ggml.h 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute(ctx0, &gf);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
  133. //
  134. // // a[1, 2] = 1.0f;
  135. // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
  136. //
  137. // // a[2, 0] = 2.0f;
  138. // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
  139. //
  140. // ...
  141. // }
  142. //
  143. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  144. //
  145. // ## The matrix multiplication operator (ggml_mul_mat)
  146. //
  147. // TODO
  148. //
  149. //
  150. // ## Multi-threading
  151. //
  152. // TODO
  153. //
  154. //
  155. // ## Overview of ggml.c
  156. //
  157. // TODO
  158. //
  159. //
  160. // ## SIMD optimizations
  161. //
  162. // TODO
  163. //
  164. //
  165. // ## Debugging ggml
  166. //
  167. // TODO
  168. //
  169. //
  170. #ifdef GGML_SHARED
  171. # if defined(_WIN32) && !defined(__MINGW32__)
  172. # ifdef GGML_BUILD
  173. # define GGML_API __declspec(dllexport)
  174. # else
  175. # define GGML_API __declspec(dllimport)
  176. # endif
  177. # else
  178. # define GGML_API __attribute__ ((visibility ("default")))
  179. # endif
  180. #else
  181. # define GGML_API
  182. #endif
  183. #include <stdint.h>
  184. #include <stddef.h>
  185. #include <stdbool.h>
  186. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  187. #define GGML_FILE_VERSION 1
  188. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  189. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  190. #define GGML_MAX_DIMS 4
  191. #define GGML_MAX_NODES 4096
  192. #define GGML_MAX_PARAMS 256
  193. #define GGML_MAX_CONTEXTS 64
  194. #define GGML_MAX_OPT 4
  195. #define GGML_MAX_NAME 48
  196. #define GGML_DEFAULT_N_THREADS 4
  197. #define GGML_UNUSED(x) (void)(x)
  198. #define GGML_ASSERT(x) \
  199. do { \
  200. if (!(x)) { \
  201. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  202. abort(); \
  203. } \
  204. } while (0)
  205. // used to copy the number of elements and stride in bytes of tensors into local variables.
  206. // main purpose is to reduce code duplication and improve readability.
  207. //
  208. // example:
  209. //
  210. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  211. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  212. //
  213. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  214. const type prefix##0 = (pointer)->array[0]; \
  215. GGML_UNUSED(prefix##0);
  216. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  217. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  218. const type prefix##1 = (pointer)->array[1]; \
  219. GGML_UNUSED(prefix##1);
  220. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  221. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  222. const type prefix##2 = (pointer)->array[2]; \
  223. GGML_UNUSED(prefix##2);
  224. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  225. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  226. const type prefix##3 = (pointer)->array[3]; \
  227. GGML_UNUSED(prefix##3);
  228. #ifdef __cplusplus
  229. extern "C" {
  230. #endif
  231. #ifdef __ARM_NEON
  232. // we use the built-in 16-bit float type
  233. typedef __fp16 ggml_fp16_t;
  234. #else
  235. typedef uint16_t ggml_fp16_t;
  236. #endif
  237. // convert FP16 <-> FP32
  238. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  239. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  240. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
  241. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
  242. struct ggml_object;
  243. struct ggml_context;
  244. enum ggml_type {
  245. GGML_TYPE_F32 = 0,
  246. GGML_TYPE_F16 = 1,
  247. GGML_TYPE_Q4_0 = 2,
  248. GGML_TYPE_Q4_1 = 3,
  249. // GGML_TYPE_Q4_2 = 4, support has been removed
  250. // GGML_TYPE_Q4_3 (5) support has been removed
  251. GGML_TYPE_Q5_0 = 6,
  252. GGML_TYPE_Q5_1 = 7,
  253. GGML_TYPE_Q8_0 = 8,
  254. GGML_TYPE_Q8_1 = 9,
  255. // k-quantizations
  256. GGML_TYPE_Q2_K = 10,
  257. GGML_TYPE_Q3_K = 11,
  258. GGML_TYPE_Q4_K = 12,
  259. GGML_TYPE_Q5_K = 13,
  260. GGML_TYPE_Q6_K = 14,
  261. GGML_TYPE_Q8_K = 15,
  262. GGML_TYPE_I8,
  263. GGML_TYPE_I16,
  264. GGML_TYPE_I32,
  265. GGML_TYPE_COUNT,
  266. };
  267. enum ggml_backend {
  268. GGML_BACKEND_CPU = 0,
  269. GGML_BACKEND_GPU = 10,
  270. GGML_BACKEND_GPU_SPLIT = 20,
  271. };
  272. // model file types
  273. enum ggml_ftype {
  274. GGML_FTYPE_UNKNOWN = -1,
  275. GGML_FTYPE_ALL_F32 = 0,
  276. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  277. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  278. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  279. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  280. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  281. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  282. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  283. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  284. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  285. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  286. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  287. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  288. };
