convert_hf_to_gguf.py 269 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. class ModelType(IntEnum):
  35. TEXT = 1
  36. VISION = 2
  37. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  38. class ModelBase:
  39. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  40. ModelType.TEXT: {},
  41. ModelType.VISION: {},
  42. }
  43. dir_model: Path
  44. ftype: gguf.LlamaFileType
  45. fname_out: Path
  46. is_big_endian: bool
  47. endianess: gguf.GGUFEndian
  48. use_temp_file: bool
  49. lazy: bool
  50. part_names: list[str]
  51. is_safetensors: bool
  52. hparams: dict[str, Any]
  53. block_count: int
  54. tensor_map: gguf.TensorNameMap
  55. tensor_names: set[str] | None
  56. gguf_writer: gguf.GGUFWriter
  57. model_name: str | None
  58. metadata_override: Path | None
  59. dir_model_card: Path
  60. remote_hf_model_id: str | None
  61. # subclasses should define this!
  62. model_arch: gguf.MODEL_ARCH
  63. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  64. use_temp_file: bool = False, eager: bool = False,
  65. metadata_override: Path | None = None, model_name: str | None = None,
  66. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  67. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  68. if type(self) is ModelBase or \
  69. type(self) is TextModel or \
  70. type(self) is VisionModel:
  71. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  72. self.dir_model = dir_model
  73. self.ftype = ftype
  74. self.fname_out = fname_out
  75. self.is_big_endian = is_big_endian
  76. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  77. self.use_temp_file = use_temp_file
  78. self.lazy = not eager or (remote_hf_model_id is not None)
  79. self.remote_hf_model_id = remote_hf_model_id
  80. if remote_hf_model_id is not None:
  81. self.is_safetensors = True
  82. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  83. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  84. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  85. self.tensor_names = set(name for name in remote_tensors.keys())
  86. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  87. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  88. self.get_tensors = get_remote_tensors
  89. else:
  90. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  91. self.is_safetensors = len(self.part_names) > 0
  92. if not self.is_safetensors:
  93. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  94. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  95. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  96. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. )
  260. )
  261. or not new_name.endswith(".weight")
  262. ):
  263. data_qtype = gguf.GGMLQuantizationType.F32
  264. if data_qtype is False and any(
  265. self.match_model_tensor_name(new_name, key, bid)
  266. for key in (
  267. gguf.MODEL_TENSOR.TOKEN_EMBD,
  268. gguf.MODEL_TENSOR.OUTPUT,
  269. )
  270. ):
  271. if self.ftype in (
  272. gguf.LlamaFileType.MOSTLY_TQ1_0,
  273. gguf.LlamaFileType.MOSTLY_TQ2_0,
  274. ):
  275. # TODO: use Q4_K and Q6_K
  276. data_qtype = gguf.GGMLQuantizationType.F16
  277. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  278. if isinstance(data_qtype, bool):
  279. if self.ftype == gguf.LlamaFileType.ALL_F32:
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  282. data_qtype = gguf.GGMLQuantizationType.F16
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  284. data_qtype = gguf.GGMLQuantizationType.BF16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  286. data_qtype = gguf.GGMLQuantizationType.Q8_0
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  288. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  291. else:
  292. raise ValueError(f"Unknown file type: {self.ftype.name}")
  293. try:
  294. data = gguf.quants.quantize(data, data_qtype)
  295. except gguf.QuantError as e:
  296. logger.warning("%s, %s", e, "falling back to F16")
  297. data_qtype = gguf.GGMLQuantizationType.F16
  298. data = gguf.quants.quantize(data, data_qtype)
  299. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  300. # reverse shape to make it similar to the internal ggml dimension order
  301. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  302. # n_dims is implicit in the shape
  303. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  304. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  305. def set_type(self):
  306. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  307. def prepare_metadata(self, vocab_only: bool):
  308. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  309. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  310. # If we are using HF model id, set the metadata name to the model id
  311. if self.remote_hf_model_id:
  312. self.metadata.name = self.remote_hf_model_id
  313. # Fallback to model directory name if metadata name is still missing
  314. if self.metadata.name is None:
  315. self.metadata.name = self.dir_model.name
  316. # Generate parameter weight class (useful for leader boards) if not yet determined
  317. if self.metadata.size_label is None and total_params > 0:
  318. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  319. self.set_type()
  320. logger.info("Set meta model")
  321. self.metadata.set_gguf_meta_model(self.gguf_writer)
  322. logger.info("Set model parameters")
  323. self.set_gguf_parameters()
  324. logger.info("Set model quantization version")
  325. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  326. def write_vocab(self):
  327. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  328. def write(self):
  329. self.prepare_tensors()
  330. self.prepare_metadata(vocab_only=False)
  331. self.gguf_writer.write_header_to_file(path=self.fname_out)
  332. self.gguf_writer.write_kv_data_to_file()
  333. self.gguf_writer.write_tensors_to_file(progress=True)
  334. self.gguf_writer.close()
  335. @staticmethod
  336. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  337. part_names: list[str] = []
  338. for filename in os.listdir(dir_model):
  339. if filename.startswith(prefix) and filename.endswith(suffix):
  340. part_names.append(filename)
  341. part_names.sort()
  342. return part_names
  343. @staticmethod
  344. def load_hparams(dir_model: Path):
  345. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  346. hparams = json.load(f)
  347. architectures = hparams.get("architectures")
  348. if "text_config" in hparams:
  349. hparams = {**hparams, **hparams["text_config"]}
  350. if architectures is not None:
  351. # preserve "architectures" from root level config
  352. hparams["architectures"] = architectures
  353. return hparams
  354. @classmethod
  355. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  356. assert names
  357. def func(modelcls: AnyModel) -> AnyModel:
  358. model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
  359. for name in names:
  360. cls._model_classes[model_type][name] = modelcls
  361. return modelcls
  362. return func
  363. @classmethod
  364. def print_registered_models(cls):
  365. for model_type, model_classes in cls._model_classes.items():
  366. logger.error(f"{model_type.name} models:")
  367. for name in sorted(model_classes.keys()):
  368. logger.error(f" - {name}")
  369. @classmethod
  370. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  371. try:
  372. return cls._model_classes[model_type][arch]
  373. except KeyError:
  374. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  375. class TextModel(ModelBase):
  376. def set_vocab(self):
  377. self._set_vocab_gpt2()
  378. def prepare_metadata(self, vocab_only: bool):
  379. super().prepare_metadata(vocab_only=vocab_only)
  380. total_params = self.gguf_writer.get_total_parameter_count()[0]
  381. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  382. output_type: str = self.ftype.name.partition("_")[2]
  383. # Filename Output
  384. if self.fname_out.is_dir():
  385. # Generate default filename based on model specification and available metadata
  386. if not vocab_only:
  387. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  388. else:
  389. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  390. # Use the default filename
  391. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  392. else:
  393. # Output path is a custom defined templated filename
  394. # Note: `not is_dir()` is used because `.is_file()` will not detect
  395. # file template strings as it doesn't actually exist as a file
  396. # Process templated file name with the output ftype, useful with the "auto" ftype
  397. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  398. logger.info("Set model tokenizer")
  399. self.set_vocab()
  400. def set_gguf_parameters(self):
  401. self.gguf_writer.add_block_count(self.block_count)
  402. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  403. self.gguf_writer.add_context_length(n_ctx)
  404. logger.info(f"gguf: context length = {n_ctx}")
  405. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  406. self.gguf_writer.add_embedding_length(n_embd)
  407. logger.info(f"gguf: embedding length = {n_embd}")
  408. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  409. self.gguf_writer.add_feed_forward_length(n_ff)
  410. logger.info(f"gguf: feed forward length = {n_ff}")
  411. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  412. self.gguf_writer.add_head_count(n_head)
  413. logger.info(f"gguf: head count = {n_head}")
  414. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  415. self.gguf_writer.add_head_count_kv(n_head_kv)
  416. logger.info(f"gguf: key-value head count = {n_head_kv}")
  417. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  418. self.gguf_writer.add_rope_freq_base(rope_theta)
  419. logger.info(f"gguf: rope theta = {rope_theta}")
  420. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  421. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  422. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  423. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  424. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  425. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  426. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  427. self.gguf_writer.add_expert_count(n_experts)
  428. logger.info(f"gguf: expert count = {n_experts}")
  429. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  430. self.gguf_writer.add_expert_used_count(n_experts_used)
  431. logger.info(f"gguf: experts used count = {n_experts_used}")
  432. if (head_dim := self.hparams.get("head_dim")) is not None:
  433. self.gguf_writer.add_key_length(head_dim)
  434. self.gguf_writer.add_value_length(head_dim)
  435. self.gguf_writer.add_file_type(self.ftype)
  436. logger.info(f"gguf: file type = {self.ftype}")
  437. def write_vocab(self):
  438. if len(self.gguf_writer.tensors) != 1:
  439. raise ValueError('Splitting the vocabulary is not supported')
  440. self.prepare_metadata(vocab_only=True)
  441. self.gguf_writer.write_header_to_file(path=self.fname_out)
  442. self.gguf_writer.write_kv_data_to_file()
  443. self.gguf_writer.close()
  444. def does_token_look_special(self, token: str | bytes) -> bool:
  445. if isinstance(token, (bytes, bytearray)):
  446. token_text = token.decode(encoding="utf-8")
  447. elif isinstance(token, memoryview):
  448. token_text = token.tobytes().decode(encoding="utf-8")
  449. else:
  450. token_text = token
  451. # Some models mark some added tokens which ought to be control tokens as not special.
  452. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  453. seems_special = token_text in (
  454. "<pad>", # deepseek-coder
  455. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  456. )
  457. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  458. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  459. # TODO: should these be marked as UNUSED instead? (maybe not)
  460. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  461. return seems_special
  462. # used for GPT-2 BPE and WordPiece vocabs
  463. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  464. tokens: list[str] = []
  465. toktypes: list[int] = []
  466. from transformers import AutoTokenizer
  467. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  468. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  469. assert max(tokenizer.vocab.values()) < vocab_size
  470. tokpre = self.get_vocab_base_pre(tokenizer)
  471. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  472. added_vocab = tokenizer.get_added_vocab()
  473. added_tokens_decoder = tokenizer.added_tokens_decoder
  474. for i in range(vocab_size):
  475. if i not in reverse_vocab:
  476. tokens.append(f"[PAD{i}]")
  477. toktypes.append(gguf.TokenType.UNUSED)
  478. else:
  479. token: str = reverse_vocab[i]
  480. if token in added_vocab:
  481. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  482. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  483. if not added_tokens_decoder[i].normalized:
  484. previous_token = token
  485. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  486. if previous_token != token:
  487. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  488. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  489. toktypes.append(gguf.TokenType.CONTROL)
  490. else:
  491. # NOTE: this was added for Gemma.
  492. # Encoding and decoding the tokens above isn't sufficient for this case.
  493. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  494. toktypes.append(gguf.TokenType.USER_DEFINED)
  495. else:
  496. toktypes.append(gguf.TokenType.NORMAL)
  497. tokens.append(token)
  498. return tokens, toktypes, tokpre
  499. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  500. # do not modify it manually!
  501. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  502. # Marker: Start get_vocab_base_pre
  503. def get_vocab_base_pre(self, tokenizer) -> str:
  504. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  505. # is specific for the BPE pre-tokenizer used by the model
  506. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  507. # use in llama.cpp to implement the same pre-tokenizer
  508. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  509. chktok = tokenizer.encode(chktxt)
  510. chkhsh = sha256(str(chktok).encode()).hexdigest()
  511. logger.debug(f"chktok: {chktok}")
  512. logger.debug(f"chkhsh: {chkhsh}")
  513. res = None
  514. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  515. # or pull the latest version of the model from Huggingface
  516. # don't edit the hashes manually!
  517. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  518. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  519. res = "llama-bpe"
  520. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  521. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  522. res = "deepseek-llm"
  523. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  524. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  525. res = "deepseek-coder"
  526. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  527. # ref: https://huggingface.co/tiiuae/falcon-7b
  528. res = "falcon"
  529. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  530. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  531. res = "falcon3"
  532. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  533. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  534. res = "bert-bge"
  535. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  536. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  537. res = "bert-bge-large"
  538. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  539. # ref: https://huggingface.co/mosaicml/mpt-7b
  540. res = "mpt"
  541. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  542. # ref: https://huggingface.co/bigcode/starcoder2-3b
  543. res = "starcoder"
  544. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  545. # ref: https://huggingface.co/openai-community/gpt2
  546. res = "gpt-2"
  547. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  548. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  549. res = "stablelm2"
  550. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  551. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  552. res = "refact"
  553. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  554. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  555. res = "command-r"
  556. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  557. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  558. res = "qwen2"
  559. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  560. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  561. res = "olmo"
  562. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  563. # ref: https://huggingface.co/databricks/dbrx-base
  564. res = "dbrx"
  565. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  566. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  567. res = "jina-v1-en"
  568. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  569. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  570. res = "jina-v2-en"
  571. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  572. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  573. res = "jina-v2-es"
  574. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  575. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  576. res = "jina-v2-de"
  577. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  578. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  579. res = "smaug-bpe"
  580. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  581. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  582. res = "poro-chat"
  583. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  584. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  585. res = "jina-v2-code"
  586. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  587. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  588. res = "chatglm-bpe"
  589. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  590. # ref: https://huggingface.co/LumiOpen/Viking-7B
  591. res = "viking"
  592. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  593. # ref: https://huggingface.co/core42/jais-13b
  594. res = "jais"
  595. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  596. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  597. res = "codeshell"
  598. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  599. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  600. res = "tekken"
  601. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  602. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  603. res = "smollm"
  604. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  605. # ref: https://huggingface.co/bigscience/bloom
  606. res = "bloom"
  607. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  608. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  609. res = "gpt3-finnish"
  610. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  611. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  612. res = "exaone"
  613. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  614. # ref: https://huggingface.co/microsoft/phi-2
  615. res = "phi-2"
  616. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  617. # ref: https://huggingface.co/facebook/chameleon-7b
  618. res = "chameleon"
  619. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  620. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  621. res = "minerva-7b"
  622. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  623. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  624. res = "roberta-bpe"
  625. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  626. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  627. res = "gigachat"
  628. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  629. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  630. res = "megrez"
  631. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  632. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  633. res = "deepseek-v3"
  634. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  635. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  636. res = "deepseek-r1-qwen"
  637. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  638. # ref: https://huggingface.co/Xenova/gpt-4o
  639. res = "gpt-4o"
  640. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  641. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  642. res = "superbpe"
  643. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  644. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  645. res = "trillion"
  646. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  647. # ref: https://huggingface.co/inclusionAI/Ling-lite
  648. res = "bailingmoe"
  649. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  650. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  651. res = "llama4"
  652. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  653. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  654. res = "glm4"
  655. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  656. # ref: https://huggingface.co/mistral-community/pixtral-12b
  657. res = "pixtral"
  658. if res is None:
  659. logger.warning("\n")
  660. logger.warning("**************************************************************************************")
  661. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  662. logger.warning("** There are 2 possible reasons for this:")
  663. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  664. logger.warning("** - the pre-tokenization config has changed upstream")
  665. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  666. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  667. logger.warning("**")
  668. logger.warning(f"** chkhsh: {chkhsh}")
  669. logger.warning("**************************************************************************************")
  670. logger.warning("\n")
  671. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  672. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  673. logger.debug(f"chkhsh: {chkhsh}")
  674. return res
  675. # Marker: End get_vocab_base_pre
  676. def _set_vocab_none(self) -> None:
  677. self.gguf_writer.add_tokenizer_model("none")
  678. def _set_vocab_gpt2(self) -> None:
  679. tokens, toktypes, tokpre = self.get_vocab_base()
  680. self.gguf_writer.add_tokenizer_model("gpt2")
  681. self.gguf_writer.add_tokenizer_pre(tokpre)
  682. self.gguf_writer.add_token_list(tokens)
  683. self.gguf_writer.add_token_types(toktypes)
  684. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  685. special_vocab.add_to_gguf(self.gguf_writer)
  686. def _set_vocab_qwen(self):
  687. dir_model = self.dir_model
  688. hparams = self.hparams
  689. tokens: list[str] = []
  690. toktypes: list[int] = []
  691. from transformers import AutoTokenizer
  692. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  693. vocab_size = hparams["vocab_size"]
  694. assert max(tokenizer.get_vocab().values()) < vocab_size
  695. tokpre = self.get_vocab_base_pre(tokenizer)
  696. merges = []
  697. vocab = {}
  698. mergeable_ranks = tokenizer.mergeable_ranks
  699. for token, rank in mergeable_ranks.items():
  700. vocab[QwenModel.token_bytes_to_string(token)] = rank
  701. if len(token) == 1:
  702. continue
  703. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  704. assert len(merged) == 2
  705. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  706. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  707. added_vocab = tokenizer.special_tokens
  708. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  709. for i in range(vocab_size):
  710. if i not in reverse_vocab:
  711. tokens.append(f"[PAD{i}]")
  712. toktypes.append(gguf.TokenType.UNUSED)
  713. elif reverse_vocab[i] in added_vocab:
  714. tokens.append(reverse_vocab[i])
  715. toktypes.append(gguf.TokenType.CONTROL)
  716. else:
  717. tokens.append(reverse_vocab[i])
  718. toktypes.append(gguf.TokenType.NORMAL)
  719. self.gguf_writer.add_tokenizer_model("gpt2")
  720. self.gguf_writer.add_tokenizer_pre(tokpre)
  721. self.gguf_writer.add_token_list(tokens)
  722. self.gguf_writer.add_token_types(toktypes)
  723. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  724. special_vocab.merges = merges
  725. # only add special tokens when they were not already loaded from config.json
  726. if len(special_vocab.special_token_ids) == 0:
  727. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  728. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  729. # this one is usually not in config.json anyway
  730. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  731. special_vocab.add_to_gguf(self.gguf_writer)
  732. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  733. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  734. self.gguf_writer.add_tokenizer_model("llama")
  735. self.gguf_writer.add_tokenizer_pre("default")
  736. self.gguf_writer.add_token_list(tokens)
  737. self.gguf_writer.add_token_scores(scores)
  738. self.gguf_writer.add_token_types(toktypes)
  739. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  740. special_vocab.add_to_gguf(self.gguf_writer)
  741. def _create_vocab_sentencepiece(self):
  742. from sentencepiece import SentencePieceProcessor
  743. tokenizer_path = self.dir_model / 'tokenizer.model'
  744. if not tokenizer_path.is_file():
  745. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  746. tokenizer = SentencePieceProcessor()
  747. tokenizer.LoadFromFile(str(tokenizer_path))
  748. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  749. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  750. scores: list[float] = [-10000.0] * vocab_size
  751. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  752. for token_id in range(tokenizer.vocab_size()):
  753. piece = tokenizer.IdToPiece(token_id)
  754. text = piece.encode("utf-8")
  755. score = tokenizer.GetScore(token_id)
  756. toktype = SentencePieceTokenTypes.NORMAL
  757. if tokenizer.IsUnknown(token_id):
  758. toktype = SentencePieceTokenTypes.UNKNOWN
  759. elif tokenizer.IsControl(token_id):
  760. toktype = SentencePieceTokenTypes.CONTROL
  761. elif tokenizer.IsUnused(token_id):
  762. toktype = SentencePieceTokenTypes.UNUSED
  763. elif tokenizer.IsByte(token_id):
  764. toktype = SentencePieceTokenTypes.BYTE
  765. tokens[token_id] = text
  766. scores[token_id] = score
  767. toktypes[token_id] = toktype
  768. added_tokens_file = self.dir_model / 'added_tokens.json'
  769. if added_tokens_file.is_file():
