convert_hf_to_gguf.py 281 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. VISION = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.VISION: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is VisionModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. )
  260. )
  261. or not new_name.endswith(".weight")
  262. ):
  263. data_qtype = gguf.GGMLQuantizationType.F32
  264. if data_qtype is False and any(
  265. self.match_model_tensor_name(new_name, key, bid)
  266. for key in (
  267. gguf.MODEL_TENSOR.TOKEN_EMBD,
  268. gguf.MODEL_TENSOR.OUTPUT,
  269. )
  270. ):
  271. if self.ftype in (
  272. gguf.LlamaFileType.MOSTLY_TQ1_0,
  273. gguf.LlamaFileType.MOSTLY_TQ2_0,
  274. ):
  275. # TODO: use Q4_K and Q6_K
  276. data_qtype = gguf.GGMLQuantizationType.F16
  277. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  278. if isinstance(data_qtype, bool):
  279. if self.ftype == gguf.LlamaFileType.ALL_F32:
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  282. data_qtype = gguf.GGMLQuantizationType.F16
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  284. data_qtype = gguf.GGMLQuantizationType.BF16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  286. data_qtype = gguf.GGMLQuantizationType.Q8_0
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  288. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  291. else:
  292. raise ValueError(f"Unknown file type: {self.ftype.name}")
  293. try:
  294. data = gguf.quants.quantize(data, data_qtype)
  295. except gguf.QuantError as e:
  296. logger.warning("%s, %s", e, "falling back to F16")
  297. data_qtype = gguf.GGMLQuantizationType.F16
  298. data = gguf.quants.quantize(data, data_qtype)
  299. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  300. # reverse shape to make it similar to the internal ggml dimension order
  301. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  302. # n_dims is implicit in the shape
  303. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  304. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  305. def set_type(self):
  306. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  307. def prepare_metadata(self, vocab_only: bool):
  308. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  309. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  310. # If we are using HF model id, set the metadata name to the model id
  311. if self.remote_hf_model_id:
  312. self.metadata.name = self.remote_hf_model_id
  313. # Fallback to model directory name if metadata name is still missing
  314. if self.metadata.name is None:
  315. self.metadata.name = self.dir_model.name
  316. # Generate parameter weight class (useful for leader boards) if not yet determined
  317. if self.metadata.size_label is None and total_params > 0:
  318. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  319. self.set_type()
  320. logger.info("Set meta model")
  321. self.metadata.set_gguf_meta_model(self.gguf_writer)
  322. logger.info("Set model parameters")
  323. self.set_gguf_parameters()
  324. logger.info("Set model quantization version")
  325. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  326. def write_vocab(self):
  327. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  328. def write(self):
  329. self.prepare_tensors()
  330. self.prepare_metadata(vocab_only=False)
  331. self.gguf_writer.write_header_to_file(path=self.fname_out)
  332. self.gguf_writer.write_kv_data_to_file()
  333. self.gguf_writer.write_tensors_to_file(progress=True)
  334. self.gguf_writer.close()
  335. @staticmethod
  336. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  337. part_names: list[str] = []
  338. for filename in os.listdir(dir_model):
  339. if filename.startswith(prefix) and filename.endswith(suffix):
  340. part_names.append(filename)
  341. part_names.sort()
  342. return part_names
  343. @staticmethod
  344. def load_hparams(dir_model: Path):
  345. try:
  346. # for security reason, we don't allow loading remote code by default
  347. # if a model need remote code, we will fallback to config.json
  348. return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  349. except Exception as e:
  350. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  351. logger.warning("Trying to load config.json instead")
  352. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  353. config = json.load(f)
  354. if "llm_config" in config:
  355. # rename for InternVL
  356. config["text_config"] = config["llm_config"]
  357. return config
  358. @classmethod
  359. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  360. assert names
  361. def func(modelcls: AnyModel) -> AnyModel:
  362. model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
  363. for name in names:
  364. cls._model_classes[model_type][name] = modelcls
  365. return modelcls
  366. return func
  367. @classmethod
  368. def print_registered_models(cls):
  369. for model_type, model_classes in cls._model_classes.items():
  370. logger.error(f"{model_type.name} models:")
  371. for name in sorted(model_classes.keys()):
  372. logger.error(f" - {name}")
  373. @classmethod
  374. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  375. try:
  376. return cls._model_classes[model_type][arch]
  377. except KeyError:
  378. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  379. class TextModel(ModelBase):
  380. model_type = ModelType.TEXT
  381. hf_arch: str
  382. def __init__(self, *args, **kwargs):
  383. super().__init__(*args, **kwargs)
  384. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  385. if "text_config" in self.hparams:
  386. # move the text_config to the root level
  387. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  388. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  389. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  390. @classmethod
  391. def __init_subclass__(cls):
  392. # can't use an abstract property, because overriding it without type errors
  393. # would require using decorated functions instead of simply defining the property
  394. if "model_arch" not in cls.__dict__:
  395. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  396. def set_vocab(self):
  397. self._set_vocab_gpt2()
  398. def prepare_metadata(self, vocab_only: bool):
  399. super().prepare_metadata(vocab_only=vocab_only)
  400. total_params = self.gguf_writer.get_total_parameter_count()[0]
  401. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  402. output_type: str = self.ftype.name.partition("_")[2]
  403. # Filename Output
  404. if self.fname_out.is_dir():
  405. # Generate default filename based on model specification and available metadata
  406. if not vocab_only:
  407. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  408. else:
  409. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  410. # Use the default filename
  411. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  412. else:
  413. # Output path is a custom defined templated filename
  414. # Note: `not is_dir()` is used because `.is_file()` will not detect
  415. # file template strings as it doesn't actually exist as a file
  416. # Process templated file name with the output ftype, useful with the "auto" ftype
  417. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  418. logger.info("Set model tokenizer")
  419. self.set_vocab()
  420. def set_gguf_parameters(self):
  421. self.gguf_writer.add_block_count(self.block_count)
  422. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
  423. self.gguf_writer.add_context_length(n_ctx)
  424. logger.info(f"gguf: context length = {n_ctx}")
  425. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  426. self.gguf_writer.add_embedding_length(n_embd)
  427. logger.info(f"gguf: embedding length = {n_embd}")
  428. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  429. self.gguf_writer.add_feed_forward_length(n_ff)
  430. logger.info(f"gguf: feed forward length = {n_ff}")
  431. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  432. self.gguf_writer.add_head_count(n_head)
  433. logger.info(f"gguf: head count = {n_head}")
  434. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  435. self.gguf_writer.add_head_count_kv(n_head_kv)
  436. logger.info(f"gguf: key-value head count = {n_head_kv}")
  437. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  438. self.gguf_writer.add_rope_freq_base(rope_theta)
  439. logger.info(f"gguf: rope theta = {rope_theta}")
  440. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  441. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  442. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  443. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  444. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  445. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  446. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  447. self.gguf_writer.add_expert_count(n_experts)
  448. logger.info(f"gguf: expert count = {n_experts}")
  449. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  450. self.gguf_writer.add_expert_used_count(n_experts_used)
  451. logger.info(f"gguf: experts used count = {n_experts_used}")
  452. if (head_dim := self.hparams.get("head_dim")) is not None:
  453. self.gguf_writer.add_key_length(head_dim)
  454. self.gguf_writer.add_value_length(head_dim)
  455. self.gguf_writer.add_file_type(self.ftype)
  456. logger.info(f"gguf: file type = {self.ftype}")
  457. def write_vocab(self):
  458. if len(self.gguf_writer.tensors) != 1:
  459. raise ValueError('Splitting the vocabulary is not supported')
  460. self.prepare_metadata(vocab_only=True)
  461. self.gguf_writer.write_header_to_file(path=self.fname_out)
  462. self.gguf_writer.write_kv_data_to_file()
  463. self.gguf_writer.close()
  464. def does_token_look_special(self, token: str | bytes) -> bool:
  465. if isinstance(token, (bytes, bytearray)):
  466. token_text = token.decode(encoding="utf-8")
  467. elif isinstance(token, memoryview):
  468. token_text = token.tobytes().decode(encoding="utf-8")
  469. else:
  470. token_text = token
  471. # Some models mark some added tokens which ought to be control tokens as not special.
  472. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  473. seems_special = token_text in (
  474. "<pad>", # deepseek-coder
  475. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  476. )
  477. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  478. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  479. # TODO: should these be marked as UNUSED instead? (maybe not)
  480. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  481. return seems_special
  482. # used for GPT-2 BPE and WordPiece vocabs
  483. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  484. tokens: list[str] = []
  485. toktypes: list[int] = []
  486. from transformers import AutoTokenizer
  487. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  488. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  489. assert max(tokenizer.vocab.values()) < vocab_size
  490. tokpre = self.get_vocab_base_pre(tokenizer)
  491. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  492. added_vocab = tokenizer.get_added_vocab()
  493. added_tokens_decoder = tokenizer.added_tokens_decoder
  494. for i in range(vocab_size):
  495. if i not in reverse_vocab:
  496. tokens.append(f"[PAD{i}]")
  497. toktypes.append(gguf.TokenType.UNUSED)
  498. else:
  499. token: str = reverse_vocab[i]
  500. if token in added_vocab:
  501. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  502. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  503. if not added_tokens_decoder[i].normalized:
  504. previous_token = token
  505. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  506. if previous_token != token:
  507. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  508. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  509. toktypes.append(gguf.TokenType.CONTROL)
  510. else:
  511. # NOTE: this was added for Gemma.
  512. # Encoding and decoding the tokens above isn't sufficient for this case.
  513. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  514. toktypes.append(gguf.TokenType.USER_DEFINED)
  515. else:
  516. toktypes.append(gguf.TokenType.NORMAL)
  517. tokens.append(token)
  518. return tokens, toktypes, tokpre
  519. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  520. # do not modify it manually!
  521. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  522. # Marker: Start get_vocab_base_pre
  523. def get_vocab_base_pre(self, tokenizer) -> str:
  524. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  525. # is specific for the BPE pre-tokenizer used by the model
  526. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  527. # use in llama.cpp to implement the same pre-tokenizer
  528. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  529. chktok = tokenizer.encode(chktxt)
  530. chkhsh = sha256(str(chktok).encode()).hexdigest()
  531. logger.debug(f"chktok: {chktok}")
  532. logger.debug(f"chkhsh: {chkhsh}")
  533. res = None
  534. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  535. # or pull the latest version of the model from Huggingface
  536. # don't edit the hashes manually!
  537. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  538. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  539. res = "llama-bpe"
  540. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  541. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  542. res = "deepseek-llm"
  543. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  544. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  545. res = "deepseek-coder"
  546. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  547. # ref: https://huggingface.co/tiiuae/falcon-7b
  548. res = "falcon"
  549. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  550. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  551. res = "falcon3"
  552. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  553. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  554. res = "bert-bge"
  555. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  556. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  557. res = "bert-bge-large"
  558. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  559. # ref: https://huggingface.co/mosaicml/mpt-7b
  560. res = "mpt"
  561. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  562. # ref: https://huggingface.co/bigcode/starcoder2-3b
  563. res = "starcoder"
  564. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  565. # ref: https://huggingface.co/openai-community/gpt2
  566. res = "gpt-2"
  567. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  568. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  569. res = "stablelm2"
  570. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  571. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  572. res = "refact"
  573. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  574. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  575. res = "command-r"
  576. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  577. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  578. res = "qwen2"
  579. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  580. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  581. res = "olmo"
  582. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  583. # ref: https://huggingface.co/databricks/dbrx-base
  584. res = "dbrx"
  585. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  586. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  587. res = "jina-v1-en"
  588. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  589. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  590. res = "jina-v2-en"
  591. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  592. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  593. res = "jina-v2-es"
  594. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  595. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  596. res = "jina-v2-de"
  597. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  598. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  599. res = "smaug-bpe"
  600. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  601. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  602. res = "poro-chat"
  603. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  604. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  605. res = "jina-v2-code"
  606. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  607. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  608. res = "chatglm-bpe"
  609. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  610. # ref: https://huggingface.co/LumiOpen/Viking-7B
  611. res = "viking"
  612. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  613. # ref: https://huggingface.co/core42/jais-13b
  614. res = "jais"
  615. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  616. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  617. res = "codeshell"
  618. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  619. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  620. res = "tekken"
  621. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  622. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  623. res = "smollm"
  624. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  625. # ref: https://huggingface.co/bigscience/bloom
  626. res = "bloom"
  627. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  628. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  629. res = "gpt3-finnish"
  630. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  631. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  632. res = "exaone"
  633. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  634. # ref: https://huggingface.co/microsoft/phi-2
  635. res = "phi-2"
  636. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  637. # ref: https://huggingface.co/facebook/chameleon-7b
  638. res = "chameleon"
  639. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  640. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  641. res = "minerva-7b"
  642. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  643. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  644. res = "roberta-bpe"
  645. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  646. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  647. res = "gigachat"
  648. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  649. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  650. res = "megrez"
  651. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  652. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  653. res = "deepseek-v3"
  654. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  655. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  656. res = "deepseek-r1-qwen"
  657. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  658. # ref: https://huggingface.co/Xenova/gpt-4o
  659. res = "gpt-4o"
  660. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  661. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  662. res = "superbpe"
  663. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  664. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  665. res = "trillion"
  666. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  667. # ref: https://huggingface.co/inclusionAI/Ling-lite
  668. res = "bailingmoe"
  669. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  670. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  671. res = "llama4"
  672. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  673. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  674. res = "glm4"
  675. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  676. # ref: https://huggingface.co/mistral-community/pixtral-12b
  677. res = "pixtral"
  678. if res is None:
  679. logger.warning("\n")
  680. logger.warning("**************************************************************************************")
  681. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  682. logger.warning("** There are 2 possible reasons for this:")
  683. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  684. logger.warning("** - the pre-tokenization config has changed upstream")
  685. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  686. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  687. logger.warning("**")
  688. logger.warning(f"** chkhsh: {chkhsh}")
  689. logger.warning("**************************************************************************************")
  690. logger.warning("\n")
  691. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  692. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  693. logger.debug(f"chkhsh: {chkhsh}")
  694. return res
  695. # Marker: End get_vocab_base_pre
  696. def _set_vocab_none(self) -> None:
  697. self.gguf_writer.add_tokenizer_model("none")
  698. def _set_vocab_gpt2(self) -> None:
  699. tokens, toktypes, tokpre = self.get_vocab_base()
  700. self.gguf_writer.add_tokenizer_model("gpt2")
  701. self.gguf_writer.add_tokenizer_pre(tokpre)
  702. self.gguf_writer.add_token_list(tokens)
  703. self.gguf_writer.add_token_types(toktypes)
  704. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  705. special_vocab.add_to_gguf(self.gguf_writer)
  706. def _set_vocab_qwen(self):
  707. dir_model = self.dir_model
  708. hparams = self.hparams
  709. tokens: list[str] = []
  710. toktypes: list[int] = []
  711. from transformers import AutoTokenizer
  712. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  713. vocab_size = hparams["vocab_size"]
  714. assert max(tokenizer.get_vocab().values()) < vocab_size
  715. tokpre = self.get_vocab_base_pre(tokenizer)
  716. merges = []
  717. vocab = {}
  718. mergeable_ranks = tokenizer.mergeable_ranks
  719. for token, rank in mergeable_ranks.items():
  720. vocab[QwenModel.token_bytes_to_string(token)] = rank
  721. if len(token) == 1:
  722. continue
  723. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  724. assert len(merged) == 2
  725. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  726. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  727. added_vocab = tokenizer.special_tokens
  728. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  729. for i in range(vocab_size):
  730. if i not in reverse_vocab:
  731. tokens.append(f"[PAD{i}]")
  732. toktypes.append(gguf.TokenType.UNUSED)
  733. elif reverse_vocab[i] in added_vocab:
  734. tokens.append(reverse_vocab[i])
  735. toktypes.append(gguf.TokenType.CONTROL)
  736. else:
  737. tokens.append(reverse_vocab[i])
  738. toktypes.append(gguf.TokenType.NORMAL)
  739. self.gguf_writer.add_tokenizer_model("gpt2")
  740. self.gguf_writer.add_tokenizer_pre(tokpre)
  741. self.gguf_writer.add_token_list(tokens)
  742. self.gguf_writer.add_token_types(toktypes)
  743. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  744. special_vocab.merges = merges
  745. # only add special tokens when they were not already loaded from config.json
  746. if len(special_vocab.special_token_ids) == 0:
  747. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  748. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  749. # this one is usually not in config.json anyway
  750. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  751. special_vocab.add_to_gguf(self.gguf_writer)
  752. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  753. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  754. self.gguf_writer.add_tokenizer_model("llama")
  755. self.gguf_writer.add_tokenizer_pre("default")
  756. self.gguf_writer.add_token_list(tokens)
  757. self.gguf_writer.add_token_scores(scores)
  758. self.gguf_writer.add_token_types(toktypes)
  759. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  760. special_vocab.add_to_gguf(self.gguf_writer)
  761. def _create_vocab_sentencepiece(self):
  762. from sentencepiece import SentencePieceProcessor
  763. tokenizer_path = self.dir_model / 'tokenizer.model'
  764. if not tokenizer_path.is_file():
  765. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  766. tokenizer = SentencePieceProcessor()
  767. tokenizer.LoadFromFile(str(tokenizer_path))
  768. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  769. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  770. scores: list[float] = [-10000.0] * vocab_size
  771. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  772. for token_id in range(tokenizer.vocab_size()):
  773. piece = tokenizer.IdToPiece(token_id)
  774. text = piece.encode("utf-8")
  775. score = tokenizer.GetScore(token_id)
  776. toktype = SentencePieceTokenTypes.NORMAL
  777. if tokenizer.IsUnknown(token_id):
  778. toktype = SentencePieceTokenTypes.UNKNOWN
  779. elif tokenizer.IsControl(token_id):
  780. toktype = SentencePieceTokenTypes.CONTROL
  781. elif tokenizer.IsUnused(token_id):
  782. toktype = SentencePieceTokenTypes.UNUSED
  783. elif tokenizer.IsByte(token_id):
  784. toktype = SentencePieceTokenTypes.BYTE
  785. tokens[token_id] = text
  786. scores[token_id] = score
  787. toktypes[token_id] = toktype
  788. added_tokens_file = self.dir_model / 'added_tokens.json'
  789. if added_tokens_file.is_file():
  790. with open(added_tokens_file, "r", encoding="utf-8") as f:
  791. added_tokens_json = json.load(f)
  792. for key in added_tokens_json:
  793. token_id = added_tokens_json[key]
  794. if token_id >= vocab_size:
  795. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  796. continue
  797. tokens[token_id] = key.encode("utf-8")
  798. scores[token_id] = -1000.0
  799. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  800. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  801. if tokenizer_config_file.is_file():
  802. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  803. tokenizer_config_json = json.load(f)
  804. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  805. for token_id, token_data in added_tokens_decoder.items():
  806. token_id = int(token_id)
  807. token: str = token_data["content"]
  808. if token_id >= vocab_size:
  809. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  810. continue
  811. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  812. if tokens[token_id] != token.encode("utf-8"):
  813. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  814. if token_data.get("special") or self.does_token_look_special(token):
  815. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  816. else:
  817. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  818. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  819. scores[token_id] = -1000.0
  820. tokens[token_id] = token.encode("utf-8")
  821. if vocab_size > len(tokens):
  822. pad_count = vocab_size - len(tokens)
  823. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  824. for i in range(1, pad_count + 1):
  825. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  826. scores.append(-1000.0)
  827. toktypes.append(SentencePieceTokenTypes.UNUSED)
  828. return tokens, scores, toktypes
  829. def _set_vocab_llama_hf(self):
  830. vocab = gguf.LlamaHfVocab(self.dir_model)
  831. tokens = []
  832. scores = []
  833. toktypes = []
  834. for text, score, toktype in vocab.all_tokens():
  835. tokens.append(text)
  836. scores.append(score)
  837. toktypes.append(toktype)
  838. assert len(tokens) == vocab.vocab_size
  839. self.gguf_writer.add_tokenizer_model("llama")
  840. self.gguf_writer.add_tokenizer_pre("default")
  841. self.gguf_writer.add_token_list(tokens)
  842. self.gguf_writer.add_token_scores(scores)
  843. self.gguf_writer.add_token_types(toktypes)
  844. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  845. special_vocab.add_to_gguf(self.gguf_writer)
  846. def _set_vocab_rwkv_world(self):
  847. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  848. vocab_size = self.hparams.get("vocab_size", 65536)
  849. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  850. toktypes: list[int] = [gguf.TokenType.CONTROL]
  851. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  852. lines = f.readlines()
  853. for line in lines:
  854. parts = line.split(' ')
  855. assert len(parts) >= 3
  856. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  857. token = token.encode("utf-8") if isinstance(token, str) else token
  858. assert isinstance(token, bytes)
  859. assert len(token) == token_len
  860. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  861. tokens.append(token_text.encode("utf-8"))
  862. toktypes.append(gguf.TokenType.NORMAL)
  863. remainder = vocab_size - len(tokens)
  864. assert remainder >= 0
  865. for i in range(len(tokens), vocab_size):
  866. tokens.append(f"[PAD{i}]".encode("utf-8"))
  867. toktypes.append(gguf.TokenType.UNUSED)
  868. self.gguf_writer.add_tokenizer_model("rwkv")
  869. self.gguf_writer.add_token_list(tokens)
  870. self.gguf_writer.add_token_types(toktypes)
  871. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  872. special_vocab.chat_template = "rwkv-world"
  873. # hack: Add '\n\n' as the EOT token to make it chat normally
  874. special_vocab._set_special_token("eot", 261)
  875. special_vocab.add_to_gguf(self.gguf_writer)
  876. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  877. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  878. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  879. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  880. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  881. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  882. assert field # tokenizer model
  883. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  884. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  885. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  886. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  887. assert field # token list
  888. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  889. if model_name == "llama-spm":
  890. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  891. assert field # token scores
  892. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  893. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  894. assert field # token types
  895. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  896. if model_name != "llama-spm":
  897. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  898. assert field # token merges
  899. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  900. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  901. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  902. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  903. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  904. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  905. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  906. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  907. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  908. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  909. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  910. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  911. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  912. def _try_set_pooling_type(self) -> None:
  913. # get pooling path
  914. pooling_path = None
  915. module_path = self.dir_model / "modules.json"
  916. if module_path.is_file():
  917. with open(module_path, encoding="utf-8") as f:
  918. modules = json.load(f)
  919. for mod in modules:
  920. if mod["type"] == "sentence_transformers.models.Pooling":
  921. pooling_path = mod["path"]
  922. break
  923. # get pooling type
  924. if pooling_path is not None:
  925. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  926. pooling = json.load(f)
  927. if pooling["pooling_mode_mean_tokens"]:
  928. pooling_type = gguf.PoolingType.MEAN
  929. elif pooling["pooling_mode_cls_token"]:
  930. pooling_type = gguf.PoolingType.CLS
  931. elif pooling["pooling_mode_lasttoken"]:
  932. pooling_type = gguf.PoolingType.LAST
  933. else:
  934. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  935. self.gguf_writer.add_pooling_type(pooling_type)
  936. class VisionModel(ModelBase):
  937. model_type = ModelType.VISION
  938. model_arch = gguf.MODEL_ARCH.CLIP_VISION
  939. preprocessor_config: dict[str, Any]
  940. global_config: dict[str, Any]
  941. def __init__(self, *args, **kwargs):
  942. super().__init__(*args, **kwargs)
  943. if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
  944. raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
  945. # get n_embd of the text model
  946. if "text_config" not in self.hparams:
  947. self.hparams["text_config"] = {}
  948. text_config = {**self.hparams, **self.hparams["text_config"]}
  949. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  950. assert self.n_embd_text > 0, "n_embd not found in hparams"
  951. if "vision_config" not in self.hparams:
  952. raise ValueError("vision_config not found in hparams")
  953. # move vision config to the top level, while preserving the original hparams in global_config
  954. self.global_config = self.hparams
  955. self.hparams = self.hparams["vision_config"]
  956. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
  957. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, self.block_count)
  958. # load preprocessor config
  959. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  960. self.preprocessor_config = json.load(f)
  961. def set_type(self):
  962. self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
  963. def set_gguf_parameters(self):
  964. self.gguf_writer.add_file_type(self.ftype)
  965. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  966. self.gguf_writer.add_vision_has_vision_encoder(True)
  967. # vision config
  968. self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
  969. self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
  970. self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
  971. self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
  972. self.gguf_writer.add_vision_block_count(self.block_count)
  973. self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
  974. # preprocessor config
  975. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  976. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  977. def write_vocab(self):
  978. raise ValueError("VisionModel does not support vocab writing")
  979. @ModelBase.register("GPTNeoXForCausalLM")
  980. class GPTNeoXModel(TextModel):
  981. model_arch = gguf.MODEL_ARCH.GPTNEOX
  982. def set_gguf_parameters(self):
  983. block_count = self.hparams["num_hidden_layers"]
  984. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  985. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  986. self.gguf_writer.add_block_count(block_count)
  987. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  988. self.gguf_writer.add_rope_dimension_count(
  989. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  990. )
  991. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  992. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  993. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  995. del bid # unused
  996. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  997. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  998. tensors: list[tuple[str, Tensor]] = []
  999. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1000. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1001. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1002. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1003. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1004. data_torch = torch.cat(
  1005. (
  1006. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1007. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1008. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1009. ),
  1010. dim=0,
  1011. )
  1012. logger.info("re-format attention.linear_qkv.weight")
  1013. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1014. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1015. data_torch = torch.cat(
  1016. (
  1017. qkv_bias[:, 0, :].reshape((n_embed,)),
  1018. qkv_bias[:, 1, :].reshape((n_embed,)),
  1019. qkv_bias[:, 2, :].reshape((n_embed,)),
  1020. ),
  1021. dim=0,
  1022. )
  1023. logger.info("re-format attention.linear_qkv.bias")
  1024. tensors.append((self.map_tensor_name(name), data_torch))
  1025. return tensors
  1026. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1027. class BloomModel(TextModel):
  1028. model_arch = gguf.MODEL_ARCH.BLOOM
  1029. def set_gguf_parameters(self):
  1030. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1031. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1032. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1033. self.gguf_writer.add_embedding_length(n_embed)
  1034. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1035. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1036. self.gguf_writer.add_head_count(n_head)
  1037. self.gguf_writer.add_head_count_kv(n_head)
  1038. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1039. self.gguf_writer.add_file_type(self.ftype)
  1040. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1041. del bid # unused
  1042. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1043. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1044. name = re.sub(r'transformer\.', '', name)
  1045. tensors: list[tuple[str, Tensor]] = []
  1046. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1047. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1048. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1049. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1050. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1051. data_torch = torch.cat(
  1052. (
  1053. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1054. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1055. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1056. ),
  1057. dim=0,
  1058. )
  1059. logger.info("re-format attention.linear_qkv.weight")
  1060. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1061. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1062. data_torch = torch.cat(
  1063. (
  1064. qkv_bias[:, 0, :].reshape((n_embed,)),
  1065. qkv_bias[:, 1, :].reshape((n_embed,)),
  1066. qkv_bias[:, 2, :].reshape((n_embed,)),
  1067. ),
  1068. dim=0,
  1069. )
  1070. logger.info("re-format attention.linear_qkv.bias")
  1071. tensors.append((self.map_tensor_name(name), data_torch))
  1072. return tensors
  1073. @ModelBase.register("MPTForCausalLM")
  1074. class MPTModel(TextModel):
  1075. model_arch = gguf.MODEL_ARCH.MPT
  1076. def set_vocab(self):
  1077. try:
  1078. self._set_vocab_gpt2()
  1079. except Exception:
  1080. # Fallback for SEA-LION model
  1081. self._set_vocab_sentencepiece()
  1082. self.gguf_writer.add_add_bos_token(False)
  1083. self.gguf_writer.add_pad_token_id(3)
  1084. self.gguf_writer.add_eos_token_id(1)
  1085. self.gguf_writer.add_unk_token_id(0)
  1086. def set_gguf_parameters(self):
  1087. block_count = self.hparams["n_layers"]
  1088. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1089. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1090. self.gguf_writer.add_block_count(block_count)
  1091. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1092. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1093. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1094. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1095. self.gguf_writer.add_layer_norm_eps(1e-5)
  1096. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1097. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1098. if self.hparams["attn_config"]["alibi"]:
  1099. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1100. else:
  1101. self.gguf_writer.add_max_alibi_bias(0.0)
  1102. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1103. del bid # unused
  1104. if "scales" in name:
  1105. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1106. new_name = new_name.replace("scales", "act.scales")
  1107. else:
  1108. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1109. return [(new_name, data_torch)]
  1110. @ModelBase.register("OrionForCausalLM")
  1111. class OrionModel(TextModel):
  1112. model_arch = gguf.MODEL_ARCH.ORION
  1113. def set_vocab(self):
  1114. self._set_vocab_sentencepiece()
  1115. def set_gguf_parameters(self):
  1116. block_count = self.hparams["num_hidden_layers"]
  1117. head_count = self.hparams["num_attention_heads"]
  1118. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1119. ctx_length = 0
  1120. if "max_sequence_length" in self.hparams:
  1121. ctx_length = self.hparams["max_sequence_length"]
  1122. elif "max_position_embeddings" in self.hparams:
  1123. ctx_length = self.hparams["max_position_embeddings"]
  1124. elif "model_max_length" in self.hparams:
  1125. ctx_length = self.hparams["model_max_length"]
  1126. else:
  1127. raise ValueError("gguf: can not find ctx length parameter.")
  1128. self.gguf_writer.add_file_type(self.ftype)
  1129. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1130. self.gguf_writer.add_context_length(ctx_length)
  1131. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1132. self.gguf_writer.add_block_count(block_count)
  1133. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1134. self.gguf_writer.add_head_count(head_count)
  1135. self.gguf_writer.add_head_count_kv(head_count_kv)
  1136. # note: config provides rms norm but it is actually layer norm
  1137. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1138. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1139. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1140. class BaichuanModel(TextModel):
  1141. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1142. def set_vocab(self):
  1143. self._set_vocab_sentencepiece()
  1144. def set_gguf_parameters(self):
  1145. block_count = self.hparams["num_hidden_layers"]
  1146. head_count = self.hparams["num_attention_heads"]
  1147. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1148. ctx_length = 0
  1149. if "max_sequence_length" in self.hparams:
  1150. ctx_length = self.hparams["max_sequence_length"]
  1151. elif "max_position_embeddings" in self.hparams:
  1152. ctx_length = self.hparams["max_position_embeddings"]
  1153. elif "model_max_length" in self.hparams:
  1154. ctx_length = self.hparams["model_max_length"]
  1155. else:
  1156. raise ValueError("gguf: can not find ctx length parameter.")
  1157. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1158. self.gguf_writer.add_context_length(ctx_length)
  1159. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1160. self.gguf_writer.add_block_count(block_count)
  1161. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1162. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1163. self.gguf_writer.add_head_count(head_count)
  1164. self.gguf_writer.add_head_count_kv(head_count_kv)
  1165. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1166. self.gguf_writer.add_file_type(self.ftype)
  1167. rope_scaling = self.hparams.get("rope_scaling") or {}
  1168. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1169. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1170. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1171. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1172. head_count = self.hparams["num_attention_heads"]
  1173. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1174. tensors: list[tuple[str, Tensor]] = []
  1175. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1176. logger.info(f"Unpacking and permuting layer {bid}")
  1177. tensors = [
  1178. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1179. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1180. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1181. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1182. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1183. self._reverse_hf_part(data_torch, 2)),
  1184. ]
  1185. else:
  1186. tensors = [(self.map_tensor_name(name), data_torch)]
  1187. return tensors
  1188. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1189. if n_kv_head is not None and n_head != n_kv_head:
  1190. n_head //= n_kv_head
  1191. return (
  1192. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1193. .swapaxes(1, 2)
  1194. .reshape(weights.shape)
  1195. )
  1196. def _reverse_hf_permute_part(
  1197. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1198. ) -> Tensor:
  1199. r = weights.shape[0] // 3
  1200. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1201. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1202. r = weights.shape[0] // 3
  1203. return weights[r * n_part:r * n_part + r, ...]
  1204. @ModelBase.register("XverseForCausalLM")
  1205. class XverseModel(TextModel):
  1206. model_arch = gguf.MODEL_ARCH.XVERSE
  1207. def set_vocab(self):
  1208. assert (self.dir_model / "tokenizer.json").is_file()
  1209. dir_model = self.dir_model
  1210. hparams = self.hparams
  1211. tokens: list[bytes] = []
  1212. toktypes: list[int] = []
  1213. from transformers import AutoTokenizer
  1214. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1215. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1216. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1217. # because vocab_size is the count of items, and indexes start at 0.
  1218. max_vocab_index = max(tokenizer.get_vocab().values())
  1219. if max_vocab_index >= vocab_size:
  1220. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1221. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1222. added_vocab = tokenizer.get_added_vocab()
  1223. for token_id in range(vocab_size):
  1224. token_text = reverse_vocab[token_id].encode('utf-8')
  1225. # replace "\x00" to string with length > 0
  1226. if token_text == b"\x00":
  1227. toktype = gguf.TokenType.BYTE # special
  1228. token_text = f"<{token_text}>".encode('utf-8')
  1229. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1230. toktype = gguf.TokenType.BYTE # special
  1231. elif reverse_vocab[token_id] in added_vocab:
  1232. if tokenizer.added_tokens_decoder[token_id].special:
  1233. toktype = gguf.TokenType.CONTROL
  1234. else:
  1235. toktype = gguf.TokenType.USER_DEFINED
  1236. else:
  1237. toktype = gguf.TokenType.NORMAL
  1238. tokens.append(token_text)
  1239. toktypes.append(toktype)
  1240. self.gguf_writer.add_tokenizer_model("llama")
  1241. self.gguf_writer.add_tokenizer_pre("default")
  1242. self.gguf_writer.add_token_list(tokens)
  1243. self.gguf_writer.add_token_types(toktypes)
  1244. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1245. special_vocab.add_to_gguf(self.gguf_writer)
  1246. def set_gguf_parameters(self):
  1247. block_count = self.hparams["num_hidden_layers"]
  1248. head_count = self.hparams["num_attention_heads"]
  1249. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1250. ctx_length = 0
  1251. if "max_sequence_length" in self.hparams:
  1252. ctx_length = self.hparams["max_sequence_length"]
  1253. elif "max_position_embeddings" in self.hparams:
  1254. ctx_length = self.hparams["max_position_embeddings"]
  1255. elif "model_max_length" in self.hparams:
  1256. ctx_length = self.hparams["model_max_length"]
  1257. else:
  1258. raise ValueError("gguf: can not find ctx length parameter.")
  1259. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1260. self.gguf_writer.add_context_length(ctx_length)
  1261. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1262. self.gguf_writer.add_block_count(block_count)
  1263. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1264. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1265. self.gguf_writer.add_head_count(head_count)
  1266. self.gguf_writer.add_head_count_kv(head_count_kv)
  1267. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1268. self.gguf_writer.add_file_type(self.ftype)
  1269. rope_scaling = self.hparams.get("rope_scaling") or {}
  1270. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1271. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1272. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1273. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1274. del bid # unused
  1275. head_count = self.hparams["num_attention_heads"]
  1276. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1277. # HF models permute some of the tensors, so we need to undo that
  1278. if name.endswith("q_proj.weight"):
  1279. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1280. if name.endswith("k_proj.weight"):
  1281. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1282. return [(self.map_tensor_name(name), data_torch)]
  1283. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1284. if n_kv_head is not None and n_head != n_kv_head:
  1285. n_head //= n_kv_head
  1286. return (
  1287. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1288. .swapaxes(1, 2)
  1289. .reshape(weights.shape)
  1290. )
  1291. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1292. class FalconModel(TextModel):
  1293. model_arch = gguf.MODEL_ARCH.FALCON
  1294. def set_gguf_parameters(self):
  1295. block_count = self.hparams.get("num_hidden_layers")
  1296. if block_count is None:
  1297. block_count = self.hparams["n_layer"] # old name
  1298. n_head = self.hparams.get("num_attention_heads")
  1299. if n_head is None:
  1300. n_head = self.hparams["n_head"] # old name
  1301. n_head_kv = self.hparams.get("num_kv_heads")
  1302. if n_head_kv is None:
  1303. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1304. self.gguf_writer.add_context_length(2048) # not in config.json
  1305. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1306. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1307. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1308. self.gguf_writer.add_block_count(block_count)
  1309. self.gguf_writer.add_head_count(n_head)
  1310. self.gguf_writer.add_head_count_kv(n_head_kv)
  1311. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1312. self.gguf_writer.add_file_type(self.ftype)
  1313. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1314. del bid # unused
  1315. # QKV tensor transform
  1316. # The original query_key_value tensor contains n_head_kv "kv groups",
  1317. # each consisting of n_head/n_head_kv query weights followed by one key
  1318. # and one value weight (shared by all query heads in the kv group).
  1319. # This layout makes it a big pain to work with in GGML.
  1320. # So we rearrange them here,, so that we have n_head query weights
  1321. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1322. # in contiguous fashion.
  1323. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1324. if "query_key_value" in name:
  1325. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1326. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1327. head_dim = self.hparams["hidden_size"] // n_head
  1328. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1329. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1330. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1331. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1332. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1333. return [(self.map_tensor_name(name), data_torch)]
  1334. @ModelBase.register("GPTBigCodeForCausalLM")
  1335. class StarCoderModel(TextModel):
  1336. model_arch = gguf.MODEL_ARCH.STARCODER
  1337. def set_gguf_parameters(self):
  1338. block_count = self.hparams["n_layer"]
  1339. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1340. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1341. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1342. self.gguf_writer.add_block_count(block_count)
  1343. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1344. self.gguf_writer.add_head_count_kv(1)
  1345. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1346. self.gguf_writer.add_file_type(self.ftype)
  1347. @ModelBase.register("GPTRefactForCausalLM")
  1348. class RefactModel(TextModel):
  1349. model_arch = gguf.MODEL_ARCH.REFACT
  1350. def set_vocab(self):
  1351. super().set_vocab()
  1352. # TODO: how to determine special FIM tokens automatically?
  1353. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1354. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1355. special_vocab._set_special_token("prefix", 1)
  1356. special_vocab._set_special_token("suffix", 3)
  1357. special_vocab._set_special_token("middle", 2)
  1358. special_vocab.chat_template = None # do not add it twice
  1359. special_vocab.add_to_gguf(self.gguf_writer)
  1360. def set_gguf_parameters(self):
  1361. hidden_dim = self.hparams["n_embd"]
  1362. inner_dim = 4 * hidden_dim
  1363. hidden_dim = int(2 * inner_dim / 3)
  1364. multiple_of = 256
  1365. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1366. block_count = self.hparams["n_layer"]
  1367. # refact uses Alibi. So this is from config.json which might be used by training.