  289. // available tensor operations:
  290. enum ggml_op {
  291. GGML_OP_NONE = 0,
  292. GGML_OP_DUP,
  293. GGML_OP_ADD,
  294. GGML_OP_ADD1,
  295. GGML_OP_ACC,
  296. GGML_OP_SUB,
  297. GGML_OP_MUL,
  298. GGML_OP_DIV,
  299. GGML_OP_SQR,
  300. GGML_OP_SQRT,
  301. GGML_OP_LOG,
  302. GGML_OP_SUM,
  303. GGML_OP_SUM_ROWS,
  304. GGML_OP_MEAN,
  305. GGML_OP_ARGMAX,
  306. GGML_OP_REPEAT,
  307. GGML_OP_REPEAT_BACK,
  308. GGML_OP_ABS,
  309. GGML_OP_SGN,
  310. GGML_OP_NEG,
  311. GGML_OP_STEP,
  312. GGML_OP_TANH,
  313. GGML_OP_ELU,
  314. GGML_OP_RELU,
  315. GGML_OP_GELU,
  316. GGML_OP_GELU_QUICK,
  317. GGML_OP_SILU,
  318. GGML_OP_SILU_BACK,
  319. GGML_OP_NORM, // normalize
  320. GGML_OP_RMS_NORM,
  321. GGML_OP_RMS_NORM_BACK,
  322. GGML_OP_MUL_MAT,
  323. GGML_OP_OUT_PROD,
  324. GGML_OP_SCALE,
  325. GGML_OP_SET,
  326. GGML_OP_CPY,
  327. GGML_OP_CONT,
  328. GGML_OP_RESHAPE,
  329. GGML_OP_VIEW,
  330. GGML_OP_PERMUTE,
  331. GGML_OP_TRANSPOSE,
  332. GGML_OP_GET_ROWS,
  333. GGML_OP_GET_ROWS_BACK,
  334. GGML_OP_DIAG,
  335. GGML_OP_DIAG_MASK_INF,
  336. GGML_OP_DIAG_MASK_ZERO,
  337. GGML_OP_SOFT_MAX,
  338. GGML_OP_SOFT_MAX_BACK,
  339. GGML_OP_ROPE,
  340. GGML_OP_ROPE_BACK,
  341. GGML_OP_ALIBI,
  342. GGML_OP_CLAMP,
  343. GGML_OP_CONV_1D,
  344. GGML_OP_CONV_2D,
  345. GGML_OP_FLASH_ATTN,
  346. GGML_OP_FLASH_FF,
  347. GGML_OP_FLASH_ATTN_BACK,
  348. GGML_OP_WIN_PART,
  349. GGML_OP_WIN_UNPART,
  350. GGML_OP_MAP_UNARY,
  351. GGML_OP_MAP_BINARY,
  352. GGML_OP_MAP_CUSTOM1,
  353. GGML_OP_MAP_CUSTOM2,
  354. GGML_OP_MAP_CUSTOM3,
  355. GGML_OP_CROSS_ENTROPY_LOSS,
  356. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  357. GGML_OP_COUNT,
  358. };
  359. // ggml object
  360. struct ggml_object {
  361. size_t offs;
  362. size_t size;
  363. struct ggml_object * next;
  364. char padding[8];
  365. };
  366. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  367. // n-dimensional tensor
  368. struct ggml_tensor {
  369. enum ggml_type type;
  370. enum ggml_backend backend;
  371. int n_dims;
  372. int64_t ne[GGML_MAX_DIMS]; // number of elements
  373. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  374. // nb[0] = sizeof(type)
  375. // nb[1] = nb[0] * ne[0] + padding
  376. // nb[i] = nb[i-1] * ne[i-1]
  377. // compute data
  378. enum ggml_op op;
  379. bool is_param;
  380. struct ggml_tensor * grad;
  381. struct ggml_tensor * src0;
  382. struct ggml_tensor * src1;
  383. struct ggml_tensor * opt[GGML_MAX_OPT];
  384. // thread scheduling
  385. int n_tasks;
  386. // performance
  387. int perf_runs;
  388. int64_t perf_cycles;
  389. int64_t perf_time_us;
  390. void * data;
  391. char name[GGML_MAX_NAME];
  392. void * extra; // extra things e.g. for ggml-cuda.cu
  393. char padding[4];
  394. };
  395. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  396. // computation graph
  397. struct ggml_cgraph {
  398. int n_nodes;
  399. int n_leafs;
  400. int n_threads;
  401. size_t work_size;
  402. struct ggml_tensor * work;
  403. struct ggml_tensor * nodes[GGML_MAX_NODES];
  404. struct ggml_tensor * grads[GGML_MAX_NODES];
  405. struct ggml_tensor * leafs[GGML_MAX_NODES];
  406. // performance
  407. int perf_runs;
  408. int64_t perf_cycles;
  409. int64_t perf_time_us;
  410. };
  411. // scratch buffer
  412. struct ggml_scratch {
  413. size_t offs;
  414. size_t size;
  415. void * data;
  416. };
  417. struct ggml_init_params {
  418. // memory pool
  419. size_t mem_size; // bytes
  420. void * mem_buffer; // if NULL, memory will be allocated internally
  421. bool no_alloc; // don't allocate memory for the tensor data
  422. };
  423. // compute types
  424. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  425. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  426. enum ggml_task_type {
  427. GGML_TASK_INIT = 0,
  428. GGML_TASK_COMPUTE,
  429. GGML_TASK_FINALIZE,
  430. };
  431. struct ggml_compute_params {
  432. enum ggml_task_type type;
  433. // ith = thread index, nth = number of threads
  434. int ith, nth;
  435. // work buffer for all threads
  436. size_t wsize;
  437. void * wdata;
  438. };
  439. // misc
  440. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  441. GGML_API int64_t ggml_time_ms(void);
  442. GGML_API int64_t ggml_time_us(void);
  443. GGML_API int64_t ggml_cycles(void);
  444. GGML_API int64_t ggml_cycles_per_ms(void);
  445. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  446. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  447. GGML_API void ggml_print_object (const struct ggml_object * obj);
  448. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  449. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  450. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  451. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  452. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  453. GGML_API int ggml_blck_size (enum ggml_type type);
  454. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  455. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  456. GGML_API const char * ggml_type_name(enum ggml_type type);
