_compute_thread(&workers[0]);
  13830. // don't leave affinity set on the main thread
  13831. clear_numa_thread_affinity();
  13832. // join thread pool
  13833. if (n_threads > 1) {
  13834. for (int j = 1; j < n_threads; j++) {
  13835. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13836. GGML_ASSERT(rc == 0);
  13837. }
  13838. }
  13839. // performance stats (graph)
  13840. {
  13841. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13842. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13843. cgraph->perf_runs++;
  13844. cgraph->perf_cycles += perf_cycles_cur;
  13845. cgraph->perf_time_us += perf_time_us_cur;
  13846. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13847. __func__, cgraph->perf_runs,
  13848. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13849. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13850. (double) perf_time_us_cur / 1000.0,
  13851. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13852. }
  13853. }
  13854. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13855. for (int i = 0; i < cgraph->n_nodes; i++) {
  13856. struct ggml_tensor * grad = cgraph->grads[i];
  13857. if (grad) {
  13858. ggml_set_zero(grad);
  13859. }
  13860. }
  13861. }
  13862. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13863. for (int i = 0; i < cgraph->n_leafs; i++) {
  13864. struct ggml_tensor * leaf = cgraph->leafs[i];
  13865. if (strcmp(leaf->name, name) == 0) {
  13866. return leaf;
  13867. }
  13868. }
  13869. for (int i = 0; i < cgraph->n_nodes; i++) {
  13870. struct ggml_tensor * node = cgraph->nodes[i];
  13871. if (strcmp(node->name, name) == 0) {
  13872. return node;
  13873. }
  13874. }
  13875. return NULL;
  13876. }
  13877. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13878. const int64_t * ne = tensor->ne;
  13879. const size_t * nb = tensor->nb;
  13880. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13881. ggml_type_name(tensor->type),
  13882. ggml_op_name (tensor->op),
  13883. tensor->n_dims,
  13884. ne[0], ne[1], ne[2], ne[3],
  13885. nb[0], nb[1], nb[2], nb[3],
  13886. tensor->data,
  13887. tensor->name);
  13888. }
  13889. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13890. const int64_t * ne = tensor->ne;
  13891. const size_t * nb = tensor->nb;
  13892. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  13893. arg,
  13894. ggml_type_name(tensor->type),
  13895. ggml_op_name (tensor->op),
  13896. tensor->n_dims,
  13897. ne[0], ne[1], ne[2], ne[3],
  13898. nb[0], nb[1], nb[2], nb[3],
  13899. tensor->n_tasks,
  13900. tensor->data,
  13901. tensor->name);
  13902. }
  13903. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13904. //assert(cgraph->work == NULL);
  13905. //assert(cgraph->work_size == 0);
  13906. uint64_t size_eval = 0;
  13907. // compute size of intermediate results
  13908. // TODO: does not take into account scratch buffers !!!!
  13909. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13910. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13911. }
  13912. // print
  13913. {
  13914. FILE * fout = stdout;
  13915. fprintf(fout, "\n");
  13916. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13917. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13918. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13919. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13920. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13921. // header
  13922. fprintf(fout, "\n");
  13923. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13924. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13925. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13926. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13927. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13928. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  13929. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  13930. }
  13931. // header
  13932. fprintf(fout, "\n");
  13933. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13934. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13935. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13936. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13937. if (cgraph->nodes[i]->src0) {
  13938. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  13939. }
  13940. if (cgraph->nodes[i]->src1) {
  13941. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  13942. }
  13943. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13944. if (cgraph->nodes[i]->opt[j]) {
  13945. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  13946. }
  13947. }
  13948. fprintf(fout, "\n");
  13949. }
  13950. fprintf(fout, "\n");
  13951. }
  13952. // write binary data
  13953. {
  13954. FILE * fout = fopen(fname, "wb");
  13955. if (!fout) {
  13956. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13957. return;
  13958. }
  13959. // header
  13960. {
  13961. const uint32_t magic = GGML_FILE_MAGIC;
  13962. const uint32_t version = GGML_FILE_VERSION;
  13963. const uint32_t n_leafs = cgraph->n_leafs;
  13964. const uint32_t nodes = cgraph->n_nodes;
  13965. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13966. fwrite(&version, sizeof(uint32_t), 1, fout);
  13967. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13968. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13969. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13970. }
  13971. // leafs
  13972. {
  13973. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13974. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13975. const uint32_t type = tensor->type;
  13976. const uint32_t op = tensor->op;
  13977. const uint32_t n_dims = tensor->n_dims;
  13978. fwrite(&type, sizeof(uint32_t), 1, fout);
  13979. fwrite(&op, sizeof(uint32_t), 1, fout);
  13980. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13981. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13982. const uint64_t ne = tensor->ne[j];
  13983. const uint64_t nb = tensor->nb[j];
  13984. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13985. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13986. }
  13987. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13988. // dump the data
  13989. // TODO: pad this to 32 byte boundary
  13990. {
  13991. const size_t size = ggml_nbytes(tensor);
  13992. fwrite(tensor->data, sizeof(char), size, fout);
  13993. }
  13994. }
  13995. }
  13996. // nodes
  13997. {
  13998. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13999. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14000. const uint32_t type = tensor->type;
  14001. const uint32_t op = tensor->op;
  14002. const uint32_t n_dims = tensor->n_dims;
  14003. fwrite(&type, sizeof(uint32_t), 1, fout);
  14004. fwrite(&op, sizeof(uint32_t), 1, fout);