  770. with open(added_tokens_file, "r", encoding="utf-8") as f:
  771. added_tokens_json = json.load(f)
  772. for key in added_tokens_json:
  773. token_id = added_tokens_json[key]
  774. if token_id >= vocab_size:
  775. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  776. continue
  777. tokens[token_id] = key.encode("utf-8")
  778. scores[token_id] = -1000.0
  779. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  780. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  781. if tokenizer_config_file.is_file():
  782. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  783. tokenizer_config_json = json.load(f)
  784. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  785. for token_id, token_data in added_tokens_decoder.items():
  786. token_id = int(token_id)
  787. token: str = token_data["content"]
  788. if token_id >= vocab_size:
  789. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  790. continue
  791. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  792. if tokens[token_id] != token.encode("utf-8"):
  793. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  794. if token_data.get("special") or self.does_token_look_special(token):
  795. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  796. else:
  797. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  798. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  799. scores[token_id] = -1000.0
  800. tokens[token_id] = token.encode("utf-8")
  801. if vocab_size > len(tokens):
  802. pad_count = vocab_size - len(tokens)
  803. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  804. for i in range(1, pad_count + 1):
  805. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  806. scores.append(-1000.0)
  807. toktypes.append(SentencePieceTokenTypes.UNUSED)
  808. return tokens, scores, toktypes
  809. def _set_vocab_llama_hf(self):
  810. vocab = gguf.LlamaHfVocab(self.dir_model)
  811. tokens = []
  812. scores = []
  813. toktypes = []
  814. for text, score, toktype in vocab.all_tokens():
  815. tokens.append(text)
  816. scores.append(score)
  817. toktypes.append(toktype)
  818. assert len(tokens) == vocab.vocab_size
  819. self.gguf_writer.add_tokenizer_model("llama")
  820. self.gguf_writer.add_tokenizer_pre("default")
  821. self.gguf_writer.add_token_list(tokens)
  822. self.gguf_writer.add_token_scores(scores)
  823. self.gguf_writer.add_token_types(toktypes)
  824. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  825. special_vocab.add_to_gguf(self.gguf_writer)
  826. def _set_vocab_rwkv_world(self):
  827. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  828. vocab_size = self.hparams.get("vocab_size", 65536)
  829. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  830. toktypes: list[int] = [gguf.TokenType.CONTROL]
  831. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  832. lines = f.readlines()
  833. for line in lines:
  834. parts = line.split(' ')
  835. assert len(parts) >= 3
  836. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  837. token = token.encode("utf-8") if isinstance(token, str) else token
  838. assert isinstance(token, bytes)
  839. assert len(token) == token_len
  840. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  841. tokens.append(token_text.encode("utf-8"))
  842. toktypes.append(gguf.TokenType.NORMAL)
  843. remainder = vocab_size - len(tokens)
  844. assert remainder >= 0
  845. for i in range(len(tokens), vocab_size):
  846. tokens.append(f"[PAD{i}]".encode("utf-8"))
  847. toktypes.append(gguf.TokenType.UNUSED)
  848. self.gguf_writer.add_tokenizer_model("rwkv")
  849. self.gguf_writer.add_token_list(tokens)
  850. self.gguf_writer.add_token_types(toktypes)
  851. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  852. special_vocab.chat_template = "rwkv-world"
  853. # hack: Add '\n\n' as the EOT token to make it chat normally
  854. special_vocab._set_special_token("eot", 261)
  855. special_vocab.add_to_gguf(self.gguf_writer)
  856. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  857. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  858. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  859. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  860. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  861. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  862. assert field # tokenizer model
  863. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  864. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  865. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  866. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  867. assert field # token list
  868. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  869. if model_name == "llama-spm":
  870. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  871. assert field # token scores
  872. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  873. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  874. assert field # token types
  875. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  876. if model_name != "llama-spm":
  877. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  878. assert field # token merges
  879. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  880. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  881. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  882. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  883. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  884. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  885. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  886. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  887. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  888. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  889. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  890. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  891. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  892. class VisionModel(ModelBase):
  893. model_arch = gguf.MODEL_ARCH.CLIP_VISION
  894. n_text_embd = 0
  895. preprocessor_config: dict[str, Any]
  896. global_config: dict[str, Any]
  897. def __init__(self, *args, **kwargs):
  898. super().__init__(*args, **kwargs)
  899. if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
  900. raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
  901. # small hack to correct the number of layers
  902. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, 128)
  903. self.n_embd_text = self.find_hparam(["hidden_size", "n_embd"])
  904. assert self.n_embd_text > 0, "n_embd not found in hparams"
  905. if "vision_config" not in self.hparams:
  906. raise ValueError("vision_config not found in hparams")
  907. # move vision config to the top level, while preserving the original hparams in global_config
  908. self.global_config = self.hparams
  909. self.hparams = self.hparams["vision_config"]
  910. # load preprocessor config
  911. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  912. self.preprocessor_config = json.load(f)
  913. def set_type(self):
  914. self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
  915. def set_gguf_parameters(self):
  916. self.gguf_writer.add_file_type(self.ftype)
  917. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  918. self.gguf_writer.add_vision_has_vision_encoder(True)
  919. # vision config
  920. self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
  921. self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
  922. self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
  923. self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
  924. self.gguf_writer.add_vision_block_count(self.find_hparam(["num_hidden_layers"]))
  925. self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
  926. # preprocessor config
  927. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  928. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  929. def write_vocab(self):
  930. raise ValueError("VisionModel does not support vocab writing")
  931. @ModelBase.register("GPTNeoXForCausalLM")
  932. class GPTNeoXModel(TextModel):
  933. model_arch = gguf.MODEL_ARCH.GPTNEOX
  934. def set_gguf_parameters(self):
  935. block_count = self.hparams["num_hidden_layers"]
  936. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  937. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  938. self.gguf_writer.add_block_count(block_count)
  939. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  940. self.gguf_writer.add_rope_dimension_count(
  941. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  942. )
  943. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  944. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  945. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  946. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  947. del bid # unused
  948. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  949. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  950. tensors: list[tuple[str, Tensor]] = []
  951. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  952. # Map bloom-style qkv_linear to gpt-style qkv_linear
  953. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  954. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  955. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  956. data_torch = torch.cat(
  957. (
  958. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  959. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  960. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  961. ),
  962. dim=0,
  963. )
  964. logger.info("re-format attention.linear_qkv.weight")
  965. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  966. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  967. data_torch = torch.cat(
  968. (
  969. qkv_bias[:, 0, :].reshape((n_embed,)),
  970. qkv_bias[:, 1, :].reshape((n_embed,)),
  971. qkv_bias[:, 2, :].reshape((n_embed,)),
  972. ),
  973. dim=0,
  974. )
  975. logger.info("re-format attention.linear_qkv.bias")
  976. tensors.append((self.map_tensor_name(name), data_torch))
  977. return tensors
  978. @ModelBase.register("BloomForCausalLM", "BloomModel")
  979. class BloomModel(TextModel):
  980. model_arch = gguf.MODEL_ARCH.BLOOM
  981. def set_gguf_parameters(self):
  982. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  983. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  984. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  985. self.gguf_writer.add_embedding_length(n_embed)
  986. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  987. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  988. self.gguf_writer.add_head_count(n_head)
  989. self.gguf_writer.add_head_count_kv(n_head)
  990. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  991. self.gguf_writer.add_file_type(self.ftype)
  992. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  993. del bid # unused
  994. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  995. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  996. name = re.sub(r'transformer\.', '', name)
  997. tensors: list[tuple[str, Tensor]] = []
  998. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  999. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1000. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1001. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1002. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1003. data_torch = torch.cat(
  1004. (
  1005. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1006. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1007. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1008. ),
  1009. dim=0,
  1010. )
  1011. logger.info("re-format attention.linear_qkv.weight")
  1012. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1013. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1014. data_torch = torch.cat(
  1015. (
  1016. qkv_bias[:, 0, :].reshape((n_embed,)),
  1017. qkv_bias[:, 1, :].reshape((n_embed,)),
  1018. qkv_bias[:, 2, :].reshape((n_embed,)),
  1019. ),
  1020. dim=0,
  1021. )
  1022. logger.info("re-format attention.linear_qkv.bias")
  1023. tensors.append((self.map_tensor_name(name), data_torch))
  1024. return tensors
  1025. @ModelBase.register("MPTForCausalLM")
  1026. class MPTModel(TextModel):
  1027. model_arch = gguf.MODEL_ARCH.MPT
  1028. def set_vocab(self):
  1029. try:
  1030. self._set_vocab_gpt2()
  1031. except Exception:
  1032. # Fallback for SEA-LION model
  1033. self._set_vocab_sentencepiece()
  1034. self.gguf_writer.add_add_bos_token(False)
  1035. self.gguf_writer.add_pad_token_id(3)
  1036. self.gguf_writer.add_eos_token_id(1)
  1037. self.gguf_writer.add_unk_token_id(0)
  1038. def set_gguf_parameters(self):
  1039. block_count = self.hparams["n_layers"]
  1040. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1041. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1042. self.gguf_writer.add_block_count(block_count)
  1043. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1044. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1045. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1046. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1047. self.gguf_writer.add_layer_norm_eps(1e-5)
  1048. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1049. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1050. if self.hparams["attn_config"]["alibi"]:
  1051. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1052. else:
  1053. self.gguf_writer.add_max_alibi_bias(0.0)
  1054. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1055. del bid # unused
  1056. if "scales" in name:
  1057. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1058. new_name = new_name.replace("scales", "act.scales")
  1059. else:
  1060. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1061. return [(new_name, data_torch)]
  1062. @ModelBase.register("OrionForCausalLM")
  1063. class OrionModel(TextModel):
  1064. model_arch = gguf.MODEL_ARCH.ORION
  1065. def set_vocab(self):
  1066. self._set_vocab_sentencepiece()
  1067. def set_gguf_parameters(self):
  1068. block_count = self.hparams["num_hidden_layers"]
  1069. head_count = self.hparams["num_attention_heads"]
  1070. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1071. ctx_length = 0
  1072. if "max_sequence_length" in self.hparams:
  1073. ctx_length = self.hparams["max_sequence_length"]
  1074. elif "max_position_embeddings" in self.hparams:
  1075. ctx_length = self.hparams["max_position_embeddings"]
  1076. elif "model_max_length" in self.hparams:
  1077. ctx_length = self.hparams["model_max_length"]
  1078. else:
  1079. raise ValueError("gguf: can not find ctx length parameter.")
  1080. self.gguf_writer.add_file_type(self.ftype)
  1081. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1082. self.gguf_writer.add_context_length(ctx_length)
  1083. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1084. self.gguf_writer.add_block_count(block_count)
  1085. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1086. self.gguf_writer.add_head_count(head_count)
  1087. self.gguf_writer.add_head_count_kv(head_count_kv)
  1088. # note: config provides rms norm but it is actually layer norm
  1089. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1090. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1091. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1092. class BaichuanModel(TextModel):
  1093. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1094. def set_vocab(self):
  1095. self._set_vocab_sentencepiece()
  1096. def set_gguf_parameters(self):
  1097. block_count = self.hparams["num_hidden_layers"]
  1098. head_count = self.hparams["num_attention_heads"]
  1099. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1100. ctx_length = 0
  1101. if "max_sequence_length" in self.hparams:
  1102. ctx_length = self.hparams["max_sequence_length"]
  1103. elif "max_position_embeddings" in self.hparams:
  1104. ctx_length = self.hparams["max_position_embeddings"]
  1105. elif "model_max_length" in self.hparams:
  1106. ctx_length = self.hparams["model_max_length"]
  1107. else:
  1108. raise ValueError("gguf: can not find ctx length parameter.")
  1109. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1110. self.gguf_writer.add_context_length(ctx_length)
  1111. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1112. self.gguf_writer.add_block_count(block_count)
  1113. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1114. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1115. self.gguf_writer.add_head_count(head_count)
  1116. self.gguf_writer.add_head_count_kv(head_count_kv)
  1117. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1118. self.gguf_writer.add_file_type(self.ftype)
  1119. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1120. if self.hparams["rope_scaling"].get("type") == "linear":
  1121. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1122. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1123. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1124. head_count = self.hparams["num_attention_heads"]
  1125. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1126. tensors: list[tuple[str, Tensor]] = []
  1127. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1128. logger.info(f"Unpacking and permuting layer {bid}")
  1129. tensors = [
  1130. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1131. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1132. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1133. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1134. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1135. self._reverse_hf_part(data_torch, 2)),
  1136. ]
  1137. else:
  1138. tensors = [(self.map_tensor_name(name), data_torch)]
  1139. return tensors
  1140. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1141. if n_kv_head is not None and n_head != n_kv_head:
  1142. n_head //= n_kv_head
  1143. return (
  1144. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1145. .swapaxes(1, 2)
  1146. .reshape(weights.shape)
  1147. )
  1148. def _reverse_hf_permute_part(
  1149. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1150. ) -> Tensor:
  1151. r = weights.shape[0] // 3
  1152. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1153. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1154. r = weights.shape[0] // 3
  1155. return weights[r * n_part:r * n_part + r, ...]
  1156. @ModelBase.register("XverseForCausalLM")
  1157. class XverseModel(TextModel):
  1158. model_arch = gguf.MODEL_ARCH.XVERSE
  1159. def set_vocab(self):
  1160. assert (self.dir_model / "tokenizer.json").is_file()
  1161. dir_model = self.dir_model
  1162. hparams = self.hparams
  1163. tokens: list[bytes] = []
  1164. toktypes: list[int] = []
  1165. from transformers import AutoTokenizer
  1166. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1167. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1168. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1169. # because vocab_size is the count of items, and indexes start at 0.
  1170. max_vocab_index = max(tokenizer.get_vocab().values())
  1171. if max_vocab_index >= vocab_size:
  1172. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1173. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1174. added_vocab = tokenizer.get_added_vocab()
  1175. for token_id in range(vocab_size):
  1176. token_text = reverse_vocab[token_id].encode('utf-8')
  1177. # replace "\x00" to string with length > 0
  1178. if token_text == b"\x00":
  1179. toktype = gguf.TokenType.BYTE # special
  1180. token_text = f"<{token_text}>".encode('utf-8')
  1181. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1182. toktype = gguf.TokenType.BYTE # special
  1183. elif reverse_vocab[token_id] in added_vocab:
  1184. if tokenizer.added_tokens_decoder[token_id].special:
  1185. toktype = gguf.TokenType.CONTROL
  1186. else:
  1187. toktype = gguf.TokenType.USER_DEFINED
  1188. else:
  1189. toktype = gguf.TokenType.NORMAL
  1190. tokens.append(token_text)
  1191. toktypes.append(toktype)
  1192. self.gguf_writer.add_tokenizer_model("llama")
  1193. self.gguf_writer.add_tokenizer_pre("default")
  1194. self.gguf_writer.add_token_list(tokens)
  1195. self.gguf_writer.add_token_types(toktypes)
  1196. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1197. special_vocab.add_to_gguf(self.gguf_writer)
  1198. def set_gguf_parameters(self):
  1199. block_count = self.hparams["num_hidden_layers"]
  1200. head_count = self.hparams["num_attention_heads"]
  1201. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1202. ctx_length = 0
  1203. if "max_sequence_length" in self.hparams:
  1204. ctx_length = self.hparams["max_sequence_length"]
  1205. elif "max_position_embeddings" in self.hparams:
  1206. ctx_length = self.hparams["max_position_embeddings"]
  1207. elif "model_max_length" in self.hparams:
  1208. ctx_length = self.hparams["model_max_length"]
  1209. else:
  1210. raise ValueError("gguf: can not find ctx length parameter.")
  1211. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1212. self.gguf_writer.add_context_length(ctx_length)
  1213. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1214. self.gguf_writer.add_block_count(block_count)
  1215. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1216. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1217. self.gguf_writer.add_head_count(head_count)
  1218. self.gguf_writer.add_head_count_kv(head_count_kv)
  1219. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1220. self.gguf_writer.add_file_type(self.ftype)
  1221. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1222. if self.hparams["rope_scaling"].get("type") == "linear":
  1223. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1224. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1225. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1226. del bid # unused
  1227. head_count = self.hparams["num_attention_heads"]
  1228. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1229. # HF models permute some of the tensors, so we need to undo that
  1230. if name.endswith("q_proj.weight"):
  1231. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1232. if name.endswith("k_proj.weight"):
  1233. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1234. return [(self.map_tensor_name(name), data_torch)]
  1235. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1236. if n_kv_head is not None and n_head != n_kv_head:
  1237. n_head //= n_kv_head
  1238. return (
  1239. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1240. .swapaxes(1, 2)
  1241. .reshape(weights.shape)
  1242. )
  1243. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1244. class FalconModel(TextModel):
  1245. model_arch = gguf.MODEL_ARCH.FALCON
  1246. def set_gguf_parameters(self):
  1247. block_count = self.hparams.get("num_hidden_layers")
  1248. if block_count is None:
  1249. block_count = self.hparams["n_layer"] # old name
  1250. n_head = self.hparams.get("num_attention_heads")
  1251. if n_head is None:
  1252. n_head = self.hparams["n_head"] # old name
  1253. n_head_kv = self.hparams.get("num_kv_heads")
  1254. if n_head_kv is None:
  1255. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1256. self.gguf_writer.add_context_length(2048) # not in config.json
  1257. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1258. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1259. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1260. self.gguf_writer.add_block_count(block_count)
  1261. self.gguf_writer.add_head_count(n_head)
  1262. self.gguf_writer.add_head_count_kv(n_head_kv)
  1263. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1264. self.gguf_writer.add_file_type(self.ftype)
  1265. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1266. del bid # unused
  1267. # QKV tensor transform
  1268. # The original query_key_value tensor contains n_head_kv "kv groups",
  1269. # each consisting of n_head/n_head_kv query weights followed by one key
  1270. # and one value weight (shared by all query heads in the kv group).
  1271. # This layout makes it a big pain to work with in GGML.
  1272. # So we rearrange them here,, so that we have n_head query weights
  1273. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1274. # in contiguous fashion.
  1275. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1276. if "query_key_value" in name:
  1277. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1278. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1279. head_dim = self.hparams["hidden_size"] // n_head
  1280. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1281. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1282. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1283. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1284. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1285. return [(self.map_tensor_name(name), data_torch)]
  1286. @ModelBase.register("GPTBigCodeForCausalLM")
  1287. class StarCoderModel(TextModel):
  1288. model_arch = gguf.MODEL_ARCH.STARCODER
  1289. def set_gguf_parameters(self):
  1290. block_count = self.hparams["n_layer"]
  1291. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1292. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1293. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1294. self.gguf_writer.add_block_count(block_count)
  1295. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1296. self.gguf_writer.add_head_count_kv(1)
  1297. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1298. self.gguf_writer.add_file_type(self.ftype)
  1299. @ModelBase.register("GPTRefactForCausalLM")
  1300. class RefactModel(TextModel):
  1301. model_arch = gguf.MODEL_ARCH.REFACT
  1302. def set_vocab(self):
  1303. super().set_vocab()
  1304. # TODO: how to determine special FIM tokens automatically?
  1305. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1306. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1307. special_vocab._set_special_token("prefix", 1)
  1308. special_vocab._set_special_token("suffix", 3)
  1309. special_vocab._set_special_token("middle", 2)
  1310. special_vocab.chat_template = None # do not add it twice
  1311. special_vocab.add_to_gguf(self.gguf_writer)
  1312. def set_gguf_parameters(self):
  1313. hidden_dim = self.hparams["n_embd"]
  1314. inner_dim = 4 * hidden_dim
  1315. hidden_dim = int(2 * inner_dim / 3)
  1316. multiple_of = 256
  1317. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1318. block_count = self.hparams["n_layer"]
  1319. # refact uses Alibi. So this is from config.json which might be used by training.
