convert-hf-to-gguf.py 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import contextlib
  6. import json
  7. import os
  8. import re
  9. import sys
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from hashlib import sha256
  13. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast, overload
  14. import numpy as np
  15. import torch
  16. if TYPE_CHECKING:
  17. from torch import Tensor
  18. if 'NO_LOCAL_GGUF' not in os.environ:
  19. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  20. import gguf
  21. from convert import LlamaHfVocab
  22. logger = logging.getLogger("hf-to-gguf")
  23. ###### MODEL DEFINITIONS ######
  24. class SentencePieceTokenTypes(IntEnum):
  25. NORMAL = 1
  26. UNKNOWN = 2
  27. CONTROL = 3
  28. USER_DEFINED = 4
  29. UNUSED = 5
  30. BYTE = 6
  31. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  32. class Model:
  33. _model_classes: dict[str, type[Model]] = {}
  34. dir_model: Path
  35. ftype: int
  36. fname_out: Path
  37. is_big_endian: bool
  38. endianess: gguf.GGUFEndian
  39. use_temp_file: bool
  40. lazy: bool
  41. part_names: list[str]
  42. is_safetensors: bool
  43. hparams: dict[str, Any]
  44. gguf_writer: gguf.GGUFWriter
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. # subclasses should define this!
  49. model_arch: gguf.MODEL_ARCH
  50. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool):
  51. if self.__class__ == Model:
  52. raise TypeError(f"{self.__class__.__name__!r} should not be directly instantiated")
  53. self.dir_model = dir_model
  54. self.ftype = ftype
  55. self.fname_out = fname_out
  56. self.is_big_endian = is_big_endian
  57. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  58. self.use_temp_file = use_temp_file
  59. self.lazy = not eager
  60. self.part_names = Model.get_model_part_names(self.dir_model, ".safetensors")
  61. self.is_safetensors = len(self.part_names) > 0
  62. if not self.is_safetensors:
  63. self.part_names = Model.get_model_part_names(self.dir_model, ".bin")
  64. self.hparams = Model.load_hparams(self.dir_model)
  65. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  66. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  67. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  68. self.tensor_names = None
  69. @classmethod
  70. def __init_subclass__(cls):
  71. # can't use an abstract property, because overriding it without type errors
  72. # would require using decorated functions instead of simply defining the property
  73. if "model_arch" not in cls.__dict__:
  74. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  75. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  76. key = next((k for k in keys if k in self.hparams), None)
  77. if key is not None:
  78. return self.hparams[key]
  79. if optional:
  80. return None
  81. raise KeyError(f"could not find any of: {keys}")
  82. def set_vocab(self):
  83. self._set_vocab_gpt2()
  84. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  85. tensor_names_from_parts: set[str] = set()
  86. if len(self.part_names) > 1:
  87. self.tensor_names = set()
  88. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  89. index_name += ".index.json"
  90. logger.info(f"gguf: loading model weight map from '{index_name}'")
  91. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  92. index: dict[str, Any] = json.load(f)
  93. weight_map = index.get("weight_map")
  94. if weight_map is None or not isinstance(weight_map, dict):
  95. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  96. self.tensor_names.update(weight_map.keys())
  97. else:
  98. self.tensor_names = tensor_names_from_parts
  99. for part_name in self.part_names:
  100. logger.info(f"gguf: loading model part '{part_name}'")
  101. ctx: ContextManager[Any]
  102. if self.is_safetensors:
  103. from safetensors import safe_open
  104. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  105. else:
  106. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  107. with ctx as model_part:
  108. tensor_names_from_parts.update(model_part.keys())
  109. for name in model_part.keys():
  110. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  111. if self.lazy:
  112. data = LazyTorchTensor.from_eager(data)
  113. yield name, data
  114. # only verify tensor name presence; it doesn't matter if they are not in the right files
  115. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  116. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  117. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  118. name: str = gguf.TENSOR_NAMES[key]
  119. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  120. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  121. if "{bid}" in name:
  122. assert bid is not None
  123. name = name.format(bid=bid)
  124. return name + suffix
  125. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  126. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  127. if new_name is None:
  128. raise ValueError(f"Can not map tensor {name!r}")
  129. return new_name
  130. def set_gguf_parameters(self):
  131. self.gguf_writer.add_name(self.dir_model.name)
  132. self.gguf_writer.add_block_count(self.block_count)
  133. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  134. self.gguf_writer.add_context_length(n_ctx)
  135. logger.info(f"gguf: context length = {n_ctx}")
  136. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  137. self.gguf_writer.add_embedding_length(n_embd)
  138. logger.info(f"gguf: embedding length = {n_embd}")
  139. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  140. self.gguf_writer.add_feed_forward_length(n_ff)
  141. logger.info(f"gguf: feed forward length = {n_ff}")
  142. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  143. self.gguf_writer.add_head_count(n_head)
  144. logger.info(f"gguf: head count = {n_head}")
  145. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  146. self.gguf_writer.add_head_count_kv(n_head_kv)
  147. logger.info(f"gguf: key-value head count = {n_head_kv}")
  148. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  149. self.gguf_writer.add_rope_freq_base(rope_theta)
  150. logger.info(f"gguf: rope theta = {rope_theta}")
  151. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  152. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  153. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  154. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  155. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  156. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  157. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  158. self.gguf_writer.add_expert_count(n_experts)
  159. logger.info(f"gguf: expert count = {n_experts}")
  160. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  161. self.gguf_writer.add_expert_used_count(n_experts_used)
  162. logger.info(f"gguf: experts used count = {n_experts_used}")
  163. self.gguf_writer.add_file_type(self.ftype)
  164. logger.info(f"gguf: file type = {self.ftype}")
  165. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  166. del bid # unused
  167. return [(self.map_tensor_name(name), data_torch)]
  168. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  169. del name, new_name, bid, n_dims # unused
  170. return False
  171. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  172. del name, new_name, bid, n_dims # unused
  173. return False
  174. def write_tensors(self):
  175. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  176. for name, data_torch in self.get_tensors():
  177. # we don't need these
  178. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  179. continue
  180. old_dtype = data_torch.dtype
  181. # convert any unsupported data types to float32
  182. if data_torch.dtype not in (torch.float16, torch.float32):
  183. data_torch = data_torch.to(torch.float32)
  184. # use the first number-like part of the tensor name as the block id
  185. bid = None
  186. for part in name.split("."):
  187. if part.isdecimal():
  188. bid = int(part)
  189. break
  190. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  191. data: np.ndarray = data # type hint
  192. n_dims = len(data.shape)
  193. data_dtype = data.dtype
  194. # if f32 desired, convert any float16 to float32
  195. if self.ftype == 0 and data_dtype == np.float16:
  196. data = data.astype(np.float32)
  197. # when both are True, f32 should win
  198. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  199. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  200. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  201. extra_f32 = extra_f32 or n_dims == 1 or new_name.endswith("_norm.weight")
  202. # if f16 desired, convert any float32 2-dim weight tensors to float16
  203. extra_f16 = extra_f16 or (name.endswith(".weight") and n_dims >= 2)
  204. # when both extra_f32 and extra_f16 are False, convert to float32 by default
  205. if self.ftype == 1 and data_dtype == np.float16 and (extra_f32 or not extra_f16):
  206. data = data.astype(np.float32)
  207. if self.ftype == 1 and data_dtype == np.float32 and extra_f16 and not extra_f32:
  208. data = data.astype(np.float16)
  209. # reverse shape to make it similar to the internal ggml dimension order
  210. shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
  211. # n_dims is implicit in the shape
  212. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data.dtype}, shape = {shape_str}")
  213. self.gguf_writer.add_tensor(new_name, data)
  214. def write(self):
  215. self.write_tensors()
  216. self.gguf_writer.write_header_to_file()
  217. self.gguf_writer.write_kv_data_to_file()
  218. self.gguf_writer.write_tensors_to_file(progress=True)
  219. self.gguf_writer.close()
  220. def write_vocab(self):
  221. self.gguf_writer.write_header_to_file()
  222. self.gguf_writer.write_kv_data_to_file()
  223. self.gguf_writer.close()
  224. @staticmethod
  225. def get_model_part_names(dir_model: Path, suffix: str) -> list[str]:
  226. part_names: list[str] = []
  227. for filename in os.listdir(dir_model):
  228. if filename.endswith(suffix):
  229. part_names.append(filename)
  230. part_names.sort()
  231. return part_names
  232. @staticmethod
  233. def load_hparams(dir_model: Path):
  234. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  235. return json.load(f)
  236. @classmethod
  237. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  238. assert names
  239. def func(modelcls: AnyModel) -> AnyModel:
  240. for name in names:
  241. cls._model_classes[name] = modelcls
  242. return modelcls
  243. return func
  244. @classmethod
  245. def from_model_architecture(cls, arch: str) -> type[Model]:
  246. try:
  247. return cls._model_classes[arch]
  248. except KeyError:
  249. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  250. # used for GPT-2 BPE and WordPiece vocabs
  251. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  252. tokens: list[str] = []
  253. toktypes: list[int] = []
  254. from transformers import AutoTokenizer
  255. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  256. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  257. assert max(tokenizer.vocab.values()) < vocab_size
  258. tokpre = self.get_vocab_base_pre(tokenizer)
  259. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  260. added_vocab = tokenizer.get_added_vocab()
  261. for i in range(vocab_size):
  262. if i not in reverse_vocab:
  263. tokens.append(f"[PAD{i}]")
  264. toktypes.append(gguf.TokenType.USER_DEFINED)
  265. elif reverse_vocab[i] in added_vocab:
  266. tokens.append(reverse_vocab[i])
  267. if tokenizer.added_tokens_decoder[i].special:
  268. toktypes.append(gguf.TokenType.CONTROL)
  269. else:
  270. toktypes.append(gguf.TokenType.USER_DEFINED)
  271. else:
  272. tokens.append(reverse_vocab[i])
  273. toktypes.append(gguf.TokenType.NORMAL)
  274. return tokens, toktypes, tokpre
  275. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  276. # do not modify it manually!
