utils.hpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549
  1. #pragma once
  2. #include <string>
  3. #include <vector>
  4. #include <set>
  5. #include <mutex>
  6. #include <condition_variable>
  7. #include <unordered_map>
  8. #include "json.hpp"
  9. #include "../llava/clip.h"
  10. using json = nlohmann::json;
  11. extern bool server_verbose;
  12. #ifndef SERVER_VERBOSE
  13. #define SERVER_VERBOSE 1
  14. #endif
  15. #if SERVER_VERBOSE != 1
  16. #define LOG_VERBOSE(MSG, ...)
  17. #else
  18. #define LOG_VERBOSE(MSG, ...) \
  19. do \
  20. { \
  21. if (server_verbose) \
  22. { \
  23. server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
  24. } \
  25. } while (0)
  26. #endif
  27. #define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
  28. #define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
  29. #define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
  30. //
  31. // parallel
  32. //
  33. enum server_state {
  34. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  35. SERVER_STATE_READY, // Server is ready and model is loaded
  36. SERVER_STATE_ERROR // An error occurred, load_model failed
  37. };
  38. enum task_type {
  39. TASK_TYPE_COMPLETION,
  40. TASK_TYPE_CANCEL,
  41. TASK_TYPE_NEXT_RESPONSE
  42. };
  43. struct task_server {
  44. int id = -1; // to be filled by llama_server_queue
  45. int target_id;
  46. task_type type;
  47. json data;
  48. bool infill_mode = false;
  49. bool embedding_mode = false;
  50. int multitask_id = -1;
  51. };
  52. struct task_result {
  53. int id;
  54. int multitask_id = -1;
  55. bool stop;
  56. bool error;
  57. json result_json;
  58. };
  59. struct task_multi {
  60. int id;
  61. std::set<int> subtasks_remaining{};
  62. std::vector<task_result> results{};
  63. };
  64. // TODO: can become bool if we can't find use of more states
  65. enum slot_state
  66. {
  67. IDLE,
  68. PROCESSING,
  69. };
  70. enum slot_command
  71. {
  72. NONE,
  73. LOAD_PROMPT,
  74. RELEASE,
  75. };
  76. struct slot_params
  77. {
  78. bool stream = true;
  79. bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
  80. uint32_t seed = -1; // RNG seed
  81. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  82. int32_t n_predict = -1; // new tokens to predict
  83. std::vector<std::string> antiprompt;
  84. json input_prefix;
  85. json input_suffix;
  86. };
  87. struct slot_image
  88. {
  89. int32_t id;
  90. bool request_encode_image = false;
  91. float * image_embedding = nullptr;
  92. int32_t image_tokens = 0;
  93. clip_image_u8 * img_data;
  94. std::string prefix_prompt; // before of this image
  95. };
  96. // completion token output with probabilities
  97. struct completion_token_output
  98. {
  99. struct token_prob
  100. {
  101. llama_token tok;
  102. float prob;
  103. };
  104. std::vector<token_prob> probs;
  105. llama_token tok;
  106. std::string text_to_send;
  107. };
  108. static inline void server_log(const char *level, const char *function, int line,
  109. const char *message, const nlohmann::ordered_json &extra)
  110. {
  111. nlohmann::ordered_json log
  112. {
  113. {"timestamp", time(nullptr)},
  114. {"level", level},
  115. {"function", function},
  116. {"line", line},
  117. {"message", message},
  118. };
  119. if (!extra.empty())
  120. {
  121. log.merge_patch(extra);
  122. }
  123. const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
  124. printf("%.*s\n", (int)str.size(), str.data());
  125. fflush(stdout);
  126. }
  127. //
  128. // server utils
  129. //
  130. template <typename T>
  131. static T json_value(const json &body, const std::string &key, const T &default_value)
  132. {
  133. // Fallback null to default value
  134. return body.contains(key) && !body.at(key).is_null()
  135. ? body.value(key, default_value)
  136. : default_value;
  137. }
  138. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  139. inline bool verify_custom_template(const std::string & tmpl) {