  14005. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14006. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14007. const uint64_t ne = tensor->ne[j];
  14008. const uint64_t nb = tensor->nb[j];
  14009. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14010. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14011. }
  14012. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14013. // output the op arguments
  14014. {
  14015. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  14016. args[0] = tensor->src0;
  14017. args[1] = tensor->src1;
  14018. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14019. args[2 + j] = tensor->opt[j];
  14020. }
  14021. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  14022. if (args[j]) {
  14023. int32_t idx = -1;
  14024. // check if leaf
  14025. {
  14026. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14027. if (args[j] == cgraph->leafs[k]) {
  14028. idx = k;
  14029. break;
  14030. }
  14031. }
  14032. }
  14033. // check if node
  14034. if (idx == -1) {
  14035. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14036. if (args[j] == cgraph->nodes[k]) {
  14037. idx = GGML_MAX_NODES + k;
  14038. break;
  14039. }
  14040. }
  14041. }
  14042. if (idx == -1) {
  14043. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14044. return;
  14045. }
  14046. fwrite(&idx, sizeof(int32_t), 1, fout);
  14047. } else {
  14048. const int32_t nul = -1;
  14049. fwrite(&nul, sizeof(int32_t), 1, fout);
  14050. }
  14051. }
  14052. }
  14053. }
  14054. }
  14055. fclose(fout);
  14056. }
  14057. }
  14058. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14059. assert(*ctx_data == NULL);
  14060. assert(*ctx_eval == NULL);
  14061. struct ggml_cgraph result = { 0 };
  14062. struct ggml_tensor * data = NULL;
  14063. // read file into data
  14064. {
  14065. FILE * fin = fopen(fname, "rb");
  14066. if (!fin) {
  14067. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14068. return result;
  14069. }
  14070. size_t fsize = 0;
  14071. fseek(fin, 0, SEEK_END);
  14072. fsize = ftell(fin);
  14073. fseek(fin, 0, SEEK_SET);
  14074. // create the data context
  14075. {
  14076. const size_t overhead = 1*ggml_tensor_overhead();
  14077. struct ggml_init_params params = {
  14078. .mem_size = fsize + overhead,
  14079. .mem_buffer = NULL,
  14080. .no_alloc = false,
  14081. };
  14082. *ctx_data = ggml_init(params);
  14083. if (!*ctx_data) {
  14084. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14085. fclose(fin);
  14086. return result;
  14087. }
  14088. }
  14089. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14090. {
  14091. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14092. if (ret != fsize) {
  14093. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14094. fclose(fin);
  14095. return result;
  14096. }
  14097. }
  14098. fclose(fin);
  14099. }
  14100. // populate result
  14101. {
  14102. char * ptr = (char *) data->data;
  14103. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14104. if (magic != GGML_FILE_MAGIC) {
  14105. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14106. return result;
  14107. }
  14108. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14109. if (version != GGML_FILE_VERSION) {
  14110. fprintf(stderr, "%s: invalid version number\n", __func__);
  14111. return result;
  14112. }
  14113. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14114. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14115. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14116. result.n_leafs = n_leafs;
  14117. result.n_nodes = n_nodes;
  14118. // create the data context
  14119. {
  14120. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14121. struct ggml_init_params params = {
  14122. .mem_size = size_eval + overhead,
  14123. .mem_buffer = NULL,
  14124. .no_alloc = true,
  14125. };
  14126. *ctx_eval = ggml_init(params);
  14127. if (!*ctx_eval) {
  14128. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14129. return result;
  14130. }
  14131. }
  14132. // leafs
  14133. {
  14134. uint32_t type;
  14135. uint32_t op;
  14136. uint32_t n_dims;
  14137. for (uint32_t i = 0; i < n_leafs; ++i) {
  14138. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14139. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14140. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14141. int64_t ne[GGML_MAX_DIMS];
  14142. size_t nb[GGML_MAX_DIMS];
  14143. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14144. uint64_t ne_cur;
  14145. uint64_t nb_cur;
  14146. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14147. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14148. ne[j] = ne_cur;
  14149. nb[j] = nb_cur;
  14150. }
  14151. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14152. tensor->op = (enum ggml_op) op;
  14153. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14154. tensor->data = (void *) ptr;
  14155. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14156. tensor->nb[j] = nb[j];
  14157. }
  14158. result.leafs[i] = tensor;
  14159. ptr += ggml_nbytes(tensor);
  14160. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14161. }
  14162. }
  14163. ggml_set_no_alloc(*ctx_eval, false);
  14164. // nodes
  14165. {
  14166. uint32_t type;
  14167. uint32_t op;
  14168. uint32_t n_dims;
  14169. for (uint32_t i = 0; i < n_nodes; ++i) {
  14170. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14171. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14172. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14173. enum ggml_op eop = (enum ggml_op) op;
  14174. int64_t ne[GGML_MAX_DIMS];
  14175. size_t nb[GGML_MAX_DIMS];
  14176. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14177. uint64_t ne_cur;
  14178. uint64_t nb_cur;
  14179. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14180. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14181. ne[j] = ne_cur;
  14182. nb[j] = nb_cur;
  14183. }
  14184. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14185. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  14186. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  14187. // parse args
  14188. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  14189. const int32_t arg_idx = ptr_arg_idx[j];
  14190. if (arg_idx == -1) {
  14191. continue;
  14192. }
  14193. if (arg_idx < GGML_MAX_NODES) {
  14194. args[j] = result.leafs[arg_idx];
  14195. } else {
  14196. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14197. }
  14198. }
  14199. // create the tensor
  14200. // "view" operations are handled differently
  14201. // TODO: handle inplace ops - currently a copy is always made
  14202. struct ggml_tensor * tensor = NULL;
  14203. switch (eop) {
  14204. // TODO: implement other view ops