  1320. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1321. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1322. self.gguf_writer.add_feed_forward_length(ff_dim)
  1323. self.gguf_writer.add_block_count(block_count)
  1324. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1325. self.gguf_writer.add_head_count_kv(1)
  1326. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1327. self.gguf_writer.add_file_type(self.ftype)
  1328. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1329. hidden_dim = self.hparams["n_embd"]
  1330. inner_dim = 4 * hidden_dim
  1331. hidden_dim = int(2 * inner_dim / 3)
  1332. multiple_of = 256
  1333. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1334. n_head = self.hparams["n_head"]
  1335. n_head_kv = 1
  1336. head_dim = self.hparams["n_embd"] // n_head
  1337. tensors: list[tuple[str, Tensor]] = []
  1338. if bid is not None:
  1339. if name == f"transformer.h.{bid}.attn.kv.weight":
  1340. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1341. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1342. elif name == f"transformer.h.{bid}.attn.q.weight":
  1343. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1344. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1345. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1346. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1347. if len(tensors) == 0:
  1348. tensors.append((self.map_tensor_name(name), data_torch))
  1349. return tensors
  1350. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1351. class StableLMModel(TextModel):
  1352. model_arch = gguf.MODEL_ARCH.STABLELM
  1353. def set_vocab(self):
  1354. if (self.dir_model / "tokenizer.json").is_file():
  1355. self._set_vocab_gpt2()
  1356. else:
  1357. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1358. self._set_vocab_qwen()
  1359. def set_gguf_parameters(self):
  1360. hparams = self.hparams
  1361. block_count = hparams["num_hidden_layers"]
  1362. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1363. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1364. self.gguf_writer.add_block_count(block_count)
  1365. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1366. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1367. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1368. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1369. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1370. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1371. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1372. self.gguf_writer.add_file_type(self.ftype)
  1373. _q_norms: list[dict[str, Tensor]] | None = None
  1374. _k_norms: list[dict[str, Tensor]] | None = None
  1375. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1376. n_head = self.hparams["num_attention_heads"]
  1377. n_kv_head = self.hparams["num_key_value_heads"]
  1378. if name.find("q_layernorm.norms") != -1:
  1379. assert bid is not None
  1380. if self._q_norms is None:
  1381. self._q_norms = [{} for _ in range(self.block_count)]
  1382. self._q_norms[bid][name] = data_torch
  1383. if len(self._q_norms[bid]) >= n_head:
  1384. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1385. else:
  1386. return []
  1387. if name.find("k_layernorm.norms") != -1:
  1388. assert bid is not None
  1389. if self._k_norms is None:
  1390. self._k_norms = [{} for _ in range(self.block_count)]
  1391. self._k_norms[bid][name] = data_torch
  1392. if len(self._k_norms[bid]) >= n_kv_head:
  1393. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1394. else:
  1395. return []
  1396. return [(self.map_tensor_name(name), data_torch)]
  1397. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1398. datas: list[Tensor] = []
  1399. # extract the norms in order
  1400. for xid in range(n_head):
  1401. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1402. datas.append(norms[ename])
  1403. del norms[ename]
  1404. data_torch = torch.stack(datas, dim=0)
  1405. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1406. new_name = self.map_tensor_name(merged_name)
  1407. return [(new_name, data_torch)]
  1408. def prepare_tensors(self):
  1409. super().prepare_tensors()
  1410. if self._q_norms is not None or self._k_norms is not None:
  1411. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1412. norms = (
  1413. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1414. ) + (
  1415. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1416. )
  1417. if len(norms) > 0:
  1418. raise ValueError(f"Unprocessed norms: {norms}")
  1419. @ModelBase.register(
  1420. "LLaMAForCausalLM",
  1421. "LlamaForCausalLM",
  1422. "MistralForCausalLM",
  1423. "MixtralForCausalLM",
  1424. "Idefics3ForConditionalGeneration",
  1425. "SmolVLMForConditionalGeneration",
  1426. "LlavaForConditionalGeneration")
  1427. class LlamaModel(TextModel):
  1428. model_arch = gguf.MODEL_ARCH.LLAMA
  1429. undo_permute = True
  1430. def __init__(self, *args, **kwargs):
  1431. super().__init__(*args, **kwargs)
  1432. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1433. if self.hparams["architectures"][0] == "SmolVLMForConditionalGeneration":
  1434. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1435. # fix for Pixtral, missing `num_attention_heads` in config.json
  1436. if self.hparams["architectures"][0] == "LlavaForConditionalGeneration" \
  1437. and self.hparams.get("model_type") == "mistral":
  1438. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1439. def set_vocab(self):
  1440. try:
  1441. self._set_vocab_sentencepiece()
  1442. except FileNotFoundError:
  1443. try:
  1444. self._set_vocab_llama_hf()
  1445. except (FileNotFoundError, TypeError):
  1446. # Llama 3
  1447. self._set_vocab_gpt2()
  1448. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1449. if self.hparams.get("vocab_size", 32000) == 32016:
  1450. special_vocab = gguf.SpecialVocab(
  1451. self.dir_model, load_merges=False,
  1452. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1453. )
  1454. special_vocab._set_special_token("prefix", 32007)
  1455. special_vocab._set_special_token("suffix", 32008)
  1456. special_vocab._set_special_token("middle", 32009)
  1457. special_vocab._set_special_token("eot", 32010)
  1458. special_vocab.add_to_gguf(self.gguf_writer)
  1459. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1460. if tokenizer_config_file.is_file():
  1461. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1462. tokenizer_config_json = json.load(f)
  1463. if "add_prefix_space" in tokenizer_config_json:
  1464. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1465. # Apply to granite small models only
  1466. if self.hparams.get("vocab_size", 32000) == 49152:
  1467. self.gguf_writer.add_add_bos_token(False)
  1468. def set_gguf_parameters(self):
  1469. super().set_gguf_parameters()
  1470. hparams = self.hparams
  1471. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1472. if "head_dim" in hparams:
  1473. rope_dim = hparams["head_dim"]
  1474. else:
  1475. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1476. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1477. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1478. if self.hparams["rope_scaling"].get("type") == "linear":
  1479. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1480. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1481. @staticmethod
  1482. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1483. if n_head_kv is not None and n_head != n_head_kv:
  1484. n_head = n_head_kv
  1485. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1486. .swapaxes(1, 2)
  1487. .reshape(weights.shape))
  1488. _experts: list[dict[str, Tensor]] | None = None
  1489. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1490. n_head = self.hparams["num_attention_heads"]
  1491. n_kv_head = self.hparams.get("num_key_value_heads")
  1492. is_vision_tensor = "vision_tower" in name \
  1493. or "vision_model" in name \
  1494. or "model.connector" in name \
  1495. or "multi_modal_projector" in name
  1496. if is_vision_tensor:
  1497. return [] # skip vision tensors
  1498. elif name.startswith("model.text_model"):
  1499. name = name.replace("text_model.", "") # for SmolVLM
  1500. elif name.startswith("language_model."):
  1501. name = name.replace("language_model.", "") # for the rest
  1502. if self.undo_permute:
  1503. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1504. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1505. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1506. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1507. # process the experts separately
  1508. if name.find("block_sparse_moe.experts") != -1:
  1509. n_experts = self.hparams["num_local_experts"]
  1510. assert bid is not None
  1511. if self._experts is None:
  1512. self._experts = [{} for _ in range(self.block_count)]
  1513. self._experts[bid][name] = data_torch
  1514. if len(self._experts[bid]) >= n_experts * 3:
  1515. tensors: list[tuple[str, Tensor]] = []
  1516. # merge the experts into a single 3d tensor
  1517. for wid in ["w1", "w2", "w3"]:
  1518. datas: list[Tensor] = []
  1519. for xid in range(n_experts):
  1520. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1521. datas.append(self._experts[bid][ename])
  1522. del self._experts[bid][ename]
  1523. data_torch = torch.stack(datas, dim=0)
  1524. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1525. new_name = self.map_tensor_name(merged_name)
  1526. tensors.append((new_name, data_torch))
  1527. return tensors
  1528. else:
  1529. return []
  1530. return [(self.map_tensor_name(name), data_torch)]
  1531. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1532. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1533. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1534. base = self.hparams.get("rope_theta", 10000.0)
  1535. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1536. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1537. factor = rope_scaling.get("factor", 8.0)
  1538. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1539. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1540. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1541. low_freq_wavelen = old_context_len / low_freq_factor
  1542. high_freq_wavelen = old_context_len / high_freq_factor
  1543. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1544. rope_factors = []
  1545. for freq in freqs:
  1546. wavelen = 2 * math.pi / freq
  1547. if wavelen < high_freq_wavelen:
  1548. rope_factors.append(1)
  1549. elif wavelen > low_freq_wavelen:
  1550. rope_factors.append(factor)
  1551. else:
  1552. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1553. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1554. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1555. def prepare_tensors(self):
  1556. super().prepare_tensors()
  1557. if self._experts is not None:
  1558. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1559. experts = [k for d in self._experts for k in d.keys()]
  1560. if len(experts) > 0:
  1561. raise ValueError(f"Unprocessed experts: {experts}")
  1562. @ModelBase.register("LlavaForConditionalGeneration")
  1563. class LlavaVisionModel(VisionModel):
  1564. img_break_tok_id = -1
  1565. def __init__(self, *args, **kwargs):
  1566. super().__init__(*args, **kwargs)
  1567. if self.hparams["model_type"] == "pixtral":
  1568. # fix missing config.json values
  1569. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1570. self.hparams["num_hidden_layers"] = self.hparams.get("num_hidden_layers", 24)
  1571. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 4096)
  1572. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1024)
  1573. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1574. self.img_break_tok_id = 12 # see tokenizer_config.json
  1575. else:
  1576. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1577. def set_gguf_parameters(self):
  1578. super().set_gguf_parameters()
  1579. hparams = self.hparams
  1580. if hparams["model_type"] == "pixtral":
  1581. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1582. # default values below are taken from HF tranformers code
  1583. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1584. self.gguf_writer.add_vision_use_silu(True)
  1585. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1586. del bid # unused
  1587. n_head = self.hparams["num_attention_heads"]
  1588. n_kv_head = n_head
  1589. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1590. # process vision tensors
  1591. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1592. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1593. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1594. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1595. return [(self.map_tensor_name(name), data_torch)]
  1596. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1597. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1598. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1599. img_break_embd = data_torch[self.img_break_tok_id]
  1600. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1601. return [(self.map_tensor_name(name), img_break_embd)]
  1602. return [] # skip other tensors
  1603. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1604. class SmolVLMModel(VisionModel):
  1605. def __init__(self, *args, **kwargs):
  1606. super().__init__(*args, **kwargs)
  1607. # fix for SmolVLM2, missing some keys in config.json
  1608. # default values are taken from transformers code
  1609. if self.hparams["model_type"] == "smolvlm_vision":
  1610. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1611. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1612. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1613. self.hparams["num_hidden_layers"] = self.hparams.get("num_hidden_layers", 12)
  1614. def set_gguf_parameters(self):
  1615. super().set_gguf_parameters()
  1616. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1617. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1618. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1619. self.gguf_writer.add_vision_use_gelu(True)
  1620. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1621. del bid, new_name, n_dims # unused
  1622. if ".embeddings." in name:
  1623. return gguf.GGMLQuantizationType.F32
  1624. return False
  1625. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1626. del bid # unused
  1627. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1628. if is_vision_tensor:
  1629. return [(self.map_tensor_name(name), data_torch)]
  1630. return [] # skip other tensors
  1631. @ModelBase.register("Llama4ForConditionalGeneration")
  1632. class Llama4Model(LlamaModel):
  1633. model_arch = gguf.MODEL_ARCH.LLAMA4
  1634. undo_permute = False
  1635. def __init__(self, *args, **kwargs):
  1636. super().__init__(*args, **kwargs)
  1637. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1638. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1639. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1640. def set_vocab(self):
  1641. self._set_vocab_gpt2()
  1642. self.gguf_writer.add_add_bos_token(True)
  1643. def set_gguf_parameters(self):
  1644. super().set_gguf_parameters()
  1645. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1646. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1647. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1648. # split the gate_up into gate and up
  1649. if "gate_up_proj" in name:
  1650. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1651. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1652. dim_half = data_torch.shape[-1] // 2
  1653. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1654. return [
  1655. (self.map_tensor_name(name_gate), gate_proj_weight),
  1656. (self.map_tensor_name(name_up), up_proj_weight)
  1657. ]
  1658. if name.endswith("down_proj"):
  1659. name += ".weight"
  1660. data_torch = data_torch.transpose(-1, -2)
  1661. if "multi_modal_projector" in name or "vision_model" in name:
  1662. return []
  1663. return super().modify_tensors(data_torch, name, bid)
  1664. @ModelBase.register("Mistral3ForConditionalGeneration")
  1665. class Mistral3Model(LlamaModel):
  1666. model_arch = gguf.MODEL_ARCH.LLAMA
  1667. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1668. name = name.replace("language_model.", "")
  1669. if "multi_modal_projector" in name or "vision_tower" in name:
  1670. return []
  1671. return super().modify_tensors(data_torch, name, bid)
  1672. @ModelBase.register("DeciLMForCausalLM")
  1673. class DeciModel(TextModel):
  1674. model_arch = gguf.MODEL_ARCH.DECI
  1675. @staticmethod
  1676. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1677. # DeciLM-specific code
  1678. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1679. return DeciModel._find_multiple(intermediate_size, 256)
  1680. @staticmethod
  1681. def _find_multiple(n: int, k: int) -> int:
  1682. # DeciLM-specific code
  1683. if n % k == 0:
  1684. return n
  1685. return n + k - (n % k)
  1686. def __init__(self, *args, **kwargs):
  1687. super().__init__(*args, **kwargs)
  1688. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1689. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1690. assert self.block_count == len(_block_configs)
  1691. self._num_kv_heads = list()
  1692. self._num_heads = list()
  1693. _ffn_multipliers = list()
  1694. # ***linear attention layer***
  1695. # if n_heads_in_group is None and replace_with_linear is True
  1696. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1697. # ***attention-free layer***
  1698. # if n_heads_in_group is None and replace_with_linear is False
  1699. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1700. # ***normal attention-layer***
  1701. # if n_heads_in_group is not None, then
  1702. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1703. # _num_heads[il] is num_attention_head
  1704. for il in range(len(_block_configs)):
  1705. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1706. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1707. self._num_kv_heads.append(0)
  1708. self._num_heads.append(self.hparams["num_attention_heads"])
  1709. else:
  1710. self._num_kv_heads.append(0)
  1711. self._num_heads.append(0)
  1712. else:
  1713. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1714. self._num_heads.append(self.hparams["num_attention_heads"])
  1715. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1716. assert self.block_count == len(self._num_kv_heads)
  1717. assert self.block_count == len(self._num_heads)
  1718. assert self.block_count == len(_ffn_multipliers)
  1719. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1720. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1721. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1722. self._ffn_dims: list[int] = [
  1723. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1724. for multiplier in _ffn_multipliers
  1725. ]
  1726. def set_vocab(self):
  1727. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1728. # eos_token from '|eot_id|' to '|end_of_text|'
  1729. if self.hparams.get("vocab_size", 128256) == 128256:
  1730. tokens, toktypes, tokpre = self.get_vocab_base()
  1731. self.gguf_writer.add_tokenizer_model("gpt2")
  1732. self.gguf_writer.add_tokenizer_pre(tokpre)
  1733. self.gguf_writer.add_token_list(tokens)
  1734. self.gguf_writer.add_token_types(toktypes)
  1735. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1736. special_vocab.add_to_gguf(self.gguf_writer)
  1737. else:
  1738. # DeciLM-7B
  1739. self._set_vocab_llama_hf()
  1740. def set_gguf_parameters(self):
  1741. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1742. assert self.block_count == len(self._num_kv_heads)
  1743. assert self.block_count == len(self._num_heads)
  1744. assert self.block_count == len(self._ffn_dims)
  1745. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1746. self.gguf_writer.add_rope_freq_base(rope_theta)
  1747. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1748. self.gguf_writer.add_head_count(self._num_heads)
  1749. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1750. self.gguf_writer.add_block_count(self.block_count)
  1751. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1752. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1753. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1754. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1755. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1756. self.gguf_writer.add_file_type(self.ftype)
  1757. else: # DeciLM-7B
  1758. super().set_gguf_parameters()
  1759. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1760. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1761. assert self.block_count == len(self._num_kv_heads)
  1762. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1763. hparams = self.hparams
  1764. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1765. if "head_dim" in hparams:
  1766. rope_dim = hparams["head_dim"]
  1767. else:
  1768. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1769. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1770. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1771. if self.hparams["rope_scaling"].get("type") == "linear":
  1772. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1773. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1774. @staticmethod
  1775. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1776. if n_head_kv is not None and n_head != n_head_kv:
  1777. n_head = n_head_kv
  1778. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1779. .swapaxes(1, 2)
  1780. .reshape(weights.shape))
  1781. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1782. n_head = self.hparams["num_attention_heads"]
  1783. if bid is not None:
  1784. if "num_key_value_heads_per_layer" in self.hparams:
  1785. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1786. elif "block_configs" in self.hparams:
  1787. n_kv_head = self._num_kv_heads[bid]
  1788. n_head = self._num_heads[bid]
  1789. else:
  1790. n_kv_head = self.hparams.get("num_key_value_heads")
  1791. else:
  1792. n_kv_head = self.hparams.get("num_key_value_heads")
  1793. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1794. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1795. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1796. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1797. return [(self.map_tensor_name(name), data_torch)]
  1798. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1799. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1800. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1801. base = self.hparams.get("rope_theta", 10000.0)
  1802. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1803. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1804. factor = rope_scaling.get("factor", 8.0)
  1805. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1806. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1807. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1808. low_freq_wavelen = old_context_len / low_freq_factor
  1809. high_freq_wavelen = old_context_len / high_freq_factor
  1810. assert low_freq_wavelen != high_freq_wavelen
  1811. rope_factors = []
  1812. for freq in freqs:
  1813. wavelen = 2 * math.pi / freq
  1814. if wavelen < high_freq_wavelen:
  1815. rope_factors.append(1)
  1816. elif wavelen > low_freq_wavelen:
  1817. rope_factors.append(factor)
  1818. else:
  1819. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1820. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1821. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1822. def prepare_tensors(self):
  1823. super().prepare_tensors()
  1824. @ModelBase.register("BitnetForCausalLM")
  1825. class BitnetModel(TextModel):
  1826. model_arch = gguf.MODEL_ARCH.BITNET
  1827. def set_vocab(self):
  1828. self._set_vocab_sentencepiece()
  1829. def set_gguf_parameters(self):
  1830. super().set_gguf_parameters()
  1831. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1832. self.gguf_writer.add_rope_scaling_factor(1.0)
  1833. def weight_quant(self, weight: Tensor) -> Tensor:
  1834. dtype = weight.dtype
  1835. weight = weight.float()
  1836. scale = weight.abs().mean().clamp(min=1e-5)
  1837. iscale = 1 / scale
  1838. # TODO: multiply by the scale directly instead of inverting it twice
  1839. # (this is also unnecessarily doubly inverted upstream)
  1840. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1841. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1842. return result.type(dtype)
  1843. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1844. new_name = self.map_tensor_name(name)
  1845. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1846. gguf.MODEL_TENSOR.ATTN_Q,
  1847. gguf.MODEL_TENSOR.ATTN_K,
  1848. gguf.MODEL_TENSOR.ATTN_V,
  1849. gguf.MODEL_TENSOR.ATTN_OUT,
  1850. gguf.MODEL_TENSOR.FFN_UP,
  1851. gguf.MODEL_TENSOR.FFN_DOWN,
  1852. gguf.MODEL_TENSOR.FFN_GATE,
  1853. ]):
  1854. # transform weight into 1/0/-1 (in fp32)
  1855. data_torch = self.weight_quant(data_torch)
  1856. yield (new_name, data_torch)
  1857. @ModelBase.register("GrokForCausalLM")
  1858. class GrokModel(TextModel):
  1859. model_arch = gguf.MODEL_ARCH.GROK
  1860. def set_vocab(self):
  1861. self._set_vocab_sentencepiece()
  1862. def __init__(self, *args, **kwargs):
  1863. super().__init__(*args, **kwargs)
  1864. def set_gguf_parameters(self):
  1865. super().set_gguf_parameters()
  1866. _experts: list[dict[str, Tensor]] | None = None
  1867. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1868. # process the experts separately
  1869. if name.find(".moe.") != -1:
  1870. n_experts = self.hparams["num_local_experts"]
  1871. assert bid is not None
  1872. if self._experts is None:
  1873. self._experts = [{} for _ in range(self.block_count)]
  1874. self._experts[bid][name] = data_torch
  1875. if len(self._experts[bid]) >= n_experts * 3:
  1876. tensors: list[tuple[str, Tensor]] = []
  1877. # merge the experts into a single 3d tensor
  1878. for wid in ["linear", "linear_1", "linear_v"]:
  1879. datas: list[Tensor] = []
  1880. for xid in range(n_experts):
  1881. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1882. datas.append(self._experts[bid][ename])
  1883. del self._experts[bid][ename]
  1884. data_torch = torch.stack(datas, dim=0)
  1885. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1886. new_name = self.map_tensor_name(merged_name)
  1887. tensors.append((new_name, data_torch))
  1888. return tensors
  1889. else:
  1890. return []
  1891. return [(self.map_tensor_name(name), data_torch)]
  1892. @ModelBase.register("DbrxForCausalLM")
  1893. class DbrxModel(TextModel):
  1894. model_arch = gguf.MODEL_ARCH.DBRX
  1895. def set_gguf_parameters(self):
  1896. ffn_config = self.hparams["ffn_config"]
  1897. attn_config = self.hparams["attn_config"]
  1898. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1899. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1900. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1901. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1902. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1903. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1904. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1905. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1906. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1907. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1908. self.gguf_writer.add_layer_norm_eps(1e-5)
  1909. self.gguf_writer.add_file_type(self.ftype)
  1910. logger.info(f"gguf: file type = {self.ftype}")
  1911. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1912. del bid # unused
  1913. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1914. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1915. n_embd = self.hparams["d_model"]
  1916. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1917. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1918. # But llama.cpp moe graph works differently
  1919. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1920. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1921. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1922. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1923. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1924. experts = False
  1925. for exp_tensor_name in exp_tensor_names.keys():
  1926. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1927. experts = True
  1928. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1929. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1930. data_torch = data_torch.permute(*permute_tensor)
  1931. break
  1932. # map tensor names
  1933. # In MoE models the ffn tensors are typically most of the model weights,
  1934. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1935. # Every other model has the weight names ending in .weight,
  1936. # let's assume that is the convention which is not the case for dbrx:
  1937. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1938. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1939. return [(new_name, data_torch)]
  1940. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1941. del name, new_name, bid # unused
  1942. return n_dims > 1
  1943. @ModelBase.register("MiniCPMForCausalLM")
  1944. class MiniCPMModel(TextModel):
  1945. model_arch = gguf.MODEL_ARCH.MINICPM
  1946. def set_gguf_parameters(self):
  1947. super().set_gguf_parameters()
  1948. embedding_scale = float(self.hparams["scale_emb"])
  1949. self.gguf_writer.add_embedding_scale(embedding_scale)
  1950. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1951. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1952. self.gguf_writer.add_residual_scale(residual_scale)
