server.cpp 155 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (update with ./deps.sh)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <condition_variable>
  19. #include <cstddef>
  20. #include <cinttypes>
  21. #include <deque>
  22. #include <memory>
  23. #include <mutex>
  24. #include <signal.h>
  25. #include <thread>
  26. #include <unordered_map>
  27. #include <unordered_set>
  28. using json = nlohmann::ordered_json;
  29. enum stop_type {
  30. STOP_TYPE_NONE,
  31. STOP_TYPE_EOS,
  32. STOP_TYPE_WORD,
  33. STOP_TYPE_LIMIT,
  34. };
  35. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  36. enum slot_state {
  37. SLOT_STATE_IDLE,
  38. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  39. SLOT_STATE_PROCESSING_PROMPT,
  40. SLOT_STATE_DONE_PROMPT,
  41. SLOT_STATE_GENERATING,
  42. };
  43. enum server_state {
  44. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  45. SERVER_STATE_READY, // Server is ready and model is loaded
  46. };
  47. enum server_task_type {
  48. SERVER_TASK_TYPE_COMPLETION,
  49. SERVER_TASK_TYPE_EMBEDDING,
  50. SERVER_TASK_TYPE_RERANK,
  51. SERVER_TASK_TYPE_INFILL,
  52. SERVER_TASK_TYPE_CANCEL,
  53. SERVER_TASK_TYPE_NEXT_RESPONSE,
  54. SERVER_TASK_TYPE_METRICS,
  55. SERVER_TASK_TYPE_SLOT_SAVE,
  56. SERVER_TASK_TYPE_SLOT_RESTORE,
  57. SERVER_TASK_TYPE_SLOT_ERASE,
  58. SERVER_TASK_TYPE_SET_LORA,
  59. };
  60. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  61. enum error_type {
  62. ERROR_TYPE_INVALID_REQUEST,
  63. ERROR_TYPE_AUTHENTICATION,
  64. ERROR_TYPE_SERVER,
  65. ERROR_TYPE_NOT_FOUND,
  66. ERROR_TYPE_PERMISSION,
  67. ERROR_TYPE_UNAVAILABLE, // custom error
  68. ERROR_TYPE_NOT_SUPPORTED, // custom error
  69. };
  70. struct slot_params {
  71. bool stream = true;
  72. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  73. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  74. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  75. int32_t n_predict = -1; // new tokens to predict
  76. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  77. int64_t t_max_prompt_ms = -1; // TODO: implement
  78. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  79. std::vector<std::string> antiprompt;
  80. bool timings_per_token = false;
  81. bool ignore_eos = false;
  82. struct common_params_sampling sampling;
  83. struct common_params_speculative speculative;
  84. // OAI-compat fields
  85. bool verbose = false;
  86. bool oaicompat = false;
  87. bool oaicompat_chat = true;
  88. std::string oaicompat_model;
  89. std::string oaicompat_cmpl_id;
  90. json to_json() const {
  91. std::vector<std::string> samplers;
  92. samplers.reserve(sampling.samplers.size());
  93. for (const auto & sampler : sampling.samplers) {
  94. samplers.emplace_back(common_sampler_type_to_str(sampler));
  95. }
  96. return json {
  97. {"n_predict", n_predict}, // Server configured n_predict
  98. {"seed", sampling.seed},
  99. {"temperature", sampling.temp},
  100. {"dynatemp_range", sampling.dynatemp_range},
  101. {"dynatemp_exponent", sampling.dynatemp_exponent},
  102. {"top_k", sampling.top_k},
  103. {"top_p", sampling.top_p},
  104. {"min_p", sampling.min_p},
  105. {"xtc_probability", sampling.xtc_probability},
  106. {"xtc_threshold", sampling.xtc_threshold},
  107. {"typical_p", sampling.typ_p},
  108. {"repeat_last_n", sampling.penalty_last_n},
  109. {"repeat_penalty", sampling.penalty_repeat},
  110. {"presence_penalty", sampling.penalty_present},
  111. {"frequency_penalty", sampling.penalty_freq},
  112. {"dry_multiplier", sampling.dry_multiplier},
  113. {"dry_base", sampling.dry_base},
  114. {"dry_allowed_length", sampling.dry_allowed_length},
  115. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  116. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  117. {"mirostat", sampling.mirostat},
  118. {"mirostat_tau", sampling.mirostat_tau},
  119. {"mirostat_eta", sampling.mirostat_eta},
  120. {"stop", antiprompt},
  121. {"max_tokens", n_predict}, // User configured n_predict
  122. {"n_keep", n_keep},
  123. {"n_discard", n_discard},
  124. {"ignore_eos", sampling.ignore_eos},
  125. {"stream", stream},
  126. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  127. {"n_probs", sampling.n_probs},
  128. {"min_keep", sampling.min_keep},
  129. {"grammar", sampling.grammar},
  130. {"samplers", samplers},
  131. {"speculative.n_max", speculative.n_max},
  132. {"speculative.n_min", speculative.n_min},
  133. {"speculative.p_min", speculative.p_min},
  134. {"timings_per_token", timings_per_token},
  135. };
  136. }
  137. };
  138. struct server_task {
  139. int id = -1; // to be filled by server_queue
  140. int index = -1; // used when there are multiple prompts (batch request)
  141. server_task_type type;
  142. // used by SERVER_TASK_TYPE_CANCEL
  143. int id_target = -1;
  144. // used by SERVER_TASK_TYPE_INFERENCE
  145. slot_params params;
  146. llama_tokens prompt_tokens;
  147. int id_selected_slot = -1;
  148. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  149. struct slot_action {
  150. int slot_id;
  151. std::string filename;
  152. std::string filepath;
  153. };
  154. slot_action slot_action;
  155. // used by SERVER_TASK_TYPE_METRICS
  156. bool metrics_reset_bucket = false;
  157. server_task(server_task_type type) : type(type) {}
  158. static slot_params params_from_json_cmpl(
  159. const llama_model * model,
  160. const llama_context * ctx,
  161. const common_params & params_base,
  162. const json & data) {
  163. slot_params params;
  164. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  165. slot_params defaults;
  166. defaults.sampling = params_base.sampling;
  167. defaults.speculative = params_base.speculative;
  168. // enabling this will output extra debug information in the HTTP responses from the server
  169. params.verbose = params_base.verbosity > 9;
  170. params.timings_per_token = json_value(data, "timings_per_token", false);
  171. params.stream = json_value(data, "stream", false);
  172. params.cache_prompt = json_value(data, "cache_prompt", true);
  173. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  174. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  175. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  176. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  177. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  178. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  179. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  180. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  181. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  182. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  183. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  184. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  185. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  186. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  187. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  188. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  189. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  190. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  191. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  192. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  193. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  194. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  195. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  196. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  197. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  198. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  199. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  200. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  201. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  202. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  203. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  204. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  205. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  206. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  207. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  208. // TODO: add more sanity checks for the input parameters
  209. if (params.sampling.penalty_last_n < -1) {
  210. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  211. }
  212. if (params.sampling.dry_penalty_last_n < -1) {
  213. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  214. }
  215. if (params.sampling.penalty_last_n == -1) {
  216. // note: should be the slot's context and not the full context, but it's ok
  217. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  218. }
  219. if (params.sampling.dry_penalty_last_n == -1) {
  220. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  221. }
  222. if (params.sampling.dry_base < 1.0f) {
  223. params.sampling.dry_base = defaults.sampling.dry_base;
  224. }
  225. // sequence breakers for DRY
  226. {
  227. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  228. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  229. if (data.contains("dry_sequence_breakers")) {
  230. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  231. if (params.sampling.dry_sequence_breakers.empty()) {
  232. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  233. }
  234. }
  235. }
  236. // process "json_schema" and "grammar"
  237. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  238. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  239. }
  240. if (data.contains("json_schema") && !data.contains("grammar")) {
  241. try {
  242. auto schema = json_value(data, "json_schema", json::object());
  243. params.sampling.grammar = json_schema_to_grammar(schema);
  244. } catch (const std::exception & e) {
  245. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  246. }
  247. } else {
  248. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  249. }
  250. {
  251. params.sampling.logit_bias.clear();
  252. params.ignore_eos = json_value(data, "ignore_eos", false);
  253. const auto & logit_bias = data.find("logit_bias");
  254. if (logit_bias != data.end() && logit_bias->is_array()) {
  255. const int n_vocab = llama_n_vocab(model);
  256. for (const auto & el : *logit_bias) {
  257. // TODO: we may want to throw errors here, in case "el" is incorrect
  258. if (el.is_array() && el.size() == 2) {
  259. float bias;
  260. if (el[1].is_number()) {
  261. bias = el[1].get<float>();
  262. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  263. bias = -INFINITY;
  264. } else {
  265. continue;
  266. }
  267. if (el[0].is_number_integer()) {
  268. llama_token tok = el[0].get<llama_token>();
  269. if (tok >= 0 && tok < n_vocab) {
  270. params.sampling.logit_bias.push_back({tok, bias});
  271. }
  272. } else if (el[0].is_string()) {
  273. auto toks = common_tokenize(model, el[0].get<std::string>(), false);
  274. for (auto tok : toks) {
  275. params.sampling.logit_bias.push_back({tok, bias});
  276. }
  277. }
  278. }
  279. }
  280. }
  281. }
  282. {
  283. params.antiprompt.clear();
  284. const auto & stop = data.find("stop");
  285. if (stop != data.end() && stop->is_array()) {
  286. for (const auto & word : *stop) {
  287. if (!word.empty()) {
  288. params.antiprompt.push_back(word);
  289. }
  290. }
  291. }
  292. }
  293. {
  294. const auto & samplers = data.find("samplers");
  295. if (samplers != data.end()) {
  296. if (samplers->is_array()) {
  297. std::vector<std::string> sampler_names;
  298. for (const auto & name : *samplers) {
  299. if (name.is_string()) {
  300. sampler_names.emplace_back(name);
  301. }
  302. }
  303. params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
  304. } else if (samplers->is_string()){
  305. std::string sampler_string;
  306. for (const auto & name : *samplers) {
  307. sampler_string += name;
  308. }
  309. params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
  310. }
  311. } else {
  312. params.sampling.samplers = defaults.sampling.samplers;
  313. }
  314. }
  315. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  316. params.oaicompat_model = json_value(data, "model", model_name);
  317. return params;
  318. }
  319. // utility function
  320. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  321. std::unordered_set<int> ids(tasks.size());
  322. for (size_t i = 0; i < tasks.size(); i++) {
  323. ids.insert(tasks[i].id);
  324. }
  325. return ids;
  326. }
  327. };
  328. struct result_timings {
  329. int32_t prompt_n = -1;
  330. double prompt_ms;
  331. double prompt_per_token_ms;
  332. double prompt_per_second;
  333. int32_t predicted_n = -1;
  334. double predicted_ms;
  335. double predicted_per_token_ms;
  336. double predicted_per_second;
  337. json to_json() const {
  338. return {
  339. {"prompt_n", prompt_n},
  340. {"prompt_ms", prompt_ms},
  341. {"prompt_per_token_ms", prompt_per_token_ms},
  342. {"prompt_per_second", prompt_per_second},
  343. {"predicted_n", predicted_n},
  344. {"predicted_ms", predicted_ms},
  345. {"predicted_per_token_ms", predicted_per_token_ms},
  346. {"predicted_per_second", predicted_per_second},
  347. };
  348. }
  349. };
  350. struct server_task_result {
  351. int id = -1;
  352. int id_slot = -1;
  353. virtual bool is_error() {
  354. // only used by server_task_result_error
  355. return false;
  356. }
  357. virtual bool is_stop() {
  358. // only used by server_task_result_cmpl_*
  359. return false;
  360. }
  361. virtual int get_index() {
  362. return -1;
  363. }
  364. virtual json to_json() = 0;
  365. virtual ~server_task_result() = default;
  366. };
  367. // using shared_ptr for polymorphism of server_task_result
  368. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  369. inline std::string stop_type_to_str(stop_type type) {
  370. switch (type) {
  371. case STOP_TYPE_EOS: return "eos";
  372. case STOP_TYPE_WORD: return "word";
  373. case STOP_TYPE_LIMIT: return "limit";
  374. default: return "none";
  375. }
  376. }
  377. struct completion_token_output {
  378. llama_token tok;
  379. std::string text_to_send;
  380. struct token_prob {
  381. llama_token tok;
  382. std::string tok_str;
  383. float prob;
  384. };
  385. std::vector<token_prob> probs;
  386. json to_json() const {
  387. json probs_for_token = json::array();
  388. for (const auto & p : probs) {
  389. probs_for_token.push_back(json {
  390. {"tok_str", p.tok_str},
  391. {"prob", p.prob},
  392. });
  393. }
  394. return probs_for_token;
  395. }
  396. static json probs_vector_to_json(const std::vector<completion_token_output> & probs) {
  397. json out = json::array();
  398. for (const auto & prob : probs) {
  399. const std::string tok_str = prob.text_to_send;
  400. out.push_back(json {
  401. {"content", tok_str},
  402. {"probs", prob.to_json()},
  403. });
  404. }
  405. return out;
  406. }
  407. };
  408. struct server_task_result_cmpl_final : server_task_result {
  409. int index = 0;
  410. std::string content;
  411. bool stream;
  412. result_timings timings;
  413. std::string prompt;
  414. bool truncated;
  415. int32_t n_decoded;
  416. int32_t n_prompt_tokens;
  417. int32_t n_tokens_cached;
  418. bool has_new_line;
  419. std::string stopping_word;
  420. stop_type stop = STOP_TYPE_NONE;
  421. std::vector<completion_token_output> probs_output;
  422. slot_params generation_params;
