ggml-opencl.cpp 276 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836
  1. #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
  2. #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
  3. // suppress warnings in CL headers for GCC and Clang
  4. #pragma GCC diagnostic ignored "-Woverlength-strings"
  5. #ifdef __clang__
  6. #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
  7. #endif
  8. #include "ggml-opencl.h"
  9. #include "ggml-backend.h"
  10. #include "ggml-impl.h"
  11. #include "ggml-backend-impl.h"
  12. #include "ggml.h"
  13. #include <CL/cl.h>
  14. #include <string.h>
  15. #include <cstddef>
  16. #include <cstdint>
  17. #include <atomic>
  18. #include <fstream>
  19. #include <limits>
  20. #include <vector>
  21. #include <string>
  22. #include <cmath>
  23. #include <memory>
  24. #include <charconv>
  25. #include <mutex>
  26. #undef MIN
  27. #undef MAX
  28. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  29. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  30. #define UNUSED(x) (void)(x)
  31. #define CL_CHECK(err) \
  32. do { \
  33. cl_int err_ = (err); \
  34. if (err_ != CL_SUCCESS) { \
  35. GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
  36. #err, err_, __FILE__, __LINE__); \
  37. GGML_ASSERT(0); \
  38. } \
  39. } while (0)
  40. //------------------------------------------------------------------------------
  41. // OpenCL
  42. //------------------------------------------------------------------------------
  43. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
  44. enum GPU_FAMILY {
  45. ADRENO,
  46. INTEL,
  47. UNKNOWN,
  48. };
  49. enum ADRENO_GPU_GEN {
  50. ADRENO_UNKNOWN,
  51. A7X,
  52. A8X,
  53. X1E,
  54. };
  55. enum ADRENO_CL_COMPILER_TYPE {
  56. E031,
  57. DX,
  58. };
  59. struct ggml_cl_version {
  60. cl_uint major = 0;
  61. cl_uint minor = 0;
  62. };
  63. struct ggml_cl_compiler_version {
  64. ADRENO_CL_COMPILER_TYPE type;
  65. int major = -1;
  66. int minor = -1;
  67. int patch = -1;
  68. bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  69. return major == x && minor == y && patch == z && type == t;
  70. }
  71. bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  72. return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
  73. }
  74. bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  75. return same(t, x, y, z) || newer_than(t, x, y, z);
  76. }
  77. };
  78. static size_t align_to(size_t value, size_t to_alignment) {
  79. GGML_ASSERT(to_alignment && "Invalid alignment (must be non-zero)");
  80. GGML_ASSERT((to_alignment & (to_alignment - 1)) == 0 && "to_alignment must be power-of-two");
  81. return ((value + to_alignment - 1) / to_alignment) * to_alignment;
  82. }
  83. // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
  84. static ggml_cl_version parse_cl_version(std::string_view str) {
  85. size_t major_str_begin = 0;
  86. size_t major_str_end = str.find(".", major_str_begin);
  87. if (major_str_end == std::string::npos) {
  88. return {};
  89. }
  90. size_t minor_str_begin = major_str_end + 1;
  91. size_t minor_str_end = str.find(" ", minor_str_begin);
  92. if (minor_str_end == std::string::npos) {
  93. return {};
  94. }
  95. cl_uint version_major;
  96. if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
  97. return {};
  98. }
  99. cl_uint version_minor;
  100. if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
  101. return {};
  102. }
  103. return { version_major, version_minor };
  104. }
  105. // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
  106. static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
  107. size_t param_size;
  108. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, &param_size));
  109. std::unique_ptr<char[]> param_storage(new char[param_size]);
  110. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
  111. auto param_value = std::string_view(param_storage.get(), param_size);
  112. const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
  113. if (param_value.find(version_prefix) != 0) {
  114. return {};
  115. }
  116. param_value.remove_prefix(version_prefix.length());
  117. return parse_cl_version(param_value);
  118. }
  119. // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
  120. static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
  121. size_t param_size;
  122. #if CL_TARGET_OPENCL_VERSION >= 300
  123. if (platform_version.major >= 3) {
  124. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, &param_size));
  125. if (!param_size) {
  126. return {};
  127. }
  128. std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
  129. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
  130. unsigned versions_count = param_size / sizeof(cl_name_version);
  131. cl_version version_max = 0;
  132. for (unsigned i = 0; i < versions_count; i++) {
  133. version_max = std::max<cl_version>(versions[i].version, version_max);
  134. }
  135. return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
  136. }
  137. #else
  138. GGML_UNUSED(platform_version);
  139. #endif // CL_TARGET_OPENCL_VERSION >= 300
  140. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, &param_size));
  141. if (!param_size) {
  142. return {};
  143. }
  144. std::unique_ptr<char[]> param_storage(new char[param_size]);
  145. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
  146. auto param_value = std::string_view(param_storage.get(), param_size);
  147. const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
  148. if (param_value.find(version_prefix) != 0) {
  149. return {};
  150. }
  151. param_value.remove_prefix(version_prefix.length());
  152. return parse_cl_version(param_value);
  153. }
  154. static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
  155. if (strstr(device_name, "730") ||
  156. strstr(device_name, "740") ||
  157. strstr(device_name, "750")) {
  158. return ADRENO_GPU_GEN::A7X;
  159. }
  160. if (strstr(device_name, "830")) {
  161. return ADRENO_GPU_GEN::A8X;
  162. }
  163. if (strstr(device_name, "X1")) {
  164. return ADRENO_GPU_GEN::X1E;
  165. }
  166. return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
  167. }
  168. static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
  169. std::string driver_ver_str(driver_version);
  170. ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
  171. size_t compiler_ver_pos = driver_ver_str.find("E031");
  172. size_t compiler_ver_len = 13;
  173. size_t compiler_major_offset = 5;
  174. size_t compiler_minor_offset = 8;
  175. size_t compiler_patch_offset = 11;
  176. if (compiler_ver_pos == std::string::npos) {
  177. compiler_ver_pos = driver_ver_str.find("DX");
  178. if (compiler_ver_pos == std::string::npos) {
  179. return {};
  180. }
  181. type = ADRENO_CL_COMPILER_TYPE::DX;
  182. compiler_ver_len = 11;
  183. compiler_major_offset = 3;
  184. }
  185. std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
  186. int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
  187. int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
  188. int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
  189. return { type, major, minor, patch };
  190. }
  191. // Profiling
  192. struct ProfilingInfo {
  193. std::string op_name;
  194. std::string kernel_name;
  195. cl_kernel kernel;
  196. cl_event evt;
  197. cl_ulong cmd_queued;
  198. cl_ulong cmd_submit;
  199. cl_ulong cmd_start;
  200. cl_ulong cmd_end;
  201. cl_ulong overhead_start;
  202. cl_ulong overhead_end;
  203. // For the times below, see spec for clGetEventProfilingInfo
  204. // The time kernel spent in cmd queue - SUBMIT - QUEUED
  205. cl_ulong cmd_queued_duration_ns;
  206. // The time kernel spent for submission - START - SUBMIT
  207. cl_ulong cmd_submit_duration_ns;
  208. // Kernel execution time in nanoseconds - END - START
  209. cl_ulong cmd_duration_ns;
  210. // The time for the kernel to complete - COMPLETE - END
  211. cl_ulong cmd_complete_duration_ns;
  212. // Total time to finish the kernel - COMPELTE - QUEUED
  213. cl_ulong cmd_total_duration_ns;
  214. // Global and local work sizes.
  215. size_t global_size[3];
  216. size_t local_size[3];
  217. // Op output size.
  218. size_t output_size[4];
  219. };
  220. static void populateProfilingInfo(
  221. ProfilingInfo& info, cl_event evt, cl_kernel kernel, cl_uint work_dim,
  222. size_t global_size[3], size_t local_size[3],
  223. const ggml_tensor * tensor) {
  224. info.op_name = tensor->name;
  225. info.kernel = kernel;
  226. info.evt = evt;
  227. // 0 means not specified, e.g., 2D workgroup, or NULL for driver to choose
  228. info.local_size[0] = 0;
  229. info.local_size[1] = 0;
  230. info.local_size[2] = 0;
  231. info.global_size[0] = 0;
  232. info.global_size[1] = 0;
  233. info.global_size[2] = 0;
  234. if (local_size) {
  235. for (cl_uint i = 0; i < work_dim; ++i) {
  236. info.local_size[i] = local_size[i];
  237. }
  238. }
  239. for (cl_uint i = 0; i < work_dim; ++i) {
  240. info.global_size[i] = global_size[i];
  241. }
  242. info.output_size[0] = tensor->ne[0];
  243. info.output_size[1] = tensor->ne[1];
  244. info.output_size[2] = tensor->ne[2];
  245. info.output_size[3] = tensor->ne[3];
  246. }
  247. struct ggml_backend_opencl_context;
  248. // backend device context
  249. struct ggml_backend_opencl_device_context {
  250. cl_platform_id platform;
  251. std::string platform_name;
  252. cl_device_id device;
  253. std::string device_name;
  254. cl_device_type device_type;
  255. std::string device_version;
  256. // Initialized by ggml_cl2_init().
  257. ggml_backend_opencl_context * backend_ctx = nullptr;
  258. // Initialized by ggml_backend_opencl_device_get_buffer_type()
  259. ggml_backend_buffer_type buffer_type;
  260. cl_context context = nullptr;
  261. };
  262. // backend context
  263. struct ggml_backend_opencl_context {
  264. int ref_count;
  265. cl_device_id device;
  266. std::string device_name;
  267. std::string driver_version;
  268. GPU_FAMILY gpu_family;
  269. ADRENO_GPU_GEN adreno_gen;
  270. cl_int alignment;
  271. size_t max_alloc_size;
  272. bool fp16_support;
  273. bool has_vector_subgroup_broadcast;
  274. ggml_cl_compiler_version adreno_cl_compiler_version;
  275. int adreno_wave_size;
  276. cl_bool non_uniform_workgroups;
  277. cl_context context;
  278. cl_command_queue queue;
  279. cl_program program_add;
  280. cl_program program_clamp;
  281. cl_program program_cpy;
  282. cl_program program_cvt;
  283. cl_program program_diag_mask_inf;
  284. cl_program program_gelu;
  285. cl_program program_gemv_noshuffle_general;
  286. cl_program program_gemv_noshuffle;
  287. cl_program program_get_rows;
  288. cl_program program_set_rows;
  289. cl_program program_glu;
  290. cl_program program_im2col_f16;
  291. cl_program program_im2col_f32;
  292. cl_program program_mul_mat_Ab_Bi_8x4;
  293. cl_program program_mul_mv_q4_0_f32;
  294. cl_program program_mul_mv_q4_0_f32_v;
  295. cl_program program_mul_mv_q4_0_f32_8x_flat;
  296. cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
  297. cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
  298. cl_program program_mul_mv_q6_K;
  299. cl_program program_mul_mv_f16_f16;
  300. cl_program program_mul_mv_f16_f32_1row;
  301. cl_program program_mul_mv_f16_f32_l4;
  302. cl_program program_mul_mv_f16_f32;
  303. cl_program program_mul_mv_f32_f32;
  304. cl_program program_mul;
  305. cl_program program_mul_mat_f16_f32_tiled;
  306. cl_program program_div;
  307. cl_program program_sub;
  308. cl_program program_norm;
  309. cl_program program_relu;
  310. cl_program program_rms_norm;
  311. cl_program program_group_norm;
  312. cl_program program_rope;
  313. cl_program program_scale;
  314. cl_program program_silu;
  315. cl_program program_sigmoid;
  316. cl_program program_softmax_f32;
  317. cl_program program_softmax_f16;
  318. cl_program program_softmax_4_f32;
  319. cl_program program_softmax_4_f16;
  320. cl_program program_argsort_f32_i32;
  321. cl_program program_sum_rows_f32;
  322. cl_program program_repeat;
  323. cl_program program_pad;
  324. cl_program program_tanh;
  325. cl_program program_upscale;
  326. cl_program program_concat;
  327. cl_program program_tsembd;
  328. cl_program program_mul_mv_id_q4_0_f32_8x_flat;
  329. cl_kernel kernel_add, kernel_add_row;
  330. cl_kernel kernel_mul, kernel_mul_row;
  331. cl_kernel kernel_div, kernel_div_row;
  332. cl_kernel kernel_sub, kernel_sub_row;
  333. cl_kernel kernel_scale;
  334. cl_kernel kernel_silu, kernel_silu_4;
  335. cl_kernel kernel_gelu, kernel_gelu_4;
  336. cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
  337. cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
  338. cl_kernel kernel_relu;
  339. cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
  340. cl_kernel kernel_clamp;
  341. cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_geglu_erf, kernel_geglu_quick,
  342. kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
  343. cl_kernel kernel_norm;
  344. cl_kernel kernel_rms_norm;
  345. cl_kernel kernel_group_norm;
  346. cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
  347. cl_kernel kernel_soft_max, kernel_soft_max_4;
  348. cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
  349. cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
  350. cl_kernel kernel_set_rows_f32, kernel_set_rows_f16;
  351. cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
  352. cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
  353. cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
  354. cl_kernel kernel_mul_mat_f32_f32;
  355. cl_kernel kernel_mul_mat_f16_f16;
  356. cl_kernel kernel_mul_mat_f16_f32_1row;
  357. cl_kernel kernel_mul_mat_f16_f32;
  358. cl_kernel kernel_mul_mat_f16_f32_l4;
  359. cl_kernel kernel_mul_mat_f16_f32_tiled;
  360. cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
  361. cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
  362. cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
  363. cl_kernel kernel_convert_block_q4_0_noshuffle;
  364. cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
  365. cl_kernel kernel_mul_mv_q6_K_f32;
  366. cl_kernel kernel_im2col_f32, kernel_im2col_f16;
  367. cl_kernel kernel_argsort_f32_i32;
  368. cl_kernel kernel_sum_rows_f32;
  369. cl_kernel kernel_repeat;
  370. cl_kernel kernel_pad;
  371. cl_kernel kernel_tanh_f32_nd;
  372. cl_kernel kernel_tanh_f16_nd;
  373. cl_kernel kernel_upscale;
  374. cl_kernel kernel_upscale_bilinear;
  375. cl_kernel kernel_concat_f32_contiguous;
  376. cl_kernel kernel_concat_f32_non_contiguous;
  377. cl_kernel kernel_timestep_embedding;
  378. cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
  379. std::vector<ProfilingInfo> profiling_info;
  380. void write_profiling_info() {
  381. FILE * fperf = fopen("cl_profiling.csv", "w");
  382. if (!fperf) {
  383. GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
  384. return;
  385. }
  386. // Populate profiling info
  387. for (ProfilingInfo & info : profiling_info) {
  388. cl_ulong cmd_queued;
  389. cl_ulong cmd_submit;
  390. cl_ulong cmd_start;
  391. cl_ulong cmd_end;
  392. cl_ulong cmd_complete;
  393. CL_CHECK(clWaitForEvents(1, &info.evt));
  394. CL_CHECK(clGetEventProfilingInfo(
  395. info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
  396. CL_CHECK(clGetEventProfilingInfo(
  397. info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
  398. CL_CHECK(clGetEventProfilingInfo(
  399. info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
  400. CL_CHECK(clGetEventProfilingInfo(
  401. info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
  402. CL_CHECK(clGetEventProfilingInfo(
  403. info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
  404. CL_CHECK(clReleaseEvent(info.evt));
  405. char kernel_name[512];
  406. CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
  407. sizeof(kernel_name), kernel_name, NULL));
  408. info.kernel_name = kernel_name;
  409. info.cmd_queued = cmd_queued;
  410. info.cmd_submit = cmd_submit;
  411. info.cmd_start = cmd_start;
  412. info.cmd_end = cmd_end;
  413. info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
  414. info.cmd_submit_duration_ns = cmd_start - cmd_submit;
  415. info.cmd_duration_ns = cmd_end - cmd_start;
  416. info.cmd_complete_duration_ns = cmd_complete - cmd_end;
  417. info.cmd_total_duration_ns = cmd_complete - cmd_queued;
  418. }
  419. // Dump a csv
  420. float total_kernel_time = 0;
  421. fprintf(fperf, "op name, kernel name, queued duration (ms), submit duration(ms), exec duration (ms), complete duration (ms), total duration (ms), global size, local size, output size\n");
  422. for (const ProfilingInfo & info : profiling_info) {
  423. total_kernel_time += info.cmd_duration_ns/1.e6f;
  424. fprintf(fperf, "%s,%s,%f,%f,%f,%f,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
  425. info.op_name.c_str(), info.kernel_name.c_str(),
  426. info.cmd_queued_duration_ns/1.e6f,
  427. info.cmd_submit_duration_ns/1.e6f,
  428. info.cmd_duration_ns/1.e6f,
  429. info.cmd_complete_duration_ns/1.e6f,
  430. info.cmd_total_duration_ns/1.e6f,
  431. info.global_size[0], info.global_size[1], info.global_size[2],
  432. info.local_size[0], info.local_size[1], info.local_size[2],
  433. info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
  434. }
  435. fclose(fperf);
  436. GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
  437. // Dump a simple chrome trace
  438. FILE* ftrace = fopen("cl_trace.json", "w");
  439. if (!ftrace) {
  440. GGML_LOG_ERROR("Failed to open cl_trace.json\n");
  441. return;
  442. }
  443. fprintf(ftrace, "[\n");
  444. for (const ProfilingInfo & info : profiling_info) {
  445. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
  446. info.kernel_name.c_str(), info.cmd_queued/1000);
  447. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
  448. info.kernel_name.c_str(), info.cmd_submit/1000);
  449. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
  450. info.kernel_name.c_str(), info.cmd_start/1000);
  451. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
  452. info.kernel_name.c_str(), info.cmd_end/1000);
  453. }
  454. fclose(ftrace);
  455. }
  456. size_t get_kernel_workgroup_size(cl_kernel kernel) const {
  457. size_t workgroup_size = 0;
  458. size_t ret_size = 0;
  459. CL_CHECK(
  460. clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
  461. sizeof(size_t), &workgroup_size, &ret_size));
  462. GGML_ASSERT(sizeof(size_t) == ret_size);
  463. return workgroup_size;
  464. }
  465. void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
  466. #ifdef GGML_OPENCL_PROFILING
  467. cl_event evt;
  468. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  469. profiling_info.emplace_back();
  470. populateProfilingInfo(profiling_info.back(), evt, kernel, work_dim, global_work_size, local_work_size, tensor);
  471. #else
  472. GGML_UNUSED(tensor);
  473. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  474. #endif
  475. }
  476. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  477. // Transpose kernels
  478. cl_program program_transpose;
  479. cl_kernel kernel_transpose_32;
  480. cl_kernel kernel_transpose_32_16;
  481. cl_kernel kernel_transpose_16;
  482. cl_mem A_s_d_max; // max scale buffer size for transpose
  483. cl_mem A_q_d_max; // max weight buffer size for transpose
  484. cl_mem B_d_max; // max activation buffer size for transpose
  485. // Gemm and Gemv related programs, kernels, etc
  486. cl_program program_CL_gemm;
  487. cl_program program_CL_gemv_general;
  488. cl_program program_CL_gemv_4096_1_11008;
  489. cl_program program_CL_gemv_4096_1_4096;
  490. cl_program program_CL_gemv_11008_1_4096;
  491. cl_program program_CL_gemv_32000_1_4096;
  492. cl_kernel CL_mul_mat_Ab_Bi_8x4;
  493. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  494. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  495. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  496. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  497. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  498. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  499. void free() {
  500. ref_count--;
  501. if (ref_count == 0) {
  502. #ifdef GGML_OPENCL_PROFILING
  503. write_profiling_info();
  504. #endif
  505. }
  506. }
  507. };
  508. // All registered devices with a default device in the front.
  509. static std::vector<ggml_backend_device> g_ggml_backend_opencl_devices;
  510. inline std::string read_file(const std::string &path) {
  511. std::ifstream ifs(path);
  512. if (!ifs) {
  513. return "";
  514. }
  515. std::string text;
  516. ifs.seekg(0, std::ios::end);
  517. text.resize(ifs.tellg());
  518. ifs.seekg(0, std::ios::beg);
  519. ifs.read(&text[0], text.size());
  520. return text;
  521. }
  522. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
  523. cl_program p;
  524. char *program_log;
  525. size_t program_size;
  526. size_t log_size;
  527. int err;
  528. program_size = strlen(program_buffer);
  529. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  530. if(err < 0) {
  531. GGML_LOG_ERROR("OpenCL error creating program");
  532. exit(1);
  533. }
  534. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  535. if(err < 0) {
  536. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  537. program_log = (char*) malloc(log_size + 1);
  538. program_log[log_size] = '\0';
  539. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  540. GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  541. free(program_log);
  542. exit(1);
  543. }
  544. return p;
  545. }
  546. static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
  547. cl_int err;
  548. // compiler options for general kernels
  549. auto opencl_c_std =
  550. std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
  551. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  552. " -cl-mad-enable -cl-unsafe-math-optimizations"
  553. " -cl-finite-math-only -cl-fast-relaxed-math";
  554. GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
  555. // add
  556. {
  557. #ifdef GGML_OPENCL_EMBED_KERNELS
  558. const std::string kernel_src {
  559. #include "add.cl.h"
  560. };
  561. #else
  562. const std::string kernel_src = read_file("add.cl");
  563. #endif
  564. backend_ctx->program_add =
  565. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  566. CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
  567. CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
  568. GGML_LOG_CONT(".");
  569. }
  570. // clamp
  571. {
  572. #ifdef GGML_OPENCL_EMBED_KERNELS
  573. const std::string kernel_src {
  574. #include "clamp.cl.h"
  575. };
  576. #else
  577. const std::string kernel_src = read_file("clamp.cl");
  578. #endif
  579. backend_ctx->program_clamp =
  580. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  581. CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
  582. GGML_LOG_CONT(".");
  583. }
  584. // cpy
  585. {
  586. #ifdef GGML_OPENCL_EMBED_KERNELS
  587. const std::string kernel_src {
  588. #include "cpy.cl.h"
  589. };
  590. #else
  591. const std::string kernel_src = read_file("cpy.cl");
  592. #endif
  593. backend_ctx->program_cpy =
  594. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  595. CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
  596. CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
  597. CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
  598. CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
  599. GGML_LOG_CONT(".");
  600. }
  601. // cvt
  602. {
  603. #ifdef GGML_OPENCL_EMBED_KERNELS
  604. const std::string kernel_src {
  605. #include "cvt.cl.h"
  606. };
  607. #else
  608. const std::string kernel_src = read_file("cvt.cl");
  609. #endif
  610. backend_ctx->program_cvt =
  611. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  612. CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
  613. CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
  614. CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
  615. GGML_LOG_CONT(".");
  616. }
  617. // diag_mask_inf
  618. {
  619. #ifdef GGML_OPENCL_EMBED_KERNELS
  620. const std::string kernel_src {
  621. #include "diag_mask_inf.cl.h"
  622. };
  623. #else
  624. const std::string kernel_src = read_file("diag_mask_inf.cl");
  625. #endif
  626. backend_ctx->program_diag_mask_inf =
  627. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  628. CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
  629. CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
  630. GGML_LOG_CONT(".");
  631. }
  632. // gelu
  633. {
  634. #ifdef GGML_OPENCL_EMBED_KERNELS
  635. const std::string kernel_src {
  636. #include "gelu.cl.h"
  637. };
  638. #else
  639. const std::string kernel_src = read_file("gelu.cl");
  640. #endif
  641. backend_ctx->program_gelu =
  642. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  643. CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
  644. CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
  645. CL_CHECK((backend_ctx->kernel_gelu_erf = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf", &err), err));
  646. CL_CHECK((backend_ctx->kernel_gelu_erf_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf_4", &err), err));
  647. CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
  648. CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
  649. GGML_LOG_CONT(".");
  650. }
  651. // glu
  652. {
  653. #ifdef GGML_OPENCL_EMBED_KERNELS
  654. const std::string kernel_src {
  655. #include "glu.cl.h"
  656. };
  657. #else
  658. const std::string kernel_src = read_file("glu.cl");
  659. #endif
  660. backend_ctx->program_glu =
  661. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  662. CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
  663. CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
  664. CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
  665. CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
  666. CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
  667. CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
  668. CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
  669. CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
  670. CL_CHECK((backend_ctx->kernel_geglu_erf_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf_f16", &err), err));
  671. CL_CHECK((backend_ctx->kernel_geglu_quick_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick_f16", &err), err));
  672. GGML_LOG_CONT(".");
  673. }
  674. // get_rows
  675. {
  676. #ifdef GGML_OPENCL_EMBED_KERNELS
  677. const std::string kernel_src {
  678. #include "get_rows.cl.h"
  679. };
  680. #else
  681. const std::string kernel_src = read_file("get_rows.cl");
  682. #endif
  683. backend_ctx->program_get_rows =
  684. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  685. CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
  686. CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
  687. CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
  688. GGML_LOG_CONT(".");
  689. }
  690. // im2col_f32
  691. {
  692. #ifdef GGML_OPENCL_EMBED_KERNELS
  693. const std::string kernel_src {
  694. #include "im2col_f32.cl.h"
  695. };
  696. #else
  697. const std::string kernel_src = read_file("im2col_f32.cl");
  698. #endif
  699. backend_ctx->program_im2col_f32 =
  700. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  701. CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
  702. GGML_LOG_CONT(".");
  703. }
  704. // im2col_f16
  705. {
  706. #ifdef GGML_OPENCL_EMBED_KERNELS
  707. const std::string kernel_src {
  708. #include "im2col_f16.cl.h"
  709. };
  710. #else
  711. const std::string kernel_src = read_file("im2col_f16.cl");
  712. #endif
  713. backend_ctx->program_im2col_f16 =
  714. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  715. CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
  716. GGML_LOG_CONT(".");
  717. }
  718. // mul_mv_q4_0_f32
  719. {
  720. #ifdef GGML_OPENCL_EMBED_KERNELS
  721. const std::string kernel_src {
  722. #include "mul_mv_q4_0_f32.cl.h"
  723. };
  724. #else
  725. const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
  726. #endif
  727. backend_ctx->program_mul_mv_q4_0_f32 =
  728. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  729. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
  730. GGML_LOG_CONT(".");
  731. }
  732. // mul_mv_q4_0_f32_v
  733. {
  734. #ifdef GGML_OPENCL_EMBED_KERNELS
  735. const std::string kernel_src {
  736. #include "mul_mv_q4_0_f32_v.cl.h"
  737. };
  738. #else
  739. const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
  740. #endif
  741. backend_ctx->program_mul_mv_q4_0_f32_v =
  742. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  743. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
  744. GGML_LOG_CONT(".");
  745. }
  746. // mul_mv_q4_0_f32_8x_flat
  747. {
  748. #ifdef GGML_OPENCL_EMBED_KERNELS
  749. const std::string kernel_src {
  750. #include "mul_mv_q4_0_f32_8x_flat.cl.h"
  751. };
  752. #else
  753. const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
  754. #endif
  755. backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
  756. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  757. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
  758. GGML_LOG_CONT(".");
  759. }
  760. // mul_mv_q4_0_f32_1d_8x_flat
  761. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  762. // those compiler versions since it is anyway not used for Adreno.
