ggml-cuda.cu 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034
  1. #include "ggml-cuda.h"
  2. #include "ggml.h"
  3. #include "ggml-backend-impl.h"
  4. #include "ggml-cuda/common.cuh"
  5. #include "ggml-cuda/acc.cuh"
  6. #include "ggml-cuda/alibi.cuh"
  7. #include "ggml-cuda/arange.cuh"
  8. #include "ggml-cuda/argsort.cuh"
  9. #include "ggml-cuda/binbcast.cuh"
  10. #include "ggml-cuda/clamp.cuh"
  11. #include "ggml-cuda/concat.cuh"
  12. #include "ggml-cuda/convert.cuh"
  13. #include "ggml-cuda/cpy.cuh"
  14. #include "ggml-cuda/diagmask.cuh"
  15. #include "ggml-cuda/dmmv.cuh"
  16. #include "ggml-cuda/fattn.cuh"
  17. #include "ggml-cuda/getrows.cuh"
  18. #include "ggml-cuda/im2col.cuh"
  19. #include "ggml-cuda/mmq.cuh"
  20. #include "ggml-cuda/mmvq.cuh"
  21. #include "ggml-cuda/norm.cuh"
  22. #include "ggml-cuda/pad.cuh"
  23. #include "ggml-cuda/pool2d.cuh"
  24. #include "ggml-cuda/quantize.cuh"
  25. #include "ggml-cuda/rope.cuh"
  26. #include "ggml-cuda/scale.cuh"
  27. #include "ggml-cuda/softmax.cuh"
  28. #include "ggml-cuda/sumrows.cuh"
  29. #include "ggml-cuda/tsembd.cuh"
  30. #include "ggml-cuda/unary.cuh"
  31. #include "ggml-cuda/upscale.cuh"
  32. #include <algorithm>
  33. #include <array>
  34. #include <atomic>
  35. #include <cinttypes>
  36. #include <cstddef>
  37. #include <cstdint>
  38. #include <float.h>
  39. #include <limits>
  40. #include <map>
  41. #include <memory>
  42. #include <mutex>
  43. #include <stdint.h>
  44. #include <stdio.h>
  45. #include <string>
  46. #include <vector>
  47. static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
  48. [[noreturn]]
  49. void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
  50. int id = -1; // in case cudaGetDevice fails
  51. cudaGetDevice(&id);
  52. fprintf(stderr, "CUDA error: %s\n", msg);
  53. fprintf(stderr, " current device: %d, in function %s at %s:%d\n", id, func, file, line);
  54. fprintf(stderr, " %s\n", stmt);
  55. // abort with GGML_ASSERT to get a stack trace
  56. GGML_ASSERT(!"CUDA error");
  57. }
  58. // this is faster on Windows
  59. // probably because the Windows CUDA libraries forget to make this check before invoking the drivers
  60. void ggml_cuda_set_device(int device) {
  61. int current_device;
  62. CUDA_CHECK(cudaGetDevice(&current_device));
  63. if (device == current_device) {
  64. return;
  65. }
  66. CUDA_CHECK(cudaSetDevice(device));
  67. }
  68. int ggml_cuda_get_device() {
  69. int id;
  70. CUDA_CHECK(cudaGetDevice(&id));
  71. return id;
  72. }
  73. static ggml_cuda_device_info ggml_cuda_init() {
  74. #ifdef __HIP_PLATFORM_AMD__
  75. // Workaround for a rocBLAS bug when using multiple graphics cards:
  76. // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
  77. rocblas_initialize();
  78. CUDA_CHECK(cudaDeviceSynchronize());
  79. #endif
  80. ggml_cuda_device_info info = {};
  81. cudaError_t err = cudaGetDeviceCount(&info.device_count);
  82. if (err != cudaSuccess) {
  83. fprintf(stderr, "%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
  84. return info;
  85. }
  86. GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
  87. int64_t total_vram = 0;
  88. #if defined(GGML_CUDA_FORCE_MMQ)
  89. fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
  90. #else
  91. fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
  92. #endif
  93. #if defined(CUDA_USE_TENSOR_CORES)
  94. fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
  95. #else
  96. fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
  97. #endif
  98. fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
  99. for (int id = 0; id < info.device_count; ++id) {
  100. int device_vmm = 0;
  101. #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  102. CUdevice device;
  103. CU_CHECK(cuDeviceGet(&device, id));
  104. CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
  105. if (device_vmm) {
  106. CUmemAllocationProp alloc_prop = {};
  107. alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
  108. alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
  109. alloc_prop.location.id = id;
  110. CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
  111. }
  112. #endif // !defined(GGML_USE_HIPBLAS)
  113. info.devices[id].vmm = !!device_vmm;
  114. cudaDeviceProp prop;
  115. CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
  116. fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
  117. info.default_tensor_split[id] = total_vram;
  118. total_vram += prop.totalGlobalMem;
  119. #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  120. info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
  121. #else
  122. info.devices[id].cc = 100*prop.major + 10*prop.minor;
  123. #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  124. info.devices[id].smpb = prop.sharedMemPerBlock;
  125. info.devices[id].nsm = prop.multiProcessorCount;
  126. }
  127. for (int id = 0; id < info.device_count; ++id) {
  128. info.default_tensor_split[id] /= total_vram;
  129. }
  130. // configure logging to stdout
  131. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
  132. return info;
  133. }
  134. const ggml_cuda_device_info & ggml_cuda_info() {
  135. static ggml_cuda_device_info info = ggml_cuda_init();
  136. return info;
  137. }
  138. // #define DEBUG_CUDA_MALLOC
  139. // buffer pool for cuda (legacy)
  140. struct ggml_cuda_pool_leg : public ggml_cuda_pool {
  141. static const int MAX_BUFFERS = 256;
  142. int device;
  143. struct ggml_cuda_buffer {
  144. void * ptr = nullptr;
  145. size_t size = 0;
  146. };
  147. ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
  148. size_t pool_size = 0;
  149. explicit ggml_cuda_pool_leg(int device) :
  150. device(device) {
  151. }
  152. ~ggml_cuda_pool_leg() {
  153. ggml_cuda_set_device(device);
  154. for (int i = 0; i < MAX_BUFFERS; ++i) {
  155. ggml_cuda_buffer & b = buffer_pool[i];
  156. if (b.ptr != nullptr) {
  157. CUDA_CHECK(cudaFree(b.ptr));
  158. pool_size -= b.size;
  159. }
  160. }
  161. GGML_ASSERT(pool_size == 0);
  162. }
  163. void * alloc(size_t size, size_t * actual_size) override {
  164. #ifdef DEBUG_CUDA_MALLOC
  165. int nnz = 0;
  166. size_t max_size = 0;
  167. #endif
  168. size_t best_diff = 1ull << 36;
  169. int ibest = -1;
  170. for (int i = 0; i < MAX_BUFFERS; ++i) {
  171. ggml_cuda_buffer& b = buffer_pool[i];
  172. if (b.ptr != nullptr) {
  173. #ifdef DEBUG_CUDA_MALLOC
  174. ++nnz;
  175. if (b.size > max_size) max_size = b.size;
  176. #endif
  177. if (b.size >= size) {
  178. size_t diff = b.size - size;
  179. if (diff < best_diff) {
  180. best_diff = diff;
  181. ibest = i;
  182. if (!best_diff) {
  183. void * ptr = b.ptr;
  184. *actual_size = b.size;
  185. b.ptr = nullptr;
  186. b.size = 0;
  187. return ptr;
  188. }
  189. }
  190. }
  191. }
  192. }
  193. if (ibest >= 0) {
  194. ggml_cuda_buffer& b = buffer_pool[ibest];
  195. void * ptr = b.ptr;
  196. *actual_size = b.size;
  197. b.ptr = nullptr;
  198. b.size = 0;
  199. return ptr;
  200. }
  201. void * ptr;
  202. size_t look_ahead_size = (size_t) (1.05 * size);
  203. look_ahead_size = 256 * ((look_ahead_size + 255)/256);
  204. ggml_cuda_set_device(device);
  205. CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
  206. *actual_size = look_ahead_size;
  207. pool_size += look_ahead_size;
  208. #ifdef DEBUG_CUDA_MALLOC
  209. fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
  210. (uint32_t)(max_size/1024/1024), (uint32_t)(pool_size/1024/1024), (uint32_t)(size/1024/1024));
  211. #endif
  212. return ptr;
  213. }
  214. void free(void * ptr, size_t size) override {
  215. for (int i = 0; i < MAX_BUFFERS; ++i) {
  216. ggml_cuda_buffer& b = buffer_pool[i];
  217. if (b.ptr == nullptr) {
  218. b.ptr = ptr;
  219. b.size = size;
  220. return;
  221. }
  222. }
  223. fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
  224. ggml_cuda_set_device(device);
  225. CUDA_CHECK(cudaFree(ptr));
  226. pool_size -= size;
  227. }
  228. };
  229. // pool with virtual memory
  230. #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  231. struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
  232. static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
  233. int device;
  234. CUdeviceptr pool_addr = 0;
  235. size_t pool_used = 0;
  236. size_t pool_size = 0;
  237. size_t granularity;
  238. explicit ggml_cuda_pool_vmm(int device) :
  239. device(device),
  240. granularity(ggml_cuda_info().devices[device].vmm_granularity) {
  241. }
  242. ~ggml_cuda_pool_vmm() {
  243. if (pool_addr != 0) {
  244. CU_CHECK(cuMemUnmap(pool_addr, pool_size));
  245. CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
  246. }
  247. }
  248. void * alloc(size_t size, size_t * actual_size) override {
  249. // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
  250. const size_t alignment = 128;
  251. size = alignment * ((size + alignment - 1) / alignment);
  252. size_t avail = pool_size - pool_used;
  253. if (size > avail) {
  254. // round up to the next multiple of the granularity
  255. size_t reserve_size = size - avail;
  256. reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
  257. GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
  258. // allocate more physical memory
  259. CUmemAllocationProp prop = {};
  260. prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
  261. prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
  262. prop.location.id = device;
  263. CUmemGenericAllocationHandle handle;
  264. CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
  265. // reserve virtual address space (if not already reserved)
  266. if (pool_addr == 0) {
  267. CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
  268. }
  269. // map at the end of the pool
  270. CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
  271. // the memory allocation handle is no longer needed after mapping
  272. CU_CHECK(cuMemRelease(handle));
  273. // set access
  274. CUmemAccessDesc access = {};
  275. access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
  276. access.location.id = device;
  277. access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
  278. CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
  279. // add to the pool
  280. pool_size += reserve_size;
  281. //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
  282. // device, (unsigned long long) (pool_size/1024/1024),
  283. // (unsigned long long) (reserve_size/1024/1024));
  284. }
  285. GGML_ASSERT(pool_addr != 0);
  286. void * ptr = (void *) (pool_addr + pool_used);
  287. *actual_size = size;
  288. pool_used += size;
  289. #ifdef DEBUG_CUDA_MALLOC
  290. printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
  291. #endif
  292. return ptr;
  293. }
  294. void free(void * ptr, size_t size) override {
  295. #ifdef DEBUG_CUDA_MALLOC
  296. printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
  297. #endif
  298. pool_used -= size;
  299. // all deallocations must be in reverse order of the allocations
  300. GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
  301. }
  302. };
  303. #endif // !defined(GGML_USE_HIPBLAS)
  304. std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
  305. #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  306. if (ggml_cuda_info().devices[device].vmm) {
  307. return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
  308. }
  309. #endif
  310. return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
  311. }
  312. // cuda buffer
  313. struct ggml_backend_cuda_buffer_context {
  314. int device;
  315. void * dev_ptr = nullptr;
  316. std::string name;
  317. ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
  318. device(device), dev_ptr(dev_ptr),
  319. name(GGML_CUDA_NAME + std::to_string(device)) {
  320. }
  321. ~ggml_backend_cuda_buffer_context() {
  322. CUDA_CHECK(cudaFree(dev_ptr));
  323. }
  324. };
  325. GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
  326. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  327. return ctx->name.c_str();
  328. }
  329. GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
  330. return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
  331. }
  332. GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  333. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  334. delete ctx;
  335. }
  336. GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
  337. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  338. return ctx->dev_ptr;
  339. }
  340. GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  341. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  342. if (tensor->view_src != NULL) {
  343. assert(tensor->view_src->buffer->buft == buffer->buft);
  344. return;
  345. }
  346. if (ggml_is_quantized(tensor->type)) {
  347. // initialize padding to 0 to avoid possible NaN values
  348. size_t original_size = ggml_nbytes(tensor);
  349. size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