  423. // OAI-compat fields
  424. bool verbose = false;
  425. bool oaicompat = false;
  426. bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
  427. std::string oaicompat_model;
  428. std::string oaicompat_cmpl_id;
  429. virtual int get_index() override {
  430. return index;
  431. }
  432. virtual bool is_stop() override {
  433. return true; // in stream mode, final responses are considered stop
  434. }
  435. virtual json to_json() override {
  436. return oaicompat
  437. ? (stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat())
  438. : to_json_non_oaicompat();
  439. }
  440. json to_json_non_oaicompat() {
  441. json res = json {
  442. {"index", index},
  443. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  444. {"id_slot", id_slot},
  445. {"stop", true},
  446. {"model", oaicompat_model},
  447. {"tokens_predicted", n_decoded},
  448. {"tokens_evaluated", n_prompt_tokens},
  449. {"generation_settings", generation_params.to_json()},
  450. {"prompt", prompt},
  451. {"has_new_line", has_new_line},
  452. {"truncated", truncated},
  453. {"stop_type", stop_type_to_str(stop)},
  454. {"stopping_word", stopping_word},
  455. {"tokens_cached", n_tokens_cached},
  456. {"timings", timings.to_json()},
  457. };
  458. if (!probs_output.empty()) {
  459. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output);
  460. }
  461. return res;
  462. }
  463. json to_json_oaicompat_chat() {
  464. std::string finish_reason = "length";
  465. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  466. finish_reason = "stop";
  467. }
  468. json choices = json::array({json{
  469. {"finish_reason", finish_reason},
  470. {"index", 0},
  471. {"message", json{
  472. {"content", content},
  473. {"role", "assistant"}
  474. }
  475. }}});
  476. std::time_t t = std::time(0);
  477. json res = json {
  478. {"choices", choices},
  479. {"created", t},
  480. {"model", oaicompat_model},
  481. {"object", "chat.completion"},
  482. {"usage", json {
  483. {"completion_tokens", n_decoded},
  484. {"prompt_tokens", n_prompt_tokens},
  485. {"total_tokens", n_decoded + n_prompt_tokens}
  486. }},
  487. {"id", oaicompat_cmpl_id}
  488. };
  489. // extra fields for debugging purposes
  490. if (verbose) {
  491. res["__verbose"] = to_json_non_oaicompat();
  492. }
  493. if (timings.prompt_n >= 0) {
  494. res.push_back({"timings", timings.to_json()});
  495. }
  496. return res;
  497. }
  498. json to_json_oaicompat_chat_stream() {
  499. std::time_t t = std::time(0);
  500. std::string finish_reason = "length";
  501. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  502. finish_reason = "stop";
  503. }
  504. json choices = json::array({json{{"finish_reason", finish_reason},
  505. {"index", 0},
  506. {"delta", json::object()}}});
  507. json ret = json {
  508. {"choices", choices},
  509. {"created", t},
  510. {"id", oaicompat_cmpl_id},
  511. {"model", oaicompat_model},
  512. {"object", "chat.completion.chunk"},
  513. {"usage", json {
  514. {"completion_tokens", n_decoded},
  515. {"prompt_tokens", n_prompt_tokens},
  516. {"total_tokens", n_decoded + n_prompt_tokens},
  517. }},
  518. };
  519. if (timings.prompt_n >= 0) {
  520. ret.push_back({"timings", timings.to_json()});
  521. }
  522. return ret;
  523. }
  524. };
  525. struct server_task_result_cmpl_partial : server_task_result {
  526. int index = 0;
  527. std::string content;
  528. int32_t n_decoded;
  529. int32_t n_prompt_tokens;
  530. std::vector<completion_token_output> probs_output;
  531. result_timings timings;
  532. // OAI-compat fields
  533. bool verbose = false;
  534. bool oaicompat = false;
  535. bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
  536. std::string oaicompat_model;
  537. std::string oaicompat_cmpl_id;
  538. virtual int get_index() override {
  539. return index;
  540. }
  541. virtual bool is_stop() override {
  542. return false; // in stream mode, partial responses are not considered stop
  543. }
  544. virtual json to_json() override {
  545. return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat();
  546. }
  547. json to_json_non_oaicompat() {
  548. // non-OAI-compat JSON
  549. json res = json {
  550. {"index", index},
  551. {"content", content},
  552. {"stop", false},
  553. {"id_slot", id_slot},
  554. {"tokens_predicted", n_decoded},
  555. {"tokens_evaluated", n_prompt_tokens},
  556. };
  557. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  558. if (timings.prompt_n > 0) {
  559. res.push_back({"timings", timings.to_json()});
  560. }
  561. if (!probs_output.empty()) {
  562. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output);
  563. }
  564. return res;
  565. }
  566. json to_json_oaicompat() {
  567. bool first = n_decoded == 0;
  568. std::time_t t = std::time(0);
  569. json choices;
  570. if (first) {
  571. if (content.empty()) {
  572. choices = json::array({json{{"finish_reason", nullptr},
  573. {"index", 0},
  574. {"delta", json{{"role", "assistant"}}}}});
  575. } else {
  576. // We have to send this as two updates to conform to openai behavior
  577. json initial_ret = json{{"choices", json::array({json{
  578. {"finish_reason", nullptr},
  579. {"index", 0},
  580. {"delta", json{
  581. {"role", "assistant"}
  582. }}}})},
  583. {"created", t},
  584. {"id", oaicompat_cmpl_id},
  585. {"model", oaicompat_model},
  586. {"object", "chat.completion.chunk"}};
  587. json second_ret = json{
  588. {"choices", json::array({json{{"finish_reason", nullptr},
  589. {"index", 0},
  590. {"delta", json{
  591. {"content", content}}}
  592. }})},
  593. {"created", t},
  594. {"id", oaicompat_cmpl_id},
  595. {"model", oaicompat_model},
  596. {"object", "chat.completion.chunk"}};
  597. return std::vector<json>({initial_ret, second_ret});
  598. }
  599. } else {
  600. choices = json::array({json{
  601. {"finish_reason", nullptr},
  602. {"index", 0},
  603. {"delta",
  604. json{
  605. {"content", content},
  606. }},
  607. }});
  608. }
  609. json ret = json {
  610. {"choices", choices},
  611. {"created", t},
  612. {"id", oaicompat_cmpl_id},
  613. {"model", oaicompat_model},
  614. {"object", "chat.completion.chunk"}
  615. };
  616. if (timings.prompt_n >= 0) {
  617. ret.push_back({"timings", timings.to_json()});
  618. }
  619. return std::vector<json>({ret});
  620. }
  621. };
  622. struct server_task_result_embd : server_task_result {
  623. int index = 0;
  624. std::vector<float> embedding;
  625. int32_t n_tokens;
  626. virtual int get_index() override {
  627. return index;
  628. }
  629. virtual json to_json() override {
  630. return json {
  631. {"index", index},
  632. {"embedding", embedding},
  633. {"tokens_evaluated", n_tokens},
  634. };
  635. }
  636. };
  637. struct server_task_result_rerank : server_task_result {
  638. int index = 0;
  639. float score = -1e6;
  640. int32_t n_tokens;
  641. virtual int get_index() override {
  642. return index;
  643. }
  644. virtual json to_json() override {
  645. return json {
  646. {"index", index},
  647. {"score", score},
  648. {"tokens_evaluated", n_tokens},
  649. };
  650. }
  651. };
  652. // this function maybe used outside of server_task_result_error
  653. static json format_error_response(const std::string & message, const enum error_type type) {
  654. std::string type_str;
  655. int code = 500;
  656. switch (type) {
  657. case ERROR_TYPE_INVALID_REQUEST:
  658. type_str = "invalid_request_error";
  659. code = 400;
  660. break;
  661. case ERROR_TYPE_AUTHENTICATION:
  662. type_str = "authentication_error";
  663. code = 401;
  664. break;
  665. case ERROR_TYPE_NOT_FOUND:
  666. type_str = "not_found_error";
  667. code = 404;
  668. break;
  669. case ERROR_TYPE_SERVER:
  670. type_str = "server_error";
  671. code = 500;
  672. break;
  673. case ERROR_TYPE_PERMISSION:
  674. type_str = "permission_error";
  675. code = 403;
  676. break;
  677. case ERROR_TYPE_NOT_SUPPORTED:
  678. type_str = "not_supported_error";
  679. code = 501;
  680. break;
  681. case ERROR_TYPE_UNAVAILABLE:
  682. type_str = "unavailable_error";
  683. code = 503;
  684. break;
  685. }
  686. return json {
  687. {"code", code},
  688. {"message", message},
  689. {"type", type_str},
  690. };
  691. }
  692. struct server_task_result_error : server_task_result {
  693. int index = 0;
  694. error_type err_type = ERROR_TYPE_SERVER;
  695. std::string err_msg;
  696. virtual bool is_error() override {
  697. return true;
  698. }
  699. virtual json to_json() override {
  700. return format_error_response(err_msg, err_type);
  701. }
  702. };
  703. struct server_task_result_metrics : server_task_result {
  704. int n_idle_slots;
  705. int n_processing_slots;
  706. int n_tasks_deferred;
  707. int64_t t_start;
  708. int32_t kv_cache_tokens_count;
  709. int32_t kv_cache_used_cells;
  710. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  711. uint64_t n_prompt_tokens_processed_total = 0;
  712. uint64_t t_prompt_processing_total = 0;
  713. uint64_t n_tokens_predicted_total = 0;
  714. uint64_t t_tokens_generation_total = 0;
  715. uint64_t n_prompt_tokens_processed = 0;
  716. uint64_t t_prompt_processing = 0;
  717. uint64_t n_tokens_predicted = 0;
  718. uint64_t t_tokens_generation = 0;
  719. uint64_t n_decode_total = 0;
  720. uint64_t n_busy_slots_total = 0;
  721. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  722. // therefore, we use json to temporarily store the slot.to_json() result
  723. json slots_data = json::array();
  724. virtual json to_json() override {
  725. return json {
  726. { "idle", n_idle_slots },
  727. { "processing", n_processing_slots },
  728. { "deferred", n_tasks_deferred },
  729. { "t_start", t_start },
  730. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  731. { "t_tokens_generation_total", t_tokens_generation_total },
  732. { "n_tokens_predicted_total", n_tokens_predicted_total },
  733. { "t_prompt_processing_total", t_prompt_processing_total },
  734. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  735. { "t_prompt_processing", t_prompt_processing },
  736. { "n_tokens_predicted", n_tokens_predicted },
  737. { "t_tokens_generation", t_tokens_generation },
  738. { "n_decode_total", n_decode_total },
  739. { "n_busy_slots_total", n_busy_slots_total },
  740. { "kv_cache_tokens_count", kv_cache_tokens_count },
  741. { "kv_cache_used_cells", kv_cache_used_cells },
  742. { "slots", slots_data },
  743. };
  744. }
  745. };
  746. struct server_task_result_slot_save_load : server_task_result {
  747. std::string filename;
  748. bool is_save; // true = save, false = load
  749. size_t n_tokens;
  750. size_t n_bytes;
  751. double t_ms;
  752. virtual json to_json() override {
  753. if (is_save) {
  754. return json {
  755. { "id_slot", id_slot },
  756. { "filename", filename },
  757. { "n_saved", n_tokens },
  758. { "n_written", n_bytes },
  759. { "timings", {
  760. { "save_ms", t_ms }
  761. }},
  762. };
  763. } else {
  764. return json {
  765. { "id_slot", id_slot },
  766. { "filename", filename },
  767. { "n_restored", n_tokens },
  768. { "n_read", n_bytes },
  769. { "timings", {
  770. { "restore_ms", t_ms }
  771. }},
  772. };
  773. }
  774. }
  775. };
  776. struct server_task_result_slot_erase : server_task_result {
  777. size_t n_erased;
  778. virtual json to_json() override {
  779. return json {
  780. { "id_slot", id_slot },
  781. { "n_erased", n_erased },
  782. };
  783. }
  784. };
  785. struct server_task_result_apply_lora : server_task_result {
  786. virtual json to_json() override {
  787. return json {{ "success", true }};
  788. }
  789. };
  790. struct server_slot {
  791. int id;
  792. int id_task = -1;
  793. // only used for completion/embedding/infill/rerank
  794. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  795. llama_batch batch_spec = {};
  796. llama_context * ctx = nullptr;
  797. llama_context * ctx_dft = nullptr;
  798. common_speculative * spec = nullptr;
  799. // the index relative to completion multi-task request
  800. size_t index = 0;
  801. struct slot_params params;
  802. slot_state state = SLOT_STATE_IDLE;
  803. // used to determine the slot that has been used the longest
  804. int64_t t_last_used = -1;
  805. // generation props
  806. int32_t n_ctx = 0; // context size per slot
  807. int32_t n_past = 0;
  808. int32_t n_decoded = 0;
  809. int32_t n_remaining = -1;
  810. int32_t i_batch = -1;
  811. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  812. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  813. int32_t n_prompt_tokens = 0;
  814. int32_t n_prompt_tokens_processed = 0;
  815. // input prompt tokens
  816. llama_tokens prompt_tokens;
  817. size_t last_nl_pos = 0;
  818. std::string generated_text;
  819. llama_tokens cache_tokens;
  820. std::vector<completion_token_output> generated_token_probs;
  821. bool has_next_token = true;
  822. bool has_new_line = false;
  823. bool truncated = false;
  824. stop_type stop;
  825. std::string stopping_word;
  826. // sampling
  827. json json_schema;
  828. struct common_sampler * smpl = nullptr;
  829. llama_token sampled;
  830. // stats
  831. size_t n_sent_text = 0; // number of sent text character
  832. size_t n_sent_token_probs = 0;
  833. int64_t t_start_process_prompt;
  834. int64_t t_start_generation;
  835. double t_prompt_processing; // ms
  836. double t_token_generation; // ms
  837. std::function<void(int)> callback_on_release;
  838. void reset() {
  839. SLT_DBG(*this, "%s", "\n");
  840. n_prompt_tokens = 0;
  841. last_nl_pos = 0;
  842. generated_text = "";
  843. has_new_line = false;
  844. truncated = false;
  845. stop = STOP_TYPE_NONE;
  846. stopping_word = "";
  847. n_past = 0;
  848. n_sent_text = 0;
  849. n_sent_token_probs = 0;
  850. task_type = SERVER_TASK_TYPE_COMPLETION;
  851. generated_token_probs.clear();
  852. }
  853. bool is_non_causal() const {
  854. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  855. }
  856. bool has_budget(const common_params & global_params) {
  857. if (params.n_predict == -1 && global_params.n_predict == -1) {
  858. return true; // limitless
  859. }
  860. n_remaining = -1;
  861. if (params.n_predict != -1) {
  862. n_remaining = params.n_predict - n_decoded;
  863. } else if (global_params.n_predict != -1) {
  864. n_remaining = global_params.n_predict - n_decoded;
  865. }
  866. return n_remaining > 0; // no budget
  867. }
  868. bool is_processing() const {
  869. return state != SLOT_STATE_IDLE;
  870. }
  871. bool can_speculate() const {
  872. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  873. }
  874. void add_token(const completion_token_output & token) {
  875. if (!is_processing()) {
  876. SLT_WRN(*this, "%s", "slot is not processing\n");
  877. return;
  878. }
  879. generated_token_probs.push_back(token);
  880. }
  881. void release() {
  882. if (is_processing()) {
  883. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  884. t_last_used = ggml_time_us();
  885. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  886. state = SLOT_STATE_IDLE;
  887. callback_on_release(id);
  888. }
  889. }
  890. result_timings get_timings() const {
  891. result_timings timings;
  892. timings.prompt_n = n_prompt_tokens_processed;
