convert_hf_to_gguf.py 230 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. # some models need extra generated tensors (like rope_freqs)
  228. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  229. return ()
  230. def prepare_tensors(self):
  231. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  232. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  233. # we don't need these
  234. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  235. continue
  236. old_dtype = data_torch.dtype
  237. # convert any unsupported data types to float32
  238. if data_torch.dtype not in (torch.float16, torch.float32):
  239. data_torch = data_torch.to(torch.float32)
  240. # use the first number-like part of the tensor name as the block id
  241. bid = None
  242. for part in name.split("."):
  243. if part.isdecimal():
  244. bid = int(part)
  245. break
  246. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  247. # TODO: why do we squeeze here?
  248. # data = data_torch.squeeze().numpy()
  249. data = data_torch.numpy()
  250. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  251. if len(data.shape) == 0:
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  269. gguf.MODEL_TENSOR.TIME_MIX_W1,
  270. gguf.MODEL_TENSOR.TIME_MIX_W2,
  271. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  273. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  274. gguf.MODEL_TENSOR.POSNET_NORM1,
  275. gguf.MODEL_TENSOR.POSNET_NORM2,
  276. )
  277. )
  278. or not new_name.endswith(".weight")
  279. ):
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. if data_qtype is False and any(
  282. self.match_model_tensor_name(new_name, key, bid)
  283. for key in (
  284. gguf.MODEL_TENSOR.TOKEN_EMBD,
  285. gguf.MODEL_TENSOR.OUTPUT,
  286. )
  287. ):
  288. if self.ftype in (
  289. gguf.LlamaFileType.MOSTLY_TQ1_0,
  290. gguf.LlamaFileType.MOSTLY_TQ2_0,
  291. ):
  292. # TODO: use Q4_K and Q6_K
  293. data_qtype = gguf.GGMLQuantizationType.F16
  294. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  295. if isinstance(data_qtype, bool):
  296. if self.ftype == gguf.LlamaFileType.ALL_F32:
  297. data_qtype = gguf.GGMLQuantizationType.F32
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  299. data_qtype = gguf.GGMLQuantizationType.F16
  300. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  301. data_qtype = gguf.GGMLQuantizationType.BF16
  302. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  303. data_qtype = gguf.GGMLQuantizationType.Q8_0
  304. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  305. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  306. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  307. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  308. else:
  309. raise ValueError(f"Unknown file type: {self.ftype.name}")
  310. try:
  311. data = gguf.quants.quantize(data, data_qtype)
  312. except gguf.QuantError as e:
  313. logger.warning("%s, %s", e, "falling back to F16")
  314. data_qtype = gguf.GGMLQuantizationType.F16
  315. data = gguf.quants.quantize(data, data_qtype)
  316. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  317. # reverse shape to make it similar to the internal ggml dimension order
  318. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  319. # n_dims is implicit in the shape
  320. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  321. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  322. def set_type(self):
  323. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  324. def prepare_metadata(self, vocab_only: bool):
  325. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  326. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  327. # Fallback to model directory name if metadata name is still missing
  328. if self.metadata.name is None:
  329. self.metadata.name = self.dir_model.name
  330. # Generate parameter weight class (useful for leader boards) if not yet determined
  331. if self.metadata.size_label is None and total_params > 0:
  332. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  333. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  334. output_type: str = self.ftype.name.partition("_")[2]
  335. # Filename Output
  336. if self.fname_out.is_dir():
  337. # Generate default filename based on model specification and available metadata
  338. if not vocab_only:
  339. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  340. else:
  341. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  342. # Use the default filename
  343. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  344. else:
  345. # Output path is a custom defined templated filename
  346. # Note: `not is_dir()` is used because `.is_file()` will not detect
  347. # file template strings as it doesn't actually exist as a file
  348. # Process templated file name with the output ftype, useful with the "auto" ftype
  349. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  350. self.set_type()
  351. logger.info("Set meta model")
  352. self.metadata.set_gguf_meta_model(self.gguf_writer)
  353. logger.info("Set model parameters")
  354. self.set_gguf_parameters()
  355. logger.info("Set model tokenizer")
  356. self.set_vocab()
  357. logger.info("Set model quantization version")
  358. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  359. def write(self):
  360. self.prepare_tensors()
  361. self.prepare_metadata(vocab_only=False)
  362. self.gguf_writer.write_header_to_file(path=self.fname_out)
  363. self.gguf_writer.write_kv_data_to_file()
  364. self.gguf_writer.write_tensors_to_file(progress=True)
  365. self.gguf_writer.close()
  366. def write_vocab(self):
  367. if len(self.gguf_writer.tensors) != 1:
  368. raise ValueError('Splitting the vocabulary is not supported')
  369. self.prepare_metadata(vocab_only=True)
  370. self.gguf_writer.write_header_to_file(path=self.fname_out)
  371. self.gguf_writer.write_kv_data_to_file()
  372. self.gguf_writer.close()
  373. @staticmethod
  374. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  375. part_names: list[str] = []
  376. for filename in os.listdir(dir_model):
  377. if filename.startswith(prefix) and filename.endswith(suffix):
  378. part_names.append(filename)
  379. part_names.sort()
  380. return part_names
  381. @staticmethod
  382. def load_hparams(dir_model: Path):
  383. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  384. return json.load(f)
  385. @classmethod
  386. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  387. assert names
  388. def func(modelcls: AnyModel) -> AnyModel:
  389. for name in names:
  390. cls._model_classes[name] = modelcls
  391. return modelcls
  392. return func
  393. @classmethod
  394. def print_registered_models(cls):
  395. for name in sorted(cls._model_classes.keys()):
  396. logger.error(f"- {name}")
  397. @classmethod
  398. def from_model_architecture(cls, arch: str) -> type[Model]:
  399. try:
  400. return cls._model_classes[arch]
  401. except KeyError:
  402. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  403. def does_token_look_special(self, token: str | bytes) -> bool:
  404. if isinstance(token, (bytes, bytearray)):
  405. token_text = token.decode(encoding="utf-8")
  406. elif isinstance(token, memoryview):
  407. token_text = token.tobytes().decode(encoding="utf-8")
  408. else:
  409. token_text = token
  410. # Some models mark some added tokens which ought to be control tokens as not special.
  411. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  412. seems_special = token_text in (
  413. "<pad>", # deepseek-coder
  414. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  415. )
  416. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  417. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  418. # TODO: should these be marked as UNUSED instead? (maybe not)
  419. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  420. return seems_special
  421. # used for GPT-2 BPE and WordPiece vocabs
  422. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  423. tokens: list[str] = []
  424. toktypes: list[int] = []
  425. from transformers import AutoTokenizer
  426. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  427. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  428. assert max(tokenizer.vocab.values()) < vocab_size
  429. tokpre = self.get_vocab_base_pre(tokenizer)
  430. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  431. added_vocab = tokenizer.get_added_vocab()
  432. for i in range(vocab_size):
  433. if i not in reverse_vocab:
  434. tokens.append(f"[PAD{i}]")
  435. toktypes.append(gguf.TokenType.UNUSED)
  436. else:
  437. token: str = reverse_vocab[i]
  438. if token in added_vocab:
  439. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  440. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  441. if not tokenizer.added_tokens_decoder[i].normalized:
  442. previous_token = token
  443. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  444. if previous_token != token:
  445. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  446. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  447. toktypes.append(gguf.TokenType.CONTROL)
  448. else:
  449. # NOTE: this was added for Gemma.
  450. # Encoding and decoding the tokens above isn't sufficient for this case.
  451. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  452. toktypes.append(gguf.TokenType.USER_DEFINED)
  453. else:
  454. toktypes.append(gguf.TokenType.NORMAL)
  455. tokens.append(token)
  456. return tokens, toktypes, tokpre
  457. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  458. # do not modify it manually!
  459. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  460. # Marker: Start get_vocab_base_pre
  461. def get_vocab_base_pre(self, tokenizer) -> str:
  462. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  463. # is specific for the BPE pre-tokenizer used by the model
  464. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  465. # use in llama.cpp to implement the same pre-tokenizer
  466. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  467. chktok = tokenizer.encode(chktxt)
  468. chkhsh = sha256(str(chktok).encode()).hexdigest()
  469. logger.debug(f"chktok: {chktok}")
  470. logger.debug(f"chkhsh: {chkhsh}")
  471. res = None
  472. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  473. # or pull the latest version of the model from Huggingface
  474. # don't edit the hashes manually!
  475. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  476. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  477. res = "llama-bpe"
  478. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  479. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  480. res = "deepseek-llm"
  481. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  482. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  483. res = "deepseek-coder"
  484. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  485. # ref: https://huggingface.co/tiiuae/falcon-7b
  486. res = "falcon"
  487. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  488. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  489. res = "falcon3"
  490. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  491. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  492. res = "bert-bge"
  493. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  494. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  495. res = "bert-bge-large"
  496. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  497. # ref: https://huggingface.co/mosaicml/mpt-7b
  498. res = "mpt"
  499. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  500. # ref: https://huggingface.co/bigcode/starcoder2-3b
  501. res = "starcoder"
  502. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  503. # ref: https://huggingface.co/openai-community/gpt2
  504. res = "gpt-2"
  505. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  506. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  507. res = "stablelm2"
  508. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  509. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  510. res = "refact"
  511. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  512. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  513. res = "command-r"
  514. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  515. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  516. res = "qwen2"
  517. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  518. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  519. res = "olmo"
  520. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  521. # ref: https://huggingface.co/databricks/dbrx-base
  522. res = "dbrx"
  523. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  524. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  525. res = "jina-v1-en"
  526. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  527. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  528. res = "jina-v2-en"
  529. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  530. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  531. res = "jina-v2-es"
  532. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  533. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  534. res = "jina-v2-de"
  535. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  536. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  537. res = "smaug-bpe"
  538. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  539. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  540. res = "poro-chat"
  541. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  542. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  543. res = "jina-v2-code"
  544. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  545. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  546. res = "chatglm-bpe"
  547. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  548. # ref: https://huggingface.co/LumiOpen/Viking-7B
  549. res = "viking"
  550. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  551. # ref: https://huggingface.co/core42/jais-13b
  552. res = "jais"
  553. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  554. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  555. res = "codeshell"
  556. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  557. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  558. res = "tekken"
  559. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  560. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  561. res = "smollm"
  562. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  563. # ref: https://huggingface.co/bigscience/bloom
  564. res = "bloom"
  565. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  566. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  567. res = "gpt3-finnish"
  568. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  569. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  570. res = "exaone"
  571. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  572. # ref: https://huggingface.co/microsoft/phi-2
  573. res = "phi-2"
  574. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  575. # ref: https://huggingface.co/facebook/chameleon-7b
  576. res = "chameleon"
  577. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  578. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  579. res = "minerva-7b"
  580. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  581. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  582. res = "roberta-bpe"
  583. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  584. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  585. res = "gigachat"
  586. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  587. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  588. res = "megrez"
  589. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  590. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  591. res = "deepseek-v3"
  592. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  593. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  594. res = "deepseek-r1-qwen"
  595. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  596. # ref: https://huggingface.co/Xenova/gpt-4o
  597. res = "gpt-4o"
  598. if res is None:
  599. logger.warning("\n")
  600. logger.warning("**************************************************************************************")
  601. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  602. logger.warning("** There are 2 possible reasons for this:")
  603. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  604. logger.warning("** - the pre-tokenization config has changed upstream")
  605. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  606. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  607. logger.warning("**")
  608. logger.warning(f"** chkhsh: {chkhsh}")
  609. logger.warning("**************************************************************************************")
  610. logger.warning("\n")
  611. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  612. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  613. logger.debug(f"chkhsh: {chkhsh}")
  614. return res
  615. # Marker: End get_vocab_base_pre
  616. def _set_vocab_none(self) -> None:
  617. self.gguf_writer.add_tokenizer_model("none")
  618. def _set_vocab_gpt2(self) -> None:
  619. tokens, toktypes, tokpre = self.get_vocab_base()
  620. self.gguf_writer.add_tokenizer_model("gpt2")
  621. self.gguf_writer.add_tokenizer_pre(tokpre)
  622. self.gguf_writer.add_token_list(tokens)
  623. self.gguf_writer.add_token_types(toktypes)
  624. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  625. special_vocab.add_to_gguf(self.gguf_writer)
  626. def _set_vocab_qwen(self):
  627. dir_model = self.dir_model
  628. hparams = self.hparams
  629. tokens: list[str] = []
  630. toktypes: list[int] = []
  631. from transformers import AutoTokenizer
  632. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  633. vocab_size = hparams["vocab_size"]
  634. assert max(tokenizer.get_vocab().values()) < vocab_size
  635. tokpre = self.get_vocab_base_pre(tokenizer)
  636. merges = []
  637. vocab = {}
  638. mergeable_ranks = tokenizer.mergeable_ranks
  639. for token, rank in mergeable_ranks.items():
  640. vocab[QwenModel.token_bytes_to_string(token)] = rank
  641. if len(token) == 1:
  642. continue
  643. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  644. assert len(merged) == 2
  645. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  646. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  647. added_vocab = tokenizer.special_tokens
  648. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  649. for i in range(vocab_size):
  650. if i not in reverse_vocab:
  651. tokens.append(f"[PAD{i}]")
  652. toktypes.append(gguf.TokenType.UNUSED)
  653. elif reverse_vocab[i] in added_vocab:
  654. tokens.append(reverse_vocab[i])
  655. toktypes.append(gguf.TokenType.CONTROL)
  656. else:
  657. tokens.append(reverse_vocab[i])
  658. toktypes.append(gguf.TokenType.NORMAL)
  659. self.gguf_writer.add_tokenizer_model("gpt2")
  660. self.gguf_writer.add_tokenizer_pre(tokpre)
  661. self.gguf_writer.add_token_list(tokens)
  662. self.gguf_writer.add_token_types(toktypes)
  663. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  664. special_vocab.merges = merges
  665. # only add special tokens when they were not already loaded from config.json
  666. if len(special_vocab.special_token_ids) == 0:
  667. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  668. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  669. # this one is usually not in config.json anyway
  670. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  671. special_vocab.add_to_gguf(self.gguf_writer)
  672. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  673. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  674. self.gguf_writer.add_tokenizer_model("llama")
  675. self.gguf_writer.add_tokenizer_pre("default")
  676. self.gguf_writer.add_token_list(tokens)
  677. self.gguf_writer.add_token_scores(scores)
  678. self.gguf_writer.add_token_types(toktypes)
  679. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  680. special_vocab.add_to_gguf(self.gguf_writer)
  681. def _create_vocab_sentencepiece(self):
  682. from sentencepiece import SentencePieceProcessor
  683. tokenizer_path = self.dir_model / 'tokenizer.model'
  684. if not tokenizer_path.is_file():
  685. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  686. tokenizer = SentencePieceProcessor()
  687. tokenizer.LoadFromFile(str(tokenizer_path))
  688. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  689. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  690. scores: list[float] = [-10000.0] * vocab_size
  691. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  692. for token_id in range(tokenizer.vocab_size()):
  693. piece = tokenizer.IdToPiece(token_id)
  694. text = piece.encode("utf-8")
  695. score = tokenizer.GetScore(token_id)
  696. toktype = SentencePieceTokenTypes.NORMAL
  697. if tokenizer.IsUnknown(token_id):
  698. toktype = SentencePieceTokenTypes.UNKNOWN
  699. elif tokenizer.IsControl(token_id):
  700. toktype = SentencePieceTokenTypes.CONTROL
  701. elif tokenizer.IsUnused(token_id):
  702. toktype = SentencePieceTokenTypes.UNUSED
  703. elif tokenizer.IsByte(token_id):
  704. toktype = SentencePieceTokenTypes.BYTE
  705. tokens[token_id] = text
  706. scores[token_id] = score
  707. toktypes[token_id] = toktype
  708. added_tokens_file = self.dir_model / 'added_tokens.json'
  709. if added_tokens_file.is_file():
  710. with open(added_tokens_file, "r", encoding="utf-8") as f:
  711. added_tokens_json = json.load(f)
  712. for key in added_tokens_json:
  713. token_id = added_tokens_json[key]
  714. if token_id >= vocab_size:
  715. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  716. continue
  717. tokens[token_id] = key.encode("utf-8")
  718. scores[token_id] = -1000.0
  719. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  720. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  721. if tokenizer_config_file.is_file():
  722. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  723. tokenizer_config_json = json.load(f)
  724. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  725. for token_id, token_data in added_tokens_decoder.items():