  350. if (padded_size > original_size && tensor->view_src == nullptr) {
  351. ggml_cuda_set_device(ctx->device);
  352. CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
  353. }
  354. }
  355. }
  356. GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  357. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  358. ggml_cuda_set_device(ctx->device);
  359. CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
  360. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  361. }
  362. GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  363. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  364. ggml_cuda_set_device(ctx->device);
  365. CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
  366. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  367. }
  368. GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  369. if (ggml_backend_buffer_is_cuda(src->buffer)) {
  370. ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
  371. ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
  372. if (src_ctx->device == dst_ctx->device) {
  373. CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
  374. } else {
  375. #ifdef GGML_CUDA_NO_PEER_COPY
  376. return false;
  377. #else
  378. CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
  379. #endif
  380. }
  381. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  382. return true;
  383. }
  384. return false;
  385. GGML_UNUSED(buffer);
  386. }
  387. GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  388. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  389. ggml_cuda_set_device(ctx->device);
  390. CUDA_CHECK(cudaDeviceSynchronize());
  391. CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
  392. CUDA_CHECK(cudaDeviceSynchronize());
  393. }
  394. static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
  395. /* .get_name = */ ggml_backend_cuda_buffer_get_name,
  396. /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
  397. /* .get_base = */ ggml_backend_cuda_buffer_get_base,
  398. /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
  399. /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
  400. /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
  401. /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
  402. /* .clear = */ ggml_backend_cuda_buffer_clear,
  403. /* .reset = */ NULL,
  404. };
  405. // cuda buffer type
  406. struct ggml_backend_cuda_buffer_type_context {
  407. int device;
  408. std::string name;
  409. };
  410. GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
  411. ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
  412. return ctx->name.c_str();
  413. }
  414. GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  415. ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
  416. ggml_cuda_set_device(buft_ctx->device);
  417. size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
  418. void * dev_ptr;
  419. cudaError_t err = cudaMalloc(&dev_ptr, size);
  420. if (err != cudaSuccess) {
  421. fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
  422. return nullptr;
  423. }
  424. ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
  425. return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
  426. }
  427. GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  428. return 128;
  429. GGML_UNUSED(buft);
  430. }
  431. GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  432. size_t size = ggml_nbytes(tensor);
  433. int64_t ne0 = tensor->ne[0];
  434. if (ggml_is_quantized(tensor->type)) {
  435. if (ne0 % MATRIX_ROW_PADDING != 0) {
  436. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  437. }
  438. }
  439. return size;
  440. GGML_UNUSED(buft);
  441. }
  442. GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  443. if (!ggml_backend_is_cuda(backend)) {
  444. return false;
  445. }
  446. ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
  447. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  448. return buft_ctx->device == cuda_ctx->device;
  449. }
  450. static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
  451. /* .get_name = */ ggml_backend_cuda_buffer_type_name,
  452. /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
  453. /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
  454. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  455. /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
  456. /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
  457. /* .is_host = */ NULL,
  458. };
  459. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
  460. static std::mutex mutex;
  461. std::lock_guard<std::mutex> lock(mutex);
  462. if (device >= ggml_backend_cuda_get_device_count()) {
  463. return nullptr;
  464. }
  465. static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
  466. static bool ggml_backend_cuda_buffer_type_initialized = false;
  467. if (!ggml_backend_cuda_buffer_type_initialized) {
  468. for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
  469. ggml_backend_cuda_buffer_types[i] = {
  470. /* .iface = */ ggml_backend_cuda_buffer_type_interface,
  471. /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
  472. };
  473. }
  474. ggml_backend_cuda_buffer_type_initialized = true;
  475. }
  476. return &ggml_backend_cuda_buffer_types[device];
  477. }
  478. // cuda split buffer
  479. static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
  480. int64_t min_compute_capability = INT_MAX;
  481. int64_t max_compute_capability = INT_MIN;
  482. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  483. if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
  484. if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
  485. min_compute_capability = ggml_cuda_info().devices[id].cc;
  486. }
  487. if (max_compute_capability < ggml_cuda_info().devices[id].cc) {
  488. max_compute_capability = ggml_cuda_info().devices[id].cc;
  489. }
  490. }
  491. }
  492. #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  493. switch(type) {
  494. case GGML_TYPE_Q4_0:
  495. case GGML_TYPE_Q4_1:
  496. case GGML_TYPE_Q5_0:
  497. case GGML_TYPE_Q5_1:
  498. case GGML_TYPE_Q8_0:
  499. return max_compute_capability >= CC_RDNA2 ? 128 : 64;
  500. case GGML_TYPE_F16:
  501. case GGML_TYPE_F32:
  502. return 1;
  503. case GGML_TYPE_Q2_K:
  504. return max_compute_capability >= CC_RDNA2 ? 128 : 32;
  505. case GGML_TYPE_Q3_K:
  506. return min_compute_capability < CC_RDNA2 ? 128 : 64;
  507. case GGML_TYPE_Q4_K:
  508. case GGML_TYPE_Q5_K:
  509. case GGML_TYPE_Q6_K:
  510. case GGML_TYPE_IQ2_XXS:
  511. case GGML_TYPE_IQ2_XS:
  512. case GGML_TYPE_IQ2_S:
  513. case GGML_TYPE_IQ3_XXS:
  514. case GGML_TYPE_IQ1_S:
  515. case GGML_TYPE_IQ1_M:
  516. case GGML_TYPE_IQ4_NL:
  517. case GGML_TYPE_IQ4_XS:
  518. case GGML_TYPE_IQ3_S:
  519. return max_compute_capability >= CC_RDNA2 ? 128 : 64;
  520. default:
  521. GGML_ASSERT(false);
  522. }
  523. #else
  524. switch(type) {
  525. case GGML_TYPE_Q4_0:
  526. case GGML_TYPE_Q4_1:
  527. return max_compute_capability >= CC_VOLTA ? 128 : 64;
  528. case GGML_TYPE_Q5_0:
  529. case GGML_TYPE_Q5_1:
  530. case GGML_TYPE_Q8_0:
  531. return 64;
  532. case GGML_TYPE_F16:
  533. case GGML_TYPE_F32:
  534. return 1;
  535. case GGML_TYPE_Q2_K:
  536. case GGML_TYPE_Q3_K:
  537. case GGML_TYPE_Q4_K:
  538. case GGML_TYPE_Q5_K:
  539. case GGML_TYPE_IQ2_XXS:
  540. case GGML_TYPE_IQ2_XS:
  541. case GGML_TYPE_IQ2_S:
  542. case GGML_TYPE_IQ3_XXS:
  543. case GGML_TYPE_IQ1_S:
  544. case GGML_TYPE_IQ1_M:
  545. case GGML_TYPE_IQ4_NL:
  546. case GGML_TYPE_IQ4_XS:
  547. case GGML_TYPE_IQ3_S:
  548. return max_compute_capability >= CC_VOLTA ? 128 : 64;
  549. case GGML_TYPE_Q6_K:
  550. return 64;
  551. default:
  552. GGML_ASSERT(false);
  553. }
  554. #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  555. }
  556. static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
  557. const int64_t nrows = ggml_nrows(tensor);
  558. const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
  559. *row_low = id == 0 ? 0 : nrows*tensor_split[id];
  560. *row_low -= *row_low % rounding;
  561. if (id == ggml_backend_cuda_get_device_count() - 1) {
  562. *row_high = nrows;
  563. } else {
  564. *row_high = nrows*tensor_split[id + 1];
  565. *row_high -= *row_high % rounding;
  566. }
  567. }
  568. static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  569. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  570. return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
  571. }
  572. struct ggml_backend_cuda_split_buffer_type_context {
  573. std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
  574. };
  575. struct ggml_backend_cuda_split_buffer_context {
  576. ~ggml_backend_cuda_split_buffer_context() {
  577. for (ggml_tensor_extra_gpu * extra : tensor_extras) {
  578. for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
  579. for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
  580. if (extra->events[id][is] != nullptr) {
  581. CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
  582. }
  583. }
  584. if (extra->data_device[id] != nullptr) {
  585. CUDA_CHECK(cudaFree(extra->data_device[id]));
  586. }
  587. }
  588. delete extra;
  589. }
  590. }
  591. std::vector<ggml_tensor_extra_gpu *> tensor_extras;
  592. };
  593. GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
  594. return GGML_CUDA_NAME "_Split";
  595. GGML_UNUSED(buffer);
  596. }
  597. static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
  598. return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
  599. GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
  600. }
  601. GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  602. ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
  603. delete ctx;
  604. }
  605. GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
  606. // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
  607. return (void *)0x1000;
  608. GGML_UNUSED(buffer);
  609. }
  610. GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  611. GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
  612. ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
  613. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
  614. const int64_t ne0 = tensor->ne[0];
  615. ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
  616. ctx->tensor_extras.push_back(extra);
  617. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  618. int64_t row_low, row_high;
  619. get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
  620. int64_t nrows_split = row_high - row_low;
  621. if (nrows_split == 0) {
  622. continue;
  623. }
  624. size_t size = ggml_nbytes_split(tensor, nrows_split);
  625. const size_t original_size = size;
  626. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  627. if (ne0 % MATRIX_ROW_PADDING != 0) {
  628. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  629. }
  630. // FIXME: do not crash if cudaMalloc fails
  631. // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
  632. ggml_cuda_set_device(id);
  633. char * buf;
  634. CUDA_CHECK(cudaMalloc(&buf, size));
  635. // set padding to 0 to avoid possible NaN values
  636. if (size > original_size) {
  637. CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
  638. }
  639. extra->data_device[id] = buf;
  640. for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
  641. CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
  642. }
  643. }
  644. tensor->extra = extra;
  645. }
  646. GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  647. // split tensors must always be set in their entirety at once
  648. GGML_ASSERT(offset == 0);
  649. GGML_ASSERT(size == ggml_nbytes(tensor));
  650. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
  651. const int64_t ne0 = tensor->ne[0];
  652. const size_t nb1 = tensor->nb[1];
  653. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
  654. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  655. int64_t row_low, row_high;
  656. get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
  657. int64_t nrows_split = row_high - row_low;
  658. if (nrows_split == 0) {
  659. continue;
  660. }
  661. const size_t offset_split = row_low*nb1;
  662. size_t size = ggml_nbytes_split(tensor, nrows_split);
  663. const size_t original_size = size;
  664. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  665. if (ne0 % MATRIX_ROW_PADDING != 0) {
  666. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  667. }
  668. const char * buf_host = (const char *)data + offset_split;
  669. CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
  670. }
  671. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  672. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  673. }
  674. }
  675. GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  676. // split tensors must always be set in their entirety at once
  677. GGML_ASSERT(offset == 0);
  678. GGML_ASSERT(size == ggml_nbytes(tensor));