  1953. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1954. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1955. self.gguf_writer.add_logit_scale(logit_scale)
  1956. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1957. if self.hparams.get("rope_scaling") is not None:
  1958. if self.hparams["rope_scaling"].get("type") == "longrope":
  1959. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1960. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1961. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1962. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1963. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1964. if rope_scaling is not None:
  1965. long_factors = rope_scaling.get('long_factor', None)
  1966. short_factors = rope_scaling.get('short_factor', None)
  1967. if long_factors is None or short_factors is None:
  1968. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1969. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1970. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1971. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1972. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1973. def set_vocab(self):
  1974. self._set_vocab_sentencepiece()
  1975. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1976. del bid # unused
  1977. n_head = self.hparams["num_attention_heads"]
  1978. n_kv_head = self.hparams.get("num_key_value_heads")
  1979. # HF models permute some of the tensors, so we need to undo that
  1980. if name.endswith(("q_proj.weight")):
  1981. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1982. if name.endswith(("k_proj.weight")):
  1983. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1984. return [(self.map_tensor_name(name), data_torch)]
  1985. @ModelBase.register("MiniCPM3ForCausalLM")
  1986. class MiniCPM3Model(TextModel):
  1987. model_arch = gguf.MODEL_ARCH.MINICPM3
  1988. def set_gguf_parameters(self):
  1989. hparams = self.hparams
  1990. self.gguf_writer.add_file_type(self.ftype)
  1991. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1992. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1993. self.gguf_writer.add_block_count(self.block_count)
  1994. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1995. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1996. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1997. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1998. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1999. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2000. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2001. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2002. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2003. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2004. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2005. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2006. if rope_scaling is not None:
  2007. rope_dims = self.hparams["qk_rope_head_dim"]
  2008. long_factors = rope_scaling.get('long_factor', None)
  2009. short_factors = rope_scaling.get('short_factor', None)
  2010. if long_factors is None or short_factors is None:
  2011. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2012. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2013. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2014. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2015. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2016. def set_vocab(self):
  2017. self._set_vocab_sentencepiece()
  2018. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2019. if n_kv_head is not None and n_head != n_kv_head:
  2020. n_head //= n_kv_head
  2021. return (
  2022. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2023. .swapaxes(1, 2)
  2024. .reshape(weights.shape)
  2025. )
  2026. @ModelBase.register("QWenLMHeadModel")
  2027. class QwenModel(TextModel):
  2028. model_arch = gguf.MODEL_ARCH.QWEN
  2029. @staticmethod
  2030. def token_bytes_to_string(b):
  2031. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2032. byte_encoder = bytes_to_unicode()
  2033. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2034. @staticmethod
  2035. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2036. parts = [bytes([b]) for b in token]
  2037. while True:
  2038. min_idx = None
  2039. min_rank = None
  2040. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2041. rank = mergeable_ranks.get(pair[0] + pair[1])
  2042. if rank is not None and (min_rank is None or rank < min_rank):
  2043. min_idx = i
  2044. min_rank = rank
  2045. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2046. break
  2047. assert min_idx is not None
  2048. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2049. return parts
  2050. def set_vocab(self):
  2051. self._set_vocab_qwen()
  2052. def set_gguf_parameters(self):
  2053. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2054. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2055. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2056. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2057. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2058. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2059. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2060. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2061. self.gguf_writer.add_file_type(self.ftype)
  2062. @ModelBase.register("Qwen2ForCausalLM")
  2063. class Qwen2Model(TextModel):
  2064. model_arch = gguf.MODEL_ARCH.QWEN2
  2065. def set_vocab(self):
  2066. try:
  2067. self._set_vocab_sentencepiece()
  2068. except FileNotFoundError:
  2069. self._set_vocab_gpt2()
  2070. def set_gguf_parameters(self):
  2071. super().set_gguf_parameters()
  2072. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2073. if self.hparams["rope_scaling"].get("type") == "yarn":
  2074. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2075. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2076. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2077. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2078. class Qwen2VLModel(TextModel):
  2079. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2080. def set_gguf_parameters(self):
  2081. super().set_gguf_parameters()
  2082. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2083. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2084. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2085. def set_vocab(self):
  2086. try:
  2087. self._set_vocab_sentencepiece()
  2088. except FileNotFoundError:
  2089. self._set_vocab_gpt2()
  2090. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2091. del bid # unused
  2092. if name.startswith("visual."):
  2093. # skip visual tensors
  2094. return []
  2095. return [(self.map_tensor_name(name), data_torch)]
  2096. @ModelBase.register("WavTokenizerDec")
  2097. class WavTokenizerDecModel(TextModel):
  2098. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2099. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2100. del bid # unused
  2101. if \
  2102. name.endswith("codebook.cluster_size") or \
  2103. name.endswith("codebook.embed_avg") or \
  2104. name.endswith("codebook.inited"):
  2105. logger.debug(f"Skipping {name!r}")
  2106. return []
  2107. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2108. return [(self.map_tensor_name(name), data_torch)]
  2109. def set_vocab(self):
  2110. self._set_vocab_none()
  2111. def set_gguf_parameters(self):
  2112. super().set_gguf_parameters()
  2113. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2114. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2115. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2116. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2117. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2118. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2119. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2120. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2121. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2122. self.gguf_writer.add_causal_attention(False)
  2123. @ModelBase.register("Qwen2MoeForCausalLM")
  2124. class Qwen2MoeModel(TextModel):
  2125. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2126. def set_gguf_parameters(self):
  2127. super().set_gguf_parameters()
  2128. if (n_experts := self.hparams.get("num_experts")) is not None:
  2129. self.gguf_writer.add_expert_count(n_experts)
  2130. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2131. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2132. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2133. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2134. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2135. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2136. _experts: list[dict[str, Tensor]] | None = None
  2137. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2138. # process the experts separately
  2139. if name.find("experts") != -1:
  2140. n_experts = self.hparams["num_experts"]
  2141. assert bid is not None
  2142. if self._experts is None:
  2143. self._experts = [{} for _ in range(self.block_count)]
  2144. self._experts[bid][name] = data_torch
  2145. if len(self._experts[bid]) >= n_experts * 3:
  2146. tensors: list[tuple[str, Tensor]] = []
  2147. # merge the experts into a single 3d tensor
  2148. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2149. datas: list[Tensor] = []
  2150. for xid in range(n_experts):
  2151. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2152. datas.append(self._experts[bid][ename])
  2153. del self._experts[bid][ename]
  2154. data_torch = torch.stack(datas, dim=0)
  2155. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2156. new_name = self.map_tensor_name(merged_name)
  2157. tensors.append((new_name, data_torch))
  2158. return tensors
  2159. else:
  2160. return []
  2161. return [(self.map_tensor_name(name), data_torch)]
  2162. def prepare_tensors(self):
  2163. super().prepare_tensors()
  2164. if self._experts is not None:
  2165. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2166. experts = [k for d in self._experts for k in d.keys()]
  2167. if len(experts) > 0:
  2168. raise ValueError(f"Unprocessed experts: {experts}")
  2169. @ModelBase.register("Qwen3ForCausalLM")
  2170. class Qwen3Model(Qwen2Model):
  2171. model_arch = gguf.MODEL_ARCH.QWEN3
  2172. @ModelBase.register("Qwen3MoeForCausalLM")
  2173. class Qwen3MoeModel(Qwen2MoeModel):
  2174. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2175. @ModelBase.register("GPT2LMHeadModel")
  2176. class GPT2Model(TextModel):
  2177. model_arch = gguf.MODEL_ARCH.GPT2
  2178. def set_gguf_parameters(self):
  2179. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2180. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2181. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2182. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2183. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2184. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2185. self.gguf_writer.add_file_type(self.ftype)
  2186. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2187. del bid # unused
  2188. tensors: list[tuple[str, Tensor]] = []
  2189. # we don't need these
  2190. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2191. return tensors
  2192. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2193. data_torch = data_torch.transpose(1, 0)
  2194. new_name = self.map_tensor_name(name)
  2195. tensors.append((new_name, data_torch))
  2196. return tensors
  2197. @ModelBase.register("PhiForCausalLM")
  2198. class Phi2Model(TextModel):
  2199. model_arch = gguf.MODEL_ARCH.PHI2
  2200. def set_gguf_parameters(self):
  2201. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2202. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2203. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2204. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2205. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2206. self.gguf_writer.add_embedding_length(n_embd)
  2207. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2208. self.gguf_writer.add_block_count(block_count)
  2209. self.gguf_writer.add_head_count(n_head)
  2210. self.gguf_writer.add_head_count_kv(n_head)
  2211. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2212. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2213. self.gguf_writer.add_file_type(self.ftype)
  2214. self.gguf_writer.add_add_bos_token(False)
  2215. @ModelBase.register("Phi3ForCausalLM")
  2216. class Phi3MiniModel(TextModel):
  2217. model_arch = gguf.MODEL_ARCH.PHI3
  2218. def set_vocab(self):
  2219. # Phi-4 model uses GPT2Tokenizer
  2220. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2221. if tokenizer_config_file.is_file():
  2222. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2223. tokenizer_config_json = json.load(f)
  2224. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2225. if tokenizer_class == 'GPT2Tokenizer':
  2226. return self._set_vocab_gpt2()
  2227. from sentencepiece import SentencePieceProcessor
  2228. tokenizer_path = self.dir_model / 'tokenizer.model'
  2229. if not tokenizer_path.is_file():
  2230. raise ValueError(f'Error: Missing {tokenizer_path}')
  2231. tokenizer = SentencePieceProcessor()
  2232. tokenizer.LoadFromFile(str(tokenizer_path))
  2233. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2234. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2235. scores: list[float] = [-10000.0] * vocab_size
  2236. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2237. for token_id in range(tokenizer.vocab_size()):
  2238. piece = tokenizer.IdToPiece(token_id)
  2239. text = piece.encode("utf-8")
  2240. score = tokenizer.GetScore(token_id)
  2241. toktype = SentencePieceTokenTypes.NORMAL
  2242. if tokenizer.IsUnknown(token_id):
  2243. toktype = SentencePieceTokenTypes.UNKNOWN
  2244. elif tokenizer.IsControl(token_id):
  2245. toktype = SentencePieceTokenTypes.CONTROL
  2246. elif tokenizer.IsUnused(token_id):
  2247. toktype = SentencePieceTokenTypes.UNUSED
  2248. elif tokenizer.IsByte(token_id):
  2249. toktype = SentencePieceTokenTypes.BYTE
  2250. tokens[token_id] = text
  2251. scores[token_id] = score
  2252. toktypes[token_id] = toktype
  2253. added_tokens_file = self.dir_model / 'added_tokens.json'
  2254. if added_tokens_file.is_file():
  2255. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2256. added_tokens_json = json.load(f)
  2257. for key in added_tokens_json:
  2258. token_id = added_tokens_json[key]
  2259. if token_id >= vocab_size:
  2260. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2261. continue
  2262. tokens[token_id] = key.encode("utf-8")
  2263. scores[token_id] = -1000.0
  2264. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2265. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2266. if tokenizer_config_file.is_file():
  2267. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2268. tokenizer_config_json = json.load(f)
  2269. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2270. for token_id, foken_data in added_tokens_decoder.items():
  2271. token_id = int(token_id)
  2272. token = foken_data["content"].encode("utf-8")
  2273. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2274. if tokens[token_id] != token:
  2275. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2276. tokens[token_id] = token
  2277. scores[token_id] = -1000.0
  2278. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2279. if foken_data.get("special"):
  2280. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2281. tokenizer_file = self.dir_model / 'tokenizer.json'
  2282. if tokenizer_file.is_file():
  2283. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2284. tokenizer_json = json.load(f)
  2285. added_tokens = tokenizer_json.get("added_tokens", [])
  2286. for foken_data in added_tokens:
  2287. token_id = int(foken_data["id"])
  2288. token = foken_data["content"].encode("utf-8")
  2289. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2290. if tokens[token_id] != token:
  2291. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2292. tokens[token_id] = token
  2293. scores[token_id] = -1000.0
  2294. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2295. if foken_data.get("special"):
  2296. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2297. self.gguf_writer.add_tokenizer_model("llama")
  2298. self.gguf_writer.add_tokenizer_pre("default")
  2299. self.gguf_writer.add_token_list(tokens)
  2300. self.gguf_writer.add_token_scores(scores)
  2301. self.gguf_writer.add_token_types(toktypes)
  2302. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2303. special_vocab.add_to_gguf(self.gguf_writer)
  2304. def set_gguf_parameters(self):
  2305. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2306. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2307. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2308. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2309. rms_eps = self.find_hparam(["rms_norm_eps"])
  2310. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2311. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2312. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2313. rope_dims = int(rot_pct * n_embd) // n_head
  2314. self.gguf_writer.add_context_length(max_pos_embds)
  2315. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2316. self.gguf_writer.add_embedding_length(n_embd)
  2317. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2318. self.gguf_writer.add_block_count(block_count)
  2319. self.gguf_writer.add_head_count(n_head)
  2320. self.gguf_writer.add_head_count_kv(n_head_kv)
  2321. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2322. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2323. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2324. self.gguf_writer.add_file_type(self.ftype)
  2325. sliding_window = self.hparams.get("sliding_window")
  2326. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2327. if sliding_window is None:
  2328. sliding_window = 0
  2329. self.gguf_writer.add_sliding_window(sliding_window)
  2330. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2331. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2332. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2333. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2334. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2335. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2336. rope_dims = int(rot_pct * n_embd) // n_head
  2337. # write rope scaling for long context (128k) model
  2338. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2339. if rope_scaling is None:
  2340. return
  2341. scale = max_pos_embds / orig_max_pos_embds
  2342. rope_scaling_type = rope_scaling.get('type', '').lower()
  2343. if len(rope_scaling_type) == 0:
  2344. raise KeyError('Missing the required key rope_scaling.type')
  2345. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2346. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2347. elif rope_scaling_type == 'yarn':
  2348. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2349. else:
  2350. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2351. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2352. long_factors = rope_scaling.get('long_factor', None)
  2353. short_factors = rope_scaling.get('short_factor', None)
  2354. if long_factors is None or short_factors is None:
  2355. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2356. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2357. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2358. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2359. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2360. @ModelBase.register("PhiMoEForCausalLM")
  2361. class PhiMoeModel(Phi3MiniModel):
  2362. model_arch = gguf.MODEL_ARCH.PHIMOE
  2363. _experts: list[dict[str, Tensor]] | None = None
  2364. def set_gguf_parameters(self):
  2365. super().set_gguf_parameters()
  2366. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2367. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2368. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2369. # process the experts separately
  2370. if name.find("block_sparse_moe.experts") != -1:
  2371. n_experts = self.hparams["num_local_experts"]
  2372. assert bid is not None
  2373. if self._experts is None:
  2374. self._experts = [{} for _ in range(self.block_count)]
  2375. self._experts[bid][name] = data_torch
  2376. if len(self._experts[bid]) >= n_experts * 3:
  2377. tensors: list[tuple[str, Tensor]] = []
  2378. # merge the experts into a single 3d tensor
  2379. for w_name in ["w1", "w2", "w3"]:
  2380. datas: list[Tensor] = []
  2381. for xid in range(n_experts):
  2382. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2383. datas.append(self._experts[bid][ename])
  2384. del self._experts[bid][ename]
  2385. data_torch = torch.stack(datas, dim=0)
  2386. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2387. new_name = self.map_tensor_name(merged_name)
  2388. tensors.append((new_name, data_torch))
  2389. return tensors
  2390. else:
  2391. return []
  2392. return [(self.map_tensor_name(name), data_torch)]
  2393. def prepare_tensors(self):
  2394. super().prepare_tensors()
  2395. if self._experts is not None:
  2396. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2397. experts = [k for d in self._experts for k in d.keys()]
  2398. if len(experts) > 0:
  2399. raise ValueError(f"Unprocessed experts: {experts}")
  2400. @ModelBase.register("PlamoForCausalLM")
  2401. class PlamoModel(TextModel):
  2402. model_arch = gguf.MODEL_ARCH.PLAMO
  2403. def set_vocab(self):
  2404. self._set_vocab_sentencepiece()
  2405. def set_gguf_parameters(self):
  2406. hparams = self.hparams
  2407. block_count = hparams["num_hidden_layers"]
  2408. self.gguf_writer.add_context_length(4096) # not in config.json
  2409. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2410. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2411. self.gguf_writer.add_block_count(block_count)
  2412. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2413. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2414. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2415. self.gguf_writer.add_file_type(self.ftype)
  2416. def shuffle_attn_q_weight(self, data_torch):
  2417. assert data_torch.size() == (5120, 5120)
  2418. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2419. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2420. data_torch = torch.reshape(data_torch, (5120, 5120))
  2421. return data_torch
  2422. def shuffle_attn_output_weight(self, data_torch):
  2423. assert data_torch.size() == (5120, 5120)
  2424. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2425. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2426. data_torch = torch.reshape(data_torch, (5120, 5120))
  2427. return data_torch
  2428. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2429. del bid # unused
  2430. new_name = self.map_tensor_name(name)
  2431. # shuffle for broadcasting of gqa in ggml_mul_mat
  2432. if new_name.endswith("attn_q.weight"):
  2433. data_torch = self.shuffle_attn_q_weight(data_torch)
  2434. elif new_name.endswith("attn_output.weight"):
  2435. data_torch = self.shuffle_attn_output_weight(data_torch)
  2436. return [(new_name, data_torch)]
  2437. @ModelBase.register("CodeShellForCausalLM")
  2438. class CodeShellModel(TextModel):
  2439. model_arch = gguf.MODEL_ARCH.CODESHELL
  2440. def set_gguf_parameters(self):
  2441. block_count = self.hparams["n_layer"]
  2442. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2443. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2444. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2445. self.gguf_writer.add_block_count(block_count)
  2446. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2447. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2448. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2449. self.gguf_writer.add_file_type(self.ftype)
  2450. self.gguf_writer.add_rope_freq_base(10000.0)
  2451. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2452. self.gguf_writer.add_rope_scaling_factor(1.0)
  2453. _has_tok_embd = False
  2454. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2455. del bid # unused
  2456. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2457. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2458. new_name = self.map_tensor_name(name)
  2459. # assuming token_embd.weight is seen before output.weight
  2460. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2461. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2462. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2463. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2464. self.tensor_names.remove("transformer.wte.weight")
  2465. elif new_name == tok_embd_name:
  2466. self._has_tok_embd = True
  2467. return [(new_name, data_torch)]
  2468. @ModelBase.register("InternLM2ForCausalLM")
  2469. class InternLM2Model(TextModel):
  2470. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2471. def set_vocab(self):
  2472. # (TODO): Is there a better way?
  2473. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2474. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2475. # recognized as an empty string in C++.
  2476. from sentencepiece import SentencePieceProcessor
  2477. from sentencepiece import sentencepiece_model_pb2 as model
  2478. tokenizer_path = self.dir_model / 'tokenizer.model'
  2479. tokens: list[bytes] = []
  2480. scores: list[float] = []
  2481. toktypes: list[int] = []
  2482. if not tokenizer_path.is_file():
  2483. logger.error(f'Error: Missing {tokenizer_path}')
  2484. sys.exit(1)
  2485. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2486. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2487. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2488. tokenizer = SentencePieceProcessor()
  2489. tokenizer.LoadFromFile(str(tokenizer_path))
  2490. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2491. for token_id in range(vocab_size):
  2492. piece = tokenizer.IdToPiece(token_id)
  2493. text = piece.encode("utf-8")
  2494. score = tokenizer.GetScore(token_id)
  2495. if text == b"\x00":
  2496. # (TODO): fixme
  2497. # Hack here and replace the \x00 characters.
  2498. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2499. text = "🐉".encode("utf-8")
  2500. toktype = SentencePieceTokenTypes.NORMAL
  2501. if tokenizer.IsUnknown(token_id):
  2502. toktype = SentencePieceTokenTypes.UNKNOWN
  2503. elif tokenizer.IsControl(token_id):
  2504. toktype = SentencePieceTokenTypes.CONTROL
  2505. elif tokenizer.IsUnused(token_id):
  2506. toktype = SentencePieceTokenTypes.UNUSED
  2507. elif tokenizer.IsByte(token_id):
  2508. toktype = SentencePieceTokenTypes.BYTE
  2509. # take care of ununsed raw token
  2510. if piece.startswith('[UNUSED'):
  2511. toktype = SentencePieceTokenTypes.UNUSED
  2512. tokens.append(text)
  2513. scores.append(score)
  2514. toktypes.append(toktype)
  2515. added_tokens_file = self.dir_model / 'added_tokens.json'
  2516. if added_tokens_file.is_file():
  2517. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2518. added_tokens_json = json.load(f)
  2519. for key in added_tokens_json:
  2520. tokens.append(key.encode("utf-8"))
  2521. scores.append(-1000.0)
  2522. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2523. chat_eos_token = '<|im_end|>'
  2524. chat_eos_token_id = None
  2525. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2526. if tokenizer_config_file.is_file():
  2527. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2528. tokenizer_config_json = json.load(f)
  2529. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2530. for token_id, foken_data in added_tokens_decoder.items():
  2531. token_id = int(token_id)
  2532. token = foken_data["content"]
  2533. if token == chat_eos_token:
  2534. chat_eos_token_id = token_id
  2535. token = token.encode("utf-8")
  2536. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2537. if tokens[token_id] != token:
  2538. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2539. tokens[token_id] = token
  2540. scores[token_id] = -1000.0
  2541. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2542. if foken_data.get("special"):
  2543. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2544. tokenizer_file = self.dir_model / 'tokenizer.json'
  2545. if tokenizer_file.is_file():
  2546. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2547. tokenizer_json = json.load(f)
  2548. added_tokens = tokenizer_json.get("added_tokens", [])
  2549. for foken_data in added_tokens:
  2550. token_id = int(foken_data["id"])
  2551. token = foken_data["content"]
  2552. if token == chat_eos_token:
  2553. chat_eos_token_id = token_id
  2554. token = token.encode("utf-8")
  2555. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2556. if tokens[token_id] != token:
  2557. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2558. tokens[token_id] = token
  2559. scores[token_id] = -1000.0
  2560. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2561. if foken_data.get("special"):
  2562. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2563. self.gguf_writer.add_tokenizer_model("llama")
  2564. self.gguf_writer.add_tokenizer_pre("default")
  2565. self.gguf_writer.add_token_list(tokens)
  2566. self.gguf_writer.add_token_scores(scores)
  2567. self.gguf_writer.add_token_types(toktypes)
  2568. self.gguf_writer.add_add_space_prefix(add_prefix)
  2569. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2570. old_eos = special_vocab.special_token_ids["eos"]
  2571. if chat_eos_token_id is not None:
  2572. # For the chat model, we replace the eos with '<|im_end|>'.