  726. token_id = int(token_id)
  727. token: str = token_data["content"]
  728. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  729. if tokens[token_id] != token.encode("utf-8"):
  730. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  731. if token_data.get("special") or self.does_token_look_special(token):
  732. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  733. else:
  734. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  735. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  736. scores[token_id] = -1000.0
  737. tokens[token_id] = token.encode("utf-8")
  738. if vocab_size > len(tokens):
  739. pad_count = vocab_size - len(tokens)
  740. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  741. for i in range(1, pad_count + 1):
  742. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  743. scores.append(-1000.0)
  744. toktypes.append(SentencePieceTokenTypes.UNUSED)
  745. return tokens, scores, toktypes
  746. def _set_vocab_llama_hf(self):
  747. vocab = gguf.LlamaHfVocab(self.dir_model)
  748. tokens = []
  749. scores = []
  750. toktypes = []
  751. for text, score, toktype in vocab.all_tokens():
  752. tokens.append(text)
  753. scores.append(score)
  754. toktypes.append(toktype)
  755. assert len(tokens) == vocab.vocab_size
  756. self.gguf_writer.add_tokenizer_model("llama")
  757. self.gguf_writer.add_tokenizer_pre("default")
  758. self.gguf_writer.add_token_list(tokens)
  759. self.gguf_writer.add_token_scores(scores)
  760. self.gguf_writer.add_token_types(toktypes)
  761. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  762. special_vocab.add_to_gguf(self.gguf_writer)
  763. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  764. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  765. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  766. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  767. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  768. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  769. assert field # tokenizer model
  770. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  771. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  772. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  773. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  774. assert field # token list
  775. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  776. if model_name == "llama-spm":
  777. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  778. assert field # token scores
  779. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  780. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  781. assert field # token types
  782. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  783. if model_name != "llama-spm":
  784. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  785. assert field # token merges
  786. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  787. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  788. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  789. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  790. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  791. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  792. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  793. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  794. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  795. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  796. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  797. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  798. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  799. @Model.register("GPTNeoXForCausalLM")
  800. class GPTNeoXModel(Model):
  801. model_arch = gguf.MODEL_ARCH.GPTNEOX
  802. def set_gguf_parameters(self):
  803. block_count = self.hparams["num_hidden_layers"]
  804. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  805. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  806. self.gguf_writer.add_block_count(block_count)
  807. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  808. self.gguf_writer.add_rope_dimension_count(
  809. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  810. )
  811. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  812. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  813. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  814. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  815. del bid # unused
  816. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  817. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  818. tensors: list[tuple[str, Tensor]] = []
  819. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  820. # Map bloom-style qkv_linear to gpt-style qkv_linear
  821. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  822. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  823. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  824. data_torch = torch.cat(
  825. (
  826. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  827. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  828. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  829. ),
  830. dim=0,
  831. )
  832. logger.info("re-format attention.linear_qkv.weight")
  833. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  834. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  835. data_torch = torch.cat(
  836. (
  837. qkv_bias[:, 0, :].reshape((n_embed,)),
  838. qkv_bias[:, 1, :].reshape((n_embed,)),
  839. qkv_bias[:, 2, :].reshape((n_embed,)),
  840. ),
  841. dim=0,
  842. )
  843. logger.info("re-format attention.linear_qkv.bias")
  844. tensors.append((self.map_tensor_name(name), data_torch))
  845. return tensors
  846. @Model.register("BloomForCausalLM", "BloomModel")
  847. class BloomModel(Model):
  848. model_arch = gguf.MODEL_ARCH.BLOOM
  849. def set_gguf_parameters(self):
  850. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  851. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  852. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  853. self.gguf_writer.add_embedding_length(n_embed)
  854. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  855. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  856. self.gguf_writer.add_head_count(n_head)
  857. self.gguf_writer.add_head_count_kv(n_head)
  858. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  859. self.gguf_writer.add_file_type(self.ftype)
  860. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  861. del bid # unused
  862. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  863. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  864. name = re.sub(r'transformer\.', '', name)
  865. tensors: list[tuple[str, Tensor]] = []
  866. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  867. # Map bloom-style qkv_linear to gpt-style qkv_linear
  868. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  869. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  870. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  871. data_torch = torch.cat(
  872. (
  873. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  874. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  875. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  876. ),
  877. dim=0,
  878. )
  879. logger.info("re-format attention.linear_qkv.weight")
  880. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  881. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  882. data_torch = torch.cat(
  883. (
  884. qkv_bias[:, 0, :].reshape((n_embed,)),
  885. qkv_bias[:, 1, :].reshape((n_embed,)),
  886. qkv_bias[:, 2, :].reshape((n_embed,)),
  887. ),
  888. dim=0,
  889. )
  890. logger.info("re-format attention.linear_qkv.bias")
  891. tensors.append((self.map_tensor_name(name), data_torch))
  892. if name == "word_embeddings.weight":
  893. assert self.tensor_names is not None
  894. # TODO: tie them at runtime, don't duplicate in the model file
  895. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  896. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  897. return tensors
  898. @Model.register("MPTForCausalLM")
  899. class MPTModel(Model):
  900. model_arch = gguf.MODEL_ARCH.MPT
  901. def set_vocab(self):
  902. try:
  903. self._set_vocab_gpt2()
  904. except Exception:
  905. # Fallback for SEA-LION model
  906. self._set_vocab_sentencepiece()
  907. self.gguf_writer.add_add_bos_token(False)
  908. self.gguf_writer.add_pad_token_id(3)
  909. self.gguf_writer.add_eos_token_id(1)
  910. self.gguf_writer.add_unk_token_id(0)
  911. def set_gguf_parameters(self):
  912. block_count = self.hparams["n_layers"]
  913. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  914. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  915. self.gguf_writer.add_block_count(block_count)
  916. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  917. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  918. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  919. self.gguf_writer.add_head_count_kv(kv_n_heads)
  920. self.gguf_writer.add_layer_norm_eps(1e-5)
  921. if self.hparams["attn_config"]["clip_qkv"] is not None:
  922. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  923. if self.hparams["attn_config"]["alibi"]:
  924. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  925. else:
  926. self.gguf_writer.add_max_alibi_bias(0.0)
  927. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  928. del bid # unused
  929. if "scales" in name:
  930. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  931. new_name = new_name.replace("scales", "act.scales")
  932. else:
  933. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  934. return [(new_name, data_torch)]
  935. @Model.register("OrionForCausalLM")
  936. class OrionModel(Model):
  937. model_arch = gguf.MODEL_ARCH.ORION
  938. def set_vocab(self):
  939. self._set_vocab_sentencepiece()
  940. def set_gguf_parameters(self):
  941. block_count = self.hparams["num_hidden_layers"]
  942. head_count = self.hparams["num_attention_heads"]
  943. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  944. ctx_length = 0
  945. if "max_sequence_length" in self.hparams:
  946. ctx_length = self.hparams["max_sequence_length"]
  947. elif "max_position_embeddings" in self.hparams:
  948. ctx_length = self.hparams["max_position_embeddings"]
  949. elif "model_max_length" in self.hparams:
  950. ctx_length = self.hparams["model_max_length"]
  951. else:
  952. raise ValueError("gguf: can not find ctx length parameter.")
  953. self.gguf_writer.add_file_type(self.ftype)
  954. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  955. self.gguf_writer.add_context_length(ctx_length)
  956. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  957. self.gguf_writer.add_block_count(block_count)
  958. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  959. self.gguf_writer.add_head_count(head_count)
  960. self.gguf_writer.add_head_count_kv(head_count_kv)
  961. # note: config provides rms norm but it is actually layer norm
  962. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  963. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  964. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  965. class BaichuanModel(Model):
  966. model_arch = gguf.MODEL_ARCH.BAICHUAN
  967. def set_vocab(self):
  968. self._set_vocab_sentencepiece()
  969. def set_gguf_parameters(self):
  970. block_count = self.hparams["num_hidden_layers"]
  971. head_count = self.hparams["num_attention_heads"]
  972. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  973. ctx_length = 0
  974. if "max_sequence_length" in self.hparams:
  975. ctx_length = self.hparams["max_sequence_length"]
  976. elif "max_position_embeddings" in self.hparams:
  977. ctx_length = self.hparams["max_position_embeddings"]
  978. elif "model_max_length" in self.hparams:
  979. ctx_length = self.hparams["model_max_length"]
  980. else:
  981. raise ValueError("gguf: can not find ctx length parameter.")
  982. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  983. self.gguf_writer.add_context_length(ctx_length)
  984. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  985. self.gguf_writer.add_block_count(block_count)
  986. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  987. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  988. self.gguf_writer.add_head_count(head_count)
  989. self.gguf_writer.add_head_count_kv(head_count_kv)
  990. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  991. self.gguf_writer.add_file_type(self.ftype)
  992. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  993. if self.hparams["rope_scaling"].get("type") == "linear":
  994. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  995. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  996. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  997. head_count = self.hparams["num_attention_heads"]
  998. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  999. tensors: list[tuple[str, Tensor]] = []
  1000. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1001. logger.info(f"Unpacking and permuting layer {bid}")
  1002. tensors = [
  1003. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1004. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1005. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1006. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1007. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1008. self._reverse_hf_part(data_torch, 2)),
  1009. ]
  1010. else:
  1011. tensors = [(self.map_tensor_name(name), data_torch)]
  1012. return tensors
  1013. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1014. if n_kv_head is not None and n_head != n_kv_head:
  1015. n_head //= n_kv_head
  1016. return (
  1017. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1018. .swapaxes(1, 2)
  1019. .reshape(weights.shape)
  1020. )
  1021. def _reverse_hf_permute_part(
  1022. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1023. ) -> Tensor:
  1024. r = weights.shape[0] // 3
  1025. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1026. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1027. r = weights.shape[0] // 3
  1028. return weights[r * n_part:r * n_part + r, ...]
  1029. @Model.register("XverseForCausalLM")
  1030. class XverseModel(Model):
  1031. model_arch = gguf.MODEL_ARCH.XVERSE
  1032. def set_vocab(self):
  1033. assert (self.dir_model / "tokenizer.json").is_file()
  1034. dir_model = self.dir_model
  1035. hparams = self.hparams
  1036. tokens: list[bytes] = []
  1037. toktypes: list[int] = []
  1038. from transformers import AutoTokenizer
  1039. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1040. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1041. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1042. # because vocab_size is the count of items, and indexes start at 0.
  1043. max_vocab_index = max(tokenizer.get_vocab().values())
  1044. if max_vocab_index >= vocab_size:
  1045. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1046. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1047. added_vocab = tokenizer.get_added_vocab()
  1048. for token_id in range(vocab_size):
  1049. token_text = reverse_vocab[token_id].encode('utf-8')
  1050. # replace "\x00" to string with length > 0
  1051. if token_text == b"\x00":
  1052. toktype = gguf.TokenType.BYTE # special
  1053. token_text = f"<{token_text}>".encode('utf-8')
  1054. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1055. toktype = gguf.TokenType.BYTE # special
  1056. elif reverse_vocab[token_id] in added_vocab:
  1057. if tokenizer.added_tokens_decoder[token_id].special:
  1058. toktype = gguf.TokenType.CONTROL
  1059. else:
  1060. toktype = gguf.TokenType.USER_DEFINED
  1061. else:
  1062. toktype = gguf.TokenType.NORMAL
  1063. tokens.append(token_text)
  1064. toktypes.append(toktype)
  1065. self.gguf_writer.add_tokenizer_model("llama")
  1066. self.gguf_writer.add_tokenizer_pre("default")
  1067. self.gguf_writer.add_token_list(tokens)
  1068. self.gguf_writer.add_token_types(toktypes)
  1069. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1070. special_vocab.add_to_gguf(self.gguf_writer)
  1071. def set_gguf_parameters(self):
  1072. block_count = self.hparams["num_hidden_layers"]
  1073. head_count = self.hparams["num_attention_heads"]
  1074. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1075. ctx_length = 0
  1076. if "max_sequence_length" in self.hparams:
  1077. ctx_length = self.hparams["max_sequence_length"]
  1078. elif "max_position_embeddings" in self.hparams:
  1079. ctx_length = self.hparams["max_position_embeddings"]
  1080. elif "model_max_length" in self.hparams:
  1081. ctx_length = self.hparams["model_max_length"]
  1082. else:
  1083. raise ValueError("gguf: can not find ctx length parameter.")
  1084. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1085. self.gguf_writer.add_context_length(ctx_length)
  1086. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1087. self.gguf_writer.add_block_count(block_count)
  1088. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1089. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1090. self.gguf_writer.add_head_count(head_count)
  1091. self.gguf_writer.add_head_count_kv(head_count_kv)
  1092. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1093. self.gguf_writer.add_file_type(self.ftype)
  1094. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1095. if self.hparams["rope_scaling"].get("type") == "linear":
  1096. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1097. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1098. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1099. del bid # unused
  1100. head_count = self.hparams["num_attention_heads"]
  1101. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1102. # HF models permute some of the tensors, so we need to undo that
  1103. if name.endswith("q_proj.weight"):
  1104. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1105. if name.endswith("k_proj.weight"):
  1106. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1107. return [(self.map_tensor_name(name), data_torch)]
  1108. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1109. if n_kv_head is not None and n_head != n_kv_head:
  1110. n_head //= n_kv_head
  1111. return (
  1112. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1113. .swapaxes(1, 2)
  1114. .reshape(weights.shape)
  1115. )
  1116. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1117. class FalconModel(Model):
  1118. model_arch = gguf.MODEL_ARCH.FALCON
  1119. def set_gguf_parameters(self):
  1120. block_count = self.hparams.get("num_hidden_layers")
  1121. if block_count is None:
  1122. block_count = self.hparams["n_layer"] # old name
  1123. n_head = self.hparams.get("num_attention_heads")
  1124. if n_head is None:
  1125. n_head = self.hparams["n_head"] # old name
  1126. n_head_kv = self.hparams.get("num_kv_heads")
  1127. if n_head_kv is None:
  1128. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1129. self.gguf_writer.add_context_length(2048) # not in config.json
  1130. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1131. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1132. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1133. self.gguf_writer.add_block_count(block_count)
  1134. self.gguf_writer.add_head_count(n_head)
  1135. self.gguf_writer.add_head_count_kv(n_head_kv)
  1136. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1137. self.gguf_writer.add_file_type(self.ftype)
  1138. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1139. del bid # unused
  1140. # QKV tensor transform
  1141. # The original query_key_value tensor contains n_head_kv "kv groups",
  1142. # each consisting of n_head/n_head_kv query weights followed by one key
  1143. # and one value weight (shared by all query heads in the kv group).
  1144. # This layout makes it a big pain to work with in GGML.
  1145. # So we rearrange them here,, so that we have n_head query weights
  1146. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1147. # in contiguous fashion.
  1148. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1149. if "query_key_value" in name:
  1150. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1151. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1152. head_dim = self.hparams["hidden_size"] // n_head
  1153. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1154. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1155. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1156. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1157. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1158. return [(self.map_tensor_name(name), data_torch)]
  1159. @Model.register("GPTBigCodeForCausalLM")
  1160. class StarCoderModel(Model):
  1161. model_arch = gguf.MODEL_ARCH.STARCODER
  1162. def set_gguf_parameters(self):
  1163. block_count = self.hparams["n_layer"]
  1164. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1165. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1166. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1167. self.gguf_writer.add_block_count(block_count)
  1168. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1169. self.gguf_writer.add_head_count_kv(1)
  1170. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1171. self.gguf_writer.add_file_type(self.ftype)
  1172. @Model.register("GPTRefactForCausalLM")
  1173. class RefactModel(Model):
  1174. model_arch = gguf.MODEL_ARCH.REFACT
  1175. def set_vocab(self):
  1176. super().set_vocab()
  1177. # TODO: how to determine special FIM tokens automatically?
  1178. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1179. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1180. special_vocab._set_special_token("prefix", 1)
  1181. special_vocab._set_special_token("suffix", 3)
  1182. special_vocab._set_special_token("middle", 2)
  1183. special_vocab.chat_template = None # do not add it twice
  1184. special_vocab.add_to_gguf(self.gguf_writer)
  1185. def set_gguf_parameters(self):
  1186. hidden_dim = self.hparams["n_embd"]
  1187. inner_dim = 4 * hidden_dim
  1188. hidden_dim = int(2 * inner_dim / 3)
  1189. multiple_of = 256
  1190. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1191. block_count = self.hparams["n_layer"]
  1192. # refact uses Alibi. So this is from config.json which might be used by training.