  457. GGML_API const char * ggml_op_name (enum ggml_op op);
  458. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  459. GGML_API bool ggml_is_quantized(enum ggml_type type);
  460. // TODO: temporary until model loading of ggml examples is refactored
  461. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  462. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  463. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  464. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  465. // use this to compute the memory overhead of a tensor
  466. GGML_API size_t ggml_tensor_overhead(void);
  467. // main
  468. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  469. GGML_API void ggml_free(struct ggml_context * ctx);
  470. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  471. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  472. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  473. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  474. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  475. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  476. GGML_API struct ggml_tensor * ggml_new_tensor(
  477. struct ggml_context * ctx,
  478. enum ggml_type type,
  479. int n_dims,
  480. const int64_t *ne);
  481. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  482. struct ggml_context * ctx,
  483. enum ggml_type type,
  484. int64_t ne0);
  485. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  486. struct ggml_context * ctx,
  487. enum ggml_type type,
  488. int64_t ne0,
  489. int64_t ne1);
  490. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  491. struct ggml_context * ctx,
  492. enum ggml_type type,
  493. int64_t ne0,
  494. int64_t ne1,
  495. int64_t ne2);
  496. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  497. struct ggml_context * ctx,
  498. enum ggml_type type,
  499. int64_t ne0,
  500. int64_t ne1,
  501. int64_t ne2,
  502. int64_t ne3);
  503. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  504. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  505. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  506. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
  507. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  508. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  509. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  510. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  511. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  512. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  513. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  514. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  515. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  516. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  517. GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
  518. GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name);
  519. GGML_API struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...);
  520. //
  521. // operations on tensors with backpropagation
  522. //
  523. GGML_API struct ggml_tensor * ggml_dup(
  524. struct ggml_context * ctx,
  525. struct ggml_tensor * a);
  526. GGML_API struct ggml_tensor * ggml_add(
  527. struct ggml_context * ctx,
  528. struct ggml_tensor * a,
  529. struct ggml_tensor * b);
  530. GGML_API struct ggml_tensor * ggml_add_inplace(
  531. struct ggml_context * ctx,
  532. struct ggml_tensor * a,
  533. struct ggml_tensor * b);
  534. GGML_API struct ggml_tensor * ggml_add1(
  535. struct ggml_context * ctx,
  536. struct ggml_tensor * a,
  537. struct ggml_tensor * b);
  538. GGML_API struct ggml_tensor * ggml_add1_inplace(
  539. struct ggml_context * ctx,
  540. struct ggml_tensor * a,
  541. struct ggml_tensor * b);
  542. GGML_API struct ggml_tensor * ggml_acc(
  543. struct ggml_context * ctx,
  544. struct ggml_tensor * a,
  545. struct ggml_tensor * b,
  546. size_t nb1,
  547. size_t nb2,
  548. size_t nb3,
  549. size_t offset);
  550. GGML_API struct ggml_tensor * ggml_acc_inplace(
  551. struct ggml_context * ctx,
  552. struct ggml_tensor * a,
  553. struct ggml_tensor * b,
  554. size_t nb1,
  555. size_t nb2,
  556. size_t nb3,
  557. size_t offset);
  558. GGML_API struct ggml_tensor * ggml_sub(
  559. struct ggml_context * ctx,
  560. struct ggml_tensor * a,
  561. struct ggml_tensor * b);
  562. GGML_API struct ggml_tensor * ggml_sub_inplace(
  563. struct ggml_context * ctx,
  564. struct ggml_tensor * a,
  565. struct ggml_tensor * b);
  566. GGML_API struct ggml_tensor * ggml_mul(
  567. struct ggml_context * ctx,
  568. struct ggml_tensor * a,
  569. struct ggml_tensor * b);
  570. GGML_API struct ggml_tensor * ggml_mul_inplace(
  571. struct ggml_context * ctx,
  572. struct ggml_tensor * a,
  573. struct ggml_tensor * b);
  574. GGML_API struct ggml_tensor * ggml_div(
  575. struct ggml_context * ctx,
  576. struct ggml_tensor * a,
  577. struct ggml_tensor * b);
  578. GGML_API struct ggml_tensor * ggml_div_inplace(
  579. struct ggml_context * ctx,
  580. struct ggml_tensor * a,
  581. struct ggml_tensor * b);
  582. GGML_API struct ggml_tensor * ggml_sqr(
