gguf_dump.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import os
  6. import re
  7. import sys
  8. from pathlib import Path
  9. from typing import Any
  10. # Necessary to load the local gguf package
  11. if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent.parent / 'gguf-py').exists():
  12. sys.path.insert(0, str(Path(__file__).parent.parent.parent))
  13. from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402
  14. logger = logging.getLogger("gguf-dump")
  15. def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
  16. file_endian = reader.endianess.name
  17. if reader.byte_order == 'S':
  18. host_endian = 'BIG' if file_endian == 'LITTLE' else 'LITTLE'
  19. else:
  20. host_endian = file_endian
  21. return (host_endian, file_endian)
  22. # For more information about what field.parts and field.data represent,
  23. # please see the comments in the modify_gguf.py example.
  24. def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
  25. host_endian, file_endian = get_file_host_endian(reader)
  26. print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100
  27. print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100
  28. for n, field in enumerate(reader.fields.values(), 1):
  29. if not field.types:
  30. pretty_type = 'N/A'
  31. elif field.types[0] == GGUFValueType.ARRAY:
  32. nest_count = len(field.types) - 1
  33. pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
  34. else:
  35. pretty_type = str(field.types[-1].name)
  36. log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
  37. if field.types:
  38. curr_type = field.types[0]
  39. if curr_type == GGUFValueType.STRING:
  40. content = field.contents()
  41. if len(content) > 60:
  42. content = content[:57] + '...'
  43. log_message += ' = {0}'.format(repr(content))
  44. elif curr_type in reader.gguf_scalar_to_np:
  45. log_message += ' = {0}'.format(field.contents())
  46. else:
  47. content = repr(field.contents(slice(6)))
  48. if len(field.data) > 6:
  49. content = content[:-1] + ', ...]'
  50. log_message += ' = {0}'.format(content)
  51. print(log_message) # noqa: NP100
  52. if args.no_tensors:
  53. return
  54. print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100
  55. for n, tensor in enumerate(reader.tensors, 1):
  56. prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
  57. print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100
  58. def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
  59. import json
  60. host_endian, file_endian = get_file_host_endian(reader)
  61. metadata: dict[str, Any] = {}
  62. tensors: dict[str, Any] = {}
  63. result = {
  64. "filename": args.model,
  65. "endian": file_endian,
  66. "metadata": metadata,
  67. "tensors": tensors,
  68. }
  69. for idx, field in enumerate(reader.fields.values()):
  70. curr: dict[str, Any] = {
  71. "index": idx,
  72. "type": field.types[0].name if field.types else 'UNKNOWN',
  73. "offset": field.offset,
  74. }
  75. metadata[field.name] = curr
  76. if field.types[:1] == [GGUFValueType.ARRAY]:
  77. curr["array_types"] = [t.name for t in field.types][1:]
  78. if not args.json_array:
  79. continue
  80. curr["value"] = field.contents()
  81. else:
  82. curr["value"] = field.contents()
  83. if not args.no_tensors:
  84. for idx, tensor in enumerate(reader.tensors):
  85. tensors[tensor.name] = {
  86. "index": idx,
  87. "shape": tensor.shape.tolist(),
  88. "type": tensor.tensor_type.name,
  89. "offset": tensor.field.offset,
  90. }
  91. json.dump(result, sys.stdout)
  92. def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
  93. # JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
  94. # Alignment Utility Function
  95. def strAlign(padding: int, alignMode: str | None, strVal: str):
  96. if alignMode == 'center':
  97. return strVal.center(padding)
  98. elif alignMode == 'right':
  99. return strVal.rjust(padding - 1) + ' '
  100. elif alignMode == 'left':
  101. return ' ' + strVal.ljust(padding - 1)