  1368. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1369. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1370. self.gguf_writer.add_feed_forward_length(ff_dim)
  1371. self.gguf_writer.add_block_count(block_count)
  1372. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1373. self.gguf_writer.add_head_count_kv(1)
  1374. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1375. self.gguf_writer.add_file_type(self.ftype)
  1376. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1377. hidden_dim = self.hparams["n_embd"]
  1378. inner_dim = 4 * hidden_dim
  1379. hidden_dim = int(2 * inner_dim / 3)
  1380. multiple_of = 256
  1381. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1382. n_head = self.hparams["n_head"]
  1383. n_head_kv = 1
  1384. head_dim = self.hparams["n_embd"] // n_head
  1385. tensors: list[tuple[str, Tensor]] = []
  1386. if bid is not None:
  1387. if name == f"transformer.h.{bid}.attn.kv.weight":
  1388. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1389. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1390. elif name == f"transformer.h.{bid}.attn.q.weight":
  1391. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1392. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1393. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1394. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1395. if len(tensors) == 0:
  1396. tensors.append((self.map_tensor_name(name), data_torch))
  1397. return tensors
  1398. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1399. class StableLMModel(TextModel):
  1400. model_arch = gguf.MODEL_ARCH.STABLELM
  1401. def set_vocab(self):
  1402. if (self.dir_model / "tokenizer.json").is_file():
  1403. self._set_vocab_gpt2()
  1404. else:
  1405. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1406. self._set_vocab_qwen()
  1407. def set_gguf_parameters(self):
  1408. hparams = self.hparams
  1409. block_count = hparams["num_hidden_layers"]
  1410. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1411. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1412. self.gguf_writer.add_block_count(block_count)
  1413. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1414. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1415. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1416. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1417. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1418. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1419. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1420. self.gguf_writer.add_file_type(self.ftype)
  1421. _q_norms: list[dict[str, Tensor]] | None = None
  1422. _k_norms: list[dict[str, Tensor]] | None = None
  1423. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1424. n_head = self.hparams["num_attention_heads"]
  1425. n_kv_head = self.hparams["num_key_value_heads"]
  1426. if name.find("q_layernorm.norms") != -1:
  1427. assert bid is not None
  1428. if self._q_norms is None:
  1429. self._q_norms = [{} for _ in range(self.block_count)]
  1430. self._q_norms[bid][name] = data_torch
  1431. if len(self._q_norms[bid]) >= n_head:
  1432. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1433. else:
  1434. return []
  1435. if name.find("k_layernorm.norms") != -1:
  1436. assert bid is not None
  1437. if self._k_norms is None:
  1438. self._k_norms = [{} for _ in range(self.block_count)]
  1439. self._k_norms[bid][name] = data_torch
  1440. if len(self._k_norms[bid]) >= n_kv_head:
  1441. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1442. else:
  1443. return []
  1444. return [(self.map_tensor_name(name), data_torch)]
  1445. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1446. datas: list[Tensor] = []
  1447. # extract the norms in order
  1448. for xid in range(n_head):
  1449. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1450. datas.append(norms[ename])
  1451. del norms[ename]
  1452. data_torch = torch.stack(datas, dim=0)
  1453. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1454. new_name = self.map_tensor_name(merged_name)
  1455. return [(new_name, data_torch)]
  1456. def prepare_tensors(self):
  1457. super().prepare_tensors()
  1458. if self._q_norms is not None or self._k_norms is not None:
  1459. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1460. norms = (
  1461. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1462. ) + (
  1463. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1464. )
  1465. if len(norms) > 0:
  1466. raise ValueError(f"Unprocessed norms: {norms}")
  1467. @ModelBase.register(
  1468. "LLaMAForCausalLM",
  1469. "LlamaForCausalLM",
  1470. "MistralForCausalLM",
  1471. "MixtralForCausalLM",
  1472. "VLlama3ForCausalLM",
  1473. "LlavaForConditionalGeneration")
  1474. class LlamaModel(TextModel):
  1475. model_arch = gguf.MODEL_ARCH.LLAMA
  1476. undo_permute = True
  1477. def __init__(self, *args, **kwargs):
  1478. super().__init__(*args, **kwargs)
  1479. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1480. if self.hf_arch == "VLlama3ForCausalLM":
  1481. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1482. def set_vocab(self):
  1483. try:
  1484. self._set_vocab_sentencepiece()
  1485. except FileNotFoundError:
  1486. try:
  1487. self._set_vocab_llama_hf()
  1488. except (FileNotFoundError, TypeError):
  1489. # Llama 3
  1490. self._set_vocab_gpt2()
  1491. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1492. if self.hparams.get("vocab_size", 32000) == 32016:
  1493. special_vocab = gguf.SpecialVocab(
  1494. self.dir_model, load_merges=False,
  1495. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1496. )
  1497. special_vocab._set_special_token("prefix", 32007)
  1498. special_vocab._set_special_token("suffix", 32008)
  1499. special_vocab._set_special_token("middle", 32009)
  1500. special_vocab._set_special_token("eot", 32010)
  1501. special_vocab.add_to_gguf(self.gguf_writer)
  1502. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1503. if tokenizer_config_file.is_file():
  1504. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1505. tokenizer_config_json = json.load(f)
  1506. if "add_prefix_space" in tokenizer_config_json:
  1507. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1508. # Apply to granite small models only
  1509. if self.hparams.get("vocab_size", 32000) == 49152:
  1510. self.gguf_writer.add_add_bos_token(False)
  1511. def set_gguf_parameters(self):
  1512. super().set_gguf_parameters()
  1513. hparams = self.hparams
  1514. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1515. if "head_dim" in hparams:
  1516. rope_dim = hparams["head_dim"]
  1517. else:
  1518. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1519. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1520. rope_scaling = self.hparams.get("rope_scaling") or {}
  1521. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1522. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1523. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1524. @staticmethod
  1525. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1526. if n_head_kv is not None and n_head != n_head_kv:
  1527. n_head = n_head_kv
  1528. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1529. .swapaxes(1, 2)
  1530. .reshape(weights.shape))
  1531. _experts: list[dict[str, Tensor]] | None = None
  1532. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1533. n_head = self.hparams["num_attention_heads"]
  1534. n_kv_head = self.hparams.get("num_key_value_heads")
  1535. is_vision_tensor = "vision_tower" in name \
  1536. or "vision_model" in name \
  1537. or "model.connector" in name \
  1538. or "multi_modal_projector" in name
  1539. if is_vision_tensor:
  1540. return [] # skip vision tensors
  1541. elif name.startswith("model.text_model"):
  1542. name = name.replace("text_model.", "") # for SmolVLM
  1543. elif name.startswith("language_model."):
  1544. name = name.replace("language_model.", "") # for the rest
  1545. if self.undo_permute:
  1546. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1547. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1548. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1549. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1550. # process the experts separately
  1551. if name.find("block_sparse_moe.experts") != -1:
  1552. n_experts = self.hparams["num_local_experts"]
  1553. assert bid is not None
  1554. if self._experts is None:
  1555. self._experts = [{} for _ in range(self.block_count)]
  1556. self._experts[bid][name] = data_torch
  1557. if len(self._experts[bid]) >= n_experts * 3:
  1558. tensors: list[tuple[str, Tensor]] = []
  1559. # merge the experts into a single 3d tensor
  1560. for wid in ["w1", "w2", "w3"]:
  1561. datas: list[Tensor] = []
  1562. for xid in range(n_experts):
  1563. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1564. datas.append(self._experts[bid][ename])
  1565. del self._experts[bid][ename]
  1566. data_torch = torch.stack(datas, dim=0)
  1567. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1568. new_name = self.map_tensor_name(merged_name)
  1569. tensors.append((new_name, data_torch))
  1570. return tensors
  1571. else:
  1572. return []
  1573. return [(self.map_tensor_name(name), data_torch)]
  1574. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1575. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1576. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1577. base = self.hparams.get("rope_theta", 10000.0)
  1578. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1579. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1580. factor = rope_scaling.get("factor", 8.0)
  1581. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1582. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1583. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1584. low_freq_wavelen = old_context_len / low_freq_factor
  1585. high_freq_wavelen = old_context_len / high_freq_factor
  1586. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1587. rope_factors = []
  1588. for freq in freqs:
  1589. wavelen = 2 * math.pi / freq
  1590. if wavelen < high_freq_wavelen:
  1591. rope_factors.append(1)
  1592. elif wavelen > low_freq_wavelen:
  1593. rope_factors.append(factor)
  1594. else:
  1595. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1596. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1597. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1598. def prepare_tensors(self):
  1599. super().prepare_tensors()
  1600. if self._experts is not None:
  1601. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1602. experts = [k for d in self._experts for k in d.keys()]
  1603. if len(experts) > 0:
  1604. raise ValueError(f"Unprocessed experts: {experts}")
  1605. @ModelBase.register(
  1606. "LlavaForConditionalGeneration", # pixtral
  1607. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1608. )
  1609. class LlavaVisionModel(VisionModel):
  1610. img_break_tok_id = -1
  1611. def __init__(self, *args, **kwargs):
  1612. super().__init__(*args, **kwargs)
  1613. if self.hparams["model_type"] == "pixtral":
  1614. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1615. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1616. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1617. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1618. else:
  1619. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1620. def get_token_id(self, token: str) -> int:
  1621. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1622. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1623. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1624. for id_, token_data in added_tokens_decoder.items():
  1625. if token_data["content"] == token:
  1626. return int(id_)
  1627. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1628. def set_gguf_parameters(self):
  1629. super().set_gguf_parameters()
  1630. hparams = self.hparams
  1631. if hparams["model_type"] == "pixtral":
  1632. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1633. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1634. # hidden_act
  1635. if hparams["hidden_act"] == "silu":
  1636. self.gguf_writer.add_vision_use_silu(True)
  1637. elif hparams["hidden_act"] == "gelu":
  1638. self.gguf_writer.add_vision_use_gelu(True)
  1639. else:
  1640. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1641. # spatial_merge_size
  1642. if "spatial_merge_size" in self.global_config:
  1643. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1644. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1645. del bid # unused
  1646. n_head = self.hparams["num_attention_heads"]
  1647. n_kv_head = n_head
  1648. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1649. # process vision tensors
  1650. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1651. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1652. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1653. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1654. return [(self.map_tensor_name(name), data_torch)]
  1655. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1656. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1657. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1658. img_break_embd = data_torch[self.img_break_tok_id]
  1659. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1660. return [(self.map_tensor_name(name), img_break_embd)]
  1661. return [] # skip other tensors
  1662. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1663. class SmolVLMModel(VisionModel):
  1664. def __init__(self, *args, **kwargs):
  1665. super().__init__(*args, **kwargs)
  1666. if self.hparams["model_type"] == "smolvlm_vision":
  1667. # fix for SmolVLM2, missing some keys in config.json
  1668. # default values are taken from transformers code
  1669. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1670. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1671. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1672. def set_gguf_parameters(self):
  1673. super().set_gguf_parameters()
  1674. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1675. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1676. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1677. self.gguf_writer.add_vision_use_gelu(True)
  1678. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1679. del bid, new_name, n_dims # unused
  1680. if ".embeddings." in name:
  1681. return gguf.GGMLQuantizationType.F32
  1682. return False
  1683. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1684. del bid # unused
  1685. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1686. if is_vision_tensor:
  1687. return [(self.map_tensor_name(name), data_torch)]
  1688. return [] # skip other tensors
  1689. @ModelBase.register("Llama4ForConditionalGeneration")
  1690. class Llama4Model(LlamaModel):
  1691. model_arch = gguf.MODEL_ARCH.LLAMA4
  1692. undo_permute = False
  1693. def __init__(self, *args, **kwargs):
  1694. super().__init__(*args, **kwargs)
  1695. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1696. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1697. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1698. def set_vocab(self):
  1699. self._set_vocab_gpt2()
  1700. self.gguf_writer.add_add_bos_token(True)
  1701. def set_gguf_parameters(self):
  1702. super().set_gguf_parameters()
  1703. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1704. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1705. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1706. # split the gate_up into gate and up
  1707. if "gate_up_proj" in name:
  1708. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1709. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1710. dim_half = data_torch.shape[-1] // 2
  1711. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1712. return [
  1713. (self.map_tensor_name(name_gate), gate_proj_weight),
  1714. (self.map_tensor_name(name_up), up_proj_weight)
  1715. ]
  1716. if name.endswith("down_proj"):
  1717. name += ".weight"
  1718. data_torch = data_torch.transpose(-1, -2)
  1719. if "multi_modal_projector" in name or "vision_model" in name:
  1720. return []
  1721. return super().modify_tensors(data_torch, name, bid)
  1722. @ModelBase.register("Mistral3ForConditionalGeneration")
  1723. class Mistral3Model(LlamaModel):
  1724. model_arch = gguf.MODEL_ARCH.LLAMA
  1725. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1726. name = name.replace("language_model.", "")
  1727. if "multi_modal_projector" in name or "vision_tower" in name:
  1728. return []
  1729. return super().modify_tensors(data_torch, name, bid)
  1730. @ModelBase.register("DeciLMForCausalLM")
  1731. class DeciModel(TextModel):
  1732. model_arch = gguf.MODEL_ARCH.DECI
  1733. @staticmethod
  1734. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1735. # DeciLM-specific code
  1736. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1737. return DeciModel._find_multiple(intermediate_size, 256)
  1738. @staticmethod
  1739. def _find_multiple(n: int, k: int) -> int:
  1740. # DeciLM-specific code
  1741. if n % k == 0:
  1742. return n
  1743. return n + k - (n % k)
  1744. def __init__(self, *args, **kwargs):
  1745. super().__init__(*args, **kwargs)
  1746. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1747. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1748. assert self.block_count == len(_block_configs)
  1749. self._num_kv_heads = list()
  1750. self._num_heads = list()
  1751. _ffn_multipliers = list()
  1752. # ***linear attention layer***
  1753. # if n_heads_in_group is None and replace_with_linear is True
  1754. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1755. # ***attention-free layer***
  1756. # if n_heads_in_group is None and replace_with_linear is False
  1757. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1758. # ***normal attention-layer***
  1759. # if n_heads_in_group is not None, then
  1760. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1761. # _num_heads[il] is num_attention_head
  1762. # ***dummy layer*** for nemotron 253B
  1763. # if n_heads_in_group is None and ffn_mult is None
  1764. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1765. for il in range(len(_block_configs)):
  1766. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1767. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1768. self._num_kv_heads.append(0)
  1769. self._num_heads.append(self.hparams["num_attention_heads"])
  1770. else:
  1771. self._num_kv_heads.append(0)
  1772. self._num_heads.append(0)
  1773. else:
  1774. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1775. self._num_heads.append(self.hparams["num_attention_heads"])
  1776. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1777. _ffn_multipliers.append(0.0)
  1778. else:
  1779. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1780. assert self.block_count == len(self._num_kv_heads)
  1781. assert self.block_count == len(self._num_heads)
  1782. assert self.block_count == len(_ffn_multipliers)
  1783. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1784. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1785. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1786. self._ffn_dims: list[int] = [
  1787. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1788. for multiplier in _ffn_multipliers
  1789. ]
  1790. def set_vocab(self):
  1791. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1792. # eos_token from '|eot_id|' to '|end_of_text|'
  1793. if self.hparams.get("vocab_size", 128256) == 128256:
  1794. tokens, toktypes, tokpre = self.get_vocab_base()
  1795. self.gguf_writer.add_tokenizer_model("gpt2")
  1796. self.gguf_writer.add_tokenizer_pre(tokpre)
  1797. self.gguf_writer.add_token_list(tokens)
  1798. self.gguf_writer.add_token_types(toktypes)
  1799. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1800. special_vocab.add_to_gguf(self.gguf_writer)
  1801. else:
  1802. # DeciLM-7B
  1803. self._set_vocab_llama_hf()
  1804. def set_gguf_parameters(self):
  1805. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1806. assert self.block_count == len(self._num_kv_heads)
  1807. assert self.block_count == len(self._num_heads)
  1808. assert self.block_count == len(self._ffn_dims)
  1809. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1810. self.gguf_writer.add_rope_freq_base(rope_theta)
  1811. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1812. self.gguf_writer.add_head_count(self._num_heads)
  1813. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1814. self.gguf_writer.add_block_count(self.block_count)
  1815. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1816. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1817. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1818. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1819. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1820. self.gguf_writer.add_file_type(self.ftype)
  1821. else: # DeciLM-7B
  1822. super().set_gguf_parameters()
  1823. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1824. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1825. assert self.block_count == len(self._num_kv_heads)
  1826. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1827. hparams = self.hparams
  1828. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1829. if "head_dim" in hparams:
  1830. rope_dim = hparams["head_dim"]
  1831. else:
  1832. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1833. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1834. rope_scaling = self.hparams.get("rope_scaling") or {}
  1835. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1836. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1837. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1838. @staticmethod
  1839. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1840. if n_head_kv is not None and n_head != n_head_kv:
  1841. n_head = n_head_kv
  1842. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1843. .swapaxes(1, 2)
  1844. .reshape(weights.shape))
  1845. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1846. n_head = self.hparams["num_attention_heads"]
  1847. if bid is not None:
  1848. if "num_key_value_heads_per_layer" in self.hparams:
  1849. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1850. elif "block_configs" in self.hparams:
  1851. n_kv_head = self._num_kv_heads[bid]
  1852. n_head = self._num_heads[bid]
  1853. else:
  1854. n_kv_head = self.hparams.get("num_key_value_heads")
  1855. else:
  1856. n_kv_head = self.hparams.get("num_key_value_heads")
  1857. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1858. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1859. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1860. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1861. return [(self.map_tensor_name(name), data_torch)]
  1862. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1863. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1864. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1865. base = self.hparams.get("rope_theta", 10000.0)
  1866. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1867. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1868. factor = rope_scaling.get("factor", 8.0)
  1869. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1870. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1871. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1872. low_freq_wavelen = old_context_len / low_freq_factor
  1873. high_freq_wavelen = old_context_len / high_freq_factor
  1874. assert low_freq_wavelen != high_freq_wavelen
  1875. rope_factors = []
  1876. for freq in freqs:
  1877. wavelen = 2 * math.pi / freq
  1878. if wavelen < high_freq_wavelen:
  1879. rope_factors.append(1)
  1880. elif wavelen > low_freq_wavelen:
  1881. rope_factors.append(factor)
  1882. else:
  1883. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1884. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1885. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1886. def prepare_tensors(self):
  1887. super().prepare_tensors()
  1888. @ModelBase.register("BitnetForCausalLM")
  1889. class BitnetModel(TextModel):
  1890. model_arch = gguf.MODEL_ARCH.BITNET
  1891. def set_vocab(self):
  1892. self._set_vocab_sentencepiece()
  1893. def set_gguf_parameters(self):
  1894. super().set_gguf_parameters()
  1895. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1896. self.gguf_writer.add_rope_scaling_factor(1.0)
  1897. def weight_quant(self, weight: Tensor) -> Tensor:
  1898. dtype = weight.dtype
  1899. weight = weight.float()
  1900. scale = weight.abs().mean().clamp(min=1e-5)
  1901. iscale = 1 / scale
  1902. # TODO: multiply by the scale directly instead of inverting it twice
  1903. # (this is also unnecessarily doubly inverted upstream)
  1904. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1905. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1906. return result.type(dtype)
  1907. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1908. new_name = self.map_tensor_name(name)
  1909. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1910. gguf.MODEL_TENSOR.ATTN_Q,
  1911. gguf.MODEL_TENSOR.ATTN_K,
  1912. gguf.MODEL_TENSOR.ATTN_V,
  1913. gguf.MODEL_TENSOR.ATTN_OUT,
  1914. gguf.MODEL_TENSOR.FFN_UP,
  1915. gguf.MODEL_TENSOR.FFN_DOWN,
  1916. gguf.MODEL_TENSOR.FFN_GATE,
  1917. ]):
  1918. # transform weight into 1/0/-1 (in fp32)
  1919. data_torch = self.weight_quant(data_torch)
  1920. yield (new_name, data_torch)
  1921. @ModelBase.register("GrokForCausalLM")
  1922. class GrokModel(TextModel):
  1923. model_arch = gguf.MODEL_ARCH.GROK
  1924. def set_vocab(self):
  1925. self._set_vocab_sentencepiece()
  1926. def __init__(self, *args, **kwargs):
  1927. super().__init__(*args, **kwargs)
  1928. def set_gguf_parameters(self):
  1929. super().set_gguf_parameters()
  1930. _experts: list[dict[str, Tensor]] | None = None
  1931. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1932. # process the experts separately
  1933. if name.find(".moe.") != -1:
  1934. n_experts = self.hparams["num_local_experts"]
  1935. assert bid is not None
  1936. if self._experts is None:
  1937. self._experts = [{} for _ in range(self.block_count)]
  1938. self._experts[bid][name] = data_torch
  1939. if len(self._experts[bid]) >= n_experts * 3:
  1940. tensors: list[tuple[str, Tensor]] = []
  1941. # merge the experts into a single 3d tensor
  1942. for wid in ["linear", "linear_1", "linear_v"]:
  1943. datas: list[Tensor] = []
  1944. for xid in range(n_experts):
  1945. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1946. datas.append(self._experts[bid][ename])
  1947. del self._experts[bid][ename]
  1948. data_torch = torch.stack(datas, dim=0)
  1949. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1950. new_name = self.map_tensor_name(merged_name)
  1951. tensors.append((new_name, data_torch))
  1952. return tensors
  1953. else:
  1954. return []
  1955. return [(self.map_tensor_name(name), data_torch)]
  1956. @ModelBase.register("DbrxForCausalLM")
  1957. class DbrxModel(TextModel):
  1958. model_arch = gguf.MODEL_ARCH.DBRX
  1959. def set_gguf_parameters(self):
  1960. ffn_config = self.hparams["ffn_config"]
  1961. attn_config = self.hparams["attn_config"]
  1962. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1963. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1964. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1965. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1966. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1967. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1968. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1969. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1970. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1971. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1972. self.gguf_writer.add_layer_norm_eps(1e-5)
  1973. self.gguf_writer.add_file_type(self.ftype)
  1974. logger.info(f"gguf: file type = {self.ftype}")
  1975. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1976. del bid # unused
  1977. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1978. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1979. n_embd = self.hparams["d_model"]
  1980. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1981. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1982. # But llama.cpp moe graph works differently
  1983. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1984. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1985. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1986. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1987. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1988. experts = False
  1989. for exp_tensor_name in exp_tensor_names.keys():
  1990. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1991. experts = True
  1992. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1993. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1994. data_torch = data_torch.permute(*permute_tensor)
  1995. break
  1996. # map tensor names
  1997. # In MoE models the ffn tensors are typically most of the model weights,
  1998. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1999. # Every other model has the weight names ending in .weight,
  2000. # let's assume that is the convention which is not the case for dbrx:
  2001. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2002. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2003. return [(new_name, data_torch)]
  2004. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2005. del name, new_name, bid # unused
  2006. return n_dims > 1
  2007. @ModelBase.register("MiniCPMForCausalLM")
  2008. class MiniCPMModel(TextModel):
  2009. model_arch = gguf.MODEL_ARCH.MINICPM
  2010. def set_gguf_parameters(self):
  2011. super().set_gguf_parameters()
  2012. embedding_scale = float(self.hparams["scale_emb"])
  2013. self.gguf_writer.add_embedding_scale(embedding_scale)
  2014. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2015. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2016. self.gguf_writer.add_residual_scale(residual_scale)
  2017. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2018. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2019. self.gguf_writer.add_logit_scale(logit_scale)
  2020. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2021. rope_scaling = self.hparams.get("rope_scaling") or {}
  2022. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2023. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2024. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2025. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2026. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2027. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2028. if rope_scaling is not None:
  2029. long_factors = rope_scaling.get('long_factor', None)
  2030. short_factors = rope_scaling.get('short_factor', None)
  2031. if long_factors is None or short_factors is None:
  2032. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2033. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2034. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2035. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2036. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2037. def set_vocab(self):