  2573. # TODO: this is a hack, should be fixed
  2574. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2575. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2576. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2577. " in chat mode so that the conversation can end normally.")
  2578. special_vocab.add_to_gguf(self.gguf_writer)
  2579. def set_gguf_parameters(self):
  2580. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2581. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2582. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2583. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2584. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2585. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2586. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2587. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2588. self.gguf_writer.add_file_type(self.ftype)
  2589. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2590. if self.hparams["rope_scaling"].get("type") == "linear":
  2591. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2592. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2593. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2594. num_heads = self.hparams["num_attention_heads"]
  2595. num_kv_heads = self.hparams["num_key_value_heads"]
  2596. n_embd = self.hparams["hidden_size"]
  2597. q_per_kv = num_heads // num_kv_heads
  2598. head_dim = n_embd // num_heads
  2599. num_groups = num_heads // q_per_kv
  2600. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2601. qkv = data_torch
  2602. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2603. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2604. # The model weights of q and k equire additional reshape.
  2605. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2606. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2607. v = v.reshape((-1, v.shape[-1]))
  2608. return [
  2609. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2610. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2611. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2612. ]
  2613. else:
  2614. return [(self.map_tensor_name(name), data_torch)]
  2615. @ModelBase.register("InternLM3ForCausalLM")
  2616. class InternLM3Model(TextModel):
  2617. model_arch = gguf.MODEL_ARCH.LLAMA
  2618. def set_vocab(self):
  2619. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2620. self.gguf_writer.add_tokenizer_model("llama")
  2621. self.gguf_writer.add_tokenizer_pre("default")
  2622. self.gguf_writer.add_token_list(tokens)
  2623. self.gguf_writer.add_token_scores(scores)
  2624. self.gguf_writer.add_token_types(toktypes)
  2625. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2626. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2627. if tokenizer_config_file.is_file():
  2628. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2629. tokenizer_config_json = json.load(f)
  2630. if "add_prefix_space" in tokenizer_config_json:
  2631. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2632. if "added_tokens_decoder" in tokenizer_config_json:
  2633. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2634. if token_data.get("special"):
  2635. token_id = int(token_id)
  2636. token = token_data["content"]
  2637. special_vocab._set_special_token(token, token_id)
  2638. # update eos token
  2639. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2640. special_vocab.special_token_ids["eos"] = token_id
  2641. special_vocab.add_to_gguf(self.gguf_writer)
  2642. def set_gguf_parameters(self):
  2643. super().set_gguf_parameters()
  2644. hparams = self.hparams
  2645. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2646. if "head_dim" in hparams:
  2647. rope_dim = hparams["head_dim"]
  2648. else:
  2649. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2650. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2651. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2652. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2653. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2654. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2656. n_head = self.hparams["num_attention_heads"]
  2657. n_kv_head = self.hparams.get("num_key_value_heads")
  2658. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2659. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2660. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2661. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2662. return [(self.map_tensor_name(name), data_torch)]
  2663. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2664. class BertModel(TextModel):
  2665. model_arch = gguf.MODEL_ARCH.BERT
  2666. def __init__(self, *args, **kwargs):
  2667. super().__init__(*args, **kwargs)
  2668. self.vocab_size = None
  2669. def set_gguf_parameters(self):
  2670. super().set_gguf_parameters()
  2671. self.gguf_writer.add_causal_attention(False)
  2672. # get pooling path
  2673. pooling_path = None
  2674. module_path = self.dir_model / "modules.json"
  2675. if module_path.is_file():
  2676. with open(module_path, encoding="utf-8") as f:
  2677. modules = json.load(f)
  2678. for mod in modules:
  2679. if mod["type"] == "sentence_transformers.models.Pooling":
  2680. pooling_path = mod["path"]
  2681. break
  2682. # get pooling type
  2683. if pooling_path is not None:
  2684. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2685. pooling = json.load(f)
  2686. if pooling["pooling_mode_mean_tokens"]:
  2687. pooling_type = gguf.PoolingType.MEAN
  2688. elif pooling["pooling_mode_cls_token"]:
  2689. pooling_type = gguf.PoolingType.CLS
  2690. else:
  2691. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2692. self.gguf_writer.add_pooling_type(pooling_type)
  2693. def set_vocab(self):
  2694. tokens, toktypes, tokpre = self.get_vocab_base()
  2695. self.vocab_size = len(tokens)
  2696. # we need this to validate the size of the token_type embeddings
  2697. # though currently we are passing all zeros to the token_type embeddings
  2698. # "Sequence A" or "Sequence B"
  2699. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2700. # convert to phantom space vocab
  2701. def phantom(tok):
  2702. if tok.startswith("[") and tok.endswith("]"):
  2703. return tok
  2704. if tok.startswith("##"):
  2705. return tok[2:]
  2706. return "\u2581" + tok
  2707. tokens = list(map(phantom, tokens))
  2708. # add vocab to gguf
  2709. self.gguf_writer.add_tokenizer_model("bert")
  2710. self.gguf_writer.add_tokenizer_pre(tokpre)
  2711. self.gguf_writer.add_token_list(tokens)
  2712. self.gguf_writer.add_token_types(toktypes)
  2713. # handle special tokens
  2714. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2715. special_vocab.add_to_gguf(self.gguf_writer)
  2716. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2717. del bid # unused
  2718. if name.startswith("bert."):
  2719. name = name[5:]
  2720. if name.endswith(".gamma"):
  2721. name = name[:-6] + ".weight"
  2722. if name.endswith(".beta"):
  2723. name = name[:-5] + ".bias"
  2724. # we are only using BERT for embeddings so we don't need the pooling layer
  2725. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2726. return [] # we don't need these
  2727. if name.startswith("cls.predictions"):
  2728. return []
  2729. if name.startswith("cls.seq_relationship"):
  2730. return []
  2731. return [(self.map_tensor_name(name), data_torch)]
  2732. def _xlmroberta_tokenizer_init(self) -> None:
  2733. # we need the pad_token_id to know how to chop down position_embd matrix
  2734. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2735. self._position_offset = 1 + pad_token_id
  2736. if "max_position_embeddings" in self.hparams:
  2737. self.hparams["max_position_embeddings"] -= self._position_offset
  2738. else:
  2739. self._position_offset = None
  2740. def _xlmroberta_set_vocab(self) -> None:
  2741. # to avoid TypeError: Descriptors cannot be created directly
  2742. # exception when importing sentencepiece_model_pb2
  2743. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2744. from sentencepiece import SentencePieceProcessor
  2745. from sentencepiece import sentencepiece_model_pb2 as model
  2746. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2747. if not tokenizer_path.is_file():
  2748. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2749. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2750. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2751. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2752. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2753. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2754. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2755. tokenizer = SentencePieceProcessor()
  2756. tokenizer.LoadFromFile(str(tokenizer_path))
  2757. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2758. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2759. scores: list[float] = [-10000.0] * vocab_size
  2760. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2761. for token_id in range(tokenizer.vocab_size()):
  2762. piece = tokenizer.IdToPiece(token_id)
  2763. text = piece.encode("utf-8")
  2764. score = tokenizer.GetScore(token_id)
  2765. toktype = SentencePieceTokenTypes.NORMAL
  2766. if tokenizer.IsUnknown(token_id):
  2767. toktype = SentencePieceTokenTypes.UNKNOWN
  2768. elif tokenizer.IsControl(token_id):
  2769. toktype = SentencePieceTokenTypes.CONTROL
  2770. elif tokenizer.IsUnused(token_id):
  2771. toktype = SentencePieceTokenTypes.UNUSED
  2772. elif tokenizer.IsByte(token_id):
  2773. toktype = SentencePieceTokenTypes.BYTE
  2774. tokens[token_id] = text
  2775. scores[token_id] = score
  2776. toktypes[token_id] = toktype
  2777. if vocab_size > len(tokens):
  2778. pad_count = vocab_size - len(tokens)
  2779. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2780. for i in range(1, pad_count + 1):
  2781. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2782. scores.append(-1000.0)
  2783. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2784. # realign tokens (see HF tokenizer code)
  2785. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2786. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2787. toktypes = [
  2788. SentencePieceTokenTypes.CONTROL,
  2789. SentencePieceTokenTypes.CONTROL,
  2790. SentencePieceTokenTypes.CONTROL,
  2791. SentencePieceTokenTypes.UNKNOWN,
  2792. ] + toktypes[3:-1]
  2793. self.gguf_writer.add_tokenizer_model("t5")
  2794. self.gguf_writer.add_tokenizer_pre("default")
  2795. self.gguf_writer.add_token_list(tokens)
  2796. self.gguf_writer.add_token_scores(scores)
  2797. self.gguf_writer.add_token_types(toktypes)
  2798. self.gguf_writer.add_add_space_prefix(add_prefix)
  2799. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2800. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2801. if precompiled_charsmap:
  2802. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2803. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2804. special_vocab.add_to_gguf(self.gguf_writer)
  2805. self.gguf_writer.add_add_bos_token(True)
  2806. self.gguf_writer.add_add_eos_token(True)
  2807. @ModelBase.register("RobertaModel")
  2808. class RobertaModel(BertModel):
  2809. model_arch = gguf.MODEL_ARCH.BERT
  2810. def __init__(self, *args, **kwargs):
  2811. super().__init__(*args, **kwargs)
  2812. # we need the pad_token_id to know how to chop down position_embd matrix
  2813. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2814. self._position_offset = 1 + pad_token_id
  2815. if "max_position_embeddings" in self.hparams:
  2816. self.hparams["max_position_embeddings"] -= self._position_offset
  2817. else:
  2818. self._position_offset = None
  2819. def set_vocab(self):
  2820. """Support BPE tokenizers for roberta models"""
  2821. bpe_tok_path = self.dir_model / "tokenizer.json"
  2822. if bpe_tok_path.exists():
  2823. self._set_vocab_gpt2()
  2824. self.gguf_writer.add_add_bos_token(True)
  2825. self.gguf_writer.add_add_eos_token(True)
  2826. # we need this to validate the size of the token_type embeddings
  2827. # though currently we are passing all zeros to the token_type embeddings
  2828. # "Sequence A" or "Sequence B"
  2829. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2830. else:
  2831. return super().set_vocab()
  2832. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2833. # if name starts with "roberta.", remove the prefix
  2834. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2835. if name.startswith("roberta."):
  2836. name = name[8:]
  2837. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2838. if name == "embeddings.position_embeddings.weight":
  2839. if self._position_offset is not None:
  2840. data_torch = data_torch[self._position_offset:,:]
  2841. return super().modify_tensors(data_torch, name, bid)
  2842. @ModelBase.register("NomicBertModel")
  2843. class NomicBertModel(BertModel):
  2844. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  2845. hparams = kwargs.pop("hparams", None)
  2846. if hparams is None:
  2847. hparams = ModelBase.load_hparams(dir_model)
  2848. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  2849. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  2850. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  2851. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  2852. if self._tokenizer_is_xlmroberta:
  2853. self._xlmroberta_tokenizer_init()
  2854. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2855. self.hparams["n_ctx"] = 2048
  2856. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  2857. # this doesn't do anything in the HF version
  2858. assert self.hparams["causal"] is False
  2859. # no bias tensors unless MoE
  2860. assert self.hparams["qkv_proj_bias"] == self.is_moe
  2861. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  2862. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  2863. # norm at end of layer
  2864. assert self.hparams["prenorm"] is False
  2865. # standard RoPE
  2866. assert self.hparams["rotary_emb_fraction"] == 1.0
  2867. assert self.hparams["rotary_emb_interleaved"] is False
  2868. assert self.hparams["rotary_emb_scale_base"] is None
  2869. def set_vocab(self) -> None:
  2870. if self._tokenizer_is_xlmroberta:
  2871. return self._xlmroberta_set_vocab()
  2872. return super().set_vocab()
  2873. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  2874. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  2875. if "mlp.experts.bias" in name:
  2876. return [] # Explicitly return an empty list.
  2877. if "mlp.experts.mlp.w1" in name:
  2878. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  2879. name += ".weight"
  2880. if "mlp.experts.mlp.w2" in name:
  2881. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  2882. data_torch = data_torch.transpose(1, 2)
  2883. name += ".weight"
  2884. return [(self.map_tensor_name(name), data_torch)]
  2885. def set_gguf_parameters(self):
  2886. super().set_gguf_parameters()
  2887. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2888. if self.is_moe:
  2889. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  2890. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  2891. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  2892. def _is_tokenizer_xlmroberta(self) -> bool:
  2893. with open(self.dir_model / "tokenizer.json") as f:
  2894. tokenizer_json = json.load(f)
  2895. toktyp = tokenizer_json["model"]["type"]
  2896. if toktyp == "Unigram":
  2897. return True
  2898. if toktyp == "WordPiece":
  2899. return False
  2900. raise ValueError(f"unknown tokenizer: {toktyp}")
  2901. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2902. class XLMRobertaModel(BertModel):
  2903. model_arch = gguf.MODEL_ARCH.BERT
  2904. def __init__(self, *args, **kwargs):
  2905. super().__init__(*args, **kwargs)
  2906. self._xlmroberta_tokenizer_init()
  2907. def set_vocab(self):
  2908. self._xlmroberta_set_vocab()
  2909. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2910. # if name starts with "roberta.", remove the prefix
  2911. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2912. if name.startswith("roberta."):
  2913. name = name[8:]
  2914. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2915. if name == "embeddings.position_embeddings.weight":
  2916. if self._position_offset is not None:
  2917. data_torch = data_torch[self._position_offset:,:]
  2918. return super().modify_tensors(data_torch, name, bid)
  2919. @ModelBase.register("GemmaForCausalLM")
  2920. class GemmaModel(TextModel):
  2921. model_arch = gguf.MODEL_ARCH.GEMMA
  2922. def set_vocab(self):
  2923. self._set_vocab_sentencepiece()
  2924. # TODO: these special tokens should be exported only for the CodeGemma family
  2925. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2926. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2927. special_vocab._set_special_token("prefix", 67)
  2928. special_vocab._set_special_token("suffix", 69)
  2929. special_vocab._set_special_token("middle", 68)
  2930. special_vocab._set_special_token("fsep", 70)
  2931. special_vocab._set_special_token("eot", 107)
  2932. special_vocab.chat_template = None # do not add it twice
  2933. special_vocab.add_to_gguf(self.gguf_writer)
  2934. self.gguf_writer.add_add_space_prefix(False)
  2935. def set_gguf_parameters(self):
  2936. hparams = self.hparams
  2937. block_count = hparams["num_hidden_layers"]
  2938. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2939. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2940. self.gguf_writer.add_block_count(block_count)
  2941. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2942. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2943. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2944. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2945. self.gguf_writer.add_key_length(hparams["head_dim"])
  2946. self.gguf_writer.add_value_length(hparams["head_dim"])
  2947. self.gguf_writer.add_file_type(self.ftype)
  2948. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2949. del bid # unused
  2950. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2951. # To prevent errors, skip loading lm_head.weight.
  2952. if name == "lm_head.weight":
  2953. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2954. return []
  2955. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2956. if name.endswith("norm.weight"):
  2957. data_torch = data_torch + 1
  2958. return [(self.map_tensor_name(name), data_torch)]
  2959. @ModelBase.register("Gemma2ForCausalLM")
  2960. class Gemma2Model(TextModel):
  2961. model_arch = gguf.MODEL_ARCH.GEMMA2
  2962. def set_vocab(self):
  2963. self._set_vocab_sentencepiece()
  2964. self.gguf_writer.add_add_space_prefix(False)
  2965. def set_gguf_parameters(self):
  2966. hparams = self.hparams
  2967. block_count = hparams["num_hidden_layers"]
  2968. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2969. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2970. self.gguf_writer.add_block_count(block_count)
  2971. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2972. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2973. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2974. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2975. self.gguf_writer.add_key_length(hparams["head_dim"])
  2976. self.gguf_writer.add_value_length(hparams["head_dim"])
  2977. self.gguf_writer.add_file_type(self.ftype)
  2978. self.gguf_writer.add_attn_logit_softcapping(
  2979. self.hparams["attn_logit_softcapping"]
  2980. )
  2981. self.gguf_writer.add_final_logit_softcapping(
  2982. self.hparams["final_logit_softcapping"]
  2983. )
  2984. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2985. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2986. del bid # unused
  2987. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2988. # To prevent errors, skip loading lm_head.weight.