  1193. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1194. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1195. self.gguf_writer.add_feed_forward_length(ff_dim)
  1196. self.gguf_writer.add_block_count(block_count)
  1197. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1198. self.gguf_writer.add_head_count_kv(1)
  1199. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1200. self.gguf_writer.add_file_type(self.ftype)
  1201. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1202. hidden_dim = self.hparams["n_embd"]
  1203. inner_dim = 4 * hidden_dim
  1204. hidden_dim = int(2 * inner_dim / 3)
  1205. multiple_of = 256
  1206. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1207. n_head = self.hparams["n_head"]
  1208. n_head_kv = 1
  1209. head_dim = self.hparams["n_embd"] // n_head
  1210. tensors: list[tuple[str, Tensor]] = []
  1211. if bid is not None:
  1212. if name == f"transformer.h.{bid}.attn.kv.weight":
  1213. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1214. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1215. elif name == f"transformer.h.{bid}.attn.q.weight":
  1216. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1217. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1218. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1219. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1220. if len(tensors) == 0:
  1221. tensors.append((self.map_tensor_name(name), data_torch))
  1222. return tensors
  1223. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1224. class StableLMModel(Model):
  1225. model_arch = gguf.MODEL_ARCH.STABLELM
  1226. def set_vocab(self):
  1227. if (self.dir_model / "tokenizer.json").is_file():
  1228. self._set_vocab_gpt2()
  1229. else:
  1230. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1231. self._set_vocab_qwen()
  1232. def set_gguf_parameters(self):
  1233. hparams = self.hparams
  1234. block_count = hparams["num_hidden_layers"]
  1235. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1236. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1237. self.gguf_writer.add_block_count(block_count)
  1238. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1239. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1240. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1241. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1242. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1243. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1244. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1245. self.gguf_writer.add_file_type(self.ftype)
  1246. _q_norms: list[dict[str, Tensor]] | None = None
  1247. _k_norms: list[dict[str, Tensor]] | None = None
  1248. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1249. n_head = self.hparams["num_attention_heads"]
  1250. n_kv_head = self.hparams["num_key_value_heads"]
  1251. if name.find("q_layernorm.norms") != -1:
  1252. assert bid is not None
  1253. if self._q_norms is None:
  1254. self._q_norms = [{} for _ in range(self.block_count)]
  1255. self._q_norms[bid][name] = data_torch
  1256. if len(self._q_norms[bid]) >= n_head:
  1257. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1258. else:
  1259. return []
  1260. if name.find("k_layernorm.norms") != -1:
  1261. assert bid is not None
  1262. if self._k_norms is None:
  1263. self._k_norms = [{} for _ in range(self.block_count)]
  1264. self._k_norms[bid][name] = data_torch
  1265. if len(self._k_norms[bid]) >= n_kv_head:
  1266. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1267. else:
  1268. return []
  1269. return [(self.map_tensor_name(name), data_torch)]
  1270. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1271. datas: list[Tensor] = []
  1272. # extract the norms in order
  1273. for xid in range(n_head):
  1274. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1275. datas.append(norms[ename])
  1276. del norms[ename]
  1277. data_torch = torch.stack(datas, dim=0)
  1278. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1279. new_name = self.map_tensor_name(merged_name)
  1280. return [(new_name, data_torch)]
  1281. def prepare_tensors(self):
  1282. super().prepare_tensors()
  1283. if self._q_norms is not None or self._k_norms is not None:
  1284. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1285. norms = (
  1286. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1287. ) + (
  1288. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1289. )
  1290. if len(norms) > 0:
  1291. raise ValueError(f"Unprocessed norms: {norms}")
  1292. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1293. class LlamaModel(Model):
  1294. model_arch = gguf.MODEL_ARCH.LLAMA
  1295. def set_vocab(self):
  1296. try:
  1297. self._set_vocab_sentencepiece()
  1298. except FileNotFoundError:
  1299. try:
  1300. self._set_vocab_llama_hf()
  1301. except (FileNotFoundError, TypeError):
  1302. # Llama 3
  1303. self._set_vocab_gpt2()
  1304. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1305. if self.hparams.get("vocab_size", 32000) == 32016:
  1306. special_vocab = gguf.SpecialVocab(
  1307. self.dir_model, load_merges=False,
  1308. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1309. )
  1310. special_vocab._set_special_token("prefix", 32007)
  1311. special_vocab._set_special_token("suffix", 32008)
  1312. special_vocab._set_special_token("middle", 32009)
  1313. special_vocab._set_special_token("eot", 32010)
  1314. special_vocab.add_to_gguf(self.gguf_writer)
  1315. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1316. if tokenizer_config_file.is_file():
  1317. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1318. tokenizer_config_json = json.load(f)
  1319. if "add_prefix_space" in tokenizer_config_json:
  1320. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1321. # Apply to granite small models only
  1322. if self.hparams.get("vocab_size", 32000) == 49152:
  1323. self.gguf_writer.add_add_bos_token(False)
  1324. def set_gguf_parameters(self):
  1325. super().set_gguf_parameters()
  1326. hparams = self.hparams
  1327. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1328. if "head_dim" in hparams:
  1329. rope_dim = hparams["head_dim"]
  1330. else:
  1331. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1332. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1333. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1334. if self.hparams["rope_scaling"].get("type") == "linear":
  1335. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1336. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1337. @staticmethod
  1338. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1339. if n_head_kv is not None and n_head != n_head_kv:
  1340. n_head = n_head_kv
  1341. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1342. .swapaxes(1, 2)
  1343. .reshape(weights.shape))
  1344. _experts: list[dict[str, Tensor]] | None = None
  1345. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1346. n_head = self.hparams["num_attention_heads"]
  1347. n_kv_head = self.hparams.get("num_key_value_heads")
  1348. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1349. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1350. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1351. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1352. # process the experts separately
  1353. if name.find("block_sparse_moe.experts") != -1:
  1354. n_experts = self.hparams["num_local_experts"]
  1355. assert bid is not None
  1356. if self._experts is None:
  1357. self._experts = [{} for _ in range(self.block_count)]
  1358. self._experts[bid][name] = data_torch
  1359. if len(self._experts[bid]) >= n_experts * 3:
  1360. tensors: list[tuple[str, Tensor]] = []
  1361. # merge the experts into a single 3d tensor
  1362. for wid in ["w1", "w2", "w3"]:
  1363. datas: list[Tensor] = []
  1364. for xid in range(n_experts):
  1365. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1366. datas.append(self._experts[bid][ename])
  1367. del self._experts[bid][ename]
  1368. data_torch = torch.stack(datas, dim=0)
  1369. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1370. new_name = self.map_tensor_name(merged_name)
  1371. tensors.append((new_name, data_torch))
  1372. return tensors
  1373. else:
  1374. return []
  1375. return [(self.map_tensor_name(name), data_torch)]
  1376. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1377. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1378. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1379. base = self.hparams.get("rope_theta", 10000.0)
  1380. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1381. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1382. factor = rope_scaling.get("factor", 8.0)
  1383. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1384. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1385. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1386. low_freq_wavelen = old_context_len / low_freq_factor
  1387. high_freq_wavelen = old_context_len / high_freq_factor
  1388. assert low_freq_wavelen != high_freq_wavelen
  1389. rope_factors = []
  1390. for freq in freqs:
  1391. wavelen = 2 * math.pi / freq
  1392. if wavelen < high_freq_wavelen:
  1393. rope_factors.append(1)
  1394. elif wavelen > low_freq_wavelen:
  1395. rope_factors.append(factor)
  1396. else:
  1397. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1398. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1399. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1400. def prepare_tensors(self):
  1401. super().prepare_tensors()
  1402. if self._experts is not None:
  1403. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1404. experts = [k for d in self._experts for k in d.keys()]
  1405. if len(experts) > 0:
  1406. raise ValueError(f"Unprocessed experts: {experts}")
  1407. @Model.register("DeciLMForCausalLM")
  1408. class DeciModel(Model):
  1409. model_arch = gguf.MODEL_ARCH.DECI
  1410. @staticmethod
  1411. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1412. # DeciLM-specific code
  1413. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1414. return DeciModel._find_multiple(intermediate_size, 256)
  1415. @staticmethod
  1416. def _find_multiple(n: int, k: int) -> int:
  1417. # DeciLM-specific code
  1418. if n % k == 0:
  1419. return n
  1420. return n + k - (n % k)
  1421. def __init__(self, *args, **kwargs):
  1422. super().__init__(*args, **kwargs)
  1423. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1424. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1425. assert self.block_count == len(_block_configs)
  1426. self._num_kv_heads = list()
  1427. self._num_heads = list()
  1428. _ffn_multipliers = list()
  1429. # ***linear attention layer***
  1430. # if n_heads_in_group is None and replace_with_linear is True
  1431. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1432. # ***attention-free layer***
  1433. # if n_heads_in_group is None and replace_with_linear is False
  1434. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1435. # ***normal attention-layer***
  1436. # if n_heads_in_group is not None, then
  1437. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1438. # _num_heads[il] is num_attention_head
  1439. for il in range(len(_block_configs)):
  1440. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1441. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1442. self._num_kv_heads.append(0)
  1443. self._num_heads.append(self.hparams["num_attention_heads"])
  1444. else:
  1445. self._num_kv_heads.append(0)
  1446. self._num_heads.append(0)
  1447. else:
  1448. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1449. self._num_heads.append(self.hparams["num_attention_heads"])
  1450. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1451. assert self.block_count == len(self._num_kv_heads)
  1452. assert self.block_count == len(self._num_heads)
  1453. assert self.block_count == len(_ffn_multipliers)
  1454. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1455. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1456. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1457. self._ffn_dims: list[int] = [
  1458. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1459. for multiplier in _ffn_multipliers
  1460. ]
  1461. def set_vocab(self):
  1462. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1463. # eos_token from '|eot_id|' to '|end_of_text|'
  1464. if self.hparams.get("vocab_size", 128256) == 128256:
  1465. tokens, toktypes, tokpre = self.get_vocab_base()
  1466. self.gguf_writer.add_tokenizer_model("gpt2")
  1467. self.gguf_writer.add_tokenizer_pre(tokpre)
  1468. self.gguf_writer.add_token_list(tokens)
  1469. self.gguf_writer.add_token_types(toktypes)
  1470. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1471. special_vocab.add_to_gguf(self.gguf_writer)
  1472. else:
  1473. # DeciLM-7B
  1474. self._set_vocab_llama_hf()
  1475. def set_gguf_parameters(self):
  1476. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1477. assert self.block_count == len(self._num_kv_heads)
  1478. assert self.block_count == len(self._num_heads)
  1479. assert self.block_count == len(self._ffn_dims)
  1480. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1481. self.gguf_writer.add_rope_freq_base(rope_theta)
  1482. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1483. self.gguf_writer.add_head_count(self._num_heads)
  1484. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1485. self.gguf_writer.add_block_count(self.block_count)
  1486. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1487. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1488. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1489. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1490. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1491. self.gguf_writer.add_file_type(self.ftype)
  1492. else: # DeciLM-7B
  1493. super().set_gguf_parameters()
  1494. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1495. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1496. assert self.block_count == len(self._num_kv_heads)
  1497. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1498. hparams = self.hparams
  1499. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1500. if "head_dim" in hparams:
  1501. rope_dim = hparams["head_dim"]
  1502. else:
  1503. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1504. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1505. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1506. if self.hparams["rope_scaling"].get("type") == "linear":
  1507. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1508. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1509. @staticmethod
  1510. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1511. if n_head_kv is not None and n_head != n_head_kv:
  1512. n_head = n_head_kv
  1513. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1514. .swapaxes(1, 2)
  1515. .reshape(weights.shape))
  1516. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1517. n_head = self.hparams["num_attention_heads"]
  1518. if bid is not None:
  1519. if "num_key_value_heads_per_layer" in self.hparams:
  1520. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1521. elif "block_configs" in self.hparams:
  1522. n_kv_head = self._num_kv_heads[bid]
  1523. n_head = self._num_heads[bid]
  1524. else:
  1525. n_kv_head = self.hparams.get("num_key_value_heads")
  1526. else:
  1527. n_kv_head = self.hparams.get("num_key_value_heads")
  1528. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1529. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1530. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1531. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1532. return [(self.map_tensor_name(name), data_torch)]
  1533. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1534. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1535. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1536. base = self.hparams.get("rope_theta", 10000.0)
  1537. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1538. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1539. factor = rope_scaling.get("factor", 8.0)
  1540. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1541. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1542. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1543. low_freq_wavelen = old_context_len / low_freq_factor
  1544. high_freq_wavelen = old_context_len / high_freq_factor
  1545. assert low_freq_wavelen != high_freq_wavelen
  1546. rope_factors = []
  1547. for freq in freqs:
  1548. wavelen = 2 * math.pi / freq
  1549. if wavelen < high_freq_wavelen:
  1550. rope_factors.append(1)
  1551. elif wavelen > low_freq_wavelen:
  1552. rope_factors.append(factor)
  1553. else:
  1554. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1555. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1556. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1557. def prepare_tensors(self):
  1558. super().prepare_tensors()
  1559. @Model.register("BitnetForCausalLM")
  1560. class BitnetModel(Model):
  1561. model_arch = gguf.MODEL_ARCH.BITNET
  1562. def set_vocab(self):
  1563. self._set_vocab_sentencepiece()
  1564. def set_gguf_parameters(self):
  1565. super().set_gguf_parameters()
  1566. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1567. self.gguf_writer.add_rope_scaling_factor(1.0)
  1568. def weight_quant(self, weight: Tensor) -> Tensor:
  1569. dtype = weight.dtype
  1570. weight = weight.float()
  1571. scale = weight.abs().mean().clamp(min=1e-5)
  1572. iscale = 1 / scale
  1573. # TODO: multiply by the scale directly instead of inverting it twice
  1574. # (this is also unnecessarily doubly inverted upstream)
  1575. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1576. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1577. return result.type(dtype)
  1578. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1579. new_name = self.map_tensor_name(name)
  1580. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1581. gguf.MODEL_TENSOR.ATTN_Q,
  1582. gguf.MODEL_TENSOR.ATTN_K,
  1583. gguf.MODEL_TENSOR.ATTN_V,
  1584. gguf.MODEL_TENSOR.ATTN_OUT,
  1585. gguf.MODEL_TENSOR.FFN_UP,
  1586. gguf.MODEL_TENSOR.FFN_DOWN,
  1587. gguf.MODEL_TENSOR.FFN_GATE,
  1588. ]):
  1589. # transform weight into 1/0/-1 (in fp32)
  1590. data_torch = self.weight_quant(data_torch)
  1591. yield (new_name, data_torch)
  1592. @Model.register("GrokForCausalLM")
  1593. class GrokModel(Model):
  1594. model_arch = gguf.MODEL_ARCH.GROK
  1595. def set_vocab(self):
  1596. self._set_vocab_sentencepiece()
  1597. def __init__(self, *args, **kwargs):
  1598. super().__init__(*args, **kwargs)
  1599. def set_gguf_parameters(self):
  1600. super().set_gguf_parameters()
  1601. _experts: list[dict[str, Tensor]] | None = None
  1602. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1603. # process the experts separately
  1604. if name.find(".moe.") != -1:
  1605. n_experts = self.hparams["num_local_experts"]
  1606. assert bid is not None
  1607. if self._experts is None:
  1608. self._experts = [{} for _ in range(self.block_count)]
  1609. self._experts[bid][name] = data_torch
  1610. if len(self._experts[bid]) >= n_experts * 3:
  1611. tensors: list[tuple[str, Tensor]] = []
  1612. # merge the experts into a single 3d tensor
  1613. for wid in ["linear", "linear_1", "linear_v"]:
  1614. datas: list[Tensor] = []
  1615. for xid in range(n_experts):
  1616. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1617. datas.append(self._experts[bid][ename])
  1618. del self._experts[bid][ename]
  1619. data_torch = torch.stack(datas, dim=0)
  1620. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1621. new_name = self.map_tensor_name(merged_name)
  1622. tensors.append((new_name, data_torch))
  1623. return tensors
  1624. else:
  1625. return []
  1626. return [(self.map_tensor_name(name), data_torch)]
  1627. @Model.register("DbrxForCausalLM")
  1628. class DbrxModel(Model):
  1629. model_arch = gguf.MODEL_ARCH.DBRX
  1630. def set_gguf_parameters(self):
  1631. ffn_config = self.hparams["ffn_config"]
  1632. attn_config = self.hparams["attn_config"]
  1633. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1634. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1635. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1636. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1637. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1638. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1639. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1640. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1641. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1642. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1643. self.gguf_writer.add_layer_norm_eps(1e-5)
  1644. self.gguf_writer.add_file_type(self.ftype)
  1645. logger.info(f"gguf: file type = {self.ftype}")
  1646. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1647. del bid # unused
  1648. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1649. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1650. n_embd = self.hparams["d_model"]
  1651. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1652. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1653. # But llama.cpp moe graph works differently
  1654. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1655. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1656. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1657. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1658. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1659. experts = False
  1660. for exp_tensor_name in exp_tensor_names.keys():
  1661. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1662. experts = True
  1663. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1664. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1665. data_torch = data_torch.permute(*permute_tensor)
  1666. break
  1667. # map tensor names
  1668. # In MoE models the ffn tensors are typically most of the model weights,
  1669. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1670. # Every other model has the weight names ending in .weight,
  1671. # let's assume that is the convention which is not the case for dbrx:
  1672. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1673. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1674. return [(new_name, data_torch)]
  1675. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1676. del name, new_name, bid # unused
  1677. return n_dims > 1
  1678. @Model.register("MiniCPMForCausalLM")
  1679. class MiniCPMModel(Model):
  1680. model_arch = gguf.MODEL_ARCH.MINICPM
  1681. def set_gguf_parameters(self):
  1682. super().set_gguf_parameters()
  1683. embedding_scale = float(self.hparams["scale_emb"])
  1684. self.gguf_writer.add_embedding_scale(embedding_scale)
  1685. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1686. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1687. self.gguf_writer.add_residual_scale(residual_scale)
  1688. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1689. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1690. self.gguf_writer.add_logit_scale(logit_scale)
  1691. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1692. if self.hparams.get("rope_scaling") is not None:
  1693. if self.hparams["rope_scaling"].get("type") == "longrope":
  1694. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1695. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1696. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1697. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1698. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1699. if rope_scaling is not None:
  1700. long_factors = rope_scaling.get('long_factor', None)
  1701. short_factors = rope_scaling.get('short_factor', None)
  1702. if long_factors is None or short_factors is None:
  1703. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1704. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1705. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1706. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1707. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1708. def set_vocab(self):
  1709. self._set_vocab_sentencepiece()
  1710. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1711. del bid # unused
  1712. n_head = self.hparams["num_attention_heads"]
