| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 |
- #include "vec.h"
- #include <cassert>
- // precomputed gelu table for f16 (128 KB)
- ggml_fp16_t ggml_table_gelu_f16[1 << 16];
- // precomputed quick gelu table for f16 (128 KB)
- ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
- void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc) {
- assert(nrc == 1);
- GGML_UNUSED(nrc);
- GGML_UNUSED(bx);
- GGML_UNUSED(by);
- GGML_UNUSED(bs);
- #if defined(GGML_SIMD)
- float sumf = 0.0f;
- #if defined(__ARM_FEATURE_SVE)
- const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
- const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
- const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
- const int np = (n & ~(ggml_f32_step - 1));
- svfloat32_t sum1 = svdup_n_f32(0.0f);
- svfloat32_t sum2 = svdup_n_f32(0.0f);
- svfloat32_t sum3 = svdup_n_f32(0.0f);
- svfloat32_t sum4 = svdup_n_f32(0.0f);
- svfloat32_t sum5 = svdup_n_f32(0.0f);
- svfloat32_t sum6 = svdup_n_f32(0.0f);
- svfloat32_t sum7 = svdup_n_f32(0.0f);
- svfloat32_t sum8 = svdup_n_f32(0.0f);
- svfloat32_t ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8;
- svfloat32_t ay1,ay2,ay3,ay4,ay5,ay6,ay7,ay8;
- for (int i = 0; i < np; i += ggml_f32_step) {
- ax1 = GGML_F32_VEC_LOAD(x + i);
- ay1 = GGML_F32_VEC_LOAD(y + i);
- sum1 = GGML_F32_VEC_FMA(sum1, ax1, ay1);
- ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
- ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
- sum2 = GGML_F32_VEC_FMA(sum2, ax2, ay2);
- ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
- ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
- sum3 = GGML_F32_VEC_FMA(sum3, ax3, ay3);
- ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
- ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
- sum4 = GGML_F32_VEC_FMA(sum4, ax4, ay4);
- ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
- ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
- sum5 = GGML_F32_VEC_FMA(sum5, ax5, ay5);
- ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
- ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
- sum6 = GGML_F32_VEC_FMA(sum6, ax6, ay6);
- ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
- ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
- sum7 = GGML_F32_VEC_FMA(sum7, ax7, ay7);
- ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
- ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
- sum8 = GGML_F32_VEC_FMA(sum8, ax8, ay8);
- }
- // leftovers
- // Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
- const int np2 = (n & ~(ggml_f32_epr - 1));
- for (int i = np; i < np2; i += ggml_f32_epr) {
- ax1 = GGML_F32_VEC_LOAD(x + i);
- ay1 = GGML_F32_VEC_LOAD(y + i);
- sum1 = GGML_F32_VEC_FMA(sum1, ax1, ay1);
- }
- // maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
- if (np2 < n) {
- svbool_t pg = svwhilelt_b32(np2, n);
- ax1 = svld1_f32(pg, x + np2);
- ay1 = svld1_f32(pg, y + np2);
- sum1 = svmad_f32_m(pg, ax1, ay1, sum1);
- }
- // reduce sum1,sum2 to sum1
- GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
- #elif defined(__riscv_v_intrinsic)
- int vl = __riscv_vsetvlmax_e32m8();
- vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);
- vfloat32m8_t vsum;
- vfloat32m8_t ax;
- vfloat32m8_t ay;
- vsum = __riscv_vfmv_v_f_f32m8_tu(vsum, 0.0f, vl);
- for (int i = 0; i < n; i += vl) {
- vl = __riscv_vsetvl_e32m8(n - i);
- ax = __riscv_vle32_v_f32m8_tu(ax, &x[i], vl);
- ay = __riscv_vle32_v_f32m8_tu(ay, &y[i], vl);
- vsum = __riscv_vfmacc_vv_f32m8_tu(vsum, ax, ay, vl);
- }
- vl = __riscv_vsetvlmax_e32m8();
- vs = __riscv_vfredusum_vs_f32m8_f32m1(vsum, vs, vl);
- sumf += __riscv_vfmv_f_s_f32m1_f32(vs);
- #else
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
- // reduce sum0..sum3 to sum0
- GGML_F32_VEC_REDUCE(sumf, sum);
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += x[i]*y[i];
- }