  679. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
  680. const int64_t ne0 = tensor->ne[0];
  681. const size_t nb1 = tensor->nb[1];
  682. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
  683. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  684. int64_t row_low, row_high;
  685. get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
  686. int64_t nrows_split = row_high - row_low;
  687. if (nrows_split == 0) {
  688. continue;
  689. }
  690. const size_t offset_split = row_low*nb1;
  691. size_t size = ggml_nbytes_split(tensor, nrows_split);
  692. const size_t original_size = size;
  693. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  694. if (ne0 % MATRIX_ROW_PADDING != 0) {
  695. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  696. }
  697. char * buf_host = (char *)data + offset_split;
  698. CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
  699. }
  700. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  701. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  702. }
  703. }
  704. GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  705. GGML_UNUSED(buffer);
  706. GGML_UNUSED(value);
  707. }
  708. static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
  709. /* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
  710. /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
  711. /* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
  712. /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
  713. /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
  714. /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
  715. /* .cpy_tensor = */ NULL,
  716. /* .clear = */ ggml_backend_cuda_split_buffer_clear,
  717. /* .reset = */ NULL,
  718. };
  719. // cuda split buffer type
  720. GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
  721. return GGML_CUDA_NAME "_Split";
  722. GGML_UNUSED(buft);
  723. }
  724. GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  725. // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
  726. // instead, we allocate them for each tensor separately in init_tensor
  727. // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
  728. // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
  729. ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
  730. return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
  731. }
  732. GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  733. return 128;
  734. GGML_UNUSED(buft);
  735. }
  736. GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  737. ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
  738. size_t total_size = 0;
  739. const int64_t ne0 = tensor->ne[0];
  740. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  741. int64_t row_low, row_high;
  742. get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
  743. int64_t nrows_split = row_high - row_low;
  744. if (nrows_split == 0) {
  745. continue;
  746. }
  747. total_size += ggml_nbytes_split(tensor, nrows_split);
  748. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  749. if (ne0 % MATRIX_ROW_PADDING != 0) {
  750. total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  751. }
  752. }
  753. return total_size;
  754. }
  755. GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  756. return ggml_backend_is_cuda(backend);
  757. GGML_UNUSED(buft);
  758. }
  759. GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  760. return false;
  761. GGML_UNUSED(buft);
  762. }
  763. static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
  764. /* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
  765. /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
  766. /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
  767. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  768. /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
  769. /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
  770. /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
  771. };
  772. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
  773. static std::mutex mutex;
  774. std::lock_guard<std::mutex> lock(mutex);
  775. static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
  776. std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
  777. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
  778. if (all_zero) {
  779. tensor_split_arr = ggml_cuda_info().default_tensor_split;
  780. } else {
  781. float split_sum = 0.0f;
  782. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  783. tensor_split_arr[i] = split_sum;
  784. split_sum += tensor_split[i];
  785. }
  786. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  787. tensor_split_arr[i] /= split_sum;
  788. }
  789. }
  790. auto it = buft_map.find(tensor_split_arr);
  791. if (it != buft_map.end()) {
  792. return &it->second;
  793. }
  794. struct ggml_backend_buffer_type buft {
  795. /* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
  796. /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
  797. };
  798. auto result = buft_map.emplace(tensor_split_arr, buft);
  799. return &result.first->second;
  800. }
  801. // host buffer type
  802. GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
  803. return GGML_CUDA_NAME "_Host";
  804. GGML_UNUSED(buft);
  805. }
  806. GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
  807. return GGML_CUDA_NAME "_Host";
  808. GGML_UNUSED(buffer);
  809. }
  810. GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  811. CUDA_CHECK(cudaFreeHost(buffer->context));
  812. }
  813. static void * ggml_cuda_host_malloc(size_t size) {
  814. if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
  815. return nullptr;
  816. }
  817. void * ptr = nullptr;
  818. cudaError_t err = cudaMallocHost((void **) &ptr, size);
  819. if (err != cudaSuccess) {
  820. // clear the error
  821. cudaGetLastError();
  822. fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
  823. size/1024.0/1024.0, cudaGetErrorString(err));
  824. return nullptr;
  825. }
  826. return ptr;
  827. }
  828. GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  829. void * ptr = ggml_cuda_host_malloc(size);
  830. if (ptr == nullptr) {
  831. // fallback to cpu buffer
  832. return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
  833. }
  834. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  835. buffer->buft = buft;
  836. buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
  837. buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
  838. return buffer;
  839. }
  840. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
  841. static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
  842. /* .iface = */ {
  843. /* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
  844. /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
  845. /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
  846. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  847. /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
  848. /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
  849. /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
  850. },
  851. /* .context = */ nullptr,
  852. };
  853. return &ggml_backend_cuda_buffer_type_host;
  854. }
  855. //static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
  856. // return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
  857. //}
  858. /// kernels
  859. typedef void (*ggml_cuda_op_mul_mat_t)(
  860. ggml_backend_cuda_context & ctx,
  861. const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
  862. const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
  863. const int64_t src1_padded_row_size, cudaStream_t stream);
  864. #ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
  865. #define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
  866. #endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
  867. #define MUL_MAT_SRC1_COL_STRIDE 128
  868. static __global__ void mul_mat_p021_f16_f32(
  869. const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
  870. const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
  871. const half * x = (const half *) vx;
  872. const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
  873. const int channel = blockDim.z*blockIdx.z + threadIdx.z;
  874. const int channel_x = channel / (nchannels_y / nchannels_x);
  875. const int nrows_y = ncols_x;
  876. const int nrows_dst = nrows_x;
  877. const int row_dst = row_x;
  878. float tmp = 0.0f;
  879. for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
  880. const int col_x = col_x0 + threadIdx.x;
  881. if (col_x >= ncols_x) {
  882. break;
  883. }
  884. // x is transposed and permuted
  885. const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
  886. const float xi = __half2float(x[ix]);
  887. const int row_y = col_x;
  888. // y is not transposed but permuted
  889. const int iy = channel*nrows_y + row_y;
  890. tmp += xi * y[iy];
  891. }
  892. // dst is not transposed and not permuted
  893. const int idst = channel*nrows_dst + row_dst;
  894. // sum up partial sums and write back result
  895. tmp = warp_reduce_sum(tmp);
  896. if (threadIdx.x == 0) {
  897. dst[idst] = tmp;
  898. }
  899. }
  900. static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
  901. const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
  902. const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
  903. const half * x = (const half *) vx;
  904. const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
  905. const int channel = blockDim.z*blockIdx.z + threadIdx.z;
  906. const int channel_x = channel / channel_x_divisor;
  907. const int nrows_y = ncols_x;
  908. const int nrows_dst = nrows_x;
  909. const int row_dst = row_x;
  910. const int idst = channel*nrows_dst + row_dst;
  911. float tmp = 0.0f;
  912. for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
  913. const int col_x = col_x0 + threadIdx.x;
  914. if (col_x >= ncols_x) {
  915. break;
  916. }
  917. const int row_y = col_x;
  918. const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
  919. const int iy = channel*nrows_y + row_y;
  920. const float xi = __half2float(x[ix]);
  921. tmp += xi * y[iy];
  922. }
  923. // sum up partial sums and write back result
  924. tmp = warp_reduce_sum(tmp);
  925. if (threadIdx.x == 0) {
  926. dst[idst] = tmp;
  927. }
  928. }
  929. static void ggml_mul_mat_p021_f16_f32_cuda(
  930. const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
  931. const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
  932. const dim3 block_nums(1, nrows_x, nchannels_y);
  933. const dim3 block_dims(WARP_SIZE, 1, 1);
  934. mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
  935. }
  936. static void ggml_mul_mat_vec_nc_f16_f32_cuda(
  937. const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
  938. const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
  939. const dim3 block_nums(1, nrows_x, nchannels_y);
  940. const dim3 block_dims(WARP_SIZE, 1, 1);
  941. mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
  942. (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
  943. }
  944. static cudaError_t ggml_cuda_cpy_tensor_2d(
  945. void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
  946. GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
  947. char * src_ptr = (char *) src->data;
  948. char * dst_ptr = (char *) dst;
  949. const int64_t ne0 = src->ne[0];
  950. const int64_t nb0 = src->nb[0];
  951. const int64_t nb1 = src->nb[1];
  952. const int64_t nb2 = src->nb[2];
  953. const int64_t nb3 = src->nb[3];
  954. const enum ggml_type type = src->type;
  955. const int64_t ts = ggml_type_size(type);
  956. const int64_t bs = ggml_blck_size(type);
  957. int64_t i1_diff = i1_high - i1_low;
  958. const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
  959. if (nb0 == ts && nb1 == ts*ne0/bs) {
  960. return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
  961. } else if (nb0 == ts) {
  962. return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
  963. } else {
  964. for (int64_t i1 = 0; i1 < i1_diff; i1++) {
  965. const void * rx = (const void *) ((const char *) x + i1*nb1);
  966. void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
  967. // pretend the row is a matrix with cols=1
  968. cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
  969. if (r != cudaSuccess) {
  970. return r;
  971. }
  972. }
  973. return cudaSuccess;
  974. }
  975. }
  976. static void ggml_cuda_op_mul_mat_cublas(
  977. ggml_backend_cuda_context & ctx,
  978. const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
  979. const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
  980. const int64_t src1_padded_row_size, cudaStream_t stream) {
  981. GGML_ASSERT(src0_dd_i != nullptr);
  982. GGML_ASSERT(src1_ddf_i != nullptr);
  983. GGML_ASSERT(dst_dd_i != nullptr);
  984. const int64_t ne00 = src0->ne[0];
  985. const int64_t ne10 = src1->ne[0];
  986. const int64_t ne0 = dst->ne[0];
