| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- #include "ggml.h"
- #include "ggml-cpu.h"
- #include <chrono>
- #include <iostream>
- #include <cstdio>
- #include <cstdlib>
- #include <cassert>
- #include <vector>
- #include <thread>
- #define MAX_NARGS 2
- static void test_barrier(int n_threads, int n_rounds) {
- struct ggml_init_params params = {
- /* .mem_size = */ 1024*1024*1024,
- /* .mem_buffer = */ NULL,
- /* .no_alloc = */ false,
- };
- struct ggml_context * ctx = ggml_init(params);
- // Create graph
- struct ggml_cgraph * gf = ggml_new_graph(ctx);
- // Lots of small, parallel ops where barriers in between will dominate
- struct ggml_tensor * out = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 64);
- for (int i = 0; i < 1000; i++) {
- struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 64, 128);
- out = ggml_mul_mat(ctx, a, out);
- struct ggml_tensor * d = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 128, 64);
- out = ggml_mul_mat(ctx, d, out);
- }
- ggml_build_forward_expand(gf, out);
- int n_nodes = ggml_graph_n_nodes(gf);
- // Create threadpool
- struct ggml_threadpool_params tpp = ggml_threadpool_params_default(n_threads);
- struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
- if (!threadpool) {
- fprintf(stderr, "threadpool create failed : n_threads %d\n", n_threads);
- exit(1);
- }
- // The test runs with constant number of threads
- struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads, threadpool);
- std::vector<uint8_t> work_data(cplan.work_size);
- cplan.work_data = work_data.data();
- std::cerr << "graph-compute with"
- << "\n n_threads: " << n_threads
- << "\n n_nodes: " << n_nodes
- << "\n n_rounds: " << n_rounds
- << "\n";
- // ggml_graph_print(gf);
- // Warmup
- ggml_graph_compute(gf, &cplan);
- auto t0 = std::chrono::high_resolution_clock::now();
- for (int i=0; i < n_rounds; i++) {
- ggml_graph_compute(gf, &cplan);
- }
- auto t1 = std::chrono::high_resolution_clock::now();
- auto usec = std::chrono::duration_cast<std::chrono::microseconds>(t1-t0).count();
- auto nsec = std::chrono::duration_cast<std::chrono::nanoseconds>(t1-t0).count();
- std::cerr << "graph-compute took " << usec << " usec "
- << "\n " << (float) usec / n_rounds << " usec per-iter"
- << "\n " << (float) nsec / (n_rounds * n_nodes) << " nsec per-node"
- << "\n";
- ggml_threadpool_free(threadpool);
- ggml_free(ctx);
- }
- static void test_active(int n_threads, int n_rounds) {
- struct ggml_init_params params = {
- /* .mem_size = */ 1024*1024*1024,
- /* .mem_buffer = */ NULL,
- /* .no_alloc = */ false,
- };
- struct ggml_context * ctx = ggml_init(params);
- // Create graph
- struct ggml_cgraph * gf = ggml_new_graph(ctx);
- // Small graph with, parallel ops with barriers
- struct ggml_tensor * out = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 64);
- for (int i = 0; i < 2; i++) {
- struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 64, 128);
- out = ggml_mul_mat(ctx, a, out);
- struct ggml_tensor * d = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 128, 64);
- out = ggml_mul_mat(ctx, d, out);
- }
- ggml_build_forward_expand(gf, out);
- int n_nodes = ggml_graph_n_nodes(gf);
- // Create threadpool
- struct ggml_threadpool_params tpp = ggml_threadpool_params_default(n_threads);
- struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
- if (!threadpool) {
- fprintf(stderr, "threadpool create failed : n_threads %d\n", n_threads);
- exit(1);
- }
- std::cerr << "graph-compute with"