  763. if (backend_ctx->gpu_family != ADRENO ||
  764. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  765. backend_ctx->adreno_cl_compiler_version.type == DX) {
  766. #ifdef GGML_OPENCL_EMBED_KERNELS
  767. const std::string kernel_src {
  768. #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
  769. };
  770. #else
  771. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
  772. #endif
  773. backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
  774. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  775. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
  776. GGML_LOG_CONT(".");
  777. }
  778. // mul_mv_q4_0_f32_1d_16x_flat
  779. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  780. // those compiler versions since it is anyway not used for Adreno.
  781. if (backend_ctx->gpu_family != ADRENO ||
  782. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  783. backend_ctx->adreno_cl_compiler_version.type == DX) {
  784. #ifdef GGML_OPENCL_EMBED_KERNELS
  785. const std::string kernel_src {
  786. #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
  787. };
  788. #else
  789. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
  790. #endif
  791. backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
  792. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  793. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
  794. GGML_LOG_CONT(".");
  795. }
  796. // mul_mv_q6_k
  797. {
  798. #ifdef GGML_OPENCL_EMBED_KERNELS
  799. const std::string kernel_src {
  800. #include "mul_mv_q6_k.cl.h"
  801. };
  802. #else
  803. const std::string kernel_src = read_file("mul_mv_q6_k.cl");
  804. #endif
  805. backend_ctx->program_mul_mv_q6_K =
  806. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  807. CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
  808. GGML_LOG_CONT(".");
  809. }
  810. // mul_mv_f16_f16
  811. {
  812. #ifdef GGML_OPENCL_EMBED_KERNELS
  813. const std::string kernel_src {
  814. #include "mul_mv_f16_f16.cl.h"
  815. };
  816. #else
  817. const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
  818. #endif
  819. backend_ctx->program_mul_mv_f16_f16 =
  820. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  821. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
  822. GGML_LOG_CONT(".");
  823. }
  824. // mul_mv_f16_f32_1row
  825. {
  826. #ifdef GGML_OPENCL_EMBED_KERNELS
  827. const std::string kernel_src {
  828. #include "mul_mv_f16_f32_1row.cl.h"
  829. };
  830. #else
  831. const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
  832. #endif
  833. backend_ctx->program_mul_mv_f16_f32_1row =
  834. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  835. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
  836. GGML_LOG_CONT(".");
  837. }
  838. // mul_mv_f16_f32_l4
  839. {
  840. #ifdef GGML_OPENCL_EMBED_KERNELS
  841. const std::string kernel_src {
  842. #include "mul_mv_f16_f32_l4.cl.h"
  843. };
  844. #else
  845. const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
  846. #endif
  847. backend_ctx->program_mul_mv_f16_f32_l4 =
  848. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  849. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
  850. GGML_LOG_CONT(".");
  851. }
  852. // mul_mv_f16_f32
  853. {
  854. #ifdef GGML_OPENCL_EMBED_KERNELS
  855. const std::string kernel_src {
  856. #include "mul_mv_f16_f32.cl.h"
  857. };
  858. #else
  859. const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
  860. #endif
  861. backend_ctx->program_mul_mv_f16_f32 =
  862. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  863. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
  864. GGML_LOG_CONT(".");
  865. }
  866. // mul_mv_f32_f32
  867. {
  868. #ifdef GGML_OPENCL_EMBED_KERNELS
  869. const std::string kernel_src {
  870. #include "mul_mv_f32_f32.cl.h"
  871. };
  872. #else
  873. const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
  874. #endif
  875. backend_ctx->program_mul_mv_f32_f32 =
  876. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  877. CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
  878. GGML_LOG_CONT(".");
  879. }
  880. // mul_mat_f16_f32_tiled
  881. {
  882. #ifdef GGML_OPENCL_EMBED_KERNELS
  883. const std::string kernel_src {
  884. #include "mul_mat_f16_f32.cl.h"
  885. };
  886. #else
  887. const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
  888. #endif
  889. backend_ctx->program_mul_mat_f16_f32_tiled =
  890. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  891. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
  892. GGML_LOG_CONT(".");
  893. }
  894. // mul
  895. {
  896. #ifdef GGML_OPENCL_EMBED_KERNELS
  897. const std::string kernel_src {
  898. #include "mul.cl.h"
  899. };
  900. #else
  901. const std::string kernel_src = read_file("mul.cl");
  902. #endif
  903. backend_ctx->program_mul =
  904. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  905. CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
  906. CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
  907. GGML_LOG_CONT(".");
  908. }
  909. // norm
  910. {
  911. #ifdef GGML_OPENCL_EMBED_KERNELS
  912. const std::string kernel_src {
  913. #include "norm.cl.h"
  914. };
  915. #else
  916. const std::string kernel_src = read_file("norm.cl");
  917. #endif
  918. backend_ctx->program_norm =
  919. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  920. CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
  921. GGML_LOG_CONT(".");
  922. }
  923. // relu
  924. {
  925. #ifdef GGML_OPENCL_EMBED_KERNELS
  926. const std::string kernel_src {
  927. #include "relu.cl.h"
  928. };
  929. #else
  930. const std::string kernel_src = read_file("relu.cl");
  931. #endif
  932. backend_ctx->program_relu =
  933. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  934. CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
  935. GGML_LOG_CONT(".");
  936. }
  937. // rms_norm
  938. {
  939. #ifdef GGML_OPENCL_EMBED_KERNELS
  940. const std::string kernel_src {
  941. #include "rms_norm.cl.h"
  942. };
  943. #else
  944. const std::string kernel_src = read_file("rms_norm.cl");
  945. #endif
  946. backend_ctx->program_rms_norm =
  947. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  948. CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
  949. GGML_LOG_CONT(".");
  950. }
  951. // rope
  952. {
  953. #ifdef GGML_OPENCL_EMBED_KERNELS
  954. const std::string kernel_src {
  955. #include "rope.cl.h"
  956. };
  957. #else
  958. const std::string kernel_src = read_file("rope.cl");
  959. #endif
  960. backend_ctx->program_rope =
  961. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  962. CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
  963. CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
  964. CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
  965. CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
  966. CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
  967. CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
  968. CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
  969. CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
  970. GGML_LOG_CONT(".");
  971. }
  972. // scale
  973. {
  974. #ifdef GGML_OPENCL_EMBED_KERNELS
  975. const std::string kernel_src {
  976. #include "scale.cl.h"
  977. };
  978. #else
  979. const std::string kernel_src = read_file("scale.cl");
  980. #endif
  981. backend_ctx->program_scale =
  982. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  983. CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
  984. GGML_LOG_CONT(".");
  985. }
  986. // silu
  987. {
  988. #ifdef GGML_OPENCL_EMBED_KERNELS
  989. const std::string kernel_src {
  990. #include "silu.cl.h"
  991. };
  992. #else
  993. const std::string kernel_src = read_file("silu.cl");
  994. #endif
  995. backend_ctx->program_silu =
  996. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  997. CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
  998. CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
  999. GGML_LOG_CONT(".");
  1000. }
  1001. // softmax_f32
  1002. {
  1003. #ifdef GGML_OPENCL_EMBED_KERNELS
  1004. const std::string kernel_src {
  1005. #include "softmax_f32.cl.h"
  1006. };
  1007. #else
  1008. const std::string kernel_src = read_file("softmax_f32.cl");
  1009. #endif
  1010. backend_ctx->program_softmax_f32 =
  1011. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1012. CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
  1013. GGML_LOG_CONT(".");
  1014. }
  1015. // softmax_f16
  1016. {
  1017. #ifdef GGML_OPENCL_EMBED_KERNELS
  1018. const std::string kernel_src {
  1019. #include "softmax_f16.cl.h"
  1020. };
  1021. #else
  1022. const std::string kernel_src = read_file("softmax_f16.cl");
  1023. #endif
  1024. backend_ctx->program_softmax_f16 =
  1025. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1026. CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
  1027. GGML_LOG_CONT(".");
  1028. }
  1029. // softmax_4_f32
  1030. {
  1031. #ifdef GGML_OPENCL_EMBED_KERNELS
  1032. const std::string kernel_src {
  1033. #include "softmax_4_f32.cl.h"
  1034. };
  1035. #else
  1036. const std::string kernel_src = read_file("softmax_4_f32.cl");
  1037. #endif
  1038. backend_ctx->program_softmax_4_f32 =
  1039. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1040. CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
  1041. GGML_LOG_CONT(".");
  1042. }
  1043. // softmax_4_f16
  1044. {
  1045. #ifdef GGML_OPENCL_EMBED_KERNELS
  1046. const std::string kernel_src {
  1047. #include "softmax_4_f16.cl.h"
  1048. };
  1049. #else
  1050. const std::string kernel_src = read_file("softmax_4_f16.cl");
  1051. #endif
  1052. backend_ctx->program_softmax_4_f16 =
  1053. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1054. CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
  1055. GGML_LOG_CONT(".");
  1056. }
  1057. // argsort
  1058. {
  1059. #ifdef GGML_OPENCL_EMBED_KERNELS
  1060. const std::string kernel_src {
  1061. #include "argsort.cl.h"
  1062. };
  1063. #else
  1064. const std::string kernel_src = read_file("argsort.cl");
  1065. #endif
  1066. backend_ctx->program_argsort_f32_i32 =
  1067. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1068. CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
  1069. GGML_LOG_CONT(".");
  1070. }
  1071. // div
  1072. {
  1073. #ifdef GGML_OPENCL_EMBED_KERNELS
  1074. const std::string kernel_src {
  1075. #include "div.cl.h"
  1076. };
  1077. #else
  1078. const std::string kernel_src = read_file("div.cl");
  1079. #endif
  1080. backend_ctx->program_div =
  1081. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1082. CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
  1083. CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
  1084. GGML_LOG_CONT(".");
  1085. }
  1086. // sub
  1087. {
  1088. #ifdef GGML_OPENCL_EMBED_KERNELS
  1089. const std::string kernel_src {
  1090. #include "sub.cl.h"
  1091. };
  1092. #else
  1093. const std::string kernel_src = read_file("sub.cl");
  1094. #endif
  1095. backend_ctx->program_sub =
  1096. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1097. CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
  1098. CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
  1099. GGML_LOG_CONT(".");
  1100. }
  1101. // sum_rows
  1102. {
  1103. #ifdef GGML_OPENCL_EMBED_KERNELS
  1104. const std::string kernel_src {
  1105. #include "sum_rows.cl.h"
  1106. };
  1107. #else
  1108. const std::string kernel_src = read_file("sum_rows.cl");
  1109. #endif
  1110. backend_ctx->program_sum_rows_f32 =
  1111. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1112. CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
  1113. GGML_LOG_CONT(".");
  1114. }
  1115. // sigmoid
  1116. {
  1117. #ifdef GGML_OPENCL_EMBED_KERNELS
  1118. const std::string kernel_src {
  1119. #include "sigmoid.cl.h"
  1120. };
  1121. #else
  1122. const std::string kernel_src = read_file("sigmoid.cl");
  1123. #endif
  1124. backend_ctx->program_sigmoid =
  1125. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1126. CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
  1127. CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
  1128. GGML_LOG_CONT(".");
  1129. }
  1130. // group_norm
  1131. {
  1132. #ifdef GGML_OPENCL_EMBED_KERNELS
  1133. const std::string kernel_src {
  1134. #include "group_norm.cl.h"
  1135. };
  1136. #else
  1137. const std::string kernel_src = read_file("group_norm.cl");
  1138. #endif
  1139. backend_ctx->program_group_norm =
  1140. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1141. CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
  1142. GGML_LOG_CONT(".");
  1143. }
  1144. // repeat
  1145. {
  1146. #ifdef GGML_OPENCL_EMBED_KERNELS
  1147. const std::string kernel_src {
  1148. #include "repeat.cl.h"
  1149. };
  1150. #else
  1151. const std::string kernel_src = read_file("repeat.cl");
  1152. #endif
  1153. if (!kernel_src.empty()) {
  1154. backend_ctx->program_repeat =
  1155. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1156. CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
  1157. GGML_LOG_CONT(".");
  1158. } else {
  1159. GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
  1160. backend_ctx->program_repeat = nullptr;
  1161. backend_ctx->kernel_repeat = nullptr;
  1162. }
  1163. }
  1164. // pad
  1165. {
  1166. #ifdef GGML_OPENCL_EMBED_KERNELS
  1167. const std::string kernel_src {
  1168. #include "pad.cl.h"
  1169. };
  1170. #else
  1171. const std::string kernel_src = read_file("pad.cl");
  1172. #endif
  1173. if (!kernel_src.empty()) {
  1174. backend_ctx->program_pad =
  1175. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1176. CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err));
  1177. GGML_LOG_CONT(".");
  1178. } else {
  1179. GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n");
  1180. backend_ctx->program_pad = nullptr;
  1181. backend_ctx->kernel_pad = nullptr;
  1182. }
  1183. }
  1184. // tanh
  1185. {
  1186. #ifdef GGML_OPENCL_EMBED_KERNELS
  1187. const std::string kernel_src {
  1188. #include "tanh.cl.h"
  1189. };
  1190. #else
  1191. const std::string kernel_src = read_file("tanh.cl");
  1192. #endif
  1193. if (!kernel_src.empty()) {
  1194. backend_ctx->program_tanh =
  1195. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1196. CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
  1197. CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
  1198. GGML_LOG_CONT(".");
  1199. } else {
  1200. GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
  1201. backend_ctx->program_tanh = nullptr;
  1202. backend_ctx->kernel_tanh_f32_nd = nullptr;
  1203. backend_ctx->kernel_tanh_f16_nd = nullptr;
  1204. }
  1205. }
  1206. // upscale
  1207. {
  1208. #ifdef GGML_OPENCL_EMBED_KERNELS
  1209. const std::string kernel_src {
  1210. #include "upscale.cl.h"
  1211. };
  1212. #else
  1213. const std::string kernel_src = read_file("upscale.cl");
  1214. #endif
  1215. if (!kernel_src.empty()) {
  1216. backend_ctx->program_upscale =
  1217. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1218. CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err));
  1219. if (backend_ctx->program_upscale) {
  1220. cl_int err_bilinear;
  1221. backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear);
  1222. if (err_bilinear != CL_SUCCESS) {
  1223. GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear);
  1224. backend_ctx->kernel_upscale_bilinear = nullptr;
  1225. }
  1226. } else {
  1227. backend_ctx->kernel_upscale_bilinear = nullptr;
  1228. }
  1229. GGML_LOG_CONT(".");
  1230. } else {
  1231. GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n");
  1232. backend_ctx->program_upscale = nullptr;
  1233. backend_ctx->kernel_upscale = nullptr;
  1234. backend_ctx->kernel_upscale_bilinear = nullptr;
  1235. }
  1236. }
  1237. // concat
  1238. {
  1239. #ifdef GGML_OPENCL_EMBED_KERNELS
  1240. const std::string kernel_src {
  1241. #include "concat.cl.h"
  1242. };
  1243. #else
  1244. const std::string kernel_src = read_file("concat.cl");
  1245. #endif
  1246. if (!kernel_src.empty()) {
  1247. backend_ctx->program_concat =
  1248. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1249. CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
  1250. CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
  1251. GGML_LOG_CONT(".");
  1252. } else {
  1253. GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
  1254. backend_ctx->program_concat = nullptr;
  1255. backend_ctx->kernel_concat_f32_contiguous = nullptr;
  1256. backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
  1257. }
  1258. }
  1259. // timestep_embedding
  1260. {
  1261. #ifdef GGML_OPENCL_EMBED_KERNELS
  1262. const std::string kernel_src {
  1263. #include "tsembd.cl.h"
  1264. };
  1265. #else
  1266. const std::string kernel_src = read_file("tsembd.cl");
  1267. #endif
  1268. if (!kernel_src.empty()) {
  1269. backend_ctx->program_tsembd =
  1270. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1271. CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err));
  1272. GGML_LOG_CONT(".");
  1273. } else {
  1274. GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n");
  1275. backend_ctx->program_tsembd = nullptr;
  1276. backend_ctx->kernel_timestep_embedding = nullptr;
  1277. }
  1278. }
  1279. // set_rows
  1280. {
  1281. #ifdef GGML_OPENCL_EMBED_KERNELS
  1282. const std::string kernel_src {
  1283. #include "set_rows.cl.h"
  1284. };
  1285. #else
  1286. const std::string kernel_src = read_file("set_rows.cl");
  1287. #endif
  1288. backend_ctx->program_set_rows =
  1289. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1290. CL_CHECK((backend_ctx->kernel_set_rows_f32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32", &err), err));
  1291. CL_CHECK((backend_ctx->kernel_set_rows_f16 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16", &err), err));
  1292. GGML_LOG_CONT(".");
  1293. }
  1294. // mul_mv_id_q4_0_f32_8x_flat
  1295. {
  1296. #ifdef GGML_OPENCL_EMBED_KERNELS
  1297. const std::string kernel_src {
  1298. #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
  1299. };
  1300. #else
  1301. const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
  1302. #endif
  1303. backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
  1304. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1305. CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
  1306. GGML_LOG_CONT(".");
  1307. }
  1308. // Adreno kernels
  1309. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1310. // transpose
  1311. {
  1312. #ifdef GGML_OPENCL_EMBED_KERNELS
  1313. const std::string kernel_src {
  1314. #include "transpose.cl.h"
  1315. };
  1316. #else
  1317. const std::string kernel_src = read_file("transpose.cl");
  1318. #endif
  1319. backend_ctx->program_transpose =
  1320. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1321. CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
  1322. CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
  1323. CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
  1324. GGML_LOG_CONT(".");
  1325. }
  1326. // gemv_noshuffle_general
  1327. {
  1328. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1329. " -cl-mad-enable "
  1330. " -DSIMDGROUP_WIDTH=" +
  1331. std::to_string(backend_ctx->adreno_wave_size);
  1332. if (backend_ctx->has_vector_subgroup_broadcast) {
  1333. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1334. }
  1335. #ifdef GGML_OPENCL_EMBED_KERNELS
  1336. const std::string kernel_src_CL_gemv_general {
  1337. #include "gemv_noshuffle_general.cl.h"
  1338. };
  1339. #else
  1340. const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
  1341. #endif
  1342. backend_ctx->program_CL_gemv_general = build_program_from_source(
  1343. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
  1344. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
  1345. GGML_LOG_CONT(".");
  1346. }
  1347. // gemv_noshuffle
  1348. {
  1349. // Gemv 2048, 16384
  1350. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1351. " -cl-mad-enable "
  1352. " -DLINE_STRIDE_A=2048 "
  1353. " -DBLOCK_STRIDE_A=16384 "
  1354. " -DSIMDGROUP_WIDTH=" +
  1355. std::to_string(backend_ctx->adreno_wave_size);
  1356. if (backend_ctx->has_vector_subgroup_broadcast) {
  1357. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1358. }
  1359. #ifdef GGML_OPENCL_EMBED_KERNELS
  1360. const std::string kernel_src_CL_gemv {
  1361. #include "gemv_noshuffle.cl.h"
  1362. };
  1363. #else
  1364. const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
  1365. #endif
  1366. backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
  1367. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1368. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
  1369. GGML_LOG_CONT(".");
  1370. // Gemv 2048, 16384
  1371. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1372. " -cl-mad-enable "
  1373. " -DLINE_STRIDE_A=2048 "
  1374. " -DBLOCK_STRIDE_A=16384 "
  1375. " -DSIMDGROUP_WIDTH=" +
  1376. std::to_string(backend_ctx->adreno_wave_size);
  1377. if (backend_ctx->has_vector_subgroup_broadcast) {
  1378. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1379. }
  1380. backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
  1381. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1382. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
  1383. GGML_LOG_CONT(".");
  1384. // Gemv 5504, 44032
  1385. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1386. " -cl-mad-enable "
  1387. " -DLINE_STRIDE_A=5504 "
  1388. " -DBLOCK_STRIDE_A=44032 "
  1389. " -DSIMDGROUP_WIDTH=" +
  1390. std::to_string(backend_ctx->adreno_wave_size);
  1391. if (backend_ctx->has_vector_subgroup_broadcast) {
  1392. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1393. }
  1394. backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
  1395. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1396. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
  1397. GGML_LOG_CONT(".");
  1398. // Gemv 16000, 128000
  1399. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1400. " -cl-mad-enable "
  1401. " -DLINE_STRIDE_A=16000 "
  1402. " -DBLOCK_STRIDE_A=128000 "
  1403. " -DSIMDGROUP_WIDTH=" +
  1404. std::to_string(backend_ctx->adreno_wave_size);
  1405. if (backend_ctx->has_vector_subgroup_broadcast) {
  1406. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1407. }
  1408. backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
  1409. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1410. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
  1411. GGML_LOG_CONT(".");
  1412. }
  1413. // mul_mat_Ab_Bi_8x4
  1414. {
  1415. #ifdef GGML_OPENCL_EMBED_KERNELS
  1416. const std::string kernel_src_CL_gemm {
  1417. #include "mul_mat_Ab_Bi_8x4.cl.h"
  1418. };
  1419. #else
  1420. const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
  1421. #endif
  1422. backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
  1423. CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
  1424. GGML_LOG_CONT(".");
  1425. }
  1426. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1427. GGML_LOG_CONT("\n");
  1428. }
  1429. // XXX static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1430. // XXX static bool initialized = false;
  1431. // XXX static ggml_backend_opencl_context *backend_ctx = nullptr;
  1432. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev);
  1433. namespace /* anonymous */ {
  1434. extern struct ggml_backend_device_i ggml_backend_opencl_device_i;
  1435. }
  1436. // Look for available and suitable devices.