  1713. n_kv_head = self.hparams.get("num_key_value_heads")
  1714. # HF models permute some of the tensors, so we need to undo that
  1715. if name.endswith(("q_proj.weight")):
  1716. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1717. if name.endswith(("k_proj.weight")):
  1718. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1719. return [(self.map_tensor_name(name), data_torch)]
  1720. @Model.register("MiniCPM3ForCausalLM")
  1721. class MiniCPM3Model(Model):
  1722. model_arch = gguf.MODEL_ARCH.MINICPM3
  1723. def set_gguf_parameters(self):
  1724. hparams = self.hparams
  1725. self.gguf_writer.add_file_type(self.ftype)
  1726. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1727. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1728. self.gguf_writer.add_block_count(self.block_count)
  1729. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1730. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1731. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1732. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1733. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1734. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1735. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1736. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1737. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1738. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1739. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1740. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1741. if rope_scaling is not None:
  1742. rope_dims = self.hparams["qk_rope_head_dim"]
  1743. long_factors = rope_scaling.get('long_factor', None)
  1744. short_factors = rope_scaling.get('short_factor', None)
  1745. if long_factors is None or short_factors is None:
  1746. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1747. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1748. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1749. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1750. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1751. def set_vocab(self):
  1752. self._set_vocab_sentencepiece()
  1753. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1754. if n_kv_head is not None and n_head != n_kv_head:
  1755. n_head //= n_kv_head
  1756. return (
  1757. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1758. .swapaxes(1, 2)
  1759. .reshape(weights.shape)
  1760. )
  1761. @Model.register("QWenLMHeadModel")
  1762. class QwenModel(Model):
  1763. model_arch = gguf.MODEL_ARCH.QWEN
  1764. @staticmethod
  1765. def token_bytes_to_string(b):
  1766. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1767. byte_encoder = bytes_to_unicode()
  1768. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1769. @staticmethod
  1770. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1771. parts = [bytes([b]) for b in token]
  1772. while True:
  1773. min_idx = None
  1774. min_rank = None
  1775. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1776. rank = mergeable_ranks.get(pair[0] + pair[1])
  1777. if rank is not None and (min_rank is None or rank < min_rank):
  1778. min_idx = i
  1779. min_rank = rank
  1780. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1781. break
  1782. assert min_idx is not None
  1783. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1784. return parts
  1785. def set_vocab(self):
  1786. self._set_vocab_qwen()
  1787. def set_gguf_parameters(self):
  1788. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1789. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1790. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1791. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1792. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1793. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1794. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1795. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1796. self.gguf_writer.add_file_type(self.ftype)
  1797. @Model.register("Qwen2ForCausalLM")
  1798. class Qwen2Model(Model):
  1799. model_arch = gguf.MODEL_ARCH.QWEN2
  1800. def set_vocab(self):
  1801. try:
  1802. self._set_vocab_sentencepiece()
  1803. except FileNotFoundError:
  1804. self._set_vocab_gpt2()
  1805. def set_gguf_parameters(self):
  1806. super().set_gguf_parameters()
  1807. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1808. if self.hparams["rope_scaling"].get("type") == "yarn":
  1809. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1810. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1811. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1812. @Model.register("Qwen2VLForConditionalGeneration")
  1813. class Qwen2VLModel(Model):
  1814. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1815. def set_gguf_parameters(self):
  1816. super().set_gguf_parameters()
  1817. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1818. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1819. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1820. def set_vocab(self):
  1821. try:
  1822. self._set_vocab_sentencepiece()
  1823. except FileNotFoundError:
  1824. self._set_vocab_gpt2()
  1825. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1826. for name, data in super().get_tensors():
  1827. if name.startswith("visual."):
  1828. continue
  1829. yield name, data
  1830. @Model.register("WavTokenizerDec")
  1831. class WavTokenizerDecModel(Model):
  1832. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1833. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1834. del bid # unused
  1835. if \
  1836. name.endswith("codebook.cluster_size") or \
  1837. name.endswith("codebook.embed_avg") or \
  1838. name.endswith("codebook.inited"):
  1839. logger.debug(f"Skipping {name!r}")
  1840. return []
  1841. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1842. return [(self.map_tensor_name(name), data_torch)]
  1843. def set_vocab(self):
  1844. self._set_vocab_none()
  1845. def set_gguf_parameters(self):
  1846. super().set_gguf_parameters()
  1847. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1848. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1849. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1850. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1851. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1852. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1853. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1854. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1855. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1856. self.gguf_writer.add_causal_attention(False)
  1857. @Model.register("Qwen2MoeForCausalLM")
  1858. class Qwen2MoeModel(Model):
  1859. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1860. def set_gguf_parameters(self):
  1861. super().set_gguf_parameters()
  1862. if (n_experts := self.hparams.get("num_experts")) is not None:
  1863. self.gguf_writer.add_expert_count(n_experts)
  1864. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1865. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1866. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1867. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1868. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1869. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1870. _experts: list[dict[str, Tensor]] | None = None
  1871. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1872. # process the experts separately
  1873. if name.find("experts") != -1:
  1874. n_experts = self.hparams["num_experts"]
  1875. assert bid is not None
  1876. if self._experts is None:
  1877. self._experts = [{} for _ in range(self.block_count)]
  1878. self._experts[bid][name] = data_torch
  1879. if len(self._experts[bid]) >= n_experts * 3:
  1880. tensors: list[tuple[str, Tensor]] = []
  1881. # merge the experts into a single 3d tensor
  1882. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1883. datas: list[Tensor] = []
  1884. for xid in range(n_experts):
  1885. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1886. datas.append(self._experts[bid][ename])
  1887. del self._experts[bid][ename]
  1888. data_torch = torch.stack(datas, dim=0)
  1889. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1890. new_name = self.map_tensor_name(merged_name)
  1891. tensors.append((new_name, data_torch))
  1892. return tensors
  1893. else:
  1894. return []
  1895. return [(self.map_tensor_name(name), data_torch)]
  1896. def prepare_tensors(self):
  1897. super().prepare_tensors()
  1898. if self._experts is not None:
  1899. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1900. experts = [k for d in self._experts for k in d.keys()]
  1901. if len(experts) > 0:
  1902. raise ValueError(f"Unprocessed experts: {experts}")
  1903. @Model.register("GPT2LMHeadModel")
  1904. class GPT2Model(Model):
  1905. model_arch = gguf.MODEL_ARCH.GPT2
  1906. def set_gguf_parameters(self):
  1907. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1908. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1909. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1910. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1911. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1912. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1913. self.gguf_writer.add_file_type(self.ftype)
  1914. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1915. del bid # unused
  1916. tensors: list[tuple[str, Tensor]] = []
  1917. # we don't need these
  1918. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1919. return tensors
  1920. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1921. data_torch = data_torch.transpose(1, 0)
  1922. new_name = self.map_tensor_name(name)
  1923. tensors.append((new_name, data_torch))
  1924. # note: GPT2 output is tied to (same as) wte in original model
  1925. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1926. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1927. return tensors
  1928. @Model.register("PhiForCausalLM")
  1929. class Phi2Model(Model):
  1930. model_arch = gguf.MODEL_ARCH.PHI2
  1931. def set_gguf_parameters(self):
  1932. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1933. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1934. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1935. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1936. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1937. self.gguf_writer.add_embedding_length(n_embd)
  1938. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1939. self.gguf_writer.add_block_count(block_count)
  1940. self.gguf_writer.add_head_count(n_head)
  1941. self.gguf_writer.add_head_count_kv(n_head)
  1942. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1943. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1944. self.gguf_writer.add_file_type(self.ftype)
  1945. self.gguf_writer.add_add_bos_token(False)
  1946. @Model.register("Phi3ForCausalLM")
  1947. class Phi3MiniModel(Model):
  1948. model_arch = gguf.MODEL_ARCH.PHI3
  1949. def set_vocab(self):
  1950. # Phi-4 model uses GPT2Tokenizer
  1951. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1952. if tokenizer_config_file.is_file():
  1953. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1954. tokenizer_config_json = json.load(f)
  1955. tokenizer_class = tokenizer_config_json['tokenizer_class']
  1956. if tokenizer_class == 'GPT2Tokenizer':
  1957. return self._set_vocab_gpt2()
  1958. from sentencepiece import SentencePieceProcessor
  1959. tokenizer_path = self.dir_model / 'tokenizer.model'
  1960. if not tokenizer_path.is_file():
  1961. raise ValueError(f'Error: Missing {tokenizer_path}')
  1962. tokenizer = SentencePieceProcessor()
  1963. tokenizer.LoadFromFile(str(tokenizer_path))
  1964. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1965. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1966. scores: list[float] = [-10000.0] * vocab_size
  1967. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1968. for token_id in range(tokenizer.vocab_size()):
  1969. piece = tokenizer.IdToPiece(token_id)
  1970. text = piece.encode("utf-8")
  1971. score = tokenizer.GetScore(token_id)
  1972. toktype = SentencePieceTokenTypes.NORMAL
  1973. if tokenizer.IsUnknown(token_id):
  1974. toktype = SentencePieceTokenTypes.UNKNOWN
  1975. elif tokenizer.IsControl(token_id):
  1976. toktype = SentencePieceTokenTypes.CONTROL
  1977. elif tokenizer.IsUnused(token_id):
  1978. toktype = SentencePieceTokenTypes.UNUSED
  1979. elif tokenizer.IsByte(token_id):
  1980. toktype = SentencePieceTokenTypes.BYTE
  1981. tokens[token_id] = text
  1982. scores[token_id] = score
  1983. toktypes[token_id] = toktype
  1984. added_tokens_file = self.dir_model / 'added_tokens.json'
  1985. if added_tokens_file.is_file():
  1986. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1987. added_tokens_json = json.load(f)
  1988. for key in added_tokens_json:
  1989. token_id = added_tokens_json[key]
  1990. if token_id >= vocab_size:
  1991. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1992. continue
  1993. tokens[token_id] = key.encode("utf-8")
  1994. scores[token_id] = -1000.0
  1995. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1996. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1997. if tokenizer_config_file.is_file():
  1998. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1999. tokenizer_config_json = json.load(f)
  2000. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2001. for token_id, foken_data in added_tokens_decoder.items():
  2002. token_id = int(token_id)
  2003. token = foken_data["content"].encode("utf-8")
  2004. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2005. if tokens[token_id] != token:
  2006. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2007. tokens[token_id] = token
  2008. scores[token_id] = -1000.0
  2009. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2010. if foken_data.get("special"):
  2011. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2012. tokenizer_file = self.dir_model / 'tokenizer.json'
  2013. if tokenizer_file.is_file():
  2014. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2015. tokenizer_json = json.load(f)
  2016. added_tokens = tokenizer_json.get("added_tokens", [])
  2017. for foken_data in added_tokens:
  2018. token_id = int(foken_data["id"])
  2019. token = foken_data["content"].encode("utf-8")
  2020. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2021. if tokens[token_id] != token:
  2022. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2023. tokens[token_id] = token
  2024. scores[token_id] = -1000.0
  2025. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2026. if foken_data.get("special"):
  2027. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2028. self.gguf_writer.add_tokenizer_model("llama")
  2029. self.gguf_writer.add_tokenizer_pre("default")
  2030. self.gguf_writer.add_token_list(tokens)
  2031. self.gguf_writer.add_token_scores(scores)
  2032. self.gguf_writer.add_token_types(toktypes)
  2033. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2034. special_vocab.add_to_gguf(self.gguf_writer)
  2035. def set_gguf_parameters(self):
  2036. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2037. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2038. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2039. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2040. rms_eps = self.find_hparam(["rms_norm_eps"])
  2041. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2042. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2043. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2044. rope_dims = int(rot_pct * n_embd) // n_head
  2045. self.gguf_writer.add_context_length(max_pos_embds)
  2046. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2047. self.gguf_writer.add_embedding_length(n_embd)
  2048. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2049. self.gguf_writer.add_block_count(block_count)
  2050. self.gguf_writer.add_head_count(n_head)
  2051. self.gguf_writer.add_head_count_kv(n_head_kv)
  2052. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2053. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2054. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2055. self.gguf_writer.add_file_type(self.ftype)
  2056. sliding_window = self.hparams.get("sliding_window")
  2057. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2058. if sliding_window is None:
  2059. sliding_window = 0
  2060. self.gguf_writer.add_sliding_window(sliding_window)
  2061. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2062. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2063. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2064. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2065. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2066. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2067. rope_dims = int(rot_pct * n_embd) // n_head
  2068. # write rope scaling for long context (128k) model
  2069. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2070. if rope_scaling is None:
  2071. return
  2072. scale = max_pos_embds / orig_max_pos_embds
  2073. rope_scaling_type = rope_scaling.get('type', '').lower()
  2074. if len(rope_scaling_type) == 0:
  2075. raise KeyError('Missing the required key rope_scaling.type')
  2076. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2077. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2078. elif rope_scaling_type == 'yarn':
  2079. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2080. else:
  2081. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2082. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2083. long_factors = rope_scaling.get('long_factor', None)
  2084. short_factors = rope_scaling.get('short_factor', None)
  2085. if long_factors is None or short_factors is None:
  2086. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2087. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2088. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2089. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2090. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2091. @Model.register("PhiMoEForCausalLM")
  2092. class PhiMoeModel(Phi3MiniModel):
  2093. model_arch = gguf.MODEL_ARCH.PHIMOE
  2094. _experts: list[dict[str, Tensor]] | None = None
  2095. def set_gguf_parameters(self):
  2096. super().set_gguf_parameters()
  2097. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2098. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2099. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2100. # process the experts separately
  2101. if name.find("block_sparse_moe.experts") != -1:
  2102. n_experts = self.hparams["num_local_experts"]
  2103. assert bid is not None
  2104. if self._experts is None:
  2105. self._experts = [{} for _ in range(self.block_count)]
  2106. self._experts[bid][name] = data_torch
  2107. if len(self._experts[bid]) >= n_experts * 3:
  2108. tensors: list[tuple[str, Tensor]] = []
  2109. # merge the experts into a single 3d tensor
  2110. for w_name in ["w1", "w2", "w3"]:
  2111. datas: list[Tensor] = []
  2112. for xid in range(n_experts):
  2113. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2114. datas.append(self._experts[bid][ename])
  2115. del self._experts[bid][ename]
  2116. data_torch = torch.stack(datas, dim=0)
  2117. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2118. new_name = self.map_tensor_name(merged_name)
  2119. tensors.append((new_name, data_torch))
  2120. return tensors
  2121. else:
  2122. return []
  2123. return [(self.map_tensor_name(name), data_torch)]
  2124. def prepare_tensors(self):
  2125. super().prepare_tensors()
  2126. if self._experts is not None:
  2127. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2128. experts = [k for d in self._experts for k in d.keys()]
  2129. if len(experts) > 0:
  2130. raise ValueError(f"Unprocessed experts: {experts}")
  2131. @Model.register("PlamoForCausalLM")
  2132. class PlamoModel(Model):
  2133. model_arch = gguf.MODEL_ARCH.PLAMO
  2134. def set_vocab(self):
  2135. self._set_vocab_sentencepiece()
  2136. def set_gguf_parameters(self):
  2137. hparams = self.hparams
  2138. block_count = hparams["num_hidden_layers"]
  2139. self.gguf_writer.add_context_length(4096) # not in config.json
  2140. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2141. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2142. self.gguf_writer.add_block_count(block_count)
  2143. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2144. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2145. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2146. self.gguf_writer.add_file_type(self.ftype)
  2147. def shuffle_attn_q_weight(self, data_torch):
  2148. assert data_torch.size() == (5120, 5120)
  2149. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2150. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2151. data_torch = torch.reshape(data_torch, (5120, 5120))
  2152. return data_torch
  2153. def shuffle_attn_output_weight(self, data_torch):
  2154. assert data_torch.size() == (5120, 5120)
  2155. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2156. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2157. data_torch = torch.reshape(data_torch, (5120, 5120))
  2158. return data_torch
  2159. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2160. del bid # unused
  2161. new_name = self.map_tensor_name(name)
  2162. # shuffle for broadcasting of gqa in ggml_mul_mat
  2163. if new_name.endswith("attn_q.weight"):
  2164. data_torch = self.shuffle_attn_q_weight(data_torch)
  2165. elif new_name.endswith("attn_output.weight"):
  2166. data_torch = self.shuffle_attn_output_weight(data_torch)
  2167. return [(new_name, data_torch)]
  2168. @Model.register("CodeShellForCausalLM")
  2169. class CodeShellModel(Model):
  2170. model_arch = gguf.MODEL_ARCH.CODESHELL
  2171. def set_gguf_parameters(self):
  2172. block_count = self.hparams["n_layer"]
  2173. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2174. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2175. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2176. self.gguf_writer.add_block_count(block_count)
  2177. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2178. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2179. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2180. self.gguf_writer.add_file_type(self.ftype)
  2181. self.gguf_writer.add_rope_freq_base(10000.0)
  2182. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2183. self.gguf_writer.add_rope_scaling_factor(1.0)
  2184. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2185. del bid # unused
  2186. new_name = self.map_tensor_name(name)
  2187. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  2188. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2189. assert self.tensor_names is not None
  2190. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  2191. # copy tok_embd.weight to output.weight
  2192. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  2193. return tensors
  2194. @Model.register("InternLM2ForCausalLM")
  2195. class InternLM2Model(Model):
  2196. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2197. def set_vocab(self):
  2198. # (TODO): Is there a better way?
  2199. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2200. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2201. # recognized as an empty string in C++.
  2202. from sentencepiece import SentencePieceProcessor
  2203. from sentencepiece import sentencepiece_model_pb2 as model
  2204. tokenizer_path = self.dir_model / 'tokenizer.model'
  2205. tokens: list[bytes] = []
  2206. scores: list[float] = []
  2207. toktypes: list[int] = []
  2208. if not tokenizer_path.is_file():
  2209. logger.error(f'Error: Missing {tokenizer_path}')
  2210. sys.exit(1)
  2211. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2212. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2213. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2214. tokenizer = SentencePieceProcessor()
  2215. tokenizer.LoadFromFile(str(tokenizer_path))
  2216. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2217. for token_id in range(vocab_size):
  2218. piece = tokenizer.IdToPiece(token_id)
  2219. text = piece.encode("utf-8")
  2220. score = tokenizer.GetScore(token_id)
  2221. if text == b"\x00":
  2222. # (TODO): fixme
  2223. # Hack here and replace the \x00 characters.