  277. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  278. def get_vocab_base_pre(self, tokenizer) -> str:
  279. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  280. # is specific for the BPE pre-tokenizer used by the model
  281. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  282. # use in llama.cpp to implement the same pre-tokenizer
  283. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  284. chktok = tokenizer.encode(chktxt)
  285. chkhsh = sha256(str(chktok).encode()).hexdigest()
  286. logger.debug(f"chktok: {chktok}")
  287. logger.debug(f"chkhsh: {chkhsh}")
  288. res = None
  289. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  290. # or pull the latest version of the model from Huggingface
  291. # don't edit the hashes manually!
  292. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  293. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  294. res = "llama-bpe"
  295. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  296. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  297. res = "deepseek-llm"
  298. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  299. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  300. res = "deepseek-coder"
  301. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  302. # ref: https://huggingface.co/tiiuae/falcon-7b
  303. res = "falcon"
  304. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  305. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  306. res = "bert-bge"
  307. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  308. # ref: https://huggingface.co/mosaicml/mpt-7b
  309. res = "mpt"
  310. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  311. # ref: https://huggingface.co/bigcode/starcoder2-3b
  312. res = "starcoder"
  313. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  314. # ref: https://huggingface.co/openai-community/gpt2
  315. res = "gpt-2"
  316. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  317. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  318. res = "refact"
  319. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  320. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  321. res = "command-r"
  322. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  323. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  324. res = "qwen2"
  325. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  326. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  327. res = "olmo"
  328. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  329. # ref: https://huggingface.co/databricks/dbrx-instruct
  330. res = "dbrx"
  331. if res is None:
  332. logger.warning("\n")
  333. logger.warning("**************************************************************************************")
  334. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  335. logger.warning("** There are 2 possible reasons for this:")
  336. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  337. logger.warning("** - the pre-tokenization config has changed upstream")
  338. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  339. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  340. logger.warning("**")
  341. logger.warning(f"** chkhsh: {chkhsh}")
  342. logger.warning("**************************************************************************************")
  343. logger.warning("\n")
  344. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  345. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  346. logger.debug(f"chkhsh: {chkhsh}")
  347. return res
  348. def _set_vocab_gpt2(self) -> None:
  349. tokens, toktypes, tokpre = self.get_vocab_base()
  350. self.gguf_writer.add_tokenizer_model("gpt2")
  351. self.gguf_writer.add_tokenizer_pre(tokpre)
  352. self.gguf_writer.add_token_list(tokens)
  353. self.gguf_writer.add_token_types(toktypes)
  354. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  355. special_vocab.add_to_gguf(self.gguf_writer)
  356. def _set_vocab_qwen(self):
  357. dir_model = self.dir_model
  358. hparams = self.hparams
  359. tokens: list[str] = []
  360. toktypes: list[int] = []
  361. from transformers import AutoTokenizer
  362. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  363. vocab_size = hparams["vocab_size"]
  364. assert max(tokenizer.get_vocab().values()) < vocab_size
  365. tokpre = self.get_vocab_base_pre(tokenizer)
  366. merges = []
  367. vocab = {}
  368. mergeable_ranks = tokenizer.mergeable_ranks
  369. for token, rank in mergeable_ranks.items():
  370. vocab[QwenModel.token_bytes_to_string(token)] = rank
  371. if len(token) == 1:
  372. continue
  373. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  374. assert len(merged) == 2
  375. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  376. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  377. added_vocab = tokenizer.special_tokens
  378. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  379. for i in range(vocab_size):
  380. if i not in reverse_vocab:
  381. tokens.append(f"[PAD{i}]")
  382. toktypes.append(gguf.TokenType.USER_DEFINED)
  383. elif reverse_vocab[i] in added_vocab:
  384. tokens.append(reverse_vocab[i])
  385. toktypes.append(gguf.TokenType.CONTROL)
  386. else:
  387. tokens.append(reverse_vocab[i])
  388. toktypes.append(gguf.TokenType.NORMAL)
  389. self.gguf_writer.add_tokenizer_model("gpt2")
  390. self.gguf_writer.add_tokenizer_pre(tokpre)
  391. self.gguf_writer.add_token_list(tokens)
  392. self.gguf_writer.add_token_types(toktypes)
  393. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  394. special_vocab.merges = merges
  395. # only add special tokens when they were not already loaded from config.json
  396. if len(special_vocab.special_token_ids) == 0:
  397. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  398. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  399. # this one is usually not in config.json anyway
  400. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  401. special_vocab.add_to_gguf(self.gguf_writer)
  402. def _set_vocab_sentencepiece(self):
  403. from sentencepiece import SentencePieceProcessor
  404. tokenizer_path = self.dir_model / 'tokenizer.model'
  405. tokens: list[bytes] = []
  406. scores: list[float] = []
  407. toktypes: list[int] = []
  408. if not tokenizer_path.is_file():
  409. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  410. tokenizer = SentencePieceProcessor()
  411. tokenizer.LoadFromFile(str(tokenizer_path))
  412. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  413. for token_id in range(tokenizer.vocab_size()):
  414. piece = tokenizer.IdToPiece(token_id)
  415. text = piece.encode("utf-8")
  416. score = tokenizer.GetScore(token_id)
  417. toktype = SentencePieceTokenTypes.NORMAL
  418. if tokenizer.IsUnknown(token_id):
  419. toktype = SentencePieceTokenTypes.UNKNOWN
  420. elif tokenizer.IsControl(token_id):
  421. toktype = SentencePieceTokenTypes.CONTROL
  422. elif tokenizer.IsUnused(token_id):
  423. toktype = SentencePieceTokenTypes.UNUSED
  424. elif tokenizer.IsByte(token_id):
  425. toktype = SentencePieceTokenTypes.BYTE
  426. tokens.append(text)
  427. scores.append(score)
  428. toktypes.append(toktype)
  429. added_tokens_file = self.dir_model / 'added_tokens.json'
  430. if added_tokens_file.is_file():
  431. with open(added_tokens_file, "r", encoding="utf-8") as f:
  432. added_tokens_json = json.load(f)
  433. for key in added_tokens_json:
  434. key = key.encode("utf-8")
  435. if key not in tokens:
  436. tokens.append(key)
  437. scores.append(-1000.0)
  438. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  439. if vocab_size > len(tokens):
  440. pad_count = vocab_size - len(tokens)
  441. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  442. for i in range(1, pad_count + 1):
  443. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  444. scores.append(-1000.0)
  445. toktypes.append(SentencePieceTokenTypes.UNUSED)
  446. assert len(tokens) == vocab_size
  447. self.gguf_writer.add_tokenizer_model("llama")
  448. self.gguf_writer.add_tokenizer_pre("default")
  449. self.gguf_writer.add_token_list(tokens)
  450. self.gguf_writer.add_token_scores(scores)
  451. self.gguf_writer.add_token_types(toktypes)
  452. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  453. special_vocab.add_to_gguf(self.gguf_writer)
  454. def _set_vocab_llama_hf(self):
  455. vocab = LlamaHfVocab(self.dir_model)
  456. tokens = []
  457. scores = []
  458. toktypes = []
  459. for text, score, toktype in vocab.all_tokens():
  460. tokens.append(text)
  461. scores.append(score)
  462. toktypes.append(toktype)
  463. assert len(tokens) == vocab.vocab_size
  464. self.gguf_writer.add_tokenizer_model("llama")
  465. self.gguf_writer.add_tokenizer_pre("default")
  466. self.gguf_writer.add_token_list(tokens)
  467. self.gguf_writer.add_token_scores(scores)
  468. self.gguf_writer.add_token_types(toktypes)
  469. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  470. special_vocab.add_to_gguf(self.gguf_writer)
  471. @Model.register("GPTNeoXForCausalLM")
  472. class GPTNeoXModel(Model):
  473. model_arch = gguf.MODEL_ARCH.GPTNEOX
  474. def set_gguf_parameters(self):
  475. block_count = self.hparams["num_hidden_layers"]
  476. self.gguf_writer.add_name(self.dir_model.name)
  477. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  478. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  479. self.gguf_writer.add_block_count(block_count)
  480. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  481. self.gguf_writer.add_rope_dimension_count(
  482. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  483. )
  484. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  485. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  486. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  487. @Model.register("BloomForCausalLM")
  488. class BloomModel(Model):
  489. model_arch = gguf.MODEL_ARCH.BLOOM
  490. def set_gguf_parameters(self):
  491. self.gguf_writer.add_name("Bloom")
  492. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  493. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  494. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  495. self.gguf_writer.add_embedding_length(n_embed)
  496. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  497. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  498. self.gguf_writer.add_head_count(n_head)
  499. self.gguf_writer.add_head_count_kv(n_head)
  500. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  501. self.gguf_writer.add_file_type(self.ftype)
  502. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  503. del bid # unused
  504. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  505. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  506. name = re.sub(r'transformer\.', '', name)
  507. tensors: list[tuple[str, Tensor]] = []
  508. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  509. # Map bloom-style qkv_linear to gpt-style qkv_linear
  510. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  511. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  512. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  513. data_torch = torch.cat(
  514. (
  515. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  516. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  517. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  518. ),
  519. dim=0,
  520. )
  521. logger.info("re-format attention.linear_qkv.weight")
  522. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  523. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  524. data_torch = torch.cat(
  525. (
  526. qkv_bias[:, 0, :].reshape((n_embed,)),
  527. qkv_bias[:, 1, :].reshape((n_embed,)),
  528. qkv_bias[:, 2, :].reshape((n_embed,)),
  529. ),
  530. dim=0,
  531. )
  532. logger.info("re-format attention.linear_qkv.bias")
  533. tensors.append((self.map_tensor_name(name), data_torch))
  534. if name == "word_embeddings.weight":
  535. assert self.tensor_names is not None
  536. # TODO: tie them at runtime, don't duplicate in the model file