- #endif
- #else
- // scalar
- ggml_float sumf = 0.0;
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(x[i]*y[i]);
- }
- #endif
- *s = sumf;
- }
- void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc) {
- assert(nrc == 1);
- GGML_UNUSED(nrc);
- GGML_UNUSED(bx);
- GGML_UNUSED(by);
- GGML_UNUSED(bs);
- int i = 0;
- ggml_float sumf = 0;
- #if defined(__AVX512BF16__)
- __m512 c1 = _mm512_setzero_ps();
- __m512 c2 = _mm512_setzero_ps();
- for (; i + 64 <= n; i += 64) {
- c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
- m512bh(_mm512_loadu_si512((y + i))));
- c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
- m512bh(_mm512_loadu_si512((y + i + 32))));
- }
- sumf += (ggml_float)_mm512_reduce_add_ps(c1);
- sumf += (ggml_float)_mm512_reduce_add_ps(c2);
- #elif defined(__AVX512F__)
- #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
- __m512 c1 = _mm512_setzero_ps();
- __m512 c2 = _mm512_setzero_ps();
- for (; i + 32 <= n; i += 32) {
- c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
- c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
- }
- sumf += (ggml_float)_mm512_reduce_add_ps(c1);
- sumf += (ggml_float)_mm512_reduce_add_ps(c2);
- #undef LOAD
- #elif defined(__AVX2__) || defined(__AVX__)
- #if defined(__AVX2__)
- #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
- #else
- #define LOAD(p) _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)), (_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_bsrli_si128(_mm_loadu_si128((const __m128i *)(p)), 8)), 16)), 1))
- #endif
- __m256 c1 = _mm256_setzero_ps();
- __m256 c2 = _mm256_setzero_ps();
- __m256 c3 = _mm256_setzero_ps();
- __m256 c4 = _mm256_setzero_ps();
- for (; i + 32 <= n; i += 32) {
- c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
- c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
- c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
- c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
- }
- __m128 g;
- c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
- _mm256_add_ps(c2, c4));
- g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
- _mm256_castps256_ps128(c1));
- g = _mm_add_ps(g, _mm_movehl_ps(g, g));
- g = _mm_add_ss(g, _mm_movehdup_ps(g));
- sumf += (ggml_float)_mm_cvtss_f32(g);
- #undef LOAD
- #endif
- for (; i < n; ++i) {
- sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
- GGML_BF16_TO_FP32(y[i]));
- }
- *s = sumf;
- }
- void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc) {
- assert(nrc == 1);
- GGML_UNUSED(nrc);
- GGML_UNUSED(bx);
- GGML_UNUSED(by);
- GGML_UNUSED(bs);
- ggml_float sumf = 0.0;
- #if defined(GGML_SIMD)
- #if defined(__ARM_FEATURE_SVE)
- const int sve_register_length = svcntb() * 8; //get vector length
- const int ggml_f16_epr = sve_register_length / 16; // running when 16
- const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers
- const int np= (n & ~(ggml_f16_step - 1));
- svfloat16_t sum1 = svdup_n_f16(0.0f);
- svfloat16_t sum2 = svdup_n_f16(0.0f);
- svfloat16_t sum3 = svdup_n_f16(0.0f);
- svfloat16_t sum4 = svdup_n_f16(0.0f);
- svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
- svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
- for (int i = 0; i < np; i += ggml_f16_step) {
- ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
- ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
- sum1 = GGML_F16x_VEC_FMA(sum1, ax1, ay1);
- ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
- ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
- sum2 = GGML_F16x_VEC_FMA(sum2, ax2, ay2);
- ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
- ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
- sum3 = GGML_F16x_VEC_FMA(sum3, ax3, ay3);
- ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
- ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
- sum4 = GGML_F16x_VEC_FMA(sum4, ax4, ay4);
- ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
- ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
- sum1 = GGML_F16x_VEC_FMA(sum1, ax5, ay5);
- ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
- ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
- sum2 = GGML_F16x_VEC_FMA(sum2, ax6, ay6);
- ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
- ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
- sum3 = GGML_F16x_VEC_FMA(sum3, ax7, ay7);
- ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
- ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
- sum4 = GGML_F16x_VEC_FMA(sum4, ax8, ay8);
- }
- const int np2 = (n & ~(ggml_f16_epr - 1)); // round down to multiple of 8
- for (int k = np; k < np2; k += ggml_f16_epr) {
- svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
- svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
- sum1 = GGML_F16x_VEC_FMA(sum1, rx, ry);
- }
- if (np2 < n) {
- svbool_t pg = svwhilelt_b16(np2, n);
- svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
- svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
- sum1 = svmad_f16_x(pg, hx, hy, sum1);
- }
- GGML_F16x_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4);
- #elif defined(__riscv_v_intrinsic)
- #if defined(__riscv_zvfh)
- int vl = __riscv_vsetvlmax_e32m2();
- vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);
- vfloat32m2_t vsum;
- vfloat16m1_t ax;
- vfloat16m1_t ay;
- vsum = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vmv_v_x_u32m2(0, vl));
- for (int i = 0; i < n; i += vl) {
- vl = __riscv_vsetvl_e16m1(n - i);
- ax = __riscv_vle16_v_f16m1_tu(ax, (const _Float16 *)&x[i], vl);
- ay = __riscv_vle16_v_f16m1_tu(ay, (const _Float16 *)&y[i], vl);
- vsum = __riscv_vfwmacc_vv_f32m2_tu(vsum, ax, ay, vl);
- }
- vl = __riscv_vsetvlmax_e32m1();
- vfloat32m1_t ac0 = __riscv_vfadd_vv_f32m1(__riscv_vget_v_f32m2_f32m1(vsum, 0), __riscv_vget_v_f32m2_f32m1(vsum, 1), vl);
- vs = __riscv_vfredusum_vs_f32m1_f32m1(ac0, vs, vl);
- sumf += __riscv_vfmv_f_s_f32m1_f32(vs);
- #else
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
- }
- #endif // __riscv_zvfh
- #else
- const int np = (n & ~(GGML_F16_STEP - 1));
- GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
- // reduce sum0..sum3 to sum0
- GGML_F16_VEC_REDUCE(sumf, sum);
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
- }
- // if you hit this, you are likely running outside the FP range
- assert(!isnan(sumf) && !isinf(sumf));
- #endif
- #else
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
- }
- #endif // GGML_SIMD
- *s = sumf;
- }
- void ggml_vec_silu_f32(const int n, float * y, const float * x) {
- int i = 0;
- #if defined(__AVX512F__) && defined(__AVX512DQ__)
- for (; i + 15 < n; i += 16) {
- _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
- }
- #elif defined(__AVX2__) && defined(__FMA__)
- for (; i + 7 < n; i += 8) {
- _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
- }
- #elif defined(__SSE2__)
- for (; i + 3 < n; i += 4) {
- _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
- }
- #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
- const int vlen = svcntw();
- for (; i < n; i += vlen) {
- const svbool_t pg = svwhilelt_b32_s32(i, n);
- svst1_f32(pg, y + i, ggml_v_silu(pg, svld1_f32(pg, x + i)));
- }
- #elif defined(__ARM_NEON) && defined(__aarch64__)
- for (; i + 3 < n; i += 4) {
- vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
- }
- #endif
- for (; i < n; ++i) {
- y[i] = ggml_silu_f32(x[i]);
- }
- }
- void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float * g) {
- int i = 0;
- #if defined(__AVX512F__) && defined(__AVX512DQ__)
- for (; i + 15 < n; i += 16) {
- _mm512_storeu_ps(y + i, _mm512_mul_ps(ggml_v_silu(_mm512_loadu_ps(x + i)), _mm512_loadu_ps(g + i)));
- }
- #elif defined(__AVX2__) && defined(__FMA__)
- for (; i + 7 < n; i += 8) {