  2224. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2225. text = "🐉".encode("utf-8")
  2226. toktype = SentencePieceTokenTypes.NORMAL
  2227. if tokenizer.IsUnknown(token_id):
  2228. toktype = SentencePieceTokenTypes.UNKNOWN
  2229. elif tokenizer.IsControl(token_id):
  2230. toktype = SentencePieceTokenTypes.CONTROL
  2231. elif tokenizer.IsUnused(token_id):
  2232. toktype = SentencePieceTokenTypes.UNUSED
  2233. elif tokenizer.IsByte(token_id):
  2234. toktype = SentencePieceTokenTypes.BYTE
  2235. # take care of ununsed raw token
  2236. if piece.startswith('[UNUSED'):
  2237. toktype = SentencePieceTokenTypes.UNUSED
  2238. tokens.append(text)
  2239. scores.append(score)
  2240. toktypes.append(toktype)
  2241. added_tokens_file = self.dir_model / 'added_tokens.json'
  2242. if added_tokens_file.is_file():
  2243. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2244. added_tokens_json = json.load(f)
  2245. for key in added_tokens_json:
  2246. tokens.append(key.encode("utf-8"))
  2247. scores.append(-1000.0)
  2248. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2249. chat_eos_token = '<|im_end|>'
  2250. chat_eos_token_id = None
  2251. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2252. if tokenizer_config_file.is_file():
  2253. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2254. tokenizer_config_json = json.load(f)
  2255. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2256. for token_id, foken_data in added_tokens_decoder.items():
  2257. token_id = int(token_id)
  2258. token = foken_data["content"]
  2259. if token == chat_eos_token:
  2260. chat_eos_token_id = token_id
  2261. token = token.encode("utf-8")
  2262. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2263. if tokens[token_id] != token:
  2264. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2265. tokens[token_id] = token
  2266. scores[token_id] = -1000.0
  2267. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2268. if foken_data.get("special"):
  2269. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2270. tokenizer_file = self.dir_model / 'tokenizer.json'
  2271. if tokenizer_file.is_file():
  2272. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2273. tokenizer_json = json.load(f)
  2274. added_tokens = tokenizer_json.get("added_tokens", [])
  2275. for foken_data in added_tokens:
  2276. token_id = int(foken_data["id"])
  2277. token = foken_data["content"]
  2278. if token == chat_eos_token:
  2279. chat_eos_token_id = token_id
  2280. token = token.encode("utf-8")
  2281. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2282. if tokens[token_id] != token:
  2283. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2284. tokens[token_id] = token
  2285. scores[token_id] = -1000.0
  2286. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2287. if foken_data.get("special"):
  2288. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2289. self.gguf_writer.add_tokenizer_model("llama")
  2290. self.gguf_writer.add_tokenizer_pre("default")
  2291. self.gguf_writer.add_token_list(tokens)
  2292. self.gguf_writer.add_token_scores(scores)
  2293. self.gguf_writer.add_token_types(toktypes)
  2294. self.gguf_writer.add_add_space_prefix(add_prefix)
  2295. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2296. old_eos = special_vocab.special_token_ids["eos"]
  2297. if chat_eos_token_id is not None:
  2298. # For the chat model, we replace the eos with '<|im_end|>'.
  2299. # TODO: this is a hack, should be fixed
  2300. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2301. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2302. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2303. " in chat mode so that the conversation can end normally.")
  2304. special_vocab.add_to_gguf(self.gguf_writer)
  2305. def set_gguf_parameters(self):
  2306. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2307. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2308. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2309. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2310. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2311. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2312. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2313. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2314. self.gguf_writer.add_file_type(self.ftype)
  2315. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2316. if self.hparams["rope_scaling"].get("type") == "linear":
  2317. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2318. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2319. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2320. num_heads = self.hparams["num_attention_heads"]
  2321. num_kv_heads = self.hparams["num_key_value_heads"]
  2322. n_embd = self.hparams["hidden_size"]
  2323. q_per_kv = num_heads // num_kv_heads
  2324. head_dim = n_embd // num_heads
  2325. num_groups = num_heads // q_per_kv
  2326. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2327. qkv = data_torch
  2328. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2329. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2330. # The model weights of q and k equire additional reshape.
  2331. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2332. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2333. v = v.reshape((-1, v.shape[-1]))
  2334. return [
  2335. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2336. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2337. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2338. ]
  2339. else:
  2340. return [(self.map_tensor_name(name), data_torch)]
  2341. @Model.register("InternLM3ForCausalLM")
  2342. class InternLM3Model(Model):
  2343. model_arch = gguf.MODEL_ARCH.LLAMA
  2344. def set_vocab(self):
  2345. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2346. self.gguf_writer.add_tokenizer_model("llama")
  2347. self.gguf_writer.add_tokenizer_pre("default")
  2348. self.gguf_writer.add_token_list(tokens)
  2349. self.gguf_writer.add_token_scores(scores)
  2350. self.gguf_writer.add_token_types(toktypes)
  2351. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2352. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2353. if tokenizer_config_file.is_file():
  2354. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2355. tokenizer_config_json = json.load(f)
  2356. if "add_prefix_space" in tokenizer_config_json:
  2357. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2358. if "added_tokens_decoder" in tokenizer_config_json:
  2359. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2360. if token_data.get("special"):
  2361. token_id = int(token_id)
  2362. token = token_data["content"]
  2363. special_vocab._set_special_token(token, token_id)
  2364. # update eos token
  2365. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2366. special_vocab.special_token_ids["eos"] = token_id
  2367. special_vocab.add_to_gguf(self.gguf_writer)
  2368. def set_gguf_parameters(self):
  2369. super().set_gguf_parameters()
  2370. hparams = self.hparams
  2371. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2372. if "head_dim" in hparams:
  2373. rope_dim = hparams["head_dim"]
  2374. else:
  2375. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2376. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2377. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2378. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2379. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2380. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2382. n_head = self.hparams["num_attention_heads"]
  2383. n_kv_head = self.hparams.get("num_key_value_heads")
  2384. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2385. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2386. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2387. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2388. return [(self.map_tensor_name(name), data_torch)]
  2389. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2390. class BertModel(Model):
  2391. model_arch = gguf.MODEL_ARCH.BERT
  2392. def __init__(self, *args, **kwargs):
  2393. super().__init__(*args, **kwargs)
  2394. self.vocab_size = None
  2395. def set_gguf_parameters(self):
  2396. super().set_gguf_parameters()
  2397. self.gguf_writer.add_causal_attention(False)
  2398. # get pooling path
  2399. pooling_path = None
  2400. module_path = self.dir_model / "modules.json"
  2401. if module_path.is_file():
  2402. with open(module_path, encoding="utf-8") as f:
  2403. modules = json.load(f)
  2404. for mod in modules:
  2405. if mod["type"] == "sentence_transformers.models.Pooling":
  2406. pooling_path = mod["path"]
  2407. break
  2408. # get pooling type
  2409. if pooling_path is not None:
  2410. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2411. pooling = json.load(f)
  2412. if pooling["pooling_mode_mean_tokens"]:
  2413. pooling_type = gguf.PoolingType.MEAN
  2414. elif pooling["pooling_mode_cls_token"]:
  2415. pooling_type = gguf.PoolingType.CLS
  2416. else:
  2417. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2418. self.gguf_writer.add_pooling_type(pooling_type)
  2419. def set_vocab(self):
  2420. tokens, toktypes, tokpre = self.get_vocab_base()
  2421. self.vocab_size = len(tokens)
  2422. # we need this to validate the size of the token_type embeddings
  2423. # though currently we are passing all zeros to the token_type embeddings
  2424. # "Sequence A" or "Sequence B"
  2425. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2426. # convert to phantom space vocab
  2427. def phantom(tok):
  2428. if tok.startswith("[") and tok.endswith("]"):
  2429. return tok
  2430. if tok.startswith("##"):
  2431. return tok[2:]
  2432. return "\u2581" + tok
  2433. tokens = list(map(phantom, tokens))
  2434. # add vocab to gguf
  2435. self.gguf_writer.add_tokenizer_model("bert")
  2436. self.gguf_writer.add_tokenizer_pre(tokpre)
  2437. self.gguf_writer.add_token_list(tokens)
  2438. self.gguf_writer.add_token_types(toktypes)
  2439. # handle special tokens
  2440. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2441. special_vocab.add_to_gguf(self.gguf_writer)
  2442. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2443. del bid # unused
  2444. if name.startswith("bert."):
  2445. name = name[5:]
  2446. if name.endswith(".gamma"):
  2447. name = name[:-6] + ".weight"
  2448. if name.endswith(".beta"):
  2449. name = name[:-5] + ".bias"
  2450. # we are only using BERT for embeddings so we don't need the pooling layer
  2451. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2452. return [] # we don't need these
  2453. if name.startswith("cls.predictions"):
  2454. return []
  2455. if name.startswith("cls.seq_relationship"):
  2456. return []
  2457. return [(self.map_tensor_name(name), data_torch)]
  2458. @Model.register("RobertaModel")
  2459. class RobertaModel(BertModel):
  2460. model_arch = gguf.MODEL_ARCH.BERT
  2461. def __init__(self, *args, **kwargs):
  2462. super().__init__(*args, **kwargs)
  2463. # we need the pad_token_id to know how to chop down position_embd matrix
  2464. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2465. self._position_offset = 1 + pad_token_id
  2466. if "max_position_embeddings" in self.hparams:
  2467. self.hparams["max_position_embeddings"] -= self._position_offset
  2468. else:
  2469. self._position_offset = None
  2470. def set_vocab(self):
  2471. """Support BPE tokenizers for roberta models"""
  2472. bpe_tok_path = self.dir_model / "tokenizer.json"
  2473. if bpe_tok_path.exists():
  2474. self._set_vocab_gpt2()
  2475. self.gguf_writer.add_add_bos_token(True)
  2476. self.gguf_writer.add_add_eos_token(True)
  2477. # we need this to validate the size of the token_type embeddings
  2478. # though currently we are passing all zeros to the token_type embeddings
  2479. # "Sequence A" or "Sequence B"
  2480. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2481. else:
  2482. return super().set_vocab()
  2483. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2484. # if name starts with "roberta.", remove the prefix
  2485. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2486. if name.startswith("roberta."):
  2487. name = name[8:]
  2488. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2489. if name == "embeddings.position_embeddings.weight":
  2490. if self._position_offset is not None:
  2491. data_torch = data_torch[self._position_offset:,:]
  2492. return super().modify_tensors(data_torch, name, bid)
  2493. @Model.register("NomicBertModel")
  2494. class NomicBertModel(BertModel):
  2495. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2496. def __init__(self, *args, **kwargs):
  2497. super().__init__(*args, **kwargs)
  2498. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2499. self.hparams["n_ctx"] = 2048
  2500. # SwigLU activation
  2501. assert self.hparams["activation_function"] == "swiglu"
  2502. # this doesn't do anything in the HF version
  2503. assert self.hparams["causal"] is False
  2504. # no bias tensors
  2505. assert self.hparams["qkv_proj_bias"] is False
  2506. assert self.hparams["mlp_fc1_bias"] is False
  2507. assert self.hparams["mlp_fc2_bias"] is False
  2508. # norm at end of layer
  2509. assert self.hparams["prenorm"] is False
  2510. # standard RoPE
  2511. assert self.hparams["rotary_emb_fraction"] == 1.0
  2512. assert self.hparams["rotary_emb_interleaved"] is False
  2513. assert self.hparams["rotary_emb_scale_base"] is None
  2514. def set_gguf_parameters(self):
  2515. super().set_gguf_parameters()
  2516. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2517. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2518. class XLMRobertaModel(BertModel):
  2519. model_arch = gguf.MODEL_ARCH.BERT
  2520. def __init__(self, *args, **kwargs):
  2521. super().__init__(*args, **kwargs)
  2522. # we need the pad_token_id to know how to chop down position_embd matrix
  2523. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2524. self._position_offset = 1 + pad_token_id
  2525. if "max_position_embeddings" in self.hparams:
  2526. self.hparams["max_position_embeddings"] -= self._position_offset
  2527. else:
  2528. self._position_offset = None
  2529. def set_vocab(self):
  2530. # to avoid TypeError: Descriptors cannot be created directly
  2531. # exception when importing sentencepiece_model_pb2
  2532. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2533. from sentencepiece import SentencePieceProcessor
  2534. from sentencepiece import sentencepiece_model_pb2 as model
  2535. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2536. if not tokenizer_path.is_file():
  2537. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2538. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2539. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2540. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2541. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2542. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2543. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2544. tokenizer = SentencePieceProcessor()
  2545. tokenizer.LoadFromFile(str(tokenizer_path))
  2546. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2547. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2548. scores: list[float] = [-10000.0] * vocab_size
  2549. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2550. for token_id in range(tokenizer.vocab_size()):
  2551. piece = tokenizer.IdToPiece(token_id)
  2552. text = piece.encode("utf-8")
  2553. score = tokenizer.GetScore(token_id)
  2554. toktype = SentencePieceTokenTypes.NORMAL
  2555. if tokenizer.IsUnknown(token_id):
  2556. toktype = SentencePieceTokenTypes.UNKNOWN
  2557. elif tokenizer.IsControl(token_id):
  2558. toktype = SentencePieceTokenTypes.CONTROL
  2559. elif tokenizer.IsUnused(token_id):
  2560. toktype = SentencePieceTokenTypes.UNUSED
  2561. elif tokenizer.IsByte(token_id):
  2562. toktype = SentencePieceTokenTypes.BYTE
  2563. tokens[token_id] = text
  2564. scores[token_id] = score
  2565. toktypes[token_id] = toktype
  2566. if vocab_size > len(tokens):
  2567. pad_count = vocab_size - len(tokens)
  2568. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2569. for i in range(1, pad_count + 1):
  2570. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2571. scores.append(-1000.0)
  2572. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2573. # realign tokens (see HF tokenizer code)
  2574. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2575. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2576. toktypes = [
  2577. SentencePieceTokenTypes.CONTROL,
  2578. SentencePieceTokenTypes.CONTROL,
  2579. SentencePieceTokenTypes.CONTROL,
  2580. SentencePieceTokenTypes.UNKNOWN,
  2581. ] + toktypes[3:-1]
  2582. self.gguf_writer.add_tokenizer_model("t5")
  2583. self.gguf_writer.add_tokenizer_pre("default")
  2584. self.gguf_writer.add_token_list(tokens)
  2585. self.gguf_writer.add_token_scores(scores)
  2586. self.gguf_writer.add_token_types(toktypes)
  2587. self.gguf_writer.add_add_space_prefix(add_prefix)
  2588. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2589. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2590. if precompiled_charsmap:
  2591. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2592. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2593. special_vocab.add_to_gguf(self.gguf_writer)
  2594. self.gguf_writer.add_add_bos_token(True)
  2595. self.gguf_writer.add_add_eos_token(True)
  2596. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2597. # if name starts with "roberta.", remove the prefix
  2598. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2599. if name.startswith("roberta."):
  2600. name = name[8:]
  2601. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2602. if name == "embeddings.position_embeddings.weight":
  2603. if self._position_offset is not None:
  2604. data_torch = data_torch[self._position_offset:,:]
  2605. return super().modify_tensors(data_torch, name, bid)
  2606. @Model.register("GemmaForCausalLM")
  2607. class GemmaModel(Model):
  2608. model_arch = gguf.MODEL_ARCH.GEMMA
  2609. def set_vocab(self):
  2610. self._set_vocab_sentencepiece()
  2611. # TODO: these special tokens should be exported only for the CodeGemma family
  2612. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2613. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2614. special_vocab._set_special_token("prefix", 67)
  2615. special_vocab._set_special_token("suffix", 69)
  2616. special_vocab._set_special_token("middle", 68)
  2617. special_vocab._set_special_token("fsep", 70)
  2618. special_vocab._set_special_token("eot", 107)
  2619. special_vocab.chat_template = None # do not add it twice
  2620. special_vocab.add_to_gguf(self.gguf_writer)
  2621. self.gguf_writer.add_add_space_prefix(False)
  2622. def set_gguf_parameters(self):
  2623. hparams = self.hparams
  2624. block_count = hparams["num_hidden_layers"]
  2625. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2626. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2627. self.gguf_writer.add_block_count(block_count)
  2628. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2629. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2630. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2631. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2632. self.gguf_writer.add_key_length(hparams["head_dim"])
  2633. self.gguf_writer.add_value_length(hparams["head_dim"])
  2634. self.gguf_writer.add_file_type(self.ftype)
  2635. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2636. del bid # unused
  2637. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2638. # To prevent errors, skip loading lm_head.weight.
  2639. if name == "lm_head.weight":
  2640. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2641. return []
  2642. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2643. if name.endswith("norm.weight"):
  2644. data_torch = data_torch + 1
  2645. return [(self.map_tensor_name(name), data_torch)]
  2646. @Model.register("Gemma2ForCausalLM")
  2647. class Gemma2Model(Model):
  2648. model_arch = gguf.MODEL_ARCH.GEMMA2
  2649. def set_vocab(self):
  2650. self._set_vocab_sentencepiece()
  2651. self.gguf_writer.add_add_space_prefix(False)
  2652. def set_gguf_parameters(self):
  2653. hparams = self.hparams
  2654. block_count = hparams["num_hidden_layers"]
  2655. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2656. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2657. self.gguf_writer.add_block_count(block_count)
  2658. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2659. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2660. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2661. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2662. self.gguf_writer.add_key_length(hparams["head_dim"])
  2663. self.gguf_writer.add_value_length(hparams["head_dim"])
  2664. self.gguf_writer.add_file_type(self.ftype)
  2665. self.gguf_writer.add_attn_logit_softcapping(
  2666. self.hparams["attn_logit_softcapping"]
  2667. )
  2668. self.gguf_writer.add_final_logit_softcapping(
  2669. self.hparams["final_logit_softcapping"]
  2670. )
  2671. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2672. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2673. del bid # unused
  2674. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2675. # To prevent errors, skip loading lm_head.weight.