  1437. static std::vector<ggml_backend_device> ggml_opencl_probe_devices(ggml_backend_reg * reg) {
  1438. std::vector<ggml_backend_device> found_devices;
  1439. #ifdef GGML_OPENCL_PROFILING
  1440. GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
  1441. #endif
  1442. struct cl_device;
  1443. struct cl_platform {
  1444. cl_platform_id id;
  1445. unsigned number;
  1446. char name[128];
  1447. char vendor[128];
  1448. struct cl_device * devices;
  1449. unsigned n_devices;
  1450. struct cl_device * default_device;
  1451. };
  1452. struct cl_device {
  1453. struct cl_platform * platform;
  1454. cl_device_id id;
  1455. unsigned number;
  1456. cl_device_type type;
  1457. char name[128];
  1458. char version[128];
  1459. };
  1460. enum { NPLAT = 16, NDEV = 16 };
  1461. struct cl_platform platforms[NPLAT];
  1462. unsigned n_platforms = 0;
  1463. struct cl_device devices[NDEV];
  1464. unsigned n_devices = 0;
  1465. struct cl_device * default_device = NULL;
  1466. unsigned default_platform_number = 0;
  1467. cl_platform_id platform_ids[NPLAT];
  1468. if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
  1469. GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
  1470. return found_devices;
  1471. }
  1472. for (unsigned i = 0; i < n_platforms; i++) {
  1473. struct cl_platform * p = &platforms[i];
  1474. p->number = i;
  1475. p->id = platform_ids[i];
  1476. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  1477. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  1478. cl_device_id device_ids[NDEV];
  1479. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  1480. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  1481. p->n_devices = 0;
  1482. } else {
  1483. CL_CHECK(clGetDeviceIDsError);
  1484. }
  1485. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  1486. p->default_device = NULL;
  1487. for (unsigned j = 0; j < p->n_devices; j++) {
  1488. struct cl_device * d = &devices[n_devices];
  1489. d->number = n_devices++;
  1490. d->id = device_ids[j];
  1491. d->platform = p;
  1492. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  1493. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  1494. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
  1495. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  1496. p->default_device = d;
  1497. }
  1498. }
  1499. if (default_device == NULL && p->default_device != NULL) {
  1500. default_device = p->default_device;
  1501. default_platform_number = i;
  1502. }
  1503. }
  1504. if (n_devices == 0) {
  1505. GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
  1506. return found_devices;
  1507. }
  1508. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  1509. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  1510. int user_platform_number = -1;
  1511. int user_device_number = -1;
  1512. cl_device * candidate_devices = nullptr;
  1513. unsigned n_candidate_devices = 0;
  1514. unsigned n;
  1515. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  1516. user_platform_number = (int)n;
  1517. }
  1518. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  1519. user_device_number = (int)n;
  1520. }
  1521. if (user_platform_number != -1 && user_device_number != -1) {
  1522. cl_platform* platform = &platforms[user_platform_number];
  1523. if ((unsigned)user_device_number >= platform->n_devices) {
  1524. GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
  1525. exit(1);
  1526. }
  1527. default_device = &platform->devices[user_device_number];
  1528. candidate_devices = platform->devices;
  1529. n_candidate_devices = platform->n_devices;
  1530. } else {
  1531. // Choose a platform by matching a substring.
  1532. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  1533. for (unsigned i = 0; i < n_platforms; i++) {
  1534. struct cl_platform * p = &platforms[i];
  1535. if (strstr(p->name, user_platform_string) != NULL ||
  1536. strstr(p->vendor, user_platform_string) != NULL) {
  1537. user_platform_number = (int)i;
  1538. break;
  1539. }
  1540. }
  1541. if (user_platform_number == -1) {
  1542. GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  1543. exit(1);
  1544. }
  1545. }
  1546. int platform_idx = user_platform_number != -1 ? user_platform_number : default_platform_number;
  1547. struct cl_platform * p = &platforms[platform_idx];
  1548. candidate_devices = p->devices;
  1549. n_candidate_devices = p->n_devices;
  1550. default_device = p->default_device;
  1551. if (n_candidate_devices == 0) {
  1552. GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  1553. exit(1);
  1554. }
  1555. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  1556. for (unsigned i = 0; i < n_candidate_devices; i++) {
  1557. struct cl_device * d = &candidate_devices[i];
  1558. if (strstr(d->name, user_device_string) != NULL) {
  1559. user_device_number = d->number;
  1560. break;
  1561. }
  1562. }
  1563. if (user_device_number == -1) {
  1564. GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  1565. exit(1);
  1566. }
  1567. }
  1568. if (user_device_number != -1) {
  1569. candidate_devices = &devices[user_device_number];
  1570. n_candidate_devices = 1;
  1571. default_device = &candidate_devices[0];
  1572. }
  1573. GGML_ASSERT(n_candidate_devices > 0);
  1574. if (default_device == NULL) {
  1575. default_device = &candidate_devices[0];
  1576. }
  1577. }
  1578. GGML_ASSERT(n_candidate_devices != 0 && candidate_devices);
  1579. // Put the default device in front.
  1580. for (unsigned i = 1; i < n_candidate_devices; i++) {
  1581. if (&candidate_devices[i] == default_device) {
  1582. std::swap(candidate_devices[0], candidate_devices[i]);
  1583. default_device = &candidate_devices[0];
  1584. break;
  1585. }
  1586. }
  1587. GGML_LOG_INFO("ggml_opencl: selected platform: '%s'\n", default_device->platform->name);
  1588. std::vector<cl_device_id> device_ids;
  1589. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  1590. device_ids.push_back(dev->id);
  1591. }
  1592. cl_int err;
  1593. cl_context shared_context;
  1594. cl_context_properties properties[] = { (intptr_t) CL_CONTEXT_PLATFORM, (intptr_t) default_device->platform->id, 0 };
  1595. CL_CHECK(
  1596. (shared_context = clCreateContext(properties, device_ids.size(), device_ids.data(), NULL, NULL, &err), err));
  1597. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  1598. GGML_LOG_INFO("\nggml_opencl: device: '%s (%s)'\n", dev->name, dev->version);
  1599. auto dev_ctx = std::unique_ptr<ggml_backend_opencl_device_context>(new ggml_backend_opencl_device_context{
  1600. /*.platform =*/dev->platform->id,
  1601. /*.platform_nane =*/dev->platform->name,
  1602. /*.device =*/dev->id,
  1603. /*.device_name =*/dev->name,
  1604. /*.device_type =*/dev->type,
  1605. /*.device_version =*/dev->version,
  1606. /*.backend_ctx =*/nullptr,
  1607. /*.buffer_type =*/{},
  1608. /*.context =*/shared_context,
  1609. });
  1610. found_devices.push_back(ggml_backend_device{
  1611. /* .iface = */ ggml_backend_opencl_device_i,
  1612. /* .reg = */ reg,
  1613. /* .context = */ dev_ctx.get(),
  1614. });
  1615. if (!ggml_cl2_init(&found_devices.back())) {
  1616. found_devices.pop_back();
  1617. GGML_LOG_INFO("ggml_opencl: drop unsupported device.\n");
  1618. continue;
  1619. }
  1620. dev_ctx.release();
  1621. }
  1622. if (found_devices.size()) {
  1623. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(found_devices.front().context);
  1624. GGML_LOG_INFO("ggml_opencl: default device: '%s (%s)'\n", dev_ctx->device_name.c_str(),
  1625. dev_ctx->device_version.c_str());
  1626. if (dev_ctx->device_type != CL_DEVICE_TYPE_GPU) {
  1627. GGML_LOG_WARN("ggml_opencl: warning, the default device is not a GPU: '%s'.\n",
  1628. dev_ctx->device_name.c_str());
  1629. }
  1630. }
  1631. return found_devices;
  1632. }
  1633. // Initialize device if it is supported (returns nullptr if it is not).
  1634. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1635. GGML_ASSERT(dev);
  1636. GGML_ASSERT(dev->context);
  1637. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  1638. GGML_ASSERT(dev_ctx->platform);
  1639. GGML_ASSERT(dev_ctx->device);
  1640. if (dev_ctx->backend_ctx) {
  1641. return dev_ctx->backend_ctx;
  1642. }
  1643. auto backend_ctx = std::make_unique<ggml_backend_opencl_context>();
  1644. backend_ctx->device = dev_ctx->device;
  1645. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  1646. // ref_count get increased in ggml_backend_opencl_device_init
  1647. // This function is also used to retrieve backend context, so we don't want
  1648. // to increase ref_count for each call. We only want to increase ref_count
  1649. // when the associated device is initialized
  1650. backend_ctx->ref_count = 0;
  1651. if (strstr(dev_ctx->device_name.c_str(), "Adreno") ||
  1652. strstr(dev_ctx->device_name.c_str(), "Qualcomm") ||
  1653. strstr(dev_ctx->device_version.c_str(), "Adreno")) {
  1654. backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
  1655. // Usually device version contains the detailed device name
  1656. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_version.c_str());
  1657. if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
  1658. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_name.c_str());
  1659. }
  1660. // Use wave size of 64 for all Adreno GPUs.
  1661. backend_ctx->adreno_wave_size = 64;
  1662. } else if (strstr(dev_ctx->device_name.c_str(), "Intel")) {
  1663. backend_ctx->gpu_family = GPU_FAMILY::INTEL;
  1664. } else {
  1665. GGML_LOG_ERROR("Unsupported GPU: %s\n", dev_ctx->device_name.c_str());
  1666. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  1667. return nullptr;
  1668. }
  1669. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1670. if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
  1671. GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
  1672. "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
  1673. return nullptr;
  1674. }
  1675. #endif
  1676. // Populate backend device name
  1677. backend_ctx->device_name = dev_ctx->device_name;
  1678. // A local ref of cl_device_id for convenience
  1679. cl_device_id device = backend_ctx->device;
  1680. ggml_cl_version platform_version = get_opencl_platform_version(dev_ctx->platform);
  1681. // Check device OpenCL version, OpenCL 2.0 or above is required
  1682. ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
  1683. if (opencl_c_version.major < 2) {
  1684. GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
  1685. return nullptr;
  1686. }
  1687. // Check driver version
  1688. size_t driver_version_str_size;
  1689. clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
  1690. char *driver_version = (char *)alloca(driver_version_str_size + 1);
  1691. clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
  1692. driver_version[driver_version_str_size] = '\0';
  1693. GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
  1694. backend_ctx->driver_version = driver_version;
  1695. backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
  1696. backend_ctx->has_vector_subgroup_broadcast =
  1697. backend_ctx->adreno_cl_compiler_version.major >= 47 ||
  1698. backend_ctx->adreno_cl_compiler_version.major == 17;
  1699. GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
  1700. backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
  1701. size_t ext_str_size;
  1702. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  1703. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  1704. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  1705. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  1706. // Check if ext_buffer contains cl_khr_fp16
  1707. backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  1708. GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
  1709. // fp16 is required
  1710. if (!backend_ctx->fp16_support) {
  1711. GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
  1712. return nullptr;
  1713. }
  1714. // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
  1715. // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
  1716. if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
  1717. strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
  1718. GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
  1719. "(note that subgroups is an optional feature in OpenCL 3.0)\n");
  1720. return nullptr;
  1721. }
  1722. cl_uint base_align_in_bits;
  1723. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
  1724. GGML_ASSERT(base_align_in_bits % 8u == 0);
  1725. backend_ctx->alignment = base_align_in_bits / 8u;
  1726. GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
  1727. clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
  1728. GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
  1729. // Check SVM.
  1730. cl_device_svm_capabilities svm_caps;
  1731. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
  1732. GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
  1733. svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
  1734. GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
  1735. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
  1736. GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
  1737. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
  1738. GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
  1739. svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
  1740. if (opencl_c_version.major >= 3) {
  1741. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, sizeof(cl_bool),
  1742. &backend_ctx->non_uniform_workgroups, 0));
  1743. } else {
  1744. GGML_ASSERT(opencl_c_version.major == 2);
  1745. // Non-uniform workgroup sizes is mandatory feature in v2.x.
  1746. backend_ctx->non_uniform_workgroups = true;
  1747. }
  1748. // Print out configurations
  1749. #ifdef GGML_OPENCL_SOA_Q
  1750. GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
  1751. #endif // GGML_OPENCL_SOA_Q
  1752. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1753. GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
  1754. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1755. cl_int err;
  1756. // A local ref of cl_context for convenience
  1757. cl_context context = backend_ctx->context = dev_ctx->context;
  1758. //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  1759. // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  1760. // (queue = clCreateCommandQueue(context, device, 0, &err), err)
  1761. //)));
  1762. cl_command_queue_properties command_queue_props = 0;
  1763. #ifdef GGML_OPENCL_PROFILING
  1764. command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
  1765. #endif
  1766. CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
  1767. // Load kernels
  1768. load_cl_kernels(backend_ctx.get(), opencl_c_version);
  1769. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1770. // Allocate intermediate buffers and images
  1771. size_t required_A_q_d_bytes = 311164928;
  1772. size_t required_A_s_d_bytes = 38895616;
  1773. size_t required_B_d_bytes = 45088768;
  1774. // Ensure buffer sizes do not exceed the maximum allocation size
  1775. size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
  1776. size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
  1777. size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
  1778. if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
  1779. GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
  1780. required_A_q_d_bytes, max_A_q_d_bytes);
  1781. }
  1782. if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
  1783. GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
  1784. required_A_s_d_bytes, max_A_s_d_bytes);
  1785. }
  1786. if (required_B_d_bytes > backend_ctx->max_alloc_size) {
  1787. GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
  1788. required_B_d_bytes, max_B_d_bytes);
  1789. }
  1790. CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
  1791. CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
  1792. CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
  1793. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1794. dev_ctx->backend_ctx = backend_ctx.release();
  1795. return dev_ctx->backend_ctx;
  1796. }
  1797. static void ggml_cl2_free(ggml_backend_t backend) {
  1798. ggml_backend_opencl_context * ctx = (ggml_backend_opencl_context *) backend->context;
  1799. ctx->free();
  1800. // The CL context is shared by all backends, release it if all backends have been released
  1801. bool should_release_opencl = true;
  1802. for (auto device : g_ggml_backend_opencl_devices) {
  1803. ggml_backend_opencl_device_context * ctx_dev = (ggml_backend_opencl_device_context *) device.context;
  1804. if (ctx_dev->backend_ctx->ref_count > 0) {
  1805. should_release_opencl = false;
  1806. }
  1807. }
  1808. if (should_release_opencl) {
  1809. CL_CHECK(clReleaseContext(ctx->context));
  1810. }
  1811. }
  1812. //------------------------------------------------------------------------------
  1813. // Tensor extra management
  1814. //------------------------------------------------------------------------------
  1815. struct ggml_tensor_extra_cl {
  1816. // The buffer object that holds the data.
  1817. cl_mem data_device;
  1818. // The offset into the buffer object. This is primarily for scratch buffer
  1819. // and view operation.
  1820. // NB: this offset no longer includes view offset (view_offs). Whenever this
  1821. // offset is used, view_offs should be considered.
  1822. cl_ulong offset;
  1823. // The actual size of the cl_mem object. This is needed when returning the
  1824. // block to the pool.
  1825. size_t actual_size;
  1826. void reset() {
  1827. data_device = nullptr;
  1828. offset = 0;
  1829. actual_size = 0;
  1830. }
  1831. };
  1832. // Additional tensor extra structs for quantized tensors.
  1833. // These tensors are loaded from files and should not be allocated in scratch --
  1834. // they should always be allocated from the pool. Hence, they do not have an
  1835. // `offset`, which indicate their locations in the scratch buffer.
  1836. struct ggml_tensor_extra_cl_q4_0 {
  1837. // Quantized values.
  1838. cl_mem q = nullptr;
  1839. // Quantized values in image1d_buffer_t.
  1840. cl_mem q_img = nullptr;
  1841. // Scales.
  1842. cl_mem d = nullptr;
  1843. // Scales in image1d_buffer_t.
  1844. cl_mem d_img = nullptr;
  1845. // Size of quantized values.
  1846. size_t size_q = 0;
  1847. // Size of scales.
  1848. size_t size_d = 0;
  1849. ~ggml_tensor_extra_cl_q4_0() {
  1850. reset();
  1851. }
  1852. void reset() {
  1853. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  1854. // They must be properly released so that the original buffer can be
  1855. // properly released to avoid memory leak.
  1856. if (q != nullptr) {
  1857. CL_CHECK(clReleaseMemObject(q));
  1858. q = nullptr;
  1859. }
  1860. if (d != nullptr) {
  1861. CL_CHECK(clReleaseMemObject(d));
  1862. d = nullptr;
  1863. }
  1864. // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
  1865. // enabled. They point to the images in ggml_backend_opencl_buffer_context.
  1866. // So, there is no need to release them here.
  1867. // TODO: initialize them for non SMALL_PATH path, or remove them.
  1868. q_img = nullptr;
  1869. d_img = nullptr;
  1870. size_q = 0;
  1871. size_d = 0;
  1872. }
  1873. };
  1874. //------------------------------------------------------------------------------
  1875. // Backend API
  1876. //------------------------------------------------------------------------------
  1877. //
  1878. // backend
  1879. //
  1880. static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
  1881. return "OpenCL";
  1882. UNUSED(backend);
  1883. }
  1884. static void ggml_backend_opencl_free(ggml_backend_t backend) {
  1885. ggml_cl2_free(backend);
  1886. }
  1887. static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1888. GGML_UNUSED(backend);
  1889. GGML_UNUSED(tensor);
  1890. GGML_UNUSED(data);
  1891. GGML_UNUSED(offset);
  1892. GGML_UNUSED(size);
  1893. }
  1894. static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1895. GGML_UNUSED(backend);
  1896. GGML_UNUSED(tensor);
  1897. GGML_UNUSED(data);
  1898. GGML_UNUSED(offset);
  1899. GGML_UNUSED(size);
  1900. }
  1901. static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  1902. GGML_UNUSED(backend);
  1903. GGML_UNUSED(src);
  1904. GGML_UNUSED(dst);
  1905. return false;
  1906. }
  1907. static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
  1908. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  1909. cl_event evt;
  1910. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt));
  1911. CL_CHECK(clWaitForEvents(1, &evt));
  1912. CL_CHECK(clReleaseEvent(evt));
  1913. }
  1914. // Syncronizes the 'backend_ctx's device with others so that commands
  1915. // enqueued to it won't start until commands in the other devices have
  1916. // completed.
  1917. static void sync_with_other_backends(ggml_backend_opencl_context * backend_ctx) {
  1918. if (g_ggml_backend_opencl_devices.size() < 2)
  1919. return; // No other devices to synchronize with.
  1920. std::vector<cl_event> events;
  1921. events.reserve(g_ggml_backend_opencl_devices.size());
  1922. for (ggml_backend_device & backend_dev : g_ggml_backend_opencl_devices) {
  1923. auto * other_backend_ctx = ggml_cl2_init(&backend_dev);
  1924. if (backend_ctx != other_backend_ctx) {
  1925. cl_event ev;
  1926. CL_CHECK(clEnqueueMarkerWithWaitList(other_backend_ctx->queue, 0, nullptr, &ev));
  1927. CL_CHECK(clFlush(other_backend_ctx->queue));
  1928. events.push_back(ev);
  1929. }
  1930. }
  1931. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, events.size(), events.data(), nullptr));
  1932. for (auto ev : events) {
  1933. CL_CHECK(clReleaseEvent(ev));
  1934. }
  1935. }
  1936. static void sync_with_other_backends(ggml_backend_t backend) {
  1937. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  1938. sync_with_other_backends(backend_ctx);
  1939. }
  1940. static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  1941. for (int i = 0; i < cgraph->n_nodes; i++) {
  1942. ggml_tensor * node = cgraph->nodes[i];
  1943. // NOTE: this may oversynchronize by synchronizing with
  1944. // backends/devices which don't compute 'cgraph's
  1945. // dependencies.
  1946. sync_with_other_backends(backend);
  1947. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  1948. continue;
  1949. }
  1950. bool ok = ggml_cl_compute_forward(backend, node);
  1951. if (!ok) {
  1952. GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  1953. }
  1954. GGML_ASSERT(ok);
  1955. }
  1956. return GGML_STATUS_SUCCESS;
  1957. }
  1958. static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  1959. GGML_UNUSED(dev);
  1960. switch (op->op) {
  1961. case GGML_OP_NONE:
  1962. return true;
  1963. case GGML_OP_GET_ROWS:
  1964. switch (op->src[0]->type) {
  1965. case GGML_TYPE_F32:
  1966. case GGML_TYPE_F16:
  1967. return true;
  1968. case GGML_TYPE_Q4_0:
  1969. #ifdef GGML_OPENCL_SOA_Q
  1970. // We do not support flattened Q4_0 (and possibly other Q's)
  1971. return false;
  1972. #else // GGML_OPENCL_SOA_Q
  1973. return true;
  1974. #endif // GGML_OPENCL_SOA_Q
  1975. default:
  1976. return false;
  1977. }
  1978. case GGML_OP_SET_ROWS:
  1979. {
  1980. // TODO: add support
  1981. // ref: https://github.com/ggml-org/llama.cpp/pull/14274
  1982. #pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
  1983. if (op->src[0]->type != GGML_TYPE_F32) {
  1984. return false;
  1985. }
  1986. switch (op->type) {
  1987. case GGML_TYPE_F16:
  1988. case GGML_TYPE_F32:
  1989. return true;
  1990. default:
  1991. return false;
  1992. }
  1993. }
  1994. case GGML_OP_CPY:
  1995. case GGML_OP_DUP:
  1996. case GGML_OP_CONT:
  1997. switch (op->src[0]->type) {
  1998. case GGML_TYPE_F32:
  1999. switch (op->type) {
  2000. case GGML_TYPE_F16:
  2001. case GGML_TYPE_F32:
  2002. return true;
  2003. default:
  2004. return false;
  2005. }
  2006. case GGML_TYPE_F16:
  2007. switch (op->type) {
  2008. case GGML_TYPE_F16:
  2009. case GGML_TYPE_F32:
  2010. return true;
  2011. default:
  2012. return false;
  2013. }
  2014. default:
  2015. return false;
  2016. }
  2017. case GGML_OP_ADD:
  2018. case GGML_OP_SCALE:
  2019. case GGML_OP_MUL:
  2020. case GGML_OP_DIV:
  2021. case GGML_OP_SUB:
  2022. return op->src[0]->type == GGML_TYPE_F32;
  2023. case GGML_OP_UNARY:
  2024. switch (ggml_get_unary_op(op)) {
  2025. case GGML_UNARY_OP_GELU:
  2026. case GGML_UNARY_OP_SILU:
  2027. case GGML_UNARY_OP_RELU:
  2028. case GGML_UNARY_OP_GELU_ERF:
  2029. case GGML_UNARY_OP_GELU_QUICK:
  2030. return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
  2031. case GGML_UNARY_OP_SIGMOID:
  2032. return ggml_is_contiguous(op->src[0]);
  2033. case GGML_UNARY_OP_TANH:
  2034. return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2035. (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
  2036. default:
  2037. return false;
  2038. }
  2039. case GGML_OP_GLU:
  2040. switch (ggml_get_glu_op(op)) {
  2041. case GGML_GLU_OP_GEGLU:
  2042. case GGML_GLU_OP_REGLU:
  2043. case GGML_GLU_OP_SWIGLU:
  2044. case GGML_GLU_OP_GEGLU_ERF:
  2045. case GGML_GLU_OP_GEGLU_QUICK:
  2046. return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
  2047. default:
  2048. return false;
  2049. }
  2050. case GGML_OP_CLAMP:
  2051. return op->src[0]->type == GGML_TYPE_F32;
  2052. case GGML_OP_SOFT_MAX:
  2053. case GGML_OP_NORM:
  2054. case GGML_OP_RMS_NORM:
  2055. return true;
  2056. case GGML_OP_REPEAT:
  2057. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
  2058. case GGML_OP_PAD:
  2059. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 &&
  2060. op->src[0]->ne[3] == 1 && op->ne[3] == 1;
  2061. case GGML_OP_UPSCALE:
  2062. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2063. case GGML_OP_CONCAT:
  2064. return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2065. case GGML_OP_TIMESTEP_EMBEDDING:
  2066. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2067. case GGML_OP_GROUP_NORM:
  2068. return ggml_is_contiguous(op->src[0]);
  2069. case GGML_OP_MUL_MAT:
  2070. if (op->src[0]->type == GGML_TYPE_F16) {
  2071. return true;
  2072. } else if (op->src[0]->type == GGML_TYPE_F32) {
  2073. return op->src[1]->type == GGML_TYPE_F32;
  2074. } else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
  2075. op->src[0]->type == GGML_TYPE_Q6_K) {
  2076. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2077. }
  2078. return false;
  2079. case GGML_OP_MUL_MAT_ID:
  2080. if (op->src[0]->type == GGML_TYPE_Q4_0) {
  2081. if (op->src[1]->type == GGML_TYPE_F32) {
  2082. return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2083. }
  2084. }
  2085. return false;
  2086. case GGML_OP_RESHAPE:
  2087. case GGML_OP_VIEW:
  2088. case GGML_OP_PERMUTE:
  2089. case GGML_OP_TRANSPOSE:
  2090. return true;
  2091. case GGML_OP_DIAG_MASK_INF:
  2092. return op->ne[3] == 1;
  2093. case GGML_OP_ROPE: {
  2094. const int mode = ((const int32_t *) op->op_params)[2];
  2095. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2096. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2097. if (is_mrope && !is_vision) {
  2098. if (op->src[0]->type == GGML_TYPE_F32 ||
  2099. op->src[0]->type == GGML_TYPE_F16) {
  2100. return true;
  2101. }
  2102. return false;
  2103. }
  2104. if (is_vision) {
  2105. if (op->src[0]->type == GGML_TYPE_F32 ||
  2106. op->src[0]->type == GGML_TYPE_F16) {
  2107. return true;
  2108. }
  2109. return false;
  2110. }
  2111. return true;
  2112. }
  2113. case GGML_OP_IM2COL:
  2114. return true;
  2115. case GGML_OP_ARGSORT:
  2116. return op->src[0]->type == GGML_TYPE_F32;
  2117. case GGML_OP_SUM_ROWS:
  2118. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2119. default:
  2120. return false;
  2121. }
  2122. }
  2123. // Forward declaration - implementation appears later in the file.