  537. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  538. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  539. return tensors
  540. @Model.register("MPTForCausalLM")
  541. class MPTModel(Model):
  542. model_arch = gguf.MODEL_ARCH.MPT
  543. def set_vocab(self):
  544. try:
  545. self._set_vocab_gpt2()
  546. except Exception:
  547. # Fallback for SEA-LION model
  548. self._set_vocab_sentencepiece()
  549. self.gguf_writer.add_add_bos_token(False)
  550. self.gguf_writer.add_pad_token_id(3)
  551. self.gguf_writer.add_eos_token_id(1)
  552. self.gguf_writer.add_unk_token_id(0)
  553. def set_gguf_parameters(self):
  554. block_count = self.hparams["n_layers"]
  555. self.gguf_writer.add_name(self.dir_model.name)
  556. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  557. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  558. self.gguf_writer.add_block_count(block_count)
  559. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  560. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  561. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  562. self.gguf_writer.add_head_count_kv(kv_n_heads)
  563. self.gguf_writer.add_layer_norm_eps(1e-5)
  564. if self.hparams["attn_config"]["clip_qkv"] is not None:
  565. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  566. if self.hparams["attn_config"]["alibi"]:
  567. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  568. else:
  569. self.gguf_writer.add_max_alibi_bias(0.0)
  570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  571. del bid # unused
  572. if "scales" in name:
  573. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  574. new_name = new_name.replace("scales", "act.scales")
  575. else:
  576. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  577. return [(new_name, data_torch)]
  578. @Model.register("OrionForCausalLM")
  579. class OrionModel(Model):
  580. model_arch = gguf.MODEL_ARCH.ORION
  581. def set_vocab(self):
  582. self._set_vocab_sentencepiece()
  583. def set_gguf_parameters(self):
  584. block_count = self.hparams["num_hidden_layers"]
  585. head_count = self.hparams["num_attention_heads"]
  586. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  587. hf_repo = self.hparams.get("_name_or_path", "")
  588. ctx_length = 0
  589. if "max_sequence_length" in self.hparams:
  590. ctx_length = self.hparams["max_sequence_length"]
  591. elif "max_position_embeddings" in self.hparams:
  592. ctx_length = self.hparams["max_position_embeddings"]
  593. elif "model_max_length" in self.hparams:
  594. ctx_length = self.hparams["model_max_length"]
  595. else:
  596. raise ValueError("gguf: can not find ctx length parameter.")
  597. self.gguf_writer.add_file_type(self.ftype)
  598. self.gguf_writer.add_name(self.dir_model.name)
  599. self.gguf_writer.add_source_hf_repo(hf_repo)
  600. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  601. self.gguf_writer.add_context_length(ctx_length)
  602. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  603. self.gguf_writer.add_block_count(block_count)
  604. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  605. self.gguf_writer.add_head_count(head_count)
  606. self.gguf_writer.add_head_count_kv(head_count_kv)
  607. # note: config provides rms norm but it is actually layer norm
  608. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  609. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  610. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  611. class BaichuanModel(Model):
  612. model_arch = gguf.MODEL_ARCH.BAICHUAN
  613. def set_vocab(self):
  614. self._set_vocab_sentencepiece()
  615. def set_gguf_parameters(self):
  616. block_count = self.hparams["num_hidden_layers"]
  617. head_count = self.hparams["num_attention_heads"]
  618. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  619. hf_repo = self.hparams.get("_name_or_path", "")
  620. ctx_length = 0
  621. if "max_sequence_length" in self.hparams:
  622. ctx_length = self.hparams["max_sequence_length"]
  623. elif "max_position_embeddings" in self.hparams:
  624. ctx_length = self.hparams["max_position_embeddings"]
  625. elif "model_max_length" in self.hparams:
  626. ctx_length = self.hparams["model_max_length"]
  627. else:
  628. raise ValueError("gguf: can not find ctx length parameter.")
  629. self.gguf_writer.add_name(self.dir_model.name)
  630. self.gguf_writer.add_source_hf_repo(hf_repo)
  631. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  632. self.gguf_writer.add_context_length(ctx_length)
  633. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  634. self.gguf_writer.add_block_count(block_count)
  635. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  636. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  637. self.gguf_writer.add_head_count(head_count)
  638. self.gguf_writer.add_head_count_kv(head_count_kv)
  639. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  640. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  641. if self.hparams["rope_scaling"].get("type") == "linear":
  642. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  643. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  644. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  645. head_count = self.hparams["num_attention_heads"]
  646. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  647. tensors: list[tuple[str, Tensor]] = []
  648. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  649. logger.info(f"Unpacking and permuting layer {bid}")
  650. tensors = [
  651. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  652. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  653. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  654. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  655. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  656. self._reverse_hf_part(data_torch, 2)),
  657. ]
  658. else:
  659. tensors = [(self.map_tensor_name(name), data_torch)]
  660. return tensors
  661. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  662. if n_kv_head is not None and n_head != n_kv_head:
  663. n_head //= n_kv_head
  664. return (
  665. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  666. .swapaxes(1, 2)
  667. .reshape(weights.shape)
  668. )
  669. def _reverse_hf_permute_part(
  670. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  671. ) -> Tensor:
  672. r = weights.shape[0] // 3
  673. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  674. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  675. r = weights.shape[0] // 3
  676. return weights[r * n_part:r * n_part + r, ...]
  677. @Model.register("XverseForCausalLM")
  678. class XverseModel(Model):
  679. model_arch = gguf.MODEL_ARCH.XVERSE
  680. def set_vocab(self):
  681. assert (self.dir_model / "tokenizer.json").is_file()
  682. dir_model = self.dir_model
  683. hparams = self.hparams
  684. tokens: list[bytes] = []
  685. toktypes: list[int] = []
  686. from transformers import AutoTokenizer
  687. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  688. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  689. assert max(tokenizer.vocab.values()) < vocab_size
  690. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  691. added_vocab = tokenizer.get_added_vocab()
  692. for token_id in range(vocab_size):
  693. token_text = reverse_vocab[token_id].encode('utf-8')
  694. # replace "\x00" to string with length > 0
  695. if token_text == b"\x00":
  696. toktype = gguf.TokenType.BYTE # special
  697. token_text = f"<{token_text}>".encode('utf-8')
  698. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  699. toktype = gguf.TokenType.BYTE # special
  700. elif reverse_vocab[token_id] in added_vocab:
  701. if tokenizer.added_tokens_decoder[token_id].special:
  702. toktype = gguf.TokenType.CONTROL
  703. else:
  704. toktype = gguf.TokenType.USER_DEFINED
  705. else:
  706. toktype = gguf.TokenType.NORMAL
  707. tokens.append(token_text)
  708. toktypes.append(toktype)
  709. self.gguf_writer.add_tokenizer_model("llama")
  710. self.gguf_writer.add_tokenizer_pre("default")
  711. self.gguf_writer.add_token_list(tokens)
  712. self.gguf_writer.add_token_types(toktypes)
  713. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  714. special_vocab.add_to_gguf(self.gguf_writer)
  715. def set_gguf_parameters(self):
  716. block_count = self.hparams["num_hidden_layers"]
  717. head_count = self.hparams["num_attention_heads"]
  718. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  719. hf_repo = self.hparams.get("_name_or_path", "")
  720. ctx_length = 0
  721. if "max_sequence_length" in self.hparams:
  722. ctx_length = self.hparams["max_sequence_length"]
  723. elif "max_position_embeddings" in self.hparams:
  724. ctx_length = self.hparams["max_position_embeddings"]
  725. elif "model_max_length" in self.hparams:
  726. ctx_length = self.hparams["model_max_length"]
  727. else:
  728. raise ValueError("gguf: can not find ctx length parameter.")
  729. self.gguf_writer.add_name(self.dir_model.name)
  730. self.gguf_writer.add_source_hf_repo(hf_repo)
  731. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  732. self.gguf_writer.add_context_length(ctx_length)
  733. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  734. self.gguf_writer.add_block_count(block_count)
  735. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  736. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  737. self.gguf_writer.add_head_count(head_count)
  738. self.gguf_writer.add_head_count_kv(head_count_kv)
  739. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  740. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  741. if self.hparams["rope_scaling"].get("type") == "linear":
  742. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  743. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  744. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  745. del bid # unused
  746. head_count = self.hparams["num_attention_heads"]
  747. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  748. # HF models permute some of the tensors, so we need to undo that
  749. if name.endswith("q_proj.weight"):
  750. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  751. if name.endswith("k_proj.weight"):
  752. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  753. return [(self.map_tensor_name(name), data_torch)]
  754. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  755. if n_kv_head is not None and n_head != n_kv_head:
  756. n_head //= n_kv_head
  757. return (
  758. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  759. .swapaxes(1, 2)
  760. .reshape(weights.shape)
  761. )
  762. @Model.register("FalconForCausalLM", "RWForCausalLM")
  763. class FalconModel(Model):
  764. model_arch = gguf.MODEL_ARCH.FALCON
  765. def set_gguf_parameters(self):
  766. block_count = self.hparams.get("num_hidden_layers")
  767. if block_count is None:
  768. block_count = self.hparams["n_layer"] # old name
  769. n_head = self.hparams.get("num_attention_heads")
  770. if n_head is None:
  771. n_head = self.hparams["n_head"] # old name
  772. n_head_kv = self.hparams.get("num_kv_heads")
  773. if n_head_kv is None:
  774. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  775. self.gguf_writer.add_name("Falcon")
  776. self.gguf_writer.add_context_length(2048) # not in config.json
  777. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  778. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  779. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  780. self.gguf_writer.add_block_count(block_count)
  781. self.gguf_writer.add_head_count(n_head)
  782. self.gguf_writer.add_head_count_kv(n_head_kv)
  783. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  784. self.gguf_writer.add_file_type(self.ftype)
  785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  786. del bid # unused
  787. # QKV tensor transform
  788. # The original query_key_value tensor contains n_head_kv "kv groups",
  789. # each consisting of n_head/n_head_kv query weights followed by one key
  790. # and one value weight (shared by all query heads in the kv group).