  893. timings.prompt_ms = t_prompt_processing;
  894. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  895. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  896. timings.predicted_n = n_decoded;
  897. timings.predicted_ms = t_token_generation;
  898. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  899. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  900. return timings;
  901. }
  902. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  903. size_t stop_pos = std::string::npos;
  904. for (const std::string & word : params.antiprompt) {
  905. size_t pos;
  906. if (is_full_stop) {
  907. const size_t tmp = word.size() + last_token_size;
  908. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  909. pos = text.find(word, from_pos);
  910. } else {
  911. // otherwise, partial stop
  912. pos = find_partial_stop_string(word, text);
  913. }
  914. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  915. if (is_full_stop) {
  916. stop = STOP_TYPE_WORD;
  917. stopping_word = word;
  918. has_next_token = false;
  919. }
  920. stop_pos = pos;
  921. }
  922. }
  923. return stop_pos;
  924. }
  925. void print_timings() const {
  926. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  927. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  928. const double t_gen = t_token_generation / n_decoded;
  929. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  930. SLT_INF(*this,
  931. "\n"
  932. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  933. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  934. " total time = %10.2f ms / %5d tokens\n",
  935. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  936. t_token_generation, n_decoded, t_gen, n_gen_second,
  937. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  938. }
  939. json to_json() const {
  940. return json {
  941. {"id", id},
  942. {"id_task", id_task},
  943. {"n_ctx", n_ctx},
  944. {"speculative", can_speculate()},
  945. {"is_processing", is_processing()},
  946. {"non_causal", is_non_causal()},
  947. {"params", params.to_json()},
  948. {"prompt", common_detokenize(ctx, prompt_tokens)},
  949. {"next_token",
  950. {
  951. {"has_next_token", has_next_token},
  952. {"has_new_line", has_new_line},
  953. {"n_remain", n_remaining},
  954. {"n_decoded", n_decoded},
  955. {"stopping_word", stopping_word},
  956. }
  957. },
  958. };
  959. }
  960. };
  961. struct server_metrics {
  962. int64_t t_start = 0;
  963. uint64_t n_prompt_tokens_processed_total = 0;
  964. uint64_t t_prompt_processing_total = 0;
  965. uint64_t n_tokens_predicted_total = 0;
  966. uint64_t t_tokens_generation_total = 0;
  967. uint64_t n_prompt_tokens_processed = 0;
  968. uint64_t t_prompt_processing = 0;
  969. uint64_t n_tokens_predicted = 0;
  970. uint64_t t_tokens_generation = 0;
  971. uint64_t n_decode_total = 0;
  972. uint64_t n_busy_slots_total = 0;
  973. void init() {
  974. t_start = ggml_time_us();
  975. }
  976. void on_prompt_eval(const server_slot & slot) {
  977. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  978. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  979. t_prompt_processing += slot.t_prompt_processing;
  980. t_prompt_processing_total += slot.t_prompt_processing;
  981. }
  982. void on_prediction(const server_slot & slot) {
  983. n_tokens_predicted_total += slot.n_decoded;
  984. n_tokens_predicted += slot.n_decoded;
  985. t_tokens_generation += slot.t_token_generation;
  986. t_tokens_generation_total += slot.t_token_generation;
  987. }
  988. void on_decoded(const std::vector<server_slot> & slots) {
  989. n_decode_total++;
  990. for (const auto & slot : slots) {
  991. if (slot.is_processing()) {
  992. n_busy_slots_total++;
  993. }
  994. }
  995. }
  996. void reset_bucket() {
  997. n_prompt_tokens_processed = 0;
  998. t_prompt_processing = 0;
  999. n_tokens_predicted = 0;
  1000. t_tokens_generation = 0;
  1001. }
  1002. };
  1003. struct server_queue {
  1004. int id = 0;
  1005. bool running;
  1006. // queues
  1007. std::deque<server_task> queue_tasks;
  1008. std::deque<server_task> queue_tasks_deferred;
  1009. std::mutex mutex_tasks;
  1010. std::condition_variable condition_tasks;
  1011. // callback functions
  1012. std::function<void(server_task)> callback_new_task;
  1013. std::function<void(void)> callback_update_slots;
  1014. // Add a new task to the end of the queue
  1015. int post(server_task task, bool front = false) {
  1016. std::unique_lock<std::mutex> lock(mutex_tasks);
  1017. GGML_ASSERT(task.id != -1);
  1018. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1019. if (front) {
  1020. queue_tasks.push_front(std::move(task));
  1021. } else {
  1022. queue_tasks.push_back(std::move(task));
  1023. }
  1024. condition_tasks.notify_one();
  1025. return task.id;
  1026. }
  1027. // multi-task version of post()
  1028. int post(std::vector<server_task> & tasks, bool front = false) {
  1029. std::unique_lock<std::mutex> lock(mutex_tasks);
  1030. for (auto & task : tasks) {
  1031. if (task.id == -1) {
  1032. task.id = id++;
  1033. }
  1034. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1035. if (front) {
  1036. queue_tasks.push_front(std::move(task));
  1037. } else {
  1038. queue_tasks.push_back(std::move(task));
  1039. }
  1040. }
  1041. condition_tasks.notify_one();
  1042. return 0;
  1043. }
  1044. // Add a new task, but defer until one slot is available
  1045. void defer(server_task task) {
  1046. std::unique_lock<std::mutex> lock(mutex_tasks);
  1047. QUE_DBG("defer task, id = %d\n", task.id);
  1048. queue_tasks_deferred.push_back(std::move(task));
  1049. condition_tasks.notify_one();
  1050. }
  1051. // Get the next id for creating a new task
  1052. int get_new_id() {
  1053. std::unique_lock<std::mutex> lock(mutex_tasks);
  1054. int new_id = id++;
  1055. return new_id;
  1056. }
  1057. // Register function to process a new task
  1058. void on_new_task(std::function<void(server_task)> callback) {
  1059. callback_new_task = std::move(callback);
  1060. }
  1061. // Register the function to be called when all slots data is ready to be processed
  1062. void on_update_slots(std::function<void(void)> callback) {
  1063. callback_update_slots = std::move(callback);
  1064. }
  1065. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1066. void pop_deferred_task() {
  1067. std::unique_lock<std::mutex> lock(mutex_tasks);
  1068. if (!queue_tasks_deferred.empty()) {
  1069. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1070. queue_tasks_deferred.pop_front();
  1071. }
  1072. condition_tasks.notify_one();
  1073. }
  1074. // end the start_loop routine
  1075. void terminate() {
  1076. std::unique_lock<std::mutex> lock(mutex_tasks);
  1077. running = false;
  1078. condition_tasks.notify_all();
  1079. }
  1080. /**
  1081. * Main loop consists of these steps:
  1082. * - Wait until a new task arrives
  1083. * - Process the task (i.e. maybe copy data into slot)
  1084. * - Check if multitask is finished
  1085. * - Update all slots
  1086. */
  1087. void start_loop() {
  1088. running = true;
  1089. while (true) {
  1090. QUE_DBG("%s", "processing new tasks\n");
  1091. while (true) {
  1092. std::unique_lock<std::mutex> lock(mutex_tasks);
  1093. if (queue_tasks.empty()) {
  1094. lock.unlock();
  1095. break;
  1096. }
  1097. server_task task = queue_tasks.front();
  1098. queue_tasks.pop_front();
  1099. lock.unlock();
  1100. QUE_DBG("processing task, id = %d\n", task.id);
  1101. callback_new_task(std::move(task));
  1102. }
  1103. // all tasks in the current loop is processed, slots data is now ready
  1104. QUE_DBG("%s", "update slots\n");
  1105. callback_update_slots();
  1106. QUE_DBG("%s", "waiting for new tasks\n");
  1107. {
  1108. std::unique_lock<std::mutex> lock(mutex_tasks);
  1109. if (queue_tasks.empty()) {
  1110. if (!running) {
  1111. QUE_DBG("%s", "terminate\n");
  1112. return;
  1113. }
  1114. condition_tasks.wait(lock, [&]{
  1115. return (!queue_tasks.empty() || !running);
  1116. });
  1117. }
  1118. }
  1119. }
  1120. }
  1121. };
  1122. struct server_response {
  1123. // for keeping track of all tasks waiting for the result
  1124. std::unordered_set<int> waiting_task_ids;
  1125. // the main result queue (using ptr for polymorphism)
  1126. std::vector<server_task_result_ptr> queue_results;
  1127. std::mutex mutex_results;
  1128. std::condition_variable condition_results;
  1129. // add the id_task to the list of tasks waiting for response
  1130. void add_waiting_task_id(int id_task) {
  1131. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1132. std::unique_lock<std::mutex> lock(mutex_results);
  1133. waiting_task_ids.insert(id_task);
  1134. }
  1135. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1136. std::unique_lock<std::mutex> lock(mutex_results);
  1137. for (const auto & task : tasks) {
  1138. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1139. waiting_task_ids.insert(task.id);
  1140. }
  1141. }
  1142. // when the request is finished, we can remove task associated with it
  1143. void remove_waiting_task_id(int id_task) {
  1144. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1145. std::unique_lock<std::mutex> lock(mutex_results);
  1146. waiting_task_ids.erase(id_task);
  1147. }
  1148. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1149. std::unique_lock<std::mutex> lock(mutex_results);
  1150. for (const auto & id_task : id_tasks) {
  1151. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1152. waiting_task_ids.erase(id_task);
  1153. }
  1154. }
  1155. // This function blocks the thread until there is a response for one of the id_tasks
  1156. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1157. while (true) {
  1158. std::unique_lock<std::mutex> lock(mutex_results);
  1159. condition_results.wait(lock, [&]{
  1160. return !queue_results.empty();
  1161. });
  1162. for (int i = 0; i < (int) queue_results.size(); i++) {
  1163. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1164. server_task_result_ptr res = std::move(queue_results[i]);
  1165. queue_results.erase(queue_results.begin() + i);
  1166. return res;
  1167. }
  1168. }
  1169. }
  1170. // should never reach here
  1171. }
  1172. // single-task version of recv()
  1173. server_task_result_ptr recv(int id_task) {
  1174. std::unordered_set<int> id_tasks = {id_task};
  1175. return recv(id_tasks);
  1176. }
  1177. // Send a new result to a waiting id_task
  1178. void send(server_task_result_ptr && result) {
  1179. SRV_DBG("sending result for task id = %d\n", result->id);
  1180. std::unique_lock<std::mutex> lock(mutex_results);
  1181. for (const auto & id_task : waiting_task_ids) {
  1182. if (result->id == id_task) {
  1183. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1184. queue_results.emplace_back(std::move(result));
  1185. condition_results.notify_all();
  1186. return;
  1187. }
  1188. }
  1189. }
  1190. };
  1191. struct server_context {
  1192. common_params params_base;
  1193. llama_model * model = nullptr;
  1194. llama_context * ctx = nullptr;
  1195. std::vector<common_lora_adapter_container> loras;
  1196. llama_model * model_dft = nullptr;
  1197. llama_context_params cparams_dft;
  1198. llama_batch batch = {};
  1199. bool clean_kv_cache = true;
  1200. bool add_bos_token = true;
  1201. bool has_eos_token = false;
  1202. int32_t n_ctx; // total context for all clients / slots
  1203. // slots / clients
  1204. std::vector<server_slot> slots;
  1205. json default_generation_settings_for_props;
  1206. server_queue queue_tasks;
  1207. server_response queue_results;
  1208. server_metrics metrics;
  1209. // Necessary similarity of prompt for slot selection
  1210. float slot_prompt_similarity = 0.0f;
  1211. ~server_context() {
  1212. if (ctx) {
  1213. llama_free(ctx);
  1214. ctx = nullptr;
  1215. }
  1216. if (model) {
  1217. llama_free_model(model);
  1218. model = nullptr;
  1219. }
  1220. if (model_dft) {
  1221. llama_free_model(model_dft);
  1222. model_dft = nullptr;
  1223. }
  1224. // Clear any sampling context
  1225. for (server_slot & slot : slots) {
  1226. common_sampler_free(slot.smpl);
  1227. slot.smpl = nullptr;
  1228. llama_free(slot.ctx_dft);
  1229. slot.ctx_dft = nullptr;
  1230. common_speculative_free(slot.spec);
  1231. slot.spec = nullptr;
  1232. llama_batch_free(slot.batch_spec);
  1233. }
  1234. llama_batch_free(batch);
  1235. }
  1236. bool load_model(const common_params & params) {
  1237. SRV_INF("loading model '%s'\n", params.model.c_str());
  1238. params_base = params;
  1239. common_init_result llama_init = common_init_from_params(params_base);
  1240. model = llama_init.model;
  1241. ctx = llama_init.context;
  1242. loras = llama_init.lora_adapters;
  1243. if (model == nullptr) {
  1244. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1245. return false;
  1246. }
  1247. n_ctx = llama_n_ctx(ctx);
  1248. add_bos_token = llama_add_bos_token(model);
  1249. has_eos_token = llama_token_eos(model) != LLAMA_TOKEN_NULL;
  1250. if (!params_base.speculative.model.empty()) {
  1251. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1252. auto params_dft = params_base;
  1253. params_dft.devices = params_base.speculative.devices;
  1254. params_dft.model = params_base.speculative.model;
  1255. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1256. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1257. params_dft.n_parallel = 1;
  1258. common_init_result llama_init_dft = common_init_from_params(params_dft);
  1259. model_dft = llama_init_dft.model;
  1260. if (model_dft == nullptr) {
  1261. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1262. return false;
  1263. }
  1264. if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
  1265. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1266. llama_free (llama_init_dft.context);
  1267. llama_free_model(llama_init_dft.model);
  1268. return false;
  1269. }
  1270. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
  1271. cparams_dft = common_context_params_to_llama(params_dft);
  1272. cparams_dft.n_batch = n_ctx_dft;
  1273. // force F16 KV cache for the draft model for extra performance
  1274. cparams_dft.type_k = GGML_TYPE_F16;
  1275. cparams_dft.type_v = GGML_TYPE_F16;
  1276. // the context is not needed - we will create one for each slot
  1277. llama_free(llama_init_dft.context);
  1278. }
  1279. return true;
  1280. }
  1281. bool validate_model_chat_template() const {
  1282. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  1283. std::string template_key = "tokenizer.chat_template";
  1284. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  1285. if (res >= 0) {
  1286. llama_chat_message chat[] = {{"user", "test"}};
  1287. std::string tmpl = std::string(model_template.data(), model_template.size());
  1288. int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
  1289. return chat_res > 0;
  1290. }
  1291. return false;
  1292. }
  1293. void init() {
  1294. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1295. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1296. for (int i = 0; i < params_base.n_parallel; i++) {
  1297. server_slot slot;
  1298. slot.id = i;
  1299. slot.ctx = ctx;
  1300. slot.n_ctx = n_ctx_slot;
  1301. slot.n_predict = params_base.n_predict;
  1302. if (model_dft) {