  2989. if name == "lm_head.weight":
  2990. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2991. return []
  2992. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2993. if name.endswith("norm.weight"):
  2994. data_torch = data_torch + 1
  2995. return [(self.map_tensor_name(name), data_torch)]
  2996. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2997. class Gemma3Model(TextModel):
  2998. model_arch = gguf.MODEL_ARCH.GEMMA3
  2999. def set_vocab(self):
  3000. self._set_vocab_sentencepiece()
  3001. self.gguf_writer.add_add_space_prefix(False)
  3002. def set_gguf_parameters(self):
  3003. hparams = self.hparams
  3004. block_count = hparams["num_hidden_layers"]
  3005. # some default values are not specified in the hparams
  3006. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3007. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3008. self.gguf_writer.add_block_count(block_count)
  3009. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3010. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3011. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3012. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3013. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3014. self.gguf_writer.add_file_type(self.ftype)
  3015. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3016. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3017. assert hparams.get("attn_logit_softcapping") is None
  3018. assert hparams.get("final_logit_softcapping") is None
  3019. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3020. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3021. if hparams.get("rope_scaling") is not None:
  3022. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3023. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3024. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3025. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3026. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3027. del bid # unused
  3028. if name.startswith("language_model."):
  3029. name = name.replace("language_model.", "")
  3030. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3031. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3032. return [] # skip vision tensors
  3033. # remove OOV (out-of-vocabulary) rows in token_embd
  3034. if "embed_tokens.weight" in name:
  3035. vocab = self._create_vocab_sentencepiece()
  3036. tokens = vocab[0]
  3037. data_torch = data_torch[:len(tokens)]
  3038. # ref code in Gemma3RMSNorm
  3039. # output = output * (1.0 + self.weight.float())
  3040. if name.endswith("norm.weight"):
  3041. data_torch = data_torch + 1
  3042. return [(self.map_tensor_name(name), data_torch)]
  3043. @ModelBase.register("Gemma3ForConditionalGeneration")
  3044. class Gemma3VisionModel(VisionModel):
  3045. def set_gguf_parameters(self):
  3046. super().set_gguf_parameters()
  3047. hparams = self.hparams
  3048. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
  3049. # default values below are taken from HF tranformers code
  3050. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3051. self.gguf_writer.add_vision_use_gelu(True)
  3052. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3053. del bid, new_name, n_dims # unused
  3054. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3055. if "input_projection" in name:
  3056. return gguf.GGMLQuantizationType.F16
  3057. if ".embeddings." in name:
  3058. return gguf.GGMLQuantizationType.F32
  3059. return False
  3060. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3061. del bid # unused
  3062. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3063. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3064. # process vision tensors
  3065. name = name.replace("_weight", ".weight")
  3066. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3067. # the other norm values are part of SigLIP model, and they are already correct
  3068. # ref code: Gemma3RMSNorm
  3069. if "soft_emb_norm.weight" in name:
  3070. logger.info(f"Correcting norm value for '{name}'")
  3071. data_torch = data_torch + 1
  3072. return [(self.map_tensor_name(name), data_torch)]
  3073. return [] # skip other tensors
  3074. @ModelBase.register("Starcoder2ForCausalLM")
  3075. class StarCoder2Model(TextModel):
  3076. model_arch = gguf.MODEL_ARCH.STARCODER2
  3077. @ModelBase.register("Rwkv6ForCausalLM")
  3078. class Rwkv6Model(TextModel):
  3079. model_arch = gguf.MODEL_ARCH.RWKV6
  3080. def set_vocab(self):
  3081. self._set_vocab_rwkv_world()
  3082. def set_gguf_parameters(self):
  3083. block_count = self.hparams["num_hidden_layers"]
  3084. head_size = self.hparams["head_size"]
  3085. hidden_size = self.hparams["hidden_size"]
  3086. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3087. rescale_every_n_layers = self.hparams["rescale_every"]
  3088. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3089. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3090. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3091. # RWKV isn't context limited
  3092. self.gguf_writer.add_context_length(1048576)
  3093. self.gguf_writer.add_embedding_length(hidden_size)
  3094. self.gguf_writer.add_block_count(block_count)
  3095. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3096. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3097. self.gguf_writer.add_wkv_head_size(head_size)
  3098. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3099. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3100. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3101. self.gguf_writer.add_file_type(self.ftype)
  3102. # required by llama.cpp, unused
  3103. self.gguf_writer.add_head_count(0)
  3104. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3105. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3106. new_name = self.map_tensor_name(name)
  3107. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3108. new_name += ".weight"
  3109. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3110. data_torch = data_torch.transpose(0, 1)
  3111. if new_name.endswith("time_mix_w2.weight"):
  3112. data_torch = data_torch.permute(0, 2, 1)
  3113. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3114. data_torch = data_torch.squeeze()
  3115. try:
  3116. rescale_every_n_layers = self.hparams["rescale_every"]
  3117. if rescale_every_n_layers > 0:
  3118. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3119. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3120. except KeyError:
  3121. pass
  3122. # concat time_mix_lerp weights to reduce some cpu overhead
  3123. # also reduces the number of tensors in the model
  3124. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3125. try:
  3126. self.lerp_weights[bid][new_name] = data_torch
  3127. except KeyError:
  3128. self.lerp_weights[bid] = {new_name: data_torch}
  3129. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3130. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3131. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3132. yield (new_name, data)
  3133. return
  3134. yield (new_name, data_torch)
  3135. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3136. class RWKV6Qwen2Model(Rwkv6Model):
  3137. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3138. def set_vocab(self):
  3139. try:
  3140. self._set_vocab_sentencepiece()
  3141. except FileNotFoundError:
  3142. self._set_vocab_gpt2()
  3143. def set_gguf_parameters(self):
  3144. block_count = self.hparams["num_hidden_layers"]
  3145. num_attention_heads = self.hparams["num_attention_heads"]
  3146. num_key_value_heads = self.hparams["num_key_value_heads"]
  3147. hidden_size = self.hparams["hidden_size"]
  3148. head_size = hidden_size // num_attention_heads
  3149. rms_norm_eps = self.hparams["rms_norm_eps"]
  3150. intermediate_size = self.hparams["intermediate_size"]
  3151. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3152. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3153. # RWKV isn't context limited
  3154. self.gguf_writer.add_context_length(1048576)
  3155. self.gguf_writer.add_embedding_length(hidden_size)
  3156. self.gguf_writer.add_block_count(block_count)
  3157. self.gguf_writer.add_wkv_head_size(head_size)
  3158. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3159. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3160. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3161. self.gguf_writer.add_file_type(self.ftype)
  3162. # special parameters for time_mixing in RWKV6QWEN2
  3163. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3164. self.gguf_writer.add_token_shift_count(1)
  3165. # RWKV6QWEN2 use grouped key/value like GQA
  3166. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3167. # required by llama.cpp, unused
  3168. self.gguf_writer.add_head_count(0)
  3169. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3170. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3171. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3172. data = data.view(5, -1, data.shape[-1])
  3173. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3174. # permute them here to avoid code changes
  3175. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3176. if "w2" in new_name:
  3177. data = data.view(5, -1, data.shape[-1])
  3178. yield (new_name, data)
  3179. continue
  3180. yield (new_name, data)
  3181. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3182. class Rwkv7Model(TextModel):
  3183. model_arch = gguf.MODEL_ARCH.RWKV7
  3184. def set_vocab(self):
  3185. self._set_vocab_rwkv_world()
  3186. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3187. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3188. def set_gguf_parameters(self):
  3189. block_count = self.hparams["num_hidden_layers"]
  3190. try:
  3191. head_size = self.hparams["head_size"]
  3192. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3193. except KeyError:
  3194. head_size = self.hparams["head_dim"]
  3195. layer_norm_eps = self.hparams["norm_eps"]
  3196. hidden_size = self.hparams["hidden_size"]
  3197. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3198. # ICLR: In-Context-Learning-Rate
  3199. try:
  3200. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3201. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3202. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3203. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3204. except KeyError:
  3205. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3206. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3207. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3208. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3209. # RWKV isn't context limited
  3210. self.gguf_writer.add_context_length(1048576)
  3211. self.gguf_writer.add_embedding_length(hidden_size)
  3212. self.gguf_writer.add_block_count(block_count)
  3213. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3214. self.gguf_writer.add_wkv_head_size(head_size)
  3215. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3216. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3217. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3218. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3219. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3220. self.gguf_writer.add_file_type(self.ftype)
  3221. # required by llama.cpp, unused
  3222. self.gguf_writer.add_head_count(0)
  3223. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3224. lora_needs_transpose: bool = True
  3225. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3226. # unify tensor names here to make life easier
  3227. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3228. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3229. name = name.replace("time_mixer.", "")
  3230. # lora layer names in fla-hub's impl
  3231. if "_lora.lora" in name:
  3232. self.lora_needs_transpose = False
  3233. name = name.replace("_lora.lora.0.weight", "1.weight")
  3234. name = name.replace("_lora.lora.2.weight", "2.weight")
  3235. name = name.replace("_lora.lora.2.bias", "0.weight")
  3236. name = name.replace("feed_forward_norm", "ln2")
  3237. name = name.replace("g_norm", "ln_x")
  3238. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3239. # some models have dummy v0/v1/v2 on first layer while others don't
  3240. # ignore them all since they are not used
  3241. return
  3242. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3243. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3244. if bid is not None and "attention.x_" in name:
  3245. if "attention.x_x" in name:
  3246. # already concatenated
  3247. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3248. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3249. yield (new_name, data)
  3250. else:
  3251. try:
  3252. self.lerp_weights[bid][name] = data_torch
  3253. except KeyError:
  3254. self.lerp_weights[bid] = {name: data_torch}
  3255. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3256. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3257. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3258. yield (new_name, data)
  3259. return
  3260. else:
  3261. data_torch = data_torch.squeeze()
  3262. new_name = self.map_tensor_name(name)
  3263. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3264. new_name += ".weight"
  3265. if self.lora_needs_transpose and any(
  3266. new_name.endswith(t) for t in [
  3267. "time_mix_w1.weight", "time_mix_w2.weight",
  3268. "time_mix_a1.weight", "time_mix_a2.weight",
  3269. "time_mix_v1.weight", "time_mix_v2.weight",
  3270. "time_mix_g1.weight", "time_mix_g2.weight",
  3271. ]
  3272. ):
  3273. data_torch = data_torch.transpose(0, 1)
  3274. if 'r_k' in new_name:
  3275. data_torch = data_torch.flatten()
  3276. if bid == 0 and "time_mix_a" in new_name:
  3277. # dummy v0/v1/v2 on first layer
  3278. # easist way to make llama happy
  3279. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3280. yield (new_name, data_torch)
  3281. @ModelBase.register("RwkvHybridForCausalLM")
  3282. class ARwkv7Model(Rwkv7Model):
  3283. model_arch = gguf.MODEL_ARCH.ARWKV7
  3284. def set_vocab(self):
  3285. try:
  3286. self._set_vocab_sentencepiece()
  3287. except FileNotFoundError:
  3288. self._set_vocab_gpt2()
  3289. def set_gguf_parameters(self):
  3290. block_count = self.hparams["num_hidden_layers"]
  3291. hidden_size = self.hparams["hidden_size"]
  3292. head_size = self.hparams["head_size"]
  3293. rms_norm_eps = self.hparams["rms_norm_eps"]
  3294. intermediate_size = self.hparams["intermediate_size"]
  3295. wkv_has_gate = self.hparams["wkv_has_gate"]
  3296. assert self.hparams["wkv_version"] == 7
  3297. # ICLR: In-Context-Learning-Rate
  3298. lora_rank_decay = 64
  3299. lora_rank_iclr = 64
  3300. lora_rank_value_residual_mix = 32
  3301. lora_rank_gate = 128 if wkv_has_gate else 0
  3302. # RWKV isn't context limited
  3303. self.gguf_writer.add_context_length(1048576)
  3304. self.gguf_writer.add_embedding_length(hidden_size)
  3305. self.gguf_writer.add_block_count(block_count)
  3306. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3307. self.gguf_writer.add_wkv_head_size(head_size)
  3308. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3309. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3310. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3311. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3312. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3313. self.gguf_writer.add_file_type(self.ftype)
  3314. self.gguf_writer.add_token_shift_count(1)
  3315. # required by llama.cpp, unused
  3316. self.gguf_writer.add_head_count(0)
  3317. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3318. class MambaModel(TextModel):
  3319. model_arch = gguf.MODEL_ARCH.MAMBA
  3320. def set_vocab(self):
  3321. vocab_size = self.hparams["vocab_size"]
  3322. # Round vocab size to next multiple of 8
  3323. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3324. # pad using ceiling division
  3325. # ref: https://stackoverflow.com/a/17511341/22827863
  3326. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3327. self.hparams["vocab_size"] = vocab_size
  3328. if (self.dir_model / "tokenizer.json").is_file():
  3329. self._set_vocab_gpt2()
  3330. elif (self.dir_model / "tokenizer.model").is_file():
  3331. self._set_vocab_sentencepiece()
  3332. else:
  3333. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3334. self._set_vocab_builtin("gpt-neox", vocab_size)
  3335. def set_gguf_parameters(self):
  3336. d_model = self.find_hparam(["hidden_size", "d_model"])
  3337. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3338. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3339. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3340. # ceiling division
  3341. # ref: https://stackoverflow.com/a/17511341/22827863
  3342. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3343. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3344. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3345. use_dt_b_c_norm = False
  3346. # For falconmamba we do apply RMS norm on B / DT and C layers
  3347. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3348. use_dt_b_c_norm = True
  3349. # Fail early for models which don't have a block expansion factor of 2
  3350. assert d_inner == 2 * d_model
  3351. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3352. self.gguf_writer.add_embedding_length(d_model)
  3353. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3354. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3355. self.gguf_writer.add_block_count(self.block_count)
  3356. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3357. self.gguf_writer.add_ssm_inner_size(d_inner)
  3358. self.gguf_writer.add_ssm_state_size(d_state)
  3359. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3360. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3361. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3362. self.gguf_writer.add_file_type(self.ftype)
  3363. _tok_embd = None
  3364. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3365. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3366. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3367. new_name = self.map_tensor_name(name)
  3368. if name.endswith(".A_log"):
  3369. logger.debug("A_log --> A ==> " + new_name)
  3370. data_torch = -torch.exp(data_torch)
  3371. # [4 1 8192 1] -> [4 8192 1 1]
  3372. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3373. data_torch = data_torch.squeeze()
  3374. # assuming token_embd.weight is seen before output.weight
  3375. if self._tok_embd is not None and new_name == output_name:
  3376. if torch.equal(self._tok_embd, data_torch):
  3377. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3378. return []
  3379. elif new_name == tok_embd_name:
  3380. self._tok_embd = data_torch
  3381. return [(new_name, data_torch)]
  3382. @ModelBase.register("CohereForCausalLM")
  3383. class CommandR2Model(TextModel):
  3384. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3385. def __init__(self, *args, **kwargs):
  3386. super().__init__(*args, **kwargs)
  3387. # max_position_embeddings = 8192 in config.json but model was actually
  3388. # trained on 128k context length
  3389. # aya-23 models don't have model_max_length specified
  3390. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3391. def set_gguf_parameters(self):
  3392. super().set_gguf_parameters()
  3393. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3394. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3395. @ModelBase.register("Cohere2ForCausalLM")
  3396. class Cohere2Model(TextModel):
  3397. model_arch = gguf.MODEL_ARCH.COHERE2
  3398. def set_gguf_parameters(self):
  3399. super().set_gguf_parameters()
  3400. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3401. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3402. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3403. rotary_pct = self.hparams["rotary_pct"]
  3404. hidden_size = self.hparams["hidden_size"]
  3405. num_attention_heads = self.hparams["num_attention_heads"]
  3406. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3407. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3408. @ModelBase.register("OlmoForCausalLM")
  3409. @ModelBase.register("OLMoForCausalLM")
  3410. class OlmoModel(TextModel):
  3411. model_arch = gguf.MODEL_ARCH.OLMO
  3412. def set_gguf_parameters(self):
  3413. super().set_gguf_parameters()
  3414. self.gguf_writer.add_layer_norm_eps(1e-5)
  3415. clip_qkv = self.hparams.get("clip_qkv")
  3416. if clip_qkv is not None:
  3417. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3418. # Same as super class, but permuting q_proj, k_proj
  3419. # Copied from: LlamaModel
  3420. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3421. del bid # unused
  3422. n_head = self.hparams["num_attention_heads"]
  3423. n_kv_head = self.hparams.get("num_key_value_heads")
  3424. if name.endswith("q_proj.weight"):
  3425. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3426. if name.endswith("k_proj.weight"):
  3427. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3428. return [(self.map_tensor_name(name), data_torch)]
  3429. @ModelBase.register("Olmo2ForCausalLM")
  3430. class Olmo2Model(TextModel):
  3431. model_arch = gguf.MODEL_ARCH.OLMO2
  3432. @ModelBase.register("OlmoeForCausalLM")
  3433. class OlmoeModel(TextModel):
  3434. model_arch = gguf.MODEL_ARCH.OLMOE
  3435. def set_gguf_parameters(self):
  3436. super().set_gguf_parameters()
  3437. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3438. if (n_experts := self.hparams.get("num_experts")) is not None:
  3439. self.gguf_writer.add_expert_count(n_experts)
  3440. _experts: list[dict[str, Tensor]] | None = None
  3441. # Copied from: Qwen2MoeModel
  3442. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3443. # process the experts separately
  3444. if name.find("experts") != -1:
  3445. n_experts = self.hparams["num_experts"]
  3446. assert bid is not None
  3447. if self._experts is None:
  3448. self._experts = [{} for _ in range(self.block_count)]
  3449. self._experts[bid][name] = data_torch
  3450. if len(self._experts[bid]) >= n_experts * 3:
  3451. tensors: list[tuple[str, Tensor]] = []
  3452. # merge the experts into a single 3d tensor
  3453. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3454. datas: list[Tensor] = []
  3455. for xid in range(n_experts):
  3456. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3457. datas.append(self._experts[bid][ename])
  3458. del self._experts[bid][ename]
  3459. data_torch = torch.stack(datas, dim=0)
  3460. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3461. new_name = self.map_tensor_name(merged_name)
  3462. tensors.append((new_name, data_torch))
  3463. return tensors
  3464. else:
  3465. return []
  3466. return [(self.map_tensor_name(name), data_torch)]
  3467. # Copied from: Qwen2MoeModel
  3468. def prepare_tensors(self):
  3469. super().prepare_tensors()
  3470. if self._experts is not None:
  3471. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3472. experts = [k for d in self._experts for k in d.keys()]
  3473. if len(experts) > 0:
  3474. raise ValueError(f"Unprocessed experts: {experts}")
  3475. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3476. class JinaBertV2Model(BertModel):
  3477. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3478. def __init__(self, *args, **kwargs):
  3479. super().__init__(*args, **kwargs)
  3480. self.intermediate_size = self.hparams["intermediate_size"]
  3481. def get_tensors(self):
  3482. for name, data in super().get_tensors():
  3483. if 'gated_layer' in name:
  3484. d1 = data[:self.intermediate_size, :]
  3485. name1 = name.replace('gated_layers', 'gated_layers_w')
  3486. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3487. d2 = data[self.intermediate_size:, :]
  3488. name2 = name.replace('gated_layers', 'gated_layers_v')
  3489. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3490. yield name1, d1
  3491. yield name2, d2
  3492. continue
  3493. yield name, data
  3494. def set_vocab(self):
  3495. tokenizer_class = 'BertTokenizer'
  3496. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3497. tokenizer_class = json.load(f)['tokenizer_class']
  3498. if tokenizer_class == 'BertTokenizer':
  3499. super().set_vocab()
  3500. elif tokenizer_class == 'RobertaTokenizer':
  3501. self._set_vocab_gpt2()
  3502. self.gguf_writer.add_token_type_count(2)
  3503. else:
  3504. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3505. self.gguf_writer.add_add_bos_token(True)
  3506. self.gguf_writer.add_add_eos_token(True)
  3507. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3508. # if name starts with "bert.", remove the prefix
  3509. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3510. if name.startswith("bert."):
  3511. name = name[5:]
  3512. return super().modify_tensors(data_torch, name, bid)
  3513. @ModelBase.register("OpenELMForCausalLM")
  3514. class OpenELMModel(TextModel):
  3515. model_arch = gguf.MODEL_ARCH.OPENELM
  3516. @staticmethod
  3517. def _make_divisible(v: float | int, divisor: int) -> int:
  3518. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3519. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3520. # Make sure that round down does not go down by more than 10%.
  3521. if new_v < 0.9 * v:
  3522. new_v += divisor
  3523. return new_v
  3524. def __init__(self, *args, **kwargs):
  3525. super().__init__(*args, **kwargs)
  3526. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3527. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3528. self._n_embd: int = self.hparams["model_dim"]
  3529. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3530. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3531. self._ffn_dims: list[int] = [
  3532. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3533. for multiplier in ffn_multipliers
  3534. ]
  3535. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3536. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3537. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3538. def set_vocab(self):
  3539. try:
  3540. self._set_vocab_sentencepiece()
  3541. except FileNotFoundError:
  3542. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3543. def set_gguf_parameters(self):
  3544. n_embd = self._n_embd
  3545. head_dim = self.hparams["head_dim"]
  3546. rot_pct = 1.0
  3547. assert self.block_count == len(self._num_kv_heads)
  3548. assert self.block_count == len(self._num_query_heads)
  3549. assert self.block_count == len(self._ffn_dims)
  3550. self.gguf_writer.add_block_count(self.block_count)
  3551. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3552. self.gguf_writer.add_embedding_length(n_embd)
  3553. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3554. self.gguf_writer.add_head_count(self._num_query_heads)
  3555. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3556. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3557. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3558. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3559. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3560. self.gguf_writer.add_key_length(head_dim)
  3561. self.gguf_writer.add_value_length(head_dim)
  3562. self.gguf_writer.add_file_type(self.ftype)
  3563. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3564. if "n_layers" in keys:
  3565. return self.hparams["num_transformer_layers"]
  3566. return super().find_hparam(keys, optional)
  3567. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3568. # split ff
  3569. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3570. ff_dim = self._ffn_dims[bid]
  3571. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3572. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3573. return
  3574. yield (self.map_tensor_name(name), data_torch)
  3575. @ModelBase.register("ArcticForCausalLM")
  3576. class ArcticModel(TextModel):
  3577. model_arch = gguf.MODEL_ARCH.ARCTIC
  3578. def set_vocab(self):
  3579. # The reason for using a custom implementation here is that the
  3580. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3581. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3582. from sentencepiece import SentencePieceProcessor
  3583. tokenizer_path = self.dir_model / 'tokenizer.model'
  3584. if not tokenizer_path.is_file():
  3585. logger.error(f'Error: Missing {tokenizer_path}')
  3586. sys.exit(1)
  3587. # Read the whole vocabulary from the tokenizer.model file
  3588. tokenizer = SentencePieceProcessor()
  3589. tokenizer.LoadFromFile(str(tokenizer_path))
  3590. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3591. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3592. scores: list[float] = [-10000.0] * vocab_size
  3593. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3594. for token_id in range(tokenizer.vocab_size()):
  3595. piece = tokenizer.IdToPiece(token_id)
  3596. text = piece.encode("utf-8")
  3597. score = tokenizer.GetScore(token_id)
  3598. toktype = SentencePieceTokenTypes.NORMAL
  3599. if tokenizer.IsUnknown(token_id):
  3600. toktype = SentencePieceTokenTypes.UNKNOWN
  3601. elif tokenizer.IsControl(token_id):
  3602. toktype = SentencePieceTokenTypes.CONTROL
  3603. elif tokenizer.IsUnused(token_id):
  3604. toktype = SentencePieceTokenTypes.UNUSED
  3605. elif tokenizer.IsByte(token_id):
  3606. toktype = SentencePieceTokenTypes.BYTE
  3607. tokens[token_id] = text
  3608. scores[token_id] = score
  3609. toktypes[token_id] = toktype
  3610. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3611. # of information about added/redefined tokens and modify them accordingly.