  791. # This layout makes it a big pain to work with in GGML.
  792. # So we rearrange them here,, so that we have n_head query weights
  793. # followed by n_head_kv key weights followed by n_head_kv value weights,
  794. # in contiguous fashion.
  795. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  796. if "query_key_value" in name:
  797. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  798. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  799. head_dim = self.hparams["hidden_size"] // n_head
  800. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  801. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  802. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  803. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  804. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  805. return [(self.map_tensor_name(name), data_torch)]
  806. @Model.register("GPTBigCodeForCausalLM")
  807. class StarCoderModel(Model):
  808. model_arch = gguf.MODEL_ARCH.STARCODER
  809. def set_gguf_parameters(self):
  810. block_count = self.hparams["n_layer"]
  811. self.gguf_writer.add_name("StarCoder")
  812. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  813. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  814. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  815. self.gguf_writer.add_block_count(block_count)
  816. self.gguf_writer.add_head_count(self.hparams["n_head"])
  817. self.gguf_writer.add_head_count_kv(1)
  818. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  819. self.gguf_writer.add_file_type(self.ftype)
  820. @Model.register("GPTRefactForCausalLM")
  821. class RefactModel(Model):
  822. model_arch = gguf.MODEL_ARCH.REFACT
  823. def set_gguf_parameters(self):
  824. hidden_dim = self.hparams["n_embd"]
  825. inner_dim = 4 * hidden_dim
  826. hidden_dim = int(2 * inner_dim / 3)
  827. multiple_of = 256
  828. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  829. block_count = self.hparams["n_layer"]
  830. self.gguf_writer.add_name("Refact")
  831. # refact uses Alibi. So this is from config.json which might be used by training.
  832. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  833. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  834. self.gguf_writer.add_feed_forward_length(ff_dim)
  835. self.gguf_writer.add_block_count(block_count)
  836. self.gguf_writer.add_head_count(self.hparams["n_head"])
  837. self.gguf_writer.add_head_count_kv(1)
  838. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  839. self.gguf_writer.add_file_type(self.ftype)
  840. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  841. hidden_dim = self.hparams["n_embd"]
  842. inner_dim = 4 * hidden_dim
  843. hidden_dim = int(2 * inner_dim / 3)
  844. multiple_of = 256
  845. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  846. n_head = self.hparams["n_head"]
  847. n_head_kv = 1
  848. head_dim = self.hparams["n_embd"] // n_head
  849. tensors: list[tuple[str, Tensor]] = []
  850. if bid is not None:
  851. if name == f"transformer.h.{bid}.attn.kv.weight":
  852. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  853. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  854. elif name == f"transformer.h.{bid}.attn.q.weight":
  855. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  856. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  857. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  858. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  859. if len(tensors) == 0:
  860. tensors.append((self.map_tensor_name(name), data_torch))
  861. return tensors
  862. @Model.register("PersimmonForCausalLM")
  863. class PersimmonModel(Model):
  864. model_arch = gguf.MODEL_ARCH.PERSIMMON
  865. def set_gguf_parameters(self):
  866. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  867. head_count = self.hparams["num_attention_heads"]
  868. head_count_kv = head_count
  869. hidden_size = self.hparams["hidden_size"]
  870. self.gguf_writer.add_name('persimmon-8b-chat')
  871. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  872. self.gguf_writer.add_embedding_length(hidden_size)
  873. self.gguf_writer.add_block_count(block_count)
  874. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  875. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  876. # than the head size?
  877. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  878. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  879. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  880. self.gguf_writer.add_head_count(head_count)
  881. self.gguf_writer.add_head_count_kv(head_count_kv)
  882. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  883. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  884. def set_vocab(self):
  885. self._set_vocab_sentencepiece()
  886. # self.gguf_writer.add_bos_token_id(71013)
  887. # self.gguf_writer.add_eos_token_id(71013)
  888. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  889. del name, new_name, bid, n_dims # unused
  890. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  891. return True
  892. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  893. class StableLMModel(Model):
  894. model_arch = gguf.MODEL_ARCH.STABLELM
  895. def set_vocab(self):
  896. if (self.dir_model / "tokenizer.json").is_file():
  897. self._set_vocab_gpt2()
  898. else:
  899. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  900. self._set_vocab_qwen()
  901. def set_gguf_parameters(self):
  902. hparams = self.hparams
  903. block_count = hparams["num_hidden_layers"]
  904. self.gguf_writer.add_name(self.dir_model.name)
  905. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  906. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  907. self.gguf_writer.add_block_count(block_count)
  908. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  909. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  910. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  911. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  912. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  913. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  914. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  915. _q_norms: list[dict[str, Tensor]] | None = None
  916. _k_norms: list[dict[str, Tensor]] | None = None
  917. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  918. n_head = self.hparams["num_attention_heads"]
  919. n_kv_head = self.hparams["num_key_value_heads"]
  920. if name.find("q_layernorm.norms") != -1:
  921. assert bid is not None
  922. if self._q_norms is None:
  923. self._q_norms = [{} for _ in range(self.block_count)]
  924. self._q_norms[bid][name] = data_torch
  925. if len(self._q_norms[bid]) >= n_head:
  926. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  927. else:
  928. return []
  929. if name.find("k_layernorm.norms") != -1:
  930. assert bid is not None
  931. if self._k_norms is None:
  932. self._k_norms = [{} for _ in range(self.block_count)]
  933. self._k_norms[bid][name] = data_torch
  934. if len(self._k_norms[bid]) >= n_kv_head:
  935. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  936. else:
  937. return []
  938. return [(self.map_tensor_name(name), data_torch)]
  939. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  940. datas: list[Tensor] = []
  941. # extract the norms in order
  942. for xid in range(n_head):
  943. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  944. datas.append(norms[ename])
  945. del norms[ename]
  946. data_torch = torch.stack(datas, dim=0)
  947. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  948. new_name = self.map_tensor_name(merged_name)
  949. return [(new_name, data_torch)]
  950. def write_tensors(self):
  951. super().write_tensors()
  952. if self._q_norms is not None or self._k_norms is not None:
  953. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  954. norms = (
  955. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  956. ) + (
  957. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  958. )
  959. if len(norms) > 0:
  960. raise ValueError(f"Unprocessed norms: {norms}")
  961. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  962. class LlamaModel(Model):
  963. model_arch = gguf.MODEL_ARCH.LLAMA
  964. def set_vocab(self):
  965. try:
  966. self. _set_vocab_sentencepiece()
  967. except FileNotFoundError:
  968. try:
  969. self._set_vocab_llama_hf()
  970. except (FileNotFoundError, TypeError):
  971. # Llama 3
  972. self._set_vocab_gpt2()
  973. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  974. if self.hparams.get("vocab_size", 32000) == 32016:
  975. special_vocab = gguf.SpecialVocab(
  976. self.dir_model, load_merges=False,
  977. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  978. )
  979. special_vocab._set_special_token("prefix", 32007)
  980. special_vocab._set_special_token("suffix", 32008)
  981. special_vocab._set_special_token("middle", 32009)
  982. special_vocab._set_special_token("eot", 32010)
  983. special_vocab.add_to_gguf(self.gguf_writer)
  984. def set_gguf_parameters(self):
  985. super().set_gguf_parameters()
  986. hparams = self.hparams
  987. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  988. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  989. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  990. if self.hparams["rope_scaling"].get("type") == "linear":
  991. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  992. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  993. @staticmethod
  994. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  995. if n_head_kv is not None and n_head != n_head_kv:
  996. n_head = n_head_kv
  997. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  998. .swapaxes(1, 2)
  999. .reshape(weights.shape))
  1000. _experts: list[dict[str, Tensor]] | None = None
  1001. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1002. n_head = self.hparams["num_attention_heads"]
  1003. n_kv_head = self.hparams.get("num_key_value_heads")
  1004. if name.endswith("q_proj.weight"):
  1005. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1006. if name.endswith("k_proj.weight"):
  1007. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1008. # process the experts separately
  1009. if name.find("block_sparse_moe.experts") != -1:
  1010. n_experts = self.hparams["num_local_experts"]
  1011. assert bid is not None
  1012. if self._experts is None:
  1013. self._experts = [{} for _ in range(self.block_count)]
  1014. self._experts[bid][name] = data_torch
  1015. if len(self._experts[bid]) >= n_experts * 3:
  1016. tensors: list[tuple[str, Tensor]] = []
  1017. # merge the experts into a single 3d tensor
  1018. for wid in ["w1", "w2", "w3"]:
  1019. datas: list[Tensor] = []
  1020. for xid in range(n_experts):
  1021. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1022. datas.append(self._experts[bid][ename])
  1023. del self._experts[bid][ename]
  1024. data_torch = torch.stack(datas, dim=0)
  1025. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1026. new_name = self.map_tensor_name(merged_name)
  1027. tensors.append((new_name, data_torch))
  1028. return tensors
  1029. else:
  1030. return []
  1031. return [(self.map_tensor_name(name), data_torch)]
  1032. def write_tensors(self):
  1033. super().write_tensors()
  1034. if self._experts is not None:
  1035. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1036. experts = [k for d in self._experts for k in d.keys()]
  1037. if len(experts) > 0:
  1038. raise ValueError(f"Unprocessed experts: {experts}")
  1039. @Model.register("GrokForCausalLM")
  1040. class GrokModel(Model):