  1303. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1304. slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
  1305. if (slot.ctx_dft == nullptr) {
  1306. SRV_ERR("%s", "failed to create draft context\n");
  1307. return;
  1308. }
  1309. slot.spec = common_speculative_init(slot.ctx_dft);
  1310. if (slot.spec == nullptr) {
  1311. SRV_ERR("%s", "failed to create speculator\n");
  1312. return;
  1313. }
  1314. }
  1315. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1316. slot.params.sampling = params_base.sampling;
  1317. slot.callback_on_release = [this](int) {
  1318. queue_tasks.pop_deferred_task();
  1319. };
  1320. slot.reset();
  1321. slots.push_back(slot);
  1322. }
  1323. default_generation_settings_for_props = slots[0].to_json();
  1324. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1325. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1326. {
  1327. const int32_t n_batch = llama_n_batch(ctx);
  1328. // only a single seq_id per token is needed
  1329. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1330. }
  1331. metrics.init();
  1332. }
  1333. server_slot * get_slot_by_id(int id) {
  1334. for (server_slot & slot : slots) {
  1335. if (slot.id == id) {
  1336. return &slot;
  1337. }
  1338. }
  1339. return nullptr;
  1340. }
  1341. server_slot * get_available_slot(const server_task & task) {
  1342. server_slot * ret = nullptr;
  1343. // find the slot that has at least n% prompt similarity
  1344. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1345. int lcs_len = 0;
  1346. float similarity = 0;
  1347. for (server_slot & slot : slots) {
  1348. // skip the slot if it is not available
  1349. if (slot.is_processing()) {
  1350. continue;
  1351. }
  1352. // skip the slot if it does not contains cached tokens
  1353. if (slot.cache_tokens.empty()) {
  1354. continue;
  1355. }
  1356. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1357. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1358. // fraction of the common subsequence length compared to the current slot's prompt length
  1359. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1360. // select the current slot if the criteria match
  1361. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1362. lcs_len = cur_lcs_len;
  1363. similarity = cur_similarity;
  1364. ret = &slot;
  1365. }
  1366. }
  1367. if (ret != nullptr) {
  1368. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1369. }
  1370. }
  1371. // find the slot that has been least recently used
  1372. if (ret == nullptr) {
  1373. int64_t t_last = ggml_time_us();
  1374. for (server_slot & slot : slots) {
  1375. // skip the slot if it is not available
  1376. if (slot.is_processing()) {
  1377. continue;
  1378. }
  1379. // select the current slot if the criteria match
  1380. if (slot.t_last_used < t_last) {
  1381. t_last = slot.t_last_used;
  1382. ret = &slot;
  1383. }
  1384. }
  1385. if (ret != nullptr) {
  1386. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1387. }
  1388. }
  1389. return ret;
  1390. }
  1391. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1392. slot.reset();
  1393. slot.id_task = task.id;
  1394. slot.index = task.index;
  1395. slot.task_type = task.type;
  1396. slot.params = std::move(task.params);
  1397. slot.prompt_tokens = std::move(task.prompt_tokens);
  1398. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1399. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1400. // Might be better to reject the request with a 400 ?
  1401. slot.params.n_predict = slot.n_predict;
  1402. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1403. }
  1404. if (slot.params.ignore_eos && has_eos_token) {
  1405. slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
  1406. }
  1407. {
  1408. if (slot.smpl != nullptr) {
  1409. common_sampler_free(slot.smpl);
  1410. }
  1411. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1412. if (slot.smpl == nullptr) {
  1413. // for now, the only error that may happen here is invalid grammar
  1414. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1415. return false;
  1416. }
  1417. }
  1418. if (slot.ctx_dft) {
  1419. llama_batch_free(slot.batch_spec);
  1420. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1421. }
  1422. slot.state = SLOT_STATE_STARTED;
  1423. SLT_INF(slot, "%s", "processing task\n");
  1424. return true;
  1425. }
  1426. void kv_cache_clear() {
  1427. SRV_DBG("%s", "clearing KV cache\n");
  1428. // clear the entire KV cache
  1429. llama_kv_cache_clear(ctx);
  1430. clean_kv_cache = false;
  1431. }
  1432. bool process_token(completion_token_output & result, server_slot & slot) {
  1433. // remember which tokens were sampled - used for repetition penalties during sampling
  1434. const std::string token_str = common_token_to_piece(ctx, result.tok, params_base.special);
  1435. slot.sampled = result.tok;
  1436. // search stop word and delete it
  1437. slot.generated_text += token_str;
  1438. slot.has_next_token = true;
  1439. // check if there is incomplete UTF-8 character at the end
  1440. bool incomplete = false;
  1441. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
  1442. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  1443. if ((c & 0xC0) == 0x80) {
  1444. // continuation byte: 10xxxxxx
  1445. continue;
  1446. }
  1447. if ((c & 0xE0) == 0xC0) {
  1448. // 2-byte character: 110xxxxx ...
  1449. incomplete = i < 2;
  1450. } else if ((c & 0xF0) == 0xE0) {
  1451. // 3-byte character: 1110xxxx ...
  1452. incomplete = i < 3;
  1453. } else if ((c & 0xF8) == 0xF0) {
  1454. // 4-byte character: 11110xxx ...
  1455. incomplete = i < 4;
  1456. }
  1457. // else 1-byte character or invalid byte
  1458. break;
  1459. }
  1460. if (!incomplete) {
  1461. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1462. const std::string str_test = slot.generated_text.substr(pos);
  1463. bool send_text = true;
  1464. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1465. if (stop_pos != std::string::npos) {
  1466. slot.generated_text.erase(
  1467. slot.generated_text.begin() + pos + stop_pos,
  1468. slot.generated_text.end());
  1469. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1470. } else if (slot.has_next_token) {
  1471. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1472. send_text = stop_pos == std::string::npos;
  1473. }
  1474. // check if there is any token to predict
  1475. if (send_text) {
  1476. // no send the stop word in the response
  1477. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1478. slot.n_sent_text += result.text_to_send.size();
  1479. // add the token to slot queue and cache
  1480. }
  1481. slot.add_token(result);
  1482. if (slot.params.stream) {
  1483. send_partial_response(slot, result);
  1484. }
  1485. }
  1486. if (incomplete) {
  1487. slot.has_next_token = true;
  1488. }
  1489. // check the limits
  1490. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1491. slot.stop = STOP_TYPE_LIMIT;
  1492. slot.has_next_token = false;
  1493. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1494. }
  1495. if (slot.has_new_line) {
  1496. // if we have already seen a new line, we stop after a certain time limit
  1497. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1498. slot.stop = STOP_TYPE_LIMIT;
  1499. slot.has_next_token = false;
  1500. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1501. }
  1502. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1503. if (slot.params.n_indent > 0) {
  1504. // check the current indentation
  1505. // TODO: improve by not doing it more than once for each new line
  1506. if (slot.last_nl_pos > 0) {
  1507. size_t pos = slot.last_nl_pos;
  1508. int n_indent = 0;
  1509. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1510. n_indent++;
  1511. pos++;
  1512. }
  1513. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1514. slot.stop = STOP_TYPE_LIMIT;
  1515. slot.has_next_token = false;
  1516. // cut the last line
  1517. slot.generated_text.erase(pos, std::string::npos);
  1518. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1519. }
  1520. }
  1521. // find the next new line
  1522. {
  1523. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1524. if (pos != std::string::npos) {
  1525. slot.last_nl_pos = pos + 1;
  1526. }
  1527. }
  1528. }
  1529. }
  1530. // check if there is a new line in the generated text
  1531. if (result.text_to_send.find('\n') != std::string::npos) {
  1532. slot.has_new_line = true;
  1533. }
  1534. // if context shift is disabled, we stop when it reaches the context limit
  1535. if (slot.n_past >= slot.n_ctx) {
  1536. slot.truncated = true;
  1537. slot.stop = STOP_TYPE_LIMIT;
  1538. slot.has_next_token = false;
  1539. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1540. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1541. }
  1542. if (llama_token_is_eog(model, result.tok)) {
  1543. slot.stop = STOP_TYPE_EOS;
  1544. slot.has_next_token = false;
  1545. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1546. }
  1547. const auto n_ctx_train = llama_n_ctx_train(model);
  1548. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1549. slot.truncated = true;
  1550. slot.stop = STOP_TYPE_LIMIT;
  1551. slot.has_next_token = false; // stop prediction
  1552. SLT_WRN(slot,
  1553. "n_predict (%d) is set for infinite generation. "
  1554. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1555. slot.params.n_predict, n_ctx_train);
  1556. }
  1557. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1558. return slot.has_next_token; // continue
  1559. }
  1560. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1561. send_error(task.id, error, type);
  1562. }
  1563. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1564. send_error(slot.id_task, error, type);
  1565. }
  1566. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1567. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1568. auto res = std::make_unique<server_task_result_error>();
  1569. res->id = id_task;
  1570. res->err_type = type;
  1571. res->err_msg = error;
  1572. queue_results.send(std::move(res));
  1573. }
  1574. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1575. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1576. res->id = slot.id_task;
  1577. res->index = slot.index;
  1578. res->content = tkn.text_to_send;
  1579. res->n_decoded = slot.n_decoded;
  1580. res->n_prompt_tokens = slot.n_prompt_tokens;
  1581. res->verbose = slot.params.verbose;
  1582. res->oaicompat = slot.params.oaicompat;
  1583. res->oaicompat_chat = slot.params.oaicompat_chat;
  1584. res->oaicompat_model = slot.params.oaicompat_model;
  1585. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1586. // populate res.probs_output
  1587. if (slot.params.sampling.n_probs > 0) {
  1588. const llama_tokens to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
  1589. const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
  1590. const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
  1591. std::vector<completion_token_output> probs_output;
  1592. if (probs_pos < probs_stop_pos) {
  1593. res->probs_output = std::vector<completion_token_output>(
  1594. slot.generated_token_probs.begin() + probs_pos,
  1595. slot.generated_token_probs.begin() + probs_stop_pos);
  1596. }
  1597. }
  1598. // populate timings if this is final response or timings_per_token is enabled
  1599. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1600. res->timings = slot.get_timings();
  1601. }
  1602. queue_results.send(std::move(res));
  1603. }
  1604. void send_final_response(server_slot & slot) {
  1605. auto res = std::make_unique<server_task_result_cmpl_final>();
  1606. res->id = slot.id_task;
  1607. res->id_slot = slot.id;
  1608. res->index = slot.index;
  1609. res->content = slot.generated_text;
  1610. res->timings = slot.get_timings();
  1611. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1612. res->truncated = slot.truncated;
  1613. res->n_decoded = slot.n_decoded;
  1614. res->n_prompt_tokens = slot.n_prompt_tokens;
  1615. res->n_tokens_cached = slot.n_past;
  1616. res->has_new_line = slot.has_new_line;
  1617. res->stopping_word = slot.stopping_word;
  1618. res->stop = slot.stop;
  1619. res->verbose = slot.params.verbose;
  1620. res->stream = slot.params.stream;
  1621. res->oaicompat = slot.params.oaicompat;
  1622. res->oaicompat_chat = slot.params.oaicompat_chat;
  1623. res->oaicompat_model = slot.params.oaicompat_model;
  1624. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1625. // populate res.probs_output
  1626. if (slot.params.sampling.n_probs > 0) {
  1627. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1628. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1629. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1630. res->probs_output = std::vector<completion_token_output>(
  1631. slot.generated_token_probs.begin(),
  1632. slot.generated_token_probs.end() - safe_offset);
  1633. } else {
  1634. res->probs_output = std::vector<completion_token_output>(
  1635. slot.generated_token_probs.begin(),
  1636. slot.generated_token_probs.end());
  1637. }
  1638. }
  1639. res->generation_params = slot.params; // copy the parameters
  1640. queue_results.send(std::move(res));
  1641. }
  1642. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1643. auto res = std::make_unique<server_task_result_embd>();
  1644. res->id = slot.id_task;
  1645. res->index = slot.index;
  1646. res->n_tokens = slot.n_prompt_tokens;
  1647. const int n_embd = llama_n_embd(model);
  1648. std::vector<float> embd_res(n_embd, 0.0f);
  1649. for (int i = 0; i < batch.n_tokens; ++i) {
  1650. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1651. continue;
  1652. }
  1653. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1654. if (embd == NULL) {
  1655. embd = llama_get_embeddings_ith(ctx, i);
  1656. }
  1657. if (embd == NULL) {
  1658. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1659. res->embedding = std::vector<float>(n_embd, 0.0f);
  1660. continue;
  1661. }
  1662. common_embd_normalize(embd, embd_res.data(), n_embd);
  1663. res->embedding = embd_res;
  1664. }
  1665. SLT_DBG(slot, "%s", "sending embeddings\n");
  1666. queue_results.send(std::move(res));
  1667. }
  1668. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1669. auto res = std::make_unique<server_task_result_rerank>();
  1670. res->id = slot.id_task;
  1671. res->index = slot.index;
  1672. res->n_tokens = slot.n_prompt_tokens;
  1673. for (int i = 0; i < batch.n_tokens; ++i) {
  1674. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1675. continue;
  1676. }
  1677. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1678. if (embd == NULL) {
  1679. embd = llama_get_embeddings_ith(ctx, i);
  1680. }
  1681. if (embd == NULL) {
  1682. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1683. res->score = -1e6;
  1684. continue;
  1685. }
  1686. res->score = embd[0];
  1687. }
  1688. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  1689. queue_results.send(std::move(res));
  1690. }
  1691. //
  1692. // Functions to create new task(s) and receive result(s)
  1693. //
  1694. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1695. std::vector<server_task> cancel_tasks;
  1696. cancel_tasks.reserve(id_tasks.size());
  1697. for (const auto & id_task : id_tasks) {