  987. const int64_t row_diff = row_high - row_low;
  988. int id = ggml_cuda_get_device();
  989. // the main device has a larger memory buffer to hold the results from all GPUs
  990. // ldc == nrows of the matrix that cuBLAS writes into
  991. int64_t ldc = id == ctx.device ? ne0 : row_diff;
  992. const int compute_capability = ggml_cuda_info().devices[id].cc;
  993. if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
  994. // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
  995. ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
  996. if (src0->type != GGML_TYPE_F16) {
  997. const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
  998. GGML_ASSERT(to_fp16_cuda != nullptr);
  999. size_t ne = row_diff*ne00;
  1000. src0_as_f16.alloc(ne);
  1001. to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
  1002. }
  1003. const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
  1004. ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
  1005. if (src1->type != GGML_TYPE_F16) {
  1006. const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
  1007. GGML_ASSERT(to_fp16_cuda != nullptr);
  1008. size_t ne = src1_ncols*ne10;
  1009. src1_as_f16.alloc(ne);
  1010. to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
  1011. }
  1012. const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
  1013. ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
  1014. const half alpha_f16 = 1.0f;
  1015. const half beta_f16 = 0.0f;
  1016. CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
  1017. CUBLAS_CHECK(
  1018. cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
  1019. row_diff, src1_ncols, ne10,
  1020. &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
  1021. src1_ptr, CUDA_R_16F, ne10,
  1022. &beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
  1023. CUBLAS_COMPUTE_16F,
  1024. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  1025. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
  1026. to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
  1027. } else {
  1028. ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
  1029. ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
  1030. if (src0->type != GGML_TYPE_F32) {
  1031. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
  1032. GGML_ASSERT(to_fp32_cuda != nullptr);
  1033. src0_ddq_as_f32.alloc(row_diff*ne00);
  1034. to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
  1035. }
  1036. if (src1->type != GGML_TYPE_F32) {
  1037. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
  1038. GGML_ASSERT(to_fp32_cuda != nullptr);
  1039. src1_ddq_as_f32.alloc(src1_ncols*ne10);
  1040. to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
  1041. }
  1042. const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
  1043. const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
  1044. const float alpha = 1.0f;
  1045. const float beta = 0.0f;
  1046. CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
  1047. CUBLAS_CHECK(
  1048. cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
  1049. row_diff, src1_ncols, ne10,
  1050. &alpha, src0_ddf_i, ne00,
  1051. src1_ddf1_i, ne10,
  1052. &beta, dst_dd_i, ldc));
  1053. }
  1054. GGML_UNUSED(dst);
  1055. GGML_UNUSED(src1_ddq_i);
  1056. GGML_UNUSED(src1_padded_row_size);
  1057. }
  1058. static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
  1059. static bool peer_access_enabled = false;
  1060. const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
  1061. if (peer_access_enabled == enable_peer_access) {
  1062. return;
  1063. }
  1064. #ifdef NDEBUG
  1065. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1066. ggml_cuda_set_device(id);
  1067. CUDA_CHECK(cudaDeviceSynchronize());
  1068. }
  1069. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1070. ggml_cuda_set_device(id);
  1071. for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
  1072. if (id == id_other) {
  1073. continue;
  1074. }
  1075. if (id != main_device && id_other != main_device) {
  1076. continue;
  1077. }
  1078. int can_access_peer;
  1079. CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
  1080. if (can_access_peer) {
  1081. if (enable_peer_access) {
  1082. cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
  1083. if (err != cudaErrorPeerAccessAlreadyEnabled) {
  1084. CUDA_CHECK(err);
  1085. }
  1086. } else {
  1087. cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
  1088. if (err != cudaErrorPeerAccessNotEnabled) {
  1089. CUDA_CHECK(err);
  1090. }
  1091. }
  1092. }
  1093. }
  1094. }
  1095. ggml_cuda_set_device(main_device);
  1096. #endif // NDEBUG
  1097. peer_access_enabled = enable_peer_access;
  1098. GGML_UNUSED(main_device);
  1099. }
  1100. static void ggml_cuda_op_mul_mat(
  1101. ggml_backend_cuda_context & ctx,
  1102. const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
  1103. const bool convert_src1_to_q8_1) {
  1104. const int64_t ne00 = src0->ne[0];
  1105. const int64_t ne01 = src0->ne[1];
  1106. const int64_t ne02 = src0->ne[2];
  1107. const int64_t ne03 = src0->ne[3];
  1108. const int64_t ne10 = src1->ne[0];
  1109. const int64_t ne11 = src1->ne[1];
  1110. const int64_t ne12 = src1->ne[2];
  1111. const int64_t ne13 = src1->ne[3];
  1112. const int64_t nrows1 = ggml_nrows(src1);
  1113. GGML_ASSERT(ne03 == ne13);
  1114. const int64_t ne0 = dst->ne[0];
  1115. const int64_t ne1 = dst->ne[1];
  1116. const int64_t nb2 = dst->nb[2];
  1117. const int64_t nb3 = dst->nb[3];
  1118. GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
  1119. GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
  1120. ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
  1121. ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
  1122. GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
  1123. GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
  1124. const int64_t i02_divisor = ne12 / ne02;
  1125. const size_t src0_ts = ggml_type_size(src0->type);
  1126. const size_t src0_bs = ggml_blck_size(src0->type);
  1127. const size_t q8_1_ts = sizeof(block_q8_1);
  1128. const size_t q8_1_bs = QK8_1;
  1129. const bool src0_is_contiguous = ggml_is_contiguous(src0);
  1130. const bool src1_is_contiguous = ggml_is_contiguous(src1);
  1131. const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
  1132. const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
  1133. GGML_ASSERT(!(split && ne02 > 1));
  1134. GGML_ASSERT(!(split && ne03 > 1));
  1135. GGML_ASSERT(!(split && ne02 < ne12));
  1136. ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
  1137. std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
  1138. if (split) {
  1139. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
  1140. tensor_split = buft_ctx->tensor_split;
  1141. }
  1142. struct dev_data {
  1143. ggml_cuda_pool_alloc<char> src0_dd_alloc;
  1144. ggml_cuda_pool_alloc<float> src1_ddf_alloc;
  1145. ggml_cuda_pool_alloc<char> src1_ddq_alloc;
  1146. ggml_cuda_pool_alloc<float> dst_dd_alloc;
  1147. char * src0_dd = nullptr;
  1148. float * src1_ddf = nullptr; // float
  1149. char * src1_ddq = nullptr; // q8_1
  1150. float * dst_dd = nullptr;
  1151. int64_t row_low;
  1152. int64_t row_high;
  1153. };
  1154. dev_data dev[GGML_CUDA_MAX_DEVICES];
  1155. int used_devices = 0;
  1156. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1157. // by default, use all rows
  1158. dev[id].row_low = 0;
  1159. dev[id].row_high = ne01;
  1160. // for multi GPU, get the row boundaries from tensor split
  1161. // and round to mul_mat_q tile sizes
  1162. if (split) {
  1163. const int64_t rounding = get_row_rounding(src0->type, tensor_split);
  1164. if (id != 0) {
  1165. dev[id].row_low = ne01*tensor_split[id];
  1166. if (dev[id].row_low < ne01) {
  1167. dev[id].row_low -= dev[id].row_low % rounding;
  1168. }
  1169. }
  1170. if (id != ggml_backend_cuda_get_device_count() - 1) {
  1171. dev[id].row_high = ne01*tensor_split[id + 1];
  1172. if (dev[id].row_high < ne01) {
  1173. dev[id].row_high -= dev[id].row_high % rounding;
  1174. }
  1175. }
  1176. }
  1177. }
  1178. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1179. if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
  1180. continue;
  1181. }
  1182. used_devices++;
  1183. const bool src1_on_device = id == src1_ctx->device;
  1184. const bool dst_on_device = id == dst_ctx->device;
  1185. ggml_cuda_set_device(id);
  1186. cudaStream_t stream = ctx.stream(id, 0);
  1187. if (src0_is_contiguous) {
  1188. dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
  1189. } else {
  1190. dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0));
  1191. }
  1192. if (src1_on_device && src1_is_contiguous) {
  1193. dev[id].src1_ddf = (float *) src1->data;
  1194. } else {
  1195. dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
  1196. }
  1197. if (convert_src1_to_q8_1) {
  1198. dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
  1199. if (src1_on_device && src1_is_contiguous) {
  1200. quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
  1201. CUDA_CHECK(cudaGetLastError());
  1202. }
  1203. }
  1204. if (dst_on_device) {
  1205. dev[id].dst_dd = (float *) dst->data;
  1206. } else {
  1207. const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
  1208. dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
  1209. }
  1210. }
  1211. // if multiple devices are used they need to wait for the main device
  1212. // here an event is recorded that signals that the main device has finished calculating the input data
  1213. if (split && used_devices > 1) {
  1214. ggml_cuda_set_device(ctx.device);
  1215. CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
  1216. }
  1217. const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
  1218. for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
  1219. const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
  1220. const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
  1221. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1222. if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
  1223. continue;
  1224. }
  1225. const bool src1_on_device = id == src1_ctx->device;
  1226. const bool dst_on_device = id == dst_ctx->device;
  1227. const int64_t row_diff = dev[id].row_high - dev[id].row_low;
  1228. ggml_cuda_set_device(id);
  1229. cudaStream_t stream = ctx.stream(id, is);
  1230. // wait for main GPU data if necessary
  1231. if (split && (id != ctx.device || is != 0)) {
  1232. CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
  1233. }
  1234. for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
  1235. const int64_t i03 = i0 / ne12;
  1236. const int64_t i02 = i0 % ne12;
  1237. const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
  1238. // for split tensors the data begins at i0 == i0_offset_low
  1239. char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
  1240. float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
  1241. char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset;
  1242. float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
  1243. // the main device memory buffer can be on VRAM scratch, with space for all partial results
  1244. // in that case an offset on dst_ddf_i is needed
  1245. if (id == ctx.device) {
  1246. dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
  1247. }
  1248. // copy src0, src1 to device if necessary
  1249. if (src1_is_contiguous) {
  1250. if (id != ctx.device) {
  1251. if (convert_src1_to_q8_1) {
  1252. char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
  1253. CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, ctx.device,
  1254. src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
  1255. } else {
  1256. float * src1_ddf_i_source = (float *) src1->data;
  1257. src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
  1258. CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
  1259. src1_ncols*ne10*sizeof(float), stream));
  1260. }
  1261. }
  1262. } else if (src1_on_device && !src1_is_contiguous) {
  1263. CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
  1264. src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
  1265. } else {
  1266. GGML_ASSERT(false);
  1267. }
  1268. if (convert_src1_to_q8_1 && !src1_is_contiguous) {
  1269. quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
  1270. CUDA_CHECK(cudaGetLastError());
  1271. }
  1272. if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
  1273. CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
  1274. }
  1275. // do the computation
  1276. op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
  1277. dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
  1278. CUDA_CHECK(cudaGetLastError());
  1279. // copy dst to host or other device if necessary
  1280. if (!dst_on_device) {
  1281. void * dst_off_device = dst->data;
  1282. if (split) {
  1283. // src0 = weight matrix is saved as a transposed matrix for better memory layout.