  3612. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3613. if tokenizer_config_file.is_file():
  3614. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3615. tokenizer_config_json = json.load(f)
  3616. if "added_tokens_decoder" in tokenizer_config_json:
  3617. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3618. for token_id, token_json in added_tokens_decoder.items():
  3619. token_id = int(token_id)
  3620. if token_id >= vocab_size:
  3621. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3622. continue
  3623. token_content = token_json["content"]
  3624. token_type = SentencePieceTokenTypes.USER_DEFINED
  3625. token_score = -10000.0
  3626. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3627. # Set the score to 0.0 as in the original tokenizer.model
  3628. if ("special" in token_json) and token_json["special"]:
  3629. if token_content == tokenizer_config_json["unk_token"]:
  3630. token_type = SentencePieceTokenTypes.UNKNOWN
  3631. else:
  3632. token_type = SentencePieceTokenTypes.CONTROL
  3633. token_score = 0.0
  3634. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3635. tokens[token_id] = token_content.encode("utf-8")
  3636. toktypes[token_id] = token_type
  3637. scores[token_id] = token_score
  3638. self.gguf_writer.add_tokenizer_model("llama")
  3639. self.gguf_writer.add_tokenizer_pre("default")
  3640. self.gguf_writer.add_token_list(tokens)
  3641. self.gguf_writer.add_token_scores(scores)
  3642. self.gguf_writer.add_token_types(toktypes)
  3643. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3644. special_vocab.add_to_gguf(self.gguf_writer)
  3645. def set_gguf_parameters(self):
  3646. super().set_gguf_parameters()
  3647. hparams = self.hparams
  3648. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3649. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3650. _experts: list[dict[str, Tensor]] | None = None
  3651. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3652. n_head = self.hparams["num_attention_heads"]
  3653. n_kv_head = self.hparams.get("num_key_value_heads")
  3654. if name.endswith("q_proj.weight"):
  3655. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3656. if name.endswith("k_proj.weight"):
  3657. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3658. # process the experts separately
  3659. if name.find("block_sparse_moe.experts") != -1:
  3660. n_experts = self.hparams["num_local_experts"]
  3661. assert bid is not None
  3662. if self._experts is None:
  3663. self._experts = [{} for _ in range(self.block_count)]
  3664. self._experts[bid][name] = data_torch
  3665. if len(self._experts[bid]) >= n_experts * 3:
  3666. tensors: list[tuple[str, Tensor]] = []
  3667. # merge the experts into a single 3d tensor
  3668. for wid in ["w1", "w2", "w3"]:
  3669. datas: list[Tensor] = []
  3670. for xid in range(n_experts):
  3671. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3672. datas.append(self._experts[bid][ename])
  3673. del self._experts[bid][ename]
  3674. data_torch = torch.stack(datas, dim=0)
  3675. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3676. new_name = self.map_tensor_name(merged_name)
  3677. tensors.append((new_name, data_torch))
  3678. return tensors
  3679. else:
  3680. return []
  3681. return [(self.map_tensor_name(name), data_torch)]
  3682. def prepare_tensors(self):
  3683. super().prepare_tensors()
  3684. if self._experts is not None:
  3685. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3686. experts = [k for d in self._experts for k in d.keys()]
  3687. if len(experts) > 0:
  3688. raise ValueError(f"Unprocessed experts: {experts}")
  3689. @ModelBase.register("DeepseekForCausalLM")
  3690. class DeepseekModel(TextModel):
  3691. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3692. def set_vocab(self):
  3693. try:
  3694. self._set_vocab_sentencepiece()
  3695. except FileNotFoundError:
  3696. self._set_vocab_gpt2()
  3697. def set_gguf_parameters(self):
  3698. super().set_gguf_parameters()
  3699. hparams = self.hparams
  3700. if "head_dim" in hparams:
  3701. rope_dim = hparams["head_dim"]
  3702. else:
  3703. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3704. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3705. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3706. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3707. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3708. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3709. self.gguf_writer.add_expert_weights_scale(1.0)
  3710. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3711. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3712. _experts: list[dict[str, Tensor]] | None = None
  3713. @staticmethod
  3714. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3715. if n_head_kv is not None and n_head != n_head_kv:
  3716. n_head = n_head_kv
  3717. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3718. .swapaxes(1, 2)
  3719. .reshape(weights.shape))
  3720. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3721. n_head = self.hparams["num_attention_heads"]
  3722. n_kv_head = self.hparams.get("num_key_value_heads")
  3723. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3724. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3725. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3726. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3727. # process the experts separately
  3728. if name.find("mlp.experts") != -1:
  3729. n_experts = self.hparams["n_routed_experts"]
  3730. assert bid is not None
  3731. if self._experts is None:
  3732. self._experts = [{} for _ in range(self.block_count)]
  3733. self._experts[bid][name] = data_torch
  3734. if len(self._experts[bid]) >= n_experts * 3:
  3735. tensors: list[tuple[str, Tensor]] = []
  3736. # merge the experts into a single 3d tensor
  3737. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3738. datas: list[Tensor] = []
  3739. for xid in range(n_experts):
  3740. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3741. datas.append(self._experts[bid][ename])
  3742. del self._experts[bid][ename]
  3743. data_torch = torch.stack(datas, dim=0)
  3744. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3745. new_name = self.map_tensor_name(merged_name)
  3746. tensors.append((new_name, data_torch))
  3747. return tensors
  3748. else:
  3749. return []
  3750. return [(self.map_tensor_name(name), data_torch)]
  3751. def prepare_tensors(self):
  3752. super().prepare_tensors()
  3753. if self._experts is not None:
  3754. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3755. experts = [k for d in self._experts for k in d.keys()]
  3756. if len(experts) > 0:
  3757. raise ValueError(f"Unprocessed experts: {experts}")
  3758. @ModelBase.register("DeepseekV2ForCausalLM")
  3759. @ModelBase.register("DeepseekV3ForCausalLM")
  3760. class DeepseekV2Model(TextModel):
  3761. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3762. def set_vocab(self):
  3763. self._set_vocab_gpt2()
  3764. def set_gguf_parameters(self):
  3765. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  3766. self.hparams["num_key_value_heads"] = 1
  3767. super().set_gguf_parameters()
  3768. hparams = self.hparams
  3769. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3770. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3771. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3772. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3773. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3774. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  3775. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  3776. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  3777. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3778. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  3779. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3780. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3781. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3782. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3783. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3784. if hparams["scoring_func"] == "sigmoid":
  3785. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3786. elif hparams["scoring_func"] == "softmax":
  3787. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3788. else:
  3789. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3790. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3791. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3792. if self.hparams["rope_scaling"].get("type") == "yarn":
  3793. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3794. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3795. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3796. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3797. _experts: list[dict[str, Tensor]] | None = None
  3798. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3799. # rename e_score_correction_bias tensors
  3800. if name.endswith("e_score_correction_bias"):
  3801. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3802. # skip Multi-Token Prediction (MTP) layers
  3803. block_count = self.hparams["num_hidden_layers"]
  3804. match = re.match(r"model.layers.(\d+)", name)
  3805. if match and int(match.group(1)) >= block_count:
  3806. return []
  3807. # process the experts separately
  3808. if name.find("mlp.experts") != -1:
  3809. n_experts = self.hparams["n_routed_experts"]
  3810. assert bid is not None
  3811. if self._experts is None:
  3812. self._experts = [{} for _ in range(self.block_count)]
  3813. self._experts[bid][name] = data_torch
  3814. if len(self._experts[bid]) >= n_experts * 3:
  3815. tensors: list[tuple[str, Tensor]] = []
  3816. # merge the experts into a single 3d tensor
  3817. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3818. datas: list[Tensor] = []
  3819. for xid in range(n_experts):
  3820. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3821. datas.append(self._experts[bid][ename])
  3822. del self._experts[bid][ename]
  3823. data_torch = torch.stack(datas, dim=0)
  3824. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3825. new_name = self.map_tensor_name(merged_name)
  3826. tensors.append((new_name, data_torch))
  3827. return tensors
  3828. else:
  3829. return []
  3830. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  3831. if name.endswith("kv_b_proj.weight"):
  3832. name_kb = name.replace("kv_b_proj", "k_b_proj")
  3833. name_vb = name.replace("kv_b_proj", "v_b_proj")
  3834. n_head_kv = self.hparams["num_key_value_heads"]
  3835. v_head_dim = self.hparams["v_head_dim"]
  3836. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  3837. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  3838. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  3839. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  3840. k_b = k_b.transpose(1, 2)
  3841. return [
  3842. (self.map_tensor_name(name_kb), k_b),
  3843. (self.map_tensor_name(name_vb), v_b)
  3844. ]
  3845. return [(self.map_tensor_name(name), data_torch)]
  3846. def prepare_tensors(self):
  3847. super().prepare_tensors()
  3848. if self._experts is not None:
  3849. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3850. experts = [k for d in self._experts for k in d.keys()]
  3851. if len(experts) > 0:
  3852. raise ValueError(f"Unprocessed experts: {experts}")
  3853. @ModelBase.register("PLMForCausalLM")
  3854. class PLMModel(TextModel):
  3855. model_arch = gguf.MODEL_ARCH.PLM
  3856. def set_vocab(self):
  3857. self._set_vocab_gpt2()
  3858. def set_gguf_parameters(self):
  3859. super().set_gguf_parameters()
  3860. hparams = self.hparams
  3861. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3862. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3863. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3864. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3865. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3866. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3867. return [(self.map_tensor_name(name), data_torch)]
  3868. def prepare_tensors(self):
  3869. super().prepare_tensors()
  3870. @ModelBase.register("T5WithLMHeadModel")
  3871. @ModelBase.register("T5ForConditionalGeneration")
  3872. @ModelBase.register("MT5ForConditionalGeneration")
  3873. @ModelBase.register("UMT5ForConditionalGeneration")
  3874. class T5Model(TextModel):
  3875. model_arch = gguf.MODEL_ARCH.T5
  3876. def __init__(self, *args, **kwargs):
  3877. super().__init__(*args, **kwargs)
  3878. self.shared_token_embeddings_found = False
  3879. def set_vocab(self):
  3880. # to avoid TypeError: Descriptors cannot be created directly
  3881. # exception when importing sentencepiece_model_pb2
  3882. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3883. from sentencepiece import SentencePieceProcessor
  3884. from sentencepiece import sentencepiece_model_pb2 as model
  3885. tokenizer_path = self.dir_model / 'tokenizer.model'
  3886. # many older models use spiece.model tokenizer model filename
  3887. if not tokenizer_path.is_file():
  3888. tokenizer_path = self.dir_model / 'spiece.model'
  3889. if not tokenizer_path.is_file():
  3890. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3891. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3892. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3893. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3894. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3895. # assure the tokenizer model file name is correct
  3896. assert tokenizer_path.name == 'tokenizer.model'
  3897. return self._set_vocab_sentencepiece()
  3898. else:
  3899. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3900. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3901. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3902. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3903. tokenizer = SentencePieceProcessor()
  3904. tokenizer.LoadFromFile(str(tokenizer_path))
  3905. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3906. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3907. scores: list[float] = [-10000.0] * vocab_size
  3908. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3909. for token_id in range(tokenizer.vocab_size()):
  3910. piece = tokenizer.IdToPiece(token_id)
  3911. text = piece.encode("utf-8")
  3912. score = tokenizer.GetScore(token_id)
  3913. toktype = SentencePieceTokenTypes.NORMAL
  3914. if tokenizer.IsUnknown(token_id):
  3915. toktype = SentencePieceTokenTypes.UNKNOWN
  3916. elif tokenizer.IsControl(token_id):
  3917. toktype = SentencePieceTokenTypes.CONTROL
  3918. elif tokenizer.IsUnused(token_id):
  3919. toktype = SentencePieceTokenTypes.UNUSED
  3920. elif tokenizer.IsByte(token_id):
  3921. toktype = SentencePieceTokenTypes.BYTE
  3922. tokens[token_id] = text
  3923. scores[token_id] = score
  3924. toktypes[token_id] = toktype
  3925. added_tokens_file = self.dir_model / 'added_tokens.json'
  3926. if added_tokens_file.is_file():
  3927. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3928. added_tokens_json = json.load(f)
  3929. for key in added_tokens_json:
  3930. token_id = added_tokens_json[key]
  3931. if token_id >= vocab_size:
  3932. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3933. continue
  3934. tokens[token_id] = key.encode("utf-8")
  3935. scores[token_id] = -1000.0
  3936. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3937. if vocab_size > len(tokens):
  3938. pad_count = vocab_size - len(tokens)
  3939. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3940. for i in range(1, pad_count + 1):
  3941. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3942. scores.append(-1000.0)
  3943. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3944. self.gguf_writer.add_tokenizer_model("t5")
  3945. self.gguf_writer.add_tokenizer_pre("default")
  3946. self.gguf_writer.add_token_list(tokens)
  3947. self.gguf_writer.add_token_scores(scores)
  3948. self.gguf_writer.add_token_types(toktypes)
  3949. self.gguf_writer.add_add_space_prefix(add_prefix)
  3950. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3951. if precompiled_charsmap:
  3952. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3953. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3954. special_vocab.add_to_gguf(self.gguf_writer)
  3955. self.gguf_writer.add_add_bos_token(False)
  3956. self.gguf_writer.add_add_eos_token(True)
  3957. def set_gguf_parameters(self):
  3958. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3959. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3960. n_ctx = 512
  3961. self.gguf_writer.add_context_length(n_ctx)
  3962. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3963. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3964. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3965. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3966. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3967. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3968. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3969. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3970. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3971. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3972. self.gguf_writer.add_file_type(self.ftype)
  3973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3974. del bid # unused
  3975. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3976. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3977. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3978. # and decoder and ignore the remaining ones.
  3979. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3980. if not self.shared_token_embeddings_found:
  3981. name = "shared.weight"
  3982. self.shared_token_embeddings_found = True
  3983. else:
  3984. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3985. return []
  3986. return [(self.map_tensor_name(name), data_torch)]
  3987. @ModelBase.register("T5EncoderModel")
  3988. class T5EncoderModel(TextModel):
  3989. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3990. def __init__(self, *args, **kwargs):
  3991. super().__init__(*args, **kwargs)
  3992. self.shared_token_embeddings_found = False
  3993. def set_vocab(self):
  3994. # to avoid TypeError: Descriptors cannot be created directly
  3995. # exception when importing sentencepiece_model_pb2
  3996. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3997. from sentencepiece import SentencePieceProcessor
  3998. from sentencepiece import sentencepiece_model_pb2 as model
  3999. tokenizer_path = self.dir_model / 'tokenizer.model'
  4000. # many older models use spiece.model tokenizer model filename
  4001. if not tokenizer_path.is_file():
  4002. tokenizer_path = self.dir_model / 'spiece.model'
  4003. if not tokenizer_path.is_file():
  4004. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4005. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4006. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4007. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4008. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4009. # assure the tokenizer model file name is correct
  4010. assert tokenizer_path.name == 'tokenizer.model'
  4011. return self._set_vocab_sentencepiece()
  4012. else:
  4013. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4014. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4015. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4016. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4017. tokenizer = SentencePieceProcessor()
  4018. tokenizer.LoadFromFile(str(tokenizer_path))
  4019. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4020. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4021. scores: list[float] = [-10000.0] * vocab_size
  4022. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4023. for token_id in range(tokenizer.vocab_size()):
  4024. piece = tokenizer.IdToPiece(token_id)
  4025. text = piece.encode("utf-8")
  4026. score = tokenizer.GetScore(token_id)
  4027. toktype = SentencePieceTokenTypes.NORMAL
  4028. if tokenizer.IsUnknown(token_id):
  4029. toktype = SentencePieceTokenTypes.UNKNOWN
  4030. elif tokenizer.IsControl(token_id):
  4031. toktype = SentencePieceTokenTypes.CONTROL
  4032. elif tokenizer.IsUnused(token_id):
  4033. toktype = SentencePieceTokenTypes.UNUSED
  4034. elif tokenizer.IsByte(token_id):
  4035. toktype = SentencePieceTokenTypes.BYTE
  4036. tokens[token_id] = text
  4037. scores[token_id] = score
  4038. toktypes[token_id] = toktype
  4039. added_tokens_file = self.dir_model / 'added_tokens.json'
  4040. if added_tokens_file.is_file():
  4041. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4042. added_tokens_json = json.load(f)
  4043. for key in added_tokens_json:
  4044. token_id = added_tokens_json[key]
  4045. if token_id >= vocab_size:
  4046. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4047. continue
  4048. tokens[token_id] = key.encode("utf-8")
  4049. scores[token_id] = -1000.0
  4050. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4051. if vocab_size > len(tokens):
  4052. pad_count = vocab_size - len(tokens)
  4053. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4054. for i in range(1, pad_count + 1):
  4055. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4056. scores.append(-1000.0)
  4057. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4058. self.gguf_writer.add_tokenizer_model("t5")
  4059. self.gguf_writer.add_tokenizer_pre("default")
  4060. self.gguf_writer.add_token_list(tokens)
  4061. self.gguf_writer.add_token_scores(scores)
  4062. self.gguf_writer.add_token_types(toktypes)
  4063. self.gguf_writer.add_add_space_prefix(add_prefix)
  4064. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4065. if precompiled_charsmap:
  4066. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4067. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4068. special_vocab.add_to_gguf(self.gguf_writer)
  4069. self.gguf_writer.add_add_bos_token(False)
  4070. self.gguf_writer.add_add_eos_token(True)
  4071. def set_gguf_parameters(self):
  4072. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4073. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4074. n_ctx = 512
  4075. self.gguf_writer.add_context_length(n_ctx)
  4076. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4077. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4078. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4079. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4080. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4081. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4082. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4083. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4084. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4085. self.gguf_writer.add_file_type(self.ftype)
  4086. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4087. del bid # unused
  4088. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4089. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4090. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4091. # and decoder and ignore the remaining ones.