  2124. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
  2125. static ggml_guid_t ggml_backend_opencl_guid() {
  2126. static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
  2127. return &guid;
  2128. }
  2129. static ggml_backend_i ggml_backend_opencl_i = {
  2130. /* .get_name = */ ggml_backend_opencl_name,
  2131. /* .free = */ ggml_backend_opencl_free,
  2132. /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
  2133. /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
  2134. /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
  2135. /* .synchronize = */ ggml_backend_opencl_synchronize,
  2136. /* .graph_plan_create = */ NULL,
  2137. /* .graph_plan_free = */ NULL,
  2138. /* .graph_plan_update = */ NULL,
  2139. /* .graph_plan_compute = */ NULL,
  2140. /* .graph_compute = */ ggml_backend_opencl_graph_compute,
  2141. /* .event_record = */ NULL,
  2142. /* .event_wait = */ NULL,
  2143. };
  2144. ggml_backend_t ggml_backend_opencl_init(void) {
  2145. ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
  2146. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2147. ggml_backend_t backend = new ggml_backend {
  2148. /* .guid = */ ggml_backend_opencl_guid(),
  2149. /* .interface = */ ggml_backend_opencl_i,
  2150. /* .device = */ dev,
  2151. /* .context = */ backend_ctx
  2152. };
  2153. return backend;
  2154. }
  2155. bool ggml_backend_is_opencl(ggml_backend_t backend) {
  2156. return backend && backend->iface.get_name == ggml_backend_opencl_name;
  2157. }
  2158. //
  2159. // buffer
  2160. //
  2161. struct ggml_backend_opencl_buffer_context {
  2162. // A buffer context can hold multiple cl_mem objects. This is for flattening
  2163. // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
  2164. // each tensor is allocated a separate buffer. When flattening is enabled
  2165. // with small allocation, each tensor is backed by two cl_mem objects (for
  2166. // quants and scales) packed into a backend_opencl_buffer.
  2167. ggml_backend_opencl_buffer_context(cl_mem buf)
  2168. : name("OpenCL") {
  2169. buffer.push_back(buf);
  2170. }
  2171. ~ggml_backend_opencl_buffer_context() {
  2172. for (cl_mem buf : buffer) {
  2173. CL_CHECK(clReleaseMemObject(buf));
  2174. }
  2175. for (cl_mem im : img) {
  2176. CL_CHECK(clReleaseMemObject(im));
  2177. }
  2178. // Delete all extras to trigger their destructors
  2179. for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
  2180. delete e;
  2181. }
  2182. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2183. delete e;
  2184. }
  2185. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
  2186. delete e;
  2187. }
  2188. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2189. delete e;
  2190. }
  2191. }
  2192. ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
  2193. ggml_tensor_extra_cl * extra;
  2194. if (temp_tensor_extras.empty()) {
  2195. extra = new ggml_tensor_extra_cl();
  2196. } else {
  2197. extra = temp_tensor_extras.back();
  2198. temp_tensor_extras.pop_back();
  2199. }
  2200. temp_tensor_extras_in_use.push_back(extra);
  2201. extra->reset();
  2202. return extra;
  2203. }
  2204. ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
  2205. ggml_tensor_extra_cl_q4_0 * extra;
  2206. if (temp_tensor_extras_q4_0.empty()) {
  2207. extra = new ggml_tensor_extra_cl_q4_0();
  2208. } else {
  2209. extra = temp_tensor_extras_q4_0.back();
  2210. temp_tensor_extras_q4_0.pop_back();
  2211. }
  2212. temp_tensor_extras_q4_0_in_use.push_back(extra);
  2213. extra->reset();
  2214. return extra;
  2215. }
  2216. void reset() {
  2217. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2218. temp_tensor_extras.push_back(e);
  2219. }
  2220. temp_tensor_extras_in_use.clear();
  2221. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2222. temp_tensor_extras_q4_0.push_back(e);
  2223. }
  2224. temp_tensor_extras_q4_0_in_use.clear();
  2225. }
  2226. // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
  2227. // being used are in `temp_tensor_extras_in_use`. At the first run, new
  2228. // extras get created and put in `in_use`. When the buffer is reset via
  2229. // the `reset` callback, all extras in `in_use` get moved to available extras
  2230. // for reuse.
  2231. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
  2232. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
  2233. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
  2234. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
  2235. // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
  2236. // before any tensor is initialized (at the beginning of alloc_tensor_range).
  2237. // Hence, there is alway a buffer object in this vector. When each tensor is
  2238. // being initialized, this original buffer object will be released if both
  2239. // flattening and small allocation are enabled, and additional buffer
  2240. // objects will be created in init_tensor to represent flattened quantized
  2241. // weights.
  2242. std::vector<cl_mem> buffer;
  2243. // These are image1d_buffer_t objects that wrap around the quants and scales.
  2244. // For Q4_0 quantization, there should be two of them - one for quants and
  2245. // one for scales. They should be populated only when flattening and small
  2246. // allocation are enabled.
  2247. std::vector<cl_mem> img;
  2248. std::string name;
  2249. };
  2250. static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  2251. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2252. delete ctx;
  2253. }
  2254. static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
  2255. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
  2256. return (void *) (uintptr_t) backend_ctx->alignment;
  2257. }
  2258. static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  2259. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2260. ggml_cl2_init(buffer->buft->device);
  2261. if (tensor->view_src != nullptr) {
  2262. GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
  2263. ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
  2264. GGML_ASSERT(view_extra && "view_extra is nullptr?");
  2265. // Reuse extra of the parent tensor. The offset of this view tensor
  2266. // becomes `extra->offset + view_offs` and needs to be calculated when
  2267. // it is used. This changes is needed because of the change to
  2268. // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
  2269. // `buffer` passed in here will always be `tensor->buffer`. It is OK
  2270. // to allocate extras from the same buffer context for ordinary
  2271. // intermediate tensors. But for views into kv cache tensors, doing so
  2272. // would mess up the extras used by kv cache.
  2273. // Before #7640, `buffer` is for intermediate tensors, which is always
  2274. // different from that of kv cache tensors.
  2275. //
  2276. // NB: now extra->offset no longer accounts for view_offs.
  2277. // NB: this should not apply to weight tensors (for end-to-end runs, but
  2278. // may apply for test-backend-ops).
  2279. // FIXME: if any unexpected results are seen, double check the offset -
  2280. // there could be other places that need fix.
  2281. tensor->extra = view_extra;
  2282. } else {
  2283. {
  2284. size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
  2285. ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
  2286. extra->offset = offset;
  2287. extra->data_device = ctx->buffer[0];
  2288. extra->actual_size = ggml_nbytes(tensor);
  2289. tensor->extra = extra;
  2290. }
  2291. }
  2292. return GGML_STATUS_SUCCESS;
  2293. }
  2294. // The optimized gemm and gemv kernels are used for large matrices without batch.
  2295. // tensor is the quantized weights matrix.
  2296. inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  2297. int64_t threshold_ne0 = 512;
  2298. int64_t threshold_ne1 = 512;
  2299. if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
  2300. backend_ctx->adreno_cl_compiler_version.type != DX) {
  2301. threshold_ne0 = 128;
  2302. threshold_ne1 = 128;
  2303. }
  2304. return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
  2305. tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2306. }
  2307. static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2308. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  2309. cl_context context = backend_ctx->context;
  2310. cl_command_queue queue = backend_ctx->queue;
  2311. #ifdef GGML_OPENCL_SOA_Q
  2312. // We separate the quantized bits and scale from block_q4_0 by using an
  2313. // additional kernel, where each thread handles a block. We first read the
  2314. // original weights into a temporary buffer, then create two separate
  2315. // buffers for quantized bits and scales, which are then populated by the
  2316. // conversion kernel.
  2317. if (tensor->type == GGML_TYPE_Q4_0) {
  2318. // Tensors should have been preallocated, therefore they should
  2319. // already have ggml_tensor_extra_cl as extra.
  2320. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  2321. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  2322. // Allocate the new extra and create aliases from the original.
  2323. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2324. ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
  2325. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  2326. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  2327. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  2328. cl_int err;
  2329. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  2330. ggml_nbytes(tensor), NULL, &err);
  2331. CL_CHECK(err);
  2332. CL_CHECK(clEnqueueWriteBuffer(
  2333. queue, data_device, CL_TRUE, 0,
  2334. ggml_nbytes(tensor), data, 0, NULL, NULL));
  2335. // We consider the specified offset arg as always, although For weights
  2336. // the offset arg should be 0 (we do not assert this).
  2337. //GGML_ASSERT(offset == 0);
  2338. // We create subbuffers from the original tensor buffer for scales and
  2339. // quants - i.e., scales and quants are aliases into the buffer obejct
  2340. // that backs the original tensor. This is a cleaner way to adapt to the
  2341. // new memory management.
  2342. // In the old code, we allocate new buffers for scales and quants
  2343. // respectively, which could still be done but would result in double
  2344. // allocation; properly deallocating the preallocated buffer that backs
  2345. // the tensors is tricky and would leak the backend specific information
  2346. // into the general backend code.
  2347. // Does this create misaligned subbuffers (alignment is 1024) in certain
  2348. // cases ?
  2349. cl_buffer_region region;
  2350. // The original tensor memory is divided into scales and quants, i.e.,
  2351. // we first store scales, then quants.
  2352. // Create subbuffer for scales.
  2353. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  2354. region.size = size_d;
  2355. extra->d = clCreateSubBuffer(
  2356. extra_orig->data_device, CL_MEM_READ_WRITE,
  2357. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  2358. CL_CHECK(err);
  2359. auto previous_origin = region.origin;
  2360. // Create subbuffer for quants.
  2361. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  2362. region.size = size_q;
  2363. extra->q = clCreateSubBuffer(
  2364. extra_orig->data_device, CL_MEM_READ_WRITE,
  2365. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  2366. CL_CHECK(err);
  2367. //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2368. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2369. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2370. // The optimized kernels need weights in natural order, so unshuffle.
  2371. if (use_adreno_kernels(backend_ctx, tensor)) {
  2372. kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
  2373. }
  2374. #else
  2375. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2376. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2377. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  2378. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  2379. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  2380. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  2381. size_t local_work_size[] = {64, 1, 1};
  2382. cl_event evt;
  2383. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2384. CL_CHECK(clWaitForEvents(1, &evt));
  2385. CL_CHECK(clReleaseMemObject(data_device));
  2386. tensor->extra = extra;
  2387. // transpose the weights and scales
  2388. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2389. // Only do transpose for large, non batched matrix
  2390. // TODO: use preallocated images instead of sub-buffer then image
  2391. if (use_adreno_kernels(backend_ctx, tensor)) {
  2392. // <----------------------------------------------------------------------------------> //
  2393. // start transpose
  2394. // <----------------------------------------------------------------------------------> //
  2395. int M = tensor->ne[1]; // ne01
  2396. int K = tensor->ne[0]; // ne00
  2397. //For matrix-vector multiplication kernel, we assume K is a multiple of 32
  2398. GGML_ASSERT(K % 32 == 0);
  2399. //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
  2400. GGML_ASSERT(M % 4 == 0);
  2401. // transpose is out of place, so we need to allocate transposed buffers
  2402. // <----------------------------------------------------------------------------------> //
  2403. // use sub_buffer of max buffer size instead
  2404. size_t q_size_bytes = K * M / 8 * sizeof(float);
  2405. cl_buffer_region region;
  2406. region.origin = 0;
  2407. region.size = q_size_bytes;
  2408. cl_mem qT_d = clCreateSubBuffer(
  2409. backend_ctx->A_q_d_max,
  2410. 0,
  2411. CL_BUFFER_CREATE_TYPE_REGION,
  2412. &region,
  2413. &err);
  2414. // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
  2415. CL_CHECK(err);
  2416. // size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
  2417. size_t d_size_bytes = M * (K / 32) * 2;
  2418. region.origin = 0;
  2419. region.size = d_size_bytes;
  2420. cl_mem dT_d = clCreateSubBuffer(
  2421. backend_ctx->A_s_d_max,
  2422. 0,
  2423. CL_BUFFER_CREATE_TYPE_REGION,
  2424. &region,
  2425. &err);
  2426. // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
  2427. CL_CHECK(err);
  2428. // <----------------------------------------------------------------------------------> //
  2429. // create images from the buffers
  2430. // <----------------------------------------------------------------------------------> //
  2431. cl_mem q_d_image1D;
  2432. cl_mem d_d_image1D;
  2433. cl_mem qT_d_image1D;
  2434. cl_mem dT_d_image1D;
  2435. cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2436. cl_image_desc img_desc_1d;
  2437. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2438. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2439. img_desc_1d.image_width = M * K / 4 / 4;
  2440. img_desc_1d.buffer = extra->q;
  2441. q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2442. CL_CHECK(err);
  2443. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2444. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2445. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2446. img_desc_1d.image_width = M * K / 4 / 4;
  2447. img_desc_1d.buffer = qT_d;
  2448. qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2449. CL_CHECK(err);
  2450. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2451. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2452. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2453. img_desc_1d.image_width = M * K / 32 / 4;
  2454. img_desc_1d.buffer = extra->d;
  2455. d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2456. CL_CHECK(err);
  2457. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2458. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2459. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2460. img_desc_1d.image_width = M * K / 32 / 4;
  2461. img_desc_1d.buffer = dT_d;
  2462. dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2463. CL_CHECK(err);
  2464. // <----------------------------------------------------------------------------------> //
  2465. // set up and call the transpose kernels
  2466. // <----------------------------------------------------------------------------------> //
  2467. // weights
  2468. int height_q = M / 4;
  2469. int width_q = K / 4 / 4;
  2470. kernel = backend_ctx->kernel_transpose_16;
  2471. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
  2472. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
  2473. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
  2474. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
  2475. size_t local_size_q[3] = {4, 16, 1};
  2476. size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
  2477. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
  2478. CL_CHECK(clWaitForEvents(1, &evt));
  2479. // scales
  2480. int height_s = M / 4;
  2481. int width_s = K / 32 / 4;
  2482. kernel = backend_ctx->kernel_transpose_16;
  2483. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
  2484. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
  2485. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
  2486. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
  2487. size_t local_size_s[3] = {4, 16, 1};
  2488. size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
  2489. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
  2490. CL_CHECK(clWaitForEvents(1, &evt));
  2491. // <----------------------------------------------------------------------------------> //
  2492. // copy transposed buffer contents to original buffers
  2493. // <----------------------------------------------------------------------------------> //
  2494. // weights
  2495. CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
  2496. CL_CHECK(clWaitForEvents(1, &evt));
  2497. // scales
  2498. CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
  2499. CL_CHECK(clWaitForEvents(1, &evt));
  2500. // <----------------------------------------------------------------------------------> //
  2501. // deallocate transpose buffers
  2502. // <----------------------------------------------------------------------------------> //
  2503. CL_CHECK(clReleaseMemObject(qT_d));
  2504. CL_CHECK(clReleaseMemObject(dT_d));
  2505. // deallocate temporary images
  2506. CL_CHECK(clReleaseMemObject(q_d_image1D));
  2507. CL_CHECK(clReleaseMemObject(d_d_image1D));
  2508. CL_CHECK(clReleaseMemObject(qT_d_image1D));
  2509. CL_CHECK(clReleaseMemObject(dT_d_image1D));
  2510. // <----------------------------------------------------------------------------------> //
  2511. // end transpose
  2512. // <----------------------------------------------------------------------------------> //
  2513. }
  2514. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2515. return;
  2516. }
  2517. #endif // GGML_OPENCL_SOA_Q
  2518. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2519. GGML_ASSERT(extra);
  2520. CL_CHECK(clEnqueueWriteBuffer(
  2521. queue, extra->data_device, CL_TRUE, extra->offset + offset,
  2522. size, data, 0, NULL, NULL));
  2523. GGML_UNUSED(buffer);
  2524. }
  2525. static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  2526. GGML_ASSERT(tensor->extra);
  2527. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  2528. cl_context context = backend_ctx->context;
  2529. cl_command_queue queue = backend_ctx->queue;
  2530. // Make sure all previously submitted commands in other devices are finished.
  2531. sync_with_other_backends(backend_ctx);
  2532. #ifdef GGML_OPENCL_SOA_Q
  2533. // In end-to-end runs, get_tensor is usually used to get back the logits,
  2534. // where we can simply do clEnqueueReadBuffer since they are f32.
  2535. // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
  2536. // which requires reading back quantized weight tensors.
  2537. // To properly support this, we need to restore block_q4_0 struct arrays
  2538. // from the flattened buffers.
  2539. if (tensor->type == GGML_TYPE_Q4_0) {
  2540. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
  2541. cl_int err;
  2542. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  2543. ggml_nbytes(tensor), NULL, &err);
  2544. CL_CHECK(err);
  2545. cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
  2546. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  2547. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  2548. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  2549. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  2550. size_t local_work_size[] = {1, 1, 1};
  2551. cl_event evt;
  2552. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  2553. global_work_size, local_work_size, 0, NULL, &evt));
  2554. CL_CHECK(clWaitForEvents(1, &evt));
  2555. CL_CHECK(clEnqueueReadBuffer(
  2556. queue, data_device, CL_TRUE, offset,
  2557. size, data, 0, NULL, NULL));
  2558. CL_CHECK(clReleaseMemObject(data_device));
  2559. return;
  2560. }
  2561. #endif // GGML_OPENCL_SOA_Q
  2562. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2563. CL_CHECK(clEnqueueReadBuffer(
  2564. queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
  2565. size, data, 0, NULL, NULL));
  2566. GGML_UNUSED(buffer);
  2567. }
  2568. static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  2569. ggml_backend_dev_t dev = buffer->buft->device;
  2570. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2571. cl_command_queue queue = backend_ctx->queue;
  2572. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2573. for (cl_mem buf : ctx->buffer) {
  2574. CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
  2575. }
  2576. CL_CHECK(clFinish(queue));
  2577. }
  2578. static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
  2579. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2580. ctx->reset();
  2581. }
  2582. static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
  2583. /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
  2584. /* .get_base = */ ggml_backend_opencl_buffer_get_base,
  2585. /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
  2586. /* .memset_tensor = */ NULL,
  2587. /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
  2588. /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
  2589. /* .cpy_tensor = */ NULL,
  2590. /* .clear = */ ggml_backend_opencl_buffer_clear,
  2591. /* .reset = */ ggml_backend_opencl_buffer_reset,
  2592. };
  2593. //
  2594. // buffer type
  2595. //
  2596. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
  2597. return "OpenCL";
  2598. GGML_UNUSED(buffer_type);
  2599. }
  2600. static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
  2601. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
  2602. // clCreateBuffer returns -61 for size 0
  2603. size = std::max(size, (size_t)1);
  2604. cl_int err;
  2605. cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
  2606. if (err != CL_SUCCESS) {
  2607. GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
  2608. return nullptr;
  2609. }
  2610. ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
  2611. return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
  2612. }
  2613. static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
  2614. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  2615. return backend_ctx->alignment;
  2616. }
  2617. static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
  2618. static size_t max_size = -1;
  2619. if (max_size == (size_t)-1) {
  2620. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  2621. max_size = backend_ctx->max_alloc_size;
  2622. }
  2623. return max_size;
  2624. }
  2625. static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  2626. return ggml_backend_is_opencl(backend);
  2627. UNUSED(buft);
  2628. }
  2629. static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
  2630. /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
  2631. /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
  2632. /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
  2633. /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
  2634. /* .get_alloc_size = */ NULL,
  2635. /* .is_host = */ NULL,
  2636. };
  2637. //
  2638. // backend device
  2639. //
  2640. static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
  2641. return "GPUOpenCL";
  2642. GGML_UNUSED(dev);
  2643. }
  2644. static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
  2645. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  2646. return dev_ctx->device_name.c_str();
  2647. }
  2648. static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  2649. *free = 1;
  2650. *total = 1;
  2651. GGML_UNUSED(dev);
  2652. }
  2653. static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
  2654. return GGML_BACKEND_DEVICE_TYPE_GPU;
  2655. GGML_UNUSED(dev);
  2656. }
  2657. static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  2658. props->name = ggml_backend_opencl_device_get_name(dev);
  2659. props->description = ggml_backend_opencl_device_get_description(dev);
  2660. props->type = ggml_backend_opencl_device_get_type(dev);
  2661. ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
  2662. props->caps = ggml_backend_dev_caps {
  2663. /* .async = */ false,
  2664. /* .host_buffer = */ false,
  2665. /* .buffer_from_host_ptr = */ false,
  2666. /* .events = */ false,
  2667. };
  2668. }
  2669. static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
  2670. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
  2671. // Getting a new reference to the backend, increase ref_count
  2672. backend_ctx->ref_count++;
  2673. ggml_backend_t backend = new ggml_backend {
  2674. /* .guid = */ ggml_backend_opencl_guid(),
  2675. /* .interface = */ ggml_backend_opencl_i,
  2676. /* .device = */ dev,
  2677. /* .context = */ backend_ctx,
  2678. };
  2679. return backend;
  2680. GGML_UNUSED(params);
  2681. }
  2682. static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
  2683. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(dev->context);
  2684. dev_ctx->buffer_type = ggml_backend_buffer_type{
  2685. /* .iface = */ ggml_backend_opencl_buffer_type_interface,
  2686. /* .device = */ dev,
  2687. /* .context = */ nullptr,
  2688. };
  2689. return &dev_ctx->buffer_type;
  2690. }
  2691. static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  2692. GGML_UNUSED(dev);
  2693. GGML_UNUSED(ptr);
  2694. GGML_UNUSED(size);
  2695. GGML_UNUSED(max_tensor_size);
  2696. return nullptr;
  2697. }
  2698. static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  2699. return ggml_opencl_supports_op(dev, op);
  2700. }
  2701. static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  2702. // Check 'dev' and 'buffer_type' are not objects belonging to this backend.