  2038. self._set_vocab_sentencepiece()
  2039. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2040. del bid # unused
  2041. n_head = self.hparams["num_attention_heads"]
  2042. n_kv_head = self.hparams.get("num_key_value_heads")
  2043. # HF models permute some of the tensors, so we need to undo that
  2044. if name.endswith(("q_proj.weight")):
  2045. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2046. if name.endswith(("k_proj.weight")):
  2047. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2048. return [(self.map_tensor_name(name), data_torch)]
  2049. @ModelBase.register("MiniCPM3ForCausalLM")
  2050. class MiniCPM3Model(TextModel):
  2051. model_arch = gguf.MODEL_ARCH.MINICPM3
  2052. def set_gguf_parameters(self):
  2053. hparams = self.hparams
  2054. self.gguf_writer.add_file_type(self.ftype)
  2055. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2056. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2057. self.gguf_writer.add_block_count(self.block_count)
  2058. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2059. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2060. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2061. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2062. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2063. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2064. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2065. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2066. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2067. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2068. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2069. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2070. if rope_scaling is not None:
  2071. rope_dims = self.hparams["qk_rope_head_dim"]
  2072. long_factors = rope_scaling.get('long_factor', None)
  2073. short_factors = rope_scaling.get('short_factor', None)
  2074. if long_factors is None or short_factors is None:
  2075. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2076. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2077. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2078. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2079. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2080. def set_vocab(self):
  2081. self._set_vocab_sentencepiece()
  2082. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2083. if n_kv_head is not None and n_head != n_kv_head:
  2084. n_head //= n_kv_head
  2085. return (
  2086. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2087. .swapaxes(1, 2)
  2088. .reshape(weights.shape)
  2089. )
  2090. @ModelBase.register("QWenLMHeadModel")
  2091. class QwenModel(TextModel):
  2092. model_arch = gguf.MODEL_ARCH.QWEN
  2093. @staticmethod
  2094. def token_bytes_to_string(b):
  2095. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2096. byte_encoder = bytes_to_unicode()
  2097. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2098. @staticmethod
  2099. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2100. parts = [bytes([b]) for b in token]
  2101. while True:
  2102. min_idx = None
  2103. min_rank = None
  2104. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2105. rank = mergeable_ranks.get(pair[0] + pair[1])
  2106. if rank is not None and (min_rank is None or rank < min_rank):
  2107. min_idx = i
  2108. min_rank = rank
  2109. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2110. break
  2111. assert min_idx is not None
  2112. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2113. return parts
  2114. def set_vocab(self):
  2115. self._set_vocab_qwen()
  2116. def set_gguf_parameters(self):
  2117. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2118. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2119. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2120. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2121. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2122. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2123. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2124. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2125. self.gguf_writer.add_file_type(self.ftype)
  2126. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
  2127. class Qwen2Model(TextModel):
  2128. model_arch = gguf.MODEL_ARCH.QWEN2
  2129. def set_vocab(self):
  2130. try:
  2131. self._set_vocab_sentencepiece()
  2132. except FileNotFoundError:
  2133. self._set_vocab_gpt2()
  2134. def set_gguf_parameters(self):
  2135. super().set_gguf_parameters()
  2136. self._try_set_pooling_type()
  2137. rope_scaling = self.hparams.get("rope_scaling") or {}
  2138. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2139. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2140. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2141. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2142. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2143. if self.hf_arch == "Qwen2Model":
  2144. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2145. if "language_model." in name:
  2146. name = name.replace("language_model.", "") # for InternVL
  2147. if name.startswith("mlp") or name.startswith("vision_model"):
  2148. # skip visual tensors
  2149. return []
  2150. yield from super().modify_tensors(data_torch, name, bid)
  2151. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2152. class Qwen2VLModel(TextModel):
  2153. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2154. def set_gguf_parameters(self):
  2155. super().set_gguf_parameters()
  2156. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2157. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2158. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2159. def set_vocab(self):
  2160. try:
  2161. self._set_vocab_sentencepiece()
  2162. except FileNotFoundError:
  2163. self._set_vocab_gpt2()
  2164. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2165. del bid # unused
  2166. if name.startswith("visual."):
  2167. # skip visual tensors
  2168. return []
  2169. return [(self.map_tensor_name(name), data_torch)]
  2170. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2171. class Qwen2VLVisionModel(VisionModel):
  2172. def __init__(self, *args, **kwargs):
  2173. super().__init__(*args, **kwargs)
  2174. self.hparams["image_size"] = self.hparams.get("image_size", 560)
  2175. # rename config.json values
  2176. self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
  2177. self.hparams["num_hidden_layers"] = self.hparams.get("depth")
  2178. if "embed_dim" in self.hparams: # qwen2vl
  2179. self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
  2180. self.hparams["hidden_size"] = self.hparams.get("embed_dim")
  2181. def set_gguf_parameters(self):
  2182. super().set_gguf_parameters()
  2183. hparams = self.hparams
  2184. if self.global_config['model_type'] == 'qwen2_vl':
  2185. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2186. elif self.global_config['model_type'] == 'qwen2_5_vl':
  2187. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2188. self.gguf_writer.add_vision_use_silu(True)
  2189. # find n_wa_pattern (window attention pattern)
  2190. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2191. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2192. n_wa_pattern = fullatt_block_indexes[0] + 1
  2193. # validate n_wa_pattern
  2194. for i in range(1, len(fullatt_block_indexes)):
  2195. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2196. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2197. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2198. else:
  2199. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2200. # default values below are taken from HF tranformers code
  2201. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2202. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2203. del bid, name, n_dims # unused
  2204. if ".patch_embd." in new_name:
  2205. return gguf.GGMLQuantizationType.F16
  2206. if ".position_embd." in new_name:
  2207. return gguf.GGMLQuantizationType.F32
  2208. return False
  2209. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2210. del bid # unused
  2211. if name.startswith("visual."):
  2212. # process visual tensors
  2213. # split QKV tensors if needed
  2214. if ".qkv." in name:
  2215. if data_torch.ndim == 2: # weight
  2216. c3, _ = data_torch.shape
  2217. else: # bias
  2218. c3 = data_torch.shape[0]
  2219. assert c3 % 3 == 0
  2220. c = c3 // 3
  2221. wq = data_torch[:c]
  2222. wk = data_torch[c: c * 2]
  2223. wv = data_torch[c * 2:]
  2224. return [
  2225. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2226. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2227. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2228. ]
  2229. elif 'patch_embed.proj.weight' in name:
  2230. # split Conv3D into Conv2Ds
  2231. c1, c2, kt, kh, kw = data_torch.shape
  2232. del c1, c2, kh, kw # unused
  2233. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2234. return [
  2235. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2236. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2237. ]
  2238. else:
  2239. return [(self.map_tensor_name(name), data_torch)]
  2240. return [] # skip other tensors
  2241. @ModelBase.register("InternVisionModel")
  2242. class InternVisionModel(VisionModel):
  2243. def set_gguf_parameters(self):
  2244. super().set_gguf_parameters()
  2245. hparams = self.hparams
  2246. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.INTERNVL)
  2247. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2248. # hidden_act
  2249. if hparams["hidden_act"] == "silu":
  2250. self.gguf_writer.add_vision_use_silu(True)
  2251. elif hparams["hidden_act"] == "gelu":
  2252. self.gguf_writer.add_vision_use_gelu(True)
  2253. else:
  2254. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2255. # downsample_ratio
  2256. downsample_ratio = self.global_config.get("downsample_ratio")
  2257. assert downsample_ratio is not None
  2258. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2259. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2260. del bid, name, n_dims # unused
  2261. if ".patch_embd." in new_name:
  2262. return gguf.GGMLQuantizationType.F16
  2263. if ".position_embd." in new_name:
  2264. return gguf.GGMLQuantizationType.F32
  2265. return False
  2266. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2267. del bid # unused
  2268. if name.startswith("vision_model") or name.startswith("mlp"):
  2269. # process visual tensors
  2270. # correct name
  2271. if name.startswith("vision_model"):
  2272. name = "vision_tower." + name
  2273. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2274. name += ".weight"
  2275. # split QKV tensors if needed
  2276. if ".qkv." in name:
  2277. if data_torch.ndim == 2: # weight
  2278. c3, _ = data_torch.shape
  2279. else: # bias
  2280. c3 = data_torch.shape[0]
  2281. assert c3 % 3 == 0
  2282. c = c3 // 3
  2283. wq = data_torch[:c]
  2284. wk = data_torch[c: c * 2]
  2285. wv = data_torch[c * 2:]
  2286. return [
  2287. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2288. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2289. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2290. ]
  2291. return [(self.map_tensor_name(name), data_torch)]
  2292. return [] # skip other tensors
  2293. @ModelBase.register("WavTokenizerDec")
  2294. class WavTokenizerDecModel(TextModel):
  2295. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2296. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2297. del bid # unused
  2298. if \
  2299. name.endswith("codebook.cluster_size") or \
  2300. name.endswith("codebook.embed_avg") or \
  2301. name.endswith("codebook.inited"):
  2302. logger.debug(f"Skipping {name!r}")
  2303. return []
  2304. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2305. return [(self.map_tensor_name(name), data_torch)]
  2306. def set_vocab(self):
  2307. self._set_vocab_none()
  2308. def set_gguf_parameters(self):
  2309. super().set_gguf_parameters()
  2310. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2311. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2312. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2313. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2314. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2315. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2316. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2317. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2318. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2319. self.gguf_writer.add_causal_attention(False)
  2320. @ModelBase.register("Qwen2MoeForCausalLM")
  2321. class Qwen2MoeModel(TextModel):
  2322. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2323. def set_gguf_parameters(self):
  2324. super().set_gguf_parameters()
  2325. if (n_experts := self.hparams.get("num_experts")) is not None:
  2326. self.gguf_writer.add_expert_count(n_experts)
  2327. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2328. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2329. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2330. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2331. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2332. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2333. # YaRN is not enabled by default
  2334. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2335. rope_scaling = self.hparams.get("rope_scaling") or {}
  2336. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2337. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2338. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2339. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2340. _experts: list[dict[str, Tensor]] | None = None
  2341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2342. # process the experts separately
  2343. if name.find("experts") != -1:
  2344. n_experts = self.hparams["num_experts"]
  2345. assert bid is not None
  2346. if self._experts is None:
  2347. self._experts = [{} for _ in range(self.block_count)]
  2348. self._experts[bid][name] = data_torch
  2349. if len(self._experts[bid]) >= n_experts * 3:
  2350. tensors: list[tuple[str, Tensor]] = []
  2351. # merge the experts into a single 3d tensor
  2352. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2353. datas: list[Tensor] = []
  2354. for xid in range(n_experts):
  2355. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2356. datas.append(self._experts[bid][ename])
  2357. del self._experts[bid][ename]
  2358. data_torch = torch.stack(datas, dim=0)
  2359. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2360. new_name = self.map_tensor_name(merged_name)
  2361. tensors.append((new_name, data_torch))
  2362. return tensors
  2363. else:
  2364. return []
  2365. return [(self.map_tensor_name(name), data_torch)]
  2366. def prepare_tensors(self):
  2367. super().prepare_tensors()
  2368. if self._experts is not None:
  2369. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2370. experts = [k for d in self._experts for k in d.keys()]
  2371. if len(experts) > 0:
  2372. raise ValueError(f"Unprocessed experts: {experts}")
  2373. @ModelBase.register("Qwen3ForCausalLM")
  2374. class Qwen3Model(Qwen2Model):
  2375. model_arch = gguf.MODEL_ARCH.QWEN3
  2376. @ModelBase.register("Qwen3MoeForCausalLM")
  2377. class Qwen3MoeModel(Qwen2MoeModel):
  2378. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2379. @ModelBase.register("GPT2LMHeadModel")
  2380. class GPT2Model(TextModel):
  2381. model_arch = gguf.MODEL_ARCH.GPT2
  2382. def set_gguf_parameters(self):
  2383. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2384. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2385. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2386. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2387. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2388. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2389. self.gguf_writer.add_file_type(self.ftype)
  2390. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2391. del bid # unused
  2392. tensors: list[tuple[str, Tensor]] = []
  2393. # we don't need these
  2394. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2395. return tensors
  2396. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2397. data_torch = data_torch.transpose(1, 0)
  2398. new_name = self.map_tensor_name(name)
  2399. tensors.append((new_name, data_torch))
  2400. return tensors
  2401. @ModelBase.register("PhiForCausalLM")
  2402. class Phi2Model(TextModel):
  2403. model_arch = gguf.MODEL_ARCH.PHI2
  2404. def set_gguf_parameters(self):
  2405. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2406. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2407. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2408. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2409. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2410. self.gguf_writer.add_embedding_length(n_embd)
  2411. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2412. self.gguf_writer.add_block_count(block_count)
  2413. self.gguf_writer.add_head_count(n_head)
  2414. self.gguf_writer.add_head_count_kv(n_head)
  2415. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2416. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2417. self.gguf_writer.add_file_type(self.ftype)
  2418. self.gguf_writer.add_add_bos_token(False)
  2419. @ModelBase.register("Phi3ForCausalLM")
  2420. class Phi3MiniModel(TextModel):
  2421. model_arch = gguf.MODEL_ARCH.PHI3
  2422. def set_vocab(self):
  2423. # Phi-4 model uses GPT2Tokenizer
  2424. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2425. if tokenizer_config_file.is_file():
  2426. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2427. tokenizer_config_json = json.load(f)
  2428. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2429. if tokenizer_class == 'GPT2Tokenizer':
  2430. return self._set_vocab_gpt2()
  2431. from sentencepiece import SentencePieceProcessor
  2432. tokenizer_path = self.dir_model / 'tokenizer.model'
  2433. if not tokenizer_path.is_file():
  2434. raise ValueError(f'Error: Missing {tokenizer_path}')
  2435. tokenizer = SentencePieceProcessor()
  2436. tokenizer.LoadFromFile(str(tokenizer_path))
  2437. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2438. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2439. scores: list[float] = [-10000.0] * vocab_size
  2440. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2441. for token_id in range(tokenizer.vocab_size()):
  2442. piece = tokenizer.IdToPiece(token_id)
  2443. text = piece.encode("utf-8")
  2444. score = tokenizer.GetScore(token_id)
  2445. toktype = SentencePieceTokenTypes.NORMAL
  2446. if tokenizer.IsUnknown(token_id):
  2447. toktype = SentencePieceTokenTypes.UNKNOWN
  2448. elif tokenizer.IsControl(token_id):
  2449. toktype = SentencePieceTokenTypes.CONTROL
  2450. elif tokenizer.IsUnused(token_id):
  2451. toktype = SentencePieceTokenTypes.UNUSED
  2452. elif tokenizer.IsByte(token_id):
  2453. toktype = SentencePieceTokenTypes.BYTE
  2454. tokens[token_id] = text
  2455. scores[token_id] = score
  2456. toktypes[token_id] = toktype
  2457. added_tokens_file = self.dir_model / 'added_tokens.json'
  2458. if added_tokens_file.is_file():
  2459. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2460. added_tokens_json = json.load(f)
  2461. for key in added_tokens_json:
  2462. token_id = added_tokens_json[key]
  2463. if token_id >= vocab_size:
  2464. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2465. continue
  2466. tokens[token_id] = key.encode("utf-8")
  2467. scores[token_id] = -1000.0
  2468. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2469. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2470. if tokenizer_config_file.is_file():
  2471. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2472. tokenizer_config_json = json.load(f)
  2473. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2474. for token_id, foken_data in added_tokens_decoder.items():
  2475. token_id = int(token_id)
  2476. token = foken_data["content"].encode("utf-8")
  2477. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2478. if tokens[token_id] != token:
  2479. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2480. tokens[token_id] = token
  2481. scores[token_id] = -1000.0
  2482. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2483. if foken_data.get("special"):
  2484. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2485. tokenizer_file = self.dir_model / 'tokenizer.json'
  2486. if tokenizer_file.is_file():
  2487. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2488. tokenizer_json = json.load(f)
  2489. added_tokens = tokenizer_json.get("added_tokens", [])
  2490. for foken_data in added_tokens:
  2491. token_id = int(foken_data["id"])
  2492. token = foken_data["content"].encode("utf-8")
  2493. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2494. if tokens[token_id] != token:
  2495. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2496. tokens[token_id] = token
  2497. scores[token_id] = -1000.0
  2498. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2499. if foken_data.get("special"):
  2500. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2501. self.gguf_writer.add_tokenizer_model("llama")
  2502. self.gguf_writer.add_tokenizer_pre("default")
  2503. self.gguf_writer.add_token_list(tokens)
  2504. self.gguf_writer.add_token_scores(scores)
  2505. self.gguf_writer.add_token_types(toktypes)
  2506. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2507. special_vocab.add_to_gguf(self.gguf_writer)
  2508. def set_gguf_parameters(self):
  2509. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2510. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2511. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2512. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2513. rms_eps = self.find_hparam(["rms_norm_eps"])
  2514. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2515. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2516. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2517. rope_dims = int(rot_pct * n_embd) // n_head
  2518. self.gguf_writer.add_context_length(max_pos_embds)
  2519. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2520. self.gguf_writer.add_embedding_length(n_embd)
  2521. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2522. self.gguf_writer.add_block_count(block_count)
  2523. self.gguf_writer.add_head_count(n_head)
  2524. self.gguf_writer.add_head_count_kv(n_head_kv)
  2525. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2526. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2527. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2528. self.gguf_writer.add_file_type(self.ftype)
  2529. sliding_window = self.hparams.get("sliding_window")
  2530. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2531. if sliding_window is None:
  2532. sliding_window = 0
  2533. self.gguf_writer.add_sliding_window(sliding_window)
  2534. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2535. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2536. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2537. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2538. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2539. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2540. rope_dims = int(rot_pct * n_embd) // n_head
  2541. # write rope scaling for long context (128k) model
  2542. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2543. if rope_scaling is None:
  2544. return
  2545. scale = max_pos_embds / orig_max_pos_embds
  2546. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2547. if len(rope_scaling_type) == 0:
  2548. raise KeyError('Missing the required key rope_scaling.type')
  2549. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2550. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2551. elif rope_scaling_type == 'yarn':
  2552. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2553. else:
  2554. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2555. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2556. long_factors = rope_scaling.get('long_factor', None)
  2557. short_factors = rope_scaling.get('short_factor', None)
  2558. if long_factors is None or short_factors is None:
  2559. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2560. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2561. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2562. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2563. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2564. @ModelBase.register("PhiMoEForCausalLM")
  2565. class PhiMoeModel(Phi3MiniModel):
  2566. model_arch = gguf.MODEL_ARCH.PHIMOE
  2567. _experts: list[dict[str, Tensor]] | None = None
  2568. def set_gguf_parameters(self):
  2569. super().set_gguf_parameters()
  2570. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2571. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2572. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2573. # process the experts separately
  2574. if name.find("block_sparse_moe.experts") != -1:
  2575. n_experts = self.hparams["num_local_experts"]
  2576. assert bid is not None
  2577. if self._experts is None:
  2578. self._experts = [{} for _ in range(self.block_count)]
  2579. self._experts[bid][name] = data_torch
  2580. if len(self._experts[bid]) >= n_experts * 3:
  2581. tensors: list[tuple[str, Tensor]] = []
  2582. # merge the experts into a single 3d tensor
  2583. for w_name in ["w1", "w2", "w3"]:
  2584. datas: list[Tensor] = []
  2585. for xid in range(n_experts):
  2586. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2587. datas.append(self._experts[bid][ename])
  2588. del self._experts[bid][ename]
  2589. data_torch = torch.stack(datas, dim=0)
  2590. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2591. new_name = self.map_tensor_name(merged_name)
  2592. tensors.append((new_name, data_torch))
  2593. return tensors
  2594. else:
  2595. return []
  2596. return [(self.map_tensor_name(name), data_torch)]
  2597. def prepare_tensors(self):
  2598. super().prepare_tensors()
  2599. if self._experts is not None:
  2600. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2601. experts = [k for d in self._experts for k in d.keys()]
  2602. if len(experts) > 0:
  2603. raise ValueError(f"Unprocessed experts: {experts}")
  2604. @ModelBase.register("PlamoForCausalLM")
  2605. class PlamoModel(TextModel):
  2606. model_arch = gguf.MODEL_ARCH.PLAMO
  2607. def set_vocab(self):
  2608. self._set_vocab_sentencepiece()
  2609. def set_gguf_parameters(self):
  2610. hparams = self.hparams
  2611. block_count = hparams["num_hidden_layers"]
  2612. self.gguf_writer.add_context_length(4096) # not in config.json
  2613. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2614. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2615. self.gguf_writer.add_block_count(block_count)
  2616. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2617. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2618. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2619. self.gguf_writer.add_file_type(self.ftype)
  2620. def shuffle_attn_q_weight(self, data_torch):
  2621. assert data_torch.size() == (5120, 5120)
  2622. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2623. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2624. data_torch = torch.reshape(data_torch, (5120, 5120))
  2625. return data_torch
  2626. def shuffle_attn_output_weight(self, data_torch):
  2627. assert data_torch.size() == (5120, 5120)
  2628. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2629. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2630. data_torch = torch.reshape(data_torch, (5120, 5120))
  2631. return data_torch
  2632. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2633. del bid # unused
  2634. new_name = self.map_tensor_name(name)
  2635. # shuffle for broadcasting of gqa in ggml_mul_mat
  2636. if new_name.endswith("attn_q.weight"):
  2637. data_torch = self.shuffle_attn_q_weight(data_torch)
  2638. elif new_name.endswith("attn_output.weight"):
  2639. data_torch = self.shuffle_attn_output_weight(data_torch)
  2640. return [(new_name, data_torch)]
  2641. @ModelBase.register("CodeShellForCausalLM")
  2642. class CodeShellModel(TextModel):
  2643. model_arch = gguf.MODEL_ARCH.CODESHELL
  2644. def set_gguf_parameters(self):
  2645. block_count = self.hparams["n_layer"]
  2646. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2647. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2648. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2649. self.gguf_writer.add_block_count(block_count)
  2650. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2651. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2652. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2653. self.gguf_writer.add_file_type(self.ftype)
  2654. self.gguf_writer.add_rope_freq_base(10000.0)
  2655. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2656. self.gguf_writer.add_rope_scaling_factor(1.0)
  2657. _has_tok_embd = False
  2658. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2659. del bid # unused
  2660. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2661. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2662. new_name = self.map_tensor_name(name)
  2663. # assuming token_embd.weight is seen before output.weight
  2664. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2665. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2666. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2667. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2668. self.tensor_names.remove("transformer.wte.weight")
  2669. elif new_name == tok_embd_name:
  2670. self._has_tok_embd = True
  2671. return [(new_name, data_torch)]
  2672. @ModelBase.register("InternLM2ForCausalLM")
  2673. class InternLM2Model(TextModel):
  2674. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2675. def set_vocab(self):
  2676. # (TODO): Is there a better way?
  2677. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2678. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2679. # recognized as an empty string in C++.
  2680. from sentencepiece import SentencePieceProcessor
  2681. from sentencepiece import sentencepiece_model_pb2 as model
  2682. tokenizer_path = self.dir_model / 'tokenizer.model'
  2683. tokens: list[bytes] = []
  2684. scores: list[float] = []
  2685. toktypes: list[int] = []
  2686. if not tokenizer_path.is_file():
  2687. logger.error(f'Error: Missing {tokenizer_path}')
  2688. sys.exit(1)
  2689. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2690. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2691. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2692. tokenizer = SentencePieceProcessor()
  2693. tokenizer.LoadFromFile(str(tokenizer_path))
  2694. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2695. for token_id in range(vocab_size):
  2696. piece = tokenizer.IdToPiece(token_id)
  2697. text = piece.encode("utf-8")
  2698. score = tokenizer.GetScore(token_id)
  2699. if text == b"\x00":
  2700. # (TODO): fixme
  2701. # Hack here and replace the \x00 characters.