  4092. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4093. if not self.shared_token_embeddings_found:
  4094. name = "shared.weight"
  4095. self.shared_token_embeddings_found = True
  4096. else:
  4097. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4098. return []
  4099. return [(self.map_tensor_name(name), data_torch)]
  4100. @ModelBase.register("JAISLMHeadModel")
  4101. class JaisModel(TextModel):
  4102. model_arch = gguf.MODEL_ARCH.JAIS
  4103. def __init__(self, *args, **kwargs):
  4104. super().__init__(*args, **kwargs)
  4105. # SwigLU activation
  4106. assert self.hparams["activation_function"] == "swiglu"
  4107. # ALiBi position embedding
  4108. assert self.hparams["position_embedding_type"] == "alibi"
  4109. # Embeddings scale
  4110. self.embeddings_scale = 1.0
  4111. if 'mup_embeddings_scale' in self.hparams:
  4112. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4113. elif 'embeddings_scale' in self.hparams:
  4114. self.embeddings_scale = self.hparams['embeddings_scale']
  4115. else:
  4116. assert False
  4117. self.width_scale = 1.0
  4118. if 'mup_output_alpha' in self.hparams:
  4119. assert 'mup_width_scale' in self.hparams
  4120. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4121. elif 'width_scale' in self.hparams:
  4122. self.width_scale = self.hparams['width_scale']
  4123. else:
  4124. assert False
  4125. self.max_alibi_bias = 8.0
  4126. def set_vocab(self):
  4127. self._set_vocab_gpt2()
  4128. def set_gguf_parameters(self):
  4129. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4130. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4131. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4132. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4133. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4134. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4135. self.gguf_writer.add_file_type(self.ftype)
  4136. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4137. del bid # unused
  4138. tensors: list[tuple[str, Tensor]] = []
  4139. # we don't need these
  4140. if name.endswith((".attn.bias")):
  4141. return tensors
  4142. if name.endswith(("relative_pe.slopes")):
  4143. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4144. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4145. # but Jais's PyTorch model simply precalculates the slope values and places them
  4146. # in relative_pes.slopes
  4147. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4148. first_val = float(data_torch[0].item())
  4149. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4150. return tensors
  4151. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4152. data_torch = data_torch.transpose(1, 0)
  4153. new_name = self.map_tensor_name(name)
  4154. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4155. tensors.append((new_name, data_torch * self.embeddings_scale))
  4156. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4157. tensors.append((new_name, data_torch * self.width_scale))
  4158. else:
  4159. tensors.append((new_name, data_torch))
  4160. return tensors
  4161. def prepare_tensors(self):
  4162. super().prepare_tensors()
  4163. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4164. @ModelBase.register("Glm4ForCausalLM")
  4165. class Glm4Model(TextModel):
  4166. model_arch = gguf.MODEL_ARCH.GLM4
  4167. def set_vocab(self):
  4168. from transformers import AutoTokenizer
  4169. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4170. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4171. tokens, toktypes, tokpre = self.get_vocab_base()
  4172. self.gguf_writer.add_tokenizer_model("gpt2")
  4173. self.gguf_writer.add_tokenizer_pre(tokpre)
  4174. self.gguf_writer.add_token_list(tokens)
  4175. self.gguf_writer.add_token_types(toktypes)
  4176. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4177. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4178. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4179. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4180. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4181. special_vocab.add_to_gguf(self.gguf_writer)
  4182. def set_gguf_parameters(self):
  4183. super().set_gguf_parameters()
  4184. rope_dim = self.hparams["head_dim"]
  4185. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4186. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  4187. if self.hparams["rope_scaling"].get("type") == "yarn":
  4188. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4189. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  4190. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  4191. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4192. class ChatGLMModel(TextModel):
  4193. model_arch = gguf.MODEL_ARCH.CHATGLM
  4194. def set_vocab_chatglm3(self):
  4195. dir_model = self.dir_model
  4196. hparams = self.hparams
  4197. tokens: list[bytes] = []
  4198. toktypes: list[int] = []
  4199. scores: list[float] = []
  4200. from transformers import AutoTokenizer
  4201. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4202. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4203. assert max(tokenizer.get_vocab().values()) < vocab_size
  4204. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4205. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4206. for token_id in range(vocab_size):
  4207. piece = tokenizer._convert_id_to_token(token_id)
  4208. if token_id == 0:
  4209. piece = "<unk>"
  4210. elif token_id == 1:
  4211. piece = "<bos>"
  4212. elif token_id == 2:
  4213. piece = "<eos>"
  4214. text = piece.encode("utf-8")
  4215. score = 0.0
  4216. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4217. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4218. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4219. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4220. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4221. if piece in special_tokens:
  4222. toktype = SentencePieceTokenTypes.CONTROL
  4223. elif len(piece) == 0:
  4224. text = f"[PAD{token_id}]".encode("utf-8")
  4225. toktype = SentencePieceTokenTypes.UNUSED
  4226. else:
  4227. toktype = SentencePieceTokenTypes.USER_DEFINED
  4228. tokens.append(text)
  4229. scores.append(score)
  4230. toktypes.append(toktype)
  4231. continue
  4232. toktype = SentencePieceTokenTypes.NORMAL
  4233. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4234. toktype = SentencePieceTokenTypes.UNKNOWN
  4235. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4236. toktype = SentencePieceTokenTypes.CONTROL
  4237. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4238. toktype = SentencePieceTokenTypes.UNUSED
  4239. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4240. toktype = SentencePieceTokenTypes.BYTE
  4241. tokens.append(text)
  4242. scores.append(score)
  4243. toktypes.append(toktype)
  4244. self.gguf_writer.add_tokenizer_model("llama")
  4245. # glm3 needs prefix and suffix formatted as:
  4246. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4247. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4248. self.gguf_writer.add_token_list(tokens)
  4249. self.gguf_writer.add_token_scores(scores)
  4250. self.gguf_writer.add_token_types(toktypes)
  4251. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4252. special_vocab.add_to_gguf(self.gguf_writer)
  4253. @staticmethod
  4254. def token_bytes_to_string(b):
  4255. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4256. byte_encoder = bytes_to_unicode()
  4257. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4258. @staticmethod
  4259. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4260. parts = [bytes([b]) for b in token]
  4261. while True:
  4262. min_idx = None
  4263. min_rank = None
  4264. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4265. rank = mergeable_ranks.get(pair[0] + pair[1])
  4266. if rank is not None and (min_rank is None or rank < min_rank):
  4267. min_idx = i
  4268. min_rank = rank
  4269. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4270. break
  4271. assert min_idx is not None
  4272. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4273. return parts
  4274. def set_vocab(self):
  4275. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4276. self.set_vocab_chatglm3()
  4277. return
  4278. dir_model = self.dir_model
  4279. hparams = self.hparams
  4280. tokens: list[str] = []
  4281. toktypes: list[int] = []
  4282. from transformers import AutoTokenizer
  4283. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4284. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4285. assert max(tokenizer.get_vocab().values()) < vocab_size
  4286. tokens, toktypes, tokpre = self.get_vocab_base()
  4287. self.gguf_writer.add_tokenizer_model("gpt2")
  4288. self.gguf_writer.add_tokenizer_pre(tokpre)
  4289. self.gguf_writer.add_token_list(tokens)
  4290. self.gguf_writer.add_token_types(toktypes)
  4291. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4292. # only add special tokens when they were not already loaded from config.json
  4293. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4294. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4295. # this one is usually not in config.json anyway
  4296. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4297. special_vocab.add_to_gguf(self.gguf_writer)
  4298. def set_gguf_parameters(self):
  4299. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4300. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4301. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4302. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4303. self.gguf_writer.add_embedding_length(n_embed)
  4304. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4305. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4306. self.gguf_writer.add_head_count(n_head)
  4307. self.gguf_writer.add_head_count_kv(n_head_kv)
  4308. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4309. self.gguf_writer.add_file_type(self.ftype)
  4310. if "attention_dim" in self.hparams:
  4311. rope_dim = self.hparams["attention_dim"]
  4312. else:
  4313. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4314. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4315. self.gguf_writer.add_add_bos_token(False)
  4316. rope_freq = 10000
  4317. if "rope_ratio" in self.hparams:
  4318. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4319. self.gguf_writer.add_rope_freq_base(rope_freq)
  4320. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4321. del bid # unused
  4322. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4323. return []
  4324. name = name.removeprefix("transformer.")
  4325. return [(self.map_tensor_name(name), data_torch)]
  4326. @ModelBase.register("NemotronForCausalLM")
  4327. class NemotronModel(TextModel):
  4328. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4329. def set_vocab(self):
  4330. self._set_vocab_sentencepiece()
  4331. self.gguf_writer.add_pad_token_id(0)
  4332. self.gguf_writer.add_unk_token_id(1)
  4333. def set_gguf_parameters(self):
  4334. super().set_gguf_parameters()
  4335. hparams = self.hparams
  4336. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4337. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4338. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4339. # * Partial RoPE
  4340. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4341. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4342. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4343. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4344. # * RopeScaling for Nemotron
  4345. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4346. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4347. else:
  4348. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4349. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4350. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4351. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4352. # model.layers.{l}.input_layernorm.weight
  4353. # model.layers.{l}.post_attention_layernorm.weight
  4354. # model.norm.weight
  4355. if name.endswith("norm.weight"):
  4356. data_torch = data_torch + 1
  4357. return [(self.map_tensor_name(name), data_torch)]
  4358. @ModelBase.register("ExaoneForCausalLM")
  4359. class ExaoneModel(TextModel):
  4360. model_arch = gguf.MODEL_ARCH.EXAONE
  4361. def set_gguf_parameters(self):
  4362. hparams = self.hparams
  4363. assert (hparams["activation_function"] == "silu")
  4364. max_position_embeddings = hparams["max_position_embeddings"]
  4365. embed_dim = hparams["hidden_size"]
  4366. num_heads = hparams["num_attention_heads"]
  4367. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4368. layer_norm_eps = hparams["layer_norm_epsilon"]
  4369. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4370. num_layers = hparams["num_layers"]
  4371. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4372. # attention_dropout_rate = hparams["attention_dropout"]
  4373. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4374. # embed_dropout_rate = hparams["embed_dropout"]
  4375. self.gguf_writer.add_embedding_length(embed_dim)
  4376. self.gguf_writer.add_head_count(num_heads)
  4377. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4378. self.gguf_writer.add_context_length(max_position_embeddings)
  4379. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4380. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4381. self.gguf_writer.add_block_count(num_layers)
  4382. self.gguf_writer.add_file_type(self.ftype)
  4383. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4384. self.gguf_writer.add_rope_freq_base(rope_theta)
  4385. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4386. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4387. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4388. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4389. if hparams["rope_scaling"].get("type") == "linear":
  4390. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4391. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4392. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4393. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4394. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4395. base = self.hparams.get("rope_theta", 10000.0)
  4396. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4397. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4398. factor = rope_scaling.get("factor", 8.0)
  4399. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4400. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4401. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4402. low_freq_wavelen = old_context_len / low_freq_factor
  4403. high_freq_wavelen = old_context_len / high_freq_factor
  4404. assert low_freq_wavelen != high_freq_wavelen
  4405. rope_factors = []
  4406. for freq in freqs:
  4407. wavelen = 2 * math.pi / freq
  4408. if wavelen < high_freq_wavelen:
  4409. rope_factors.append(1)
  4410. elif wavelen > low_freq_wavelen:
  4411. rope_factors.append(factor)
  4412. else:
  4413. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4414. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4415. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4416. @ModelBase.register("GraniteForCausalLM")
  4417. class GraniteModel(LlamaModel):
  4418. """Conversion for IBM's GraniteForCausalLM"""
  4419. model_arch = gguf.MODEL_ARCH.GRANITE
  4420. def set_gguf_parameters(self):
  4421. """Granite uses standard llama parameters with the following differences:
  4422. - No head_dim support
  4423. - New multiplier params:
  4424. - attention_scale
  4425. - embedding_scale
  4426. - residual_scale
  4427. - logits_scaling
  4428. """
  4429. if head_dim := self.hparams.pop("head_dim", None):
  4430. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4431. super().set_gguf_parameters()
  4432. # NOTE: Convert _multiplier params to _scale params for naming
  4433. # consistency
  4434. if attention_scale := self.hparams.get("attention_multiplier"):
  4435. self.gguf_writer.add_attention_scale(attention_scale)
  4436. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4437. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4438. self.gguf_writer.add_embedding_scale(embedding_scale)
  4439. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4440. if residual_scale := self.hparams.get("residual_multiplier"):
  4441. self.gguf_writer.add_residual_scale(residual_scale)
  4442. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4443. if logits_scale := self.hparams.get("logits_scaling"):
  4444. self.gguf_writer.add_logit_scale(logits_scale)
  4445. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4446. @ModelBase.register("GraniteMoeForCausalLM")
  4447. class GraniteMoeModel(GraniteModel):
  4448. """Conversion for IBM's GraniteMoeForCausalLM"""
  4449. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4451. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4452. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4453. the hidden size that is then split during forward. To keep compatibility
  4454. with existing mixtral support, we pull them apart here.
  4455. """
  4456. if name.endswith("block_sparse_moe.input_linear.weight"):
  4457. ffn_dim = self.hparams["intermediate_size"]
  4458. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4459. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4460. return [
  4461. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4462. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4463. ]
  4464. return super().modify_tensors(data_torch, name, bid)
  4465. @ModelBase.register("BailingMoeForCausalLM")
  4466. class BailingMoeModel(TextModel):
  4467. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4468. def set_vocab(self):
  4469. self._set_vocab_gpt2()
  4470. def set_gguf_parameters(self):
  4471. super().set_gguf_parameters()
  4472. hparams = self.hparams
  4473. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4474. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4475. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4476. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4477. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4478. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4479. self.gguf_writer.add_expert_weights_scale(1.0)
  4480. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4481. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4482. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4483. _experts: list[dict[str, Tensor]] | None = None
  4484. @staticmethod
  4485. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4486. if n_head_kv is not None and n_head != n_head_kv:
  4487. n_head = n_head_kv
  4488. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4489. .swapaxes(1, 2)
  4490. .reshape(weights.shape))
  4491. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4492. n_head = self.hparams["num_attention_heads"]
  4493. n_kv_head = self.hparams.get("num_key_value_heads")
  4494. n_embd = self.hparams["hidden_size"]
  4495. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4496. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4497. if name.endswith("attention.dense.weight"):
  4498. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4499. elif name.endswith("query_key_value.weight"):
  4500. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4501. return [
  4502. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4503. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4504. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4505. ]
  4506. elif name.find("mlp.experts") != -1:
  4507. n_experts = self.hparams["num_experts"]
  4508. assert bid is not None
  4509. tensors: list[tuple[str, Tensor]] = []
  4510. if self._experts is None:
  4511. self._experts = [{} for _ in range(self.block_count)]
  4512. self._experts[bid][name] = data_torch
  4513. if len(self._experts[bid]) >= n_experts * 3:
  4514. # merge the experts into a single 3d tensor
  4515. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4516. datas: list[Tensor] = []
  4517. for xid in range(n_experts):
  4518. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4519. datas.append(self._experts[bid][ename])
  4520. del self._experts[bid][ename]
  4521. data_torch = torch.stack(datas, dim=0)
  4522. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4523. new_name = self.map_tensor_name(merged_name)
  4524. tensors.append((new_name, data_torch))
  4525. return tensors
  4526. new_name = self.map_tensor_name(name)
  4527. if new_name == output_name and self.hparams.get("norm_head"):
  4528. data_torch = data_torch.float()
  4529. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4530. return [(new_name, data_torch)]
  4531. def prepare_tensors(self):
  4532. super().prepare_tensors()
  4533. if self._experts is not None:
  4534. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4535. experts = [k for d in self._experts for k in d.keys()]
  4536. if len(experts) > 0:
  4537. raise ValueError(f"Unprocessed experts: {experts}")
  4538. @ModelBase.register("ChameleonForConditionalGeneration")
  4539. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4540. class ChameleonModel(TextModel):
  4541. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4542. def set_gguf_parameters(self):
  4543. super().set_gguf_parameters()
  4544. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4545. def set_vocab(self):
  4546. self._set_vocab_gpt2()
  4547. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4548. # ignore image tokenizer for now
  4549. # TODO: remove this once image support is implemented for Chameleon
  4550. if name.startswith("model.vqmodel"):
  4551. return []
  4552. n_head = self.hparams["num_attention_heads"]
  4553. n_kv_head = self.hparams.get("num_key_value_heads")
  4554. hidden_dim = self.hparams.get("hidden_size")
  4555. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4556. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4557. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4558. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4559. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4560. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4561. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4562. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4563. return [(self.map_tensor_name(name), data_torch)]
  4564. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4565. @staticmethod
  4566. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4567. head_dim = hidden_dim // n_heads
  4568. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4569. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4570. return data_torch
  4571. ###### CONVERSION LOGIC ######
  4572. # tree of lazy tensors
  4573. class LazyTorchTensor(gguf.LazyBase):
  4574. _tensor_type = torch.Tensor
  4575. # to keep the type-checker happy
  4576. dtype: torch.dtype
  4577. shape: torch.Size
  4578. # only used when converting a torch.Tensor to a np.ndarray
  4579. _dtype_map: dict[torch.dtype, type] = {
  4580. torch.float16: np.float16,
  4581. torch.float32: np.float32,
  4582. }
  4583. # used for safetensors slices
  4584. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4585. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4586. _dtype_str_map: dict[str, torch.dtype] = {
  4587. "F64": torch.float64,
  4588. "F32": torch.float32,
  4589. "BF16": torch.bfloat16,
  4590. "F16": torch.float16,
  4591. # "U64": torch.uint64,
  4592. "I64": torch.int64,
  4593. # "U32": torch.uint32,
  4594. "I32": torch.int32,
  4595. # "U16": torch.uint16,
  4596. "I16": torch.int16,
  4597. "U8": torch.uint8,
  4598. "I8": torch.int8,
  4599. "BOOL": torch.bool,
  4600. "F8_E4M3": torch.float8_e4m3fn,
  4601. "F8_E5M2": torch.float8_e5m2,
  4602. }
  4603. def numpy(self) -> gguf.LazyNumpyTensor:
  4604. dtype = self._dtype_map[self.dtype]
  4605. return gguf.LazyNumpyTensor(
  4606. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4607. args=(self,),
  4608. func=(lambda s: s.numpy())
  4609. )
  4610. @classmethod
  4611. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4612. return torch.empty(size=shape, dtype=dtype, device="meta")
  4613. @classmethod
  4614. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4615. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4616. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4617. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4618. return cast(torch.Tensor, lazy)
  4619. @classmethod
  4620. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4621. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4622. shape = remote_tensor.shape
  4623. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4624. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4625. return cast(torch.Tensor, lazy)
  4626. @classmethod
  4627. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4628. del types # unused
  4629. if kwargs is None:
  4630. kwargs = {}
  4631. if func is torch.Tensor.numpy:
  4632. return args[0].numpy()
  4633. return cls._wrap_fn(func)(*args, **kwargs)
  4634. def parse_args() -> argparse.Namespace:
  4635. parser = argparse.ArgumentParser(
  4636. description="Convert a huggingface model to a GGML compatible file")
  4637. parser.add_argument(
  4638. "--vocab-only", action="store_true",
  4639. help="extract only the vocab",
  4640. )
  4641. parser.add_argument(
  4642. "--outfile", type=Path,
  4643. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4644. )
  4645. parser.add_argument(
  4646. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4647. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4648. )
  4649. parser.add_argument(
  4650. "--bigendian", action="store_true",
  4651. help="model is executed on big endian machine",
  4652. )
  4653. parser.add_argument(
  4654. "model", type=Path,
  4655. help="directory containing model file",
  4656. nargs="?",
  4657. )
  4658. parser.add_argument(
  4659. "--use-temp-file", action="store_true",
  4660. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4661. )
  4662. parser.add_argument(
  4663. "--no-lazy", action="store_true",
  4664. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4665. )
  4666. parser.add_argument(
  4667. "--model-name", type=str, default=None,
  4668. help="name of the model",
  4669. )
  4670. parser.add_argument(
  4671. "--verbose", action="store_true",
  4672. help="increase output verbosity",
  4673. )
  4674. parser.add_argument(
  4675. "--split-max-tensors", type=int, default=0,
  4676. help="max tensors in each split",
  4677. )
  4678. parser.add_argument(
  4679. "--split-max-size", type=str, default="0",
  4680. help="max size per split N(M|G)",
  4681. )
  4682. parser.add_argument(
  4683. "--dry-run", action="store_true",
  4684. help="only print out a split plan and exit, without writing any new files",
  4685. )
  4686. parser.add_argument(
  4687. "--no-tensor-first-split", action="store_true",
  4688. help="do not add tensors to the first split (disabled by default)"
  4689. )
  4690. parser.add_argument(
  4691. "--metadata", type=Path,
  4692. help="Specify the path for an authorship metadata override file"
  4693. )
  4694. parser.add_argument(
  4695. "--print-supported-models", action="store_true",
  4696. help="Print the supported models"
  4697. )
  4698. parser.add_argument(
  4699. "--remote", action="store_true",
  4700. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  4701. )
  4702. parser.add_argument(
  4703. "--mmproj", action="store_true",
  4704. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  4705. )
  4706. args = parser.parse_args()
  4707. if not args.print_supported_models and args.model is None:
  4708. parser.error("the following arguments are required: model")
  4709. return args
  4710. def split_str_to_n_bytes(split_str: str) -> int:
  4711. if split_str.endswith("K"):
  4712. n = int(split_str[:-1]) * 1000
  4713. elif split_str.endswith("M"):
  4714. n = int(split_str[:-1]) * 1000 * 1000
  4715. elif split_str.endswith("G"):
  4716. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4717. elif split_str.isnumeric():
  4718. n = int(split_str)
  4719. else:
  4720. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4721. if n < 0:
  4722. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4723. return n
  4724. def main() -> None:
  4725. args = parse_args()
  4726. if args.print_supported_models:
  4727. logger.error("Supported models:")
  4728. ModelBase.print_registered_models()
  4729. sys.exit(0)
  4730. if args.verbose:
  4731. logging.basicConfig(level=logging.DEBUG)
  4732. else:
  4733. logging.basicConfig(level=logging.INFO)
  4734. dir_model = args.model
  4735. if args.remote:
  4736. from huggingface_hub import snapshot_download
  4737. local_dir = snapshot_download(
  4738. repo_id=str(dir_model),
  4739. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  4740. dir_model = Path(local_dir)
  4741. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  4742. if not dir_model.is_dir():
  4743. logger.error(f'Error: {args.model} is not a directory')
  4744. sys.exit(1)
  4745. ftype_map: dict[str, gguf.LlamaFileType] = {
  4746. "f32": gguf.LlamaFileType.ALL_F32,
  4747. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4748. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4749. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4750. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4751. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4752. "auto": gguf.LlamaFileType.GUESSED,
  4753. }
  4754. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4755. if args.use_temp_file and is_split:
  4756. logger.error("Error: Cannot use temp file when splitting")
  4757. sys.exit(1)
  4758. if args.outfile is not None:
  4759. fname_out = args.outfile
  4760. elif args.remote:
  4761. # if remote, use the model ID as the output file name
  4762. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  4763. else:
  4764. fname_out = dir_model
  4765. logger.info(f"Loading model: {dir_model.name}")
  4766. hparams = ModelBase.load_hparams(dir_model)
  4767. if args.mmproj:
  4768. if "mmproj" not in fname_out.name:
  4769. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  4770. with torch.inference_mode():
  4771. output_type = ftype_map[args.outtype]
  4772. model_architecture = hparams["architectures"][0]
  4773. model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
  4774. try:
  4775. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  4776. except NotImplementedError:
  4777. logger.error(f"Model {model_architecture} is not supported")
  4778. sys.exit(1)
  4779. model_instance = model_class(dir_model, output_type, fname_out,
  4780. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4781. eager=args.no_lazy,
  4782. metadata_override=args.metadata, model_name=args.model_name,
  4783. split_max_tensors=args.split_max_tensors,
  4784. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4785. small_first_shard=args.no_tensor_first_split,
  4786. remote_hf_model_id=str(args.model) if args.remote else None)
  4787. if args.vocab_only:
  4788. logger.info("Exporting model vocab...")
  4789. model_instance.write_vocab()
  4790. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4791. else:
  4792. logger.info("Exporting model...")
  4793. model_instance.write()
  4794. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4795. logger.info(f"Model successfully exported to {out_path}")
  4796. if __name__ == '__main__':
  4797. main()