  1284. // dst is NOT transposed.
  1285. // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
  1286. // Instead they need to be copied to the correct slice in ne0 = dst row index.
  1287. // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
  1288. float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
  1289. GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
  1290. dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
  1291. #if !defined(GGML_USE_HIPBLAS)
  1292. // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
  1293. cudaMemcpy3DPeerParms p = {};
  1294. p.dstDevice = ctx.device;
  1295. p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols);
  1296. p.srcDevice = id;
  1297. p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
  1298. p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
  1299. CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
  1300. #else
  1301. // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
  1302. CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
  1303. dst_dd_i, row_diff*sizeof(float),
  1304. row_diff*sizeof(float), src1_ncols,
  1305. cudaMemcpyDeviceToDevice, stream));
  1306. #endif
  1307. } else {
  1308. float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
  1309. GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
  1310. dhf_dst_i += src1_col_0*ne0;
  1311. CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
  1312. }
  1313. }
  1314. // add event for the main device to wait on until other device is done
  1315. if (split && (id != ctx.device || is != 0)) {
  1316. CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
  1317. }
  1318. }
  1319. }
  1320. }
  1321. // main device waits for all other devices to be finished
  1322. if (split && ggml_backend_cuda_get_device_count() > 1) {
  1323. int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
  1324. is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;
  1325. ggml_cuda_set_device(ctx.device);
  1326. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1327. if (dev[id].row_low == dev[id].row_high) {
  1328. continue;
  1329. }
  1330. for (int64_t is = 0; is < is_max; ++is) {
  1331. CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
  1332. }
  1333. }
  1334. }
  1335. }
  1336. static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1337. GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
  1338. GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
  1339. GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
  1340. GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
  1341. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1342. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1343. const int64_t ne00 = src0->ne[0];
  1344. const int64_t ne01 = src0->ne[1];
  1345. const int64_t ne02 = src0->ne[2];
  1346. const int64_t ne12 = src1->ne[2];
  1347. cudaStream_t main_stream = ctx.stream();
  1348. void * src0_ddq = src0->data;
  1349. float * src1_ddf = (float *) src1->data;
  1350. float * dst_ddf = (float *) dst->data;
  1351. ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
  1352. }
  1353. static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1354. GGML_ASSERT(!ggml_is_transposed(src0));
  1355. GGML_ASSERT(!ggml_is_transposed(src1));
  1356. GGML_ASSERT(!ggml_is_permuted(src0));
  1357. GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
  1358. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1359. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1360. const int64_t ne00 = src0->ne[0];
  1361. const int64_t ne01 = src0->ne[1];
  1362. const int64_t ne02 = src0->ne[2];
  1363. const int64_t nb01 = src0->nb[1];
  1364. const int64_t nb02 = src0->nb[2];
  1365. const int64_t ne12 = src1->ne[2];
  1366. cudaStream_t main_stream = ctx.stream();
  1367. void * src0_ddq = src0->data;
  1368. float * src1_ddf = (float *) src1->data;
  1369. float * dst_ddf = (float *) dst->data;
  1370. const int64_t row_stride_x = nb01 / sizeof(half);
  1371. const int64_t channel_stride_x = nb02 / sizeof(half);
  1372. ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
  1373. }
  1374. static __global__ void k_compute_batched_ptrs(
  1375. const half * src0_as_f16, const half * src1_as_f16, char * dst,
  1376. const void ** ptrs_src, void ** ptrs_dst,
  1377. int64_t ne12, int64_t ne13,
  1378. int64_t ne23,
  1379. size_t nb02, size_t nb03,
  1380. size_t nb12, size_t nb13,
  1381. size_t nbd2, size_t nbd3,
  1382. int64_t r2, int64_t r3) {
  1383. int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
  1384. int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
  1385. if (i13 >= ne13 || i12 >= ne12) {
  1386. return;
  1387. }
  1388. int64_t i03 = i13 / r3;
  1389. int64_t i02 = i12 / r2;
  1390. ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
  1391. ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
  1392. ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
  1393. }
  1394. static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1395. GGML_ASSERT(!ggml_is_transposed(src0));
  1396. GGML_ASSERT(!ggml_is_transposed(src1));
  1397. GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
  1398. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1399. GGML_TENSOR_BINARY_OP_LOCALS
  1400. const int64_t ne_dst = ggml_nelements(dst);
  1401. cudaStream_t main_stream = ctx.stream();
  1402. CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
  1403. void * src0_ddq = src0->data;
  1404. half * src0_f16 = (half *) src0_ddq;
  1405. float * src1_ddf = (float *) src1->data;
  1406. float * dst_ddf = (float *) dst->data;
  1407. // convert src1 to fp16
  1408. ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
  1409. if (src1->type != GGML_TYPE_F16) {
  1410. const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
  1411. const int64_t ne_src1 = ggml_nelements(src1);
  1412. src1_f16_alloc.alloc(ne_src1);
  1413. GGML_ASSERT(to_fp16_cuda != nullptr);
  1414. to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
  1415. }
  1416. half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
  1417. ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
  1418. char * dst_t;
  1419. cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
  1420. cudaDataType_t cu_data_type = CUDA_R_16F;
  1421. // dst strides
  1422. size_t nbd2 = dst->nb[2];
  1423. size_t nbd3 = dst->nb[3];
  1424. const half alpha_f16 = 1.0f;
  1425. const half beta_f16 = 0.0f;
  1426. const float alpha_f32 = 1.0f;
  1427. const float beta_f32 = 0.0f;
  1428. const void * alpha = &alpha_f16;
  1429. const void * beta = &beta_f16;
  1430. if (dst->op_params[0] == GGML_PREC_DEFAULT) {
  1431. dst_t = (char *) dst_f16.alloc(ne_dst);
  1432. nbd2 /= sizeof(float) / sizeof(half);
  1433. nbd3 /= sizeof(float) / sizeof(half);
  1434. } else {
  1435. dst_t = (char *) dst_ddf;
  1436. cu_compute_type = CUBLAS_COMPUTE_32F;
  1437. cu_data_type = CUDA_R_32F;
  1438. alpha = &alpha_f32;
  1439. beta = &beta_f32;
  1440. }
  1441. GGML_ASSERT(ne12 % ne02 == 0);
  1442. GGML_ASSERT(ne13 % ne03 == 0);
  1443. // broadcast factors
  1444. const int64_t r2 = ne12/ne02;
  1445. const int64_t r3 = ne13/ne03;
  1446. #if 0
  1447. // use cublasGemmEx
  1448. {
  1449. for (int i13 = 0; i13 < ne13; ++i13) {
  1450. for (int i12 = 0; i12 < ne12; ++i12) {
  1451. int i03 = i13 / r3;
  1452. int i02 = i12 / r2;
  1453. CUBLAS_CHECK(
  1454. cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
  1455. ne01, ne11, ne10,
  1456. alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
  1457. (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
  1458. beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
  1459. cu_compute_type,
  1460. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  1461. }
  1462. }
  1463. }
  1464. #else
  1465. if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
  1466. // there is no broadcast and src0, src1 are contiguous across dims 2, 3
  1467. // use cublasGemmStridedBatchedEx
  1468. CUBLAS_CHECK(
  1469. cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
  1470. ne01, ne11, ne10,
  1471. alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
  1472. (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
  1473. beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
  1474. ne12*ne13,
  1475. cu_compute_type,
  1476. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  1477. } else {
  1478. // use cublasGemmBatchedEx
  1479. const int ne23 = ne12*ne13;
  1480. ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
  1481. ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
  1482. dim3 block_dims(ne13, ne12);
  1483. k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
  1484. src0_f16, src1_f16, dst_t,
  1485. ptrs_src.get(), ptrs_dst.get(),
  1486. ne12, ne13,
  1487. ne23,
  1488. nb02, nb03,
  1489. src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
  1490. src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
  1491. nbd2, nbd3,
  1492. r2, r3);
  1493. CUDA_CHECK(cudaGetLastError());
  1494. CUBLAS_CHECK(
  1495. cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
  1496. ne01, ne11, ne10,
  1497. alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
  1498. (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
  1499. beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
  1500. ne23,
  1501. cu_compute_type,
  1502. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  1503. }
  1504. #endif
  1505. if (dst->op_params[0] == GGML_PREC_DEFAULT) {
  1506. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
  1507. to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
  1508. }
  1509. }
  1510. static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1511. const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
  1512. int64_t min_compute_capability = INT_MAX;
  1513. bool any_pascal_with_slow_fp16 = false;
  1514. if (split) {
  1515. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
  1516. auto & tensor_split = buft_ctx->tensor_split;
  1517. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1518. // skip devices that are not going to do any work:
  1519. if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
  1520. continue;
  1521. }
  1522. if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
  1523. min_compute_capability = ggml_cuda_info().devices[id].cc;
  1524. }
  1525. if (ggml_cuda_info().devices[id].cc == 610) {
  1526. any_pascal_with_slow_fp16 = true;
  1527. }
  1528. }
  1529. } else {
  1530. min_compute_capability = ggml_cuda_info().devices[ctx.device].cc;
  1531. any_pascal_with_slow_fp16 = ggml_cuda_info().devices[ctx.device].cc == 610;
  1532. }
  1533. // check data types and tensor shapes for custom matrix multiplication kernels:
  1534. bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
  1535. && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
  1536. && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
  1537. bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
  1538. && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
  1539. && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
  1540. bool use_mul_mat_q = ggml_cuda_supports_mmq(src0->type)
  1541. && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
  1542. #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  1543. const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
  1544. #ifdef CUDA_USE_TENSOR_CORES
  1545. use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
  1546. #endif // CUDA_USE_TENSOR_CORES
  1547. #else
  1548. // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
  1549. const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
  1550. // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
  1551. use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
  1552. use_mul_mat_q = use_mul_mat_q && min_compute_capability >= MIN_CC_DP4A;
  1553. #ifdef CUDA_USE_TENSOR_CORES
  1554. // when tensor cores are available, use them for large batch size
  1555. // ref: https://github.com/ggerganov/llama.cpp/pull/3776
  1556. use_mul_mat_q = use_mul_mat_q && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
  1557. #endif // CUDA_USE_TENSOR_CORES