  2703. if (dev->iface.get_name != ggml_backend_opencl_device_get_name ||
  2704. buft->iface.get_name != ggml_backend_opencl_buffer_type_get_name) {
  2705. return false;
  2706. }
  2707. // Check cl_context is the same. clEnqueue* commands may not use
  2708. // buffers from another cl_context.
  2709. ggml_backend_opencl_context * backend_ctx0 = ggml_cl2_init(dev);
  2710. ggml_backend_opencl_context * backend_ctx1 = ggml_cl2_init(buft->device);
  2711. return backend_ctx0->context == backend_ctx1->context;
  2712. }
  2713. namespace /* anonymous */ {
  2714. struct ggml_backend_device_i ggml_backend_opencl_device_i = {
  2715. /* .get_name = */ ggml_backend_opencl_device_get_name,
  2716. /* .get_description = */ ggml_backend_opencl_device_get_description,
  2717. /* .get_memory = */ ggml_backend_opencl_device_get_memory,
  2718. /* .get_type = */ ggml_backend_opencl_device_get_type,
  2719. /* .get_props = */ ggml_backend_opencl_device_get_props,
  2720. /* .init_backend = */ ggml_backend_opencl_device_init,
  2721. /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
  2722. /* .get_host_buffer_type = */ NULL,
  2723. /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
  2724. /* .supports_op = */ ggml_backend_opencl_device_supports_op,
  2725. /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
  2726. /* .offload_op = */ NULL,
  2727. /* .event_new = */ NULL,
  2728. /* .event_free = */ NULL,
  2729. /* .event_synchronize = */ NULL,
  2730. };
  2731. }
  2732. // Backend registry
  2733. static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
  2734. return "OpenCL";
  2735. GGML_UNUSED(reg);
  2736. }
  2737. static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
  2738. return g_ggml_backend_opencl_devices.size();
  2739. GGML_UNUSED(reg);
  2740. }
  2741. static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
  2742. GGML_ASSERT(index < ggml_backend_opencl_reg_device_count(reg));
  2743. return &g_ggml_backend_opencl_devices[index];
  2744. GGML_UNUSED(reg);
  2745. GGML_UNUSED(index);
  2746. }
  2747. static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
  2748. /* .get_name = */ ggml_backend_opencl_reg_get_name,
  2749. /* .device_count = */ ggml_backend_opencl_reg_device_count,
  2750. /* .device_get = */ ggml_backend_opencl_reg_device_get,
  2751. /* .get_proc_address = */ NULL,
  2752. };
  2753. ggml_backend_reg_t ggml_backend_opencl_reg(void) {
  2754. static std::mutex mutex;
  2755. static ggml_backend_reg reg;
  2756. static bool initialized = false;
  2757. std::lock_guard<std::mutex> lock(mutex);
  2758. if (initialized) {
  2759. return &reg;
  2760. }
  2761. initialized = true;
  2762. g_ggml_backend_opencl_devices = ggml_opencl_probe_devices(&reg);
  2763. reg = ggml_backend_reg{
  2764. /* .api_version = */ GGML_BACKEND_API_VERSION,
  2765. /* .iface = */ ggml_backend_opencl_reg_i,
  2766. /* .context = */ NULL,
  2767. };
  2768. return &reg;
  2769. }
  2770. GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
  2771. //------------------------------------------------------------------------------
  2772. // Debugging utils
  2773. //------------------------------------------------------------------------------
  2774. #if 0
  2775. #define QK4_0 32
  2776. typedef struct {
  2777. ggml_fp16_t d; // delta
  2778. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  2779. } block_q4_0;
  2780. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
  2781. "wrong q4_0 block size/padding");
  2782. #include <math.h>
  2783. #ifdef __cplusplus
  2784. #include "half.hpp"
  2785. #endif
  2786. static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
  2787. void * buf = malloc(ggml_nbytes(tensor));
  2788. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2789. cl_command_queue queue = backend_ctx->queue;
  2790. #ifdef GGML_OPENCL_SOA_Q
  2791. void * buf_q;
  2792. void * buf_d;
  2793. #endif
  2794. // Make sure everything is done.
  2795. CL_CHECK(clFinish(queue));
  2796. #ifdef GGML_OPENCL_SOA_Q
  2797. if (tensor->type == GGML_TYPE_Q4_0) {
  2798. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
  2799. GGML_ASSERT(extra);
  2800. size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
  2801. size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
  2802. GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
  2803. buf_q = malloc(size_q);
  2804. buf_d = malloc(size_d);
  2805. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  2806. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
  2807. CL_CHECK(clFinish(queue));
  2808. } else {
  2809. // Read out the tensor from GPU memory.
  2810. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2811. GGML_ASSERT(extra);
  2812. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  2813. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  2814. CL_CHECK(clFinish(queue));
  2815. }
  2816. #else
  2817. // Read out the tensor from GPU memory.
  2818. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2819. GGML_ASSERT(extra);
  2820. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  2821. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  2822. CL_CHECK(clFinish(queue));
  2823. #endif // GGML_OPENCL_SOA_Q
  2824. // Open file and dump.
  2825. char fname[512];
  2826. snprintf(fname, sizeof(fname), "./tensor-dumps/%s.txt", tensor->name);
  2827. FILE * f = fopen(fname, "w");
  2828. if (!f) {
  2829. printf("Failed to open %s\n", fname);
  2830. return;
  2831. }
  2832. if (tensor->type == GGML_TYPE_F32) {
  2833. float * data = (float *) buf;
  2834. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  2835. if (isnan(data[i])) {
  2836. printf("NaN found: %s\n", tensor->name);
  2837. break;
  2838. }
  2839. fprintf(f, "%f\n", data[i]);
  2840. }
  2841. } else if (tensor->type == GGML_TYPE_I32) {
  2842. int * data = (int *) buf;
  2843. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  2844. if (isnan(data[i])) {
  2845. printf("NaN found: %s\n", tensor->name);
  2846. break;
  2847. }
  2848. fprintf(f, "%d\n", data[i]);
  2849. }
  2850. } else if (tensor->type == GGML_TYPE_F16) {
  2851. #ifdef __cplusplus
  2852. half_float::half * data = (half_float::half *) buf;
  2853. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  2854. if (std::isnan(data[i])) {
  2855. printf("NaN found: %s\n", tensor->name);
  2856. break;
  2857. }
  2858. fprintf(f, "%f\n", float(data[i]));
  2859. }
  2860. #endif
  2861. } else if (tensor->type == GGML_TYPE_Q4_0) {
  2862. #ifdef GGML_OPENCL_SOA_Q
  2863. ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
  2864. unsigned char * data_q = (unsigned char *)buf_q;
  2865. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  2866. fprintf(f, "%04x, ", data_d[i]);
  2867. for (int k = 0; k < QK4_0/2; ++k) {
  2868. fprintf(f, "%02x, ", data_q[k]);
  2869. }
  2870. fprintf(f, "\n");
  2871. data_q += QK4_0/2;
  2872. }
  2873. free(buf_d);
  2874. free(buf_q);
  2875. #else
  2876. block_q4_0 * data = (block_q4_0 *) buf;
  2877. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  2878. fprintf(f, "%04x, ", data[i].d);
  2879. for (int k = 0; k < QK4_0/2; ++k) {
  2880. fprintf(f, "%02x, ", data[i].qs[k]);
  2881. }
  2882. fprintf(f, "\n");
  2883. }
  2884. #endif // GGML_OPENCL_SOA_Q
  2885. }
  2886. free(buf);
  2887. fflush(f);
  2888. fclose(f);
  2889. }
  2890. #else
  2891. #define dump_tensor(tensor)
  2892. #endif
  2893. //------------------------------------------------------------------------------
  2894. // Ops
  2895. //------------------------------------------------------------------------------
  2896. static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  2897. const int64_t ne10 = src1->ne[0];
  2898. const int64_t ne0 = dst->ne[0];
  2899. const int64_t ne1 = dst->ne[1];
  2900. // TODO: find the optimal values for these
  2901. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  2902. src1->type == GGML_TYPE_F32 &&
  2903. dst->type == GGML_TYPE_F32 &&
  2904. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
  2905. }
  2906. static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2907. UNUSED(backend);
  2908. UNUSED(src0);
  2909. UNUSED(src1);
  2910. UNUSED(dst);
  2911. }
  2912. static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2913. GGML_ASSERT(src0);
  2914. GGML_ASSERT(src0->extra);
  2915. GGML_ASSERT(src1);
  2916. GGML_ASSERT(src1->extra);
  2917. GGML_ASSERT(dst);
  2918. GGML_ASSERT(dst->extra);
  2919. const int ne00 = src0 ? src0->ne[0] : 0;
  2920. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  2921. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  2922. const int ne10 = src1 ? src1->ne[0] : 0;
  2923. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  2924. const int ne11 = src1 ? src1->ne[1] : 0;
  2925. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  2926. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  2927. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  2928. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2929. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2930. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  2931. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2932. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2933. cl_ulong offset1 = extra1->offset + src1->view_offs;
  2934. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2935. cl_kernel kernel;
  2936. switch (src0->type) {
  2937. case GGML_TYPE_F32:
  2938. kernel = backend_ctx->kernel_get_rows_f32;
  2939. break;
  2940. case GGML_TYPE_F16:
  2941. kernel = backend_ctx->kernel_get_rows_f16;
  2942. break;
  2943. case GGML_TYPE_Q4_0:
  2944. kernel = backend_ctx->kernel_get_rows_q4_0;
  2945. break;
  2946. default:
  2947. GGML_ASSERT(false && "not implemented");
  2948. }
  2949. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2950. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2951. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2952. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2953. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2954. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2955. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  2956. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  2957. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  2958. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  2959. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10));
  2960. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  2961. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
  2962. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
  2963. size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1};
  2964. size_t local_work_size[] = {1, 1, 1};
  2965. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  2966. }
  2967. static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2968. GGML_ASSERT(src0);
  2969. GGML_ASSERT(src0->extra);
  2970. GGML_ASSERT(src1);
  2971. GGML_ASSERT(src1->extra);
  2972. GGML_ASSERT(dst);
  2973. GGML_ASSERT(dst->extra);
  2974. // ne0 = ne00
  2975. // ne2 = ne02
  2976. // ne3 = ne03
  2977. const int ne01 = src0->ne[1];
  2978. const int ne02 = src0->ne[2];
  2979. const int ne03 = src0->ne[3];
  2980. const cl_ulong nb01 = src0->nb[1];
  2981. const cl_ulong nb02 = src0->nb[2];
  2982. const cl_ulong nb03 = src0->nb[3];
  2983. const int ne11 = src1->ne[1];
  2984. const int ne12 = src1->ne[2];
  2985. const cl_ulong nb10 = src1->nb[0];
  2986. const cl_ulong nb11 = src1->nb[1];
  2987. const cl_ulong nb12 = src1->nb[2];
  2988. const int ne0 = dst->ne[0];
  2989. const cl_ulong nb1 = dst->nb[1];
  2990. const cl_ulong nb2 = dst->nb[2];
  2991. const cl_ulong nb3 = dst->nb[3];
  2992. const int nblk0 = ne0/ggml_blck_size(dst->type);
  2993. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2994. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2995. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  2996. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2997. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2998. cl_ulong offset1 = extra1->offset + src1->view_offs;
  2999. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3000. cl_kernel kernel;
  3001. switch (dst->type) {
  3002. case GGML_TYPE_F32:
  3003. kernel = backend_ctx->kernel_set_rows_f32;
  3004. break;
  3005. case GGML_TYPE_F16:
  3006. kernel = backend_ctx->kernel_set_rows_f16;
  3007. break;
  3008. default:
  3009. GGML_ABORT("not implemented");
  3010. }
  3011. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3012. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3013. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3014. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3015. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3016. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3017. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
  3018. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3019. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3020. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3021. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne11));
  3022. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  3023. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
  3024. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
  3025. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
  3026. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
  3027. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
  3028. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
  3029. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
  3030. int nth0 = 64;
  3031. if (backend_ctx->gpu_family == INTEL) {
  3032. nth0 = 32;
  3033. } else if (backend_ctx->gpu_family == ADRENO) {
  3034. nth0 = 64;
  3035. }
  3036. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  3037. while (nth0 < nblk0 && nth0 < max_workgroup_size) {
  3038. nth0 *= 2;
  3039. }
  3040. int rows_per_workgroup = 1;
  3041. if (nth0 > nblk0) {
  3042. rows_per_workgroup = nth0 / nblk0;
  3043. nth0 = nblk0;
  3044. }
  3045. size_t global_work_size[] = {
  3046. (size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
  3047. (size_t)ne02*rows_per_workgroup,
  3048. (size_t)ne03};
  3049. size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
  3050. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3051. }
  3052. static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3053. GGML_ASSERT(src0);
  3054. GGML_ASSERT(src0->extra);
  3055. GGML_ASSERT(src1);
  3056. GGML_ASSERT(src1->extra);
  3057. GGML_ASSERT(dst);
  3058. GGML_ASSERT(dst->extra);
  3059. const int ne00 = src0 ? src0->ne[0] : 0;
  3060. const int ne01 = src0 ? src0->ne[1] : 0;
  3061. const int ne02 = src0 ? src0->ne[2] : 0;
  3062. const int ne03 = src0 ? src0->ne[3] : 0;
  3063. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  3064. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3065. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3066. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  3067. const int ne10 = src1 ? src1->ne[0] : 0;
  3068. const int ne11 = src1 ? src1->ne[1] : 0;
  3069. const int ne12 = src1 ? src1->ne[2] : 0;
  3070. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  3071. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  3072. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  3073. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  3074. const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  3075. const int ne0 = dst ? dst->ne[0] : 0;
  3076. const int ne1 = dst ? dst->ne[1] : 0;
  3077. const int ne2 = dst ? dst->ne[2] : 0;
  3078. const int ne3 = dst ? dst->ne[3] : 0;
  3079. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  3080. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  3081. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  3082. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  3083. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3084. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3085. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3086. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3087. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3088. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3089. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3090. bool bcast_row = false;
  3091. cl_kernel kernel;
  3092. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  3093. GGML_ASSERT(ggml_is_contiguous(src0));
  3094. // src1 is a row
  3095. GGML_ASSERT(ne11 == 1);
  3096. bcast_row = true;
  3097. int ne = ne00 / 4;
  3098. kernel = backend_ctx->kernel_add_row;
  3099. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3100. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3101. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3102. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3103. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3104. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3105. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3106. } else {
  3107. kernel = backend_ctx->kernel_add;
  3108. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3109. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3110. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3111. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3112. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3113. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3114. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3115. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3116. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3117. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  3118. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  3119. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  3120. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  3121. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  3122. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  3123. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  3124. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  3125. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  3126. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  3127. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  3128. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  3129. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  3130. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  3131. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  3132. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  3133. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  3134. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  3135. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  3136. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  3137. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  3138. }
  3139. if (bcast_row) {
  3140. int n = ggml_nelements(dst)/4;
  3141. size_t global_work_size[] = {(size_t)n, 1, 1};
  3142. size_t local_work_size[] = {64, 1, 1};
  3143. size_t * local_work_size_ptr = local_work_size;
  3144. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3145. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3146. }
  3147. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3148. } else {
  3149. unsigned int nth = MIN(64, ne0);
  3150. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  3151. size_t local_work_size[] = {nth, 1, 1};
  3152. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3153. }
  3154. }
  3155. static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3156. GGML_ASSERT(src0);
  3157. GGML_ASSERT(src0->extra);
  3158. GGML_ASSERT(src1);
  3159. GGML_ASSERT(src1->extra);
  3160. GGML_ASSERT(dst);
  3161. GGML_ASSERT(dst->extra);
  3162. const int ne00 = src0 ? src0->ne[0] : 0;
  3163. const int ne01 = src0 ? src0->ne[1] : 0;
  3164. const int ne02 = src0 ? src0->ne[2] : 0;
  3165. const int ne03 = src0 ? src0->ne[3] : 0;
  3166. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  3167. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3168. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3169. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  3170. const int ne10 = src1 ? src1->ne[0] : 0;
  3171. const int ne11 = src1 ? src1->ne[1] : 0;
  3172. const int ne12 = src1 ? src1->ne[2] : 0;
  3173. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  3174. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  3175. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  3176. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  3177. const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  3178. const int ne0 = dst ? dst->ne[0] : 0;
  3179. const int ne1 = dst ? dst->ne[1] : 0;
  3180. const int ne2 = dst ? dst->ne[2] : 0;
  3181. const int ne3 = dst ? dst->ne[3] : 0;
  3182. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  3183. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  3184. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  3185. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  3186. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3187. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3188. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3189. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3190. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3191. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3192. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3193. bool bcast_row = false;
  3194. cl_kernel kernel;
  3195. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  3196. GGML_ASSERT(ggml_is_contiguous(src0));
  3197. // src1 is a row
  3198. GGML_ASSERT(ne11 == 1);
  3199. bcast_row = true;
  3200. int ne = ne00 / 4;
  3201. kernel = backend_ctx->kernel_mul_row;
  3202. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3203. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3204. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3205. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3206. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3207. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3208. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3209. } else {
  3210. kernel = backend_ctx->kernel_mul;
  3211. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3212. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3213. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3214. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3215. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3216. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3217. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3218. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3219. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3220. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  3221. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  3222. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  3223. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  3224. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  3225. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  3226. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  3227. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  3228. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  3229. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  3230. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  3231. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  3232. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  3233. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  3234. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  3235. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  3236. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  3237. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  3238. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  3239. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  3240. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  3241. }
  3242. if (bcast_row) {
  3243. int n = ggml_nelements(dst)/4;
  3244. size_t global_work_size[] = {(size_t)n, 1, 1};
  3245. size_t local_work_size[] = {64, 1, 1};
  3246. size_t * local_work_size_ptr = local_work_size;
  3247. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3248. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3249. }
  3250. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3251. } else {
  3252. unsigned int nth = MIN(64, ne0);
  3253. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  3254. size_t local_work_size[] = {nth, 1, 1};
  3255. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3256. }
  3257. }
  3258. static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3259. GGML_ASSERT(src0);
  3260. GGML_ASSERT(src0->extra);
  3261. GGML_ASSERT(src1);
  3262. GGML_ASSERT(src1->extra);
  3263. GGML_ASSERT(dst);
  3264. GGML_ASSERT(dst->extra);
  3265. const int ne00 = src0->ne[0];
  3266. const int ne01 = src0->ne[1];
  3267. const int ne02 = src0->ne[2];
  3268. const int ne03 = src0->ne[3];
  3269. const cl_ulong nb00 = src0->nb[0];
  3270. const cl_ulong nb01 = src0->nb[1];
  3271. const cl_ulong nb02 = src0->nb[2];
  3272. const cl_ulong nb03 = src0->nb[3];
  3273. const int ne10 = src1->ne[0];
  3274. const int ne11 = src1->ne[1];
  3275. const int ne12 = src1->ne[2];
  3276. const int ne13 = src1->ne[3];
  3277. const cl_ulong nb10 = src1->nb[0];
  3278. const cl_ulong nb11 = src1->nb[1];
  3279. const cl_ulong nb12 = src1->nb[2];
  3280. const cl_ulong nb13 = src1->nb[3];
  3281. const int ne0 = dst->ne[0];
  3282. const cl_ulong nb0 = dst->nb[0];
  3283. const cl_ulong nb1 = dst->nb[1];
  3284. const cl_ulong nb2 = dst->nb[2];
  3285. const cl_ulong nb3 = dst->nb[3];
  3286. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3287. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3288. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3289. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3290. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3291. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3292. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3293. bool bcast_row = false;
  3294. cl_kernel kernel;
  3295. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  3296. GGML_ASSERT(ggml_is_contiguous(src0));
  3297. // src1 is a row
  3298. GGML_ASSERT(ne11 == 1);
  3299. bcast_row = true;
  3300. int ne = ne00 / 4;
  3301. kernel = backend_ctx->kernel_div_row;
  3302. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3303. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3304. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3305. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3306. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3307. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3308. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3309. } else {
  3310. kernel = backend_ctx->kernel_div;
  3311. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3312. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3313. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3314. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3315. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3316. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3317. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  3318. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3319. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3320. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3321. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  3322. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  3323. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  3324. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  3325. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  3326. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  3327. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  3328. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  3329. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  3330. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  3331. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  3332. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  3333. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  3334. }
  3335. if (bcast_row) {
  3336. int n = ggml_nelements(dst)/4;
  3337. size_t global_work_size[] = {(size_t)n, 1, 1};
  3338. size_t local_work_size[] = {64, 1, 1};
  3339. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3340. } else {
  3341. unsigned int nth = MIN(64, ne0);
  3342. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  3343. size_t local_work_size[] = {nth, 1, 1};
  3344. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3345. }
  3346. }
  3347. static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3348. GGML_ASSERT(src0);
  3349. GGML_ASSERT(src0->extra);
  3350. GGML_ASSERT(src1);
  3351. GGML_ASSERT(src1->extra);
  3352. GGML_ASSERT(dst);
  3353. GGML_ASSERT(dst->extra);
  3354. const int ne00 = src0->ne[0];
  3355. const int ne01 = src0->ne[1];
  3356. const int ne02 = src0->ne[2];
  3357. const int ne03 = src0->ne[3];
  3358. const cl_ulong nb00 = src0->nb[0];
  3359. const cl_ulong nb01 = src0->nb[1];
  3360. const cl_ulong nb02 = src0->nb[2];
  3361. const cl_ulong nb03 = src0->nb[3];
  3362. const int ne10 = src1->ne[0];
  3363. const int ne11 = src1->ne[1];
  3364. const int ne12 = src1->ne[2];
  3365. const int ne13 = src1->ne[3];
  3366. const cl_ulong nb10 = src1->nb[0];
  3367. const cl_ulong nb11 = src1->nb[1];
  3368. const cl_ulong nb12 = src1->nb[2];
  3369. const cl_ulong nb13 = src1->nb[3];
  3370. const int ne0 = dst->ne[0];
  3371. const cl_ulong nb0 = dst->nb[0];
  3372. const cl_ulong nb1 = dst->nb[1];
  3373. const cl_ulong nb2 = dst->nb[2];
  3374. const cl_ulong nb3 = dst->nb[3];
  3375. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3376. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3377. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3378. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3379. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3380. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3381. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3382. bool bcast_row = false;
  3383. cl_kernel kernel;
  3384. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  3385. GGML_ASSERT(ggml_is_contiguous(src0));
  3386. // src1 is a row
  3387. GGML_ASSERT(ne11 == 1);
  3388. bcast_row = true;
  3389. int ne = ne00 / 4;
  3390. kernel = backend_ctx->kernel_sub_row;
  3391. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3392. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3393. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3394. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3395. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3396. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3397. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3398. } else {
  3399. kernel = backend_ctx->kernel_sub;
  3400. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3401. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3402. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3403. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3404. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3405. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3406. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  3407. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3408. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3409. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3410. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  3411. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  3412. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  3413. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  3414. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  3415. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  3416. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  3417. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  3418. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  3419. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  3420. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  3421. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  3422. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  3423. }
  3424. if (bcast_row) {
  3425. int n = ggml_nelements(dst)/4;
  3426. size_t global_work_size[] = {(size_t)n, 1, 1};
  3427. size_t local_work_size[] = {64, 1, 1};
  3428. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3429. } else {
  3430. unsigned int nth = MIN(64, ne0);
  3431. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  3432. size_t local_work_size[] = {nth, 1, 1};
  3433. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3434. }
  3435. }
  3436. static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3437. GGML_ASSERT(src0);
  3438. GGML_ASSERT(src0->extra);
  3439. GGML_ASSERT(dst);
  3440. GGML_ASSERT(dst->extra);
  3441. UNUSED(src1);
  3442. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3443. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3444. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3445. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3446. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3447. cl_kernel kernel;
  3448. int n = ggml_nelements(dst);
  3449. if (n % 4 == 0) {
  3450. kernel = backend_ctx->kernel_gelu_4;
  3451. n /= 4;
  3452. } else {
  3453. kernel = backend_ctx->kernel_gelu;
  3454. }
  3455. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3456. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3457. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3458. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3459. size_t global_work_size[] = {(size_t)n, 1, 1};
  3460. size_t local_work_size[] = {64, 1, 1};
  3461. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3462. }
  3463. static void ggml_cl_gelu_erf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3464. GGML_ASSERT(src0);
  3465. GGML_ASSERT(src0->extra);
  3466. GGML_ASSERT(dst);
  3467. GGML_ASSERT(dst->extra);
  3468. UNUSED(src1);
  3469. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3470. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3471. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3472. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3473. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3474. cl_kernel kernel;
  3475. int n = ggml_nelements(dst);
  3476. if (n % 4 == 0) {
  3477. kernel = backend_ctx->kernel_gelu_erf_4;
  3478. n /= 4;
  3479. } else {
  3480. kernel = backend_ctx->kernel_gelu_erf;
  3481. }
  3482. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3483. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3484. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3485. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3486. size_t global_work_size[] = {(size_t)n, 1, 1};