  1041. model_arch = gguf.MODEL_ARCH.GROK
  1042. def set_vocab(self):
  1043. self._set_vocab_sentencepiece()
  1044. def __init__(self, *args, **kwargs):
  1045. super().__init__(*args, **kwargs)
  1046. def set_gguf_parameters(self):
  1047. super().set_gguf_parameters()
  1048. self.gguf_writer.add_name("Grok")
  1049. _experts: list[dict[str, Tensor]] | None = None
  1050. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1051. # process the experts separately
  1052. if name.find(".moe.") != -1:
  1053. n_experts = self.hparams["num_local_experts"]
  1054. assert bid is not None
  1055. if self._experts is None:
  1056. self._experts = [{} for _ in range(self.block_count)]
  1057. self._experts[bid][name] = data_torch
  1058. if len(self._experts[bid]) >= n_experts * 3:
  1059. tensors: list[tuple[str, Tensor]] = []
  1060. # merge the experts into a single 3d tensor
  1061. for wid in ["linear", "linear_1", "linear_v"]:
  1062. datas: list[Tensor] = []
  1063. for xid in range(n_experts):
  1064. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1065. datas.append(self._experts[bid][ename])
  1066. del self._experts[bid][ename]
  1067. data_torch = torch.stack(datas, dim=0)
  1068. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1069. new_name = self.map_tensor_name(merged_name)
  1070. tensors.append((new_name, data_torch))
  1071. return tensors
  1072. else:
  1073. return []
  1074. return [(self.map_tensor_name(name), data_torch)]
  1075. @Model.register("DbrxForCausalLM")
  1076. class DbrxModel(Model):
  1077. model_arch = gguf.MODEL_ARCH.DBRX
  1078. def set_gguf_parameters(self):
  1079. ffn_config = self.hparams["ffn_config"]
  1080. attn_config = self.hparams["attn_config"]
  1081. self.gguf_writer.add_name(self.hparams["model_type"])
  1082. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1083. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1084. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1085. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1086. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1087. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1088. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1089. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1090. self.gguf_writer.add_file_type(self.ftype)
  1091. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1092. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1093. self.gguf_writer.add_layer_norm_eps(1e-5)
  1094. self.gguf_writer.add_file_type(self.ftype)
  1095. logger.info(f"gguf: file type = {self.ftype}")
  1096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1097. del bid # unused
  1098. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1099. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1100. n_embd = self.hparams["d_model"]
  1101. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1102. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1103. # But llama.cpp moe graph works differently
  1104. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1105. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1106. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1107. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1108. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1109. experts = False
  1110. for exp_tensor_name in exp_tensor_names.keys():
  1111. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1112. experts = True
  1113. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1114. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1115. data_torch = data_torch.permute(*permute_tensor)
  1116. break
  1117. # map tensor names
  1118. # In MoE models the ffn tensors are typically most of the model weights,
  1119. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1120. # Every other model has the weight names ending in .weight,
  1121. # let's assume that is the convention which is not the case for dbrx:
  1122. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1123. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1124. return [(new_name, data_torch)]
  1125. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1126. del name, new_name, bid # unused
  1127. return n_dims > 1
  1128. @Model.register("MiniCPMForCausalLM")
  1129. class MiniCPMModel(Model):
  1130. model_arch = gguf.MODEL_ARCH.MINICPM
  1131. def set_gguf_parameters(self):
  1132. block_count = self.hparams["num_hidden_layers"]
  1133. self.gguf_writer.add_name("MiniCPM")
  1134. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1135. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1136. self.gguf_writer.add_block_count(block_count)
  1137. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1138. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1139. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1140. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1141. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1142. self.gguf_writer.add_file_type(self.ftype)
  1143. def set_vocab(self):
  1144. self._set_vocab_llama_hf()
  1145. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1146. if n_kv_head is not None and n_head != n_kv_head:
  1147. n_head //= n_kv_head
  1148. return (
  1149. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1150. .swapaxes(1, 2)
  1151. .reshape(weights.shape)
  1152. )
  1153. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1154. del bid # unused
  1155. n_head = self.hparams["num_attention_heads"]
  1156. n_kv_head = self.hparams.get("num_key_value_heads")
  1157. # HF models permute some of the tensors, so we need to undo that
  1158. if name.endswith(("q_proj.weight")):
  1159. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1160. if name.endswith(("k_proj.weight")):
  1161. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1162. return [(self.map_tensor_name(name), data_torch)]
  1163. @Model.register("QWenLMHeadModel")
  1164. class QwenModel(Model):
  1165. model_arch = gguf.MODEL_ARCH.QWEN
  1166. @staticmethod
  1167. def token_bytes_to_string(b):
  1168. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1169. byte_encoder = bytes_to_unicode()
  1170. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1171. @staticmethod
  1172. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1173. parts = [bytes([b]) for b in token]
  1174. while True:
  1175. min_idx = None
  1176. min_rank = None
  1177. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1178. rank = mergeable_ranks.get(pair[0] + pair[1])
  1179. if rank is not None and (min_rank is None or rank < min_rank):
  1180. min_idx = i
  1181. min_rank = rank
  1182. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1183. break
  1184. assert min_idx is not None
  1185. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1186. return parts
  1187. def set_vocab(self):
  1188. self._set_vocab_qwen()
  1189. def set_gguf_parameters(self):
  1190. self.gguf_writer.add_name("Qwen")
  1191. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1192. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1193. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1194. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1195. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1196. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1197. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1198. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1199. @Model.register("Qwen2ForCausalLM")
  1200. class Qwen2Model(Model):
  1201. model_arch = gguf.MODEL_ARCH.QWEN2
  1202. def set_vocab(self):
  1203. try:
  1204. self._set_vocab_sentencepiece()
  1205. except FileNotFoundError:
  1206. self._set_vocab_gpt2()
  1207. @Model.register("Qwen2MoeForCausalLM")
  1208. class Qwen2MoeModel(Model):
  1209. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1210. def set_gguf_parameters(self):
  1211. super().set_gguf_parameters()
  1212. if (n_experts := self.hparams.get("num_experts")) is not None:
  1213. self.gguf_writer.add_expert_count(n_experts)
  1214. _experts: list[dict[str, Tensor]] | None = None
  1215. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1216. # process the experts separately
  1217. if name.find("experts") != -1:
  1218. n_experts = self.hparams["num_experts"]
  1219. assert bid is not None
  1220. if self._experts is None:
  1221. self._experts = [{} for _ in range(self.block_count)]
  1222. self._experts[bid][name] = data_torch
  1223. if len(self._experts[bid]) >= n_experts * 3:
  1224. tensors: list[tuple[str, Tensor]] = []
  1225. # merge the experts into a single 3d tensor
  1226. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1227. datas: list[Tensor] = []
  1228. for xid in range(n_experts):
  1229. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1230. datas.append(self._experts[bid][ename])
  1231. del self._experts[bid][ename]
  1232. data_torch = torch.stack(datas, dim=0)
  1233. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1234. new_name = self.map_tensor_name(merged_name)
  1235. tensors.append((new_name, data_torch))
  1236. return tensors
  1237. else:
  1238. return []
  1239. return [(self.map_tensor_name(name), data_torch)]
  1240. def write_tensors(self):
  1241. super().write_tensors()
  1242. if self._experts is not None:
  1243. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1244. experts = [k for d in self._experts for k in d.keys()]
  1245. if len(experts) > 0:
  1246. raise ValueError(f"Unprocessed experts: {experts}")
  1247. @Model.register("GPT2LMHeadModel")
  1248. class GPT2Model(Model):
  1249. model_arch = gguf.MODEL_ARCH.GPT2
  1250. def set_gguf_parameters(self):
  1251. self.gguf_writer.add_name(self.dir_model.name)
  1252. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1253. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1254. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1255. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1256. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1257. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1258. self.gguf_writer.add_file_type(self.ftype)
  1259. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1260. del bid # unused
  1261. tensors: list[tuple[str, Tensor]] = []
  1262. # we don't need these
  1263. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1264. return tensors
  1265. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1266. data_torch = data_torch.transpose(1, 0)
  1267. new_name = self.map_tensor_name(name)
  1268. tensors.append((new_name, data_torch))
  1269. # note: GPT2 output is tied to (same as) wte in original model
  1270. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1271. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1272. return tensors
  1273. @Model.register("PhiForCausalLM")
  1274. class Phi2Model(Model):
  1275. model_arch = gguf.MODEL_ARCH.PHI2
  1276. def set_gguf_parameters(self):
  1277. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1278. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1279. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1280. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1281. self.gguf_writer.add_name("Phi2")
  1282. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1283. self.gguf_writer.add_embedding_length(n_embd)
  1284. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1285. self.gguf_writer.add_block_count(block_count)
  1286. self.gguf_writer.add_head_count(n_head)
  1287. self.gguf_writer.add_head_count_kv(n_head)
  1288. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1289. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1290. self.gguf_writer.add_file_type(self.ftype)