  140. llama_chat_message chat[] = {{"user", "test"}};
  141. std::vector<char> buf(1);
  142. int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, buf.data(), buf.size());
  143. return res >= 0;
  144. }
  145. // Format given chat. If tmpl is empty, we take the template from model metadata
  146. inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages)
  147. {
  148. size_t alloc_size = 0;
  149. // vector holding all allocated string to be passed to llama_chat_apply_template
  150. std::vector<std::string> str(messages.size() * 2);
  151. std::vector<llama_chat_message> chat(messages.size());
  152. for (size_t i = 0; i < messages.size(); ++i) {
  153. auto &curr_msg = messages[i];
  154. str[i*2 + 0] = json_value(curr_msg, "role", std::string(""));
  155. str[i*2 + 1] = json_value(curr_msg, "content", std::string(""));
  156. alloc_size += str[i*2 + 1].length();
  157. chat[i].role = str[i*2 + 0].c_str();
  158. chat[i].content = str[i*2 + 1].c_str();
  159. }
  160. const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
  161. std::vector<char> buf(alloc_size * 2);
  162. // run the first time to get the total output length
  163. int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
  164. // if it turns out that our buffer is too small, we resize it
  165. if ((size_t) res > buf.size()) {
  166. buf.resize(res);
  167. res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
  168. }
  169. std::string formatted_chat(buf.data(), res);
  170. LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
  171. return formatted_chat;
  172. }
  173. //
  174. // work queue utils
  175. //
  176. struct llama_server_queue {
  177. int id = 0;
  178. std::mutex mutex_tasks;
  179. bool running;
  180. // queues
  181. std::vector<task_server> queue_tasks;
  182. std::vector<task_server> queue_tasks_deferred;
  183. std::vector<task_multi> queue_multitasks;
  184. std::condition_variable condition_tasks;
  185. // callback functions
  186. std::function<void(task_server&)> callback_new_task;
  187. std::function<void(task_multi&)> callback_finish_multitask;
  188. std::function<void(void)> callback_all_task_finished;
  189. // Add a new task to the end of the queue
  190. int post(task_server task) {
  191. std::unique_lock<std::mutex> lock(mutex_tasks);
  192. if (task.id == -1) {
  193. task.id = id++;
  194. }
  195. queue_tasks.push_back(std::move(task));
  196. condition_tasks.notify_one();
  197. return task.id;
  198. }
  199. // Add a new task, but defer until one slot is available
  200. void defer(task_server task) {
  201. std::unique_lock<std::mutex> lock(mutex_tasks);
  202. queue_tasks_deferred.push_back(std::move(task));
  203. }
  204. // Get the next id for creating anew task
  205. int get_new_id() {
  206. std::unique_lock<std::mutex> lock(mutex_tasks);
  207. return id++;
  208. }
  209. // Register function to process a new task
  210. void on_new_task(std::function<void(task_server&)> callback) {
  211. callback_new_task = callback;
  212. }
  213. // Register function to process a multitask
  214. void on_finish_multitask(std::function<void(task_multi&)> callback) {
  215. callback_finish_multitask = callback;
  216. }
  217. // Register the function to be called when the batch of tasks is finished
  218. void on_all_tasks_finished(std::function<void(void)> callback) {
  219. callback_all_task_finished = callback;
  220. }
  221. // Call when the state of one slot is changed
  222. void notify_slot_changed() {
  223. // move deferred tasks back to main loop
  224. std::unique_lock<std::mutex> lock(mutex_tasks);
  225. for (auto & task : queue_tasks_deferred) {
  226. queue_tasks.push_back(std::move(task));
  227. }
  228. queue_tasks_deferred.clear();
  229. }
  230. // end the start_loop routine
  231. void terminate() {
  232. {
  233. std::unique_lock<std::mutex> lock(mutex_tasks);
  234. running = false;
  235. }
  236. condition_tasks.notify_all();
  237. }
  238. // Start the main loop.