  2676. if name == "lm_head.weight":
  2677. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2678. return []
  2679. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2680. if name.endswith("norm.weight"):
  2681. data_torch = data_torch + 1
  2682. return [(self.map_tensor_name(name), data_torch)]
  2683. @Model.register("Starcoder2ForCausalLM")
  2684. class StarCoder2Model(Model):
  2685. model_arch = gguf.MODEL_ARCH.STARCODER2
  2686. @Model.register("Rwkv6ForCausalLM")
  2687. class Rwkv6Model(Model):
  2688. model_arch = gguf.MODEL_ARCH.RWKV6
  2689. def set_vocab(self):
  2690. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2691. vocab_size = self.hparams.get("vocab_size", 65536)
  2692. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2693. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2694. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2695. lines = f.readlines()
  2696. for line in lines:
  2697. parts = line.split(' ')
  2698. assert len(parts) >= 3
  2699. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2700. token = token.encode("utf-8") if isinstance(token, str) else token
  2701. assert isinstance(token, bytes)
  2702. assert len(token) == token_len
  2703. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2704. tokens.append(token_text.encode("utf-8"))
  2705. toktypes.append(gguf.TokenType.NORMAL)
  2706. remainder = vocab_size - len(tokens)
  2707. assert remainder >= 0
  2708. for i in range(len(tokens), vocab_size):
  2709. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2710. toktypes.append(gguf.TokenType.UNUSED)
  2711. self.gguf_writer.add_tokenizer_model("rwkv")
  2712. self.gguf_writer.add_token_list(tokens)
  2713. self.gguf_writer.add_token_types(toktypes)
  2714. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2715. special_vocab.chat_template = "rwkv-world"
  2716. # hack: Add '\n\n' as the EOT token to make it chat normally
  2717. special_vocab._set_special_token("eot", 261)
  2718. special_vocab.add_to_gguf(self.gguf_writer)
  2719. def set_gguf_parameters(self):
  2720. block_count = self.hparams["num_hidden_layers"]
  2721. head_size = self.hparams["head_size"]
  2722. hidden_size = self.hparams["hidden_size"]
  2723. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2724. rescale_every_n_layers = self.hparams["rescale_every"]
  2725. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2726. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2727. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2728. # RWKV isn't context limited
  2729. self.gguf_writer.add_context_length(1048576)
  2730. self.gguf_writer.add_embedding_length(hidden_size)
  2731. self.gguf_writer.add_block_count(block_count)
  2732. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2733. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2734. self.gguf_writer.add_wkv_head_size(head_size)
  2735. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2736. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2737. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2738. self.gguf_writer.add_file_type(self.ftype)
  2739. # required by llama.cpp, unused
  2740. self.gguf_writer.add_head_count(0)
  2741. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2742. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2743. new_name = self.map_tensor_name(name)
  2744. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2745. new_name += ".weight"
  2746. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2747. data_torch = data_torch.transpose(0, 1)
  2748. if new_name.endswith("time_mix_w2.weight"):
  2749. data_torch = data_torch.permute(0, 2, 1)
  2750. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2751. data_torch = data_torch.squeeze()
  2752. try:
  2753. rescale_every_n_layers = self.hparams["rescale_every"]
  2754. if rescale_every_n_layers > 0:
  2755. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2756. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2757. except KeyError:
  2758. pass
  2759. # concat time_mix_lerp weights to reduce some cpu overhead
  2760. # also reduces the number of tensors in the model
  2761. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  2762. try:
  2763. self.lerp_weights[bid][new_name] = data_torch
  2764. except KeyError:
  2765. self.lerp_weights[bid] = {new_name: data_torch}
  2766. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  2767. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2768. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  2769. yield (new_name, data)
  2770. return
  2771. yield (new_name, data_torch)
  2772. @Model.register("RWKV6Qwen2ForCausalLM")
  2773. class RWKV6Qwen2Model(Rwkv6Model):
  2774. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  2775. def set_vocab(self):
  2776. try:
  2777. self._set_vocab_sentencepiece()
  2778. except FileNotFoundError:
  2779. self._set_vocab_gpt2()
  2780. def set_gguf_parameters(self):
  2781. block_count = self.hparams["num_hidden_layers"]
  2782. num_attention_heads = self.hparams["num_attention_heads"]
  2783. num_key_value_heads = self.hparams["num_key_value_heads"]
  2784. hidden_size = self.hparams["hidden_size"]
  2785. head_size = hidden_size // num_attention_heads
  2786. rms_norm_eps = self.hparams["rms_norm_eps"]
  2787. intermediate_size = self.hparams["intermediate_size"]
  2788. time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
  2789. time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
  2790. # RWKV isn't context limited
  2791. self.gguf_writer.add_context_length(1048576)
  2792. self.gguf_writer.add_embedding_length(hidden_size)
  2793. self.gguf_writer.add_block_count(block_count)
  2794. self.gguf_writer.add_wkv_head_size(head_size)
  2795. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2796. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2797. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2798. self.gguf_writer.add_file_type(self.ftype)
  2799. # special parameters for time_mixing in RWKV6QWEN2
  2800. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2801. self.gguf_writer.add_token_shift_count(1)
  2802. # RWKV6QWEN2 use grouped key/value like GQA
  2803. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  2804. # required by llama.cpp, unused
  2805. self.gguf_writer.add_head_count(0)
  2806. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2807. for new_name, data in super().modify_tensors(data_torch, name, bid):
  2808. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  2809. data = data.view(5, -1, data.shape[-1])
  2810. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  2811. # permute them here to avoid code changes
  2812. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  2813. if "w2" in new_name:
  2814. data = data.view(5, -1, data.shape[-1])
  2815. yield (new_name, data)
  2816. continue
  2817. yield (new_name, data)
  2818. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2819. class MambaModel(Model):
  2820. model_arch = gguf.MODEL_ARCH.MAMBA
  2821. def set_vocab(self):
  2822. vocab_size = self.hparams["vocab_size"]
  2823. # Round vocab size to next multiple of 8
  2824. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2825. # pad using ceiling division
  2826. # ref: https://stackoverflow.com/a/17511341/22827863
  2827. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2828. self.hparams["vocab_size"] = vocab_size
  2829. if (self.dir_model / "tokenizer.json").is_file():
  2830. self._set_vocab_gpt2()
  2831. elif (self.dir_model / "tokenizer.model").is_file():
  2832. self._set_vocab_sentencepiece()
  2833. else:
  2834. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2835. self._set_vocab_builtin("gpt-neox", vocab_size)
  2836. def set_gguf_parameters(self):
  2837. d_model = self.find_hparam(["hidden_size", "d_model"])
  2838. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2839. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2840. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2841. # ceiling division
  2842. # ref: https://stackoverflow.com/a/17511341/22827863
  2843. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2844. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2845. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2846. use_dt_b_c_norm = False
  2847. # For falconmamba we do apply RMS norm on B / DT and C layers
  2848. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2849. use_dt_b_c_norm = True
  2850. # Fail early for models which don't have a block expansion factor of 2
  2851. assert d_inner == 2 * d_model
  2852. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2853. self.gguf_writer.add_embedding_length(d_model)
  2854. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2855. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2856. self.gguf_writer.add_block_count(self.block_count)
  2857. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2858. self.gguf_writer.add_ssm_inner_size(d_inner)
  2859. self.gguf_writer.add_ssm_state_size(d_state)
  2860. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2861. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2862. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2863. self.gguf_writer.add_file_type(self.ftype)
  2864. _tok_embd = None
  2865. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2866. del bid # unused
  2867. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2868. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2869. new_name = self.map_tensor_name(name)
  2870. if name.endswith(".A_log"):
  2871. logger.debug("A_log --> A ==> " + new_name)
  2872. data_torch = -torch.exp(data_torch)
  2873. # assuming token_embd.weight is seen before output.weight
  2874. if self._tok_embd is not None and new_name == output_name:
  2875. if torch.equal(self._tok_embd, data_torch):
  2876. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2877. return []
  2878. elif new_name == tok_embd_name:
  2879. self._tok_embd = data_torch
  2880. return [(new_name, data_torch)]
  2881. @Model.register("CohereForCausalLM")
  2882. class CommandR2Model(Model):
  2883. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2884. def __init__(self, *args, **kwargs):
  2885. super().__init__(*args, **kwargs)
  2886. # max_position_embeddings = 8192 in config.json but model was actually
  2887. # trained on 128k context length
  2888. # aya-23 models don't have model_max_length specified
  2889. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2890. def set_gguf_parameters(self):
  2891. super().set_gguf_parameters()
  2892. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2893. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2894. @Model.register("Cohere2ForCausalLM")
  2895. class Cohere2Model(Model):
  2896. model_arch = gguf.MODEL_ARCH.COHERE2
  2897. def set_gguf_parameters(self):
  2898. super().set_gguf_parameters()
  2899. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2900. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2901. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  2902. rotary_pct = self.hparams["rotary_pct"]
  2903. hidden_size = self.hparams["hidden_size"]
  2904. num_attention_heads = self.hparams["num_attention_heads"]
  2905. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  2906. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2907. @Model.register("OlmoForCausalLM")
  2908. @Model.register("OLMoForCausalLM")
  2909. class OlmoModel(Model):
  2910. model_arch = gguf.MODEL_ARCH.OLMO
  2911. def set_gguf_parameters(self):
  2912. super().set_gguf_parameters()
  2913. self.gguf_writer.add_layer_norm_eps(1e-5)
  2914. clip_qkv = self.hparams.get("clip_qkv")
  2915. if clip_qkv is not None:
  2916. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2917. # Same as super class, but permuting q_proj, k_proj
  2918. # Copied from: LlamaModel
  2919. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2920. del bid # unused
  2921. n_head = self.hparams["num_attention_heads"]
  2922. n_kv_head = self.hparams.get("num_key_value_heads")
  2923. if name.endswith("q_proj.weight"):
  2924. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2925. if name.endswith("k_proj.weight"):
  2926. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2927. return [(self.map_tensor_name(name), data_torch)]
  2928. @Model.register("Olmo2ForCausalLM")
  2929. class Olmo2Model(Model):
  2930. model_arch = gguf.MODEL_ARCH.OLMO2
  2931. @Model.register("OlmoeForCausalLM")
  2932. class OlmoeModel(Model):
  2933. model_arch = gguf.MODEL_ARCH.OLMOE
  2934. def set_gguf_parameters(self):
  2935. super().set_gguf_parameters()
  2936. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2937. if (n_experts := self.hparams.get("num_experts")) is not None:
  2938. self.gguf_writer.add_expert_count(n_experts)
  2939. _experts: list[dict[str, Tensor]] | None = None
  2940. # Copied from: Qwen2MoeModel
  2941. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2942. # process the experts separately
  2943. if name.find("experts") != -1:
  2944. n_experts = self.hparams["num_experts"]
  2945. assert bid is not None
  2946. if self._experts is None:
  2947. self._experts = [{} for _ in range(self.block_count)]
  2948. self._experts[bid][name] = data_torch
  2949. if len(self._experts[bid]) >= n_experts * 3:
  2950. tensors: list[tuple[str, Tensor]] = []
  2951. # merge the experts into a single 3d tensor
  2952. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2953. datas: list[Tensor] = []
  2954. for xid in range(n_experts):
  2955. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2956. datas.append(self._experts[bid][ename])
  2957. del self._experts[bid][ename]
  2958. data_torch = torch.stack(datas, dim=0)
  2959. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2960. new_name = self.map_tensor_name(merged_name)
  2961. tensors.append((new_name, data_torch))
  2962. return tensors
  2963. else:
  2964. return []
  2965. return [(self.map_tensor_name(name), data_torch)]
  2966. # Copied from: Qwen2MoeModel
  2967. def prepare_tensors(self):
  2968. super().prepare_tensors()
  2969. if self._experts is not None:
  2970. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2971. experts = [k for d in self._experts for k in d.keys()]
  2972. if len(experts) > 0:
  2973. raise ValueError(f"Unprocessed experts: {experts}")
  2974. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2975. class JinaBertV2Model(BertModel):
  2976. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2977. def __init__(self, *args, **kwargs):
  2978. super().__init__(*args, **kwargs)
  2979. self.intermediate_size = self.hparams["intermediate_size"]
  2980. def get_tensors(self):
  2981. for name, data in super().get_tensors():
  2982. if 'gated_layer' in name:
  2983. d1 = data[:self.intermediate_size, :]
  2984. name1 = name.replace('gated_layers', 'gated_layers_w')
  2985. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2986. d2 = data[self.intermediate_size:, :]
  2987. name2 = name.replace('gated_layers', 'gated_layers_v')
  2988. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2989. yield name1, d1
  2990. yield name2, d2
  2991. continue
  2992. yield name, data
  2993. def set_vocab(self):
  2994. tokenizer_class = 'BertTokenizer'
  2995. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2996. tokenizer_class = json.load(f)['tokenizer_class']
  2997. if tokenizer_class == 'BertTokenizer':
  2998. super().set_vocab()
  2999. elif tokenizer_class == 'RobertaTokenizer':
  3000. self._set_vocab_gpt2()
  3001. self.gguf_writer.add_token_type_count(2)
  3002. else:
  3003. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3004. self.gguf_writer.add_add_bos_token(True)
  3005. self.gguf_writer.add_add_eos_token(True)
  3006. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3007. # if name starts with "bert.", remove the prefix
  3008. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3009. if name.startswith("bert."):
  3010. name = name[5:]
  3011. return super().modify_tensors(data_torch, name, bid)
  3012. @Model.register("OpenELMForCausalLM")
  3013. class OpenELMModel(Model):
  3014. model_arch = gguf.MODEL_ARCH.OPENELM
  3015. @staticmethod
  3016. def _make_divisible(v: float | int, divisor: int) -> int:
  3017. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3018. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3019. # Make sure that round down does not go down by more than 10%.
  3020. if new_v < 0.9 * v:
  3021. new_v += divisor
  3022. return new_v
  3023. def __init__(self, *args, **kwargs):
  3024. super().__init__(*args, **kwargs)
  3025. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3026. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3027. self._n_embd: int = self.hparams["model_dim"]
  3028. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3029. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3030. self._ffn_dims: list[int] = [
  3031. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3032. for multiplier in ffn_multipliers
  3033. ]
  3034. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3035. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3036. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3037. def set_vocab(self):
  3038. try:
  3039. self._set_vocab_sentencepiece()
  3040. except FileNotFoundError:
  3041. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3042. def set_gguf_parameters(self):
  3043. n_embd = self._n_embd
  3044. head_dim = self.hparams["head_dim"]
  3045. rot_pct = 1.0
  3046. assert self.block_count == len(self._num_kv_heads)
  3047. assert self.block_count == len(self._num_query_heads)
  3048. assert self.block_count == len(self._ffn_dims)
  3049. self.gguf_writer.add_block_count(self.block_count)
  3050. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3051. self.gguf_writer.add_embedding_length(n_embd)
  3052. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3053. self.gguf_writer.add_head_count(self._num_query_heads)
  3054. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3055. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3056. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3057. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3058. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3059. self.gguf_writer.add_key_length(head_dim)
  3060. self.gguf_writer.add_value_length(head_dim)
  3061. self.gguf_writer.add_file_type(self.ftype)
  3062. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3063. if "n_layers" in keys:
  3064. return self.hparams["num_transformer_layers"]
  3065. return super().find_hparam(keys, optional)
  3066. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3067. # split ff
  3068. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3069. ff_dim = self._ffn_dims[bid]
  3070. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3071. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3072. return
  3073. yield (self.map_tensor_name(name), data_torch)
  3074. @Model.register("ArcticForCausalLM")
  3075. class ArcticModel(Model):
  3076. model_arch = gguf.MODEL_ARCH.ARCTIC
  3077. def set_vocab(self):
  3078. # The reason for using a custom implementation here is that the
  3079. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3080. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3081. from sentencepiece import SentencePieceProcessor
  3082. tokenizer_path = self.dir_model / 'tokenizer.model'
  3083. if not tokenizer_path.is_file():
  3084. logger.error(f'Error: Missing {tokenizer_path}')
  3085. sys.exit(1)
  3086. # Read the whole vocabulary from the tokenizer.model file
  3087. tokenizer = SentencePieceProcessor()
  3088. tokenizer.LoadFromFile(str(tokenizer_path))
  3089. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3090. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3091. scores: list[float] = [-10000.0] * vocab_size
  3092. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3093. for token_id in range(tokenizer.vocab_size()):
  3094. piece = tokenizer.IdToPiece(token_id)
  3095. text = piece.encode("utf-8")
  3096. score = tokenizer.GetScore(token_id)
  3097. toktype = SentencePieceTokenTypes.NORMAL
  3098. if tokenizer.IsUnknown(token_id):
  3099. toktype = SentencePieceTokenTypes.UNKNOWN
  3100. elif tokenizer.IsControl(token_id):
  3101. toktype = SentencePieceTokenTypes.CONTROL
  3102. elif tokenizer.IsUnused(token_id):
  3103. toktype = SentencePieceTokenTypes.UNUSED
  3104. elif tokenizer.IsByte(token_id):
  3105. toktype = SentencePieceTokenTypes.BYTE
  3106. tokens[token_id] = text
  3107. scores[token_id] = score
  3108. toktypes[token_id] = toktype
  3109. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3110. # of information about added/redefined tokens and modify them accordingly.