  1558. #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  1559. // if mmvq is available it's a better choice than dmmv:
  1560. #ifndef GGML_CUDA_FORCE_DMMV
  1561. use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
  1562. #endif // GGML_CUDA_FORCE_DMMV
  1563. // debug helpers
  1564. //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
  1565. //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
  1566. //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
  1567. //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
  1568. //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
  1569. //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
  1570. if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
  1571. // KQ single-batch
  1572. ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
  1573. } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
  1574. // KQV single-batch
  1575. ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
  1576. } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || fp16_performance_good) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
  1577. // KQ + KQV multi-batch
  1578. ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
  1579. } else if (use_dequantize_mul_mat_vec) {
  1580. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
  1581. } else if (use_mul_mat_vec_q) {
  1582. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
  1583. } else if (use_mul_mat_q) {
  1584. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
  1585. } else {
  1586. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
  1587. }
  1588. }
  1589. struct mmid_row_mapping {
  1590. int32_t i1;
  1591. int32_t i2;
  1592. };
  1593. static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
  1594. int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
  1595. const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
  1596. int64_t ne11, int64_t ne10,
  1597. size_t nb11, size_t nb12) {
  1598. int32_t iid1 = blockIdx.x;
  1599. int32_t id = blockIdx.y;
  1600. const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
  1601. if (row_id_i != i02) {
  1602. return;
  1603. }
  1604. const int64_t i11 = id % ne11;
  1605. const int64_t i12 = iid1;
  1606. __shared__ int src1_row;
  1607. if (threadIdx.x == 0) {
  1608. src1_row = atomicAdd(cur_src1_row, 1);
  1609. row_mapping[src1_row] = {id, iid1};
  1610. }
  1611. __syncthreads();
  1612. const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
  1613. float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
  1614. for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
  1615. src1_row_contiguous[i] = src1_row_original[i];
  1616. }
  1617. }
  1618. static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
  1619. const mmid_row_mapping * __restrict__ row_mapping,
  1620. int64_t ne0,
  1621. size_t nb1, size_t nb2) {
  1622. int32_t i = blockIdx.x;
  1623. const int32_t i1 = row_mapping[i].i1;
  1624. const int32_t i2 = row_mapping[i].i2;
  1625. const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
  1626. float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
  1627. for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
  1628. dst_row_original[j] = dst_row_contiguous[j];
  1629. }
  1630. }
  1631. static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
  1632. const ggml_tensor * src0 = dst->src[0];
  1633. const ggml_tensor * src1 = dst->src[1];
  1634. const ggml_tensor * ids = dst->src[2];
  1635. GGML_TENSOR_BINARY_OP_LOCALS
  1636. GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
  1637. cudaStream_t stream = ctx.stream();
  1638. const int64_t n_as = ne02;
  1639. const int64_t n_ids = ids->ne[0];
  1640. std::vector<char> ids_host(ggml_nbytes(ids));
  1641. const char * ids_dev = (const char *) ids->data;
  1642. CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
  1643. CUDA_CHECK(cudaStreamSynchronize(stream));
  1644. ggml_tensor src0_row = *src0;
  1645. ggml_tensor src1_row = *src1;
  1646. ggml_tensor dst_row = *dst;
  1647. char * src0_original = (char *) src0->data;
  1648. char * src1_original = (char *) src1->data;
  1649. char * dst_original = (char *) dst->data;
  1650. src0_row.ne[2] = 1;
  1651. src0_row.ne[3] = 1;
  1652. src0_row.nb[3] = nb02;
  1653. src1_row.ne[1] = 1;
  1654. src1_row.ne[2] = 1;
  1655. src1_row.ne[3] = 1;
  1656. src1_row.nb[2] = nb11;
  1657. src1_row.nb[3] = nb11;
  1658. dst_row.ne[1] = 1;
  1659. dst_row.ne[2] = 1;
  1660. dst_row.ne[3] = 1;
  1661. dst_row.nb[2] = nb1;
  1662. dst_row.nb[3] = nb1;
  1663. if (ne12 == 1) {
  1664. for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
  1665. for (int64_t id = 0; id < n_ids; id++) {
  1666. const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
  1667. GGML_ASSERT(i02 >= 0 && i02 < n_as);
  1668. const int64_t i11 = id % ne11;
  1669. const int64_t i12 = iid1;
  1670. const int64_t i1 = id;
  1671. const int64_t i2 = i12;
  1672. src0_row.data = src0_original + i02*nb02;
  1673. src1_row.data = src1_original + i11*nb11 + i12*nb12;
  1674. dst_row.data = dst_original + i1*nb1 + i2*nb2;
  1675. ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
  1676. }
  1677. }
  1678. } else {
  1679. ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
  1680. ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
  1681. src1_row.data = src1_contiguous.get();
  1682. dst_row.data = dst_contiguous.get();
  1683. for (int64_t i02 = 0; i02 < n_as; i02++) {
  1684. int64_t num_src1_rows = 0;
  1685. for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
  1686. for (int64_t id = 0; id < n_ids; id++) {
  1687. const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
  1688. GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
  1689. if (row_id_i != i02) {
  1690. continue;
  1691. }
  1692. num_src1_rows++;
  1693. }
  1694. }
  1695. if (num_src1_rows == 0) {
  1696. continue;
  1697. }
  1698. ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
  1699. ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
  1700. CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
  1701. {
  1702. dim3 block_dims(std::min((unsigned int)ne10, 768u));
  1703. dim3 grid_dims(ids->ne[1], n_ids);
  1704. k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
  1705. src1_original, src1_contiguous.get(),
  1706. dev_cur_src1_row.get(), dev_row_mapping.get(),
  1707. ids_dev, i02, ids->nb[1], ids->nb[0],
  1708. ne11, ne10,
  1709. nb11, nb12);
  1710. CUDA_CHECK(cudaGetLastError());
  1711. }
  1712. src0_row.data = src0_original + i02*nb02;
  1713. GGML_ASSERT(nb11 == sizeof(float)*ne10);
  1714. GGML_ASSERT(nb1 == sizeof(float)*ne0);
  1715. src1_row.ne[1] = num_src1_rows;
  1716. src1_row.nb[1] = nb11;
  1717. src1_row.nb[2] = num_src1_rows*nb11;
  1718. src1_row.nb[3] = num_src1_rows*nb11;
  1719. dst_row.ne[1] = num_src1_rows;
  1720. dst_row.nb[1] = nb1;
  1721. dst_row.nb[2] = num_src1_rows*nb1;
  1722. dst_row.nb[3] = num_src1_rows*nb1;
  1723. ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
  1724. {
  1725. dim3 block_dims(std::min((unsigned int)ne0, 768u));
  1726. dim3 grid_dims(num_src1_rows);
  1727. k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
  1728. dst_original, dst_contiguous.get(),
  1729. dev_row_mapping.get(),
  1730. ne0,
  1731. nb1, nb2);
  1732. CUDA_CHECK(cudaGetLastError());
  1733. }
  1734. }
  1735. }
  1736. }
  1737. static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
  1738. // why is this here instead of mul_mat?
  1739. if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
  1740. ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
  1741. }
  1742. switch (dst->op) {
  1743. case GGML_OP_REPEAT:
  1744. ggml_cuda_op_repeat(ctx, dst);
  1745. break;
  1746. case GGML_OP_GET_ROWS:
  1747. ggml_cuda_op_get_rows(ctx, dst);
  1748. break;
  1749. case GGML_OP_DUP:
  1750. ggml_cuda_dup(ctx, dst);
  1751. break;
  1752. case GGML_OP_CPY:
  1753. ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
  1754. break;
  1755. case GGML_OP_CONT:
  1756. ggml_cuda_dup(ctx, dst);
  1757. break;
  1758. case GGML_OP_ADD:
  1759. ggml_cuda_op_add(ctx, dst);
  1760. break;
  1761. case GGML_OP_ACC:
  1762. ggml_cuda_op_acc(ctx, dst);
  1763. break;
  1764. case GGML_OP_MUL:
  1765. ggml_cuda_op_mul(ctx, dst);
  1766. break;
  1767. case GGML_OP_DIV:
  1768. ggml_cuda_op_div(ctx, dst);
  1769. break;
  1770. case GGML_OP_UNARY:
  1771. switch (ggml_get_unary_op(dst)) {
  1772. case GGML_UNARY_OP_GELU:
  1773. ggml_cuda_op_gelu(ctx, dst);
  1774. break;
  1775. case GGML_UNARY_OP_SILU:
  1776. ggml_cuda_op_silu(ctx, dst);
  1777. break;
  1778. case GGML_UNARY_OP_GELU_QUICK:
  1779. ggml_cuda_op_gelu_quick(ctx, dst);
  1780. break;
  1781. case GGML_UNARY_OP_TANH:
  1782. ggml_cuda_op_tanh(ctx, dst);
  1783. break;
  1784. case GGML_UNARY_OP_RELU:
  1785. ggml_cuda_op_relu(ctx, dst);
  1786. break;
  1787. case GGML_UNARY_OP_HARDSIGMOID:
  1788. ggml_cuda_op_hardsigmoid(ctx, dst);
  1789. break;
  1790. case GGML_UNARY_OP_HARDSWISH:
  1791. ggml_cuda_op_hardswish(ctx, dst);
  1792. break;
  1793. default:
  1794. return false;
  1795. }
  1796. break;
  1797. case GGML_OP_NORM:
  1798. ggml_cuda_op_norm(ctx, dst);
  1799. break;
  1800. case GGML_OP_GROUP_NORM:
  1801. ggml_cuda_op_group_norm(ctx, dst);
  1802. break;
  1803. case GGML_OP_CONCAT:
  1804. ggml_cuda_op_concat(ctx, dst);
  1805. break;
  1806. case GGML_OP_UPSCALE:
  1807. ggml_cuda_op_upscale(ctx, dst);
  1808. break;
  1809. case GGML_OP_PAD:
  1810. ggml_cuda_op_pad(ctx, dst);
  1811. break;
  1812. case GGML_OP_ARANGE:
  1813. ggml_cuda_op_arange(ctx, dst);
  1814. break;
  1815. case GGML_OP_TIMESTEP_EMBEDDING:
  1816. ggml_cuda_op_timestep_embedding(ctx, dst);
  1817. break;
  1818. case GGML_OP_LEAKY_RELU:
  1819. ggml_cuda_op_leaky_relu(ctx, dst);
  1820. break;
  1821. case GGML_OP_RMS_NORM:
  1822. ggml_cuda_op_rms_norm(ctx, dst);
  1823. break;
  1824. case GGML_OP_MUL_MAT:
  1825. if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
  1826. fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
  1827. return false;
  1828. } else {
  1829. ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
  1830. }
  1831. break;
  1832. case GGML_OP_MUL_MAT_ID:
  1833. ggml_cuda_mul_mat_id(ctx, dst);
  1834. break;
  1835. case GGML_OP_SCALE:
  1836. ggml_cuda_op_scale(ctx, dst);
  1837. break;
  1838. case GGML_OP_SQR:
  1839. ggml_cuda_op_sqr(ctx, dst);
  1840. break;
  1841. case GGML_OP_CLAMP:
  1842. ggml_cuda_op_clamp(ctx, dst);
  1843. break;
  1844. case GGML_OP_NONE:
  1845. case GGML_OP_RESHAPE:
  1846. case GGML_OP_VIEW:
  1847. case GGML_OP_PERMUTE:
  1848. case GGML_OP_TRANSPOSE:
  1849. break;
  1850. case GGML_OP_DIAG_MASK_INF:
  1851. ggml_cuda_op_diag_mask_inf(ctx, dst);
  1852. break;
  1853. case GGML_OP_SOFT_MAX:
  1854. ggml_cuda_op_soft_max(ctx, dst);
  1855. break;
  1856. case GGML_OP_ROPE:
  1857. ggml_cuda_op_rope(ctx, dst);
  1858. break;
  1859. case GGML_OP_ALIBI:
  1860. ggml_cuda_op_alibi(ctx, dst);
  1861. break;
  1862. case GGML_OP_IM2COL:
  1863. ggml_cuda_op_im2col(ctx, dst);
  1864. break;
  1865. case GGML_OP_POOL_2D:
  1866. ggml_cuda_op_pool2d(ctx, dst);
  1867. break;
  1868. case GGML_OP_SUM_ROWS:
  1869. ggml_cuda_op_sum_rows(ctx, dst);
  1870. break;
  1871. case GGML_OP_ARGSORT:
  1872. ggml_cuda_op_argsort(ctx, dst);
  1873. break;
  1874. case GGML_OP_FLASH_ATTN_EXT:
  1875. ggml_cuda_flash_attn_ext(ctx, dst);
  1876. break;
  1877. default:
  1878. return false;
  1879. }
  1880. cudaError_t err = cudaGetLastError();
  1881. if (err != cudaSuccess) {
  1882. fprintf(stderr, "%s: %s failed\n", __func__, ggml_op_desc(dst));
  1883. CUDA_CHECK(err);
  1884. }
  1885. return true;
  1886. }
  1887. ////////////////////////////////////////////////////////////////////////////////
  1888. // backend
  1889. GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
  1890. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1891. return cuda_ctx->name.c_str();
  1892. }
  1893. GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
  1894. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1895. delete cuda_ctx;
  1896. delete backend;
  1897. }