  102. else: # default left
  103. return ' ' + strVal.ljust(padding - 1)
  104. def dashAlign(padding: int, alignMode: str | None):
  105. if alignMode == 'center':
  106. return ':' + '-' * (padding - 2) + ':'
  107. elif alignMode == 'right':
  108. return '-' * (padding - 1) + ':'
  109. elif alignMode == 'left':
  110. return ':' + '-' * (padding - 1)
  111. else: # default left
  112. return '-' * (padding)
  113. # Calculate Padding For Each Column Based On Header and Data Length
  114. rowsPadding = {}
  115. for index, columnEntry in enumerate(header_map):
  116. padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
  117. headerPadCount = len(columnEntry['header_name']) + 2
  118. rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
  119. # Render Markdown Header
  120. rows = []
  121. rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
  122. rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
  123. # Render Tabular Data
  124. for item in data:
  125. rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
  126. # Convert Tabular String Rows Into String
  127. tableString = ""
  128. for row in rows:
  129. tableString += f'|{row}|\n'
  130. return tableString
  131. def element_count_rounded_notation(count: int) -> str:
  132. if count > 1e15 :
  133. # Quadrillion
  134. scaled_amount = count * 1e-15
  135. scale_suffix = "Q"
  136. elif count > 1e12 :
  137. # Trillions
  138. scaled_amount = count * 1e-12
  139. scale_suffix = "T"
  140. elif count > 1e9 :
  141. # Billions
  142. scaled_amount = count * 1e-9
  143. scale_suffix = "B"
  144. elif count > 1e6 :
  145. # Millions
  146. scaled_amount = count * 1e-6
  147. scale_suffix = "M"
  148. elif count > 1e3 :
  149. # Thousands
  150. scaled_amount = count * 1e-3
  151. scale_suffix = "K"
  152. else:
  153. # Under Thousands
  154. scaled_amount = count
  155. scale_suffix = ""
  156. return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"
  157. def translate_tensor_name(name):
  158. words = name.split(".")
  159. # Source: https://github.com/ggml-org/ggml/blob/master/docs/gguf.md#standardized-tensor-names
  160. abbreviation_dictionary = {
  161. 'token_embd': 'Token embedding',
  162. 'pos_embd': 'Position embedding',
  163. 'output_norm': 'Output normalization',
  164. 'output': 'Output',
  165. 'attn_norm': 'Attention normalization',
  166. 'attn_norm_2': 'Attention normalization',
  167. 'attn_qkv': 'Attention query-key-value',
  168. 'attn_q': 'Attention query',
  169. 'attn_k': 'Attention key',
  170. 'attn_v': 'Attention value',
  171. 'attn_output': 'Attention output',
  172. 'ffn_norm': 'Feed-forward network normalization',
  173. 'ffn_up': 'Feed-forward network "up"',
  174. 'ffn_gate': 'Feed-forward network "gate"',
  175. 'ffn_down': 'Feed-forward network "down"',
  176. 'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
  177. 'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
  178. 'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
  179. 'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
  180. 'ssm_in': 'State space model input projections',
  181. 'ssm_conv1d': 'State space model rolling/shift',
  182. 'ssm_x': 'State space model selective parametrization',
  183. 'ssm_a': 'State space model state compression',
  184. 'ssm_d': 'State space model skip connection',
  185. 'ssm_dt': 'State space model time step',
  186. 'ssm_out': 'State space model output projection',
  187. 'blk': 'Block',
  188. 'enc': 'Encoder',
  189. 'dec': 'Decoder',
  190. }
  191. expanded_words = []
  192. for word in words:
  193. word_norm = word.strip().lower()
  194. if word_norm in abbreviation_dictionary:
  195. expanded_words.append(abbreviation_dictionary[word_norm].title())
  196. else:
  197. expanded_words.append(word.title())
  198. return ' '.join(expanded_words)
  199. def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
  200. host_endian, file_endian = get_file_host_endian(reader)