  1291. self.gguf_writer.add_add_bos_token(False)
  1292. @Model.register("Phi3ForCausalLM")
  1293. class Phi3MiniModel(Model):
  1294. model_arch = gguf.MODEL_ARCH.PHI3
  1295. def set_vocab(self):
  1296. from sentencepiece import SentencePieceProcessor
  1297. tokenizer_path = self.dir_model / 'tokenizer.model'
  1298. if not tokenizer_path.is_file():
  1299. raise ValueError(f'Error: Missing {tokenizer_path}')
  1300. tokenizer = SentencePieceProcessor()
  1301. tokenizer.LoadFromFile(str(tokenizer_path))
  1302. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1303. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1304. scores: list[float] = [-10000.0] * vocab_size
  1305. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1306. for token_id in range(tokenizer.vocab_size()):
  1307. piece = tokenizer.IdToPiece(token_id)
  1308. text = piece.encode("utf-8")
  1309. score = tokenizer.GetScore(token_id)
  1310. toktype = SentencePieceTokenTypes.NORMAL
  1311. if tokenizer.IsUnknown(token_id):
  1312. toktype = SentencePieceTokenTypes.UNKNOWN
  1313. elif tokenizer.IsControl(token_id):
  1314. toktype = SentencePieceTokenTypes.CONTROL
  1315. elif tokenizer.IsUnused(token_id):
  1316. toktype = SentencePieceTokenTypes.UNUSED
  1317. elif tokenizer.IsByte(token_id):
  1318. toktype = SentencePieceTokenTypes.BYTE
  1319. tokens[token_id] = text
  1320. scores[token_id] = score
  1321. toktypes[token_id] = toktype
  1322. added_tokens_file = self.dir_model / 'added_tokens.json'
  1323. if added_tokens_file.is_file():
  1324. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1325. added_tokens_json = json.load(f)
  1326. for key in added_tokens_json:
  1327. token_id = added_tokens_json[key]
  1328. if (token_id >= vocab_size):
  1329. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1330. continue
  1331. tokens[token_id] = key.encode("utf-8")
  1332. scores[token_id] = -1000.0
  1333. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1334. self.gguf_writer.add_tokenizer_model("llama")
  1335. self.gguf_writer.add_tokenizer_pre("default")
  1336. self.gguf_writer.add_token_list(tokens)
  1337. self.gguf_writer.add_token_scores(scores)
  1338. self.gguf_writer.add_token_types(toktypes)
  1339. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1340. special_vocab.add_to_gguf(self.gguf_writer)
  1341. def set_gguf_parameters(self):
  1342. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1343. rot_pct = 1.0
  1344. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1345. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1346. rms_eps = self.find_hparam(["rms_norm_eps"])
  1347. self.gguf_writer.add_name("Phi3")
  1348. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1349. self.gguf_writer.add_embedding_length(n_embd)
  1350. self.gguf_writer.add_feed_forward_length(8192)
  1351. self.gguf_writer.add_block_count(block_count)
  1352. self.gguf_writer.add_head_count(n_head)
  1353. self.gguf_writer.add_head_count_kv(n_head)
  1354. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1355. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1356. self.gguf_writer.add_file_type(self.ftype)
  1357. @Model.register("PlamoForCausalLM")
  1358. class PlamoModel(Model):
  1359. model_arch = gguf.MODEL_ARCH.PLAMO
  1360. def set_vocab(self):
  1361. self._set_vocab_sentencepiece()
  1362. def set_gguf_parameters(self):
  1363. hparams = self.hparams
  1364. block_count = hparams["num_hidden_layers"]
  1365. self.gguf_writer.add_name("PLaMo")
  1366. self.gguf_writer.add_context_length(4096) # not in config.json
  1367. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1368. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1369. self.gguf_writer.add_block_count(block_count)
  1370. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1371. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1372. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1373. def shuffle_attn_q_weight(self, data_torch):
  1374. assert data_torch.size() == (5120, 5120)
  1375. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1376. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1377. data_torch = torch.reshape(data_torch, (5120, 5120))
  1378. return data_torch
  1379. def shuffle_attn_output_weight(self, data_torch):
  1380. assert data_torch.size() == (5120, 5120)
  1381. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1382. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1383. data_torch = torch.reshape(data_torch, (5120, 5120))
  1384. return data_torch
  1385. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1386. del bid # unused
  1387. new_name = self.map_tensor_name(name)
  1388. # shuffle for broadcasting of gqa in ggml_mul_mat
  1389. if new_name.endswith("attn_q.weight"):
  1390. data_torch = self.shuffle_attn_q_weight(data_torch)
  1391. elif new_name.endswith("attn_output.weight"):
  1392. data_torch = self.shuffle_attn_output_weight(data_torch)
  1393. return [(new_name, data_torch)]
  1394. @Model.register("CodeShellForCausalLM")
  1395. class CodeShellModel(Model):
  1396. model_arch = gguf.MODEL_ARCH.CODESHELL
  1397. def set_gguf_parameters(self):
  1398. block_count = self.hparams["n_layer"]
  1399. self.gguf_writer.add_name("CodeShell")
  1400. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1401. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1402. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1403. self.gguf_writer.add_block_count(block_count)
  1404. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1405. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1406. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1407. self.gguf_writer.add_file_type(self.ftype)
  1408. self.gguf_writer.add_rope_freq_base(10000.0)
  1409. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1410. self.gguf_writer.add_rope_scaling_factor(1.0)
  1411. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1412. del bid # unused
  1413. new_name = self.map_tensor_name(name)
  1414. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1415. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1416. assert self.tensor_names is not None
  1417. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1418. # copy tok_embd.weight to output.weight
  1419. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1420. return tensors
  1421. @Model.register("InternLM2ForCausalLM")
  1422. class InternLM2Model(Model):
  1423. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1424. def set_vocab(self):
  1425. # (TODO): Is there a better way?
  1426. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1427. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1428. # recognized as an empty string in C++.
  1429. from sentencepiece import SentencePieceProcessor
  1430. from sentencepiece import sentencepiece_model_pb2 as model
  1431. tokenizer_path = self.dir_model / 'tokenizer.model'
  1432. tokens: list[bytes] = []
  1433. scores: list[float] = []
  1434. toktypes: list[int] = []
  1435. if not tokenizer_path.is_file():
  1436. logger.error(f'Error: Missing {tokenizer_path}')
  1437. sys.exit(1)
  1438. sentencepiece_model = model.ModelProto()
  1439. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1440. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1441. tokenizer = SentencePieceProcessor()
  1442. tokenizer.LoadFromFile(str(tokenizer_path))
  1443. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1444. for token_id in range(vocab_size):
  1445. piece = tokenizer.IdToPiece(token_id)
  1446. text = piece.encode("utf-8")
  1447. score = tokenizer.GetScore(token_id)
  1448. if text == b"\x00":
  1449. # (TODO): fixme
  1450. # Hack here and replace the \x00 characters.
  1451. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1452. text = "🐉".encode("utf-8")
  1453. toktype = SentencePieceTokenTypes.NORMAL
  1454. if tokenizer.IsUnknown(token_id):
  1455. toktype = SentencePieceTokenTypes.UNKNOWN
  1456. elif tokenizer.IsControl(token_id):
  1457. toktype = SentencePieceTokenTypes.CONTROL
  1458. elif tokenizer.IsUnused(token_id):
  1459. toktype = SentencePieceTokenTypes.UNUSED
  1460. elif tokenizer.IsByte(token_id):
  1461. toktype = SentencePieceTokenTypes.BYTE
  1462. tokens.append(text)
  1463. scores.append(score)
  1464. toktypes.append(toktype)
  1465. added_tokens_file = self.dir_model / 'added_tokens.json'
  1466. if added_tokens_file.is_file():
  1467. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1468. added_tokens_json = json.load(f)
  1469. for key in added_tokens_json:
  1470. tokens.append(key.encode("utf-8"))
  1471. scores.append(-1000.0)
  1472. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1473. self.gguf_writer.add_tokenizer_model("llama")
  1474. self.gguf_writer.add_tokenizer_pre("default")
  1475. self.gguf_writer.add_token_list(tokens)
  1476. self.gguf_writer.add_token_scores(scores)
  1477. self.gguf_writer.add_token_types(toktypes)
  1478. self.gguf_writer.add_add_space_prefix(add_prefix)
  1479. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1480. old_eos = special_vocab.special_token_ids["eos"]
  1481. if "chat" in os.path.basename(self.dir_model.absolute()):
  1482. # For the chat model, we replace the eos with '<|im_end|>'.
  1483. # TODO: this is a hack, should be fixed
  1484. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1485. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1486. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1487. in chat mode so that the conversation can end normally.")
  1488. special_vocab.add_to_gguf(self.gguf_writer)
  1489. def _try_get_sft_eos(self, tokenizer):
  1490. unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
  1491. im_end_list = tokenizer.Encode('<|im_end|>')
  1492. eos_token = None
  1493. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1494. if len(unused_145_list) == 1:
  1495. eos_token = unused_145_list[0]
  1496. if len(im_end_list) == 1:
  1497. eos_token = im_end_list[0]
  1498. assert eos_token
  1499. return eos_token
  1500. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1501. if n_head_kv is not None and n_head != n_head_kv:
  1502. n_head = n_head_kv
  1503. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1504. .swapaxes(1, 2)
  1505. .reshape(weights.shape))
  1506. def set_gguf_parameters(self):
  1507. self.gguf_writer.add_name("InternLM2")
  1508. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1509. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1510. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1511. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1512. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1513. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1514. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1515. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1516. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1517. num_heads = self.hparams["num_attention_heads"]
  1518. num_kv_heads = self.hparams["num_key_value_heads"]
  1519. hidden_size = self.hparams["hidden_size"]
  1520. q_per_kv = num_heads // num_kv_heads
  1521. head_dim = hidden_size // num_heads
  1522. num_groups = num_heads // q_per_kv
  1523. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1524. if re.match(qkv_pattern, name):
  1525. bid = re.findall(qkv_pattern, name)[0]
  1526. qkv = data_torch
  1527. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1528. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1529. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1530. # The model weights of q and k equire additional reshape.