  1698. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1699. server_task task(SERVER_TASK_TYPE_CANCEL);
  1700. task.id_target = id_task;
  1701. cancel_tasks.push_back(task);
  1702. queue_results.remove_waiting_task_id(id_task);
  1703. }
  1704. // push to beginning of the queue, so it has highest priority
  1705. queue_tasks.post(cancel_tasks, true);
  1706. }
  1707. // receive the results from task(s)
  1708. void receive_multi_results(
  1709. const std::unordered_set<int> & id_tasks,
  1710. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  1711. const std::function<void(json)> & error_handler) {
  1712. std::vector<server_task_result_ptr> results(id_tasks.size());
  1713. for (size_t i = 0; i < id_tasks.size(); i++) {
  1714. server_task_result_ptr result = queue_results.recv(id_tasks);
  1715. if (result->is_error()) {
  1716. error_handler(result->to_json());
  1717. cancel_tasks(id_tasks);
  1718. return;
  1719. }
  1720. GGML_ASSERT(
  1721. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1722. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  1723. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  1724. );
  1725. const size_t idx = result->get_index();
  1726. GGML_ASSERT(idx < results.size() && "index out of range");
  1727. results[idx] = std::move(result);
  1728. }
  1729. result_handler(results);
  1730. }
  1731. // receive the results from task(s), in stream mode
  1732. void receive_cmpl_results_stream(
  1733. const std::unordered_set<int> & id_tasks,
  1734. const std::function<bool(server_task_result_ptr&)> & result_handler,
  1735. const std::function<void(json)> & error_handler) {
  1736. size_t n_finished = 0;
  1737. while (true) {
  1738. server_task_result_ptr result = queue_results.recv(id_tasks);
  1739. if (result->is_error()) {
  1740. error_handler(result->to_json());
  1741. cancel_tasks(id_tasks);
  1742. return;
  1743. }
  1744. GGML_ASSERT(
  1745. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  1746. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1747. );
  1748. if (!result_handler(result)) {
  1749. cancel_tasks(id_tasks);
  1750. break;
  1751. }
  1752. if (result->is_stop()) {
  1753. if (++n_finished == id_tasks.size()) {
  1754. break;
  1755. }
  1756. }
  1757. }
  1758. }
  1759. //
  1760. // Functions to process the task
  1761. //
  1762. void process_single_task(server_task task) {
  1763. switch (task.type) {
  1764. case SERVER_TASK_TYPE_COMPLETION:
  1765. case SERVER_TASK_TYPE_INFILL:
  1766. case SERVER_TASK_TYPE_EMBEDDING:
  1767. case SERVER_TASK_TYPE_RERANK:
  1768. {
  1769. const int id_slot = task.id_selected_slot;
  1770. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  1771. if (slot == nullptr) {
  1772. // if no slot is available, we defer this task for processing later
  1773. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1774. queue_tasks.defer(task);
  1775. break;
  1776. }
  1777. if (slot->is_processing()) {
  1778. // if requested slot is unavailable, we defer this task for processing later
  1779. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1780. queue_tasks.defer(task);
  1781. break;
  1782. }
  1783. if (!launch_slot_with_task(*slot, task)) {
  1784. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1785. break;
  1786. }
  1787. } break;
  1788. case SERVER_TASK_TYPE_CANCEL:
  1789. {
  1790. // release slot linked with the task id
  1791. for (auto & slot : slots) {
  1792. if (slot.id_task == task.id_target) {
  1793. slot.release();
  1794. break;
  1795. }
  1796. }
  1797. } break;
  1798. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1799. {
  1800. // do nothing
  1801. } break;
  1802. case SERVER_TASK_TYPE_METRICS:
  1803. {
  1804. json slots_data = json::array();
  1805. int n_idle_slots = 0;
  1806. int n_processing_slots = 0;
  1807. for (server_slot & slot : slots) {
  1808. json slot_data = slot.to_json();
  1809. if (slot.is_processing()) {
  1810. n_processing_slots++;
  1811. } else {
  1812. n_idle_slots++;
  1813. }
  1814. slots_data.push_back(slot_data);
  1815. }
  1816. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  1817. auto res = std::make_unique<server_task_result_metrics>();
  1818. res->id = task.id;
  1819. res->slots_data = std::move(slots_data);
  1820. res->n_idle_slots = n_idle_slots;
  1821. res->n_processing_slots = n_processing_slots;
  1822. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  1823. res->t_start = metrics.t_start;
  1824. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  1825. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  1826. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  1827. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  1828. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  1829. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  1830. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  1831. res->t_prompt_processing = metrics.t_prompt_processing;
  1832. res->n_tokens_predicted = metrics.n_tokens_predicted;
  1833. res->t_tokens_generation = metrics.t_tokens_generation;
  1834. res->n_decode_total = metrics.n_decode_total;
  1835. res->n_busy_slots_total = metrics.n_busy_slots_total;
  1836. if (task.metrics_reset_bucket) {
  1837. metrics.reset_bucket();
  1838. }
  1839. queue_results.send(std::move(res));
  1840. } break;
  1841. case SERVER_TASK_TYPE_SLOT_SAVE:
  1842. {
  1843. int id_slot = task.slot_action.slot_id;
  1844. server_slot * slot = get_slot_by_id(id_slot);
  1845. if (slot == nullptr) {
  1846. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1847. break;
  1848. }
  1849. if (slot->is_processing()) {
  1850. // if requested slot is unavailable, we defer this task for processing later
  1851. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1852. queue_tasks.defer(task);
  1853. break;
  1854. }
  1855. const size_t token_count = slot->cache_tokens.size();
  1856. const int64_t t_start = ggml_time_us();
  1857. std::string filename = task.slot_action.filename;
  1858. std::string filepath = task.slot_action.filepath;
  1859. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  1860. const int64_t t_end = ggml_time_us();
  1861. const double t_save_ms = (t_end - t_start) / 1000.0;
  1862. auto res = std::make_unique<server_task_result_slot_save_load>();
  1863. res->id = task.id;
  1864. res->id_slot = id_slot;
  1865. res->filename = filename;
  1866. res->is_save = true;
  1867. res->n_tokens = token_count;
  1868. res->n_bytes = nwrite;
  1869. res->t_ms = t_save_ms;
  1870. queue_results.send(std::move(res));
  1871. } break;
  1872. case SERVER_TASK_TYPE_SLOT_RESTORE:
  1873. {
  1874. int id_slot = task.slot_action.slot_id;
  1875. server_slot * slot = get_slot_by_id(id_slot);
  1876. if (slot == nullptr) {
  1877. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1878. break;
  1879. }
  1880. if (slot->is_processing()) {
  1881. // if requested slot is unavailable, we defer this task for processing later
  1882. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1883. queue_tasks.defer(task);
  1884. break;
  1885. }
  1886. const int64_t t_start = ggml_time_us();
  1887. std::string filename = task.slot_action.filename;
  1888. std::string filepath = task.slot_action.filepath;
  1889. slot->cache_tokens.resize(slot->n_ctx);
  1890. size_t token_count = 0;
  1891. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  1892. if (nread == 0) {
  1893. slot->cache_tokens.resize(0);
  1894. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  1895. break;
  1896. }
  1897. slot->cache_tokens.resize(token_count);
  1898. const int64_t t_end = ggml_time_us();
  1899. const double t_restore_ms = (t_end - t_start) / 1000.0;
  1900. auto res = std::make_unique<server_task_result_slot_save_load>();
  1901. res->id = task.id;
  1902. res->id_slot = id_slot;
  1903. res->filename = filename;
  1904. res->is_save = false;
  1905. res->n_tokens = token_count;
  1906. res->n_bytes = nread;
  1907. res->t_ms = t_restore_ms;
  1908. queue_results.send(std::move(res));
  1909. } break;
  1910. case SERVER_TASK_TYPE_SLOT_ERASE:
  1911. {
  1912. int id_slot = task.slot_action.slot_id;
  1913. server_slot * slot = get_slot_by_id(id_slot);
  1914. if (slot == nullptr) {
  1915. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1916. break;
  1917. }
  1918. if (slot->is_processing()) {
  1919. // if requested slot is unavailable, we defer this task for processing later
  1920. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1921. queue_tasks.defer(task);
  1922. break;
  1923. }
  1924. // Erase token cache
  1925. const size_t n_erased = slot->cache_tokens.size();
  1926. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  1927. slot->cache_tokens.clear();
  1928. auto res = std::make_unique<server_task_result_slot_erase>();
  1929. res->id = task.id;
  1930. res->id_slot = id_slot;
  1931. res->n_erased = n_erased;
  1932. queue_results.send(std::move(res));
  1933. } break;
  1934. case SERVER_TASK_TYPE_SET_LORA:
  1935. {
  1936. common_lora_adapters_apply(ctx, loras);
  1937. auto res = std::make_unique<server_task_result_apply_lora>();
  1938. res->id = task.id;
  1939. queue_results.send(std::move(res));
  1940. } break;
  1941. }
  1942. }
  1943. void update_slots() {
  1944. // check if all slots are idle
  1945. {
  1946. bool all_idle = true;
  1947. for (auto & slot : slots) {
  1948. if (slot.is_processing()) {
  1949. all_idle = false;
  1950. break;
  1951. }
  1952. }
  1953. if (all_idle) {
  1954. SRV_INF("%s", "all slots are idle\n");
  1955. if (clean_kv_cache) {
  1956. kv_cache_clear();
  1957. }
  1958. return;
  1959. }
  1960. }
  1961. {
  1962. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  1963. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  1964. task.id = queue_tasks.get_new_id();
  1965. queue_tasks.post(task);
  1966. }
  1967. // apply context-shift if needed
  1968. // TODO: simplify and improve
  1969. for (server_slot & slot : slots) {
  1970. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  1971. if (!params_base.ctx_shift) {
  1972. // this check is redundant (for good)
  1973. // we should never get here, because generation should already stopped in process_token()
  1974. slot.release();
  1975. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  1976. continue;
  1977. }
  1978. // Shift context
  1979. const int n_keep = slot.params.n_keep + add_bos_token;
  1980. const int n_left = slot.n_past - n_keep;
  1981. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  1982. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  1983. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  1984. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  1985. if (slot.params.cache_prompt) {
  1986. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  1987. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1988. }
  1989. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1990. }
  1991. slot.n_past -= n_discard;
  1992. slot.truncated = true;
  1993. }
  1994. }
  1995. // start populating the batch for this iteration
  1996. common_batch_clear(batch);
  1997. // frist, add sampled tokens from any ongoing sequences
  1998. for (auto & slot : slots) {
  1999. if (slot.state != SLOT_STATE_GENERATING) {
  2000. continue;
  2001. }
  2002. slot.i_batch = batch.n_tokens;
  2003. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2004. slot.n_past += 1;
  2005. if (slot.params.cache_prompt) {
  2006. slot.cache_tokens.push_back(slot.sampled);
  2007. }
  2008. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2009. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2010. }
  2011. // process in chunks of params.n_batch
  2012. int32_t n_batch = llama_n_batch(ctx);
  2013. int32_t n_ubatch = llama_n_ubatch(ctx);
  2014. // track if this is an embedding or non-embedding batch
  2015. // if we've added sampled tokens above, we are in non-embedding mode
  2016. // -1: none, 0: non-embedding, 1: embedding
  2017. // TODO: make enum
  2018. int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
  2019. // next, batch any pending prompts without exceeding n_batch
  2020. if (params_base.cont_batching || batch.n_tokens == 0) {
  2021. for (auto & slot : slots) {
  2022. // this slot still has a prompt to be processed
  2023. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2024. auto & prompt_tokens = slot.prompt_tokens;
  2025. // TODO: maybe move branch to outside of this loop in the future
  2026. if (slot.state == SLOT_STATE_STARTED) {
  2027. slot.t_start_process_prompt = ggml_time_us();
  2028. slot.t_start_generation = 0;
  2029. slot.n_past = 0;
  2030. slot.n_prompt_tokens = prompt_tokens.size();
  2031. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2032. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2033. // print prompt tokens (for debugging)
  2034. if (1) {
  2035. // first 16 tokens (avoid flooding logs)
  2036. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2037. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2038. }
  2039. } else {
  2040. // all
  2041. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2042. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2043. }
  2044. }
  2045. // empty prompt passed -> release the slot and send empty response
  2046. if (prompt_tokens.empty()) {
  2047. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2048. slot.release();
  2049. slot.print_timings();
  2050. send_final_response(slot);
  2051. continue;
  2052. }
  2053. if (slot.is_non_causal()) {
  2054. if (slot.n_prompt_tokens > n_ubatch) {
  2055. slot.release();
  2056. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2057. continue;
  2058. }
  2059. if (slot.n_prompt_tokens > slot.n_ctx) {
  2060. slot.release();
  2061. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2062. continue;
  2063. }
  2064. } else {
  2065. if (!params_base.ctx_shift) {
  2066. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2067. // TODO: there should be a separate parameter that control prompt truncation
  2068. // context shift should be applied only during the generation phase
  2069. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2070. slot.release();
  2071. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2072. continue;
  2073. }
  2074. }
  2075. if (slot.params.n_keep < 0) {
  2076. slot.params.n_keep = slot.n_prompt_tokens;
  2077. }
  2078. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2079. // if input prompt is too big, truncate it
  2080. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2081. const int n_left = slot.n_ctx - slot.params.n_keep;
  2082. const int n_block_size = n_left / 2;
  2083. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2084. llama_tokens new_tokens(
  2085. prompt_tokens.begin(),
  2086. prompt_tokens.begin() + slot.params.n_keep);
  2087. new_tokens.insert(
  2088. new_tokens.end(),
  2089. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2090. prompt_tokens.end());
  2091. prompt_tokens = std::move(new_tokens);
  2092. slot.truncated = true;
  2093. slot.n_prompt_tokens = prompt_tokens.size();
  2094. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2095. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2096. }
  2097. if (slot.params.cache_prompt) {
  2098. // reuse any previously computed tokens that are common with the new prompt