  201. markdown_content = ""
  202. markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
  203. markdown_content += f'- Endian: {file_endian} endian\n'
  204. markdown_content += '\n'
  205. markdown_content += '## Key Value Metadata Store\n\n'
  206. markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
  207. markdown_content += '\n'
  208. kv_dump_table: list[dict[str, str | int]] = []
  209. for n, field in enumerate(reader.fields.values(), 1):
  210. if not field.types:
  211. pretty_type = 'N/A'
  212. elif field.types[0] == GGUFValueType.ARRAY:
  213. nest_count = len(field.types) - 1
  214. pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
  215. else:
  216. pretty_type = str(field.types[-1].name)
  217. def escape_markdown_inline_code(value_string):
  218. # Find the longest contiguous sequence of backticks in the string then
  219. # wrap string with appropriate number of backticks required to escape it
  220. max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0)
  221. inline_code_marker = '`' * (max_backticks + 1)
  222. # If the string starts or ends with a backtick, add a space at the beginning and end
  223. if value_string.startswith('`') or value_string.endswith('`'):
  224. value_string = f" {value_string} "
  225. return f"{inline_code_marker}{value_string}{inline_code_marker}"
  226. total_elements = len(field.data)
  227. value = ""
  228. if len(field.types) == 1:
  229. curr_type = field.types[0]
  230. if curr_type == GGUFValueType.STRING:
  231. truncate_length = 60
  232. value_string = str(bytes(field.parts[-1]), encoding='utf-8')
  233. if len(value_string) > truncate_length:
  234. head = escape_markdown_inline_code(value_string[:truncate_length // 2])
  235. tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
  236. value = "{head}...{tail}".format(head=head, tail=tail)
  237. else:
  238. value = escape_markdown_inline_code(value_string)
  239. elif curr_type in reader.gguf_scalar_to_np:
  240. value = str(field.parts[-1][0])
  241. else:
  242. if field.types[0] == GGUFValueType.ARRAY:
  243. curr_type = field.types[1]
  244. array_elements = []
  245. if curr_type == GGUFValueType.STRING:
  246. render_element = min(5, total_elements)
  247. for element_pos in range(render_element):
  248. truncate_length = 30
  249. value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8')
  250. if len(value_string) > truncate_length:
  251. head = escape_markdown_inline_code(value_string[:truncate_length // 2])
  252. tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
  253. value = "{head}...{tail}".format(head=head, tail=tail)
  254. else:
  255. value = escape_markdown_inline_code(value_string)
  256. array_elements.append(value)
  257. elif curr_type in reader.gguf_scalar_to_np:
  258. render_element = min(7, total_elements)
  259. for element_pos in range(render_element):
  260. array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0]))
  261. value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]'
  262. kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
  263. kv_dump_table_header_map = [
  264. {'key_name':'n', 'header_name':'POS', 'align':'right'},
  265. {'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'},
  266. {'key_name':'total_elements', 'header_name':'Count', 'align':'right'},
  267. {'key_name':'field_name', 'header_name':'Key', 'align':'left'},
  268. {'key_name':'value', 'header_name':'Value', 'align':'left'},
  269. ]
  270. markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)
  271. markdown_content += "\n"
  272. if not args.no_tensors:
  273. # Group tensors by their prefix and maintain order
  274. tensor_prefix_order: list[str] = []
  275. tensor_name_to_key: dict[str, int] = {}
  276. tensor_groups: dict[str, list[ReaderTensor]] = {}
  277. total_elements = sum(tensor.n_elements for tensor in reader.tensors)
  278. # Parsing Tensors Record
  279. for key, tensor in enumerate(reader.tensors):
  280. tensor_components = tensor.name.split('.')