  14205. case GGML_OP_RESHAPE:
  14206. {
  14207. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14208. } break;
  14209. case GGML_OP_VIEW:
  14210. {
  14211. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14212. uint64_t offs;
  14213. memcpy(&offs, args[2]->data, sizeof(offs));
  14214. tensor->data = ((char *) tensor->data) + offs;
  14215. } break;
  14216. case GGML_OP_TRANSPOSE:
  14217. {
  14218. tensor = ggml_transpose(*ctx_eval, args[0]);
  14219. } break;
  14220. case GGML_OP_PERMUTE:
  14221. {
  14222. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14223. } break;
  14224. default:
  14225. {
  14226. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14227. tensor->op = eop;
  14228. } break;
  14229. }
  14230. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14231. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14232. tensor->nb[j] = nb[j];
  14233. }
  14234. tensor->src0 = args[0];
  14235. tensor->src1 = args[1];
  14236. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14237. tensor->opt[j] = args[2 + j];
  14238. }
  14239. result.nodes[i] = tensor;
  14240. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14241. }
  14242. }
  14243. }
  14244. return result;
  14245. }
  14246. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14247. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14248. GGML_PRINT("=== GRAPH ===\n");
  14249. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  14250. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  14251. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14252. for (int i = 0; i < cgraph->n_nodes; i++) {
  14253. struct ggml_tensor * node = cgraph->nodes[i];
  14254. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14255. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14256. i,
  14257. node->ne[0], node->ne[1], node->ne[2],
  14258. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14259. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14260. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14261. (double) node->perf_time_us / 1000.0,
  14262. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14263. }
  14264. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14265. for (int i = 0; i < cgraph->n_leafs; i++) {
  14266. struct ggml_tensor * node = cgraph->leafs[i];
  14267. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14268. i,
  14269. node->ne[0], node->ne[1],
  14270. GGML_OP_NAME[node->op]);
  14271. }
  14272. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14273. if (perf_total_per_op_us[i] == 0) {
  14274. continue;
  14275. }
  14276. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14277. }
  14278. GGML_PRINT("========================================\n");
  14279. }
  14280. // check if node is part of the graph
  14281. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14282. if (cgraph == NULL) {
  14283. return true;
  14284. }
  14285. for (int i = 0; i < cgraph->n_nodes; i++) {
  14286. if (cgraph->nodes[i] == node) {
  14287. return true;
  14288. }
  14289. }
  14290. return false;
  14291. }
  14292. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14293. for (int i = 0; i < cgraph->n_nodes; i++) {
  14294. struct ggml_tensor * parent = cgraph->nodes[i];
  14295. if (parent->grad == node) {
  14296. return parent;
  14297. }
  14298. }
  14299. return NULL;
  14300. }
  14301. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14302. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14303. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14304. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14305. gparent0 ? (void *) gparent0 : (void *) parent,
  14306. gparent0 ? "g" : "x",
  14307. gparent ? (void *) gparent : (void *) node,
  14308. gparent ? "g" : "x",
  14309. gparent ? "empty" : "vee",
  14310. gparent ? "dashed" : "solid",
  14311. label);
  14312. }
  14313. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14314. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14315. (void *) parent, "x",
  14316. (void *) node, "x",
  14317. label);
  14318. }
  14319. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14320. char color[16];
  14321. FILE * fp = fopen(filename, "w");
  14322. GGML_ASSERT(fp);
  14323. fprintf(fp, "digraph G {\n");
  14324. fprintf(fp, " newrank = true;\n");
  14325. fprintf(fp, " rankdir = LR;\n");
  14326. for (int i = 0; i < gb->n_nodes; i++) {
  14327. struct ggml_tensor * node = gb->nodes[i];
  14328. if (ggml_graph_get_parent(gb, node) != NULL) {
  14329. continue;
  14330. }
  14331. if (node->is_param) {
  14332. snprintf(color, sizeof(color), "yellow");
  14333. } else if (node->grad) {
  14334. if (ggml_graph_find(gf, node)) {
  14335. snprintf(color, sizeof(color), "green");
  14336. } else {
  14337. snprintf(color, sizeof(color), "lightblue");
  14338. }
  14339. } else {
  14340. snprintf(color, sizeof(color), "white");
  14341. }
  14342. fprintf(fp, " \"%p\" [ "
  14343. "style = filled; fillcolor = %s; shape = record; "
  14344. "label=\"",
  14345. (void *) node, color);
  14346. if (strlen(node->name) > 0) {
  14347. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14348. } else {
  14349. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14350. }
  14351. if (node->n_dims == 2) {
  14352. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14353. } else {
  14354. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14355. }
  14356. if (node->grad) {
  14357. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14358. } else {
  14359. fprintf(fp, "\"; ]\n");
  14360. }
  14361. }
  14362. for (int i = 0; i < gb->n_leafs; i++) {
  14363. struct ggml_tensor * node = gb->leafs[i];
  14364. snprintf(color, sizeof(color), "pink");
  14365. fprintf(fp, " \"%p\" [ "
  14366. "style = filled; fillcolor = %s; shape = record; "
  14367. "label=\"<x>",
  14368. (void *) node, color);
  14369. if (strlen(node->name) > 0) {
  14370. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14371. } else {
  14372. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14373. }
  14374. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14375. if (ggml_nelements(node) < 5) {
  14376. fprintf(fp, " | (");
  14377. for (int j = 0; j < ggml_nelements(node); j++) {
  14378. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14379. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14380. }
  14381. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14382. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14383. }
  14384. else {
  14385. fprintf(fp, "#");
  14386. }
  14387. if (j < ggml_nelements(node) - 1) {
  14388. fprintf(fp, ", ");
  14389. }
  14390. }
  14391. fprintf(fp, ")");
  14392. }
  14393. fprintf(fp, "\"; ]\n");
  14394. }