  2702. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2703. text = "🐉".encode("utf-8")
  2704. toktype = SentencePieceTokenTypes.NORMAL
  2705. if tokenizer.IsUnknown(token_id):
  2706. toktype = SentencePieceTokenTypes.UNKNOWN
  2707. elif tokenizer.IsControl(token_id):
  2708. toktype = SentencePieceTokenTypes.CONTROL
  2709. elif tokenizer.IsUnused(token_id):
  2710. toktype = SentencePieceTokenTypes.UNUSED
  2711. elif tokenizer.IsByte(token_id):
  2712. toktype = SentencePieceTokenTypes.BYTE
  2713. # take care of ununsed raw token
  2714. if piece.startswith('[UNUSED'):
  2715. toktype = SentencePieceTokenTypes.UNUSED
  2716. tokens.append(text)
  2717. scores.append(score)
  2718. toktypes.append(toktype)
  2719. added_tokens_file = self.dir_model / 'added_tokens.json'
  2720. if added_tokens_file.is_file():
  2721. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2722. added_tokens_json = json.load(f)
  2723. for key in added_tokens_json:
  2724. tokens.append(key.encode("utf-8"))
  2725. scores.append(-1000.0)
  2726. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2727. chat_eos_token = '<|im_end|>'
  2728. chat_eos_token_id = None
  2729. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2730. if tokenizer_config_file.is_file():
  2731. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2732. tokenizer_config_json = json.load(f)
  2733. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2734. for token_id, foken_data in added_tokens_decoder.items():
  2735. token_id = int(token_id)
  2736. token = foken_data["content"]
  2737. if token == chat_eos_token:
  2738. chat_eos_token_id = token_id
  2739. token = token.encode("utf-8")
  2740. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2741. if tokens[token_id] != token:
  2742. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2743. tokens[token_id] = token
  2744. scores[token_id] = -1000.0
  2745. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2746. if foken_data.get("special"):
  2747. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2748. tokenizer_file = self.dir_model / 'tokenizer.json'
  2749. if tokenizer_file.is_file():
  2750. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2751. tokenizer_json = json.load(f)
  2752. added_tokens = tokenizer_json.get("added_tokens", [])
  2753. for foken_data in added_tokens:
  2754. token_id = int(foken_data["id"])
  2755. token = foken_data["content"]
  2756. if token == chat_eos_token:
  2757. chat_eos_token_id = token_id
  2758. token = token.encode("utf-8")
  2759. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2760. if tokens[token_id] != token:
  2761. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2762. tokens[token_id] = token
  2763. scores[token_id] = -1000.0
  2764. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2765. if foken_data.get("special"):
  2766. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2767. self.gguf_writer.add_tokenizer_model("llama")
  2768. self.gguf_writer.add_tokenizer_pre("default")
  2769. self.gguf_writer.add_token_list(tokens)
  2770. self.gguf_writer.add_token_scores(scores)
  2771. self.gguf_writer.add_token_types(toktypes)
  2772. self.gguf_writer.add_add_space_prefix(add_prefix)
  2773. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2774. old_eos = special_vocab.special_token_ids["eos"]
  2775. if chat_eos_token_id is not None:
  2776. # For the chat model, we replace the eos with '<|im_end|>'.
  2777. # TODO: this is a hack, should be fixed
  2778. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2779. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2780. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2781. " in chat mode so that the conversation can end normally.")
  2782. special_vocab.add_to_gguf(self.gguf_writer)
  2783. def set_gguf_parameters(self):
  2784. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2785. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2786. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2787. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2788. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2789. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2790. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2791. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2792. self.gguf_writer.add_file_type(self.ftype)
  2793. rope_scaling = self.hparams.get("rope_scaling") or {}
  2794. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2795. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2796. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2797. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2798. num_heads = self.hparams["num_attention_heads"]
  2799. num_kv_heads = self.hparams["num_key_value_heads"]
  2800. n_embd = self.hparams["hidden_size"]
  2801. q_per_kv = num_heads // num_kv_heads
  2802. head_dim = n_embd // num_heads
  2803. num_groups = num_heads // q_per_kv
  2804. name = name.replace("language_model.", "") # InternVL
  2805. if name.startswith("mlp") or name.startswith("vision_model"):
  2806. # skip visual tensors
  2807. return []
  2808. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2809. qkv = data_torch
  2810. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2811. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2812. # The model weights of q and k equire additional reshape.
  2813. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2814. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2815. v = v.reshape((-1, v.shape[-1]))
  2816. return [
  2817. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2818. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2819. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2820. ]
  2821. else:
  2822. return [(self.map_tensor_name(name), data_torch)]
  2823. @ModelBase.register("InternLM3ForCausalLM")
  2824. class InternLM3Model(TextModel):
  2825. model_arch = gguf.MODEL_ARCH.LLAMA
  2826. def set_vocab(self):
  2827. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2828. self.gguf_writer.add_tokenizer_model("llama")
  2829. self.gguf_writer.add_tokenizer_pre("default")
  2830. self.gguf_writer.add_token_list(tokens)
  2831. self.gguf_writer.add_token_scores(scores)
  2832. self.gguf_writer.add_token_types(toktypes)
  2833. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2834. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2835. if tokenizer_config_file.is_file():
  2836. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2837. tokenizer_config_json = json.load(f)
  2838. if "add_prefix_space" in tokenizer_config_json:
  2839. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2840. if "added_tokens_decoder" in tokenizer_config_json:
  2841. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2842. if token_data.get("special"):
  2843. token_id = int(token_id)
  2844. token = token_data["content"]
  2845. special_vocab._set_special_token(token, token_id)
  2846. # update eos token
  2847. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2848. special_vocab.special_token_ids["eos"] = token_id
  2849. special_vocab.add_to_gguf(self.gguf_writer)
  2850. def set_gguf_parameters(self):
  2851. super().set_gguf_parameters()
  2852. hparams = self.hparams
  2853. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2854. if "head_dim" in hparams:
  2855. rope_dim = hparams["head_dim"]
  2856. else:
  2857. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2858. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2859. rope_scaling = self.hparams.get("rope_scaling") or {}
  2860. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2861. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2862. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2863. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2864. n_head = self.hparams["num_attention_heads"]
  2865. n_kv_head = self.hparams.get("num_key_value_heads")
  2866. name = name.replace("language_model.", "") # InternVL
  2867. if name.startswith("mlp") or name.startswith("vision_model"):
  2868. # skip visual tensors
  2869. return []
  2870. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2871. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2872. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2873. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2874. return [(self.map_tensor_name(name), data_torch)]
  2875. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2876. class BertModel(TextModel):
  2877. model_arch = gguf.MODEL_ARCH.BERT
  2878. def __init__(self, *args, **kwargs):
  2879. super().__init__(*args, **kwargs)
  2880. self.vocab_size = None
  2881. def set_gguf_parameters(self):
  2882. super().set_gguf_parameters()
  2883. self.gguf_writer.add_causal_attention(False)
  2884. self._try_set_pooling_type()
  2885. def set_vocab(self):
  2886. tokens, toktypes, tokpre = self.get_vocab_base()
  2887. self.vocab_size = len(tokens)
  2888. # we need this to validate the size of the token_type embeddings
  2889. # though currently we are passing all zeros to the token_type embeddings
  2890. # "Sequence A" or "Sequence B"
  2891. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2892. # convert to phantom space vocab
  2893. def phantom(tok):
  2894. if tok.startswith("[") and tok.endswith("]"):
  2895. return tok
  2896. if tok.startswith("##"):
  2897. return tok[2:]
  2898. return "\u2581" + tok
  2899. tokens = list(map(phantom, tokens))
  2900. # add vocab to gguf
  2901. self.gguf_writer.add_tokenizer_model("bert")
  2902. self.gguf_writer.add_tokenizer_pre(tokpre)
  2903. self.gguf_writer.add_token_list(tokens)
  2904. self.gguf_writer.add_token_types(toktypes)
  2905. # handle special tokens
  2906. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2907. special_vocab.add_to_gguf(self.gguf_writer)
  2908. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2909. del bid # unused
  2910. if name.startswith("bert."):
  2911. name = name[5:]
  2912. if name.endswith(".gamma"):
  2913. name = name[:-6] + ".weight"
  2914. if name.endswith(".beta"):
  2915. name = name[:-5] + ".bias"
  2916. # we are only using BERT for embeddings so we don't need the pooling layer
  2917. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2918. return [] # we don't need these
  2919. if name.startswith("cls.predictions"):
  2920. return []
  2921. if name.startswith("cls.seq_relationship"):
  2922. return []
  2923. return [(self.map_tensor_name(name), data_torch)]
  2924. def _xlmroberta_tokenizer_init(self) -> None:
  2925. # we need the pad_token_id to know how to chop down position_embd matrix
  2926. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2927. self._position_offset = 1 + pad_token_id
  2928. if "max_position_embeddings" in self.hparams:
  2929. self.hparams["max_position_embeddings"] -= self._position_offset
  2930. else:
  2931. self._position_offset = None
  2932. def _xlmroberta_set_vocab(self) -> None:
  2933. # to avoid TypeError: Descriptors cannot be created directly
  2934. # exception when importing sentencepiece_model_pb2
  2935. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2936. from sentencepiece import SentencePieceProcessor
  2937. from sentencepiece import sentencepiece_model_pb2 as model
  2938. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2939. if not tokenizer_path.is_file():
  2940. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2941. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2942. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2943. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2944. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2945. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2946. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2947. tokenizer = SentencePieceProcessor()
  2948. tokenizer.LoadFromFile(str(tokenizer_path))
  2949. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2950. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2951. scores: list[float] = [-10000.0] * vocab_size
  2952. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2953. for token_id in range(tokenizer.vocab_size()):
  2954. piece = tokenizer.IdToPiece(token_id)
  2955. text = piece.encode("utf-8")
  2956. score = tokenizer.GetScore(token_id)
  2957. toktype = SentencePieceTokenTypes.NORMAL
  2958. if tokenizer.IsUnknown(token_id):
  2959. toktype = SentencePieceTokenTypes.UNKNOWN
  2960. elif tokenizer.IsControl(token_id):
  2961. toktype = SentencePieceTokenTypes.CONTROL
  2962. elif tokenizer.IsUnused(token_id):
  2963. toktype = SentencePieceTokenTypes.UNUSED
  2964. elif tokenizer.IsByte(token_id):
  2965. toktype = SentencePieceTokenTypes.BYTE
  2966. tokens[token_id] = text
  2967. scores[token_id] = score
  2968. toktypes[token_id] = toktype
  2969. if vocab_size > len(tokens):
  2970. pad_count = vocab_size - len(tokens)
  2971. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2972. for i in range(1, pad_count + 1):
  2973. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2974. scores.append(-1000.0)
  2975. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2976. # realign tokens (see HF tokenizer code)
  2977. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2978. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2979. toktypes = [
  2980. SentencePieceTokenTypes.CONTROL,
  2981. SentencePieceTokenTypes.CONTROL,
  2982. SentencePieceTokenTypes.CONTROL,
  2983. SentencePieceTokenTypes.UNKNOWN,
  2984. ] + toktypes[3:-1]
  2985. self.gguf_writer.add_tokenizer_model("t5")
  2986. self.gguf_writer.add_tokenizer_pre("default")
  2987. self.gguf_writer.add_token_list(tokens)
  2988. self.gguf_writer.add_token_scores(scores)
  2989. self.gguf_writer.add_token_types(toktypes)
  2990. self.gguf_writer.add_add_space_prefix(add_prefix)
  2991. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2992. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2993. if precompiled_charsmap:
  2994. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2995. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2996. special_vocab.add_to_gguf(self.gguf_writer)
  2997. self.gguf_writer.add_add_bos_token(True)
  2998. self.gguf_writer.add_add_eos_token(True)
  2999. @ModelBase.register("RobertaModel")
  3000. class RobertaModel(BertModel):
  3001. model_arch = gguf.MODEL_ARCH.BERT
  3002. def __init__(self, *args, **kwargs):
  3003. super().__init__(*args, **kwargs)
  3004. # we need the pad_token_id to know how to chop down position_embd matrix
  3005. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3006. self._position_offset = 1 + pad_token_id
  3007. if "max_position_embeddings" in self.hparams:
  3008. self.hparams["max_position_embeddings"] -= self._position_offset
  3009. else:
  3010. self._position_offset = None
  3011. def set_vocab(self):
  3012. """Support BPE tokenizers for roberta models"""
  3013. bpe_tok_path = self.dir_model / "tokenizer.json"
  3014. if bpe_tok_path.exists():
  3015. self._set_vocab_gpt2()
  3016. self.gguf_writer.add_add_bos_token(True)
  3017. self.gguf_writer.add_add_eos_token(True)
  3018. # we need this to validate the size of the token_type embeddings
  3019. # though currently we are passing all zeros to the token_type embeddings
  3020. # "Sequence A" or "Sequence B"
  3021. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3022. else:
  3023. return super().set_vocab()
  3024. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3025. # if name starts with "roberta.", remove the prefix
  3026. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3027. if name.startswith("roberta."):
  3028. name = name[8:]
  3029. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3030. if name == "embeddings.position_embeddings.weight":
  3031. if self._position_offset is not None:
  3032. data_torch = data_torch[self._position_offset:,:]
  3033. return super().modify_tensors(data_torch, name, bid)
  3034. @ModelBase.register("NomicBertModel")
  3035. class NomicBertModel(BertModel):
  3036. model_arch = gguf.MODEL_ARCH.BERT
  3037. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3038. hparams = kwargs.pop("hparams", None)
  3039. if hparams is None:
  3040. hparams = ModelBase.load_hparams(dir_model)
  3041. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3042. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3043. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3044. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3045. if self._tokenizer_is_xlmroberta:
  3046. self._xlmroberta_tokenizer_init()
  3047. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3048. if npos == 8192 and mtp == 2048:
  3049. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3050. elif npos == 2048 and mtp == 2048:
  3051. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3052. else:
  3053. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3054. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3055. # this doesn't do anything in the HF version
  3056. assert self.hparams["causal"] is False
  3057. # no bias tensors unless MoE
  3058. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3059. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3060. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3061. # norm at end of layer
  3062. assert self.hparams["prenorm"] is False
  3063. # standard RoPE
  3064. assert self.hparams["rotary_emb_fraction"] == 1.0
  3065. assert self.hparams["rotary_emb_interleaved"] is False
  3066. assert self.hparams["rotary_emb_scale_base"] is None
  3067. def set_vocab(self) -> None:
  3068. if self._tokenizer_is_xlmroberta:
  3069. return self._xlmroberta_set_vocab()
  3070. return super().set_vocab()
  3071. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3072. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3073. if "mlp.experts.bias" in name:
  3074. return [] # Explicitly return an empty list.
  3075. if "mlp.experts.mlp.w1" in name:
  3076. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3077. name += ".weight"
  3078. if "mlp.experts.mlp.w2" in name:
  3079. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3080. data_torch = data_torch.transpose(1, 2)
  3081. name += ".weight"
  3082. return [(self.map_tensor_name(name), data_torch)]
  3083. def set_gguf_parameters(self):
  3084. super().set_gguf_parameters()
  3085. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3086. if self.is_moe:
  3087. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3088. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3089. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3090. def _is_tokenizer_xlmroberta(self) -> bool:
  3091. with open(self.dir_model / "tokenizer.json") as f:
  3092. tokenizer_json = json.load(f)
  3093. toktyp = tokenizer_json["model"]["type"]
  3094. if toktyp == "Unigram":
  3095. return True
  3096. if toktyp == "WordPiece":
  3097. return False
  3098. raise ValueError(f"unknown tokenizer: {toktyp}")
  3099. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3100. class XLMRobertaModel(BertModel):
  3101. model_arch = gguf.MODEL_ARCH.BERT
  3102. def __init__(self, *args, **kwargs):
  3103. super().__init__(*args, **kwargs)
  3104. self._xlmroberta_tokenizer_init()
  3105. def set_vocab(self):
  3106. self._xlmroberta_set_vocab()
  3107. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3108. # if name starts with "roberta.", remove the prefix
  3109. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3110. if name.startswith("roberta."):
  3111. name = name[8:]
  3112. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3113. if name == "embeddings.position_embeddings.weight":
  3114. if self._position_offset is not None:
  3115. data_torch = data_torch[self._position_offset:,:]
  3116. return super().modify_tensors(data_torch, name, bid)
  3117. @ModelBase.register("GemmaForCausalLM")
  3118. class GemmaModel(TextModel):
  3119. model_arch = gguf.MODEL_ARCH.GEMMA
  3120. def set_vocab(self):
  3121. self._set_vocab_sentencepiece()
  3122. # TODO: these special tokens should be exported only for the CodeGemma family
  3123. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3124. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3125. special_vocab._set_special_token("prefix", 67)
  3126. special_vocab._set_special_token("suffix", 69)
  3127. special_vocab._set_special_token("middle", 68)
  3128. special_vocab._set_special_token("fsep", 70)
  3129. special_vocab._set_special_token("eot", 107)
  3130. special_vocab.chat_template = None # do not add it twice
  3131. special_vocab.add_to_gguf(self.gguf_writer)
  3132. self.gguf_writer.add_add_space_prefix(False)
  3133. def set_gguf_parameters(self):
  3134. hparams = self.hparams
  3135. block_count = hparams["num_hidden_layers"]
  3136. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3137. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3138. self.gguf_writer.add_block_count(block_count)
  3139. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3140. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3141. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3142. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3143. self.gguf_writer.add_key_length(hparams["head_dim"])
  3144. self.gguf_writer.add_value_length(hparams["head_dim"])
  3145. self.gguf_writer.add_file_type(self.ftype)
  3146. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3147. del bid # unused
  3148. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3149. # To prevent errors, skip loading lm_head.weight.
  3150. if name == "lm_head.weight":
  3151. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3152. return []
  3153. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3154. if name.endswith("norm.weight"):
  3155. data_torch = data_torch + 1
  3156. return [(self.map_tensor_name(name), data_torch)]
  3157. @ModelBase.register("Gemma2ForCausalLM")
  3158. class Gemma2Model(TextModel):
  3159. model_arch = gguf.MODEL_ARCH.GEMMA2
  3160. def set_vocab(self):
  3161. self._set_vocab_sentencepiece()
  3162. self.gguf_writer.add_add_space_prefix(False)
  3163. def set_gguf_parameters(self):
  3164. hparams = self.hparams
  3165. block_count = hparams["num_hidden_layers"]
  3166. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3167. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3168. self.gguf_writer.add_block_count(block_count)
  3169. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3170. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3171. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3172. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3173. self.gguf_writer.add_key_length(hparams["head_dim"])
  3174. self.gguf_writer.add_value_length(hparams["head_dim"])
  3175. self.gguf_writer.add_file_type(self.ftype)
  3176. self.gguf_writer.add_attn_logit_softcapping(
  3177. self.hparams["attn_logit_softcapping"]
  3178. )
  3179. self.gguf_writer.add_final_logit_softcapping(
  3180. self.hparams["final_logit_softcapping"]
  3181. )
  3182. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3183. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3184. del bid # unused
  3185. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3186. # To prevent errors, skip loading lm_head.weight.