  583. struct ggml_context * ctx,
  584. struct ggml_tensor * a);
  585. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  586. struct ggml_context * ctx,
  587. struct ggml_tensor * a);
  588. GGML_API struct ggml_tensor * ggml_sqrt(
  589. struct ggml_context * ctx,
  590. struct ggml_tensor * a);
  591. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  592. struct ggml_context * ctx,
  593. struct ggml_tensor * a);
  594. GGML_API struct ggml_tensor * ggml_log(
  595. struct ggml_context * ctx,
  596. struct ggml_tensor * a);
  597. GGML_API struct ggml_tensor * ggml_log_inplace(
  598. struct ggml_context * ctx,
  599. struct ggml_tensor * a);
  600. // return scalar
  601. GGML_API struct ggml_tensor * ggml_sum(
  602. struct ggml_context * ctx,
  603. struct ggml_tensor * a);
  604. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  605. GGML_API struct ggml_tensor * ggml_sum_rows(
  606. struct ggml_context * ctx,
  607. struct ggml_tensor * a);
  608. // mean along rows
  609. GGML_API struct ggml_tensor * ggml_mean(
  610. struct ggml_context * ctx,
  611. struct ggml_tensor * a);
  612. // argmax along rows
  613. GGML_API struct ggml_tensor * ggml_argmax(
  614. struct ggml_context * ctx,
  615. struct ggml_tensor * a);
  616. // if a is the same shape as b, and a is not parameter, return a
  617. // otherwise, return a new tensor: repeat(a) to fit in b
  618. GGML_API struct ggml_tensor * ggml_repeat(
  619. struct ggml_context * ctx,
  620. struct ggml_tensor * a,
  621. struct ggml_tensor * b);
  622. GGML_API struct ggml_tensor * ggml_repeat_back(
  623. struct ggml_context * ctx,
  624. struct ggml_tensor * a,
  625. struct ggml_tensor * b);
  626. GGML_API struct ggml_tensor * ggml_abs(
  627. struct ggml_context * ctx,
  628. struct ggml_tensor * a);
  629. GGML_API struct ggml_tensor * ggml_abs_inplace(
  630. struct ggml_context * ctx,
  631. struct ggml_tensor * a);
  632. GGML_API struct ggml_tensor * ggml_sgn(
  633. struct ggml_context * ctx,
  634. struct ggml_tensor * a);
  635. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  636. struct ggml_context * ctx,
  637. struct ggml_tensor * a);
  638. GGML_API struct ggml_tensor * ggml_neg(
  639. struct ggml_context * ctx,
  640. struct ggml_tensor * a);
  641. GGML_API struct ggml_tensor * ggml_neg_inplace(
  642. struct ggml_context * ctx,
  643. struct ggml_tensor * a);
  644. GGML_API struct ggml_tensor * ggml_step(
  645. struct ggml_context * ctx,
  646. struct ggml_tensor * a);
  647. GGML_API struct ggml_tensor * ggml_step_inplace(
  648. struct ggml_context * ctx,
  649. struct ggml_tensor * a);
  650. GGML_API struct ggml_tensor * ggml_tanh(
  651. struct ggml_context * ctx,
  652. struct ggml_tensor * a);
  653. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  654. struct ggml_context * ctx,
  655. struct ggml_tensor * a);
  656. GGML_API struct ggml_tensor * ggml_elu(
  657. struct ggml_context * ctx,
  658. struct ggml_tensor * a);
  659. GGML_API struct ggml_tensor * ggml_elu_inplace(
  660. struct ggml_context * ctx,
  661. struct ggml_tensor * a);
  662. GGML_API struct ggml_tensor * ggml_relu(
  663. struct ggml_context * ctx,
  664. struct ggml_tensor * a);
  665. GGML_API struct ggml_tensor * ggml_relu_inplace(
  666. struct ggml_context * ctx,
  667. struct ggml_tensor * a);
  668. // TODO: double-check this computation is correct
  669. GGML_API struct ggml_tensor * ggml_gelu(
  670. struct ggml_context * ctx,
  671. struct ggml_tensor * a);
  672. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  673. struct ggml_context * ctx,
  674. struct ggml_tensor * a);
  675. GGML_API struct ggml_tensor * ggml_gelu_quick(
  676. struct ggml_context * ctx,
  677. struct ggml_tensor * a);
  678. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  679. struct ggml_context * ctx,
  680. struct ggml_tensor * a);
  681. GGML_API struct ggml_tensor * ggml_silu(
  682. struct ggml_context * ctx,
  683. struct ggml_tensor * a);
  684. GGML_API struct ggml_tensor * ggml_silu_inplace(
  685. struct ggml_context * ctx,
  686. struct ggml_tensor * a);
  687. // a - x
  688. // b - dy
  689. GGML_API struct ggml_tensor * ggml_silu_back(
  690. struct ggml_context * ctx,
  691. struct ggml_tensor * a,
  692. struct ggml_tensor * b);
  693. // normalize along rows
  694. // TODO: eps is hardcoded to 1e-5 for now
  695. GGML_API struct ggml_tensor * ggml_norm(
  696. struct ggml_context * ctx,
  697. struct ggml_tensor * a);
  698. GGML_API struct ggml_tensor * ggml_norm_inplace(
  699. struct ggml_context * ctx,
  700. struct ggml_tensor * a);
  701. GGML_API struct ggml_tensor * ggml_rms_norm(
  702. struct ggml_context * ctx,
  703. struct ggml_tensor * a);
  704. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  705. struct ggml_context * ctx,
  706. struct ggml_tensor * a);
  707. // a - x
  708. // b - dy
  709. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  710. struct ggml_context * ctx,
  711. struct ggml_tensor * a,
  712. struct ggml_tensor * b);
  713. // A: n columns, m rows
  714. // B: n columns, p rows (i.e. we transpose it internally)
  715. // result is m columns, p rows