  14395. for (int i = 0; i < gb->n_nodes; i++) {
  14396. struct ggml_tensor * node = gb->nodes[i];
  14397. if (node->src0) {
  14398. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src0, "x");
  14399. }
  14400. if (node->src1) {
  14401. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src1, "y");
  14402. }
  14403. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14404. if (node->opt[j]) {
  14405. char label[16];
  14406. snprintf(label, sizeof(label), "opt %d", j);
  14407. ggml_graph_dump_dot_node_edge(fp, gb, node, node->opt[j], label);
  14408. }
  14409. }
  14410. }
  14411. for (int i = 0; i < gb->n_leafs; i++) {
  14412. struct ggml_tensor * node = gb->leafs[i];
  14413. if (node->src0) {
  14414. ggml_graph_dump_dot_leaf_edge(fp, node, node->src0, "x");
  14415. }
  14416. if (node->src1) {
  14417. ggml_graph_dump_dot_leaf_edge(fp, node, node->src1, "y");
  14418. }
  14419. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14420. if (node->opt[j]) {
  14421. char label[16];
  14422. snprintf(label, sizeof(label), "opt %d", j);
  14423. ggml_graph_dump_dot_leaf_edge(fp, node, node->opt[j], label);
  14424. }
  14425. }
  14426. }
  14427. fprintf(fp, "}\n");
  14428. fclose(fp);
  14429. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14430. }
  14431. ////////////////////////////////////////////////////////////////////////////////
  14432. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14433. int i = 0;
  14434. for (int p = 0; p < np; ++p) {
  14435. const int64_t ne = ggml_nelements(ps[p]) ;
  14436. // TODO: add function to set tensor from array
  14437. for (int64_t j = 0; j < ne; ++j) {
  14438. ggml_set_f32_1d(ps[p], j, x[i++]);
  14439. }
  14440. }
  14441. }
  14442. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14443. int i = 0;
  14444. for (int p = 0; p < np; ++p) {
  14445. const int64_t ne = ggml_nelements(ps[p]) ;
  14446. // TODO: add function to get all elements at once
  14447. for (int64_t j = 0; j < ne; ++j) {
  14448. x[i++] = ggml_get_f32_1d(ps[p], j);
  14449. }
  14450. }
  14451. }
  14452. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14453. int i = 0;
  14454. for (int p = 0; p < np; ++p) {
  14455. const int64_t ne = ggml_nelements(ps[p]) ;
  14456. // TODO: add function to get all elements at once
  14457. for (int64_t j = 0; j < ne; ++j) {
  14458. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14459. }
  14460. }
  14461. }
  14462. //
  14463. // ADAM
  14464. //
  14465. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14466. //
  14467. static enum ggml_opt_result ggml_opt_adam(
  14468. struct ggml_context * ctx,
  14469. struct ggml_opt_context * opt,
  14470. struct ggml_opt_params params,
  14471. struct ggml_tensor * f,
  14472. struct ggml_cgraph * gf,
  14473. struct ggml_cgraph * gb) {
  14474. GGML_ASSERT(ggml_is_scalar(f));
  14475. gf->n_threads = params.n_threads;
  14476. gb->n_threads = params.n_threads;
  14477. // these will store the parameters we want to optimize
  14478. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14479. int np = 0;
  14480. int nx = 0;
  14481. for (int i = 0; i < gf->n_nodes; ++i) {
  14482. if (gf->nodes[i]->is_param) {
  14483. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14484. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14485. ps[np++] = gf->nodes[i];
  14486. nx += ggml_nelements(gf->nodes[i]);
  14487. }
  14488. }
  14489. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14490. int iter = opt->iter;
  14491. ggml_opt_init(opt->ctx, opt, params, nx);
  14492. opt->iter = iter;
  14493. }
  14494. // constants
  14495. const float sched = params.adam.sched;
  14496. const float decay = params.adam.decay * sched;
  14497. const float alpha = params.adam.alpha * sched;
  14498. const float beta1 = params.adam.beta1;
  14499. const float beta2 = params.adam.beta2;
  14500. const float eps = params.adam.eps;
  14501. float * x = opt->adam.x->data; // view of the parameters
  14502. float * g1 = opt->adam.g1->data; // gradient
  14503. float * g2 = opt->adam.g2->data; // gradient squared
  14504. float * m = opt->adam.m->data; // first moment
  14505. float * v = opt->adam.v->data; // second moment
  14506. float * mh = opt->adam.mh->data; // first moment hat
  14507. float * vh = opt->adam.vh->data; // second moment hat
  14508. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14509. // update view
  14510. ggml_opt_get_params(np, ps, x);
  14511. // compute the function value
  14512. ggml_graph_reset (gf);
  14513. ggml_set_f32 (f->grad, 1.0f);
  14514. ggml_graph_compute(ctx, gb);
  14515. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14516. opt->adam.fx_best = opt->adam.fx_prev;
  14517. if (pf) {
  14518. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14519. }
  14520. // initialize
  14521. if (opt->just_initialized) {
  14522. opt->adam.n_no_improvement = 0;
  14523. opt->just_initialized = false;
  14524. }
  14525. float * fx_best = &opt->adam.fx_best;
  14526. float * fx_prev = &opt->adam.fx_prev;
  14527. int * n_no_improvement = &opt->adam.n_no_improvement;
  14528. int iter0 = opt->iter;
  14529. // run the optimizer
  14530. for (int t = 0; t < params.adam.n_iter; ++t) {
  14531. opt->iter = iter0 + t + 1;
  14532. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14533. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14534. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14535. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14536. for (int i = 0; i < np; ++i) {
  14537. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14538. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14539. }
  14540. const int64_t t_start_wall = ggml_time_us();
  14541. const int64_t t_start_cpu = ggml_cycles();
  14542. UNUSED(t_start_wall);
  14543. UNUSED(t_start_cpu);
  14544. {
  14545. // update the gradient
  14546. ggml_opt_get_grad(np, ps, g1);
  14547. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14548. ggml_vec_scale_f32(nx, m, beta1);
  14549. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14550. // g2 = g1^2
  14551. ggml_vec_sqr_f32 (nx, g2, g1);
  14552. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14553. ggml_vec_scale_f32(nx, v, beta2);
  14554. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14555. // m^hat = m_t / (1 - beta1^t)
  14556. // v^hat = v_t / (1 - beta2^t)
  14557. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14558. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14559. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14560. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14561. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14562. ggml_vec_cpy_f32 (nx, mh, m);
  14563. ggml_vec_cpy_f32 (nx, vh, v);