  3187. if name == "lm_head.weight":
  3188. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3189. return []
  3190. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3191. if name.endswith("norm.weight"):
  3192. data_torch = data_torch + 1
  3193. return [(self.map_tensor_name(name), data_torch)]
  3194. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3195. class Gemma3Model(TextModel):
  3196. model_arch = gguf.MODEL_ARCH.GEMMA3
  3197. def set_vocab(self):
  3198. self._set_vocab_sentencepiece()
  3199. self.gguf_writer.add_add_space_prefix(False)
  3200. def set_gguf_parameters(self):
  3201. hparams = self.hparams
  3202. block_count = hparams["num_hidden_layers"]
  3203. # some default values are not specified in the hparams
  3204. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3205. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3206. self.gguf_writer.add_block_count(block_count)
  3207. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3208. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3209. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3210. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3211. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3212. self.gguf_writer.add_file_type(self.ftype)
  3213. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3214. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3215. assert hparams.get("attn_logit_softcapping") is None
  3216. assert hparams.get("final_logit_softcapping") is None
  3217. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3218. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3219. if hparams.get("rope_scaling") is not None:
  3220. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3221. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3222. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3223. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3225. del bid # unused
  3226. if name.startswith("language_model."):
  3227. name = name.replace("language_model.", "")
  3228. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3229. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3230. return [] # skip vision tensors
  3231. # remove OOV (out-of-vocabulary) rows in token_embd
  3232. if "embed_tokens.weight" in name:
  3233. vocab = self._create_vocab_sentencepiece()
  3234. tokens = vocab[0]
  3235. data_torch = data_torch[:len(tokens)]
  3236. # ref code in Gemma3RMSNorm
  3237. # output = output * (1.0 + self.weight.float())
  3238. if name.endswith("norm.weight"):
  3239. data_torch = data_torch + 1
  3240. return [(self.map_tensor_name(name), data_torch)]
  3241. @ModelBase.register("Gemma3ForConditionalGeneration")
  3242. class Gemma3VisionModel(VisionModel):
  3243. def set_gguf_parameters(self):
  3244. super().set_gguf_parameters()
  3245. hparams = self.hparams
  3246. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
  3247. # default values below are taken from HF tranformers code
  3248. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3249. self.gguf_writer.add_vision_use_gelu(True)
  3250. # calculate proj_scale_factor (used by tinygemma3 test model)
  3251. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3252. n_per_side = int(image_seq_length ** 0.5)
  3253. image_size = self.hparams["image_size"]
  3254. patch_size = self.hparams["patch_size"]
  3255. proj_scale_factor = (image_size // patch_size) // n_per_side
  3256. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3257. # we only need to write this if it's not the default value
  3258. # in this case, we are converting a test model
  3259. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3260. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3261. del bid, new_name, n_dims # unused
  3262. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3263. if "input_projection" in name:
  3264. return gguf.GGMLQuantizationType.F16
  3265. if ".embeddings." in name:
  3266. return gguf.GGMLQuantizationType.F32
  3267. return False
  3268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3269. del bid # unused
  3270. if "vision_model.head." in name:
  3271. return [] # skip redundant tensors for tinygemma3
  3272. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3273. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3274. # process vision tensors
  3275. name = name.replace("_weight", ".weight")
  3276. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3277. # the other norm values are part of SigLIP model, and they are already correct
  3278. # ref code: Gemma3RMSNorm
  3279. if "soft_emb_norm.weight" in name:
  3280. logger.info(f"Correcting norm value for '{name}'")
  3281. data_torch = data_torch + 1
  3282. return [(self.map_tensor_name(name), data_torch)]
  3283. return [] # skip other tensors
  3284. @ModelBase.register("Starcoder2ForCausalLM")
  3285. class StarCoder2Model(TextModel):
  3286. model_arch = gguf.MODEL_ARCH.STARCODER2
  3287. @ModelBase.register("Rwkv6ForCausalLM")
  3288. class Rwkv6Model(TextModel):
  3289. model_arch = gguf.MODEL_ARCH.RWKV6
  3290. def set_vocab(self):
  3291. self._set_vocab_rwkv_world()
  3292. def set_gguf_parameters(self):
  3293. block_count = self.hparams["num_hidden_layers"]
  3294. head_size = self.hparams["head_size"]
  3295. hidden_size = self.hparams["hidden_size"]
  3296. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3297. rescale_every_n_layers = self.hparams["rescale_every"]
  3298. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3299. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3300. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3301. # RWKV isn't context limited
  3302. self.gguf_writer.add_context_length(1048576)
  3303. self.gguf_writer.add_embedding_length(hidden_size)
  3304. self.gguf_writer.add_block_count(block_count)
  3305. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3306. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3307. self.gguf_writer.add_wkv_head_size(head_size)
  3308. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3309. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3310. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3311. self.gguf_writer.add_file_type(self.ftype)
  3312. # required by llama.cpp, unused
  3313. self.gguf_writer.add_head_count(0)
  3314. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3315. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3316. new_name = self.map_tensor_name(name)
  3317. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3318. new_name += ".weight"
  3319. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3320. data_torch = data_torch.transpose(0, 1)
  3321. if new_name.endswith("time_mix_w2.weight"):
  3322. data_torch = data_torch.permute(0, 2, 1)
  3323. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3324. data_torch = data_torch.squeeze()
  3325. try:
  3326. rescale_every_n_layers = self.hparams["rescale_every"]
  3327. if rescale_every_n_layers > 0:
  3328. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3329. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3330. except KeyError:
  3331. pass
  3332. # concat time_mix_lerp weights to reduce some cpu overhead
  3333. # also reduces the number of tensors in the model
  3334. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3335. try:
  3336. self.lerp_weights[bid][new_name] = data_torch
  3337. except KeyError:
  3338. self.lerp_weights[bid] = {new_name: data_torch}
  3339. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3340. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3341. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3342. yield (new_name, data)
  3343. return
  3344. yield (new_name, data_torch)
  3345. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3346. class RWKV6Qwen2Model(Rwkv6Model):
  3347. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3348. def set_vocab(self):
  3349. try:
  3350. self._set_vocab_sentencepiece()
  3351. except FileNotFoundError:
  3352. self._set_vocab_gpt2()
  3353. def set_gguf_parameters(self):
  3354. block_count = self.hparams["num_hidden_layers"]
  3355. num_attention_heads = self.hparams["num_attention_heads"]
  3356. num_key_value_heads = self.hparams["num_key_value_heads"]
  3357. hidden_size = self.hparams["hidden_size"]
  3358. head_size = hidden_size // num_attention_heads
  3359. rms_norm_eps = self.hparams["rms_norm_eps"]
  3360. intermediate_size = self.hparams["intermediate_size"]
  3361. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3362. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3363. # RWKV isn't context limited
  3364. self.gguf_writer.add_context_length(1048576)
  3365. self.gguf_writer.add_embedding_length(hidden_size)
  3366. self.gguf_writer.add_block_count(block_count)
  3367. self.gguf_writer.add_wkv_head_size(head_size)
  3368. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3369. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3370. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3371. self.gguf_writer.add_file_type(self.ftype)
  3372. # special parameters for time_mixing in RWKV6QWEN2
  3373. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3374. self.gguf_writer.add_token_shift_count(1)
  3375. # RWKV6QWEN2 use grouped key/value like GQA
  3376. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3377. # required by llama.cpp, unused
  3378. self.gguf_writer.add_head_count(0)
  3379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3380. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3381. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3382. data = data.view(5, -1, data.shape[-1])
  3383. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3384. # permute them here to avoid code changes
  3385. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3386. if "w2" in new_name:
  3387. data = data.view(5, -1, data.shape[-1])
  3388. yield (new_name, data)
  3389. continue
  3390. yield (new_name, data)
  3391. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3392. class Rwkv7Model(TextModel):
  3393. model_arch = gguf.MODEL_ARCH.RWKV7
  3394. def set_vocab(self):
  3395. self._set_vocab_rwkv_world()
  3396. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3397. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3398. def set_gguf_parameters(self):
  3399. block_count = self.hparams["num_hidden_layers"]
  3400. try:
  3401. head_size = self.hparams["head_size"]
  3402. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3403. except KeyError:
  3404. head_size = self.hparams["head_dim"]
  3405. layer_norm_eps = self.hparams["norm_eps"]
  3406. hidden_size = self.hparams["hidden_size"]
  3407. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3408. # ICLR: In-Context-Learning-Rate
  3409. try:
  3410. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3411. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3412. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3413. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3414. except KeyError:
  3415. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3416. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3417. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3418. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3419. # RWKV isn't context limited
  3420. self.gguf_writer.add_context_length(1048576)
  3421. self.gguf_writer.add_embedding_length(hidden_size)
  3422. self.gguf_writer.add_block_count(block_count)
  3423. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3424. self.gguf_writer.add_wkv_head_size(head_size)
  3425. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3426. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3427. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3428. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3429. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3430. self.gguf_writer.add_file_type(self.ftype)
  3431. # required by llama.cpp, unused
  3432. self.gguf_writer.add_head_count(0)
  3433. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3434. lora_needs_transpose: bool = True
  3435. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3436. # unify tensor names here to make life easier
  3437. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3438. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3439. name = name.replace("time_mixer.", "")
  3440. # lora layer names in fla-hub's impl
  3441. if "_lora.lora" in name:
  3442. self.lora_needs_transpose = False
  3443. name = name.replace("_lora.lora.0.weight", "1.weight")
  3444. name = name.replace("_lora.lora.2.weight", "2.weight")
  3445. name = name.replace("_lora.lora.2.bias", "0.weight")
  3446. name = name.replace("feed_forward_norm", "ln2")
  3447. name = name.replace("g_norm", "ln_x")
  3448. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3449. # some models have dummy v0/v1/v2 on first layer while others don't
  3450. # ignore them all since they are not used
  3451. return
  3452. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3453. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3454. if bid is not None and "attention.x_" in name:
  3455. if "attention.x_x" in name:
  3456. # already concatenated
  3457. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3458. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3459. yield (new_name, data)
  3460. else:
  3461. try:
  3462. self.lerp_weights[bid][name] = data_torch
  3463. except KeyError:
  3464. self.lerp_weights[bid] = {name: data_torch}
  3465. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3466. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3467. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3468. yield (new_name, data)
  3469. return
  3470. else:
  3471. data_torch = data_torch.squeeze()
  3472. new_name = self.map_tensor_name(name)
  3473. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3474. new_name += ".weight"
  3475. if self.lora_needs_transpose and any(
  3476. new_name.endswith(t) for t in [
  3477. "time_mix_w1.weight", "time_mix_w2.weight",
  3478. "time_mix_a1.weight", "time_mix_a2.weight",
  3479. "time_mix_v1.weight", "time_mix_v2.weight",
  3480. "time_mix_g1.weight", "time_mix_g2.weight",
  3481. ]
  3482. ):
  3483. data_torch = data_torch.transpose(0, 1)
  3484. if 'r_k' in new_name:
  3485. data_torch = data_torch.flatten()
  3486. if bid == 0 and "time_mix_a" in new_name:
  3487. # dummy v0/v1/v2 on first layer
  3488. # easist way to make llama happy
  3489. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3490. yield (new_name, data_torch)
  3491. @ModelBase.register("RwkvHybridForCausalLM")
  3492. class ARwkv7Model(Rwkv7Model):
  3493. model_arch = gguf.MODEL_ARCH.ARWKV7
  3494. def set_vocab(self):
  3495. try:
  3496. self._set_vocab_sentencepiece()
  3497. except FileNotFoundError:
  3498. self._set_vocab_gpt2()
  3499. def set_gguf_parameters(self):
  3500. block_count = self.hparams["num_hidden_layers"]
  3501. hidden_size = self.hparams["hidden_size"]
  3502. head_size = self.hparams["head_size"]
  3503. rms_norm_eps = self.hparams["rms_norm_eps"]
  3504. intermediate_size = self.hparams["intermediate_size"]
  3505. wkv_has_gate = self.hparams["wkv_has_gate"]
  3506. assert self.hparams["wkv_version"] == 7
  3507. # ICLR: In-Context-Learning-Rate
  3508. lora_rank_decay = 64
  3509. lora_rank_iclr = 64
  3510. lora_rank_value_residual_mix = 32
  3511. lora_rank_gate = 128 if wkv_has_gate else 0
  3512. # RWKV isn't context limited
  3513. self.gguf_writer.add_context_length(1048576)
  3514. self.gguf_writer.add_embedding_length(hidden_size)
  3515. self.gguf_writer.add_block_count(block_count)
  3516. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3517. self.gguf_writer.add_wkv_head_size(head_size)
  3518. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3519. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3520. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3521. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3522. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3523. self.gguf_writer.add_file_type(self.ftype)
  3524. self.gguf_writer.add_token_shift_count(1)
  3525. # required by llama.cpp, unused
  3526. self.gguf_writer.add_head_count(0)
  3527. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3528. class MambaModel(TextModel):
  3529. model_arch = gguf.MODEL_ARCH.MAMBA
  3530. def set_vocab(self):
  3531. vocab_size = self.hparams["vocab_size"]
  3532. # Round vocab size to next multiple of 8
  3533. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3534. # pad using ceiling division
  3535. # ref: https://stackoverflow.com/a/17511341/22827863
  3536. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3537. self.hparams["vocab_size"] = vocab_size
  3538. if (self.dir_model / "tokenizer.json").is_file():
  3539. self._set_vocab_gpt2()
  3540. elif (self.dir_model / "tokenizer.model").is_file():
  3541. self._set_vocab_sentencepiece()
  3542. else:
  3543. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3544. self._set_vocab_builtin("gpt-neox", vocab_size)
  3545. def set_gguf_parameters(self):
  3546. d_model = self.find_hparam(["hidden_size", "d_model"])
  3547. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3548. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3549. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3550. # ceiling division
  3551. # ref: https://stackoverflow.com/a/17511341/22827863
  3552. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3553. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3554. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3555. use_dt_b_c_norm = False
  3556. # For falconmamba we do apply RMS norm on B / DT and C layers
  3557. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3558. use_dt_b_c_norm = True
  3559. # Fail early for models which don't have a block expansion factor of 2
  3560. assert d_inner == 2 * d_model
  3561. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3562. self.gguf_writer.add_embedding_length(d_model)
  3563. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3564. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3565. self.gguf_writer.add_block_count(self.block_count)
  3566. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3567. self.gguf_writer.add_ssm_inner_size(d_inner)
  3568. self.gguf_writer.add_ssm_state_size(d_state)
  3569. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3570. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3571. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3572. self.gguf_writer.add_file_type(self.ftype)
  3573. _tok_embd = None
  3574. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3575. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3576. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3577. new_name = self.map_tensor_name(name)
  3578. if name.endswith(".A_log"):
  3579. logger.debug("A_log --> A ==> " + new_name)
  3580. data_torch = -torch.exp(data_torch)
  3581. # [4 1 8192 1] -> [4 8192 1 1]
  3582. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3583. data_torch = data_torch.squeeze()
  3584. # assuming token_embd.weight is seen before output.weight
  3585. if self._tok_embd is not None and new_name == output_name:
  3586. if torch.equal(self._tok_embd, data_torch):
  3587. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3588. return []
  3589. elif new_name == tok_embd_name:
  3590. self._tok_embd = data_torch
  3591. return [(new_name, data_torch)]
  3592. @ModelBase.register("CohereForCausalLM")
  3593. class CommandR2Model(TextModel):
  3594. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3595. def __init__(self, *args, **kwargs):
  3596. super().__init__(*args, **kwargs)
  3597. # max_position_embeddings = 8192 in config.json but model was actually
  3598. # trained on 128k context length
  3599. # aya-23 models don't have model_max_length specified
  3600. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3601. def set_gguf_parameters(self):
  3602. super().set_gguf_parameters()
  3603. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3604. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3605. @ModelBase.register("Cohere2ForCausalLM")
  3606. class Cohere2Model(TextModel):
  3607. model_arch = gguf.MODEL_ARCH.COHERE2
  3608. def set_gguf_parameters(self):
  3609. super().set_gguf_parameters()
  3610. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3611. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3612. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3613. rotary_pct = self.hparams["rotary_pct"]
  3614. hidden_size = self.hparams["hidden_size"]
  3615. num_attention_heads = self.hparams["num_attention_heads"]
  3616. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3617. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3618. @ModelBase.register("OlmoForCausalLM")
  3619. @ModelBase.register("OLMoForCausalLM")
  3620. class OlmoModel(TextModel):
  3621. model_arch = gguf.MODEL_ARCH.OLMO
  3622. def set_gguf_parameters(self):
  3623. super().set_gguf_parameters()
  3624. self.gguf_writer.add_layer_norm_eps(1e-5)
  3625. clip_qkv = self.hparams.get("clip_qkv")
  3626. if clip_qkv is not None:
  3627. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3628. # Same as super class, but permuting q_proj, k_proj
  3629. # Copied from: LlamaModel
  3630. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3631. del bid # unused
  3632. n_head = self.hparams["num_attention_heads"]
  3633. n_kv_head = self.hparams.get("num_key_value_heads")
  3634. if name.endswith("q_proj.weight"):
  3635. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3636. if name.endswith("k_proj.weight"):
  3637. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3638. return [(self.map_tensor_name(name), data_torch)]
  3639. @ModelBase.register("Olmo2ForCausalLM")
  3640. class Olmo2Model(TextModel):
  3641. model_arch = gguf.MODEL_ARCH.OLMO2
  3642. @ModelBase.register("OlmoeForCausalLM")
  3643. class OlmoeModel(TextModel):
  3644. model_arch = gguf.MODEL_ARCH.OLMOE
  3645. def set_gguf_parameters(self):
  3646. super().set_gguf_parameters()
  3647. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3648. if (n_experts := self.hparams.get("num_experts")) is not None:
  3649. self.gguf_writer.add_expert_count(n_experts)
  3650. _experts: list[dict[str, Tensor]] | None = None
  3651. # Copied from: Qwen2MoeModel
  3652. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3653. # process the experts separately
  3654. if name.find("experts") != -1:
  3655. n_experts = self.hparams["num_experts"]
  3656. assert bid is not None
  3657. if self._experts is None:
  3658. self._experts = [{} for _ in range(self.block_count)]
  3659. self._experts[bid][name] = data_torch
  3660. if len(self._experts[bid]) >= n_experts * 3:
  3661. tensors: list[tuple[str, Tensor]] = []
  3662. # merge the experts into a single 3d tensor
  3663. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3664. datas: list[Tensor] = []
  3665. for xid in range(n_experts):
  3666. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3667. datas.append(self._experts[bid][ename])
  3668. del self._experts[bid][ename]
  3669. data_torch = torch.stack(datas, dim=0)
  3670. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3671. new_name = self.map_tensor_name(merged_name)
  3672. tensors.append((new_name, data_torch))
  3673. return tensors
  3674. else:
  3675. return []
  3676. return [(self.map_tensor_name(name), data_torch)]
  3677. # Copied from: Qwen2MoeModel
  3678. def prepare_tensors(self):
  3679. super().prepare_tensors()
  3680. if self._experts is not None:
  3681. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3682. experts = [k for d in self._experts for k in d.keys()]
  3683. if len(experts) > 0:
  3684. raise ValueError(f"Unprocessed experts: {experts}")
  3685. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3686. class JinaBertV2Model(BertModel):
  3687. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3688. def __init__(self, *args, **kwargs):
  3689. super().__init__(*args, **kwargs)
  3690. self.intermediate_size = self.hparams["intermediate_size"]
  3691. def get_tensors(self):
  3692. for name, data in super().get_tensors():
  3693. if 'gated_layer' in name:
  3694. d1 = data[:self.intermediate_size, :]
  3695. name1 = name.replace('gated_layers', 'gated_layers_w')
  3696. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3697. d2 = data[self.intermediate_size:, :]
  3698. name2 = name.replace('gated_layers', 'gated_layers_v')
  3699. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3700. yield name1, d1
  3701. yield name2, d2
  3702. continue
  3703. yield name, data
  3704. def set_vocab(self):
  3705. tokenizer_class = 'BertTokenizer'
  3706. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3707. tokenizer_class = json.load(f)['tokenizer_class']
  3708. if tokenizer_class == 'BertTokenizer':
  3709. super().set_vocab()
  3710. elif tokenizer_class == 'RobertaTokenizer':
  3711. self._set_vocab_gpt2()
  3712. self.gguf_writer.add_token_type_count(2)
  3713. else:
  3714. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3715. self.gguf_writer.add_add_bos_token(True)
  3716. self.gguf_writer.add_add_eos_token(True)
  3717. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3718. # if name starts with "bert.", remove the prefix
  3719. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3720. if name.startswith("bert."):
  3721. name = name[5:]
  3722. return super().modify_tensors(data_torch, name, bid)
  3723. @ModelBase.register("OpenELMForCausalLM")
  3724. class OpenELMModel(TextModel):
  3725. model_arch = gguf.MODEL_ARCH.OPENELM
  3726. @staticmethod
  3727. def _make_divisible(v: float | int, divisor: int) -> int:
  3728. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3729. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3730. # Make sure that round down does not go down by more than 10%.
  3731. if new_v < 0.9 * v:
  3732. new_v += divisor
  3733. return new_v
  3734. def __init__(self, *args, **kwargs):
  3735. super().__init__(*args, **kwargs)
  3736. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3737. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3738. self._n_embd: int = self.hparams["model_dim"]
  3739. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3740. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3741. self._ffn_dims: list[int] = [
  3742. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3743. for multiplier in ffn_multipliers
  3744. ]
  3745. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3746. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3747. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3748. def set_vocab(self):
  3749. try:
  3750. self._set_vocab_sentencepiece()
  3751. except FileNotFoundError:
  3752. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3753. def set_gguf_parameters(self):
  3754. n_embd = self._n_embd
  3755. head_dim = self.hparams["head_dim"]
  3756. rot_pct = 1.0
  3757. assert self.block_count == len(self._num_kv_heads)
  3758. assert self.block_count == len(self._num_query_heads)
  3759. assert self.block_count == len(self._ffn_dims)
  3760. self.gguf_writer.add_block_count(self.block_count)
  3761. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3762. self.gguf_writer.add_embedding_length(n_embd)
  3763. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3764. self.gguf_writer.add_head_count(self._num_query_heads)
  3765. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3766. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3767. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3768. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3769. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3770. self.gguf_writer.add_key_length(head_dim)
  3771. self.gguf_writer.add_value_length(head_dim)
  3772. self.gguf_writer.add_file_type(self.ftype)
  3773. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3774. if "n_layers" in keys:
  3775. return self.hparams["num_transformer_layers"]
  3776. return super().find_hparam(keys, optional)
  3777. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3778. # split ff
  3779. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3780. ff_dim = self._ffn_dims[bid]
  3781. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3782. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3783. return
  3784. yield (self.map_tensor_name(name), data_torch)
  3785. @ModelBase.register("ArcticForCausalLM")
  3786. class ArcticModel(TextModel):
  3787. model_arch = gguf.MODEL_ARCH.ARCTIC
  3788. def set_vocab(self):
  3789. # The reason for using a custom implementation here is that the
  3790. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3791. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3792. from sentencepiece import SentencePieceProcessor
  3793. tokenizer_path = self.dir_model / 'tokenizer.model'
  3794. if not tokenizer_path.is_file():
  3795. logger.error(f'Error: Missing {tokenizer_path}')
  3796. sys.exit(1)
  3797. # Read the whole vocabulary from the tokenizer.model file
  3798. tokenizer = SentencePieceProcessor()
  3799. tokenizer.LoadFromFile(str(tokenizer_path))
  3800. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3801. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3802. scores: list[float] = [-10000.0] * vocab_size
  3803. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3804. for token_id in range(tokenizer.vocab_size()):
  3805. piece = tokenizer.IdToPiece(token_id)
  3806. text = piece.encode("utf-8")
  3807. score = tokenizer.GetScore(token_id)
  3808. toktype = SentencePieceTokenTypes.NORMAL
  3809. if tokenizer.IsUnknown(token_id):
  3810. toktype = SentencePieceTokenTypes.UNKNOWN
  3811. elif tokenizer.IsControl(token_id):
  3812. toktype = SentencePieceTokenTypes.CONTROL
  3813. elif tokenizer.IsUnused(token_id):
  3814. toktype = SentencePieceTokenTypes.UNUSED
  3815. elif tokenizer.IsByte(token_id):
  3816. toktype = SentencePieceTokenTypes.BYTE
  3817. tokens[token_id] = text
  3818. scores[token_id] = score
  3819. toktypes[token_id] = toktype
  3820. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3821. # of information about added/redefined tokens and modify them accordingly.