  716. GGML_API struct ggml_tensor * ggml_mul_mat(
  717. struct ggml_context * ctx,
  718. struct ggml_tensor * a,
  719. struct ggml_tensor * b);
  720. // A: m columns, n rows,
  721. // B: p columns, n rows,
  722. // result is m columns, p rows
  723. GGML_API struct ggml_tensor * ggml_out_prod(
  724. struct ggml_context * ctx,
  725. struct ggml_tensor * a,
  726. struct ggml_tensor * b);
  727. //
  728. // operations on tensors without backpropagation
  729. //
  730. GGML_API struct ggml_tensor * ggml_scale(
  731. struct ggml_context * ctx,
  732. struct ggml_tensor * a,
  733. struct ggml_tensor * b);
  734. // in-place, returns view(a)
  735. GGML_API struct ggml_tensor * ggml_scale_inplace(
  736. struct ggml_context * ctx,
  737. struct ggml_tensor * a,
  738. struct ggml_tensor * b);
  739. // b -> view(a,offset,nb1,nb2,3), return modified a
  740. GGML_API struct ggml_tensor * ggml_set(
  741. struct ggml_context * ctx,
  742. struct ggml_tensor * a,
  743. struct ggml_tensor * b,
  744. size_t nb1,
  745. size_t nb2,
  746. size_t nb3,
  747. size_t offset);
  748. // b -> view(a,offset,nb1,nb2,3), return view(a)
  749. GGML_API struct ggml_tensor * ggml_set_inplace(
  750. struct ggml_context * ctx,
  751. struct ggml_tensor * a,
  752. struct ggml_tensor * b,
  753. size_t nb1,
  754. size_t nb2,
  755. size_t nb3,
  756. size_t offset);
  757. GGML_API struct ggml_tensor * ggml_set_1d(
  758. struct ggml_context * ctx,
  759. struct ggml_tensor * a,
  760. struct ggml_tensor * b,
  761. size_t offset);
  762. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  763. struct ggml_context * ctx,
  764. struct ggml_tensor * a,
  765. struct ggml_tensor * b,
  766. size_t offset);
  767. // b -> view(a,offset,nb1,nb2,3), return modified a
  768. GGML_API struct ggml_tensor * ggml_set_2d(
  769. struct ggml_context * ctx,
  770. struct ggml_tensor * a,
  771. struct ggml_tensor * b,
  772. size_t nb1,
  773. size_t offset);
  774. // b -> view(a,offset,nb1,nb2,3), return view(a)
  775. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  776. struct ggml_context * ctx,
  777. struct ggml_tensor * a,
  778. struct ggml_tensor * b,
  779. size_t nb1,
  780. size_t offset);
  781. // a -> b, return view(b)
  782. GGML_API struct ggml_tensor * ggml_cpy(
  783. struct ggml_context * ctx,
  784. struct ggml_tensor * a,
  785. struct ggml_tensor * b);
  786. // make contiguous
  787. GGML_API struct ggml_tensor * ggml_cont(
  788. struct ggml_context * ctx,
  789. struct ggml_tensor * a);
  790. // return view(a), b specifies the new shape
  791. // TODO: when we start computing gradient, make a copy instead of view
  792. GGML_API struct ggml_tensor * ggml_reshape(
  793. struct ggml_context * ctx,
  794. struct ggml_tensor * a,
  795. struct ggml_tensor * b);
  796. // return view(a)
  797. // TODO: when we start computing gradient, make a copy instead of view
  798. GGML_API struct ggml_tensor * ggml_reshape_1d(
  799. struct ggml_context * ctx,
  800. struct ggml_tensor * a,
  801. int64_t ne0);
  802. GGML_API struct ggml_tensor * ggml_reshape_2d(
  803. struct ggml_context * ctx,
  804. struct ggml_tensor * a,
  805. int64_t ne0,
  806. int64_t ne1);
  807. // return view(a)
  808. // TODO: when we start computing gradient, make a copy instead of view
  809. GGML_API struct ggml_tensor * ggml_reshape_3d(
  810. struct ggml_context * ctx,
  811. struct ggml_tensor * a,
  812. int64_t ne0,
  813. int64_t ne1,
  814. int64_t ne2);
  815. GGML_API struct ggml_tensor * ggml_reshape_4d(
  816. struct ggml_context * ctx,
  817. struct ggml_tensor * a,
  818. int64_t ne0,
  819. int64_t ne1,
  820. int64_t ne2,
  821. int64_t ne3);
  822. // offset in bytes
  823. GGML_API struct ggml_tensor * ggml_view_1d(
  824. struct ggml_context * ctx,
  825. struct ggml_tensor * a,
  826. int64_t ne0,
  827. size_t offset);
  828. GGML_API struct ggml_tensor * ggml_view_2d(
  829. struct ggml_context * ctx,
  830. struct ggml_tensor * a,
  831. int64_t ne0,
  832. int64_t ne1,
  833. size_t nb1, // row stride in bytes
  834. size_t offset);
  835. GGML_API struct ggml_tensor * ggml_view_3d(
  836. struct ggml_context * ctx,
  837. struct ggml_tensor * a,
  838. int64_t ne0,
  839. int64_t ne1,
  840. int64_t ne2,
  841. size_t nb1, // row stride in bytes
  842. size_t nb2, // slice stride in bytes
  843. size_t offset);
  844. GGML_API struct ggml_tensor * ggml_view_4d(
  845. struct ggml_context * ctx,
  846. struct ggml_tensor * a,
  847. int64_t ne0,
  848. int64_t ne1,
  849. int64_t ne2,
  850. int64_t ne3,
  851. size_t nb1, // row stride in bytes
  852. size_t nb2, // slice stride in bytes
  853. size_t nb3,
  854. size_t offset);
  855. GGML_API struct ggml_tensor * ggml_permute(
  856. struct ggml_context * ctx,
  857. struct ggml_tensor * a,
  858. int axis0,
  859. int axis1,
  860. int axis2,
  861. int axis3);
  862. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  863. GGML_API struct ggml_tensor * ggml_transpose(
  864. struct ggml_context * ctx,
  865. struct ggml_tensor * a);
  866. GGML_API struct ggml_tensor * ggml_get_rows(
  867. struct ggml_context * ctx,