  3111. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3112. if tokenizer_config_file.is_file():
  3113. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3114. tokenizer_config_json = json.load(f)
  3115. if "added_tokens_decoder" in tokenizer_config_json:
  3116. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3117. for token_id, token_json in added_tokens_decoder.items():
  3118. token_id = int(token_id)
  3119. if token_id >= vocab_size:
  3120. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3121. continue
  3122. token_content = token_json["content"]
  3123. token_type = SentencePieceTokenTypes.USER_DEFINED
  3124. token_score = -10000.0
  3125. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3126. # Set the score to 0.0 as in the original tokenizer.model
  3127. if ("special" in token_json) and token_json["special"]:
  3128. if token_content == tokenizer_config_json["unk_token"]:
  3129. token_type = SentencePieceTokenTypes.UNKNOWN
  3130. else:
  3131. token_type = SentencePieceTokenTypes.CONTROL
  3132. token_score = 0.0
  3133. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3134. tokens[token_id] = token_content.encode("utf-8")
  3135. toktypes[token_id] = token_type
  3136. scores[token_id] = token_score
  3137. self.gguf_writer.add_tokenizer_model("llama")
  3138. self.gguf_writer.add_tokenizer_pre("default")
  3139. self.gguf_writer.add_token_list(tokens)
  3140. self.gguf_writer.add_token_scores(scores)
  3141. self.gguf_writer.add_token_types(toktypes)
  3142. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3143. special_vocab.add_to_gguf(self.gguf_writer)
  3144. def set_gguf_parameters(self):
  3145. super().set_gguf_parameters()
  3146. hparams = self.hparams
  3147. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3148. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3149. _experts: list[dict[str, Tensor]] | None = None
  3150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3151. n_head = self.hparams["num_attention_heads"]
  3152. n_kv_head = self.hparams.get("num_key_value_heads")
  3153. if name.endswith("q_proj.weight"):
  3154. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3155. if name.endswith("k_proj.weight"):
  3156. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3157. # process the experts separately
  3158. if name.find("block_sparse_moe.experts") != -1:
  3159. n_experts = self.hparams["num_local_experts"]
  3160. assert bid is not None
  3161. if self._experts is None:
  3162. self._experts = [{} for _ in range(self.block_count)]
  3163. self._experts[bid][name] = data_torch
  3164. if len(self._experts[bid]) >= n_experts * 3:
  3165. tensors: list[tuple[str, Tensor]] = []
  3166. # merge the experts into a single 3d tensor
  3167. for wid in ["w1", "w2", "w3"]:
  3168. datas: list[Tensor] = []
  3169. for xid in range(n_experts):
  3170. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3171. datas.append(self._experts[bid][ename])
  3172. del self._experts[bid][ename]
  3173. data_torch = torch.stack(datas, dim=0)
  3174. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3175. new_name = self.map_tensor_name(merged_name)
  3176. tensors.append((new_name, data_torch))
  3177. return tensors
  3178. else:
  3179. return []
  3180. return [(self.map_tensor_name(name), data_torch)]
  3181. def prepare_tensors(self):
  3182. super().prepare_tensors()
  3183. if self._experts is not None:
  3184. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3185. experts = [k for d in self._experts for k in d.keys()]
  3186. if len(experts) > 0:
  3187. raise ValueError(f"Unprocessed experts: {experts}")
  3188. @Model.register("DeepseekForCausalLM")
  3189. class DeepseekModel(Model):
  3190. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3191. def set_vocab(self):
  3192. try:
  3193. self._set_vocab_sentencepiece()
  3194. except FileNotFoundError:
  3195. self._set_vocab_gpt2()
  3196. def set_gguf_parameters(self):
  3197. super().set_gguf_parameters()
  3198. hparams = self.hparams
  3199. if "head_dim" in hparams:
  3200. rope_dim = hparams["head_dim"]
  3201. else:
  3202. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3203. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3204. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3205. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3206. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3207. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3208. self.gguf_writer.add_expert_weights_scale(1.0)
  3209. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3210. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3211. _experts: list[dict[str, Tensor]] | None = None
  3212. @staticmethod
  3213. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3214. if n_head_kv is not None and n_head != n_head_kv:
  3215. n_head = n_head_kv
  3216. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3217. .swapaxes(1, 2)
  3218. .reshape(weights.shape))
  3219. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3220. n_head = self.hparams["num_attention_heads"]
  3221. n_kv_head = self.hparams.get("num_key_value_heads")
  3222. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3223. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3224. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3225. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3226. # process the experts separately
  3227. if name.find("mlp.experts") != -1:
  3228. n_experts = self.hparams["n_routed_experts"]
  3229. assert bid is not None
  3230. if self._experts is None:
  3231. self._experts = [{} for _ in range(self.block_count)]
  3232. self._experts[bid][name] = data_torch
  3233. if len(self._experts[bid]) >= n_experts * 3:
  3234. tensors: list[tuple[str, Tensor]] = []
  3235. # merge the experts into a single 3d tensor
  3236. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3237. datas: list[Tensor] = []
  3238. for xid in range(n_experts):
  3239. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3240. datas.append(self._experts[bid][ename])
  3241. del self._experts[bid][ename]
  3242. data_torch = torch.stack(datas, dim=0)
  3243. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3244. new_name = self.map_tensor_name(merged_name)
  3245. tensors.append((new_name, data_torch))
  3246. return tensors
  3247. else:
  3248. return []
  3249. return [(self.map_tensor_name(name), data_torch)]
  3250. def prepare_tensors(self):
  3251. super().prepare_tensors()
  3252. if self._experts is not None:
  3253. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3254. experts = [k for d in self._experts for k in d.keys()]
  3255. if len(experts) > 0:
  3256. raise ValueError(f"Unprocessed experts: {experts}")
  3257. @Model.register("DeepseekV2ForCausalLM")
  3258. @Model.register("DeepseekV3ForCausalLM")
  3259. class DeepseekV2Model(Model):
  3260. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3261. def set_vocab(self):
  3262. self._set_vocab_gpt2()
  3263. def set_gguf_parameters(self):
  3264. super().set_gguf_parameters()
  3265. hparams = self.hparams
  3266. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3267. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3268. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3269. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3270. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3271. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3272. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3273. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3274. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3275. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3276. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3277. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3278. if hparams["scoring_func"] == "sigmoid":
  3279. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3280. elif hparams["scoring_func"] == "softmax":
  3281. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3282. else:
  3283. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3284. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3285. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3286. if self.hparams["rope_scaling"].get("type") == "yarn":
  3287. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3288. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3289. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3290. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3291. _experts: list[dict[str, Tensor]] | None = None
  3292. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3293. # rename e_score_correction_bias tensors
  3294. if name.endswith("e_score_correction_bias"):
  3295. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3296. # skip Multi-Token Prediction (MTP) layers
  3297. block_count = self.hparams["num_hidden_layers"]
  3298. match = re.match(r"model.layers.(\d+)", name)
  3299. if match and int(match.group(1)) >= block_count:
  3300. return []
  3301. # process the experts separately
  3302. if name.find("mlp.experts") != -1:
  3303. n_experts = self.hparams["n_routed_experts"]
  3304. assert bid is not None
  3305. if self._experts is None:
  3306. self._experts = [{} for _ in range(self.block_count)]
  3307. self._experts[bid][name] = data_torch
  3308. if len(self._experts[bid]) >= n_experts * 3:
  3309. tensors: list[tuple[str, Tensor]] = []
  3310. # merge the experts into a single 3d tensor
  3311. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3312. datas: list[Tensor] = []
  3313. for xid in range(n_experts):
  3314. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3315. datas.append(self._experts[bid][ename])
  3316. del self._experts[bid][ename]
  3317. data_torch = torch.stack(datas, dim=0)
  3318. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3319. new_name = self.map_tensor_name(merged_name)
  3320. tensors.append((new_name, data_torch))
  3321. return tensors
  3322. else:
  3323. return []
  3324. return [(self.map_tensor_name(name), data_torch)]
  3325. def prepare_tensors(self):
  3326. super().prepare_tensors()
  3327. if self._experts is not None:
  3328. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3329. experts = [k for d in self._experts for k in d.keys()]
  3330. if len(experts) > 0:
  3331. raise ValueError(f"Unprocessed experts: {experts}")
  3332. @Model.register("T5WithLMHeadModel")
  3333. @Model.register("T5ForConditionalGeneration")
  3334. @Model.register("MT5ForConditionalGeneration")
  3335. @Model.register("UMT5ForConditionalGeneration")
  3336. class T5Model(Model):
  3337. model_arch = gguf.MODEL_ARCH.T5
  3338. def __init__(self, *args, **kwargs):
  3339. super().__init__(*args, **kwargs)
  3340. self.shared_token_embeddings_found = False
  3341. def set_vocab(self):
  3342. # to avoid TypeError: Descriptors cannot be created directly
  3343. # exception when importing sentencepiece_model_pb2
  3344. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3345. from sentencepiece import SentencePieceProcessor
  3346. from sentencepiece import sentencepiece_model_pb2 as model
  3347. tokenizer_path = self.dir_model / 'tokenizer.model'
  3348. # many older models use spiece.model tokenizer model filename
  3349. if not tokenizer_path.is_file():
  3350. tokenizer_path = self.dir_model / 'spiece.model'
  3351. if not tokenizer_path.is_file():
  3352. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3353. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3354. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3355. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3356. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3357. # assure the tokenizer model file name is correct
  3358. assert tokenizer_path.name == 'tokenizer.model'
  3359. return self._set_vocab_sentencepiece()
  3360. else:
  3361. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3362. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3363. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3364. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3365. tokenizer = SentencePieceProcessor()
  3366. tokenizer.LoadFromFile(str(tokenizer_path))
  3367. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3368. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3369. scores: list[float] = [-10000.0] * vocab_size
  3370. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3371. for token_id in range(tokenizer.vocab_size()):
  3372. piece = tokenizer.IdToPiece(token_id)
  3373. text = piece.encode("utf-8")
  3374. score = tokenizer.GetScore(token_id)
  3375. toktype = SentencePieceTokenTypes.NORMAL
  3376. if tokenizer.IsUnknown(token_id):
  3377. toktype = SentencePieceTokenTypes.UNKNOWN
  3378. elif tokenizer.IsControl(token_id):
  3379. toktype = SentencePieceTokenTypes.CONTROL
  3380. elif tokenizer.IsUnused(token_id):
  3381. toktype = SentencePieceTokenTypes.UNUSED
  3382. elif tokenizer.IsByte(token_id):
  3383. toktype = SentencePieceTokenTypes.BYTE
  3384. tokens[token_id] = text
  3385. scores[token_id] = score
  3386. toktypes[token_id] = toktype
  3387. added_tokens_file = self.dir_model / 'added_tokens.json'
  3388. if added_tokens_file.is_file():
  3389. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3390. added_tokens_json = json.load(f)
  3391. for key in added_tokens_json:
  3392. token_id = added_tokens_json[key]
  3393. if token_id >= vocab_size:
  3394. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3395. continue
  3396. tokens[token_id] = key.encode("utf-8")
  3397. scores[token_id] = -1000.0
  3398. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3399. if vocab_size > len(tokens):
  3400. pad_count = vocab_size - len(tokens)
  3401. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3402. for i in range(1, pad_count + 1):
  3403. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3404. scores.append(-1000.0)
  3405. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3406. self.gguf_writer.add_tokenizer_model("t5")
  3407. self.gguf_writer.add_tokenizer_pre("default")
  3408. self.gguf_writer.add_token_list(tokens)
  3409. self.gguf_writer.add_token_scores(scores)
  3410. self.gguf_writer.add_token_types(toktypes)
  3411. self.gguf_writer.add_add_space_prefix(add_prefix)
  3412. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3413. if precompiled_charsmap:
  3414. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3415. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3416. special_vocab.add_to_gguf(self.gguf_writer)
  3417. self.gguf_writer.add_add_bos_token(False)
  3418. self.gguf_writer.add_add_eos_token(True)
  3419. def set_gguf_parameters(self):
  3420. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3421. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3422. n_ctx = 512
  3423. self.gguf_writer.add_context_length(n_ctx)
  3424. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3425. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3426. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3427. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3428. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3429. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3430. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3431. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3432. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3433. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3434. self.gguf_writer.add_file_type(self.ftype)
  3435. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3436. del bid # unused
  3437. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3438. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3439. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3440. # and decoder and ignore the remaining ones.
  3441. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3442. if not self.shared_token_embeddings_found:
  3443. name = "shared.weight"
  3444. self.shared_token_embeddings_found = True
  3445. else:
  3446. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3447. return []
  3448. return [(self.map_tensor_name(name), data_torch)]
  3449. @Model.register("T5EncoderModel")
  3450. class T5EncoderModel(Model):
  3451. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3452. def __init__(self, *args, **kwargs):
  3453. super().__init__(*args, **kwargs)
  3454. self.shared_token_embeddings_found = False
  3455. def set_vocab(self):
  3456. # to avoid TypeError: Descriptors cannot be created directly
  3457. # exception when importing sentencepiece_model_pb2
  3458. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3459. from sentencepiece import SentencePieceProcessor
  3460. from sentencepiece import sentencepiece_model_pb2 as model
  3461. tokenizer_path = self.dir_model / 'tokenizer.model'
  3462. # many older models use spiece.model tokenizer model filename
  3463. if not tokenizer_path.is_file():
  3464. tokenizer_path = self.dir_model / 'spiece.model'
  3465. if not tokenizer_path.is_file():
  3466. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3467. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3468. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3469. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3470. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3471. # assure the tokenizer model file name is correct
  3472. assert tokenizer_path.name == 'tokenizer.model'
  3473. return self._set_vocab_sentencepiece()
  3474. else:
  3475. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3476. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3477. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3478. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3479. tokenizer = SentencePieceProcessor()
  3480. tokenizer.LoadFromFile(str(tokenizer_path))
  3481. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3482. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3483. scores: list[float] = [-10000.0] * vocab_size
  3484. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3485. for token_id in range(tokenizer.vocab_size()):
  3486. piece = tokenizer.IdToPiece(token_id)
  3487. text = piece.encode("utf-8")
  3488. score = tokenizer.GetScore(token_id)
  3489. toktype = SentencePieceTokenTypes.NORMAL
  3490. if tokenizer.IsUnknown(token_id):
  3491. toktype = SentencePieceTokenTypes.UNKNOWN
  3492. elif tokenizer.IsControl(token_id):
  3493. toktype = SentencePieceTokenTypes.CONTROL
  3494. elif tokenizer.IsUnused(token_id):
  3495. toktype = SentencePieceTokenTypes.UNUSED
  3496. elif tokenizer.IsByte(token_id):
  3497. toktype = SentencePieceTokenTypes.BYTE
  3498. tokens[token_id] = text
  3499. scores[token_id] = score
  3500. toktypes[token_id] = toktype
  3501. added_tokens_file = self.dir_model / 'added_tokens.json'
  3502. if added_tokens_file.is_file():
  3503. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3504. added_tokens_json = json.load(f)
  3505. for key in added_tokens_json:
  3506. token_id = added_tokens_json[key]
  3507. if token_id >= vocab_size:
  3508. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3509. continue
  3510. tokens[token_id] = key.encode("utf-8")
  3511. scores[token_id] = -1000.0
  3512. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3513. if vocab_size > len(tokens):
  3514. pad_count = vocab_size - len(tokens)
  3515. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3516. for i in range(1, pad_count + 1):
  3517. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3518. scores.append(-1000.0)
  3519. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3520. self.gguf_writer.add_tokenizer_model("t5")
  3521. self.gguf_writer.add_tokenizer_pre("default")
  3522. self.gguf_writer.add_token_list(tokens)
  3523. self.gguf_writer.add_token_scores(scores)
  3524. self.gguf_writer.add_token_types(toktypes)
  3525. self.gguf_writer.add_add_space_prefix(add_prefix)
  3526. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3527. if precompiled_charsmap:
  3528. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3529. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3530. special_vocab.add_to_gguf(self.gguf_writer)
  3531. self.gguf_writer.add_add_bos_token(False)
  3532. self.gguf_writer.add_add_eos_token(True)
  3533. def set_gguf_parameters(self):
  3534. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3535. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3536. n_ctx = 512
  3537. self.gguf_writer.add_context_length(n_ctx)
  3538. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3539. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3540. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3541. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3542. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3543. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3544. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3545. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3546. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3547. self.gguf_writer.add_file_type(self.ftype)
  3548. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3549. del bid # unused
  3550. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3551. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3552. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3553. # and decoder and ignore the remaining ones.