  14564. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14565. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14566. ggml_vec_sqrt_f32 (nx, vh, vh);
  14567. ggml_vec_acc1_f32 (nx, vh, eps);
  14568. ggml_vec_div_f32 (nx, mh, mh, vh);
  14569. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14570. ggml_vec_sub_f32 (nx, x, x, mh);
  14571. // update the parameters
  14572. ggml_opt_set_params(np, ps, x);
  14573. }
  14574. ggml_graph_reset (gf);
  14575. ggml_set_f32 (f->grad, 1.0f);
  14576. ggml_graph_compute(ctx, gb);
  14577. const float fx = ggml_get_f32_1d(f, 0);
  14578. // check convergence
  14579. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14580. GGML_PRINT_DEBUG("converged\n");
  14581. return GGML_OPT_OK;
  14582. }
  14583. // delta-based convergence test
  14584. if (pf != NULL) {
  14585. // need at least params.past iterations to start checking for convergence
  14586. if (params.past <= iter0 + t) {
  14587. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14588. if (fabsf(rate) < params.delta) {
  14589. return GGML_OPT_OK;
  14590. }
  14591. }
  14592. pf[(iter0 + t)%params.past] = fx;
  14593. }
  14594. // check for improvement
  14595. if (params.max_no_improvement > 0) {
  14596. if (fx_best[0] > fx) {
  14597. fx_best[0] = fx;
  14598. n_no_improvement[0] = 0;
  14599. } else {
  14600. ++n_no_improvement[0];
  14601. if (n_no_improvement[0] >= params.max_no_improvement) {
  14602. return GGML_OPT_OK;
  14603. }
  14604. }
  14605. }
  14606. fx_prev[0] = fx;
  14607. {
  14608. const int64_t t_end_cpu = ggml_cycles();
  14609. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14610. UNUSED(t_end_cpu);
  14611. const int64_t t_end_wall = ggml_time_us();
  14612. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14613. UNUSED(t_end_wall);
  14614. }
  14615. }
  14616. return GGML_OPT_DID_NOT_CONVERGE;
  14617. }
  14618. //
  14619. // L-BFGS
  14620. //
  14621. // the L-BFGS implementation below is based on the following implementation:
  14622. //
  14623. // https://github.com/chokkan/liblbfgs
  14624. //
  14625. struct ggml_lbfgs_iteration_data {
  14626. float alpha;
  14627. float ys;
  14628. float * s;
  14629. float * y;
  14630. };
  14631. static enum ggml_opt_result linesearch_backtracking(
  14632. struct ggml_context * ctx,
  14633. const struct ggml_opt_params * params,
  14634. int nx,
  14635. float * x,
  14636. float * fx,
  14637. float * g,
  14638. float * d,
  14639. float * step,
  14640. const float * xp,
  14641. struct ggml_tensor * f,
  14642. struct ggml_cgraph * gf,
  14643. struct ggml_cgraph * gb,
  14644. const int np,
  14645. struct ggml_tensor * ps[]) {
  14646. int count = 0;
  14647. float width = 0.0f;
  14648. float dg = 0.0f;
  14649. float finit = 0.0f;
  14650. float dginit = 0.0f;
  14651. float dgtest = 0.0f;
  14652. const float dec = 0.5f;
  14653. const float inc = 2.1f;
  14654. if (*step <= 0.f) {
  14655. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14656. }
  14657. // compute the initial gradient in the search direction
  14658. ggml_vec_dot_f32(nx, &dginit, g, d);
  14659. // make sure that d points to a descent direction
  14660. if (0 < dginit) {
  14661. return GGML_LINESEARCH_FAIL;
  14662. }
  14663. // initialize local variables
  14664. finit = *fx;
  14665. dgtest = params->lbfgs.ftol*dginit;
  14666. while (true) {
  14667. ggml_vec_cpy_f32(nx, x, xp);
  14668. ggml_vec_mad_f32(nx, x, d, *step);
  14669. // evaluate the function and gradient values
  14670. {
  14671. ggml_opt_set_params(np, ps, x);
  14672. ggml_graph_reset (gf);
  14673. ggml_set_f32 (f->grad, 1.0f);
  14674. ggml_graph_compute(ctx, gb);
  14675. ggml_opt_get_grad(np, ps, g);
  14676. *fx = ggml_get_f32_1d(f, 0);
  14677. }
  14678. ++count;
  14679. if (*fx > finit + (*step)*dgtest) {
  14680. width = dec;
  14681. } else {
  14682. // Armijo condition is satisfied
  14683. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14684. return count;
  14685. }
  14686. ggml_vec_dot_f32(nx, &dg, g, d);
  14687. // check the Wolfe condition
  14688. if (dg < params->lbfgs.wolfe * dginit) {
  14689. width = inc;
  14690. } else {
  14691. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14692. // regular Wolfe conditions
  14693. return count;
  14694. }
  14695. if(dg > -params->lbfgs.wolfe*dginit) {
  14696. width = dec;
  14697. } else {
  14698. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14699. return count;
  14700. }
  14701. return count;
  14702. }
  14703. }
  14704. if (*step < params->lbfgs.min_step) {
  14705. return GGML_LINESEARCH_MINIMUM_STEP;
  14706. }
  14707. if (*step > params->lbfgs.max_step) {
  14708. return GGML_LINESEARCH_MAXIMUM_STEP;
  14709. }
  14710. if (params->lbfgs.max_linesearch <= count) {
  14711. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14712. }
  14713. (*step) *= width;
  14714. }
  14715. return GGML_LINESEARCH_FAIL;
  14716. }
  14717. static enum ggml_opt_result ggml_opt_lbfgs(
  14718. struct ggml_context * ctx,
  14719. struct ggml_opt_context * opt,
  14720. struct ggml_opt_params params,
  14721. struct ggml_tensor * f,
  14722. struct ggml_cgraph * gf,
  14723. struct ggml_cgraph * gb) {
  14724. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14725. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14726. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14727. return GGML_OPT_INVALID_WOLFE;
  14728. }
  14729. }
  14730. gf->n_threads = params.n_threads;
  14731. gb->n_threads = params.n_threads;
  14732. const int m = params.lbfgs.m;
  14733. // these will store the parameters we want to optimize
  14734. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14735. int np = 0;
  14736. int nx = 0;
  14737. for (int i = 0; i < gf->n_nodes; ++i) {
  14738. if (gf->nodes[i]->is_param) {
  14739. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14740. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14741. ps[np++] = gf->nodes[i];
  14742. nx += ggml_nelements(gf->nodes[i]);
  14743. }
  14744. }
  14745. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14746. int iter = opt->iter;
  14747. ggml_opt_init(ctx, opt, params, nx);
  14748. opt->iter = iter;
  14749. }
  14750. float * x = opt->lbfgs.x->data; // current parameters
  14751. float * xp = opt->lbfgs.xp->data; // previous parameters
  14752. float * g = opt->lbfgs.g->data; // current gradient
  14753. float * gp = opt->lbfgs.gp->data; // previous gradient
  14754. float * d = opt->lbfgs.d->data; // search direction
  14755. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14756. float fx = 0.0f; // cost function value
  14757. float xnorm = 0.0f; // ||x||
  14758. float gnorm = 0.0f; // ||g||
  14759. // initialize x from the graph nodes