  2099. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2100. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2101. if (params_base.n_cache_reuse > 0) {
  2102. size_t head_c = slot.n_past; // cache
  2103. size_t head_p = slot.n_past; // current prompt
  2104. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2105. while (head_c < slot.cache_tokens.size() &&
  2106. head_p < prompt_tokens.size()) {
  2107. size_t n_match = 0;
  2108. while (head_c + n_match < slot.cache_tokens.size() &&
  2109. head_p + n_match < prompt_tokens.size() &&
  2110. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2111. n_match++;
  2112. }
  2113. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2114. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2115. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2116. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2117. //}
  2118. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2119. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2120. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2121. for (size_t i = 0; i < n_match; i++) {
  2122. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2123. slot.n_past++;
  2124. }
  2125. head_c += n_match;
  2126. head_p += n_match;
  2127. } else {
  2128. head_c += 1;
  2129. }
  2130. }
  2131. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2132. }
  2133. }
  2134. }
  2135. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2136. // we have to evaluate at least 1 token to generate logits.
  2137. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2138. slot.n_past--;
  2139. }
  2140. slot.n_prompt_tokens_processed = 0;
  2141. }
  2142. // non-causal tasks require to fit the entire prompt in the physical batch
  2143. if (slot.is_non_causal()) {
  2144. // cannot fit the prompt in the current batch - will try next iter
  2145. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2146. continue;
  2147. }
  2148. }
  2149. // check that we are in the right batch_type, if not defer the slot
  2150. int slot_type = slot.is_non_causal();
  2151. if (batch_type == -1) {
  2152. batch_type = slot_type;
  2153. } else if (batch_type != slot_type) {
  2154. continue;
  2155. }
  2156. // keep only the common part
  2157. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2158. // could not partially delete (likely using a non-Transformer model)
  2159. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2160. // there is no common part left
  2161. slot.n_past = 0;
  2162. }
  2163. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2164. // remove the non-common part from the cache
  2165. slot.cache_tokens.resize(slot.n_past);
  2166. // add prompt tokens for processing in the current batch
  2167. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2168. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, false);
  2169. if (slot.params.cache_prompt) {
  2170. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2171. }
  2172. slot.n_prompt_tokens_processed++;
  2173. slot.n_past++;
  2174. }
  2175. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2176. // entire prompt has been processed
  2177. if (slot.n_past == slot.n_prompt_tokens) {
  2178. slot.state = SLOT_STATE_DONE_PROMPT;
  2179. GGML_ASSERT(batch.n_tokens > 0);
  2180. common_sampler_reset(slot.smpl);
  2181. // Process all prompt tokens through sampler system
  2182. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2183. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2184. }
  2185. // extract the logits only for the last token
  2186. batch.logits[batch.n_tokens - 1] = true;
  2187. slot.n_decoded = 0;
  2188. slot.i_batch = batch.n_tokens - 1;
  2189. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2190. }
  2191. }
  2192. if (batch.n_tokens >= n_batch) {
  2193. break;
  2194. }
  2195. }
  2196. }
  2197. if (batch.n_tokens == 0) {
  2198. SRV_WRN("%s", "no tokens to decode\n");
  2199. return;
  2200. }
  2201. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2202. // make sure we're in the right embedding mode
  2203. llama_set_embeddings(ctx, batch_type == 1);
  2204. // process the created batch of tokens
  2205. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2206. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2207. llama_batch batch_view = {
  2208. n_tokens,
  2209. batch.token + i,
  2210. nullptr,
  2211. batch.pos + i,
  2212. batch.n_seq_id + i,
  2213. batch.seq_id + i,
  2214. batch.logits + i,
  2215. };
  2216. const int ret = llama_decode(ctx, batch_view);
  2217. metrics.on_decoded(slots);
  2218. if (ret != 0) {
  2219. if (n_batch == 1 || ret < 0) {
  2220. // if you get here, it means the KV cache is full - try increasing it via the context size
  2221. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2222. for (auto & slot : slots) {
  2223. slot.release();
  2224. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2225. }
  2226. break; // break loop of n_batch
  2227. }
  2228. // retry with half the batch size to try to find a free slot in the KV cache
  2229. n_batch /= 2;
  2230. i -= n_batch;
  2231. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2232. continue; // continue loop of n_batch
  2233. }
  2234. for (auto & slot : slots) {
  2235. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2236. continue; // continue loop of slots
  2237. }
  2238. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2239. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2240. // prompt evaluated for embedding
  2241. send_embedding(slot, batch_view);
  2242. slot.release();
  2243. slot.i_batch = -1;
  2244. continue; // continue loop of slots
  2245. }
  2246. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2247. send_rerank(slot, batch_view);
  2248. slot.release();
  2249. slot.i_batch = -1;
  2250. continue; // continue loop of slots
  2251. }
  2252. // prompt evaluated for next-token prediction
  2253. slot.state = SLOT_STATE_GENERATING;
  2254. } else if (slot.state != SLOT_STATE_GENERATING) {
  2255. continue; // continue loop of slots
  2256. }
  2257. llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
  2258. slot.i_batch = -1;
  2259. common_sampler_accept(slot.smpl, id, true);
  2260. slot.n_decoded += 1;
  2261. const int64_t t_current = ggml_time_us();
  2262. if (slot.n_decoded == 1) {
  2263. slot.t_start_generation = t_current;
  2264. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2265. metrics.on_prompt_eval(slot);
  2266. }
  2267. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2268. completion_token_output result;
  2269. result.tok = id;
  2270. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  2271. for (size_t i = 0; i < (size_t) slot.params.sampling.n_probs; ++i) {
  2272. auto tok_id = cur_p->data[i].id;
  2273. result.probs.push_back({
  2274. tok_id,
  2275. tokens_to_output_formatted_string(ctx, tok_id),
  2276. i >= cur_p->size ? 0.0f : cur_p->data[i].p,
  2277. });
  2278. }
  2279. if (!process_token(result, slot)) {
  2280. // release slot because of stop condition
  2281. slot.release();
  2282. slot.print_timings();
  2283. send_final_response(slot);
  2284. metrics.on_prediction(slot);
  2285. continue;
  2286. }
  2287. }
  2288. // do speculative decoding
  2289. for (auto & slot : slots) {
  2290. if (!slot.is_processing() || !slot.can_speculate()) {
  2291. continue;
  2292. }
  2293. if (slot.state != SLOT_STATE_GENERATING) {
  2294. continue;
  2295. }
  2296. // determine the max draft that fits the current slot state
  2297. int n_draft_max = slot.params.speculative.n_max;
  2298. // note: n_past is not yet increased for the `id` token sampled above
  2299. // also, need to leave space for 1 extra token to allow context shifts
  2300. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2301. if (slot.n_remaining > 0) {
  2302. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2303. }
  2304. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2305. if (n_draft_max < slot.params.speculative.n_min) {
  2306. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2307. continue;
  2308. }
  2309. llama_token id = slot.sampled;
  2310. struct common_speculative_params params_spec;
  2311. params_spec.n_draft = n_draft_max;
  2312. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2313. params_spec.p_min = slot.params.speculative.p_min;
  2314. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2315. // ignore small drafts
  2316. if (slot.params.speculative.n_min > (int) draft.size()) {
  2317. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2318. continue;
  2319. }
  2320. // construct the speculation batch
  2321. common_batch_clear(slot.batch_spec);
  2322. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2323. for (size_t i = 0; i < draft.size(); ++i) {
  2324. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2325. }
  2326. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2327. llama_decode(ctx, slot.batch_spec);
  2328. // the accepted tokens from the speculation
  2329. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2330. slot.n_past += ids.size();
  2331. slot.n_decoded += ids.size();
  2332. slot.cache_tokens.push_back(id);
  2333. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2334. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2335. for (size_t i = 0; i < ids.size(); ++i) {
  2336. completion_token_output result;
  2337. result.tok = ids[i];
  2338. if (!process_token(result, slot)) {
  2339. // release slot because of stop condition
  2340. slot.release();
  2341. slot.print_timings();
  2342. send_final_response(slot);
  2343. metrics.on_prediction(slot);
  2344. break;
  2345. }
  2346. }
  2347. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2348. }
  2349. }
  2350. SRV_DBG("%s", "run slots completed\n");
  2351. }
  2352. json model_meta() const {
  2353. return json {
  2354. {"vocab_type", llama_vocab_type (model)},
  2355. {"n_vocab", llama_n_vocab (model)},
  2356. {"n_ctx_train", llama_n_ctx_train (model)},
  2357. {"n_embd", llama_n_embd (model)},
  2358. {"n_params", llama_model_n_params(model)},
  2359. {"size", llama_model_size (model)},
  2360. };
  2361. }
  2362. };
  2363. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2364. // skip GH copilot requests when using default port
  2365. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2366. return;
  2367. }
  2368. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2369. LOG_DBG("request: %s\n", req.body.c_str());
  2370. LOG_DBG("response: %s\n", res.body.c_str());
  2371. }
  2372. std::function<void(int)> shutdown_handler;
  2373. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2374. inline void signal_handler(int signal) {
  2375. if (is_terminating.test_and_set()) {
  2376. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2377. // this is for better developer experience, we can remove when the server is stable enough
  2378. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2379. exit(1);
  2380. }
  2381. shutdown_handler(signal);
  2382. }
  2383. int main(int argc, char ** argv) {
  2384. // own arguments required by this example
  2385. common_params params;
  2386. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2387. return 1;
  2388. }
  2389. common_init();
  2390. // struct that contains llama context and inference
  2391. server_context ctx_server;
  2392. llama_backend_init();
  2393. llama_numa_init(params.numa);
  2394. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2395. LOG_INF("\n");
  2396. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2397. LOG_INF("\n");
  2398. std::unique_ptr<httplib::Server> svr;
  2399. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2400. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2401. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2402. svr.reset(
  2403. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2404. );
  2405. } else {
  2406. LOG_INF("Running without SSL\n");
  2407. svr.reset(new httplib::Server());
  2408. }
  2409. #else
  2410. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2411. LOG_ERR("Server is built without SSL support\n");
  2412. return 1;
  2413. }
  2414. svr.reset(new httplib::Server());
  2415. #endif
  2416. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2417. svr->set_default_headers({{"Server", "llama.cpp"}});
  2418. svr->set_logger(log_server_request);
  2419. auto res_error = [](httplib::Response & res, const json & error_data) {
  2420. json final_response {{"error", error_data}};
  2421. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2422. res.status = json_value(error_data, "code", 500);
  2423. };
  2424. auto res_ok = [](httplib::Response & res, const json & data) {
  2425. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2426. res.status = 200;
  2427. };
  2428. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2429. std::string message;
  2430. try {
  2431. std::rethrow_exception(ep);
  2432. } catch (const std::exception & e) {
  2433. message = e.what();
  2434. } catch (...) {
  2435. message = "Unknown Exception";
  2436. }
  2437. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2438. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2439. res_error(res, formatted_error);
  2440. });
  2441. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2442. if (res.status == 404) {
  2443. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2444. }
  2445. // for other error codes, we skip processing here because it's already done by res_error()
  2446. });
  2447. // set timeouts and change hostname and port
  2448. svr->set_read_timeout (params.timeout_read);
  2449. svr->set_write_timeout(params.timeout_write);
  2450. std::unordered_map<std::string, std::string> log_data;
  2451. log_data["hostname"] = params.hostname;
  2452. log_data["port"] = std::to_string(params.port);
  2453. if (params.api_keys.size() == 1) {
  2454. auto key = params.api_keys[0];
  2455. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2456. } else if (params.api_keys.size() > 1) {
  2457. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2458. }
  2459. // Necessary similarity of prompt for slot selection
  2460. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2461. //
  2462. // Middlewares
  2463. //
  2464. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2465. static const std::unordered_set<std::string> public_endpoints = {
  2466. "/health",
  2467. "/models",
  2468. "/v1/models",
  2469. };
  2470. // If API key is not set, skip validation
  2471. if (params.api_keys.empty()) {
  2472. return true;
  2473. }
  2474. // If path is public or is static file, skip validation
  2475. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2476. return true;
  2477. }
  2478. // Check for API key in the header
  2479. auto auth_header = req.get_header_value("Authorization");
  2480. std::string prefix = "Bearer ";
  2481. if (auth_header.substr(0, prefix.size()) == prefix) {
  2482. std::string received_api_key = auth_header.substr(prefix.size());
  2483. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2484. return true; // API key is valid
  2485. }
  2486. }
  2487. // API key is invalid or not provided
  2488. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2489. LOG_WRN("Unauthorized: Invalid API Key\n");
  2490. return false;
  2491. };