- _mm256_storeu_ps(y + i, _mm256_mul_ps(ggml_v_silu(_mm256_loadu_ps(x + i)), _mm256_loadu_ps(g + i)));
- }
- #elif defined(__SSE2__)
- for (; i + 3 < n; i += 4) {
- _mm_storeu_ps(y + i, _mm_mul_ps(ggml_v_silu(_mm_loadu_ps(x + i)), _mm_loadu_ps(g + i)));
- }
- #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
- const int vlen = svcntw();
- for (; i < n; i += vlen) {
- const svbool_t pg = svwhilelt_b32_s32(i, n);
- svst1_f32(pg, y + i, svmul_f32_x(pg, ggml_v_silu(pg, svld1_f32(pg, x + i)), svld1_f32(pg, g + i)));
- }
- #elif defined(__ARM_NEON) && defined(__aarch64__)
- for (; i + 3 < n; i += 4) {
- vst1q_f32(y + i, vmulq_f32(ggml_v_silu(vld1q_f32(x + i)), vld1q_f32(g + i)));
- }
- #elif defined(__riscv_v_intrinsic)
- for (int vl; i < n; i += vl) {
- vl = __riscv_vsetvl_e32m2(n - i);
- vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl);
- vfloat32m2_t vg = __riscv_vle32_v_f32m2(&g[i], vl);
- vfloat32m2_t vy = __riscv_vfmul_vv_f32m2(ggml_v_silu_m2(vx, vl), vg, vl);
- __riscv_vse32_v_f32m2(&y[i], vy, vl);
- }
- #endif
- for (; i < n; ++i) {
- y[i] = ggml_silu_f32(x[i]) * g[i];
- }
- }
- ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
- int i = 0;
- ggml_float sum = 0;
- #if defined(__AVX512F__) && defined(__AVX512DQ__)
- for (; i + 15 < n; i += 16) {
- __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
- _mm512_set1_ps(max)));
- _mm512_storeu_ps(y + i, val);
- sum += (ggml_float)_mm512_reduce_add_ps(val);
- }
- #elif defined(__AVX2__) && defined(__FMA__)
- for (; i + 7 < n; i += 8) {
- __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
- _mm256_set1_ps(max)));
- _mm256_storeu_ps(y + i, val);
- __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
- _mm256_castps256_ps128(val));
- val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
- val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
- sum += (ggml_float)_mm_cvtss_f32(val2);
- }
- #elif defined(__SSE2__)
- for (; i + 3 < n; i += 4) {
- __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
- _mm_set1_ps(max)));
- _mm_storeu_ps(y + i, val);
- #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
- val = _mm_add_ps(val, _mm_movehl_ps(val, val));
- val = _mm_add_ss(val, _mm_movehdup_ps(val));
- #else
- __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
- val = _mm_add_ps(val, tmp);
- tmp = _mm_movehl_ps(tmp, val);
- val = _mm_add_ss(val, tmp);
- #endif
- sum += (ggml_float)_mm_cvtss_f32(val);
- }
- #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
- const int vlen = svcntw();
- for (; i < n; i += vlen) {
- const svbool_t pg = svwhilelt_b32_s32(i, n);
- svfloat32_t val = ggml_v_expf(pg, svsub_f32_x(pg, svld1_f32(pg, x + i),
- svdup_n_f32_x(pg, max)));
- svst1_f32(pg, y + i, val);
- sum += (ggml_float)svaddv_f32(pg, val);
- }
- #elif defined(__ARM_NEON) && defined(__aarch64__)
- for (; i + 3 < n; i += 4) {
- float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
- vdupq_n_f32(max)));
- vst1q_f32(y + i, val);
- sum += (ggml_float)vaddvq_f32(val);
- }
- #elif defined(__riscv_v_intrinsic)
- vfloat64m1_t vsum = __riscv_vfmv_v_f_f64m1(0, 1);
- for (int avl; i < n; i += avl) {
- avl = __riscv_vsetvl_e32m2(n - i);
- vfloat32m2_t val = ggml_v_expf_m2(__riscv_vfsub_vf_f32m2(__riscv_vle32_v_f32m2(&x[i], avl), max, avl), avl);
- __riscv_vse32_v_f32m2(&y[i], val, avl);
- vsum = __riscv_vfwredusum_vs_f32m2_f64m1(val, vsum, avl);
- }
- return (ggml_float)__riscv_vfmv_f_s_f64m1_f64(vsum);
- #endif
- for (; i < n; ++i) {
- float val = expf(x[i] - max);
- sum += (ggml_float)val;
- y[i] = val;
- }
- return sum;
- }
- ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
- // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
- int i = 0;
- ggml_float sum = 0;
- for (; i < n; ++i) {
- float val = x[i] - max;
- y[i] = val;
- sum += (ggml_float)expf(val);
- }
- return sum = (ggml_float)logf(sum);
- }
|