  1898. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
  1899. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1900. return ggml_backend_cuda_buffer_type(cuda_ctx->device);
  1901. }
  1902. GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1903. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1904. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  1905. GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
  1906. CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
  1907. }
  1908. GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1909. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1910. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  1911. GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
  1912. CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
  1913. }
  1914. GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
  1915. GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst));
  1916. ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
  1917. ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
  1918. if (!ggml_backend_buffer_is_cuda(src->buffer)) {
  1919. return false;
  1920. }
  1921. if (!ggml_backend_buffer_is_cuda(dst->buffer)) {
  1922. return false;
  1923. }
  1924. // device -> device
  1925. ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
  1926. ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
  1927. if (backend_src != backend_dst) {
  1928. ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
  1929. ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
  1930. GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device);
  1931. GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device);
  1932. // copy on src stream
  1933. if (cuda_ctx_src->device == cuda_ctx_dst->device) {
  1934. CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
  1935. } else {
  1936. #ifdef GGML_CUDA_NO_PEER_COPY
  1937. return false;
  1938. #else
  1939. CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
  1940. #endif
  1941. }
  1942. // record event on src stream
  1943. if (!cuda_ctx_src->copy_event) {
  1944. ggml_cuda_set_device(cuda_ctx_src->device);
  1945. CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
  1946. }
  1947. CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));
  1948. // wait on dst stream for the copy to complete
  1949. CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
  1950. } else {
  1951. // src and dst are on the same backend
  1952. CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
  1953. }
  1954. return true;
  1955. }
  1956. GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
  1957. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1958. CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
  1959. GGML_UNUSED(backend);
  1960. }
  1961. static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
  1962. graph_node_properties->node_address = node->data;
  1963. graph_node_properties->node_op = node->op;
  1964. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  1965. graph_node_properties->ne[i] = node->ne[i];
  1966. graph_node_properties->nb[i] = node->nb[i];
  1967. }
  1968. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1969. graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
  1970. }
  1971. }
  1972. static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
  1973. if (node->data != graph_node_properties->node_address &&
  1974. node->op != GGML_OP_CPY &&
  1975. node->op != GGML_OP_VIEW) {
  1976. return false;
  1977. }
  1978. if (node->op != graph_node_properties->node_op) {
  1979. return false;
  1980. }
  1981. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  1982. if (node->ne[i] != graph_node_properties->ne[i]) {
  1983. return false;
  1984. }
  1985. if (node->nb[i] != graph_node_properties->nb[i]) {
  1986. return false;
  1987. }
  1988. }
  1989. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1990. if (node->src[i] &&
  1991. node->src[i]->data != graph_node_properties->src_address[i] &&
  1992. node->op != GGML_OP_CPY &&
  1993. node->op != GGML_OP_VIEW
  1994. ) {
  1995. return false;
  1996. }
  1997. }
  1998. return true;
  1999. }
  2000. GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  2001. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  2002. ggml_cuda_set_device(cuda_ctx->device);
  2003. #ifdef USE_CUDA_GRAPH
  2004. static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
  2005. // Objects required for CUDA Graph
  2006. if (cuda_ctx->cuda_graph == nullptr) {
  2007. cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
  2008. }
  2009. bool use_cuda_graph = true;
  2010. bool cuda_graph_update_required = false;
  2011. // pointer to CUDA cpy kernel, which is required to identify
  2012. // kernel parameters which need updated in the graph for each token
  2013. void * ggml_cuda_cpy_fn_ptr = nullptr;
  2014. if (cuda_ctx->cuda_graph->graph == nullptr) {
  2015. if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
  2016. cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
  2017. #ifndef NDEBUG
  2018. fprintf(stderr, "%s: disabling CUDA graphs due to GPU architecture\n", __func__);
  2019. #endif
  2020. }
  2021. }
  2022. // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
  2023. // or previous graph capture failure.
  2024. // Also disable for multi-gpu for now. TO DO investigate
  2025. if (disable_cuda_graphs_due_to_env
  2026. || cuda_ctx->cuda_graph->disable_due_to_gpu_arch
  2027. || cuda_ctx->cuda_graph->disable_due_to_too_many_updates
  2028. || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
  2029. use_cuda_graph = false;
  2030. }
  2031. if (use_cuda_graph) {
  2032. if (cuda_ctx->cuda_graph->instance == nullptr) {
  2033. cuda_graph_update_required = true;
  2034. }
  2035. // Check if the graph size has changed
  2036. if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
  2037. cuda_graph_update_required = true;
  2038. cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
  2039. }
  2040. // Loop over nodes in GGML graph to determine if CUDA graph update is required
  2041. // and store properties to allow this comparison for the next token
  2042. for (int i = 0; i < cgraph->n_nodes; i++) {
  2043. bool has_matching_properties = true;
  2044. if (!cuda_graph_update_required) {
  2045. has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
  2046. }
  2047. if (!has_matching_properties) {
  2048. cuda_graph_update_required = true;
  2049. }
  2050. set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
  2051. }
  2052. // Loop over nodes in GGML graph to obtain info needed for CUDA graph
  2053. cuda_ctx->cuda_graph->updated_kernel_arg.clear();
  2054. for (int i = 0; i < cgraph->n_nodes; i++) {
  2055. ggml_tensor * node = cgraph->nodes[i];
  2056. if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
  2057. use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
  2058. #ifndef NDEBUG
  2059. fprintf(stderr, "%s: disabling CUDA graphs due to split buffer\n", __func__);
  2060. #endif
  2061. }
  2062. if (node->op == GGML_OP_MUL_MAT_ID) {
  2063. use_cuda_graph = false; // This node type is not supported by CUDA graph capture
  2064. #ifndef NDEBUG
  2065. fprintf(stderr, "%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
  2066. #endif
  2067. }
  2068. if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
  2069. // disable CUDA graphs for batch size > 1 for now.
  2070. // Changes in batch size or context size can cause changes to the grid size of some kernels.
  2071. use_cuda_graph = false;
  2072. #ifndef NDEBUG
  2073. fprintf(stderr, "%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
  2074. #endif
  2075. }
  2076. if (node->op == GGML_OP_CPY) {
  2077. // store the copy op parameter which changes with each token.
  2078. cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
  2079. if (ggml_cuda_cpy_fn_ptr == nullptr) {
  2080. // store a pointer to the copy op CUDA kernel to identify it later
  2081. ggml_cuda_cpy_fn_ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
  2082. }
  2083. }
  2084. if (!use_cuda_graph) {
  2085. break;
  2086. }
  2087. }
  2088. // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
  2089. if (cuda_graph_update_required) {
  2090. cuda_ctx->cuda_graph->number_consecutive_updates++;
  2091. } else {
  2092. cuda_ctx->cuda_graph->number_consecutive_updates = 0;
  2093. }
  2094. if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
  2095. cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
  2096. #ifndef NDEBUG
  2097. fprintf(stderr, "%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
  2098. #endif
  2099. }
  2100. }
  2101. if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
  2102. CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
  2103. }
  2104. #else
  2105. bool use_cuda_graph = false;
  2106. bool cuda_graph_update_required = false;
  2107. #endif // USE_CUDA_GRAPH
  2108. bool graph_evaluated_or_captured = false;
  2109. while (!graph_evaluated_or_captured) {
  2110. // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
  2111. // With the use of CUDA graphs, the execution will be performed by the graph launch.
  2112. if (!use_cuda_graph || cuda_graph_update_required) {
  2113. for (int i = 0; i < cgraph->n_nodes; i++) {
  2114. ggml_tensor * node = cgraph->nodes[i];
  2115. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  2116. continue;
  2117. }
  2118. #ifndef NDEBUG
  2119. assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
  2120. for (int j = 0; j < GGML_MAX_SRC; j++) {
  2121. if (node->src[j] != nullptr) {
  2122. assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
  2123. }
  2124. }
  2125. #endif
  2126. bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
  2127. if (!ok) {
  2128. fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  2129. }
  2130. GGML_ASSERT(ok);
  2131. }
  2132. }
  2133. #ifdef USE_CUDA_GRAPH
  2134. if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
  2135. if (cuda_ctx->cuda_graph->graph != nullptr) {
  2136. CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
  2137. cuda_ctx->cuda_graph->graph = nullptr;
  2138. }
  2139. CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
  2140. #if 0
  2141. if (disable_cuda_graphs_due_to_failed_capture) {
  2142. use_cuda_graph = false;
  2143. cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
  2144. #ifndef NDEBUG
  2145. fprintf(stderr, "%s: disabling CUDA graphs due to failed graph capture\n", __func__);
  2146. #endif
  2147. } else {
  2148. graph_evaluated_or_captured = true; // CUDA graph has been captured
  2149. }
  2150. #endif
  2151. graph_evaluated_or_captured = true; // CUDA graph has been captured
  2152. } else {
  2153. graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
  2154. }
  2155. }
  2156. if (use_cuda_graph) {
  2157. if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
  2158. CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
  2159. }
  2160. // Perform update to graph (if required for this token), and change copy parameter (required for every token)
  2161. if (cuda_graph_update_required) {
  2162. // Extract nodes from graph
  2163. if (cuda_ctx->cuda_graph->num_nodes == 0) {
  2164. // First call with null argument gets number of nodes in graph
  2165. CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
  2166. }
  2167. // Subsequent call with non-null argument gets nodes
  2168. cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
  2169. cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
  2170. if (cuda_ctx->cuda_graph->num_nodes > 0) {
  2171. CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
  2172. // Loop over nodes, and extract kernel parameters from each node
  2173. for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
  2174. cudaGraphNodeType node_type;
  2175. CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
  2176. if (node_type == cudaGraphNodeTypeKernel) {
  2177. cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
  2178. if (stat == cudaErrorInvalidDeviceFunction) {
  2179. // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
  2180. // We don't need to update blas nodes, so clear error and move on.