  2492. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2493. server_state current_state = state.load();
  2494. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2495. auto tmp = string_split<std::string>(req.path, '.');
  2496. if (req.path == "/" || tmp.back() == "html") {
  2497. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2498. res.status = 503;
  2499. } else {
  2500. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2501. }
  2502. return false;
  2503. }
  2504. return true;
  2505. };
  2506. // register server middlewares
  2507. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2508. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2509. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2510. if (req.method == "OPTIONS") {
  2511. res.set_header("Access-Control-Allow-Credentials", "true");
  2512. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2513. res.set_header("Access-Control-Allow-Headers", "*");
  2514. res.set_content("", "text/html"); // blank response, no data
  2515. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2516. }
  2517. if (!middleware_server_state(req, res)) {
  2518. return httplib::Server::HandlerResponse::Handled;
  2519. }
  2520. if (!middleware_validate_api_key(req, res)) {
  2521. return httplib::Server::HandlerResponse::Handled;
  2522. }
  2523. return httplib::Server::HandlerResponse::Unhandled;
  2524. });
  2525. //
  2526. // Route handlers (or controllers)
  2527. //
  2528. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2529. // error and loading states are handled by middleware
  2530. json health = {{"status", "ok"}};
  2531. res_ok(res, health);
  2532. };
  2533. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2534. if (!params.endpoint_slots) {
  2535. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2536. return;
  2537. }
  2538. // request slots data using task queue
  2539. server_task task(SERVER_TASK_TYPE_METRICS);
  2540. task.id = ctx_server.queue_tasks.get_new_id();
  2541. ctx_server.queue_results.add_waiting_task_id(task.id);
  2542. ctx_server.queue_tasks.post(task, true); // high-priority task
  2543. // get the result
  2544. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2545. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2546. if (result->is_error()) {
  2547. res_error(res, result->to_json());
  2548. return;
  2549. }
  2550. // TODO: get rid of this dynamic_cast
  2551. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2552. GGML_ASSERT(res_metrics != nullptr);
  2553. // optionally return "fail_on_no_slot" error
  2554. if (req.has_param("fail_on_no_slot")) {
  2555. if (res_metrics->n_idle_slots == 0) {
  2556. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2557. return;
  2558. }
  2559. }
  2560. res_ok(res, res_metrics->slots_data);
  2561. };
  2562. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2563. if (!params.endpoint_metrics) {
  2564. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2565. return;
  2566. }
  2567. // request slots data using task queue
  2568. server_task task(SERVER_TASK_TYPE_METRICS);
  2569. task.id = ctx_server.queue_tasks.get_new_id();
  2570. task.metrics_reset_bucket = true;
  2571. ctx_server.queue_results.add_waiting_task_id(task.id);
  2572. ctx_server.queue_tasks.post(task, true); // high-priority task
  2573. // get the result
  2574. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2575. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2576. if (result->is_error()) {
  2577. res_error(res, result->to_json());
  2578. return;
  2579. }
  2580. // TODO: get rid of this dynamic_cast
  2581. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2582. GGML_ASSERT(res_metrics != nullptr);
  2583. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2584. json all_metrics_def = json {
  2585. {"counter", {{
  2586. {"name", "prompt_tokens_total"},
  2587. {"help", "Number of prompt tokens processed."},
  2588. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2589. }, {
  2590. {"name", "prompt_seconds_total"},
  2591. {"help", "Prompt process time"},
  2592. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2593. }, {
  2594. {"name", "tokens_predicted_total"},
  2595. {"help", "Number of generation tokens processed."},
  2596. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2597. }, {
  2598. {"name", "tokens_predicted_seconds_total"},
  2599. {"help", "Predict process time"},
  2600. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2601. }, {
  2602. {"name", "n_decode_total"},
  2603. {"help", "Total number of llama_decode() calls"},
  2604. {"value", res_metrics->n_decode_total}
  2605. }, {
  2606. {"name", "n_busy_slots_per_decode"},
  2607. {"help", "Average number of busy slots per llama_decode() call"},
  2608. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2609. }}},
  2610. {"gauge", {{
  2611. {"name", "prompt_tokens_seconds"},
  2612. {"help", "Average prompt throughput in tokens/s."},
  2613. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2614. },{
  2615. {"name", "predicted_tokens_seconds"},
  2616. {"help", "Average generation throughput in tokens/s."},
  2617. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2618. },{
  2619. {"name", "kv_cache_usage_ratio"},
  2620. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2621. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2622. },{
  2623. {"name", "kv_cache_tokens"},
  2624. {"help", "KV-cache tokens."},
  2625. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2626. },{
  2627. {"name", "requests_processing"},
  2628. {"help", "Number of request processing."},
  2629. {"value", (uint64_t) res_metrics->n_processing_slots}
  2630. },{
  2631. {"name", "requests_deferred"},
  2632. {"help", "Number of request deferred."},
  2633. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  2634. }}}
  2635. };
  2636. std::stringstream prometheus;
  2637. for (const auto & el : all_metrics_def.items()) {
  2638. const auto & type = el.key();
  2639. const auto & metrics_def = el.value();
  2640. for (const auto & metric_def : metrics_def) {
  2641. const std::string name = metric_def.at("name");
  2642. const std::string help = metric_def.at("help");
  2643. auto value = json_value(metric_def, "value", 0.);
  2644. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2645. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2646. << "llamacpp:" << name << " " << value << "\n";
  2647. }
  2648. }
  2649. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  2650. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2651. res.status = 200; // HTTP OK
  2652. };
  2653. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2654. json request_data = json::parse(req.body);
  2655. std::string filename = request_data.at("filename");
  2656. if (!fs_validate_filename(filename)) {
  2657. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2658. return;
  2659. }
  2660. std::string filepath = params.slot_save_path + filename;
  2661. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  2662. task.id = ctx_server.queue_tasks.get_new_id();
  2663. task.slot_action.slot_id = id_slot;
  2664. task.slot_action.filename = filename;
  2665. task.slot_action.filepath = filepath;
  2666. ctx_server.queue_results.add_waiting_task_id(task.id);
  2667. ctx_server.queue_tasks.post(task);
  2668. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2669. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2670. if (result->is_error()) {
  2671. res_error(res, result->to_json());
  2672. return;
  2673. }
  2674. res_ok(res, result->to_json());
  2675. };
  2676. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2677. json request_data = json::parse(req.body);
  2678. std::string filename = request_data.at("filename");
  2679. if (!fs_validate_filename(filename)) {
  2680. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2681. return;
  2682. }
  2683. std::string filepath = params.slot_save_path + filename;
  2684. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  2685. task.id = ctx_server.queue_tasks.get_new_id();
  2686. task.slot_action.slot_id = id_slot;
  2687. task.slot_action.filename = filename;
  2688. task.slot_action.filepath = filepath;
  2689. ctx_server.queue_results.add_waiting_task_id(task.id);
  2690. ctx_server.queue_tasks.post(task);
  2691. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2692. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2693. if (result->is_error()) {
  2694. res_error(res, result->to_json());
  2695. return;
  2696. }
  2697. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  2698. res_ok(res, result->to_json());
  2699. };
  2700. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2701. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  2702. task.id = ctx_server.queue_tasks.get_new_id();
  2703. task.slot_action.slot_id = id_slot;
  2704. ctx_server.queue_results.add_waiting_task_id(task.id);
  2705. ctx_server.queue_tasks.post(task);
  2706. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2707. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2708. if (result->is_error()) {
  2709. res_error(res, result->to_json());
  2710. return;
  2711. }
  2712. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  2713. res_ok(res, result->to_json());
  2714. };
  2715. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2716. if (params.slot_save_path.empty()) {
  2717. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2718. return;
  2719. }
  2720. std::string id_slot_str = req.path_params.at("id_slot");
  2721. int id_slot;
  2722. try {
  2723. id_slot = std::stoi(id_slot_str);
  2724. } catch (const std::exception &) {
  2725. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2726. return;
  2727. }
  2728. std::string action = req.get_param_value("action");
  2729. if (action == "save") {
  2730. handle_slots_save(req, res, id_slot);
  2731. } else if (action == "restore") {
  2732. handle_slots_restore(req, res, id_slot);
  2733. } else if (action == "erase") {
  2734. handle_slots_erase(req, res, id_slot);
  2735. } else {
  2736. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2737. }
  2738. };
  2739. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2740. // this endpoint is publicly available, please only return what is safe to be exposed
  2741. json data = {
  2742. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2743. { "total_slots", ctx_server.params_base.n_parallel },
  2744. { "model_path", ctx_server.params_base.model },
  2745. { "chat_template", llama_get_chat_template(ctx_server.model) },
  2746. };
  2747. res_ok(res, data);
  2748. };
  2749. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2750. if (!ctx_server.params_base.endpoint_props) {
  2751. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2752. return;
  2753. }
  2754. json data = json::parse(req.body);
  2755. // update any props here
  2756. res_ok(res, {{ "success", true }});
  2757. };
  2758. // handle completion-like requests (completion, chat, infill)
  2759. // we can optionally provide a custom format for partial results and final results
  2760. const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](
  2761. server_task_type type,
  2762. json & data,
  2763. httplib::Response & res,
  2764. bool oaicompat = false,
  2765. bool oaicompat_chat = false) {
  2766. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  2767. if (ctx_server.params_base.embedding) {
  2768. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2769. return;
  2770. }
  2771. auto completion_id = gen_chatcmplid();
  2772. std::vector<server_task> tasks;
  2773. try {
  2774. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
  2775. tasks.reserve(tokenized_prompts.size());
  2776. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  2777. server_task task = server_task(type);
  2778. task.id = ctx_server.queue_tasks.get_new_id();
  2779. task.index = i;
  2780. task.prompt_tokens = std::move(tokenized_prompts[i]);
  2781. task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.ctx, ctx_server.params_base, data);
  2782. task.id_selected_slot = json_value(data, "id_slot", -1);
  2783. // OAI-compat
  2784. task.params.oaicompat = oaicompat;
  2785. task.params.oaicompat_chat = oaicompat_chat;
  2786. task.params.oaicompat_cmpl_id = completion_id;
  2787. // oaicompat_model is already populated by params_from_json_cmpl
  2788. tasks.push_back(task);
  2789. }
  2790. } catch (const std::exception & e) {
  2791. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  2792. return;
  2793. }
  2794. ctx_server.queue_results.add_waiting_tasks(tasks);
  2795. ctx_server.queue_tasks.post(tasks);
  2796. bool stream = json_value(data, "stream", false);
  2797. const auto task_ids = server_task::get_list_id(tasks);
  2798. if (!stream) {
  2799. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  2800. if (results.size() == 1) {
  2801. // single result
  2802. res_ok(res, results[0]->to_json());
  2803. } else {
  2804. // multiple results (multitask)
  2805. json arr = json::array();
  2806. for (auto & res : results) {
  2807. arr.push_back(res->to_json());
  2808. }
  2809. res_ok(res, arr);
  2810. }
  2811. }, [&](const json & error_data) {
  2812. res_error(res, error_data);
  2813. });
  2814. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2815. } else {
  2816. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  2817. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  2818. json res_json = result->to_json();
  2819. if (res_json.is_array()) {
  2820. for (const auto & res : res_json) {
  2821. if (!server_sent_event(sink, "data", res)) {
  2822. return false;
  2823. }
  2824. }
  2825. return true;
  2826. } else {
  2827. return server_sent_event(sink, "data", res_json);
  2828. }
  2829. }, [&](const json & error_data) {
  2830. server_sent_event(sink, "error", error_data);
  2831. });
  2832. if (oaicompat) {
  2833. static const std::string ev_done = "data: [DONE]\n\n";
  2834. sink.write(ev_done.data(), ev_done.size());
  2835. }
  2836. sink.done();
  2837. return false;
  2838. };
  2839. auto on_complete = [task_ids, &ctx_server] (bool) {
  2840. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2841. };
  2842. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2843. }
  2844. };
  2845. const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2846. json data = json::parse(req.body);
  2847. return handle_completions_generic(
  2848. SERVER_TASK_TYPE_COMPLETION,
  2849. data,
  2850. res,
  2851. /* oaicompat */ false,
  2852. /* oaicompat_chat */ false);
  2853. };
  2854. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2855. // check model compatibility
  2856. std::string err;
  2857. if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2858. err += "prefix token is missing. ";
  2859. }
  2860. if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2861. err += "suffix token is missing. ";
  2862. }
  2863. if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2864. err += "middle token is missing. ";
  2865. }
  2866. if (!err.empty()) {
  2867. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  2868. return;
  2869. }
  2870. json data = json::parse(req.body);
  2871. // validate input
  2872. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  2873. // prompt is optional