  281. # Classify Tensor Group
  282. tensor_group_name = "base"
  283. if tensor_components[0] == 'blk':
  284. tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
  285. elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk':
  286. tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}"
  287. elif tensor_components[0] in ['enc', 'dec']:
  288. tensor_group_name = f"{tensor_components[0]}"
  289. # Check if new Tensor Group
  290. if tensor_group_name not in tensor_groups:
  291. tensor_groups[tensor_group_name] = []
  292. tensor_prefix_order.append(tensor_group_name)
  293. # Record Tensor and Tensor Position
  294. tensor_groups[tensor_group_name].append(tensor)
  295. tensor_name_to_key[tensor.name] = key
  296. # Tensors Mapping Dump
  297. markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
  298. markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
  299. markdown_content += '\n'
  300. for group in tensor_prefix_order:
  301. tensors = tensor_groups[group]
  302. group_elements = sum(tensor.n_elements for tensor in tensors)
  303. markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"
  304. markdown_content += "\n"
  305. markdown_content += "### Tensor Data Offset\n"
  306. markdown_content += '\n'
  307. markdown_content += 'This table contains the offset and data segment relative to start of file\n'
  308. markdown_content += '\n'
  309. tensor_mapping_table: list[dict[str, str | int]] = []
  310. for key, tensor in enumerate(reader.tensors):
  311. data_offset_pretty = '{0:#16x}'.format(tensor.data_offset)
  312. data_size_pretty = '{0:#16x}'.format(tensor.n_bytes)
  313. tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty})
  314. tensors_mapping_table_header_map = [
  315. {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
  316. {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
  317. {'key_name':'data_offset', 'header_name':'Data Offset (B)', 'align':'right'},
  318. {'key_name':'data_size', 'header_name':'Data Size (B)', 'align':'right'},
  319. ]
  320. markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table)
  321. markdown_content += "\n"
  322. for group in tensor_prefix_order:
  323. tensors = tensor_groups[group]
  324. group_elements = sum(tensor.n_elements for tensor in tensors)
  325. group_percentage = group_elements / total_elements * 100
  326. markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
  327. # Precalculate column sizing for visual consistency
  328. prettify_element_est_count_size: int = 1
  329. prettify_element_count_size: int = 1
  330. prettify_dimension_max_widths: dict[int, int] = {}
  331. for tensor in tensors:
  332. prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
  333. prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
  334. for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
  335. prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))
  336. # Generate Tensor Layer Table Content
  337. tensor_dump_table: list[dict[str, str | int]] = []
  338. for tensor in tensors:
  339. human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
  340. pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
  341. element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
  342. element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
  343. type_name_string = f"{tensor.tensor_type.name}"
  344. tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})
  345. tensor_dump_table_header_map = [
  346. {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
  347. {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
  348. {'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
  349. {'key_name':'element_count', 'header_name':'Elements', 'align':'left'},
  350. {'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'},
  351. {'key_name':'tensor_type', 'header_name':'Type', 'align':'left'},
  352. ]
  353. markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
  354. markdown_content += "\n"
  355. markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
  356. markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
  357. markdown_content += "\n\n"
  358. print(markdown_content) # noqa: NP100
  359. def main() -> None:
  360. parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
  361. parser.add_argument("model", type=str, help="GGUF format model filename")
  362. parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
  363. parser.add_argument("--json", action="store_true", help="Produce JSON output")
  364. parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
  365. parser.add_argument("--data-offset", action="store_true", help="Start of data offset")
  366. parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field")
  367. parser.add_argument("--markdown", action="store_true", help="Produce markdown output")
  368. parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
  369. args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
  370. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  371. if not args.json and not args.markdown and not args.data_offset and not args.data_alignment:
  372. logger.info(f'* Loading: {args.model}')
  373. reader = GGUFReader(args.model, 'r')
  374. if args.json:
  375. dump_metadata_json(reader, args)
  376. elif args.markdown:
  377. dump_markdown_metadata(reader, args)
  378. elif args.data_offset:
  379. print(reader.data_offset) # noqa: NP100
  380. elif args.data_alignment:
  381. print(reader.alignment) # noqa: NP100
  382. else:
  383. dump_metadata(reader, args)
  384. if __name__ == '__main__':
  385. main()