  3822. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3823. if tokenizer_config_file.is_file():
  3824. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3825. tokenizer_config_json = json.load(f)
  3826. if "added_tokens_decoder" in tokenizer_config_json:
  3827. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3828. for token_id, token_json in added_tokens_decoder.items():
  3829. token_id = int(token_id)
  3830. if token_id >= vocab_size:
  3831. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3832. continue
  3833. token_content = token_json["content"]
  3834. token_type = SentencePieceTokenTypes.USER_DEFINED
  3835. token_score = -10000.0
  3836. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3837. # Set the score to 0.0 as in the original tokenizer.model
  3838. if ("special" in token_json) and token_json["special"]:
  3839. if token_content == tokenizer_config_json["unk_token"]:
  3840. token_type = SentencePieceTokenTypes.UNKNOWN
  3841. else:
  3842. token_type = SentencePieceTokenTypes.CONTROL
  3843. token_score = 0.0
  3844. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3845. tokens[token_id] = token_content.encode("utf-8")
  3846. toktypes[token_id] = token_type
  3847. scores[token_id] = token_score
  3848. self.gguf_writer.add_tokenizer_model("llama")
  3849. self.gguf_writer.add_tokenizer_pre("default")
  3850. self.gguf_writer.add_token_list(tokens)
  3851. self.gguf_writer.add_token_scores(scores)
  3852. self.gguf_writer.add_token_types(toktypes)
  3853. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3854. special_vocab.add_to_gguf(self.gguf_writer)
  3855. def set_gguf_parameters(self):
  3856. super().set_gguf_parameters()
  3857. hparams = self.hparams
  3858. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3859. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3860. _experts: list[dict[str, Tensor]] | None = None
  3861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3862. n_head = self.hparams["num_attention_heads"]
  3863. n_kv_head = self.hparams.get("num_key_value_heads")
  3864. if name.endswith("q_proj.weight"):
  3865. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3866. if name.endswith("k_proj.weight"):
  3867. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3868. # process the experts separately
  3869. if name.find("block_sparse_moe.experts") != -1:
  3870. n_experts = self.hparams["num_local_experts"]
  3871. assert bid is not None
  3872. if self._experts is None:
  3873. self._experts = [{} for _ in range(self.block_count)]
  3874. self._experts[bid][name] = data_torch
  3875. if len(self._experts[bid]) >= n_experts * 3:
  3876. tensors: list[tuple[str, Tensor]] = []
  3877. # merge the experts into a single 3d tensor
  3878. for wid in ["w1", "w2", "w3"]:
  3879. datas: list[Tensor] = []
  3880. for xid in range(n_experts):
  3881. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3882. datas.append(self._experts[bid][ename])
  3883. del self._experts[bid][ename]
  3884. data_torch = torch.stack(datas, dim=0)
  3885. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3886. new_name = self.map_tensor_name(merged_name)
  3887. tensors.append((new_name, data_torch))
  3888. return tensors
  3889. else:
  3890. return []
  3891. return [(self.map_tensor_name(name), data_torch)]
  3892. def prepare_tensors(self):
  3893. super().prepare_tensors()
  3894. if self._experts is not None:
  3895. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3896. experts = [k for d in self._experts for k in d.keys()]
  3897. if len(experts) > 0:
  3898. raise ValueError(f"Unprocessed experts: {experts}")
  3899. @ModelBase.register("DeepseekForCausalLM")
  3900. class DeepseekModel(TextModel):
  3901. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3902. def set_vocab(self):
  3903. try:
  3904. self._set_vocab_sentencepiece()
  3905. except FileNotFoundError:
  3906. self._set_vocab_gpt2()
  3907. def set_gguf_parameters(self):
  3908. super().set_gguf_parameters()
  3909. hparams = self.hparams
  3910. if "head_dim" in hparams:
  3911. rope_dim = hparams["head_dim"]
  3912. else:
  3913. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3914. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3915. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3916. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3917. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3918. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3919. self.gguf_writer.add_expert_weights_scale(1.0)
  3920. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3921. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3922. _experts: list[dict[str, Tensor]] | None = None
  3923. @staticmethod
  3924. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3925. if n_head_kv is not None and n_head != n_head_kv:
  3926. n_head = n_head_kv
  3927. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3928. .swapaxes(1, 2)
  3929. .reshape(weights.shape))
  3930. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3931. n_head = self.hparams["num_attention_heads"]
  3932. n_kv_head = self.hparams.get("num_key_value_heads")
  3933. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3934. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3935. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3936. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3937. # process the experts separately
  3938. if name.find("mlp.experts") != -1:
  3939. n_experts = self.hparams["n_routed_experts"]
  3940. assert bid is not None
  3941. if self._experts is None:
  3942. self._experts = [{} for _ in range(self.block_count)]
  3943. self._experts[bid][name] = data_torch
  3944. if len(self._experts[bid]) >= n_experts * 3:
  3945. tensors: list[tuple[str, Tensor]] = []
  3946. # merge the experts into a single 3d tensor
  3947. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3948. datas: list[Tensor] = []
  3949. for xid in range(n_experts):
  3950. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3951. datas.append(self._experts[bid][ename])
  3952. del self._experts[bid][ename]
  3953. data_torch = torch.stack(datas, dim=0)
  3954. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3955. new_name = self.map_tensor_name(merged_name)
  3956. tensors.append((new_name, data_torch))
  3957. return tensors
  3958. else:
  3959. return []
  3960. return [(self.map_tensor_name(name), data_torch)]
  3961. def prepare_tensors(self):
  3962. super().prepare_tensors()
  3963. if self._experts is not None:
  3964. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3965. experts = [k for d in self._experts for k in d.keys()]
  3966. if len(experts) > 0:
  3967. raise ValueError(f"Unprocessed experts: {experts}")
  3968. @ModelBase.register("DeepseekV2ForCausalLM")
  3969. @ModelBase.register("DeepseekV3ForCausalLM")
  3970. class DeepseekV2Model(TextModel):
  3971. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3972. def set_vocab(self):
  3973. self._set_vocab_gpt2()
  3974. def set_gguf_parameters(self):
  3975. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  3976. self.hparams["num_key_value_heads"] = 1
  3977. super().set_gguf_parameters()
  3978. hparams = self.hparams
  3979. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3980. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3981. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3982. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3983. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3984. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  3985. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  3986. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  3987. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3988. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  3989. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3990. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3991. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3992. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3993. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3994. if hparams["scoring_func"] == "sigmoid":
  3995. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3996. elif hparams["scoring_func"] == "softmax":
  3997. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3998. else:
  3999. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4000. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4001. rope_scaling = self.hparams.get("rope_scaling") or {}
  4002. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4003. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4004. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4005. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4006. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4007. _experts: list[dict[str, Tensor]] | None = None
  4008. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4009. # rename e_score_correction_bias tensors
  4010. if name.endswith("e_score_correction_bias"):
  4011. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4012. # skip Multi-Token Prediction (MTP) layers
  4013. block_count = self.hparams["num_hidden_layers"]
  4014. match = re.match(r"model.layers.(\d+)", name)
  4015. if match and int(match.group(1)) >= block_count:
  4016. return []
  4017. # process the experts separately
  4018. if name.find("mlp.experts") != -1:
  4019. n_experts = self.hparams["n_routed_experts"]
  4020. assert bid is not None
  4021. if self._experts is None:
  4022. self._experts = [{} for _ in range(self.block_count)]
  4023. self._experts[bid][name] = data_torch
  4024. if len(self._experts[bid]) >= n_experts * 3:
  4025. tensors: list[tuple[str, Tensor]] = []
  4026. # merge the experts into a single 3d tensor
  4027. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4028. datas: list[Tensor] = []
  4029. for xid in range(n_experts):
  4030. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4031. datas.append(self._experts[bid][ename])
  4032. del self._experts[bid][ename]
  4033. data_torch = torch.stack(datas, dim=0)
  4034. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4035. new_name = self.map_tensor_name(merged_name)
  4036. tensors.append((new_name, data_torch))
  4037. return tensors
  4038. else:
  4039. return []
  4040. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4041. if name.endswith("kv_b_proj.weight"):
  4042. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4043. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4044. n_head_kv = self.hparams["num_key_value_heads"]
  4045. v_head_dim = self.hparams["v_head_dim"]
  4046. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4047. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4048. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4049. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4050. k_b = k_b.transpose(1, 2)
  4051. return [
  4052. (self.map_tensor_name(name_kb), k_b),
  4053. (self.map_tensor_name(name_vb), v_b)
  4054. ]
  4055. return [(self.map_tensor_name(name), data_torch)]
  4056. def prepare_tensors(self):
  4057. super().prepare_tensors()
  4058. if self._experts is not None:
  4059. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4060. experts = [k for d in self._experts for k in d.keys()]
  4061. if len(experts) > 0:
  4062. raise ValueError(f"Unprocessed experts: {experts}")
  4063. @ModelBase.register("PLMForCausalLM")
  4064. class PLMModel(TextModel):
  4065. model_arch = gguf.MODEL_ARCH.PLM
  4066. def set_vocab(self):
  4067. self._set_vocab_gpt2()
  4068. def set_gguf_parameters(self):
  4069. super().set_gguf_parameters()
  4070. hparams = self.hparams
  4071. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4072. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4073. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4074. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4075. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4076. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4077. return [(self.map_tensor_name(name), data_torch)]
  4078. def prepare_tensors(self):
  4079. super().prepare_tensors()
  4080. @ModelBase.register("T5WithLMHeadModel")
  4081. @ModelBase.register("T5ForConditionalGeneration")
  4082. @ModelBase.register("MT5ForConditionalGeneration")
  4083. @ModelBase.register("UMT5ForConditionalGeneration")
  4084. class T5Model(TextModel):
  4085. model_arch = gguf.MODEL_ARCH.T5
  4086. def __init__(self, *args, **kwargs):
  4087. super().__init__(*args, **kwargs)
  4088. self.shared_token_embeddings_found = False
  4089. def set_vocab(self):
  4090. # to avoid TypeError: Descriptors cannot be created directly
  4091. # exception when importing sentencepiece_model_pb2
  4092. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4093. from sentencepiece import SentencePieceProcessor
  4094. from sentencepiece import sentencepiece_model_pb2 as model
  4095. tokenizer_path = self.dir_model / 'tokenizer.model'
  4096. # many older models use spiece.model tokenizer model filename
  4097. if not tokenizer_path.is_file():
  4098. tokenizer_path = self.dir_model / 'spiece.model'
  4099. if not tokenizer_path.is_file():
  4100. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4101. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4102. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4103. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4104. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4105. # assure the tokenizer model file name is correct
  4106. assert tokenizer_path.name == 'tokenizer.model'
  4107. return self._set_vocab_sentencepiece()
  4108. else:
  4109. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4110. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4111. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4112. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4113. tokenizer = SentencePieceProcessor()
  4114. tokenizer.LoadFromFile(str(tokenizer_path))
  4115. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4116. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4117. scores: list[float] = [-10000.0] * vocab_size
  4118. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4119. for token_id in range(tokenizer.vocab_size()):
  4120. piece = tokenizer.IdToPiece(token_id)
  4121. text = piece.encode("utf-8")
  4122. score = tokenizer.GetScore(token_id)
  4123. toktype = SentencePieceTokenTypes.NORMAL
  4124. if tokenizer.IsUnknown(token_id):
  4125. toktype = SentencePieceTokenTypes.UNKNOWN
  4126. elif tokenizer.IsControl(token_id):
  4127. toktype = SentencePieceTokenTypes.CONTROL
  4128. elif tokenizer.IsUnused(token_id):
  4129. toktype = SentencePieceTokenTypes.UNUSED
  4130. elif tokenizer.IsByte(token_id):
  4131. toktype = SentencePieceTokenTypes.BYTE
  4132. tokens[token_id] = text
  4133. scores[token_id] = score
  4134. toktypes[token_id] = toktype
  4135. added_tokens_file = self.dir_model / 'added_tokens.json'
  4136. if added_tokens_file.is_file():
  4137. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4138. added_tokens_json = json.load(f)
  4139. for key in added_tokens_json:
  4140. token_id = added_tokens_json[key]
  4141. if token_id >= vocab_size:
  4142. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4143. continue
  4144. tokens[token_id] = key.encode("utf-8")
  4145. scores[token_id] = -1000.0
  4146. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4147. if vocab_size > len(tokens):
  4148. pad_count = vocab_size - len(tokens)
  4149. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4150. for i in range(1, pad_count + 1):
  4151. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4152. scores.append(-1000.0)
  4153. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4154. self.gguf_writer.add_tokenizer_model("t5")
  4155. self.gguf_writer.add_tokenizer_pre("default")
  4156. self.gguf_writer.add_token_list(tokens)
  4157. self.gguf_writer.add_token_scores(scores)
  4158. self.gguf_writer.add_token_types(toktypes)
  4159. self.gguf_writer.add_add_space_prefix(add_prefix)
  4160. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4161. if precompiled_charsmap:
  4162. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4163. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4164. special_vocab.add_to_gguf(self.gguf_writer)
  4165. self.gguf_writer.add_add_bos_token(False)
  4166. self.gguf_writer.add_add_eos_token(True)
  4167. def set_gguf_parameters(self):
  4168. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4169. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4170. n_ctx = 512
  4171. self.gguf_writer.add_context_length(n_ctx)
  4172. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4173. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4174. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4175. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4176. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4177. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4178. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4179. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4180. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4181. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4182. self.gguf_writer.add_file_type(self.ftype)
  4183. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4184. del bid # unused
  4185. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4186. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4187. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4188. # and decoder and ignore the remaining ones.
  4189. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4190. if not self.shared_token_embeddings_found:
  4191. name = "shared.weight"
  4192. self.shared_token_embeddings_found = True
  4193. else:
  4194. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4195. return []
  4196. return [(self.map_tensor_name(name), data_torch)]
  4197. @ModelBase.register("T5EncoderModel")
  4198. class T5EncoderModel(TextModel):
  4199. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4200. def __init__(self, *args, **kwargs):
  4201. super().__init__(*args, **kwargs)
  4202. self.shared_token_embeddings_found = False
  4203. def set_vocab(self):
  4204. # to avoid TypeError: Descriptors cannot be created directly
  4205. # exception when importing sentencepiece_model_pb2
  4206. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4207. from sentencepiece import SentencePieceProcessor
  4208. from sentencepiece import sentencepiece_model_pb2 as model
  4209. tokenizer_path = self.dir_model / 'tokenizer.model'
  4210. # many older models use spiece.model tokenizer model filename
  4211. if not tokenizer_path.is_file():
  4212. tokenizer_path = self.dir_model / 'spiece.model'
  4213. if not tokenizer_path.is_file():
  4214. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4215. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4216. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4217. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4218. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4219. # assure the tokenizer model file name is correct
  4220. assert tokenizer_path.name == 'tokenizer.model'
  4221. return self._set_vocab_sentencepiece()
  4222. else:
  4223. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4224. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4225. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4226. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4227. tokenizer = SentencePieceProcessor()
  4228. tokenizer.LoadFromFile(str(tokenizer_path))
  4229. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4230. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4231. scores: list[float] = [-10000.0] * vocab_size
  4232. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4233. for token_id in range(tokenizer.vocab_size()):
  4234. piece = tokenizer.IdToPiece(token_id)
  4235. text = piece.encode("utf-8")
  4236. score = tokenizer.GetScore(token_id)
  4237. toktype = SentencePieceTokenTypes.NORMAL
  4238. if tokenizer.IsUnknown(token_id):
  4239. toktype = SentencePieceTokenTypes.UNKNOWN
  4240. elif tokenizer.IsControl(token_id):
  4241. toktype = SentencePieceTokenTypes.CONTROL
  4242. elif tokenizer.IsUnused(token_id):
  4243. toktype = SentencePieceTokenTypes.UNUSED
  4244. elif tokenizer.IsByte(token_id):
  4245. toktype = SentencePieceTokenTypes.BYTE
  4246. tokens[token_id] = text
  4247. scores[token_id] = score
  4248. toktypes[token_id] = toktype
  4249. added_tokens_file = self.dir_model / 'added_tokens.json'
  4250. if added_tokens_file.is_file():
  4251. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4252. added_tokens_json = json.load(f)
  4253. for key in added_tokens_json:
  4254. token_id = added_tokens_json[key]
  4255. if token_id >= vocab_size:
  4256. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4257. continue
  4258. tokens[token_id] = key.encode("utf-8")
  4259. scores[token_id] = -1000.0
  4260. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4261. if vocab_size > len(tokens):
  4262. pad_count = vocab_size - len(tokens)
  4263. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4264. for i in range(1, pad_count + 1):
  4265. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4266. scores.append(-1000.0)
  4267. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4268. self.gguf_writer.add_tokenizer_model("t5")
  4269. self.gguf_writer.add_tokenizer_pre("default")
  4270. self.gguf_writer.add_token_list(tokens)
  4271. self.gguf_writer.add_token_scores(scores)
  4272. self.gguf_writer.add_token_types(toktypes)
  4273. self.gguf_writer.add_add_space_prefix(add_prefix)
  4274. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4275. if precompiled_charsmap:
  4276. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4277. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4278. special_vocab.add_to_gguf(self.gguf_writer)
  4279. self.gguf_writer.add_add_bos_token(False)
  4280. self.gguf_writer.add_add_eos_token(True)
  4281. def set_gguf_parameters(self):
  4282. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4283. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4284. n_ctx = 512
  4285. self.gguf_writer.add_context_length(n_ctx)
  4286. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4287. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4288. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4289. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4290. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4291. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4292. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4293. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4294. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4295. self.gguf_writer.add_file_type(self.ftype)
  4296. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4297. del bid # unused
  4298. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4299. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4300. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4301. # and decoder and ignore the remaining ones.