  1531. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1532. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1533. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1534. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1535. # v = rearrange(v, " o g n i -> o (g n i)").T
  1536. v = v.reshape((v.shape[0], -1)).T
  1537. return [
  1538. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1539. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1540. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1541. ]
  1542. else:
  1543. return [(self.map_tensor_name(name), data_torch)]
  1544. @Model.register("BertModel", "CamembertModel")
  1545. class BertModel(Model):
  1546. model_arch = gguf.MODEL_ARCH.BERT
  1547. def __init__(self, *args, **kwargs):
  1548. super().__init__(*args, **kwargs)
  1549. self.vocab_size = None
  1550. def set_gguf_parameters(self):
  1551. super().set_gguf_parameters()
  1552. self.gguf_writer.add_causal_attention(False)
  1553. # get pooling path
  1554. pooling_path = None
  1555. module_path = self.dir_model / "modules.json"
  1556. if module_path.is_file():
  1557. with open(module_path, encoding="utf-8") as f:
  1558. modules = json.load(f)
  1559. for mod in modules:
  1560. if mod["type"] == "sentence_transformers.models.Pooling":
  1561. pooling_path = mod["path"]
  1562. break
  1563. # get pooling type
  1564. if pooling_path is not None:
  1565. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1566. pooling = json.load(f)
  1567. if pooling["pooling_mode_mean_tokens"]:
  1568. pooling_type = gguf.PoolingType.MEAN
  1569. elif pooling["pooling_mode_cls_token"]:
  1570. pooling_type = gguf.PoolingType.CLS
  1571. else:
  1572. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1573. self.gguf_writer.add_pooling_type(pooling_type)
  1574. def set_vocab(self):
  1575. tokens, toktypes, tokpre = self.get_vocab_base()
  1576. self.vocab_size = len(tokens)
  1577. # we need this to validate the size of the token_type embeddings
  1578. # though currently we are passing all zeros to the token_type embeddings
  1579. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1580. # convert to phantom space vocab
  1581. def phantom(tok):
  1582. if tok.startswith("[") and tok.endswith("]"):
  1583. return tok
  1584. if tok.startswith("##"):
  1585. return tok[2:]
  1586. return "\u2581" + tok
  1587. tokens = list(map(phantom, tokens))
  1588. # add vocab to gguf
  1589. self.gguf_writer.add_tokenizer_model("bert")
  1590. self.gguf_writer.add_tokenizer_pre(tokpre)
  1591. self.gguf_writer.add_token_list(tokens)
  1592. self.gguf_writer.add_token_types(toktypes)
  1593. # handle special tokens
  1594. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1595. special_vocab.add_to_gguf(self.gguf_writer)
  1596. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1597. del bid # unused
  1598. # we are only using BERT for embeddings so we don't need the pooling layer
  1599. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1600. return [] # we don't need these
  1601. return [(self.map_tensor_name(name), data_torch)]
  1602. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1603. del new_name, bid, n_dims # unused
  1604. # not used with get_rows, must be F32
  1605. return name == "embeddings.token_type_embeddings.weight"
  1606. @Model.register("NomicBertModel")
  1607. class NomicBertModel(BertModel):
  1608. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1609. def __init__(self, *args, **kwargs):
  1610. super().__init__(*args, **kwargs)
  1611. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1612. self.hparams["n_ctx"] = 2048
  1613. # SwigLU activation
  1614. assert self.hparams["activation_function"] == "swiglu"
  1615. # this doesn't do anything in the HF version
  1616. assert self.hparams["causal"] is False
  1617. # no bias tensors
  1618. assert self.hparams["qkv_proj_bias"] is False
  1619. assert self.hparams["mlp_fc1_bias"] is False
  1620. assert self.hparams["mlp_fc2_bias"] is False
  1621. # norm at end of layer
  1622. assert self.hparams["prenorm"] is False
  1623. # standard RoPE
  1624. assert self.hparams["rotary_emb_fraction"] == 1.0
  1625. assert self.hparams["rotary_emb_interleaved"] is False
  1626. assert self.hparams["rotary_emb_scale_base"] is None
  1627. def set_gguf_parameters(self):
  1628. super().set_gguf_parameters()
  1629. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1630. @Model.register("GemmaForCausalLM")
  1631. class GemmaModel(Model):
  1632. model_arch = gguf.MODEL_ARCH.GEMMA
  1633. def set_vocab(self):
  1634. self._set_vocab_sentencepiece()
  1635. # TODO: these special tokens should be exported only for the CodeGemma family
  1636. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1637. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1638. special_vocab._set_special_token("prefix", 67)
  1639. special_vocab._set_special_token("suffix", 69)
  1640. special_vocab._set_special_token("middle", 68)
  1641. special_vocab._set_special_token("fsep", 70)
  1642. special_vocab._set_special_token("eot", 107)
  1643. special_vocab.add_to_gguf(self.gguf_writer)
  1644. def set_gguf_parameters(self):
  1645. hparams = self.hparams
  1646. block_count = hparams["num_hidden_layers"]
  1647. self.gguf_writer.add_name(self.dir_model.name)
  1648. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1649. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1650. self.gguf_writer.add_block_count(block_count)
  1651. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1652. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1653. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1654. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1655. self.gguf_writer.add_key_length(hparams["head_dim"])
  1656. self.gguf_writer.add_value_length(hparams["head_dim"])
  1657. self.gguf_writer.add_file_type(self.ftype)
  1658. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1659. del bid # unused
  1660. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1661. # To prevent errors, skip loading lm_head.weight.
  1662. if name == "lm_head.weight":
  1663. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1664. return []
  1665. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1666. if name.endswith("norm.weight"):
  1667. data_torch = data_torch + 1
  1668. return [(self.map_tensor_name(name), data_torch)]
  1669. @Model.register("Starcoder2ForCausalLM")
  1670. class StarCoder2Model(Model):
  1671. model_arch = gguf.MODEL_ARCH.STARCODER2
  1672. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1673. class MambaModel(Model):
  1674. model_arch = gguf.MODEL_ARCH.MAMBA
  1675. def set_vocab(self):
  1676. vocab_size = self.hparams["vocab_size"]
  1677. # Round vocab size to next multiple of 8
  1678. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1679. # pad using ceiling division
  1680. # ref: https://stackoverflow.com/a/17511341/22827863
  1681. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1682. self.hparams["vocab_size"] = vocab_size
  1683. if (self.dir_model / "tokenizer.json").is_file():
  1684. self._set_vocab_gpt2()
  1685. elif (self.dir_model / "tokenizer.model").is_file():
  1686. self._set_vocab_sentencepiece()
  1687. else:
  1688. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1689. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1690. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1691. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1692. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1693. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
  1694. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1695. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
  1696. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1697. assert field
  1698. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1699. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1700. assert field
  1701. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1702. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1703. assert field
  1704. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1705. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1706. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
  1707. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1708. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
  1709. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1710. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
  1711. field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
  1712. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
  1713. def set_gguf_parameters(self):
  1714. d_model = self.find_hparam(["hidden_size", "d_model"])
  1715. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1716. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1717. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1718. # ceiling division
  1719. # ref: https://stackoverflow.com/a/17511341/22827863
  1720. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1721. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1722. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1723. # Fail early for models which don't have a block expansion factor of 2
  1724. assert d_inner == 2 * d_model
  1725. self.gguf_writer.add_name(self.dir_model.name)
  1726. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1727. self.gguf_writer.add_embedding_length(d_model)
  1728. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1729. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1730. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1731. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1732. self.gguf_writer.add_ssm_inner_size(d_inner)
  1733. self.gguf_writer.add_ssm_state_size(d_state)
  1734. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1735. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1736. self.gguf_writer.add_file_type(self.ftype)
  1737. _tok_embd = None
  1738. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1739. del bid # unused
  1740. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  1741. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  1742. new_name = self.map_tensor_name(name)
  1743. if name.endswith(".A_log"):
  1744. logger.debug("A_log --> A ==> " + new_name)