  3487. size_t local_work_size[] = {64, 1, 1};
  3488. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3489. }
  3490. static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3491. GGML_ASSERT(src0);
  3492. GGML_ASSERT(src0->extra);
  3493. GGML_ASSERT(dst);
  3494. GGML_ASSERT(dst->extra);
  3495. UNUSED(src1);
  3496. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3497. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3498. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3499. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3500. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3501. cl_kernel kernel;
  3502. int n = ggml_nelements(dst);
  3503. if (n % 4 == 0) {
  3504. kernel = backend_ctx->kernel_gelu_quick_4;
  3505. n /= 4;
  3506. } else {
  3507. kernel = backend_ctx->kernel_gelu_quick;
  3508. }
  3509. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3510. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3511. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3512. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3513. size_t global_work_size[] = {(size_t)n, 1, 1};
  3514. size_t local_work_size[] = {64, 1, 1};
  3515. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3516. }
  3517. static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3518. GGML_ASSERT(src0);
  3519. GGML_ASSERT(src0->extra);
  3520. GGML_ASSERT(dst);
  3521. GGML_ASSERT(dst->extra);
  3522. UNUSED(src1);
  3523. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3524. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3525. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3526. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3527. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3528. cl_kernel kernel;
  3529. int n = ggml_nelements(dst);
  3530. if (n % 4 == 0) {
  3531. kernel = backend_ctx->kernel_silu_4;
  3532. n /= 4;
  3533. } else {
  3534. kernel = backend_ctx->kernel_silu;
  3535. }
  3536. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3537. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3538. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3539. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3540. size_t global_work_size[] = {(size_t)n, 1, 1};
  3541. size_t local_work_size[] = {64, 1, 1};
  3542. size_t * local_work_size_ptr = local_work_size;
  3543. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3544. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3545. }
  3546. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3547. }
  3548. static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3549. GGML_ASSERT(src0);
  3550. GGML_ASSERT(src0->extra);
  3551. GGML_ASSERT(dst);
  3552. GGML_ASSERT(dst->extra);
  3553. UNUSED(src1);
  3554. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3555. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3556. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3557. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3558. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3559. cl_kernel kernel = backend_ctx->kernel_relu;
  3560. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3561. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3562. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3563. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3564. const int64_t n = ggml_nelements(dst);
  3565. size_t global_work_size[] = {(size_t)n, 1, 1};
  3566. size_t local_work_size[] = {64, 1, 1};
  3567. size_t * local_work_size_ptr = local_work_size;
  3568. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3569. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3570. }
  3571. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3572. }
  3573. static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3574. GGML_ASSERT(src0);
  3575. GGML_ASSERT(src0->extra);
  3576. GGML_ASSERT(dst);
  3577. GGML_ASSERT(dst->extra);
  3578. UNUSED(src1);
  3579. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3580. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3581. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3582. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3583. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3584. cl_kernel kernel;
  3585. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  3586. kernel = backend_ctx->kernel_sigmoid_f32;
  3587. } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  3588. kernel = backend_ctx->kernel_sigmoid_f16;
  3589. } else {
  3590. GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
  3591. }
  3592. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3593. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3594. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3595. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3596. const int64_t n = ggml_nelements(dst);
  3597. size_t global_work_size[] = {(size_t)n, 1, 1};
  3598. size_t local_work_size[] = {64, 1, 1};
  3599. size_t * local_work_size_ptr = local_work_size;
  3600. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3601. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3602. }
  3603. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3604. }
  3605. static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3606. GGML_ASSERT(src0);
  3607. GGML_ASSERT(src0->extra);
  3608. GGML_ASSERT(dst);
  3609. GGML_ASSERT(dst->extra);
  3610. UNUSED(src1);
  3611. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3612. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3613. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3614. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3615. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3616. float min;
  3617. float max;
  3618. memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
  3619. memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
  3620. cl_kernel kernel = backend_ctx->kernel_clamp;
  3621. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3622. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3623. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3624. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3625. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
  3626. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
  3627. const int64_t n = ggml_nelements(dst);
  3628. size_t global_work_size[] = {(size_t)n, 1, 1};
  3629. size_t local_work_size[] = {64, 1, 1};
  3630. size_t * local_work_size_ptr = local_work_size;
  3631. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3632. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3633. }
  3634. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3635. }
  3636. static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3637. GGML_ASSERT(src0);
  3638. GGML_ASSERT(src0->extra);
  3639. GGML_ASSERT(dst);
  3640. GGML_ASSERT(dst->extra);
  3641. UNUSED(src1);
  3642. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3643. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3644. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3645. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3646. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3647. float eps;
  3648. memcpy(&eps, dst->op_params, sizeof(float));
  3649. const int ne00 = src0 ? src0->ne[0] : 0;
  3650. const int ne01 = src0 ? src0->ne[1] : 0;
  3651. const int ne02 = src0 ? src0->ne[2] : 0;
  3652. const int ne03 = src0 ? src0->ne[3] : 0;
  3653. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3654. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3655. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  3656. const int nth = MIN(64, ne00);
  3657. cl_kernel kernel = backend_ctx->kernel_norm;
  3658. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3659. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3660. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3661. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3662. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  3663. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  3664. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  3665. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  3666. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  3667. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  3668. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  3669. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  3670. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
  3671. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  3672. size_t local_work_size[] = {(size_t)nth, 1, 1};
  3673. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3674. }
  3675. static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3676. GGML_ASSERT(src0);
  3677. GGML_ASSERT(src0->extra);
  3678. GGML_ASSERT(dst);
  3679. GGML_ASSERT(dst->extra);
  3680. UNUSED(src1);
  3681. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3682. //ggml_backend_opencl_device_context * dev_ctx =
  3683. // (ggml_backend_opencl_device_context *)backend->device->context;
  3684. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3685. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3686. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3687. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3688. float eps;
  3689. memcpy(&eps, dst->op_params, sizeof(float));
  3690. const int ne00 = src0 ? src0->ne[0] : 0;
  3691. const int ne01 = src0 ? src0->ne[1] : 0;
  3692. const int ne02 = src0 ? src0->ne[2] : 0;
  3693. const int ne03 = src0 ? src0->ne[3] : 0;
  3694. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3695. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3696. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  3697. GGML_ASSERT(ne00 % 4 == 0);
  3698. const int nth = MIN(64, ne00);
  3699. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  3700. size_t local_work_size[] = {(size_t)nth, 1, 1};
  3701. cl_kernel kernel = backend_ctx->kernel_rms_norm;
  3702. // Note, this kernel declares local memory in kernel args and the size
  3703. // depends on subgroup size.
  3704. // Note, this requires OpenCL 2.1 and above
  3705. // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
  3706. size_t sgs;
  3707. //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
  3708. // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
  3709. // sizeof(local_work_size), local_work_size,
  3710. // sizeof(size_t), &sgs, NULL));
  3711. if (backend_ctx->gpu_family == ADRENO) {
  3712. sgs = 64;
  3713. } else if (backend_ctx->gpu_family == INTEL) {
  3714. sgs = 32;
  3715. } else {
  3716. GGML_ASSERT(false && "Unsupported GPU");
  3717. }
  3718. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3719. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3720. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3721. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3722. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  3723. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  3724. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  3725. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  3726. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  3727. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  3728. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  3729. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  3730. // This is local memory - the size depends on subgroup size.
  3731. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
  3732. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3733. }
  3734. static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3735. GGML_ASSERT(src0);
  3736. GGML_ASSERT(src0->extra);
  3737. GGML_ASSERT(dst);
  3738. GGML_ASSERT(dst->extra);
  3739. UNUSED(src1);
  3740. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3741. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3742. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3743. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3744. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3745. int32_t n_groups = ((const int32_t *) dst->op_params)[0];
  3746. int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
  3747. float eps = ((const float *) dst->op_params)[1];
  3748. const int ne00 = src0->ne[0];
  3749. const int ne01 = src0->ne[1];
  3750. const int ne02 = src0->ne[2];
  3751. const int ne = ne00*ne01*ne02;
  3752. cl_kernel kernel = backend_ctx->kernel_group_norm;
  3753. size_t sgs = 64;
  3754. if (backend_ctx->gpu_family == ADRENO) {
  3755. sgs = 64;
  3756. } else if (backend_ctx->gpu_family == INTEL) {
  3757. sgs = 32;
  3758. } else {
  3759. GGML_ASSERT(false && "Unsupported GPU");
  3760. }
  3761. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3762. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3763. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3764. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3765. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
  3766. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
  3767. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
  3768. size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
  3769. size_t local_work_size[] = {(size_t)sgs, 1, 1};
  3770. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3771. }
  3772. static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3773. GGML_ASSERT(src0);
  3774. GGML_ASSERT(src0->extra);
  3775. GGML_ASSERT(dst);
  3776. GGML_ASSERT(dst->extra);
  3777. UNUSED(src1);
  3778. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3779. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3780. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3781. cl_ulong offset0_abs = extra0->offset + src0->view_offs;
  3782. cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
  3783. cl_kernel kernel;
  3784. if (dst->type == GGML_TYPE_F32) {
  3785. kernel = backend_ctx->kernel_tanh_f32_nd;
  3786. } else if (dst->type == GGML_TYPE_F16) {
  3787. kernel = backend_ctx->kernel_tanh_f16_nd;
  3788. } else {
  3789. GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
  3790. }
  3791. GGML_ASSERT(kernel != nullptr);
  3792. const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
  3793. const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
  3794. const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
  3795. const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
  3796. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3797. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
  3798. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3799. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
  3800. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  3801. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  3802. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  3803. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  3804. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  3805. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  3806. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
  3807. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
  3808. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  3809. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  3810. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  3811. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  3812. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
  3813. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
  3814. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
  3815. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
  3816. size_t global_work_size[3];
  3817. if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
  3818. return;
  3819. }
  3820. global_work_size[0] = (size_t)ne10;
  3821. global_work_size[1] = (size_t)ne11;
  3822. global_work_size[2] = (size_t)ne12;
  3823. size_t lws0 = 16, lws1 = 4, lws2 = 1;
  3824. if (ne10 < 16) lws0 = ne10;
  3825. if (ne11 < 4) lws1 = ne11;
  3826. if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
  3827. while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
  3828. while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
  3829. while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
  3830. size_t local_work_size[] = {lws0, lws1, lws2};
  3831. size_t* local_work_size_ptr = local_work_size;
  3832. if (!backend_ctx->non_uniform_workgroups) {
  3833. if (global_work_size[0] % local_work_size[0] != 0 ||
  3834. global_work_size[1] % local_work_size[1] != 0 ||
  3835. global_work_size[2] % local_work_size[2] != 0) {
  3836. local_work_size_ptr = NULL;
  3837. }
  3838. }
  3839. if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
  3840. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3841. }
  3842. static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
  3843. GGML_ASSERT(src0);
  3844. GGML_ASSERT(src0->extra);
  3845. GGML_ASSERT(dst);
  3846. GGML_ASSERT(dst->extra);
  3847. GGML_ASSERT(dst->type == src0->type);
  3848. UNUSED(src1_shape_def);
  3849. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3850. if (backend_ctx->kernel_repeat == nullptr) {
  3851. GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
  3852. return;
  3853. }
  3854. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  3855. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  3856. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  3857. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  3858. const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
  3859. const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
  3860. const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
  3861. const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
  3862. cl_kernel kernel = backend_ctx->kernel_repeat;
  3863. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  3864. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
  3865. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
  3866. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  3867. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
  3868. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
  3869. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
  3870. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
  3871. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
  3872. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
  3873. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
  3874. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
  3875. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
  3876. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
  3877. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
  3878. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
  3879. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
  3880. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
  3881. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
  3882. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
  3883. size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
  3884. size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
  3885. size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
  3886. size_t global_work_size[] = { gws0, gws1, gws2 };
  3887. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  3888. }
  3889. static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  3890. GGML_ASSERT(src0);
  3891. GGML_ASSERT(src0->extra);
  3892. GGML_ASSERT(dst);
  3893. GGML_ASSERT(dst->extra);
  3894. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  3895. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  3896. GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1);
  3897. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3898. if (backend_ctx->kernel_pad == nullptr) {
  3899. GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__);
  3900. return;
  3901. }
  3902. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  3903. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  3904. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  3905. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  3906. const int s_ne0 = src0->ne[0];
  3907. const int s_ne1 = src0->ne[1];
  3908. const int s_ne2 = src0->ne[2];
  3909. const int d_ne0 = dst->ne[0];
  3910. const int d_ne1 = dst->ne[1];
  3911. const int d_ne2 = dst->ne[2];
  3912. cl_kernel kernel = backend_ctx->kernel_pad;
  3913. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  3914. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  3915. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  3916. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  3917. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0));
  3918. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1));
  3919. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2));
  3920. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne0));
  3921. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne1));
  3922. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne2));
  3923. size_t lws0 = 64;
  3924. size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0;
  3925. size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2 };
  3926. size_t local_work_size[] = { lws0, 1, 1 };
  3927. size_t * local_work_size_ptr = local_work_size;
  3928. if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) {
  3929. local_work_size_ptr = nullptr;
  3930. }
  3931. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3932. }
  3933. static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  3934. GGML_ASSERT(src0);
  3935. GGML_ASSERT(src0->extra);
  3936. GGML_ASSERT(dst);
  3937. GGML_ASSERT(dst->extra);
  3938. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  3939. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  3940. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3941. const int mode_flags = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
  3942. const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
  3943. cl_kernel kernel = nullptr;
  3944. if (mode == GGML_SCALE_MODE_NEAREST) {
  3945. kernel = backend_ctx->kernel_upscale;
  3946. if (kernel == nullptr) {
  3947. GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__);
  3948. return;
  3949. }
  3950. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  3951. kernel = backend_ctx->kernel_upscale_bilinear;
  3952. if (kernel == nullptr) {
  3953. GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__);
  3954. return;
  3955. }
  3956. } else {
  3957. GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode);
  3958. return;
  3959. }
  3960. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  3961. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  3962. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  3963. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  3964. const cl_ulong nb00 = src0->nb[0];
  3965. const cl_ulong nb01 = src0->nb[1];
  3966. const cl_ulong nb02 = src0->nb[2];
  3967. const cl_ulong nb03 = src0->nb[3];
  3968. const int ne00 = src0->ne[0];
  3969. const int ne01 = src0->ne[1];
  3970. const int ne02 = src0->ne[2];
  3971. const int ne03 = src0->ne[3];
  3972. const int ne0 = dst->ne[0];
  3973. const int ne1 = dst->ne[1];
  3974. const int ne2 = dst->ne[2];
  3975. const int ne3 = dst->ne[3];
  3976. float sf0 = (float)ne0 / ne00;
  3977. float sf1 = (float)ne1 / ne01;
  3978. float sf2 = (float)ne2 / ne02;
  3979. float sf3 = (float)ne3 / ne03;
  3980. float pixel_offset = 0.5f;
  3981. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  3982. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  3983. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  3984. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  3985. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00));
  3986. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
  3987. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02));
  3988. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03));
  3989. if (mode == GGML_SCALE_MODE_NEAREST) {
  3990. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  3991. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne1));
  3992. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne2));
  3993. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne3));
  3994. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0));
  3995. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1));
  3996. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2));
  3997. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3));
  3998. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  3999. if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  4000. sf0 = (float)(ne0 - 1) / (ne00 - 1);
  4001. sf1 = (float)(ne1 - 1) / (ne01 - 1);
  4002. pixel_offset = 0.0f;
  4003. }
  4004. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  4005. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  4006. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne0));
  4007. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne1));
  4008. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne2));
  4009. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne3));
  4010. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0));
  4011. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1));
  4012. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2));
  4013. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3));
  4014. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &pixel_offset));
  4015. }
  4016. size_t dst_total_elements = (size_t)ne0 * ne1 * ne2 * ne3;
  4017. if (dst_total_elements == 0) {
  4018. return;
  4019. }
  4020. size_t global_work_size[] = { dst_total_elements, 1, 1 };
  4021. size_t local_work_size_pref = 256;
  4022. size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1};
  4023. size_t * local_work_size_ptr = local_work_size;
  4024. if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) {
  4025. local_work_size_ptr = nullptr;
  4026. }
  4027. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4028. }
  4029. static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4030. GGML_ASSERT(src0);
  4031. GGML_ASSERT(src0->extra);
  4032. GGML_ASSERT(src1);
  4033. GGML_ASSERT(src1->extra);
  4034. GGML_ASSERT(dst);
  4035. GGML_ASSERT(dst->extra);
  4036. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4037. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4038. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4039. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4040. cl_command_queue queue = backend_ctx->queue;
  4041. if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
  4042. GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
  4043. return;
  4044. }
  4045. ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
  4046. ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
  4047. ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
  4048. cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
  4049. cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
  4050. cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
  4051. const int32_t dim = ((const int32_t *) dst->op_params)[0];
  4052. GGML_ASSERT(dim >= 0 && dim <= 3);
  4053. if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
  4054. if (dim == 3) {
  4055. size_t nbytes_src0 = ggml_nbytes(src0);
  4056. size_t nbytes_src1 = ggml_nbytes(src1);
  4057. CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
  4058. off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
  4059. CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
  4060. off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
  4061. } else {
  4062. cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
  4063. size_t global_work_size[3];
  4064. for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
  4065. cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
  4066. cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
  4067. cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
  4068. int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
  4069. int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
  4070. int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
  4071. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  4072. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &current_off_src0));
  4073. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  4074. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &current_off_src1));
  4075. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  4076. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &current_off_dst));
  4077. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
  4078. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
  4079. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
  4080. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
  4081. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
  4082. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
  4083. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  4084. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  4085. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  4086. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
  4087. global_work_size[0] = d_ne0;
  4088. global_work_size[1] = d_ne1;
  4089. global_work_size[2] = d_ne2;
  4090. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  4091. }
  4092. }
  4093. } else {
  4094. cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
  4095. long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  4096. cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  4097. cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  4098. long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
  4099. cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
  4100. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  4101. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  4102. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  4103. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
  4104. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  4105. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
  4106. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(long), &ne00));
  4107. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(long), &ne01));
  4108. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(long), &ne02));
  4109. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(long), &ne03));
  4110. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4111. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4112. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4113. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4114. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4115. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4116. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4117. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4118. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(long), &d_ne0));
  4119. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(long), &d_ne1));
  4120. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(long), &d_ne2));
  4121. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(long), &d_ne3));
  4122. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
  4123. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
  4124. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
  4125. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
  4126. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
  4127. size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
  4128. d_ne2 > 0 ? (size_t)d_ne2 : 1,
  4129. d_ne3 > 0 ? (size_t)d_ne3 : 1 };
  4130. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
  4131. }
  4132. }
  4133. static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  4134. GGML_ASSERT(src0);
  4135. GGML_ASSERT(src0->extra);
  4136. GGML_ASSERT(dst);
  4137. GGML_ASSERT(dst->extra);
  4138. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4139. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4140. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4141. if (backend_ctx->kernel_timestep_embedding == nullptr) {
  4142. GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__);
  4143. return;
  4144. }
  4145. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  4146. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  4147. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  4148. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  4149. const int logical_dim = dst->op_params[0];
  4150. const int max_period = dst->op_params[1];
  4151. const int dst_nb1_bytes = dst->nb[1];
  4152. cl_kernel kernel = backend_ctx->kernel_timestep_embedding;
  4153. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  4154. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  4155. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  4156. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  4157. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes));
  4158. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim));
  4159. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period));
  4160. size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1);
  4161. size_t gws1 = (size_t)src0->ne[0];
  4162. size_t global_work_size[] = {gws0, gws1, 1};
  4163. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  4164. }
  4165. static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4166. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4167. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4168. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4169. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4170. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4171. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4172. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4173. const int M = src0->ne[1];
  4174. const int N = src1->ne[1];
  4175. const int K = src0->ne[0];
  4176. cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
  4177. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
  4178. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
  4179. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
  4180. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
  4181. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
  4182. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
  4183. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
  4184. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
  4185. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
  4186. // Tiling parameters. These need to be tuned for optimal performance.
  4187. // They must match the #defines in the kernel mul_mat_f16_f32.cl.
  4188. //
  4189. // OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
  4190. // TPWM / TPWN: Threads per Work-group. This is the work-group size.