  868. struct ggml_tensor * a,
  869. struct ggml_tensor * b);
  870. GGML_API struct ggml_tensor * ggml_get_rows_back(
  871. struct ggml_context * ctx,
  872. struct ggml_tensor * a,
  873. struct ggml_tensor * b,
  874. struct ggml_tensor * c);
  875. GGML_API struct ggml_tensor * ggml_diag(
  876. struct ggml_context * ctx,
  877. struct ggml_tensor * a);
  878. // set elements above the diagonal to -INF
  879. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  880. struct ggml_context * ctx,
  881. struct ggml_tensor * a,
  882. int n_past);
  883. // in-place, returns view(a)
  884. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  885. struct ggml_context * ctx,
  886. struct ggml_tensor * a,
  887. int n_past);
  888. // set elements above the diagonal to 0
  889. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  890. struct ggml_context * ctx,
  891. struct ggml_tensor * a,
  892. int n_past);
  893. // in-place, returns view(a)
  894. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a,
  897. int n_past);
  898. GGML_API struct ggml_tensor * ggml_soft_max(
  899. struct ggml_context * ctx,
  900. struct ggml_tensor * a);
  901. // in-place, returns view(a)
  902. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  903. struct ggml_context * ctx,
  904. struct ggml_tensor * a);
  905. GGML_API struct ggml_tensor * ggml_soft_max_back(
  906. struct ggml_context * ctx,
  907. struct ggml_tensor * a,
  908. struct ggml_tensor * b);
  909. // in-place, returns view(a)
  910. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  911. struct ggml_context * ctx,
  912. struct ggml_tensor * a,
  913. struct ggml_tensor * b);
  914. // rotary position embedding
  915. // if mode & 1 == 1, skip n_past elements
  916. // if mode & 2 == 1, GPT-NeoX style
  917. // if mode & 4 == 1, ChatGLM style
  918. // TODO: avoid creating a new tensor every time
  919. GGML_API struct ggml_tensor * ggml_rope(
  920. struct ggml_context * ctx,
  921. struct ggml_tensor * a,
  922. int n_past,
  923. int n_dims,
  924. int mode,
  925. int n_ctx);
  926. // in-place, returns view(a)
  927. GGML_API struct ggml_tensor * ggml_rope_inplace(
  928. struct ggml_context * ctx,
  929. struct ggml_tensor * a,
  930. int n_past,
  931. int n_dims,
  932. int mode,
  933. int n_ctx);
  934. // rotary position embedding backward, i.e compute dx from dy
  935. // a - dy
  936. GGML_API struct ggml_tensor * ggml_rope_back(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a,
  939. int n_past,
  940. int n_dims,
  941. int mode);
  942. // alibi position embedding
  943. // in-place, returns view(a)
  944. struct ggml_tensor * ggml_alibi(
  945. struct ggml_context * ctx,
  946. struct ggml_tensor * a,
  947. int n_past,
  948. int n_head,
  949. float bias_max);
  950. // clamp
  951. // in-place, returns view(a)
  952. struct ggml_tensor * ggml_clamp(
  953. struct ggml_context * ctx,
  954. struct ggml_tensor * a,
  955. float min,
  956. float max);
  957. GGML_API struct ggml_tensor * ggml_conv_1d(
  958. struct ggml_context * ctx,
  959. struct ggml_tensor * a,
  960. struct ggml_tensor * b,
  961. int s0, // stride
  962. int p0, // padding
  963. int d0); // dilation
  964. GGML_API struct ggml_tensor * ggml_conv_2d(
  965. struct ggml_context * ctx,
  966. struct ggml_tensor * a,
  967. struct ggml_tensor * b,
  968. int s0,
  969. int s1,
  970. int p0,
  971. int p1,
  972. int d0,
  973. int d1);
  974. // conv_1d with padding = half
  975. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  976. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  977. struct ggml_context * ctx,
  978. struct ggml_tensor * a,
  979. struct ggml_tensor * b,
  980. int s,
  981. int d);
  982. GGML_API struct ggml_tensor * ggml_flash_attn(
  983. struct ggml_context * ctx,
  984. struct ggml_tensor * q,
  985. struct ggml_tensor * k,
  986. struct ggml_tensor * v,
  987. bool masked);
  988. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  989. struct ggml_context * ctx,
  990. struct ggml_tensor * q,
  991. struct ggml_tensor * k,
  992. struct ggml_tensor * v,
  993. struct ggml_tensor * d,
  994. bool masked);
  995. GGML_API struct ggml_tensor * ggml_flash_ff(
  996. struct ggml_context * ctx,
  997. struct ggml_tensor * a,
  998. struct ggml_tensor * b0,
  999. struct ggml_tensor * b1,
  1000. struct ggml_tensor * c0,
  1001. struct ggml_tensor * c1);
  1002. // partition into non-overlapping windows with padding if needed
  1003. // example:
  1004. // a: 768 64 64 1
  1005. // w: 14
  1006. // res: 768 14 14 25
  1007. // used in sam
  1008. GGML_API struct ggml_tensor * ggml_win_part(
  1009. struct ggml_context * ctx,
  1010. struct ggml_tensor * a,
  1011. int w);
  1012. // reverse of ggml_win_part
  1013. // used in sam
  1014. GGML_API struct ggml_tensor * ggml_win_unpart(
  1015. struct ggml_context * ctx,
  1016. struct ggml_tensor * a,
  1017. int w0,
  1018. int h0,
  1019. int w);
  1020. // custom operators