  14760. ggml_opt_get_params(np, ps, x);
  14761. // the L-BFGS memory
  14762. float * lm_alpha = opt->lbfgs.lmal->data;
  14763. float * lm_ys = opt->lbfgs.lmys->data;
  14764. float * lm_s = opt->lbfgs.lms->data;
  14765. float * lm_y = opt->lbfgs.lmy->data;
  14766. // evaluate the function value and its gradient
  14767. {
  14768. ggml_opt_set_params(np, ps, x);
  14769. ggml_graph_reset (gf);
  14770. ggml_set_f32 (f->grad, 1.0f);
  14771. ggml_graph_compute(ctx, gb);
  14772. ggml_opt_get_grad(np, ps, g);
  14773. fx = ggml_get_f32_1d(f, 0);
  14774. }
  14775. // search direction = -gradient
  14776. ggml_vec_neg_f32(nx, d, g);
  14777. // ||x||, ||g||
  14778. ggml_vec_norm_f32(nx, &xnorm, x);
  14779. ggml_vec_norm_f32(nx, &gnorm, g);
  14780. if (xnorm < 1.0f) {
  14781. xnorm = 1.0f;
  14782. }
  14783. // already optimized
  14784. if (gnorm/xnorm <= params.lbfgs.eps) {
  14785. return GGML_OPT_OK;
  14786. }
  14787. if (opt->just_initialized) {
  14788. if (pf) {
  14789. pf[0] = fx;
  14790. }
  14791. opt->lbfgs.fx_best = fx;
  14792. // initial step
  14793. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14794. opt->lbfgs.j = 0;
  14795. opt->lbfgs.k = 1;
  14796. opt->lbfgs.end = 0;
  14797. opt->lbfgs.n_no_improvement = 0;
  14798. opt->just_initialized = false;
  14799. }
  14800. float * fx_best = &opt->lbfgs.fx_best;
  14801. float * step = &opt->lbfgs.step;
  14802. int * j = &opt->lbfgs.j;
  14803. int * k = &opt->lbfgs.k;
  14804. int * end = &opt->lbfgs.end;
  14805. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14806. int ls = 0;
  14807. int bound = 0;
  14808. float ys = 0.0f;
  14809. float yy = 0.0f;
  14810. float beta = 0.0f;
  14811. int it = 0;
  14812. while (true) {
  14813. // store the current position and gradient vectors
  14814. ggml_vec_cpy_f32(nx, xp, x);
  14815. ggml_vec_cpy_f32(nx, gp, g);
  14816. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14817. if (ls < 0) {
  14818. // linesearch failed - go back to the previous point and return
  14819. ggml_vec_cpy_f32(nx, x, xp);
  14820. ggml_vec_cpy_f32(nx, g, gp);
  14821. return ls;
  14822. }
  14823. ggml_vec_norm_f32(nx, &xnorm, x);
  14824. ggml_vec_norm_f32(nx, &gnorm, g);
  14825. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14826. if (xnorm < 1.0f) {
  14827. xnorm = 1.0f;
  14828. }
  14829. if (gnorm/xnorm <= params.lbfgs.eps) {
  14830. // converged
  14831. return GGML_OPT_OK;
  14832. }
  14833. // delta-based convergence test
  14834. if (pf != NULL) {
  14835. // need at least params.past iterations to start checking for convergence
  14836. if (params.past <= k[0]) {
  14837. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14838. if (fabsf(rate) < params.delta) {
  14839. return GGML_OPT_OK;
  14840. }
  14841. }
  14842. pf[k[0]%params.past] = fx;
  14843. }
  14844. // check for improvement
  14845. if (params.max_no_improvement > 0) {
  14846. if (fx < fx_best[0]) {
  14847. fx_best[0] = fx;
  14848. n_no_improvement[0] = 0;
  14849. } else {
  14850. n_no_improvement[0]++;
  14851. if (n_no_improvement[0] >= params.max_no_improvement) {
  14852. return GGML_OPT_OK;
  14853. }
  14854. }
  14855. }
  14856. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14857. // reached the maximum number of iterations
  14858. return GGML_OPT_DID_NOT_CONVERGE;
  14859. }
  14860. // update vectors s and y:
  14861. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14862. // y_{k+1} = g_{k+1} - g_{k}.
  14863. //
  14864. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14865. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14866. // compute scalars ys and yy:
  14867. // ys = y^t \cdot s -> 1 / \rho.
  14868. // yy = y^t \cdot y.
  14869. //
  14870. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14871. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14872. lm_ys[end[0]] = ys;
  14873. // find new search direction
  14874. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14875. bound = (m <= k[0]) ? m : k[0];
  14876. k[0]++;
  14877. it++;
  14878. end[0] = (end[0] + 1)%m;
  14879. // initialize search direction with -g
  14880. ggml_vec_neg_f32(nx, d, g);
  14881. j[0] = end[0];
  14882. for (int i = 0; i < bound; ++i) {
  14883. j[0] = (j[0] + m - 1) % m;
  14884. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14885. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14886. lm_alpha[j[0]] /= lm_ys[j[0]];
  14887. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14888. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14889. }
  14890. ggml_vec_scale_f32(nx, d, ys/yy);
  14891. for (int i = 0; i < bound; ++i) {
  14892. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14893. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14894. beta /= lm_ys[j[0]];
  14895. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14896. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14897. j[0] = (j[0] + 1)%m;
  14898. }
  14899. step[0] = 1.0;
  14900. }
  14901. return GGML_OPT_DID_NOT_CONVERGE;
  14902. }
  14903. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14904. struct ggml_opt_params result;
  14905. switch (type) {
  14906. case GGML_OPT_ADAM:
  14907. {
  14908. result = (struct ggml_opt_params) {
  14909. .type = GGML_OPT_ADAM,
  14910. .n_threads = 1,
  14911. .past = 0,
  14912. .delta = 1e-5f,
  14913. .max_no_improvement = 100,
  14914. .print_forward_graph = true,
  14915. .print_backward_graph = true,
  14916. .adam = {
  14917. .n_iter = 10000,
  14918. .sched = 1.000f,
  14919. .decay = 0.001f,
  14920. .alpha = 0.001f,
  14921. .beta1 = 0.9f,
  14922. .beta2 = 0.999f,
  14923. .eps = 1e-8f,
  14924. .eps_f = 1e-5f,
  14925. .eps_g = 1e-3f,
  14926. },
  14927. };
  14928. } break;
  14929. case GGML_OPT_LBFGS:
  14930. {
  14931. result = (struct ggml_opt_params) {
  14932. .type = GGML_OPT_LBFGS,
  14933. .n_threads = 1,
  14934. .past = 0,
  14935. .delta = 1e-5f,
  14936. .max_no_improvement = 0,
  14937. .print_forward_graph = true,
  14938. .print_backward_graph = true,
  14939. .lbfgs = {
  14940. .m = 6,
  14941. .n_iter = 100,
  14942. .max_linesearch = 20,
  14943. .eps = 1e-5f,
  14944. .ftol = 1e-4f,
  14945. .wolfe = 0.9f,
  14946. .min_step = 1e-20f,
  14947. .max_step = 1e+20f,
  14948. .linesearch = GGML_LINESEARCH_DEFAULT,
  14949. },
  14950. };
  14951. } break;
  14952. }
  14953. return result;
  14954. }
  14955. GGML_API void ggml_opt_init(
  14956. struct ggml_context * ctx,
  14957. struct ggml_opt_context * opt,
  14958. struct ggml_opt_params params,
  14959. int64_t nx) {
  14960. opt->ctx = ctx;
  14961. opt->params = params;
  14962. opt->iter = 0;
  14963. opt->nx = nx;
  14964. opt->just_initialized = true;
  14965. switch (opt->params.type) {
  14966. case GGML_OPT_ADAM:
  14967. {
  14968. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14969. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14970. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14971. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14972. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14973. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14974. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14975. opt->adam.pf = params.past > 0
  14976. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14977. : NULL;
  14978. ggml_set_zero(opt->adam.x);
  14979. ggml_set_zero(opt->adam.g1);
  14980. ggml_set_zero(opt->adam.g2);
  14981. ggml_set_zero(opt->adam.m);
  14982. ggml_set_zero(opt->adam.v);
  14983. ggml_set_zero(opt->adam.mh);
  14984. ggml_set_zero(opt->adam.vh);
  14985. if (opt->adam.pf) {
  14986. ggml_set_zero(opt->adam.pf);
  14987. }
  14988. } break;
  14989. case GGML_OPT_LBFGS:
  14990. {
  14991. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14992. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14993. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14994. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14995. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14996. opt->lbfgs.pf = params.past > 0
  14997. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14998. : NULL;
  14999. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15000. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15001. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15002. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15003. ggml_set_zero(opt->lbfgs.x);
  15004. ggml_set_zero(opt->lbfgs.xp);
  15005. ggml_set_zero(opt->lbfgs.g);
  15006. ggml_set_zero(opt->lbfgs.gp);
  15007. ggml_set_zero(opt->lbfgs.d);
  15008. if (opt->lbfgs.pf) {
  15009. ggml_set_zero(opt->lbfgs.pf);
  15010. }
  15011. ggml_set_zero(opt->lbfgs.lmal);
  15012. ggml_set_zero(opt->lbfgs.lmys);
  15013. ggml_set_zero(opt->lbfgs.lms);
  15014. ggml_set_zero(opt->lbfgs.lmy);
  15015. } break;
  15016. }
  15017. }
  15018. enum ggml_opt_result ggml_opt(
  15019. struct ggml_context * ctx,
  15020. struct ggml_opt_params params,
  15021. struct ggml_tensor * f) {
  15022. bool free_ctx = false;
  15023. if (ctx == NULL) {
  15024. struct ggml_init_params params_ctx = {
  15025. .mem_size = 16*1024*1024,
  15026. .mem_buffer = NULL,
  15027. .no_alloc = false,
  15028. };
  15029. ctx = ggml_init(params_ctx);
  15030. if (ctx == NULL) {
  15031. return GGML_OPT_NO_CONTEXT;
  15032. }
  15033. free_ctx = true;
  15034. }
  15035. enum ggml_opt_result result = GGML_OPT_OK;
  15036. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15037. ggml_opt_init(ctx, opt, params, 0);
  15038. result = ggml_opt_resume(ctx, opt, f);
  15039. if (free_ctx) {
  15040. ggml_free(ctx);
  15041. }
  15042. return result;
  15043. }
  15044. enum ggml_opt_result ggml_opt_resume(
  15045. struct ggml_context * ctx,
  15046. struct ggml_opt_context * opt,
  15047. struct ggml_tensor * f) {
  15048. // build forward + backward compute graphs
  15049. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15050. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15051. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15052. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15053. *gf = ggml_build_forward (f);
  15054. *gb = ggml_build_backward(ctx, gf, true);
  15055. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15056. }
  15057. enum ggml_opt_result ggml_opt_resume_g(
  15058. struct ggml_context * ctx,
  15059. struct ggml_opt_context * opt,
  15060. struct ggml_tensor * f,
  15061. struct ggml_cgraph * gf,
  15062. struct ggml_cgraph * gb) {
  15063. // build forward + backward compute graphs
  15064. enum ggml_opt_result result = GGML_OPT_OK;
  15065. switch (opt->params.type) {
  15066. case GGML_OPT_ADAM:
  15067. {
  15068. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15069. } break;
  15070. case GGML_OPT_LBFGS:
  15071. {
  15072. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15073. } break;
  15074. }
  15075. if (opt->params.print_forward_graph) {
  15076. ggml_graph_print (gf);
  15077. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15078. }
  15079. if (opt->params.print_backward_graph) {
  15080. ggml_graph_print (gb);
  15081. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15082. }
  15083. return result;
  15084. }
  15085. ////////////////////////////////////////////////////////////////////////////////
  15086. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15087. assert(k % QK4_0 == 0);
  15088. const int nb = k / QK4_0;
  15089. for (int b = 0; b < n; b += k) {
  15090. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15091. quantize_row_q4_0_reference(src + b, y, k);
  15092. for (int i = 0; i < nb; i++) {
  15093. for (int j = 0; j < QK4_0; j += 2) {
  15094. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15095. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15096. hist[vi0]++;
  15097. hist[vi1]++;
  15098. }
  15099. }
  15100. }
  15101. return (n/QK4_0*sizeof(block_q4_0));
  15102. }
  15103. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15104. assert(k % QK4_1 == 0);
  15105. const int nb = k / QK4_1;
  15106. for (int b = 0; b < n; b += k) {
  15107. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15108. quantize_row_q4_1_reference(src + b, y, k);
  15109. for (int i = 0; i < nb; i++) {
  15110. for (int j = 0; j < QK4_1; j += 2) {
  15111. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15112. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15113. hist[vi0]++;
  15114. hist[vi1]++;
  15115. }
  15116. }
  15117. }
  15118. return (n/QK4_1*sizeof(block_q4_1));
  15119. }
  15120. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15121. assert(k % QK5_0 == 0);
  15122. const int nb = k / QK5_0;
  15123. for (int b = 0; b < n; b += k) {
  15124. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15125. quantize_row_q5_0_reference(src + b, y, k);
  15126. for (int i = 0; i < nb; i++) {
  15127. uint32_t qh;
  15128. memcpy(&qh, &y[i].qh, sizeof(qh));
  15129. for (int j = 0; j < QK5_0; j += 2) {
  15130. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15131. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15132. // cast to 16 bins
  15133. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15134. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15135. hist[vi0]++;
  15136. hist[vi1]++;
  15137. }
  15138. }
  15139. }
  15140. return (n/QK5_0*sizeof(block_q5_0));
  15141. }
  15142. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15143. assert(k % QK5_1 == 0);
  15144. const int nb = k / QK5_1;
  15145. for (int b = 0; b < n; b += k) {