  1745. data_torch = -torch.exp(data_torch)
  1746. # assuming token_embd.weight is seen before output.weight
  1747. if self._tok_embd is not None and new_name == output_name:
  1748. if torch.equal(self._tok_embd, data_torch):
  1749. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1750. return []
  1751. elif new_name == tok_embd_name:
  1752. self._tok_embd = data_torch
  1753. return [(new_name, data_torch)]
  1754. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1755. del n_dims # unused
  1756. return bid is not None and new_name in (
  1757. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  1758. gguf.MODEL_TENSOR.SSM_CONV1D,
  1759. gguf.MODEL_TENSOR.SSM_X,
  1760. gguf.MODEL_TENSOR.SSM_DT,
  1761. gguf.MODEL_TENSOR.SSM_A,
  1762. gguf.MODEL_TENSOR.SSM_D,
  1763. ]
  1764. )
  1765. @Model.register("CohereForCausalLM")
  1766. class CommandR2Model(Model):
  1767. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1768. def __init__(self, *args, **kwargs):
  1769. super().__init__(*args, **kwargs)
  1770. # max_position_embeddings = 8192 in config.json but model was actually
  1771. # trained on 128k context length
  1772. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1773. def set_gguf_parameters(self):
  1774. super().set_gguf_parameters()
  1775. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1776. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1777. @Model.register("OlmoForCausalLM")
  1778. @Model.register("OLMoForCausalLM")
  1779. class OlmoModel(Model):
  1780. model_arch = gguf.MODEL_ARCH.OLMO
  1781. def set_gguf_parameters(self):
  1782. super().set_gguf_parameters()
  1783. self.gguf_writer.add_layer_norm_eps(1e-5)
  1784. clip_qkv = self.hparams.get("clip_qkv")
  1785. if clip_qkv is not None:
  1786. self.gguf_writer.add_clamp_kqv(clip_qkv)
  1787. # Same as super class, but permuting q_proj, k_proj
  1788. # Copied from: LlamaModel
  1789. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1790. del bid # unused
  1791. n_head = self.hparams["num_attention_heads"]
  1792. n_kv_head = self.hparams.get("num_key_value_heads")
  1793. if name.endswith("q_proj.weight"):
  1794. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1795. if name.endswith("k_proj.weight"):
  1796. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1797. return [(self.map_tensor_name(name), data_torch)]
  1798. ###### CONVERSION LOGIC ######
  1799. # tree of lazy tensors
  1800. class LazyTorchTensor:
  1801. _meta: Tensor
  1802. _data: Tensor | None
  1803. _args: tuple
  1804. _func: Callable[[tuple], Tensor] | None
  1805. def __init__(self, *, meta: Tensor, data: Tensor | None = None, args: tuple = (), func: Callable[[tuple], Tensor] | None = None):
  1806. self._meta = meta
  1807. self._data = data
  1808. self._args = args
  1809. self._func = func
  1810. @staticmethod
  1811. def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any:
  1812. # TODO: dict and set
  1813. if isinstance(o, (list, tuple)):
  1814. L = []
  1815. for item in o:
  1816. L.append(LazyTorchTensor._recurse_apply(item, fn))
  1817. if isinstance(o, tuple):
  1818. L = tuple(L)
  1819. return L
  1820. elif isinstance(o, LazyTorchTensor):
  1821. return fn(o)
  1822. else:
  1823. return o
  1824. def _wrap_fn(self, fn: Callable, use_self: bool = False) -> Callable[[Any], LazyTorchTensor]:
  1825. def wrapped_fn(*args, **kwargs):
  1826. if kwargs is None:
  1827. kwargs = {}
  1828. args = ((self,) if use_self else ()) + args
  1829. meta_args = LazyTorchTensor._recurse_apply(args, lambda t: t._meta)
  1830. return LazyTorchTensor(meta=fn(*meta_args, **kwargs), args=args, func=lambda a: fn(*a, **kwargs))
  1831. return wrapped_fn
  1832. def __getattr__(self, __name: str) -> Any:
  1833. meta_attr = getattr(self._meta, __name)
  1834. if callable(meta_attr):
  1835. return self._wrap_fn(getattr(torch.Tensor, __name), use_self=True)
  1836. elif isinstance(meta_attr, torch.Tensor):
  1837. # for things like self.T
  1838. return self._wrap_fn(lambda s: getattr(s, __name))(self)
  1839. else:
  1840. return meta_attr
  1841. _dtype_map: dict[torch.dtype, type] = {
  1842. torch.float16: np.float16,
  1843. torch.float32: np.float32,
  1844. }
  1845. def numpy(self) -> gguf.LazyTensor:
  1846. dtype = self._dtype_map[self.dtype]
  1847. return gguf.LazyTensor(lambda: LazyTorchTensor.to_eager(self).numpy(), dtype=dtype, shape=self.shape)
  1848. @overload
  1849. @staticmethod
  1850. def to_eager(t: Tensor | LazyTorchTensor) -> Tensor: ...
  1851. @overload
  1852. @staticmethod
  1853. def to_eager(t: tuple) -> tuple: ...
  1854. @staticmethod
  1855. def to_eager(t: Any) -> Any:
  1856. def simple_to_eager(_t: LazyTorchTensor) -> Tensor:
  1857. # wake up the lazy tensor
  1858. if _t._data is None and _t._func is not None:
  1859. # recurse into its arguments
  1860. _t._args = LazyTorchTensor.to_eager(_t._args)
  1861. _t._data = _t._func(_t._args)
  1862. if _t._data is not None:
  1863. return _t._data
  1864. else:
  1865. raise ValueError(f"Could not compute lazy tensor {_t!r} with args {_t._args!r}")
  1866. # recurse into lists and/or tuples, keeping their structure
  1867. return LazyTorchTensor._recurse_apply(t, simple_to_eager)
  1868. @staticmethod
  1869. def from_eager(t: Tensor) -> Tensor:
  1870. if (t.__class__ == LazyTorchTensor):
  1871. return t
  1872. return LazyTorchTensor(meta=t.detach().to("meta"), data=t) # type: ignore
  1873. @classmethod
  1874. def __torch_function__(cls, func, types, args=(), kwargs=None):
  1875. del types # unused
  1876. if kwargs is None:
  1877. kwargs = {}
  1878. if func is torch.Tensor.numpy:
  1879. return args[0].numpy()
  1880. if func is torch.equal:
  1881. eager_args = LazyTorchTensor.to_eager(args)
  1882. return func(*eager_args, **kwargs)
  1883. return LazyTorchTensor._wrap_fn(args[0], func)(*args, **kwargs)
  1884. # special methods bypass __getattr__, so they need to be added manually
  1885. # ref: https://docs.python.org/3/reference/datamodel.html#special-lookup
  1886. # NOTE: LazyTorchTensor can't be a subclass of Tensor (and then be used
  1887. # as self._meta is currently used), because then the following
  1888. # operations would by default not be wrapped, and so not propagated
  1889. # when the tensor is made eager.
  1890. # It's better to get non-silent errors for not-yet-supported operators.
  1891. # TODO: add more when needed to avoid clutter, or find a more concise way
  1892. def __neg__(self, *args): # mamba
  1893. return self._wrap_fn(torch.Tensor.__neg__)(self, *args)
  1894. def __add__(self, *args): # gemma
  1895. return self._wrap_fn(torch.Tensor.__add__)(self, *args)
  1896. def __getitem__(self, *args): # bloom falcon refact internlm2
  1897. return self._wrap_fn(torch.Tensor.__getitem__)(self, *args)
  1898. def parse_args() -> argparse.Namespace:
  1899. parser = argparse.ArgumentParser(
  1900. description="Convert a huggingface model to a GGML compatible file")
  1901. parser.add_argument(
  1902. "--vocab-only", action="store_true",
  1903. help="extract only the vocab",
  1904. )
  1905. parser.add_argument(
  1906. "--awq-path", type=Path, default=None,
  1907. help="Path to scale awq cache file",
  1908. )
  1909. parser.add_argument(
  1910. "--outfile", type=Path,
  1911. help="path to write to; default: based on input",
  1912. )
  1913. parser.add_argument(
  1914. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  1915. help="output format - use f32 for float32, f16 for float16",
  1916. )
  1917. parser.add_argument(
  1918. "--bigendian", action="store_true",
  1919. help="model is executed on big endian machine",
  1920. )
  1921. parser.add_argument(
  1922. "model", type=Path,
  1923. help="directory containing model file",
  1924. )
  1925. parser.add_argument(
  1926. "--use-temp-file", action="store_true",
  1927. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  1928. )
  1929. parser.add_argument(
  1930. "--no-lazy", action="store_true",
  1931. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  1932. )
  1933. parser.add_argument(
  1934. "--model-name", type=str, default=None,
  1935. help="name of the model",
  1936. )
  1937. parser.add_argument(
  1938. "--verbose", action="store_true",
  1939. help="increase output verbosity",
  1940. )
  1941. return parser.parse_args()
  1942. def main() -> None:
  1943. args = parse_args()
  1944. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  1945. dir_model = args.model
  1946. if args.awq_path:
  1947. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1948. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1949. tmp_model_path = args.model / "weighted_model"
  1950. dir_model = tmp_model_path
  1951. if tmp_model_path.is_dir():
  1952. logger.info(f"{tmp_model_path} exists as a weighted model.")
  1953. else:
  1954. tmp_model_path.mkdir(parents=True, exist_ok=True)
  1955. logger.info("Saving new weighted model ...")
  1956. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  1957. logger.info(f"Saved weighted model at {tmp_model_path}.")
  1958. if not dir_model.is_dir():
  1959. logger.error(f'Error: {args.model} is not a directory')
  1960. sys.exit(1)
  1961. ftype_map = {
  1962. "f32": gguf.GGMLQuantizationType.F32,
  1963. "f16": gguf.GGMLQuantizationType.F16,
  1964. }
  1965. if args.outfile is not None:
  1966. fname_out = args.outfile
  1967. else:
  1968. # output in the same directory as the model by default
  1969. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  1970. logger.info(f"Loading model: {dir_model.name}")
  1971. hparams = Model.load_hparams(dir_model)
  1972. with torch.inference_mode():
  1973. model_class = Model.from_model_architecture(hparams["architectures"][0])
  1974. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy)
  1975. logger.info("Set model parameters")
  1976. model_instance.set_gguf_parameters()
  1977. logger.info("Set model tokenizer")
  1978. model_instance.set_vocab()
  1979. if args.vocab_only:
  1980. logger.info(f"Exporting model vocab to '{fname_out}'")
  1981. model_instance.write_vocab()
  1982. else:
  1983. logger.info(f"Exporting model to '{fname_out}'")
  1984. model_instance.write()
  1985. logger.info(f"Model successfully exported to '{fname_out}'")
  1986. if __name__ == '__main__':
  1987. main()