  2874. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  2875. }
  2876. if (!data.contains("input_prefix")) {
  2877. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2878. }
  2879. if (!data.contains("input_suffix")) {
  2880. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2881. }
  2882. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  2883. // input_extra is optional
  2884. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  2885. return;
  2886. }
  2887. json input_extra = json_value(data, "input_extra", json::array());
  2888. for (const auto & chunk : input_extra) {
  2889. // { "text": string, "filename": string }
  2890. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  2891. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  2892. return;
  2893. }
  2894. // filename is optional
  2895. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  2896. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  2897. return;
  2898. }
  2899. }
  2900. data["input_extra"] = input_extra; // default to empty array if it's not exist
  2901. std::string prompt = json_value(data, "prompt", std::string());
  2902. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  2903. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  2904. data["prompt"] = format_infill(
  2905. ctx_server.ctx,
  2906. data.at("input_prefix"),
  2907. data.at("input_suffix"),
  2908. data.at("input_extra"),
  2909. ctx_server.params_base.n_batch,
  2910. ctx_server.params_base.n_predict,
  2911. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  2912. ctx_server.params_base.spm_infill,
  2913. tokenized_prompts[0]
  2914. );
  2915. return handle_completions_generic(SERVER_TASK_TYPE_INFILL, data, res);
  2916. };
  2917. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2918. if (ctx_server.params_base.embedding) {
  2919. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2920. return;
  2921. }
  2922. json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  2923. return handle_completions_generic(
  2924. SERVER_TASK_TYPE_COMPLETION,
  2925. data,
  2926. res,
  2927. /* oaicompat */ true,
  2928. /* oaicompat_chat */ true);
  2929. };
  2930. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2931. json models = {
  2932. {"object", "list"},
  2933. {"data", {
  2934. {
  2935. {"id", params.model_alias},
  2936. {"object", "model"},
  2937. {"created", std::time(0)},
  2938. {"owned_by", "llamacpp"},
  2939. {"meta", ctx_server.model_meta()}
  2940. },
  2941. }}
  2942. };
  2943. res_ok(res, models);
  2944. };
  2945. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2946. const json body = json::parse(req.body);
  2947. json tokens_response = json::array();
  2948. if (body.count("content") != 0) {
  2949. const bool add_special = json_value(body, "add_special", false);
  2950. const bool with_pieces = json_value(body, "with_pieces", false);
  2951. llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
  2952. if (with_pieces) {
  2953. for (const auto& token : tokens) {
  2954. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  2955. json piece_json;
  2956. // Check if the piece is valid UTF-8
  2957. if (is_valid_utf8(piece)) {
  2958. piece_json = piece;
  2959. } else {
  2960. // If not valid UTF-8, store as array of byte values
  2961. piece_json = json::array();
  2962. for (unsigned char c : piece) {
  2963. piece_json.push_back(static_cast<int>(c));
  2964. }
  2965. }
  2966. tokens_response.push_back({
  2967. {"id", token},
  2968. {"piece", piece_json}
  2969. });
  2970. }
  2971. } else {
  2972. tokens_response = tokens;
  2973. }
  2974. }
  2975. const json data = format_tokenizer_response(tokens_response);
  2976. res_ok(res, data);
  2977. };
  2978. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2979. const json body = json::parse(req.body);
  2980. std::string content;
  2981. if (body.count("tokens") != 0) {
  2982. const llama_tokens tokens = body.at("tokens");
  2983. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  2984. }
  2985. const json data = format_detokenized_response(content);
  2986. res_ok(res, data);
  2987. };
  2988. const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2989. const json body = json::parse(req.body);
  2990. bool oaicompat = false;
  2991. // an input prompt can be a string or a list of tokens (integer)
  2992. json prompt;
  2993. if (body.count("input") != 0) {
  2994. oaicompat = true;
  2995. prompt = body.at("input");
  2996. } else if (body.count("content") != 0) {
  2997. // with "content", we only support single prompt
  2998. prompt = std::vector<std::string>{body.at("content")};
  2999. } else {
  3000. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3001. return;
  3002. }
  3003. // create and queue the task
  3004. json responses = json::array();
  3005. bool error = false;
  3006. {
  3007. std::vector<server_task> tasks;
  3008. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, /* add_special */ false, true);
  3009. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3010. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3011. task.id = ctx_server.queue_tasks.get_new_id();
  3012. task.index = i;
  3013. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3014. tasks.push_back(task);
  3015. }
  3016. ctx_server.queue_results.add_waiting_tasks(tasks);
  3017. ctx_server.queue_tasks.post(tasks);
  3018. // get the result
  3019. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3020. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3021. for (auto & res : results) {
  3022. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3023. responses.push_back(res->to_json());
  3024. }
  3025. }, [&](const json & error_data) {
  3026. res_error(res, error_data);
  3027. error = true;
  3028. });
  3029. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3030. }
  3031. if (error) {
  3032. return;
  3033. }
  3034. // write JSON response
  3035. json root = oaicompat
  3036. ? format_embeddings_response_oaicompat(body, responses)
  3037. : responses.size() == 1 ? responses[0] : json(responses);
  3038. res_ok(res, root);
  3039. };
  3040. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3041. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3042. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3043. return;
  3044. }
  3045. const json body = json::parse(req.body);
  3046. // TODO: implement
  3047. //int top_n = 1;
  3048. //if (body.count("top_n") != 1) {
  3049. // top_n = body.at("top_n");
  3050. //} else {
  3051. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3052. // return;
  3053. //}
  3054. json query;
  3055. if (body.count("query") == 1) {
  3056. query = body.at("query");
  3057. if (!query.is_string()) {
  3058. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3059. return;
  3060. }
  3061. } else {
  3062. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3063. return;
  3064. }
  3065. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3066. if (documents.empty()) {
  3067. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3068. return;
  3069. }
  3070. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0];
  3071. // create and queue the task
  3072. json responses = json::array();
  3073. bool error = false;
  3074. {
  3075. std::vector<server_task> tasks;
  3076. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
  3077. tasks.reserve(tokenized_docs.size());
  3078. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3079. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3080. task.id = ctx_server.queue_tasks.get_new_id();
  3081. task.index = i;
  3082. task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);
  3083. tasks.push_back(task);
  3084. }
  3085. ctx_server.queue_results.add_waiting_tasks(tasks);
  3086. ctx_server.queue_tasks.post(tasks);
  3087. // get the result
  3088. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3089. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3090. for (auto & res : results) {
  3091. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3092. responses.push_back(res->to_json());
  3093. }
  3094. }, [&](const json & error_data) {
  3095. res_error(res, error_data);
  3096. error = true;
  3097. });
  3098. }
  3099. if (error) {
  3100. return;
  3101. }
  3102. // write JSON response
  3103. json root = format_response_rerank(body, responses);
  3104. res_ok(res, root);
  3105. };
  3106. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3107. json result = json::array();
  3108. for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
  3109. auto & lora = ctx_server.loras[i];
  3110. result.push_back({
  3111. {"id", i},
  3112. {"path", lora.path},
  3113. {"scale", lora.scale},
  3114. });
  3115. }
  3116. res_ok(res, result);
  3117. res.status = 200; // HTTP OK
  3118. };
  3119. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3120. const std::vector<json> body = json::parse(req.body);
  3121. int max_idx = ctx_server.loras.size();
  3122. // clear existing value
  3123. for (auto & lora : ctx_server.loras) {
  3124. lora.scale = 0.0f;
  3125. }
  3126. // set value
  3127. for (auto entry : body) {
  3128. int id = entry.at("id");
  3129. float scale = entry.at("scale");
  3130. if (0 <= id && id < max_idx) {
  3131. ctx_server.loras[id].scale = scale;
  3132. } else {
  3133. throw std::runtime_error("invalid adapter id");
  3134. }
  3135. }
  3136. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3137. task.id = ctx_server.queue_tasks.get_new_id();
  3138. ctx_server.queue_results.add_waiting_task_id(task.id);
  3139. ctx_server.queue_tasks.post(task);
  3140. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3141. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3142. if (result->is_error()) {
  3143. res_error(res, result->to_json());
  3144. return;
  3145. }
  3146. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3147. res_ok(res, result->to_json());
  3148. };
  3149. //
  3150. // Router
  3151. //
  3152. if (!params.webui) {
  3153. LOG_INF("Web UI is disabled\n");
  3154. } else {
  3155. // register static assets routes
  3156. if (!params.public_path.empty()) {
  3157. // Set the base directory for serving static files
  3158. bool is_found = svr->set_mount_point("/", params.public_path);
  3159. if (!is_found) {
  3160. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3161. return 1;
  3162. }
  3163. } else {
  3164. // using embedded static index.html
  3165. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3166. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3167. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3168. } else {
  3169. res.set_header("Content-Encoding", "gzip");
  3170. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3171. }
  3172. return false;
  3173. });
  3174. }
  3175. }
  3176. // register API routes
  3177. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3178. svr->Get ("/metrics", handle_metrics);
  3179. svr->Get ("/props", handle_props);
  3180. svr->Post("/props", handle_props_change);
  3181. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3182. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3183. svr->Post("/completion", handle_completions); // legacy
  3184. svr->Post("/completions", handle_completions);
  3185. svr->Post("/v1/completions", handle_completions);
  3186. svr->Post("/chat/completions", handle_chat_completions);
  3187. svr->Post("/v1/chat/completions", handle_chat_completions);
  3188. svr->Post("/infill", handle_infill);
  3189. svr->Post("/embedding", handle_embeddings); // legacy
  3190. svr->Post("/embeddings", handle_embeddings);
  3191. svr->Post("/v1/embeddings", handle_embeddings);
  3192. svr->Post("/rerank", handle_rerank);
  3193. svr->Post("/reranking", handle_rerank);
  3194. svr->Post("/v1/rerank", handle_rerank);
  3195. svr->Post("/v1/reranking", handle_rerank);
  3196. svr->Post("/tokenize", handle_tokenize);
  3197. svr->Post("/detokenize", handle_detokenize);
  3198. // LoRA adapters hotswap
  3199. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3200. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3201. // Save & load slots
  3202. svr->Get ("/slots", handle_slots);
  3203. svr->Post("/slots/:id_slot", handle_slots_action);
  3204. //
  3205. // Start the server
  3206. //
  3207. if (params.n_threads_http < 1) {
  3208. // +2 threads for monitoring endpoints
  3209. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3210. }
  3211. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3212. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3213. // clean up function, to be called before exit
  3214. auto clean_up = [&svr]() {
  3215. svr->stop();
  3216. llama_backend_free();
  3217. };
  3218. // bind HTTP listen port
  3219. bool was_bound = false;
  3220. if (params.port == 0) {
  3221. int bound_port = svr->bind_to_any_port(params.hostname);
  3222. if ((was_bound = (bound_port >= 0))) {
  3223. params.port = bound_port;
  3224. }
  3225. } else {
  3226. was_bound = svr->bind_to_port(params.hostname, params.port);
  3227. }
  3228. if (!was_bound) {
  3229. //LOG_ERROR("couldn't bind HTTP server socket", {
  3230. // {"hostname", params.hostname},
  3231. // {"port", params.port},
  3232. //});
  3233. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3234. clean_up();
  3235. return 1;
  3236. }
  3237. // run the HTTP server in a thread
  3238. std::thread t([&]() { svr->listen_after_bind(); });
  3239. svr->wait_until_ready();
  3240. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3241. // load the model
  3242. LOG_INF("%s: loading model\n", __func__);
  3243. if (!ctx_server.load_model(params)) {
  3244. clean_up();
  3245. t.join();
  3246. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3247. return 1;
  3248. }
  3249. ctx_server.init();
  3250. state.store(SERVER_STATE_READY);
  3251. LOG_INF("%s: model loaded\n", __func__);
  3252. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  3253. if (params.chat_template.empty()) {
  3254. if (!ctx_server.validate_model_chat_template()) {
  3255. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  3256. params.chat_template = "chatml";
  3257. }
  3258. }
  3259. // print sample chat example to make it clear which template is used
  3260. LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
  3261. ctx_server.queue_tasks.on_new_task(std::bind(
  3262. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  3263. ctx_server.queue_tasks.on_update_slots(std::bind(
  3264. &server_context::update_slots, &ctx_server));
  3265. shutdown_handler = [&](int) {
  3266. ctx_server.queue_tasks.terminate();
  3267. };
  3268. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3269. ctx_server.queue_tasks.start_loop();
  3270. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3271. struct sigaction sigint_action;
  3272. sigint_action.sa_handler = signal_handler;
  3273. sigemptyset (&sigint_action.sa_mask);
  3274. sigint_action.sa_flags = 0;
  3275. sigaction(SIGINT, &sigint_action, NULL);
  3276. sigaction(SIGTERM, &sigint_action, NULL);
  3277. #elif defined (_WIN32)
  3278. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3279. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3280. };
  3281. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3282. #endif
  3283. clean_up();
  3284. t.join();
  3285. return 0;
  3286. }