  239. void start_loop() {
  240. running = true;
  241. while (true) {
  242. // new task arrived
  243. LOG_VERBOSE("have new task", {});
  244. {
  245. while (true)
  246. {
  247. std::unique_lock<std::mutex> lock(mutex_tasks);
  248. if (queue_tasks.empty()) {
  249. lock.unlock();
  250. break;
  251. }
  252. task_server task = queue_tasks.front();
  253. queue_tasks.erase(queue_tasks.begin());
  254. lock.unlock();
  255. LOG_VERBOSE("callback_new_task", {});
  256. callback_new_task(task);
  257. }
  258. LOG_VERBOSE("callback_all_task_finished", {});
  259. // process and update all the multitasks
  260. auto queue_iterator = queue_multitasks.begin();
  261. while (queue_iterator != queue_multitasks.end())
  262. {
  263. if (queue_iterator->subtasks_remaining.empty())
  264. {
  265. // all subtasks done == multitask is done
  266. task_multi current_multitask = *queue_iterator;
  267. callback_finish_multitask(current_multitask);
  268. // remove this multitask
  269. queue_iterator = queue_multitasks.erase(queue_iterator);
  270. }
  271. else
  272. {
  273. ++queue_iterator;
  274. }
  275. }
  276. // all tasks in the current loop is finished
  277. callback_all_task_finished();
  278. }
  279. LOG_VERBOSE("wait for new task", {});
  280. // wait for new task
  281. {
  282. std::unique_lock<std::mutex> lock(mutex_tasks);
  283. if (queue_tasks.empty()) {
  284. if (!running) {
  285. LOG_VERBOSE("ending start_loop", {});
  286. return;
  287. }
  288. condition_tasks.wait(lock, [&]{
  289. return (!queue_tasks.empty() || !running);
  290. });
  291. }
  292. }
  293. }
  294. }
  295. //
  296. // functions to manage multitasks
  297. //
  298. // add a multitask by specifying the id of all subtask (subtask is a task_server)
  299. void add_multitask(int multitask_id, std::vector<int>& sub_ids)
  300. {
  301. std::lock_guard<std::mutex> lock(mutex_tasks);
  302. task_multi multi;
  303. multi.id = multitask_id;
  304. std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
  305. queue_multitasks.push_back(multi);
  306. }
  307. // updatethe remaining subtasks, while appending results to multitask
  308. void update_multitask(int multitask_id, int subtask_id, task_result& result)
  309. {
  310. std::lock_guard<std::mutex> lock(mutex_tasks);
  311. for (auto& multitask : queue_multitasks)
  312. {
  313. if (multitask.id == multitask_id)
  314. {
  315. multitask.subtasks_remaining.erase(subtask_id);
  316. multitask.results.push_back(result);
  317. }
  318. }
  319. }
  320. };
  321. struct llama_server_response {
  322. typedef std::function<void(int, int, task_result&)> callback_multitask_t;
  323. callback_multitask_t callback_update_multitask;
  324. // for keeping track of all tasks waiting for the result
  325. std::set<int> waiting_task_ids;
  326. // the main result queue
  327. std::vector<task_result> queue_results;
  328. std::mutex mutex_results;
  329. std::condition_variable condition_results;
  330. void add_waiting_task_id(int task_id) {
  331. std::unique_lock<std::mutex> lock(mutex_results);
  332. waiting_task_ids.insert(task_id);
  333. }
  334. void remove_waiting_task_id(int task_id) {
  335. std::unique_lock<std::mutex> lock(mutex_results);
  336. waiting_task_ids.erase(task_id);
  337. }
  338. // This function blocks the thread until there is a response for this task_id
  339. task_result recv(int task_id) {
  340. while (true)
  341. {
  342. std::unique_lock<std::mutex> lock(mutex_results);
  343. condition_results.wait(lock, [&]{
  344. return !queue_results.empty();
  345. });
  346. LOG_VERBOSE("condition_results unblock", {});