  1021. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1022. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1023. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1024. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1025. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1026. GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1027. struct ggml_context * ctx,
  1028. struct ggml_tensor * a,
  1029. ggml_unary_op_f32_t fun);
  1030. GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1031. struct ggml_context * ctx,
  1032. struct ggml_tensor * a,
  1033. ggml_unary_op_f32_t fun);
  1034. GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1035. struct ggml_context * ctx,
  1036. struct ggml_tensor * a,
  1037. struct ggml_tensor * b,
  1038. ggml_binary_op_f32_t fun);
  1039. GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1040. struct ggml_context * ctx,
  1041. struct ggml_tensor * a,
  1042. struct ggml_tensor * b,
  1043. ggml_binary_op_f32_t fun);
  1044. GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1045. struct ggml_context * ctx,
  1046. struct ggml_tensor * a,
  1047. ggml_custom1_op_f32_t fun);
  1048. GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1049. struct ggml_context * ctx,
  1050. struct ggml_tensor * a,
  1051. ggml_custom1_op_f32_t fun);
  1052. GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1053. struct ggml_context * ctx,
  1054. struct ggml_tensor * a,
  1055. struct ggml_tensor * b,
  1056. ggml_custom2_op_f32_t fun);
  1057. GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1058. struct ggml_context * ctx,
  1059. struct ggml_tensor * a,
  1060. struct ggml_tensor * b,
  1061. ggml_custom2_op_f32_t fun);
  1062. GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1063. struct ggml_context * ctx,
  1064. struct ggml_tensor * a,
  1065. struct ggml_tensor * b,
  1066. struct ggml_tensor * c,
  1067. ggml_custom3_op_f32_t fun);
  1068. GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1069. struct ggml_context * ctx,
  1070. struct ggml_tensor * a,
  1071. struct ggml_tensor * b,
  1072. struct ggml_tensor * c,
  1073. ggml_custom3_op_f32_t fun);
  1074. // loss function
  1075. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1076. struct ggml_context * ctx,
  1077. struct ggml_tensor * a,
  1078. struct ggml_tensor * b);
  1079. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1080. struct ggml_context * ctx,
  1081. struct ggml_tensor * a,
  1082. struct ggml_tensor * b,
  1083. struct ggml_tensor * c);
  1084. //
  1085. // automatic differentiation
  1086. //
  1087. GGML_API void ggml_set_param(
  1088. struct ggml_context * ctx,
  1089. struct ggml_tensor * tensor);
  1090. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1091. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  1092. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  1093. GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1094. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  1095. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1096. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1097. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1098. // print info and performance information for the graph
  1099. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1100. // dump the graph into a file using the dot format
  1101. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1102. //
  1103. // optimization
  1104. //
  1105. // optimization methods
  1106. enum ggml_opt_type {
  1107. GGML_OPT_ADAM,
  1108. GGML_OPT_LBFGS,
  1109. };
  1110. // linesearch methods
  1111. enum ggml_linesearch {
  1112. GGML_LINESEARCH_DEFAULT = 1,
  1113. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1114. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1115. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1116. };
  1117. // optimization return values
  1118. enum ggml_opt_result {
  1119. GGML_OPT_OK = 0,
  1120. GGML_OPT_DID_NOT_CONVERGE,
  1121. GGML_OPT_NO_CONTEXT,
  1122. GGML_OPT_INVALID_WOLFE,
  1123. GGML_OPT_FAIL,
  1124. GGML_LINESEARCH_FAIL = -128,
  1125. GGML_LINESEARCH_MINIMUM_STEP,
  1126. GGML_LINESEARCH_MAXIMUM_STEP,
  1127. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1128. GGML_LINESEARCH_INVALID_PARAMETERS,
  1129. };
  1130. // optimization parameters
  1131. //
  1132. // see ggml.c (ggml_opt_default_params) for default values
  1133. //
  1134. struct ggml_opt_params {
  1135. enum ggml_opt_type type;
  1136. int n_threads;
  1137. // delta-based convergence test
  1138. //
  1139. // if past == 0 - disabled
  1140. // if past > 0:
  1141. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1142. //
  1143. int past;
  1144. float delta;
  1145. // maximum number of iterations without improvement
  1146. //
  1147. // if 0 - disabled
  1148. // if > 0:
  1149. // assume convergence if no cost improvement in this number of iterations
  1150. //
  1151. int max_no_improvement;
  1152. bool print_forward_graph;
  1153. bool print_backward_graph;
  1154. // ADAM parameters
  1155. struct {
  1156. int n_iter;
  1157. float sched; // schedule multiplier (fixed, decay or warmup)
  1158. float decay; // weight decay for AdamW, use 0.0f to disable
  1159. float alpha; // learning rate
  1160. float beta1;
  1161. float beta2;