  4191. // OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
  4192. //
  4193. // The following relationships must hold:
  4194. // OPWM = TPWM * OPTM
  4195. // OPWN = TPWN * OPTN
  4196. //
  4197. const int OPWM = 64;
  4198. const int OPWN = 64;
  4199. const int TPWM = 16;
  4200. const int TPWN = 8;
  4201. size_t local_work_size[2] = { TPWM, TPWN };
  4202. size_t global_work_size[2] = {
  4203. (size_t) ((M + OPWM - 1) / OPWM) * TPWM,
  4204. (size_t) ((N + OPWN - 1) / OPWN) * TPWN,
  4205. };
  4206. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  4207. }
  4208. static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4209. GGML_ASSERT(src0);
  4210. GGML_ASSERT(src0->extra);
  4211. GGML_ASSERT(src1);
  4212. GGML_ASSERT(src1->extra);
  4213. GGML_ASSERT(dst);
  4214. GGML_ASSERT(dst->extra);
  4215. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  4216. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  4217. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4218. if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
  4219. src0->ne[1] > 32 && // M > 32
  4220. src1->ne[1] > 32 && // N > 32
  4221. src0->ne[0] > 32 && // K > 32
  4222. src0->ne[2] == 1 && src0->ne[3] == 1 &&
  4223. src1->ne[2] == 1 && src1->ne[3] == 1 &&
  4224. ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
  4225. backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
  4226. ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
  4227. return;
  4228. }
  4229. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4230. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4231. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4232. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4233. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4234. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4235. #ifdef GGML_OPENCL_SOA_Q
  4236. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  4237. #endif
  4238. const int ne00 = src0 ? src0->ne[0] : 0;
  4239. const int ne01 = src0 ? src0->ne[1] : 0;
  4240. const int ne02 = src0 ? src0->ne[2] : 0;
  4241. const int ne03 = src0 ? src0->ne[3] : 0;
  4242. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  4243. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4244. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4245. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4246. const int ne10 = src1 ? src1->ne[0] : 0;
  4247. const int ne11 = src1 ? src1->ne[1] : 0;
  4248. const int ne12 = src1 ? src1->ne[2] : 0;
  4249. const int ne13 = src1 ? src1->ne[3] : 0;
  4250. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  4251. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  4252. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  4253. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  4254. const int ne0 = dst ? dst->ne[0] : 0;
  4255. const int ne1 = dst ? dst->ne[1] : 0;
  4256. int r2 = ne12/ne02;
  4257. int r3 = ne13/ne03;
  4258. GGML_ASSERT(ne00 == ne10);
  4259. int nth0 = 32;
  4260. int nth1 = 1;
  4261. int nrows = 1;
  4262. // The number of values produced by each subgroup
  4263. int ndst = 4;
  4264. cl_kernel kernel;
  4265. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  4266. cl_context context = backend_ctx->context;
  4267. if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
  4268. // init CL objects
  4269. // <--------------------------------------------> //
  4270. cl_int status;
  4271. cl_image_format img_fmt_1d;
  4272. cl_image_desc img_desc_1d;
  4273. cl_buffer_region region;
  4274. cl_mem A_image1d = nullptr;
  4275. cl_mem B_image1d = nullptr;
  4276. cl_mem B_sub_buffer = nullptr;
  4277. cl_mem C_d = nullptr;
  4278. // for B transpose
  4279. cl_mem B_d = nullptr;
  4280. cl_mem B_d_input_image = nullptr;
  4281. // <--------------------------------------------> //
  4282. // define matrix dimensions
  4283. // <--------------------------------------------> //
  4284. int M = ne01;
  4285. int N = ne1;
  4286. int K = ne00;
  4287. int padding;
  4288. // <--------------------------------------------> //
  4289. // q4_0 x fp32
  4290. if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
  4291. // TODO: remove duplicate definitions of image description + format -- move to top
  4292. // create an image for A
  4293. // <--------------------------------------------> //
  4294. if (N == 1) {
  4295. img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
  4296. } else {
  4297. img_fmt_1d = { CL_R, CL_FLOAT};
  4298. }
  4299. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  4300. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  4301. img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
  4302. img_desc_1d.buffer = extra0_q4_0->q;
  4303. A_image1d = clCreateImage(
  4304. context,
  4305. CL_MEM_READ_ONLY,
  4306. &img_fmt_1d,
  4307. &img_desc_1d,
  4308. NULL,
  4309. &status);
  4310. CL_CHECK(status);
  4311. // <--------------------------------------------> //
  4312. // create a sub_buffer for B
  4313. // <--------------------------------------------> //
  4314. region.origin = (extra1->offset);
  4315. region.size = K * N * sizeof(float);
  4316. B_sub_buffer = clCreateSubBuffer(
  4317. extra1->data_device,
  4318. 0,
  4319. CL_BUFFER_CREATE_TYPE_REGION,
  4320. &region,
  4321. &status);
  4322. CL_CHECK(status);
  4323. // <--------------------------------------------> //
  4324. // transpose activation for Skyler's gemm
  4325. if (N != 1) {
  4326. //how many extra elements beyond multiple of 8
  4327. int extra_elements = N % 8;
  4328. //how much padding to add
  4329. padding = 0;
  4330. if (extra_elements > 0){
  4331. padding = 8 - extra_elements;
  4332. }
  4333. // Specify the starting offset (in bytes)
  4334. region.origin = 0;
  4335. // Specify the size of the sub-buffer (divide by 2 for FP16)
  4336. region.size = K * (N + padding) * sizeof(float)/2;
  4337. B_d = clCreateSubBuffer(
  4338. backend_ctx->B_d_max,
  4339. 0,
  4340. CL_BUFFER_CREATE_TYPE_REGION,
  4341. &region,
  4342. &status);
  4343. CL_CHECK(status);
  4344. cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
  4345. cl_image_desc image_desc_B_d_input = {
  4346. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  4347. static_cast<size_t>(K * N / 4),
  4348. 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
  4349. };
  4350. B_d_input_image = clCreateImage(
  4351. context,
  4352. 0,
  4353. &image_format_B_d_input,
  4354. &image_desc_B_d_input,
  4355. NULL,
  4356. &status);
  4357. CL_CHECK(status);
  4358. cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
  4359. cl_image_desc image_desc_B_d_output = {
  4360. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  4361. static_cast<size_t>(K * (N + padding)/4),
  4362. 0, 0, 0, 0, 0, 0, 0, { B_d }
  4363. };
  4364. B_image1d = clCreateImage(
  4365. context,
  4366. 0,
  4367. &image_format_B_d_output,
  4368. &image_desc_B_d_output,
  4369. NULL,
  4370. &status);
  4371. CL_CHECK(status);
  4372. int height_B = N/4;
  4373. if (height_B == 0) {
  4374. height_B = 1;
  4375. }
  4376. int width_B = K/4;
  4377. int padded_height_B = (N + padding)/4;
  4378. kernel = backend_ctx->kernel_transpose_32_16;
  4379. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
  4380. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
  4381. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
  4382. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
  4383. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
  4384. size_t local_size_t[2] = { 1, 16 };
  4385. //WGS tuning
  4386. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  4387. local_size_t[0]=4;
  4388. local_size_t[1]=8;
  4389. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  4390. local_size_t[0]=2;
  4391. local_size_t[1]=8;
  4392. } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  4393. local_size_t[0]=1;
  4394. local_size_t[1]=8;
  4395. } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  4396. local_size_t[0]=2;
  4397. local_size_t[1]=8;
  4398. }
  4399. size_t global_size_t[2] = {
  4400. static_cast<size_t>(width_B),
  4401. static_cast<size_t>(padded_height_B)
  4402. };
  4403. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
  4404. } else {
  4405. // no need to transpose B in other cases
  4406. // create an image for B from sub_buffer
  4407. // <--------------------------------------------> //
  4408. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  4409. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  4410. img_desc_1d.image_width = K * N / 4;
  4411. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  4412. img_desc_1d.buffer = B_sub_buffer;
  4413. B_image1d = clCreateImage(
  4414. context,
  4415. CL_MEM_READ_ONLY,
  4416. &img_fmt_1d,
  4417. &img_desc_1d,
  4418. NULL,
  4419. &status);
  4420. CL_CHECK(status);
  4421. // <--------------------------------------------> //
  4422. }
  4423. // choose gemm or gemv kernel
  4424. // <--------------------------------------------> //
  4425. if (N == 1) {
  4426. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  4427. if (M == 4096 && K == 4096) {
  4428. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  4429. } else if (M == 4096 && K == 11008) {
  4430. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  4431. } else if (M == 11008 && K == 4096) {
  4432. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  4433. } else if (M == 32000 && K == 4096) {
  4434. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  4435. }
  4436. } else {
  4437. kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
  4438. }
  4439. // <--------------------------------------------> //
  4440. // set kernel args
  4441. // <--------------------------------------------> //
  4442. cl_uint k_arg = 0;
  4443. if (N == 1) {
  4444. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  4445. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
  4446. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
  4447. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
  4448. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
  4449. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
  4450. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
  4451. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
  4452. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  4453. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
  4454. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  4455. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
  4456. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
  4457. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
  4458. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
  4459. } else {
  4460. region.origin = extrad->offset; // Specify the starting offset (in bytes)
  4461. region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
  4462. C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  4463. CL_CHECK(status);
  4464. int padded_N = ne1 + padding;
  4465. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
  4466. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
  4467. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
  4468. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
  4469. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
  4470. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
  4471. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
  4472. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
  4473. }
  4474. // <--------------------------------------------> //
  4475. // choose workgroup size
  4476. // <--------------------------------------------> //
  4477. size_t global_work_size[3] = {
  4478. 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
  4479. size_t local_work_size[3] = {64, 2, 4};
  4480. global_work_size[0] = (size_t)(ceil((float)ne1/8));
  4481. global_work_size[1] = (size_t)(ne01/4);
  4482. global_work_size[2] = (size_t)(1);
  4483. local_work_size[0] = (size_t)(1); //4x32 for FP32
  4484. local_work_size[1] = (size_t)(128);
  4485. local_work_size[2] = (size_t)(1);
  4486. //WGS tuning
  4487. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  4488. local_work_size[0] = 1;
  4489. local_work_size[1] = 128;
  4490. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  4491. local_work_size[0] = 2;
  4492. local_work_size[1] = 64;
  4493. } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  4494. local_work_size[0] = 2;
  4495. local_work_size[1] = 64;
  4496. } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  4497. local_work_size[0] = 2;
  4498. local_work_size[1] = 64;
  4499. }
  4500. if (N == 1) {
  4501. size_t wavesize = backend_ctx->adreno_wave_size;
  4502. local_work_size[0] = wavesize; // localsize
  4503. local_work_size[1] = 4; // reduce factor
  4504. local_work_size[2] = 1;
  4505. global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
  4506. global_work_size[1] = 4; // reduce factor
  4507. global_work_size[2] = 1;
  4508. }
  4509. // <--------------------------------------------> //
  4510. // enqueue kernel with profiling
  4511. // <--------------------------------------------> //
  4512. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4513. // <--------------------------------------------> //
  4514. // deallocate sub buffers and images
  4515. // <--------------------------------------------> //
  4516. CL_CHECK(clReleaseMemObject(A_image1d));
  4517. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  4518. CL_CHECK(clReleaseMemObject(B_image1d));
  4519. if (N != 1) {
  4520. CL_CHECK(clReleaseMemObject(B_d));
  4521. CL_CHECK(clReleaseMemObject(B_d_input_image));
  4522. CL_CHECK(clReleaseMemObject(C_d));
  4523. }
  4524. // <--------------------------------------------> //
  4525. return;
  4526. }
  4527. } // if (ne01 && ne1)
  4528. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  4529. if (!ggml_is_transposed(src0) &&
  4530. !ggml_is_transposed(src1) &&
  4531. src1t == GGML_TYPE_F32 &&
  4532. ne00%32 == 0 &&
  4533. ne11 > 2) {
  4534. #ifdef GGML_OPENCL_SOA_Q
  4535. // Set up kernel.
  4536. switch(src0t) {
  4537. case GGML_TYPE_Q4_0:
  4538. // This should have been satisfied.
  4539. GGML_ASSERT(ne11 == ne1);
  4540. GGML_ASSERT(ne01 == ne0);
  4541. if (backend_ctx->gpu_family == INTEL) {
  4542. nth0 = 16;
  4543. nth1 = 1;
  4544. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
  4545. } else if (backend_ctx->gpu_family == ADRENO) {
  4546. nth0 = 64;
  4547. nth1 = 1;
  4548. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
  4549. } else {
  4550. GGML_ASSERT(false && "TODO: Unknown GPU");
  4551. }
  4552. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  4553. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  4554. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4555. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4556. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4557. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4558. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4559. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4560. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4561. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  4562. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  4563. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  4564. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  4565. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  4566. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  4567. break;
  4568. default:
  4569. break;
  4570. }
  4571. // Launch kernel.
  4572. if (src0t == GGML_TYPE_Q4_0) {
  4573. size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  4574. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  4575. if (backend_ctx->gpu_family == INTEL) {
  4576. // Set global size for Intel. It uses 16x output values.
  4577. global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
  4578. global_work_size[1] = (size_t)ne11*nth1;
  4579. global_work_size[2] = (size_t)ne12*ne13;
  4580. }
  4581. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4582. return;
  4583. }
  4584. #else // GGML_OPENCL_SOA_Q
  4585. // TODO: add block_q4_0 variant.
  4586. #endif // GGML_OPENCL_SOA_Q
  4587. }
  4588. // use custom matrix x vector kernel
  4589. switch (src0t) {
  4590. case GGML_TYPE_F32:
  4591. //GGML_ASSERT(ne02 == ne12);
  4592. GGML_ASSERT(src1t == GGML_TYPE_F32);
  4593. kernel = backend_ctx->kernel_mul_mat_f32_f32;
  4594. nrows = 4;
  4595. if (backend_ctx->gpu_family == INTEL) {
  4596. nth0 = 32;
  4597. nth1 = 1;
  4598. } else if (backend_ctx->gpu_family == ADRENO) {
  4599. nth0 = 64;
  4600. nth1 = 1;
  4601. } else {
  4602. GGML_ASSERT(false && "TODO: Unknown GPU");
  4603. }
  4604. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4605. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4606. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4607. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4608. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4609. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4610. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4611. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4612. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4613. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  4614. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  4615. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  4616. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  4617. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  4618. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  4619. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  4620. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  4621. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  4622. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  4623. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  4624. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  4625. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  4626. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  4627. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  4628. break;
  4629. case GGML_TYPE_F16:
  4630. //GGML_ASSERT(ne02 == ne12);
  4631. if (backend_ctx->gpu_family == INTEL) {
  4632. nth0 = 32;
  4633. nth1 = 1;
  4634. } else if (backend_ctx->gpu_family == ADRENO) {
  4635. nth0 = 64;
  4636. nth1 = 1;
  4637. } else {
  4638. GGML_ASSERT(false && "TODO: Unknown GPU");
  4639. }
  4640. if (src1t == GGML_TYPE_F32) {
  4641. if (ne11 * ne12 < 4) {
  4642. kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
  4643. } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
  4644. kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
  4645. nrows = ne11;
  4646. } else {
  4647. kernel = backend_ctx->kernel_mul_mat_f16_f32;
  4648. nrows = 4;
  4649. }
  4650. } else {
  4651. kernel = backend_ctx->kernel_mul_mat_f16_f16;
  4652. nrows = 4;
  4653. }
  4654. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4655. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4656. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4657. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4658. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4659. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4660. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4661. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4662. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4663. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  4664. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  4665. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  4666. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  4667. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  4668. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  4669. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  4670. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  4671. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  4672. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  4673. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  4674. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  4675. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  4676. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  4677. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  4678. break;
  4679. case GGML_TYPE_Q4_0:
  4680. // This should have been satisfied.
  4681. GGML_ASSERT(ne11 == ne1);
  4682. GGML_ASSERT(ne01 == ne0);
  4683. #ifdef GGML_OPENCL_SOA_Q
  4684. if (backend_ctx->gpu_family == INTEL) {
  4685. nth0 = 16;
  4686. nth1 = 1;
  4687. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  4688. ndst = 8;
  4689. } else if (backend_ctx->gpu_family == ADRENO) {
  4690. nth0 = 64;
  4691. nth1 = 1;
  4692. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  4693. ndst =8;
  4694. } else {
  4695. GGML_ASSERT(false && "TODO: Unknown GPU");
  4696. }
  4697. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  4698. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  4699. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4700. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4701. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4702. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4703. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4704. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4705. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4706. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  4707. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  4708. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  4709. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  4710. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  4711. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  4712. #else // GGML_OPENCL_SOA_Q
  4713. if (backend_ctx->gpu_family == INTEL) {
  4714. // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
  4715. // group produces N_DST (4 for Q4_0 kernel) values in the result.
  4716. // The number of workgroups on dim 0 (the leading dimension) is
  4717. // the nearest multiple of 4 that covers ne0 (equals ne01).
  4718. nth0 = 16;
  4719. nth1 = 1;
  4720. kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
  4721. ndst = 4;
  4722. } else if (backend_ctx->gpu_family == ADRENO) {
  4723. nth0 = 64;
  4724. nth1 = 1;
  4725. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
  4726. ndst = 4;
  4727. } else {
  4728. GGML_ASSERT(false && "TODO: Unknown GPU");
  4729. }
  4730. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4731. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4732. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4733. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4734. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4735. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4736. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4737. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4738. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4739. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  4740. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  4741. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  4742. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  4743. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  4744. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  4745. #endif // GGML_OPENCL_SOA_Q
  4746. break;
  4747. case GGML_TYPE_Q4_1:
  4748. case GGML_TYPE_Q8_0:
  4749. case GGML_TYPE_Q2_K:
  4750. case GGML_TYPE_Q3_K:
  4751. case GGML_TYPE_Q4_K:
  4752. case GGML_TYPE_Q5_K:
  4753. case GGML_TYPE_Q6_K:
  4754. kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
  4755. if (backend_ctx->gpu_family == INTEL) {
  4756. nth0 = 2;
  4757. nth1 = 16;
  4758. } else if (backend_ctx->gpu_family == ADRENO) {
  4759. nth0 = 2;
  4760. nth1 = 64;
  4761. } else {
  4762. GGML_ASSERT(false && "TODO: Unknown GPU");
  4763. }
  4764. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4765. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4766. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4767. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4768. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4769. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4770. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4771. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4772. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4773. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  4774. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  4775. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  4776. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  4777. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  4778. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  4779. break;
  4780. default:
  4781. GGML_ASSERT(false && "not implemented");
  4782. }
  4783. if (src0t == GGML_TYPE_Q4_0 ||
  4784. src0t == GGML_TYPE_Q4_1 ||
  4785. src0t == GGML_TYPE_Q8_0 ||
  4786. src0t == GGML_TYPE_Q2_K) {
  4787. // Each SIMD group produces N_DST values in the result. Assuming each
  4788. // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
  4789. // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
  4790. // (number of workgroups) will be a nearest multiple of
  4791. // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
  4792. // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
  4793. size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  4794. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  4795. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4796. } else if (src0t == GGML_TYPE_Q4_K) {
  4797. GGML_ASSERT(false && "not implemented");
  4798. } else if (src0t == GGML_TYPE_Q3_K) {
  4799. GGML_ASSERT(false && "not implemented");
  4800. } else if (src0t == GGML_TYPE_Q5_K) {
  4801. GGML_ASSERT(false && "not implemented");
  4802. } else if (src0t == GGML_TYPE_Q6_K) {
  4803. size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  4804. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  4805. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4806. } else {
  4807. int64_t ny = (ne11 + nrows - 1)/nrows;
  4808. size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
  4809. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  4810. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4811. }
  4812. }
  4813. static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4814. GGML_ASSERT(src0);
  4815. GGML_ASSERT(src0->extra);
  4816. GGML_ASSERT(src1);
  4817. GGML_ASSERT(src1->extra);
  4818. GGML_ASSERT(dst);
  4819. GGML_ASSERT(dst->extra);
  4820. const ggml_tensor * src2 = dst->src[2];
  4821. GGML_ASSERT(src2);
  4822. GGML_ASSERT(src2->extra);
  4823. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4824. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4825. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4826. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4827. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4828. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4829. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4830. #ifdef GGML_OPENCL_SOA_Q
  4831. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  4832. #endif
  4833. const int ne00 = src0->ne[0];
  4834. const int ne01 = src0->ne[1];
  4835. const int ne02 = src0->ne[2];
  4836. const int ne03 = src0->ne[3];
  4837. const cl_ulong nb00 = src0->nb[0];
  4838. const cl_ulong nb02 = src0->nb[2];
  4839. const int ne10 = src1->ne[0];
  4840. const int ne11 = src1->ne[1];
  4841. const int ne12 = src1->ne[2];
  4842. const int ne13 = src1->ne[3];
  4843. const cl_ulong nb11 = src1->nb[1];
  4844. const cl_ulong nb12 = src1->nb[2];
  4845. const int ne20 = src2->ne[0];
  4846. const int ne21 = src2->ne[1];
  4847. const cl_ulong nb21 = src2->nb[1];
  4848. const int ne0 = dst->ne[0];
  4849. const int ne1 = dst->ne[1];
  4850. const int r2 = ne12/ne02;
  4851. const int r3 = ne13/ne03;
  4852. const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
  4853. GGML_ASSERT(ne00 == ne10);
  4854. int sgs = 32; // subgroup size
  4855. int nsg = 1; // number of subgroups
  4856. int nrows = 1; // number of row in src1
  4857. int ndst = 4; // number of values produced by each subgroup
  4858. cl_kernel kernel;
  4859. // subgroup mat vec
  4860. switch (src0->type) {
  4861. case GGML_TYPE_Q4_0: {
  4862. kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
  4863. if (backend_ctx->gpu_family == INTEL) {
  4864. sgs = 16;
  4865. nsg = 1;
  4866. ndst = 8;
  4867. } else if (backend_ctx->gpu_family == ADRENO) {
  4868. sgs = 64;
  4869. nsg = 1;
  4870. ndst = 8;
  4871. } else {
  4872. GGML_ASSERT(false && "TODO: Unknown GPU");
  4873. }
  4874. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  4875. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  4876. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4877. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4878. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4879. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4880. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4881. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4882. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  4883. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  4884. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  4885. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
  4886. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4887. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  4888. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  4889. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  4890. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
  4891. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
  4892. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
  4893. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
  4894. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
  4895. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
  4896. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
  4897. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
  4898. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
  4899. break;
  4900. }
  4901. default:
  4902. GGML_ASSERT(false && "not implemented");;
  4903. }
  4904. int _ne1 = 1;
  4905. int ne123 = dst_rows;
  4906. size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
  4907. size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
  4908. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4909. }
  4910. static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4911. GGML_ASSERT(src0);
  4912. GGML_ASSERT(src0->extra);
  4913. GGML_ASSERT(dst);
  4914. GGML_ASSERT(dst->extra);
  4915. GGML_UNUSED(src1);
  4916. GGML_ASSERT(ggml_is_contiguous(src0));
  4917. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4918. float scale;
  4919. float bias;
  4920. memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(float));
  4921. memcpy(&bias, ((int32_t *) dst->op_params) + 1, sizeof(float));
  4922. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4923. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4924. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4925. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4926. cl_kernel kernel = backend_ctx->kernel_scale;
  4927. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4928. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4929. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4930. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4931. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
  4932. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
  4933. int n = ggml_nelements(dst)/4;
  4934. size_t global_work_size[] = {(size_t)n, 1, 1};
  4935. size_t local_work_size[] = {64, 1, 1};
  4936. size_t * local_work_size_ptr = local_work_size;
  4937. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4938. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4939. }
  4940. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4941. }
  4942. static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4943. GGML_ASSERT(src0);
  4944. GGML_ASSERT(src0->extra);
  4945. GGML_ASSERT(src1);
  4946. GGML_ASSERT(src1->extra);
  4947. // GGML_OP_CPY happens between src0 and src1.