  2181. cudaGetLastError();
  2182. } else {
  2183. GGML_ASSERT(stat == cudaSuccess);
  2184. }
  2185. }
  2186. }
  2187. }
  2188. }
  2189. // One of the arguments to the copy kernel is updated for each token, hence we need to
  2190. // replace that argument with the updated value in the CUDA graph
  2191. if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
  2192. int k = 0;
  2193. for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
  2194. if (cuda_ctx->cuda_graph->params[i].func == ggml_cuda_cpy_fn_ptr) {
  2195. char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
  2196. cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
  2197. CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
  2198. }
  2199. }
  2200. }
  2201. // Update graph executable
  2202. cudaGraphExecUpdateResultInfo result_info;
  2203. cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
  2204. if (stat == cudaErrorGraphExecUpdateFailure) {
  2205. #ifndef NDEBUG
  2206. fprintf(stderr, "%s: CUDA graph update failed\n", __func__);
  2207. #endif
  2208. // The pre-existing graph exec cannot be updated due to violated constraints
  2209. // so instead clear error and re-instantiate
  2210. cudaGetLastError();
  2211. CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
  2212. cuda_ctx->cuda_graph->instance = nullptr;
  2213. CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
  2214. } else {
  2215. GGML_ASSERT(stat == cudaSuccess);
  2216. }
  2217. // Launch graph
  2218. CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
  2219. #else
  2220. graph_evaluated_or_captured = true;
  2221. #endif // USE_CUDA_GRAPH
  2222. }
  2223. return GGML_STATUS_SUCCESS;
  2224. }
  2225. GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
  2226. switch (op->op) {
  2227. case GGML_OP_UNARY:
  2228. switch (ggml_get_unary_op(op)) {
  2229. case GGML_UNARY_OP_GELU:
  2230. case GGML_UNARY_OP_SILU:
  2231. case GGML_UNARY_OP_RELU:
  2232. case GGML_UNARY_OP_HARDSIGMOID:
  2233. case GGML_UNARY_OP_HARDSWISH:
  2234. case GGML_UNARY_OP_GELU_QUICK:
  2235. case GGML_UNARY_OP_TANH:
  2236. return true;
  2237. default:
  2238. return false;
  2239. }
  2240. break;
  2241. case GGML_OP_MUL_MAT:
  2242. case GGML_OP_MUL_MAT_ID:
  2243. {
  2244. struct ggml_tensor * a;
  2245. struct ggml_tensor * b;
  2246. if (op->op == GGML_OP_MUL_MAT) {
  2247. a = op->src[0];
  2248. b = op->src[1];
  2249. } else {
  2250. a = op->src[2];
  2251. b = op->src[1];
  2252. }
  2253. if (a->ne[3] != b->ne[3]) {
  2254. return false;
  2255. }
  2256. ggml_type a_type = a->type;
  2257. if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
  2258. a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S ||
  2259. a_type == GGML_TYPE_IQ1_M || a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS) {
  2260. if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
  2261. return false;
  2262. }
  2263. }
  2264. return true;
  2265. } break;
  2266. case GGML_OP_GET_ROWS:
  2267. {
  2268. switch (op->src[0]->type) {
  2269. case GGML_TYPE_F16:
  2270. case GGML_TYPE_F32:
  2271. case GGML_TYPE_Q4_0:
  2272. case GGML_TYPE_Q4_1:
  2273. case GGML_TYPE_Q5_0:
  2274. case GGML_TYPE_Q5_1:
  2275. case GGML_TYPE_Q8_0:
  2276. return true;
  2277. default:
  2278. return false;
  2279. }
  2280. } break;
  2281. case GGML_OP_CPY:
  2282. {
  2283. ggml_type src0_type = op->src[0]->type;
  2284. ggml_type src1_type = op->src[1]->type;
  2285. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
  2286. return true;
  2287. }
  2288. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
  2289. return true;
  2290. }
  2291. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
  2292. return true;
  2293. }
  2294. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
  2295. return true;
  2296. }
  2297. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
  2298. return true;
  2299. }
  2300. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
  2301. return true;
  2302. }
  2303. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
  2304. return true;
  2305. }
  2306. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
  2307. return true;
  2308. }
  2309. if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
  2310. return true;
  2311. }
  2312. if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
  2313. return true;
  2314. }
  2315. return false;
  2316. } break;
  2317. case GGML_OP_DUP:
  2318. case GGML_OP_REPEAT:
  2319. case GGML_OP_CONCAT:
  2320. {
  2321. ggml_type src0_type = op->src[0]->type;
  2322. return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
  2323. } break;
  2324. case GGML_OP_NONE:
  2325. case GGML_OP_RESHAPE:
  2326. case GGML_OP_VIEW:
  2327. case GGML_OP_PERMUTE:
  2328. case GGML_OP_TRANSPOSE:
  2329. case GGML_OP_NORM:
  2330. case GGML_OP_ADD:
  2331. case GGML_OP_MUL:
  2332. case GGML_OP_DIV:
  2333. case GGML_OP_RMS_NORM:
  2334. case GGML_OP_SCALE:
  2335. case GGML_OP_SQR:
  2336. case GGML_OP_CLAMP:
  2337. case GGML_OP_CONT:
  2338. case GGML_OP_DIAG_MASK_INF:
  2339. case GGML_OP_SOFT_MAX:
  2340. case GGML_OP_ROPE:
  2341. case GGML_OP_ALIBI:
  2342. case GGML_OP_IM2COL:
  2343. case GGML_OP_POOL_2D:
  2344. case GGML_OP_SUM_ROWS:
  2345. case GGML_OP_ARGSORT:
  2346. case GGML_OP_ACC:
  2347. case GGML_OP_GROUP_NORM:
  2348. case GGML_OP_UPSCALE:
  2349. case GGML_OP_PAD:
  2350. case GGML_OP_ARANGE:
  2351. case GGML_OP_TIMESTEP_EMBEDDING:
  2352. case GGML_OP_LEAKY_RELU:
  2353. case GGML_OP_FLASH_ATTN_EXT:
  2354. return true;
  2355. default:
  2356. return false;
  2357. }
  2358. GGML_UNUSED(backend);
  2359. }
  2360. GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
  2361. const int min_batch_size = 32;
  2362. return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
  2363. (op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
  2364. GGML_UNUSED(backend);
  2365. }
  2366. static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
  2367. #ifdef GGML_CUDA_NO_PEER_COPY
  2368. return nullptr;
  2369. #else
  2370. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  2371. ggml_cuda_set_device(cuda_ctx->device);
  2372. cudaEvent_t event;
  2373. CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
  2374. return new ggml_backend_event {
  2375. /* .backend = */ backend,
  2376. /* .context = */ event,
  2377. };
  2378. #endif
  2379. }
  2380. static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
  2381. CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
  2382. delete event;
  2383. }
  2384. static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
  2385. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
  2386. CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
  2387. }
  2388. static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  2389. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  2390. if (ggml_backend_is_cuda(event->backend)) {
  2391. CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
  2392. } else {
  2393. #if 0
  2394. // untested
  2395. auto wait_fn = [](void * user_data) {
  2396. ggml_backend_event_t event = (ggml_backend_event_t)user_data;
  2397. ggml_backend_event_synchronize(event);
  2398. };
  2399. CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
  2400. #endif
  2401. GGML_ASSERT(false);
  2402. }
  2403. }
  2404. static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
  2405. CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
  2406. }
  2407. static ggml_backend_i ggml_backend_cuda_interface = {
  2408. /* .get_name = */ ggml_backend_cuda_name,
  2409. /* .free = */ ggml_backend_cuda_free,
  2410. /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
  2411. /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
  2412. /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
  2413. /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
  2414. /* .synchronize = */ ggml_backend_cuda_synchronize,
  2415. /* .graph_plan_create = */ NULL,
  2416. /* .graph_plan_free = */ NULL,
  2417. /* .graph_plan_compute = */ NULL,
  2418. /* .graph_compute = */ ggml_backend_cuda_graph_compute,
  2419. /* .supports_op = */ ggml_backend_cuda_supports_op,
  2420. /* .offload_op = */ ggml_backend_cuda_offload_op,
  2421. /* .event_new = */ ggml_backend_cuda_event_new,
  2422. /* .event_free = */ ggml_backend_cuda_event_free,
  2423. /* .event_record = */ ggml_backend_cuda_event_record,
  2424. /* .event_wait = */ ggml_backend_cuda_event_wait,
  2425. /* .event_synchronize = */ ggml_backend_cuda_event_synchronize,
  2426. };
  2427. static ggml_guid_t ggml_backend_cuda_guid() {
  2428. static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
  2429. return &guid;
  2430. }
  2431. GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
  2432. if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
  2433. fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
  2434. return nullptr;
  2435. }
  2436. ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
  2437. if (ctx == nullptr) {
  2438. fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
  2439. return nullptr;
  2440. }
  2441. ggml_backend_t cuda_backend = new ggml_backend {
  2442. /* .guid = */ ggml_backend_cuda_guid(),
  2443. /* .interface = */ ggml_backend_cuda_interface,
  2444. /* .context = */ ctx
  2445. };
  2446. return cuda_backend;
  2447. }
  2448. GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
  2449. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
  2450. }
  2451. GGML_CALL int ggml_backend_cuda_get_device_count() {
  2452. return ggml_cuda_info().device_count;
  2453. }
  2454. GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
  2455. cudaDeviceProp prop;
  2456. CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
  2457. snprintf(description, description_size, "%s", prop.name);
  2458. }
  2459. GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
  2460. ggml_cuda_set_device(device);
  2461. CUDA_CHECK(cudaMemGetInfo(free, total));
  2462. }
  2463. GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
  2464. if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
  2465. return false;
  2466. }
  2467. #if CUDART_VERSION >= 11100
  2468. cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
  2469. if (err != cudaSuccess) {
  2470. // clear the error
  2471. cudaGetLastError();
  2472. fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__,
  2473. size/1024.0/1024.0, cudaGetErrorString(err));
  2474. return false;
  2475. }
  2476. return true;
  2477. #else
  2478. return false;
  2479. #endif
  2480. }
  2481. GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
  2482. if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
  2483. return;
  2484. }
  2485. cudaError_t err = cudaHostUnregister(buffer);
  2486. if (err != cudaSuccess) {
  2487. // clear the error
  2488. cudaGetLastError();
  2489. }
  2490. }
  2491. // backend registry
  2492. GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
  2493. ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
  2494. return cuda_backend;
  2495. GGML_UNUSED(params);
  2496. }
  2497. extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
  2498. GGML_CALL int ggml_backend_cuda_reg_devices() {
  2499. int device_count = ggml_backend_cuda_get_device_count();
  2500. //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
  2501. for (int i = 0; i < device_count; i++) {
  2502. char name[128];
  2503. snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
  2504. ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
  2505. }
  2506. return device_count;
  2507. }