  1162. float eps; // epsilon for numerical stability
  1163. float eps_f; // epsilon for convergence test
  1164. float eps_g; // epsilon for convergence test
  1165. } adam;
  1166. // LBFGS parameters
  1167. struct {
  1168. int m; // number of corrections to approximate the inv. Hessian
  1169. int n_iter;
  1170. int max_linesearch;
  1171. float eps; // convergence tolerance
  1172. float ftol; // line search tolerance
  1173. float wolfe;
  1174. float min_step;
  1175. float max_step;
  1176. enum ggml_linesearch linesearch;
  1177. } lbfgs;
  1178. };
  1179. struct ggml_opt_context {
  1180. struct ggml_context * ctx;
  1181. struct ggml_opt_params params;
  1182. int iter;
  1183. int64_t nx; // number of parameter elements
  1184. bool just_initialized;
  1185. struct {
  1186. struct ggml_tensor * x; // view of the parameters
  1187. struct ggml_tensor * g1; // gradient
  1188. struct ggml_tensor * g2; // gradient squared
  1189. struct ggml_tensor * m; // first moment
  1190. struct ggml_tensor * v; // second moment
  1191. struct ggml_tensor * mh; // first moment hat
  1192. struct ggml_tensor * vh; // second moment hat
  1193. struct ggml_tensor * pf; // past function values
  1194. float fx_best;
  1195. float fx_prev;
  1196. int n_no_improvement;
  1197. } adam;
  1198. struct {
  1199. struct ggml_tensor * x; // current parameters
  1200. struct ggml_tensor * xp; // previous parameters
  1201. struct ggml_tensor * g; // current gradient
  1202. struct ggml_tensor * gp; // previous gradient
  1203. struct ggml_tensor * d; // search direction
  1204. struct ggml_tensor * pf; // past function values
  1205. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1206. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1207. struct ggml_tensor * lms; // the L-BFGS memory s
  1208. struct ggml_tensor * lmy; // the L-BFGS memory y
  1209. float fx_best;
  1210. float step;
  1211. int j;
  1212. int k;
  1213. int end;
  1214. int n_no_improvement;
  1215. } lbfgs;
  1216. };
  1217. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1218. // optimize the function defined by the tensor f
  1219. GGML_API enum ggml_opt_result ggml_opt(
  1220. struct ggml_context * ctx,
  1221. struct ggml_opt_params params,
  1222. struct ggml_tensor * f);
  1223. // initialize optimizer context
  1224. GGML_API void ggml_opt_init(
  1225. struct ggml_context * ctx,
  1226. struct ggml_opt_context * opt,
  1227. struct ggml_opt_params params,
  1228. int64_t nx);
  1229. // continue optimizing the function defined by the tensor f
  1230. GGML_API enum ggml_opt_result ggml_opt_resume(
  1231. struct ggml_context * ctx,
  1232. struct ggml_opt_context * opt,
  1233. struct ggml_tensor * f);
  1234. // continue optimizing the function defined by the tensor f
  1235. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1236. struct ggml_context * ctx,
  1237. struct ggml_opt_context * opt,
  1238. struct ggml_tensor * f,
  1239. struct ggml_cgraph * gf,
  1240. struct ggml_cgraph * gb);
  1241. //
  1242. // quantization
  1243. //
  1244. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1245. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1246. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1247. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1248. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1249. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1250. //
  1251. // system info
  1252. //
  1253. GGML_API int ggml_cpu_has_avx (void);
  1254. GGML_API int ggml_cpu_has_avx2 (void);
  1255. GGML_API int ggml_cpu_has_avx512 (void);
  1256. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1257. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1258. GGML_API int ggml_cpu_has_fma (void);
  1259. GGML_API int ggml_cpu_has_neon (void);
  1260. GGML_API int ggml_cpu_has_arm_fma (void);
  1261. GGML_API int ggml_cpu_has_f16c (void);
  1262. GGML_API int ggml_cpu_has_fp16_va (void);
  1263. GGML_API int ggml_cpu_has_wasm_simd (void);
  1264. GGML_API int ggml_cpu_has_blas (void);
  1265. GGML_API int ggml_cpu_has_cublas (void);
  1266. GGML_API int ggml_cpu_has_clblast (void);
  1267. GGML_API int ggml_cpu_has_gpublas (void);
  1268. GGML_API int ggml_cpu_has_sse3 (void);
  1269. GGML_API int ggml_cpu_has_vsx (void);
  1270. //
  1271. // Internal types and functions exposed for tests and benchmarks
  1272. //
  1273. #ifdef __cplusplus
  1274. // restrict not standard in C++
  1275. #define GGML_RESTRICT
  1276. #else
  1277. #define GGML_RESTRICT restrict
  1278. #endif
  1279. typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1280. typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1281. typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1282. typedef struct {
  1283. dequantize_row_q_t dequantize_row_q;
  1284. quantize_row_q_t quantize_row_q;
  1285. quantize_row_q_t quantize_row_q_reference;
  1286. quantize_row_q_t quantize_row_q_dot;
  1287. vec_dot_q_t vec_dot_q;
  1288. enum ggml_type vec_dot_type;
  1289. } quantize_fns_t;
  1290. quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
  1291. #ifdef __cplusplus
  1292. }
  1293. #endif