  4948. // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
  4949. UNUSED(dst);
  4950. const int ne00 = src0 ? src0->ne[0] : 0;
  4951. const int ne01 = src0 ? src0->ne[1] : 0;
  4952. const int ne02 = src0 ? src0->ne[2] : 0;
  4953. const int ne03 = src0 ? src0->ne[3] : 0;
  4954. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  4955. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4956. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4957. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4958. const int ne10 = src1 ? src1->ne[0] : 0;
  4959. const int ne11 = src1 ? src1->ne[1] : 0;
  4960. const int ne12 = src1 ? src1->ne[2] : 0;
  4961. const int ne13 = src1 ? src1->ne[3] : 0;
  4962. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  4963. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  4964. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  4965. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  4966. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  4967. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  4968. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4969. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4970. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4971. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4972. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4973. cl_kernel kernel;
  4974. switch (src0t) {
  4975. case GGML_TYPE_F32:
  4976. switch (src1t) {
  4977. case GGML_TYPE_F16:
  4978. kernel = backend_ctx->kernel_cpy_f32_f16;
  4979. break;
  4980. case GGML_TYPE_F32:
  4981. kernel = backend_ctx->kernel_cpy_f32_f32;
  4982. break;
  4983. default:
  4984. GGML_ASSERT(false && "not implemented");
  4985. }
  4986. break;
  4987. case GGML_TYPE_F16:
  4988. switch (src1t) {
  4989. case GGML_TYPE_F16:
  4990. kernel = backend_ctx->kernel_cpy_f16_f16;
  4991. break;
  4992. case GGML_TYPE_F32:
  4993. kernel = backend_ctx->kernel_cpy_f16_f32;
  4994. break;
  4995. default:
  4996. GGML_ASSERT(false && "not implemented");
  4997. }
  4998. break;
  4999. default:
  5000. GGML_ASSERT(false && "not implemented");
  5001. }
  5002. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5003. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5004. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5005. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5006. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5007. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5008. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5009. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5010. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  5011. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  5012. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  5013. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  5014. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  5015. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  5016. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  5017. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  5018. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  5019. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  5020. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  5021. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  5022. const int nth = MIN(64, ne00);
  5023. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5024. size_t local_work_size[] = {(size_t)nth, 1, 1};
  5025. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, src1);
  5026. }
  5027. static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5028. ggml_cl_cpy(backend, src0, dst, nullptr);
  5029. UNUSED(src1);
  5030. }
  5031. static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5032. GGML_ASSERT(src0);
  5033. GGML_ASSERT(src0->extra);
  5034. GGML_ASSERT(dst);
  5035. GGML_ASSERT(dst->extra);
  5036. UNUSED(src1);
  5037. int n_past = ((int32_t *)(dst->op_params))[0];
  5038. const int ne00 = src0 ? src0->ne[0] : 0;
  5039. const int ne01 = src0 ? src0->ne[1] : 0;
  5040. const int ne02 = src0 ? src0->ne[2] : 0;
  5041. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5042. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5043. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5044. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5045. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5046. cl_kernel kernel;
  5047. if (ne00%8 == 0) {
  5048. kernel = backend_ctx->kernel_diag_mask_inf_8;
  5049. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5050. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5051. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5052. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5053. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5054. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5055. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  5056. size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
  5057. size_t local_work_size[] = {64, 1, 1};
  5058. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5059. } else {
  5060. kernel = backend_ctx->kernel_diag_mask_inf;
  5061. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5062. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5063. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5064. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5065. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5066. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5067. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  5068. size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
  5069. size_t local_work_size[] = {64, 1, 1};
  5070. size_t * local_work_size_ptr = local_work_size;
  5071. if (ne00 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  5072. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  5073. }
  5074. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5075. }
  5076. }
  5077. static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5078. GGML_ASSERT(src0);
  5079. GGML_ASSERT(src0->extra);
  5080. GGML_ASSERT(dst);
  5081. GGML_ASSERT(dst->extra);
  5082. // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
  5083. // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
  5084. // alibi is not used; however, for some other models, it is used.
  5085. // KQ_mask
  5086. if (src1) {
  5087. GGML_ASSERT(src1);
  5088. GGML_ASSERT(src1->extra);
  5089. }
  5090. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5091. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5092. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5093. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  5094. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5095. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5096. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  5097. const int ne00 = src0->ne[0];
  5098. const int ne01 = src0->ne[1];
  5099. const int ne02 = src0->ne[2];
  5100. const int ne03 = src0->ne[3];
  5101. const cl_long nb01 = src0->nb[1];
  5102. const cl_long nb02 = src0->nb[2];
  5103. const cl_long nb03 = src0->nb[3];
  5104. const int ne12 = src1 ? src1->ne[2] : 0;
  5105. const int ne13 = src1 ? src1->ne[3] : 0;
  5106. const cl_long nb11 = src1 ? src1->nb[1] : 0;
  5107. const cl_long nb12 = src1 ? src1->nb[2] : 0;
  5108. const cl_long nb13 = src1 ? src1->nb[3] : 0;
  5109. const cl_long nb1 = dst->nb[1];
  5110. const cl_long nb2 = dst->nb[2];
  5111. const cl_long nb3 = dst->nb[3];
  5112. float scale, max_bias;
  5113. memcpy(&scale, dst->op_params + 0, sizeof(float));
  5114. memcpy(&max_bias, dst->op_params + 1, sizeof(float));
  5115. const int n_head = src0->ne[2];
  5116. const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
  5117. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  5118. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  5119. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  5120. // Local size must be wave size. Each workgroup is a wave, working on a row,
  5121. // where a row corresponds to leading dimension.
  5122. int nth = MIN(32, ne00);
  5123. if (backend_ctx->gpu_family == INTEL) {
  5124. // This is the same as the initial value.
  5125. nth = MIN(32, ne00);
  5126. }
  5127. else if (backend_ctx->gpu_family == ADRENO) {
  5128. nth = 64;
  5129. } else {
  5130. GGML_ASSERT(false && "TODO: Unknown GPU");
  5131. }
  5132. cl_kernel kernel;
  5133. if (ne00%4 == 0) {
  5134. if (use_f16) {
  5135. kernel = backend_ctx->kernel_soft_max_4_f16;
  5136. } else {
  5137. kernel = backend_ctx->kernel_soft_max_4;
  5138. }
  5139. } else {
  5140. if (use_f16) {
  5141. kernel = backend_ctx->kernel_soft_max_f16;
  5142. } else {
  5143. kernel = backend_ctx->kernel_soft_max;
  5144. }
  5145. }
  5146. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5147. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5148. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
  5149. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5150. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5151. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5152. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5153. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  5154. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  5155. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  5156. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5157. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne13));
  5158. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  5159. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  5160. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  5161. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb1));
  5162. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb2));
  5163. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb3));
  5164. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &scale));
  5165. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(float), &max_bias));
  5166. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &m0));
  5167. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &m1));
  5168. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &n_head_log2));
  5169. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5170. size_t local_work_size[] = {(size_t)nth, 1, 1};
  5171. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5172. }
  5173. static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5174. GGML_ASSERT(src0);
  5175. GGML_ASSERT(src0->extra);
  5176. GGML_ASSERT(src1);
  5177. GGML_ASSERT(src1->extra);
  5178. GGML_ASSERT(dst);
  5179. GGML_ASSERT(dst->extra);
  5180. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5181. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5182. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5183. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5184. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5185. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5186. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5187. ggml_tensor * src2 = dst->src[2];
  5188. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  5189. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  5190. const int ne00 = src0 ? src0->ne[0] : 0;
  5191. const int ne01 = src0 ? src0->ne[1] : 0;
  5192. const int ne02 = src0 ? src0->ne[2] : 0;
  5193. const int ne03 = src0 ? src0->ne[3] : 0;
  5194. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  5195. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  5196. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  5197. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  5198. const int ne10 = src1 ? src1->ne[0] : 0;
  5199. const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
  5200. const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
  5201. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  5202. const int ne0 = dst ? dst->ne[0] : 0;
  5203. const int ne1 = dst ? dst->ne[1] : 0;
  5204. const int ne2 = dst ? dst->ne[2] : 0;
  5205. const int ne3 = dst ? dst->ne[3] : 0;
  5206. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  5207. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  5208. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  5209. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  5210. GGML_ASSERT(ne10 % ne02 == 0);
  5211. GGML_ASSERT(ne10 >= ne02);
  5212. int nth = MIN(64, ne00);
  5213. const int n_past = ((int *) dst->op_params)[0];
  5214. const int n_dims = ((int *) dst->op_params)[1];
  5215. const int mode = ((int *) dst->op_params)[2];
  5216. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  5217. float freq_base;
  5218. float freq_scale;
  5219. float ext_factor;
  5220. float attn_factor;
  5221. float beta_fast;
  5222. float beta_slow;
  5223. int32_t sections[4];
  5224. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  5225. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  5226. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  5227. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  5228. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  5229. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  5230. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
  5231. const bool is_neox = mode & 2;
  5232. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  5233. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  5234. if (is_mrope) {
  5235. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  5236. }
  5237. if (is_vision) {
  5238. GGML_ASSERT(n_dims == ne00/2);
  5239. }
  5240. cl_kernel kernel;
  5241. if (is_neox) {
  5242. switch (src0->type) {
  5243. case GGML_TYPE_F32:
  5244. kernel = backend_ctx->kernel_rope_neox_f32;
  5245. break;
  5246. case GGML_TYPE_F16:
  5247. kernel = backend_ctx->kernel_rope_neox_f16;
  5248. break;
  5249. default:
  5250. GGML_ASSERT(false);
  5251. };
  5252. } else if (is_mrope && !is_vision) {
  5253. switch (src0->type) {
  5254. case GGML_TYPE_F32:
  5255. kernel = backend_ctx->kernel_rope_multi_f32;
  5256. break;
  5257. case GGML_TYPE_F16:
  5258. kernel = backend_ctx->kernel_rope_multi_f16;
  5259. break;
  5260. default:
  5261. GGML_ASSERT(false);
  5262. };
  5263. } else if (is_vision) {
  5264. switch (src0->type) {
  5265. case GGML_TYPE_F32:
  5266. kernel = backend_ctx->kernel_rope_vision_f32;
  5267. break;
  5268. case GGML_TYPE_F16:
  5269. kernel = backend_ctx->kernel_rope_vision_f16;
  5270. break;
  5271. default:
  5272. GGML_ASSERT(false);
  5273. }
  5274. } else {
  5275. switch (src0->type) {
  5276. case GGML_TYPE_F32:
  5277. kernel = backend_ctx->kernel_rope_norm_f32;
  5278. break;
  5279. case GGML_TYPE_F16:
  5280. kernel = backend_ctx->kernel_rope_norm_f16;
  5281. break;
  5282. default:
  5283. GGML_ASSERT(false);
  5284. };
  5285. }
  5286. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5287. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5288. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5289. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5290. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  5291. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  5292. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  5293. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  5294. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5295. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  5296. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  5297. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  5298. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
  5299. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
  5300. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
  5301. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
  5302. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
  5303. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
  5304. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
  5305. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
  5306. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
  5307. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
  5308. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
  5309. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
  5310. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
  5311. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
  5312. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
  5313. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
  5314. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
  5315. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
  5316. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
  5317. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
  5318. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
  5319. if (is_mrope || is_vision) {
  5320. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, &sections));
  5321. }
  5322. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5323. size_t local_work_size[] = {(size_t)nth, 1, 1};
  5324. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5325. }
  5326. static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5327. GGML_ASSERT(src0);
  5328. GGML_ASSERT(src1);
  5329. GGML_ASSERT(src1->extra);
  5330. GGML_ASSERT(dst);
  5331. GGML_ASSERT(dst->extra);
  5332. // src0 - filter, src1 - input
  5333. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5334. GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
  5335. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5336. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5337. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5338. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5339. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5340. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  5341. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  5342. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  5343. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  5344. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  5345. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  5346. const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
  5347. const cl_long IC = src1->ne[is_2D ? 2 : 1];
  5348. const cl_long IH = is_2D ? src1->ne[1] : 1;
  5349. const cl_long IW = src1->ne[0];
  5350. const cl_long KH = is_2D ? src0->ne[1] : 1;
  5351. const cl_long KW = src0->ne[0];
  5352. const cl_long OH = is_2D ? dst->ne[2] : 1;
  5353. const cl_long OW = dst->ne[1];
  5354. // nb is byte offset, src is type float32
  5355. const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
  5356. const cl_long batch = src1->ne[is_2D ? 3 : 2];
  5357. const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
  5358. const cl_long pelements = OW*KW*KH;
  5359. const cl_long CHW = IC*KH*KW;
  5360. cl_kernel kernel;
  5361. if(dst->type == GGML_TYPE_F16) {
  5362. kernel = backend_ctx->kernel_im2col_f16;
  5363. } else {
  5364. kernel = backend_ctx->kernel_im2col_f32;
  5365. }
  5366. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
  5367. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
  5368. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5369. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5370. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
  5371. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
  5372. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
  5373. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
  5374. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
  5375. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
  5376. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
  5377. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
  5378. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
  5379. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
  5380. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
  5381. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
  5382. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
  5383. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
  5384. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
  5385. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
  5386. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
  5387. const int num_blocks = (pelements + 256 - 1) / 256;
  5388. size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
  5389. size_t local_work_size[] = {256, 1, 1};
  5390. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5391. }
  5392. static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5393. GGML_ASSERT(src0);
  5394. GGML_ASSERT(src0->extra);
  5395. GGML_ASSERT(dst);
  5396. GGML_ASSERT(dst->extra);
  5397. GGML_UNUSED(src1);
  5398. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5399. GGML_ASSERT( dst->type == GGML_TYPE_I32);
  5400. GGML_ASSERT(ggml_is_contiguous(src0));
  5401. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5402. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5403. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5404. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5405. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5406. const int ne00 = src0->ne[0];
  5407. const int nrows = ggml_nrows(src0);
  5408. int ne00_padded = 1;
  5409. while (ne00_padded < ne00) {
  5410. ne00_padded *= 2;
  5411. }
  5412. int order = (enum ggml_sort_order) dst->op_params[0];
  5413. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  5414. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5415. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5416. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5417. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5418. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5419. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
  5420. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
  5421. CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
  5422. size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
  5423. size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
  5424. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5425. }
  5426. static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5427. GGML_ASSERT(src0);
  5428. GGML_ASSERT(src0->extra);
  5429. GGML_ASSERT(dst);
  5430. GGML_ASSERT(dst->extra);
  5431. GGML_UNUSED(src1);
  5432. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  5433. GGML_ASSERT(ggml_is_contiguous(src0));
  5434. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5435. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5436. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5437. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5438. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5439. const int ne00 = src0->ne[0];
  5440. const int ne01 = src0->ne[1];
  5441. const int ne02 = src0->ne[2];
  5442. const int ne03 = src0->ne[3];
  5443. const cl_ulong nb01 = src0->nb[1];
  5444. const cl_ulong nb02 = src0->nb[2];
  5445. const cl_ulong nb03 = src0->nb[3];
  5446. const cl_ulong nb1 = dst->nb[1];
  5447. const cl_ulong nb2 = dst->nb[2];
  5448. const cl_ulong nb3 = dst->nb[3];
  5449. cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
  5450. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5451. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5452. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5453. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5454. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5455. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5456. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5457. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5458. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  5459. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  5460. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  5461. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
  5462. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
  5463. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
  5464. size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
  5465. size_t local_work_size[] = {(size_t)64, 1, 1};
  5466. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5467. }
  5468. static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5469. GGML_ASSERT(src0);
  5470. GGML_ASSERT(src0->extra);
  5471. GGML_ASSERT(dst);
  5472. GGML_ASSERT(dst->extra);
  5473. GGML_ASSERT(ggml_is_contiguous_1(src0));
  5474. if (src1) {
  5475. GGML_ASSERT(src1);
  5476. GGML_ASSERT(src1->extra);
  5477. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  5478. }
  5479. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5480. cl_kernel kernel;
  5481. switch (ggml_get_glu_op(dst)) {
  5482. case GGML_GLU_OP_GEGLU:
  5483. if (dst->type == GGML_TYPE_F32) {
  5484. kernel = backend_ctx->kernel_geglu;
  5485. } else {
  5486. kernel = backend_ctx->kernel_geglu_f16;
  5487. }
  5488. break;
  5489. case GGML_GLU_OP_REGLU:
  5490. if (dst->type == GGML_TYPE_F32) {
  5491. kernel = backend_ctx->kernel_reglu;
  5492. } else {
  5493. kernel = backend_ctx->kernel_reglu_f16;
  5494. }
  5495. break;
  5496. case GGML_GLU_OP_SWIGLU:
  5497. if (dst->type == GGML_TYPE_F32) {
  5498. kernel = backend_ctx->kernel_swiglu;
  5499. } else {
  5500. kernel = backend_ctx->kernel_swiglu_f16;
  5501. }
  5502. break;
  5503. case GGML_GLU_OP_GEGLU_ERF:
  5504. if (dst->type == GGML_TYPE_F32) {
  5505. kernel = backend_ctx->kernel_geglu_erf;
  5506. } else {
  5507. kernel = backend_ctx->kernel_geglu_erf_f16;
  5508. }
  5509. break;
  5510. case GGML_GLU_OP_GEGLU_QUICK:
  5511. if (dst->type == GGML_TYPE_F32) {
  5512. kernel = backend_ctx->kernel_geglu_quick;
  5513. } else {
  5514. kernel = backend_ctx->kernel_geglu_quick_f16;
  5515. }
  5516. break;
  5517. default:
  5518. GGML_ABORT("Unsupported glu op");
  5519. }
  5520. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5521. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5522. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  5523. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5524. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5525. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  5526. const int ne0 = dst->ne[0];
  5527. const cl_ulong nb01 = src0->nb[1];
  5528. const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
  5529. const cl_ulong nb1 = dst->nb[1];
  5530. const int swp = ((const int32_t *) dst->op_params)[1];
  5531. const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
  5532. const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
  5533. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5534. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5535. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
  5536. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5537. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5538. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5539. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
  5540. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
  5541. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  5542. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
  5543. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
  5544. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
  5545. const size_t nrows = ggml_nrows(src0);
  5546. size_t nth = 512;
  5547. size_t global_work_size[] = {nrows*nth, 1, 1};
  5548. size_t local_work_size[] = {nth, 1, 1};
  5549. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5550. }
  5551. //------------------------------------------------------------------------------
  5552. // Op offloading
  5553. //------------------------------------------------------------------------------
  5554. typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  5555. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
  5556. ggml_cl_func_t func = nullptr;
  5557. ggml_tensor * src0 = tensor->src[0];
  5558. ggml_tensor * src1 = tensor->src[1];
  5559. const bool any_on_device = tensor->extra
  5560. || (src0 != nullptr && src0->extra)
  5561. || (src1 != nullptr && src1->extra);
  5562. switch (tensor->op) {
  5563. case GGML_OP_GET_ROWS:
  5564. if (!any_on_device) {
  5565. return false;
  5566. }
  5567. func = ggml_cl_get_rows;
  5568. break;
  5569. case GGML_OP_SET_ROWS:
  5570. if (!any_on_device) {
  5571. return false;
  5572. }
  5573. func = ggml_cl_set_rows;
  5574. break;
  5575. case GGML_OP_CPY:
  5576. if (!any_on_device) {
  5577. return false;
  5578. }
  5579. func = ggml_cl_cpy;
  5580. break;
  5581. case GGML_OP_DUP:
  5582. case GGML_OP_CONT:
  5583. if (!any_on_device) {
  5584. return false;
  5585. }
  5586. func = ggml_cl_dup;
  5587. break;
  5588. case GGML_OP_ADD:
  5589. if (!any_on_device) {
  5590. return false;
  5591. }
  5592. func = ggml_cl_add;
  5593. break;
  5594. case GGML_OP_MUL:
  5595. if (!any_on_device) {
  5596. return false;
  5597. }
  5598. func = ggml_cl_mul;
  5599. break;
  5600. case GGML_OP_DIV:
  5601. if (!any_on_device) {
  5602. return false;
  5603. }
  5604. func = ggml_cl_div;
  5605. break;
  5606. case GGML_OP_SUB:
  5607. if (!any_on_device) {
  5608. return false;
  5609. }
  5610. func = ggml_cl_sub;
  5611. break;
  5612. case GGML_OP_UNARY:
  5613. switch (ggml_get_unary_op(tensor)) {
  5614. case GGML_UNARY_OP_GELU:
  5615. if (!any_on_device) {
  5616. return false;
  5617. }
  5618. func = ggml_cl_gelu;
  5619. break;
  5620. case GGML_UNARY_OP_GELU_ERF:
  5621. if (!any_on_device) {
  5622. return false;
  5623. }
  5624. func = ggml_cl_gelu_erf;
  5625. break;
  5626. case GGML_UNARY_OP_GELU_QUICK:
  5627. if (!any_on_device) {
  5628. return false;
  5629. }
  5630. func = ggml_cl_gelu_quick;
  5631. break;
  5632. case GGML_UNARY_OP_SILU:
  5633. if (!any_on_device) {
  5634. return false;
  5635. }
  5636. func = ggml_cl_silu;
  5637. break;
  5638. case GGML_UNARY_OP_RELU:
  5639. if (!any_on_device) {
  5640. return false;
  5641. }
  5642. func = ggml_cl_relu;
  5643. break;
  5644. case GGML_UNARY_OP_SIGMOID:
  5645. if (!any_on_device) {
  5646. return false;
  5647. }
  5648. func = ggml_cl_sigmoid;
  5649. break;
  5650. case GGML_UNARY_OP_TANH:
  5651. if (!any_on_device) {
  5652. return false;
  5653. }
  5654. func = ggml_cl_tanh;
  5655. break;
  5656. default:
  5657. return false;
  5658. } break;
  5659. case GGML_OP_GLU:
  5660. if (!any_on_device) {
  5661. return false;
  5662. }
  5663. func = ggml_cl_glu;
  5664. break;
  5665. case GGML_OP_CLAMP:
  5666. if (!any_on_device) {
  5667. return false;
  5668. }
  5669. func = ggml_cl_clamp;
  5670. break;
  5671. case GGML_OP_NORM:
  5672. if (!any_on_device) {
  5673. return false;
  5674. }
  5675. func = ggml_cl_norm;
  5676. break;
  5677. case GGML_OP_RMS_NORM:
  5678. if (!any_on_device) {
  5679. return false;
  5680. }
  5681. func = ggml_cl_rms_norm;
  5682. break;
  5683. case GGML_OP_GROUP_NORM:
  5684. if (!any_on_device) {
  5685. return false;
  5686. }
  5687. func = ggml_cl_group_norm;
  5688. break;
  5689. case GGML_OP_REPEAT:
  5690. if (!any_on_device) {
  5691. return false;
  5692. }
  5693. func = ggml_cl_repeat;
  5694. break;
  5695. case GGML_OP_PAD:
  5696. if (!any_on_device) {
  5697. return false;
  5698. }
  5699. ggml_cl_pad(backend, tensor->src[0], tensor);
  5700. return true;
  5701. case GGML_OP_UPSCALE:
  5702. if (!any_on_device) {
  5703. return false;
  5704. }
  5705. ggml_cl_upscale(backend, tensor->src[0], tensor);
  5706. return true;
  5707. case GGML_OP_CONCAT:
  5708. if (!any_on_device) {
  5709. return false;
  5710. }
  5711. func = ggml_cl_concat;
  5712. break;
  5713. case GGML_OP_TIMESTEP_EMBEDDING:
  5714. if (!any_on_device) {
  5715. return false;
  5716. }
  5717. ggml_cl_timestep_embedding(backend, tensor->src[0], tensor);
  5718. return true;
  5719. case GGML_OP_MUL_MAT:
  5720. if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  5721. return false;
  5722. }
  5723. func = ggml_cl_mul_mat;
  5724. break;
  5725. case GGML_OP_MUL_MAT_ID:
  5726. if (!any_on_device) {
  5727. return false;
  5728. }
  5729. func = ggml_cl_mul_mat_id;
  5730. break;
  5731. case GGML_OP_SCALE:
  5732. if (!any_on_device) {
  5733. return false;
  5734. }
  5735. func = ggml_cl_scale;
  5736. break;
  5737. case GGML_OP_RESHAPE:
  5738. case GGML_OP_VIEW:
  5739. case GGML_OP_PERMUTE:
  5740. case GGML_OP_TRANSPOSE:
  5741. if (!any_on_device) {
  5742. return false;
  5743. }
  5744. func = ggml_cl_nop;
  5745. break;
  5746. case GGML_OP_DIAG_MASK_INF:
  5747. if (!any_on_device) {
  5748. return false;
  5749. }
  5750. func = ggml_cl_diag_mask_inf;
  5751. break;
  5752. case GGML_OP_SOFT_MAX:
  5753. if (!any_on_device) {
  5754. return false;
  5755. }
  5756. func = ggml_cl_soft_max;
  5757. break;
  5758. case GGML_OP_ROPE:
  5759. if (!any_on_device) {
  5760. return false;
  5761. }
  5762. func = ggml_cl_rope;
  5763. break;
  5764. case GGML_OP_IM2COL:
  5765. if (!any_on_device) {
  5766. return false;
  5767. }
  5768. func = ggml_cl_im2col;
  5769. break;
  5770. case GGML_OP_ARGSORT:
  5771. if (!any_on_device) {
  5772. return false;
  5773. }
  5774. func = ggml_cl_argsort;
  5775. break;
  5776. case GGML_OP_SUM_ROWS:
  5777. if (!any_on_device) {
  5778. return false;
  5779. }
  5780. func = ggml_cl_sum_rows;
  5781. break;
  5782. default:
  5783. return false;
  5784. }
  5785. func(backend, tensor->src[0], tensor->src[1], tensor);
  5786. return true;
  5787. }