  347. for (int i = 0; i < (int) queue_results.size(); i++)
  348. {
  349. if (queue_results[i].id == task_id)
  350. {
  351. assert(queue_results[i].multitask_id == -1);
  352. task_result res = queue_results[i];
  353. queue_results.erase(queue_results.begin() + i);
  354. return res;
  355. }
  356. }
  357. }
  358. // should never reach here
  359. }
  360. // Register the function to update multitask
  361. void on_multitask_update(callback_multitask_t callback) {
  362. callback_update_multitask = callback;
  363. }
  364. // Send a new result to a waiting task_id
  365. void send(task_result result) {
  366. std::unique_lock<std::mutex> lock(mutex_results);
  367. LOG_VERBOSE("send new result", {});
  368. for (auto& task_id : waiting_task_ids) {
  369. // LOG_TEE("waiting task id %i \n", task_id);
  370. // for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
  371. if (result.multitask_id == task_id)
  372. {
  373. LOG_VERBOSE("callback_update_multitask", {});
  374. callback_update_multitask(task_id, result.id, result);
  375. continue;
  376. }
  377. if (result.id == task_id)
  378. {
  379. LOG_VERBOSE("queue_results.push_back", {});
  380. queue_results.push_back(result);
  381. condition_results.notify_one();
  382. return;
  383. }
  384. }
  385. }
  386. };
  387. //
  388. // base64 utils (TODO: move to common in the future)
  389. //
  390. static const std::string base64_chars =
  391. "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  392. "abcdefghijklmnopqrstuvwxyz"
  393. "0123456789+/";
  394. static inline bool is_base64(uint8_t c)
  395. {
  396. return (isalnum(c) || (c == '+') || (c == '/'));
  397. }
  398. static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string)
  399. {
  400. int i = 0;
  401. int j = 0;
  402. int in_ = 0;
  403. int in_len = encoded_string.size();
  404. uint8_t char_array_4[4];
  405. uint8_t char_array_3[3];
  406. std::vector<uint8_t> ret;
  407. while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
  408. {
  409. char_array_4[i++] = encoded_string[in_]; in_++;
  410. if (i == 4)
  411. {
  412. for (i = 0; i <4; i++)
  413. {
  414. char_array_4[i] = base64_chars.find(char_array_4[i]);
  415. }
  416. char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
  417. char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
  418. char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
  419. for (i = 0; (i < 3); i++)
  420. {
  421. ret.push_back(char_array_3[i]);
  422. }
  423. i = 0;
  424. }
  425. }
  426. if (i)
  427. {
  428. for (j = i; j <4; j++)
  429. {
  430. char_array_4[j] = 0;
  431. }
  432. for (j = 0; j <4; j++)
  433. {
  434. char_array_4[j] = base64_chars.find(char_array_4[j]);
  435. }
  436. char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
  437. char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
  438. char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
  439. for (j = 0; (j < i - 1); j++)
  440. {
  441. ret.push_back(char_array_3[j]);
  442. }
  443. }
  444. return ret;
  445. }
  446. //
  447. // random string / id
  448. //
  449. static std::string random_string()
  450. {
  451. static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
  452. std::random_device rd;
  453. std::mt19937 generator(rd());
  454. std::string result(32, ' ');
  455. for (int i = 0; i < 32; ++i) {
  456. result[i] = str[generator() % str.size()];
  457. }
  458. return result;
  459. }
  460. static std::string gen_chatcmplid()
  461. {
  462. std::stringstream chatcmplid;
  463. chatcmplid << "chatcmpl-" << random_string();
  464. return chatcmplid.str();
  465. }