  4302. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4303. if not self.shared_token_embeddings_found:
  4304. name = "shared.weight"
  4305. self.shared_token_embeddings_found = True
  4306. else:
  4307. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4308. return []
  4309. return [(self.map_tensor_name(name), data_torch)]
  4310. @ModelBase.register("JAISLMHeadModel")
  4311. class JaisModel(TextModel):
  4312. model_arch = gguf.MODEL_ARCH.JAIS
  4313. def __init__(self, *args, **kwargs):
  4314. super().__init__(*args, **kwargs)
  4315. # SwigLU activation
  4316. assert self.hparams["activation_function"] == "swiglu"
  4317. # ALiBi position embedding
  4318. assert self.hparams["position_embedding_type"] == "alibi"
  4319. # Embeddings scale
  4320. self.embeddings_scale = 1.0
  4321. if 'mup_embeddings_scale' in self.hparams:
  4322. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4323. elif 'embeddings_scale' in self.hparams:
  4324. self.embeddings_scale = self.hparams['embeddings_scale']
  4325. else:
  4326. assert False
  4327. self.width_scale = 1.0
  4328. if 'mup_output_alpha' in self.hparams:
  4329. assert 'mup_width_scale' in self.hparams
  4330. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4331. elif 'width_scale' in self.hparams:
  4332. self.width_scale = self.hparams['width_scale']
  4333. else:
  4334. assert False
  4335. self.max_alibi_bias = 8.0
  4336. def set_vocab(self):
  4337. self._set_vocab_gpt2()
  4338. def set_gguf_parameters(self):
  4339. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4340. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4341. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4342. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4343. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4344. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4345. self.gguf_writer.add_file_type(self.ftype)
  4346. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4347. del bid # unused
  4348. tensors: list[tuple[str, Tensor]] = []
  4349. # we don't need these
  4350. if name.endswith((".attn.bias")):
  4351. return tensors
  4352. if name.endswith(("relative_pe.slopes")):
  4353. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4354. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4355. # but Jais's PyTorch model simply precalculates the slope values and places them
  4356. # in relative_pes.slopes
  4357. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4358. first_val = float(data_torch[0].item())
  4359. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4360. return tensors
  4361. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4362. data_torch = data_torch.transpose(1, 0)
  4363. new_name = self.map_tensor_name(name)
  4364. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4365. tensors.append((new_name, data_torch * self.embeddings_scale))
  4366. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4367. tensors.append((new_name, data_torch * self.width_scale))
  4368. else:
  4369. tensors.append((new_name, data_torch))
  4370. return tensors
  4371. def prepare_tensors(self):
  4372. super().prepare_tensors()
  4373. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4374. @ModelBase.register("Glm4ForCausalLM")
  4375. class Glm4Model(TextModel):
  4376. model_arch = gguf.MODEL_ARCH.GLM4
  4377. def set_vocab(self):
  4378. from transformers import AutoTokenizer
  4379. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4380. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4381. tokens, toktypes, tokpre = self.get_vocab_base()
  4382. self.gguf_writer.add_tokenizer_model("gpt2")
  4383. self.gguf_writer.add_tokenizer_pre(tokpre)
  4384. self.gguf_writer.add_token_list(tokens)
  4385. self.gguf_writer.add_token_types(toktypes)
  4386. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4387. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4388. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4389. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4390. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4391. special_vocab.add_to_gguf(self.gguf_writer)
  4392. def set_gguf_parameters(self):
  4393. super().set_gguf_parameters()
  4394. rope_dim = self.hparams["head_dim"]
  4395. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4396. rope_scaling = self.hparams.get("rope_scaling") or {}
  4397. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4398. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4399. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4400. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4401. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4402. class ChatGLMModel(TextModel):
  4403. model_arch = gguf.MODEL_ARCH.CHATGLM
  4404. def set_vocab_chatglm3(self):
  4405. dir_model = self.dir_model
  4406. hparams = self.hparams
  4407. tokens: list[bytes] = []
  4408. toktypes: list[int] = []
  4409. scores: list[float] = []
  4410. from transformers import AutoTokenizer
  4411. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4412. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4413. assert max(tokenizer.get_vocab().values()) < vocab_size
  4414. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4415. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4416. for token_id in range(vocab_size):
  4417. piece = tokenizer._convert_id_to_token(token_id)
  4418. if token_id == 0:
  4419. piece = "<unk>"
  4420. elif token_id == 1:
  4421. piece = "<bos>"
  4422. elif token_id == 2:
  4423. piece = "<eos>"
  4424. text = piece.encode("utf-8")
  4425. score = 0.0
  4426. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4427. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4428. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4429. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4430. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4431. if piece in special_tokens:
  4432. toktype = SentencePieceTokenTypes.CONTROL
  4433. elif len(piece) == 0:
  4434. text = f"[PAD{token_id}]".encode("utf-8")
  4435. toktype = SentencePieceTokenTypes.UNUSED
  4436. else:
  4437. toktype = SentencePieceTokenTypes.USER_DEFINED
  4438. tokens.append(text)
  4439. scores.append(score)
  4440. toktypes.append(toktype)
  4441. continue
  4442. toktype = SentencePieceTokenTypes.NORMAL
  4443. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4444. toktype = SentencePieceTokenTypes.UNKNOWN
  4445. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4446. toktype = SentencePieceTokenTypes.CONTROL
  4447. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4448. toktype = SentencePieceTokenTypes.UNUSED
  4449. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4450. toktype = SentencePieceTokenTypes.BYTE
  4451. tokens.append(text)
  4452. scores.append(score)
  4453. toktypes.append(toktype)
  4454. self.gguf_writer.add_tokenizer_model("llama")
  4455. # glm3 needs prefix and suffix formatted as:
  4456. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4457. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4458. self.gguf_writer.add_token_list(tokens)
  4459. self.gguf_writer.add_token_scores(scores)
  4460. self.gguf_writer.add_token_types(toktypes)
  4461. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4462. special_vocab.add_to_gguf(self.gguf_writer)
  4463. @staticmethod
  4464. def token_bytes_to_string(b):
  4465. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4466. byte_encoder = bytes_to_unicode()
  4467. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4468. @staticmethod
  4469. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4470. parts = [bytes([b]) for b in token]
  4471. while True:
  4472. min_idx = None
  4473. min_rank = None
  4474. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4475. rank = mergeable_ranks.get(pair[0] + pair[1])
  4476. if rank is not None and (min_rank is None or rank < min_rank):
  4477. min_idx = i
  4478. min_rank = rank
  4479. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4480. break
  4481. assert min_idx is not None
  4482. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4483. return parts
  4484. def set_vocab(self):
  4485. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4486. self.set_vocab_chatglm3()
  4487. return
  4488. dir_model = self.dir_model
  4489. hparams = self.hparams
  4490. tokens: list[str] = []
  4491. toktypes: list[int] = []
  4492. from transformers import AutoTokenizer
  4493. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4494. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4495. assert max(tokenizer.get_vocab().values()) < vocab_size
  4496. tokens, toktypes, tokpre = self.get_vocab_base()
  4497. self.gguf_writer.add_tokenizer_model("gpt2")
  4498. self.gguf_writer.add_tokenizer_pre(tokpre)
  4499. self.gguf_writer.add_token_list(tokens)
  4500. self.gguf_writer.add_token_types(toktypes)
  4501. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4502. # only add special tokens when they were not already loaded from config.json
  4503. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4504. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4505. # this one is usually not in config.json anyway
  4506. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4507. special_vocab.add_to_gguf(self.gguf_writer)
  4508. def set_gguf_parameters(self):
  4509. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4510. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4511. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4512. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4513. self.gguf_writer.add_embedding_length(n_embed)
  4514. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4515. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4516. self.gguf_writer.add_head_count(n_head)
  4517. self.gguf_writer.add_head_count_kv(n_head_kv)
  4518. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4519. self.gguf_writer.add_file_type(self.ftype)
  4520. if "attention_dim" in self.hparams:
  4521. rope_dim = self.hparams["attention_dim"]
  4522. else:
  4523. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4524. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4525. self.gguf_writer.add_add_bos_token(False)
  4526. rope_freq = 10000
  4527. if "rope_ratio" in self.hparams:
  4528. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4529. self.gguf_writer.add_rope_freq_base(rope_freq)
  4530. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4531. del bid # unused
  4532. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4533. return []
  4534. name = name.removeprefix("transformer.")
  4535. return [(self.map_tensor_name(name), data_torch)]
  4536. @ModelBase.register("NemotronForCausalLM")
  4537. class NemotronModel(TextModel):
  4538. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4539. def set_vocab(self):
  4540. self._set_vocab_sentencepiece()
  4541. self.gguf_writer.add_pad_token_id(0)
  4542. self.gguf_writer.add_unk_token_id(1)
  4543. def set_gguf_parameters(self):
  4544. super().set_gguf_parameters()
  4545. hparams = self.hparams
  4546. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4547. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4548. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4549. # * Partial RoPE
  4550. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4551. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4552. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4553. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4554. # * RopeScaling for Nemotron
  4555. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4556. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4557. else:
  4558. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4559. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4560. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4561. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4562. # model.layers.{l}.input_layernorm.weight
  4563. # model.layers.{l}.post_attention_layernorm.weight
  4564. # model.norm.weight
  4565. if name.endswith("norm.weight"):
  4566. data_torch = data_torch + 1
  4567. return [(self.map_tensor_name(name), data_torch)]
  4568. @ModelBase.register("ExaoneForCausalLM")
  4569. class ExaoneModel(TextModel):
  4570. model_arch = gguf.MODEL_ARCH.EXAONE
  4571. def set_gguf_parameters(self):
  4572. hparams = self.hparams
  4573. assert (hparams["activation_function"] == "silu")
  4574. max_position_embeddings = hparams["max_position_embeddings"]
  4575. embed_dim = hparams["hidden_size"]
  4576. num_heads = hparams["num_attention_heads"]
  4577. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4578. layer_norm_eps = hparams["layer_norm_epsilon"]
  4579. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4580. num_layers = hparams["num_layers"]
  4581. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4582. # attention_dropout_rate = hparams["attention_dropout"]
  4583. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4584. # embed_dropout_rate = hparams["embed_dropout"]
  4585. self.gguf_writer.add_embedding_length(embed_dim)
  4586. self.gguf_writer.add_head_count(num_heads)
  4587. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4588. self.gguf_writer.add_context_length(max_position_embeddings)
  4589. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4590. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4591. self.gguf_writer.add_block_count(num_layers)
  4592. self.gguf_writer.add_file_type(self.ftype)
  4593. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4594. self.gguf_writer.add_rope_freq_base(rope_theta)
  4595. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4596. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4597. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4598. rope_scaling = self.hparams.get("rope_scaling") or {}
  4599. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4600. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4601. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4602. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4603. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4604. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4605. base = self.hparams.get("rope_theta", 10000.0)
  4606. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4607. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4608. factor = rope_scaling.get("factor", 8.0)
  4609. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4610. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4611. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4612. low_freq_wavelen = old_context_len / low_freq_factor
  4613. high_freq_wavelen = old_context_len / high_freq_factor
  4614. assert low_freq_wavelen != high_freq_wavelen
  4615. rope_factors = []
  4616. for freq in freqs:
  4617. wavelen = 2 * math.pi / freq
  4618. if wavelen < high_freq_wavelen:
  4619. rope_factors.append(1)
  4620. elif wavelen > low_freq_wavelen:
  4621. rope_factors.append(factor)
  4622. else:
  4623. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4624. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4625. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4626. @ModelBase.register("GraniteForCausalLM")
  4627. class GraniteModel(LlamaModel):
  4628. """Conversion for IBM's GraniteForCausalLM"""
  4629. model_arch = gguf.MODEL_ARCH.GRANITE
  4630. def set_gguf_parameters(self):
  4631. """Granite uses standard llama parameters with the following differences:
  4632. - No head_dim support
  4633. - New multiplier params:
  4634. - attention_scale
  4635. - embedding_scale
  4636. - residual_scale
  4637. - logits_scaling
  4638. """
  4639. if head_dim := self.hparams.pop("head_dim", None):
  4640. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4641. super().set_gguf_parameters()
  4642. # NOTE: Convert _multiplier params to _scale params for naming
  4643. # consistency
  4644. if attention_scale := self.hparams.get("attention_multiplier"):
  4645. self.gguf_writer.add_attention_scale(attention_scale)
  4646. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4647. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4648. self.gguf_writer.add_embedding_scale(embedding_scale)
  4649. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4650. if residual_scale := self.hparams.get("residual_multiplier"):
  4651. self.gguf_writer.add_residual_scale(residual_scale)
  4652. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4653. if logits_scale := self.hparams.get("logits_scaling"):
  4654. self.gguf_writer.add_logit_scale(logits_scale)
  4655. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4656. @ModelBase.register("GraniteMoeForCausalLM")
  4657. class GraniteMoeModel(GraniteModel):
  4658. """Conversion for IBM's GraniteMoeForCausalLM"""
  4659. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4660. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4661. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4662. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4663. the hidden size that is then split during forward. To keep compatibility
  4664. with existing mixtral support, we pull them apart here.
  4665. """
  4666. if name.endswith("block_sparse_moe.input_linear.weight"):
  4667. ffn_dim = self.hparams["intermediate_size"]
  4668. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4669. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4670. return [
  4671. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4672. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4673. ]
  4674. return super().modify_tensors(data_torch, name, bid)
  4675. @ModelBase.register("BailingMoeForCausalLM")
  4676. class BailingMoeModel(TextModel):
  4677. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4678. def set_vocab(self):
  4679. self._set_vocab_gpt2()
  4680. def set_gguf_parameters(self):
  4681. super().set_gguf_parameters()
  4682. hparams = self.hparams
  4683. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4684. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4685. rope_scaling = self.hparams.get("rope_scaling") or {}
  4686. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4687. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4688. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4689. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4690. else:
  4691. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4692. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4693. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4694. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4695. self.gguf_writer.add_expert_weights_scale(1.0)
  4696. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4697. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4698. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4699. _experts: list[dict[str, Tensor]] | None = None
  4700. @staticmethod
  4701. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4702. if n_head_kv is not None and n_head != n_head_kv:
  4703. n_head = n_head_kv
  4704. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4705. .swapaxes(1, 2)
  4706. .reshape(weights.shape))
  4707. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4708. n_head = self.hparams["num_attention_heads"]
  4709. n_kv_head = self.hparams.get("num_key_value_heads")
  4710. n_embd = self.hparams["hidden_size"]
  4711. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4712. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4713. if name.endswith("attention.dense.weight"):
  4714. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4715. elif name.endswith("query_key_value.weight"):
  4716. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4717. return [
  4718. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4719. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4720. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4721. ]
  4722. elif name.find("mlp.experts") != -1:
  4723. n_experts = self.hparams["num_experts"]
  4724. assert bid is not None
  4725. tensors: list[tuple[str, Tensor]] = []
  4726. if self._experts is None:
  4727. self._experts = [{} for _ in range(self.block_count)]
  4728. self._experts[bid][name] = data_torch
  4729. if len(self._experts[bid]) >= n_experts * 3:
  4730. # merge the experts into a single 3d tensor
  4731. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4732. datas: list[Tensor] = []
  4733. for xid in range(n_experts):
  4734. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4735. datas.append(self._experts[bid][ename])
  4736. del self._experts[bid][ename]
  4737. data_torch = torch.stack(datas, dim=0)
  4738. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4739. new_name = self.map_tensor_name(merged_name)
  4740. tensors.append((new_name, data_torch))
  4741. return tensors
  4742. new_name = self.map_tensor_name(name)
  4743. if new_name == output_name and self.hparams.get("norm_head"):
  4744. data_torch = data_torch.float()
  4745. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4746. return [(new_name, data_torch)]
  4747. def prepare_tensors(self):
  4748. super().prepare_tensors()
  4749. if self._experts is not None:
  4750. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4751. experts = [k for d in self._experts for k in d.keys()]
  4752. if len(experts) > 0:
  4753. raise ValueError(f"Unprocessed experts: {experts}")
  4754. @ModelBase.register("ChameleonForConditionalGeneration")
  4755. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4756. class ChameleonModel(TextModel):
  4757. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4758. def set_gguf_parameters(self):
  4759. super().set_gguf_parameters()
  4760. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4761. def set_vocab(self):
  4762. self._set_vocab_gpt2()
  4763. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4764. # ignore image tokenizer for now
  4765. # TODO: remove this once image support is implemented for Chameleon
  4766. if name.startswith("model.vqmodel"):
  4767. return []
  4768. n_head = self.hparams["num_attention_heads"]
  4769. n_kv_head = self.hparams.get("num_key_value_heads")
  4770. hidden_dim = self.hparams.get("hidden_size")
  4771. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4772. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4773. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4774. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4775. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4776. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4777. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4778. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4779. return [(self.map_tensor_name(name), data_torch)]
  4780. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4781. @staticmethod
  4782. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4783. head_dim = hidden_dim // n_heads
  4784. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4785. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4786. return data_torch
  4787. ###### CONVERSION LOGIC ######
  4788. # tree of lazy tensors
  4789. class LazyTorchTensor(gguf.LazyBase):
  4790. _tensor_type = torch.Tensor
  4791. # to keep the type-checker happy
  4792. dtype: torch.dtype
  4793. shape: torch.Size
  4794. # only used when converting a torch.Tensor to a np.ndarray
  4795. _dtype_map: dict[torch.dtype, type] = {
  4796. torch.float16: np.float16,
  4797. torch.float32: np.float32,
  4798. }
  4799. # used for safetensors slices
  4800. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4801. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4802. _dtype_str_map: dict[str, torch.dtype] = {
  4803. "F64": torch.float64,
  4804. "F32": torch.float32,
  4805. "BF16": torch.bfloat16,
  4806. "F16": torch.float16,
  4807. # "U64": torch.uint64,
  4808. "I64": torch.int64,
  4809. # "U32": torch.uint32,
  4810. "I32": torch.int32,
  4811. # "U16": torch.uint16,
  4812. "I16": torch.int16,
  4813. "U8": torch.uint8,
  4814. "I8": torch.int8,
  4815. "BOOL": torch.bool,
  4816. "F8_E4M3": torch.float8_e4m3fn,
  4817. "F8_E5M2": torch.float8_e5m2,
  4818. }
  4819. def numpy(self) -> gguf.LazyNumpyTensor:
  4820. dtype = self._dtype_map[self.dtype]
  4821. return gguf.LazyNumpyTensor(
  4822. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4823. args=(self,),
  4824. func=(lambda s: s.numpy())
  4825. )
  4826. @classmethod
  4827. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4828. return torch.empty(size=shape, dtype=dtype, device="meta")
  4829. @classmethod
  4830. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4831. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4832. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4833. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4834. return cast(torch.Tensor, lazy)
  4835. @classmethod
  4836. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4837. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4838. shape = remote_tensor.shape
  4839. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4840. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4841. return cast(torch.Tensor, lazy)
  4842. @classmethod
  4843. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4844. del types # unused
  4845. if kwargs is None:
  4846. kwargs = {}
  4847. if func is torch.Tensor.numpy:
  4848. return args[0].numpy()
  4849. return cls._wrap_fn(func)(*args, **kwargs)
  4850. def parse_args() -> argparse.Namespace:
  4851. parser = argparse.ArgumentParser(
  4852. description="Convert a huggingface model to a GGML compatible file")
  4853. parser.add_argument(
  4854. "--vocab-only", action="store_true",
  4855. help="extract only the vocab",
  4856. )
  4857. parser.add_argument(
  4858. "--outfile", type=Path,
  4859. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4860. )
  4861. parser.add_argument(
  4862. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4863. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4864. )
  4865. parser.add_argument(
  4866. "--bigendian", action="store_true",
  4867. help="model is executed on big endian machine",
  4868. )
  4869. parser.add_argument(
  4870. "model", type=Path,
  4871. help="directory containing model file",
  4872. nargs="?",
  4873. )
  4874. parser.add_argument(
  4875. "--use-temp-file", action="store_true",
  4876. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4877. )
  4878. parser.add_argument(
  4879. "--no-lazy", action="store_true",
  4880. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4881. )
  4882. parser.add_argument(
  4883. "--model-name", type=str, default=None,
  4884. help="name of the model",
  4885. )
  4886. parser.add_argument(
  4887. "--verbose", action="store_true",
  4888. help="increase output verbosity",
  4889. )
  4890. parser.add_argument(
  4891. "--split-max-tensors", type=int, default=0,
  4892. help="max tensors in each split",
  4893. )
  4894. parser.add_argument(
  4895. "--split-max-size", type=str, default="0",
  4896. help="max size per split N(M|G)",
  4897. )
  4898. parser.add_argument(
  4899. "--dry-run", action="store_true",
  4900. help="only print out a split plan and exit, without writing any new files",
  4901. )
  4902. parser.add_argument(
  4903. "--no-tensor-first-split", action="store_true",
  4904. help="do not add tensors to the first split (disabled by default)"
  4905. )
  4906. parser.add_argument(
  4907. "--metadata", type=Path,
  4908. help="Specify the path for an authorship metadata override file"
  4909. )
  4910. parser.add_argument(
  4911. "--print-supported-models", action="store_true",
  4912. help="Print the supported models"
  4913. )
  4914. parser.add_argument(
  4915. "--remote", action="store_true",
  4916. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  4917. )
  4918. parser.add_argument(
  4919. "--mmproj", action="store_true",
  4920. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  4921. )
  4922. args = parser.parse_args()
  4923. if not args.print_supported_models and args.model is None:
  4924. parser.error("the following arguments are required: model")
  4925. return args
  4926. def split_str_to_n_bytes(split_str: str) -> int:
  4927. if split_str.endswith("K"):
  4928. n = int(split_str[:-1]) * 1000
  4929. elif split_str.endswith("M"):
  4930. n = int(split_str[:-1]) * 1000 * 1000
  4931. elif split_str.endswith("G"):
  4932. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4933. elif split_str.isnumeric():
  4934. n = int(split_str)
  4935. else:
  4936. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4937. if n < 0:
  4938. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4939. return n
  4940. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  4941. text_config = hparams.get("text_config", {})
  4942. vision_config = hparams.get("vision_config", {})
  4943. arch = hparams["architectures"][0]
  4944. # if "architectures" is found in the sub-config, use that instead
  4945. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  4946. arch = text_config["architectures"][0]
  4947. elif model_type == ModelType.VISION and vision_config.get("architectures") is not None:
  4948. arch = vision_config["architectures"][0]
  4949. return arch
  4950. def main() -> None:
  4951. args = parse_args()
  4952. if args.print_supported_models:
  4953. logger.error("Supported models:")
  4954. ModelBase.print_registered_models()
  4955. sys.exit(0)
  4956. if args.verbose:
  4957. logging.basicConfig(level=logging.DEBUG)
  4958. else:
  4959. logging.basicConfig(level=logging.INFO)
  4960. dir_model = args.model
  4961. if args.remote:
  4962. from huggingface_hub import snapshot_download
  4963. local_dir = snapshot_download(
  4964. repo_id=str(dir_model),
  4965. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  4966. dir_model = Path(local_dir)
  4967. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  4968. if not dir_model.is_dir():
  4969. logger.error(f'Error: {args.model} is not a directory')
  4970. sys.exit(1)
  4971. ftype_map: dict[str, gguf.LlamaFileType] = {
  4972. "f32": gguf.LlamaFileType.ALL_F32,
  4973. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4974. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4975. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4976. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4977. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4978. "auto": gguf.LlamaFileType.GUESSED,
  4979. }
  4980. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4981. if args.use_temp_file and is_split:
  4982. logger.error("Error: Cannot use temp file when splitting")
  4983. sys.exit(1)
  4984. if args.outfile is not None:
  4985. fname_out = args.outfile
  4986. elif args.remote:
  4987. # if remote, use the model ID as the output file name
  4988. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  4989. else:
  4990. fname_out = dir_model
  4991. logger.info(f"Loading model: {dir_model.name}")
  4992. if args.mmproj:
  4993. if "mmproj" not in fname_out.name:
  4994. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  4995. with torch.inference_mode():
  4996. output_type = ftype_map[args.outtype]
  4997. model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
  4998. hparams = ModelBase.load_hparams(dir_model)
  4999. model_architecture = get_model_architecture(hparams, model_type)
  5000. logger.info(f"Model architecture: {model_architecture}")
  5001. try:
  5002. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  5003. except NotImplementedError:
  5004. logger.error(f"Model {model_architecture} is not supported")
  5005. sys.exit(1)
  5006. model_instance = model_class(dir_model, output_type, fname_out,
  5007. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  5008. eager=args.no_lazy,
  5009. metadata_override=args.metadata, model_name=args.model_name,
  5010. split_max_tensors=args.split_max_tensors,
  5011. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  5012. small_first_shard=args.no_tensor_first_split,
  5013. remote_hf_model_id=str(args.model) if args.remote else None)
  5014. if args.vocab_only:
  5015. logger.info("Exporting model vocab...")
  5016. model_instance.write_vocab()
  5017. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  5018. else:
  5019. logger.info("Exporting model...")
  5020. model_instance.write()
  5021. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  5022. logger.info(f"Model successfully exported to {out_path}")
  5023. if __name__ == '__main__':
  5024. main()