  15146. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15147. quantize_row_q5_1_reference(src + b, y, k);
  15148. for (int i = 0; i < nb; i++) {
  15149. uint32_t qh;
  15150. memcpy(&qh, &y[i].qh, sizeof(qh));
  15151. for (int j = 0; j < QK5_1; j += 2) {
  15152. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15153. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15154. // cast to 16 bins
  15155. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15156. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15157. hist[vi0]++;
  15158. hist[vi1]++;
  15159. }
  15160. }
  15161. }
  15162. return (n/QK5_1*sizeof(block_q5_1));
  15163. }
  15164. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15165. assert(k % QK8_0 == 0);
  15166. const int nb = k / QK8_0;
  15167. for (int b = 0; b < n; b += k) {
  15168. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15169. quantize_row_q8_0_reference(src + b, y, k);
  15170. for (int i = 0; i < nb; i++) {
  15171. for (int j = 0; j < QK8_0; ++j) {
  15172. const int8_t vi = y[i].qs[j];
  15173. hist[vi/16 + 8]++;
  15174. }
  15175. }
  15176. }
  15177. return (n/QK8_0*sizeof(block_q8_0));
  15178. }
  15179. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15180. size_t result = 0;
  15181. switch (type) {
  15182. case GGML_TYPE_Q4_0:
  15183. {
  15184. GGML_ASSERT(start % QK4_0 == 0);
  15185. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15186. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15187. } break;
  15188. case GGML_TYPE_Q4_1:
  15189. {
  15190. GGML_ASSERT(start % QK4_1 == 0);
  15191. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15192. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15193. } break;
  15194. case GGML_TYPE_Q5_0:
  15195. {
  15196. GGML_ASSERT(start % QK5_0 == 0);
  15197. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15198. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15199. } break;
  15200. case GGML_TYPE_Q5_1:
  15201. {
  15202. GGML_ASSERT(start % QK5_1 == 0);
  15203. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15204. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15205. } break;
  15206. case GGML_TYPE_Q8_0:
  15207. {
  15208. GGML_ASSERT(start % QK8_0 == 0);
  15209. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15210. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15211. } break;
  15212. #ifdef GGML_USE_K_QUANTS
  15213. case GGML_TYPE_Q2_K:
  15214. {
  15215. GGML_ASSERT(start % QK_K == 0);
  15216. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15217. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15218. } break;
  15219. case GGML_TYPE_Q3_K:
  15220. {
  15221. GGML_ASSERT(start % QK_K == 0);
  15222. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15223. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15224. } break;
  15225. case GGML_TYPE_Q4_K:
  15226. {
  15227. GGML_ASSERT(start % QK_K == 0);
  15228. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15229. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15230. } break;
  15231. case GGML_TYPE_Q5_K:
  15232. {
  15233. GGML_ASSERT(start % QK_K == 0);
  15234. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15235. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15236. } break;
  15237. case GGML_TYPE_Q6_K:
  15238. {
  15239. GGML_ASSERT(start % QK_K == 0);
  15240. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15241. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15242. } break;
  15243. #endif
  15244. case GGML_TYPE_F16:
  15245. {
  15246. int elemsize = sizeof(ggml_fp16_t);
  15247. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15248. result = n * elemsize;
  15249. } break;
  15250. case GGML_TYPE_F32:
  15251. {
  15252. int elemsize = sizeof(float);
  15253. result = n * elemsize;
  15254. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15255. } break;
  15256. default:
  15257. assert(false);
  15258. }
  15259. return result;
  15260. }
  15261. ////////////////////////////////////////////////////////////////////////////////
  15262. int ggml_cpu_has_avx(void) {
  15263. #if defined(__AVX__)
  15264. return 1;
  15265. #else
  15266. return 0;
  15267. #endif
  15268. }
  15269. int ggml_cpu_has_avx2(void) {
  15270. #if defined(__AVX2__)
  15271. return 1;
  15272. #else
  15273. return 0;
  15274. #endif
  15275. }
  15276. int ggml_cpu_has_avx512(void) {
  15277. #if defined(__AVX512F__)
  15278. return 1;
  15279. #else
  15280. return 0;
  15281. #endif
  15282. }
  15283. int ggml_cpu_has_avx512_vbmi(void) {
  15284. #if defined(__AVX512VBMI__)
  15285. return 1;
  15286. #else
  15287. return 0;
  15288. #endif
  15289. }
  15290. int ggml_cpu_has_avx512_vnni(void) {
  15291. #if defined(__AVX512VNNI__)
  15292. return 1;
  15293. #else
  15294. return 0;
  15295. #endif
  15296. }
  15297. int ggml_cpu_has_fma(void) {
  15298. #if defined(__FMA__)
  15299. return 1;
  15300. #else
  15301. return 0;
  15302. #endif
  15303. }
  15304. int ggml_cpu_has_neon(void) {
  15305. #if defined(__ARM_NEON)
  15306. return 1;
  15307. #else
  15308. return 0;
  15309. #endif
  15310. }
  15311. int ggml_cpu_has_arm_fma(void) {
  15312. #if defined(__ARM_FEATURE_FMA)
  15313. return 1;
  15314. #else
  15315. return 0;
  15316. #endif
  15317. }
  15318. int ggml_cpu_has_f16c(void) {
  15319. #if defined(__F16C__)
  15320. return 1;
  15321. #else
  15322. return 0;
  15323. #endif
  15324. }
  15325. int ggml_cpu_has_fp16_va(void) {
  15326. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15327. return 1;
  15328. #else
  15329. return 0;
  15330. #endif
  15331. }
  15332. int ggml_cpu_has_wasm_simd(void) {
  15333. #if defined(__wasm_simd128__)
  15334. return 1;
  15335. #else
  15336. return 0;
  15337. #endif
  15338. }
  15339. int ggml_cpu_has_blas(void) {
  15340. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15341. return 1;
  15342. #else
  15343. return 0;
  15344. #endif
  15345. }
  15346. int ggml_cpu_has_cublas(void) {
  15347. #if defined(GGML_USE_CUBLAS)
  15348. return 1;
  15349. #else
  15350. return 0;
  15351. #endif
  15352. }
  15353. int ggml_cpu_has_clblast(void) {
  15354. #if defined(GGML_USE_CLBLAST)
  15355. return 1;
  15356. #else
  15357. return 0;
  15358. #endif
  15359. }
  15360. int ggml_cpu_has_gpublas(void) {
  15361. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15362. }
  15363. int ggml_cpu_has_sse3(void) {
  15364. #if defined(__SSE3__)
  15365. return 1;
  15366. #else
  15367. return 0;
  15368. #endif
  15369. }
  15370. int ggml_cpu_has_vsx(void) {
  15371. #if defined(__POWER9_VECTOR__)
  15372. return 1;
  15373. #else
  15374. return 0;
  15375. #endif
  15376. }
  15377. ////////////////////////////////////////////////////////////////////////////////