  3554. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3555. if not self.shared_token_embeddings_found:
  3556. name = "shared.weight"
  3557. self.shared_token_embeddings_found = True
  3558. else:
  3559. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3560. return []
  3561. return [(self.map_tensor_name(name), data_torch)]
  3562. @Model.register("JAISLMHeadModel")
  3563. class JaisModel(Model):
  3564. model_arch = gguf.MODEL_ARCH.JAIS
  3565. def __init__(self, *args, **kwargs):
  3566. super().__init__(*args, **kwargs)
  3567. # SwigLU activation
  3568. assert self.hparams["activation_function"] == "swiglu"
  3569. # ALiBi position embedding
  3570. assert self.hparams["position_embedding_type"] == "alibi"
  3571. # Embeddings scale
  3572. self.embeddings_scale = 1.0
  3573. if 'mup_embeddings_scale' in self.hparams:
  3574. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3575. elif 'embeddings_scale' in self.hparams:
  3576. self.embeddings_scale = self.hparams['embeddings_scale']
  3577. else:
  3578. assert False
  3579. self.width_scale = 1.0
  3580. if 'mup_output_alpha' in self.hparams:
  3581. assert 'mup_width_scale' in self.hparams
  3582. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3583. elif 'width_scale' in self.hparams:
  3584. self.width_scale = self.hparams['width_scale']
  3585. else:
  3586. assert False
  3587. self.max_alibi_bias = 8.0
  3588. def set_vocab(self):
  3589. self._set_vocab_gpt2()
  3590. def set_gguf_parameters(self):
  3591. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3592. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3593. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3594. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3595. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3596. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3597. self.gguf_writer.add_file_type(self.ftype)
  3598. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3599. del bid # unused
  3600. tensors: list[tuple[str, Tensor]] = []
  3601. # we don't need these
  3602. if name.endswith((".attn.bias")):
  3603. return tensors
  3604. if name.endswith(("relative_pe.slopes")):
  3605. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3606. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3607. # but Jais's PyTorch model simply precalculates the slope values and places them
  3608. # in relative_pes.slopes
  3609. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3610. first_val = float(data_torch[0].item())
  3611. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3612. return tensors
  3613. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3614. data_torch = data_torch.transpose(1, 0)
  3615. new_name = self.map_tensor_name(name)
  3616. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3617. tensors.append((new_name, data_torch * self.embeddings_scale))
  3618. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3619. tensors.append((new_name, data_torch * self.width_scale))
  3620. else:
  3621. tensors.append((new_name, data_torch))
  3622. return tensors
  3623. def prepare_tensors(self):
  3624. super().prepare_tensors()
  3625. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3626. @Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  3627. class ChatGLMModel(Model):
  3628. model_arch = gguf.MODEL_ARCH.CHATGLM
  3629. def set_vocab_chatglm3(self):
  3630. dir_model = self.dir_model
  3631. hparams = self.hparams
  3632. tokens: list[bytes] = []
  3633. toktypes: list[int] = []
  3634. scores: list[float] = []
  3635. from transformers import AutoTokenizer
  3636. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3637. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3638. assert max(tokenizer.get_vocab().values()) < vocab_size
  3639. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3640. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3641. for token_id in range(vocab_size):
  3642. piece = tokenizer._convert_id_to_token(token_id)
  3643. if token_id == 0:
  3644. piece = "<unk>"
  3645. elif token_id == 1:
  3646. piece = "<bos>"
  3647. elif token_id == 2:
  3648. piece = "<eos>"
  3649. text = piece.encode("utf-8")
  3650. score = 0.0
  3651. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3652. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3653. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3654. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3655. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3656. if piece in special_tokens:
  3657. toktype = SentencePieceTokenTypes.CONTROL
  3658. elif len(piece) == 0:
  3659. text = f"[PAD{token_id}]".encode("utf-8")
  3660. toktype = SentencePieceTokenTypes.UNUSED
  3661. else:
  3662. toktype = SentencePieceTokenTypes.USER_DEFINED
  3663. tokens.append(text)
  3664. scores.append(score)
  3665. toktypes.append(toktype)
  3666. continue
  3667. toktype = SentencePieceTokenTypes.NORMAL
  3668. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3669. toktype = SentencePieceTokenTypes.UNKNOWN
  3670. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3671. toktype = SentencePieceTokenTypes.CONTROL
  3672. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3673. toktype = SentencePieceTokenTypes.UNUSED
  3674. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3675. toktype = SentencePieceTokenTypes.BYTE
  3676. tokens.append(text)
  3677. scores.append(score)
  3678. toktypes.append(toktype)
  3679. self.gguf_writer.add_tokenizer_model("llama")
  3680. # glm3 needs prefix and suffix formatted as:
  3681. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3682. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3683. self.gguf_writer.add_token_list(tokens)
  3684. self.gguf_writer.add_token_scores(scores)
  3685. self.gguf_writer.add_token_types(toktypes)
  3686. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3687. special_vocab.add_to_gguf(self.gguf_writer)
  3688. @staticmethod
  3689. def token_bytes_to_string(b):
  3690. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3691. byte_encoder = bytes_to_unicode()
  3692. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3693. @staticmethod
  3694. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3695. parts = [bytes([b]) for b in token]
  3696. while True:
  3697. min_idx = None
  3698. min_rank = None
  3699. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3700. rank = mergeable_ranks.get(pair[0] + pair[1])
  3701. if rank is not None and (min_rank is None or rank < min_rank):
  3702. min_idx = i
  3703. min_rank = rank
  3704. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3705. break
  3706. assert min_idx is not None
  3707. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3708. return parts
  3709. def set_vocab(self):
  3710. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3711. self.set_vocab_chatglm3()
  3712. return
  3713. dir_model = self.dir_model
  3714. hparams = self.hparams
  3715. tokens: list[str] = []
  3716. toktypes: list[int] = []
  3717. from transformers import AutoTokenizer
  3718. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3719. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  3720. assert max(tokenizer.get_vocab().values()) < vocab_size
  3721. tokens, toktypes, tokpre = self.get_vocab_base()
  3722. self.gguf_writer.add_tokenizer_model("gpt2")
  3723. self.gguf_writer.add_tokenizer_pre(tokpre)
  3724. self.gguf_writer.add_token_list(tokens)
  3725. self.gguf_writer.add_token_types(toktypes)
  3726. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  3727. # only add special tokens when they were not already loaded from config.json
  3728. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3729. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3730. # this one is usually not in config.json anyway
  3731. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3732. special_vocab.add_to_gguf(self.gguf_writer)
  3733. def set_gguf_parameters(self):
  3734. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3735. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3736. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  3737. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3738. self.gguf_writer.add_embedding_length(n_embed)
  3739. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  3740. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  3741. self.gguf_writer.add_head_count(n_head)
  3742. self.gguf_writer.add_head_count_kv(n_head_kv)
  3743. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  3744. self.gguf_writer.add_file_type(self.ftype)
  3745. if "attention_dim" in self.hparams:
  3746. rope_dim = self.hparams["attention_dim"]
  3747. else:
  3748. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3749. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  3750. self.gguf_writer.add_add_bos_token(False)
  3751. rope_freq = 10000
  3752. if "rope_ratio" in self.hparams:
  3753. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3754. self.gguf_writer.add_rope_freq_base(rope_freq)
  3755. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3756. del bid # unused
  3757. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  3758. return []
  3759. name = name.removeprefix("transformer.")
  3760. return [(self.map_tensor_name(name), data_torch)]
  3761. @Model.register("NemotronForCausalLM")
  3762. class NemotronModel(Model):
  3763. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3764. def set_vocab(self):
  3765. self._set_vocab_sentencepiece()
  3766. self.gguf_writer.add_pad_token_id(0)
  3767. self.gguf_writer.add_unk_token_id(1)
  3768. def set_gguf_parameters(self):
  3769. super().set_gguf_parameters()
  3770. hparams = self.hparams
  3771. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3772. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3773. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3774. # * Partial RoPE
  3775. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3776. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3777. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3778. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3779. # * RopeScaling for Nemotron
  3780. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3781. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3782. else:
  3783. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3784. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3786. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3787. # model.layers.{l}.input_layernorm.weight
  3788. # model.layers.{l}.post_attention_layernorm.weight
  3789. # model.norm.weight
  3790. if name.endswith("norm.weight"):
  3791. data_torch = data_torch + 1
  3792. return [(self.map_tensor_name(name), data_torch)]
  3793. @Model.register("ExaoneForCausalLM")
  3794. class ExaoneModel(Model):
  3795. model_arch = gguf.MODEL_ARCH.EXAONE
  3796. def set_gguf_parameters(self):
  3797. hparams = self.hparams
  3798. assert (hparams["activation_function"] == "silu")
  3799. max_position_embeddings = hparams["max_position_embeddings"]
  3800. embed_dim = hparams["hidden_size"]
  3801. num_heads = hparams["num_attention_heads"]
  3802. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3803. layer_norm_eps = hparams["layer_norm_epsilon"]
  3804. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3805. num_layers = hparams["num_layers"]
  3806. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3807. # attention_dropout_rate = hparams["attention_dropout"]
  3808. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3809. # embed_dropout_rate = hparams["embed_dropout"]
  3810. self.gguf_writer.add_embedding_length(embed_dim)
  3811. self.gguf_writer.add_head_count(num_heads)
  3812. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3813. self.gguf_writer.add_context_length(max_position_embeddings)
  3814. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3815. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3816. self.gguf_writer.add_block_count(num_layers)
  3817. self.gguf_writer.add_file_type(self.ftype)
  3818. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3819. self.gguf_writer.add_rope_freq_base(rope_theta)
  3820. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3821. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3822. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3823. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3824. if hparams["rope_scaling"].get("type") == "linear":
  3825. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3826. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3827. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3828. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3829. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3830. base = self.hparams.get("rope_theta", 10000.0)
  3831. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3832. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3833. factor = rope_scaling.get("factor", 8.0)
  3834. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3835. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3836. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3837. low_freq_wavelen = old_context_len / low_freq_factor
  3838. high_freq_wavelen = old_context_len / high_freq_factor
  3839. assert low_freq_wavelen != high_freq_wavelen
  3840. rope_factors = []
  3841. for freq in freqs:
  3842. wavelen = 2 * math.pi / freq
  3843. if wavelen < high_freq_wavelen:
  3844. rope_factors.append(1)
  3845. elif wavelen > low_freq_wavelen:
  3846. rope_factors.append(factor)
  3847. else:
  3848. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3849. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3850. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3851. @Model.register("GraniteForCausalLM")
  3852. class GraniteModel(LlamaModel):
  3853. """Conversion for IBM's GraniteForCausalLM"""
  3854. model_arch = gguf.MODEL_ARCH.GRANITE
  3855. def set_gguf_parameters(self):
  3856. """Granite uses standard llama parameters with the following differences:
  3857. - No head_dim support
  3858. - New multiplier params:
  3859. - attention_scale
  3860. - embedding_scale
  3861. - residual_scale
  3862. - logits_scaling
  3863. """
  3864. if head_dim := self.hparams.pop("head_dim", None):
  3865. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3866. super().set_gguf_parameters()
  3867. # NOTE: Convert _multiplier params to _scale params for naming
  3868. # consistency
  3869. if attention_scale := self.hparams.get("attention_multiplier"):
  3870. self.gguf_writer.add_attention_scale(attention_scale)
  3871. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3872. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3873. self.gguf_writer.add_embedding_scale(embedding_scale)
  3874. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3875. if residual_scale := self.hparams.get("residual_multiplier"):
  3876. self.gguf_writer.add_residual_scale(residual_scale)
  3877. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3878. if logits_scale := self.hparams.get("logits_scaling"):
  3879. self.gguf_writer.add_logit_scale(logits_scale)
  3880. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3881. @Model.register("GraniteMoeForCausalLM")
  3882. class GraniteMoeModel(GraniteModel):
  3883. """Conversion for IBM's GraniteMoeForCausalLM"""
  3884. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3885. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3886. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3887. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3888. the hidden size that is then split during forward. To keep compatibility
  3889. with existing mixtral support, we pull them apart here.
  3890. """
  3891. if name.endswith("block_sparse_moe.input_linear.weight"):
  3892. ffn_dim = self.hparams["intermediate_size"]
  3893. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3894. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3895. return [
  3896. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3897. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3898. ]
  3899. return super().modify_tensors(data_torch, name, bid)
  3900. @Model.register("ChameleonForConditionalGeneration")
  3901. @Model.register("ChameleonForCausalLM") # obsolete
  3902. class ChameleonModel(Model):
  3903. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3904. def set_gguf_parameters(self):
  3905. super().set_gguf_parameters()
  3906. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3907. def set_vocab(self):
  3908. self._set_vocab_gpt2()
  3909. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3910. # ignore image tokenizer for now
  3911. # TODO: remove this once image support is implemented for Chameleon
  3912. if name.startswith("model.vqmodel"):
  3913. return []
  3914. n_head = self.hparams["num_attention_heads"]
  3915. n_kv_head = self.hparams.get("num_key_value_heads")
  3916. hidden_dim = self.hparams.get("hidden_size")
  3917. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3918. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3919. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3920. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3921. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3922. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3923. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3924. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3925. return [(self.map_tensor_name(name), data_torch)]
  3926. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3927. @staticmethod
  3928. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3929. head_dim = hidden_dim // n_heads
  3930. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3931. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3932. return data_torch
  3933. ###### CONVERSION LOGIC ######
  3934. # tree of lazy tensors
  3935. class LazyTorchTensor(gguf.LazyBase):
  3936. _tensor_type = torch.Tensor
  3937. # to keep the type-checker happy
  3938. dtype: torch.dtype
  3939. shape: torch.Size
  3940. # only used when converting a torch.Tensor to a np.ndarray
  3941. _dtype_map: dict[torch.dtype, type] = {
  3942. torch.float16: np.float16,
  3943. torch.float32: np.float32,
  3944. }
  3945. # used for safetensors slices
  3946. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3947. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3948. _dtype_str_map: dict[str, torch.dtype] = {
  3949. "F64": torch.float64,
  3950. "F32": torch.float32,
  3951. "BF16": torch.bfloat16,
  3952. "F16": torch.float16,
  3953. # "U64": torch.uint64,
  3954. "I64": torch.int64,
  3955. # "U32": torch.uint32,
  3956. "I32": torch.int32,
  3957. # "U16": torch.uint16,
  3958. "I16": torch.int16,
  3959. "U8": torch.uint8,
  3960. "I8": torch.int8,
  3961. "BOOL": torch.bool,
  3962. "F8_E4M3": torch.float8_e4m3fn,
  3963. "F8_E5M2": torch.float8_e5m2,
  3964. }
  3965. def numpy(self) -> gguf.LazyNumpyTensor:
  3966. dtype = self._dtype_map[self.dtype]
  3967. return gguf.LazyNumpyTensor(
  3968. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3969. args=(self,),
  3970. func=(lambda s: s.numpy())
  3971. )
  3972. @classmethod
  3973. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3974. return torch.empty(size=shape, dtype=dtype, device="meta")
  3975. @classmethod
  3976. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3977. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3978. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3979. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3980. return cast(torch.Tensor, lazy)
  3981. @classmethod
  3982. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3983. del types # unused
  3984. if kwargs is None:
  3985. kwargs = {}
  3986. if func is torch.Tensor.numpy:
  3987. return args[0].numpy()
  3988. return cls._wrap_fn(func)(*args, **kwargs)
  3989. def parse_args() -> argparse.Namespace:
  3990. parser = argparse.ArgumentParser(
  3991. description="Convert a huggingface model to a GGML compatible file")
  3992. parser.add_argument(
  3993. "--vocab-only", action="store_true",
  3994. help="extract only the vocab",
  3995. )
  3996. parser.add_argument(
  3997. "--outfile", type=Path,
  3998. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3999. )
  4000. parser.add_argument(
  4001. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4002. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4003. )
  4004. parser.add_argument(
  4005. "--bigendian", action="store_true",
  4006. help="model is executed on big endian machine",
  4007. )
  4008. parser.add_argument(
  4009. "model", type=Path,
  4010. help="directory containing model file",
  4011. nargs="?",
  4012. )
  4013. parser.add_argument(
  4014. "--use-temp-file", action="store_true",
  4015. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4016. )
  4017. parser.add_argument(
  4018. "--no-lazy", action="store_true",
  4019. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4020. )
  4021. parser.add_argument(
  4022. "--model-name", type=str, default=None,
  4023. help="name of the model",
  4024. )
  4025. parser.add_argument(
  4026. "--verbose", action="store_true",
  4027. help="increase output verbosity",
  4028. )
  4029. parser.add_argument(
  4030. "--split-max-tensors", type=int, default=0,
  4031. help="max tensors in each split",
  4032. )
  4033. parser.add_argument(
  4034. "--split-max-size", type=str, default="0",
  4035. help="max size per split N(M|G)",
  4036. )
  4037. parser.add_argument(
  4038. "--dry-run", action="store_true",
  4039. help="only print out a split plan and exit, without writing any new files",
  4040. )
  4041. parser.add_argument(
  4042. "--no-tensor-first-split", action="store_true",
  4043. help="do not add tensors to the first split (disabled by default)"
  4044. )
  4045. parser.add_argument(
  4046. "--metadata", type=Path,
  4047. help="Specify the path for an authorship metadata override file"
  4048. )
  4049. parser.add_argument(
  4050. "--print-supported-models", action="store_true",
  4051. help="Print the supported models"
  4052. )
  4053. args = parser.parse_args()
  4054. if not args.print_supported_models and args.model is None:
  4055. parser.error("the following arguments are required: model")
  4056. return args
  4057. def split_str_to_n_bytes(split_str: str) -> int:
  4058. if split_str.endswith("K"):
  4059. n = int(split_str[:-1]) * 1000
  4060. elif split_str.endswith("M"):
  4061. n = int(split_str[:-1]) * 1000 * 1000
  4062. elif split_str.endswith("G"):
  4063. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4064. elif split_str.isnumeric():
  4065. n = int(split_str)
  4066. else:
  4067. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4068. if n < 0:
  4069. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4070. return n
  4071. def main() -> None:
  4072. args = parse_args()
  4073. if args.print_supported_models:
  4074. logger.error("Supported models:")
  4075. Model.print_registered_models()
  4076. sys.exit(0)
  4077. if args.verbose:
  4078. logging.basicConfig(level=logging.DEBUG)
  4079. else:
  4080. logging.basicConfig(level=logging.INFO)
  4081. dir_model = args.model
  4082. if not dir_model.is_dir():
  4083. logger.error(f'Error: {args.model} is not a directory')
  4084. sys.exit(1)
  4085. ftype_map: dict[str, gguf.LlamaFileType] = {
  4086. "f32": gguf.LlamaFileType.ALL_F32,
  4087. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4088. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4089. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4090. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4091. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4092. "auto": gguf.LlamaFileType.GUESSED,
  4093. }
  4094. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4095. if args.use_temp_file and is_split:
  4096. logger.error("Error: Cannot use temp file when splitting")
  4097. sys.exit(1)
  4098. if args.outfile is not None:
  4099. fname_out = args.outfile
  4100. else:
  4101. fname_out = dir_model
  4102. logger.info(f"Loading model: {dir_model.name}")
  4103. hparams = Model.load_hparams(dir_model)
  4104. with torch.inference_mode():
  4105. output_type = ftype_map[args.outtype]
  4106. model_architecture = hparams["architectures"][0]
  4107. try:
  4108. model_class = Model.from_model_architecture(model_architecture)
  4109. except NotImplementedError:
  4110. logger.error(f"Model {model_architecture} is not supported")
  4111. sys.exit(1)
  4112. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  4113. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4114. eager=args.no_lazy,
  4115. metadata_override=args.metadata, model_name=args.model_name,
  4116. split_max_tensors=args.split_max_tensors,
  4117. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4118. small_first_shard=args.no_tensor_first_split)
  4119. if args.vocab_only:
  4120. logger.info("Exporting model vocab...")
  4121. model_instance.write_vocab()
  4122. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4123. else:
  4124. logger.info("Exporting model...")
  4125. model_instance.write()
  4126. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4127. logger.info(f"Model successfully exported to {out_path}")
  4128. if __name__ == '__main__':
  4129. main()