- << "\n n_threads: " << n_threads
- << "\n n_nodes: " << n_nodes
- << "\n n_rounds: " << n_rounds
- << "\n";
- // ggml_graph_print(gf);
- // In this test we keep changing the number of threads every 4th iteration
- // to test for race conditions in that path
- for (int i=0; i < n_rounds; i++) {
- struct ggml_cplan cplan = ggml_graph_plan(gf, (i % 4) == 0 ? 1 : n_threads, threadpool);
- std::vector<uint8_t> work_data(cplan.work_size);
- cplan.work_data = work_data.data();
- ggml_graph_compute(gf, &cplan);
- }
- ggml_threadpool_free(threadpool);
- ggml_free(ctx);
- }
- static void test_multi_graph(int n_threads, int n_rounds) {
- struct ggml_init_params params = {
- /* .mem_size = */ 1024*1024*1024,
- /* .mem_buffer = */ NULL,
- /* .no_alloc = */ false,
- };
- struct ggml_context * ctx = ggml_init(params);
- // Create graphs
- struct ggml_cgraph * gf0 = ggml_new_graph(ctx);
- {
- // Small graph with parallel ops with barriers
- struct ggml_tensor * out = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 64);
- for (int i = 0; i < 2; i++) {
- struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 64, 128);
- out = ggml_mul_mat(ctx, a, out);
- struct ggml_tensor * d = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 128, 64);
- out = ggml_mul_mat(ctx, d, out);
- }
- ggml_build_forward_expand(gf0, out);
- }
- struct ggml_cgraph * gf1 = ggml_new_graph(ctx);
- {
- // Small graph with parallel ops with barriers
- // Use larger tensors to make sure work_data size is larger than gf0
- struct ggml_tensor * out = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 256);
- for (int i = 0; i < 4; i++) {
- struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 256, 128);
- out = ggml_mul_mat(ctx, a, out);
- struct ggml_tensor * d = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 128, 256);
- out = ggml_mul_mat(ctx, d, out);
- }
- ggml_build_forward_expand(gf1, out);
- }
- // Create threadpool
- struct ggml_threadpool_params tpp = ggml_threadpool_params_default(n_threads);
- struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
- if (!threadpool) {
- fprintf(stderr, "threadpool create failed : n_threads %d\n", n_threads);
- exit(1);
- }
- std::cerr << "graph-compute with"
- << "\n gf0 n_nodes: " << ggml_graph_n_nodes(gf0)
- << "\n gf1 n_nodes: " << ggml_graph_n_nodes(gf1)
- << "\n n_threads: " << n_threads
- << "\n n_rounds: " << n_rounds
- << "\n";
- // In this test we keep changing the number of threads every 4th iteration
- // and we compute two graphs back to back to test graph frequent graph switching
- for (int i=0; i < n_rounds; i++) {
- struct ggml_cplan cplan0 = ggml_graph_plan(gf0, (i % 4) == 0 ? 1 : n_threads, threadpool);
- std::vector<uint8_t> work_data0(cplan0.work_size);
- cplan0.work_data = work_data0.data();
- struct ggml_cplan cplan1 = ggml_graph_plan(gf1, (i % 4) == 0 ? 1 : n_threads, threadpool);
- std::vector<uint8_t> work_data1(cplan1.work_size);
- cplan1.work_data = work_data1.data();
- ggml_graph_compute(gf0, &cplan0);
- ggml_graph_compute(gf1, &cplan1);
- }
- ggml_threadpool_free(threadpool);
- ggml_free(ctx);
- }
- int main(int argc, char *argv[]) {
- int n_threads = std::max(1, std::min(4, (int) std::thread::hardware_concurrency()));
- int n_rounds = 100;
- if (argc > 1) {
- n_threads = std::atoi(argv[1]);
- }
- if (argc > 2) {
- n_rounds = std::atoi(argv[2]);
- }
- test_barrier(n_threads, n_rounds);
- test_active(n_threads, n_rounds * 100);
- test_multi_graph(n_threads, n_rounds * 10);
- return 0;
- }
|