ggml.c 324 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727
  1. #include "ggml.h"
  2. #if defined(_MSC_VER) || defined(__MINGW32__)
  3. #include <malloc.h> // using malloc.h with MSC/MINGW
  4. #elif !defined(__FreeBSD__) && !defined(__NetBSD__)
  5. #include <alloca.h>
  6. #endif
  7. #include <assert.h>
  8. #include <time.h>
  9. #include <math.h>
  10. #include <stdlib.h>
  11. #include <string.h>
  12. #include <stdint.h>
  13. #include <stdio.h>
  14. #include <float.h>
  15. // if C99 - static_assert is noop
  16. // ref: https://stackoverflow.com/a/53923785/4039976
  17. #ifndef static_assert
  18. #define static_assert(cond, msg) struct global_scope_noop_trick
  19. #endif
  20. #if defined _MSC_VER || defined(__MINGW32__)
  21. #if !defined(__MINGW32__)
  22. #include <Windows.h>
  23. #else
  24. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  25. #include <windows.h>
  26. #include <errno.h>
  27. #endif
  28. typedef volatile LONG atomic_int;
  29. typedef atomic_int atomic_bool;
  30. static void atomic_store(atomic_int* ptr, LONG val) {
  31. InterlockedExchange(ptr, val);
  32. }
  33. static LONG atomic_load(atomic_int* ptr) {
  34. return InterlockedCompareExchange(ptr, 0, 0);
  35. }
  36. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  37. return InterlockedExchangeAdd(ptr, inc);
  38. }
  39. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  40. return atomic_fetch_add(ptr, -(dec));
  41. }
  42. typedef HANDLE pthread_t;
  43. typedef DWORD thread_ret_t;
  44. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. #ifdef __HAIKU__
  66. #define static_assert(cond, msg) _Static_assert(cond, msg)
  67. #endif
  68. /*#define GGML_PERF*/
  69. #define GGML_DEBUG 0
  70. #define GGML_GELU_FP16
  71. #define GGML_SILU_FP16
  72. #define GGML_SOFT_MAX_UNROLL 4
  73. #define GGML_VEC_DOT_UNROLL 2
  74. #ifdef GGML_USE_ACCELERATE
  75. // uncomment to use vDSP for soft max computation
  76. // note: not sure if it is actually faster
  77. //#define GGML_SOFT_MAX_ACCELERATE
  78. #endif
  79. #if UINTPTR_MAX == 0xFFFFFFFF
  80. #define GGML_MEM_ALIGN 4
  81. #else
  82. #define GGML_MEM_ALIGN 16
  83. #endif
  84. #define UNUSED(x) (void)(x)
  85. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  86. #define GGML_ASSERT(x) \
  87. do { \
  88. if (!(x)) { \
  89. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  90. abort(); \
  91. } \
  92. } while (0)
  93. #ifdef GGML_USE_ACCELERATE
  94. #include <Accelerate/Accelerate.h>
  95. #elif GGML_USE_OPENBLAS
  96. #include <cblas.h>
  97. #endif
  98. #undef MIN
  99. #undef MAX
  100. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  101. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  102. // floating point type used to accumulate sums
  103. typedef double ggml_float;
  104. // 16-bit float
  105. // on Arm, we use __fp16
  106. // on x86, we use uint16_t
  107. #ifdef __ARM_NEON
  108. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  109. //
  110. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  111. //
  112. #include <arm_neon.h>
  113. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  114. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  115. #define GGML_FP16_TO_FP32(x) (x)
  116. #define GGML_FP32_TO_FP16(x) (x)
  117. #else
  118. #ifdef __wasm_simd128__
  119. #include <wasm_simd128.h>
  120. #else
  121. #ifdef __POWER9_VECTOR__
  122. #include <altivec.h>
  123. #undef bool
  124. #define bool _Bool
  125. #else
  126. #include <immintrin.h>
  127. #endif
  128. #endif
  129. #ifdef __F16C__
  130. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  131. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  132. #else
  133. // FP16 <-> FP32
  134. // ref: https://github.com/Maratyszcza/FP16
  135. static inline float fp32_from_bits(uint32_t w) {
  136. union {
  137. uint32_t as_bits;
  138. float as_value;
  139. } fp32;
  140. fp32.as_bits = w;
  141. return fp32.as_value;
  142. }
  143. static inline uint32_t fp32_to_bits(float f) {
  144. union {
  145. float as_value;
  146. uint32_t as_bits;
  147. } fp32;
  148. fp32.as_value = f;
  149. return fp32.as_bits;
  150. }
  151. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  152. const uint32_t w = (uint32_t) h << 16;
  153. const uint32_t sign = w & UINT32_C(0x80000000);
  154. const uint32_t two_w = w + w;
  155. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  156. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  157. const float exp_scale = 0x1.0p-112f;
  158. #else
  159. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  160. #endif
  161. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  162. const uint32_t magic_mask = UINT32_C(126) << 23;
  163. const float magic_bias = 0.5f;
  164. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  165. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  166. const uint32_t result = sign |
  167. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  168. return fp32_from_bits(result);
  169. }
  170. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  171. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  172. const float scale_to_inf = 0x1.0p+112f;
  173. const float scale_to_zero = 0x1.0p-110f;
  174. #else
  175. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  176. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  177. #endif
  178. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  179. const uint32_t w = fp32_to_bits(f);
  180. const uint32_t shl1_w = w + w;
  181. const uint32_t sign = w & UINT32_C(0x80000000);
  182. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  183. if (bias < UINT32_C(0x71000000)) {
  184. bias = UINT32_C(0x71000000);
  185. }
  186. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  187. const uint32_t bits = fp32_to_bits(base);
  188. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  189. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  190. const uint32_t nonsign = exp_bits + mantissa_bits;
  191. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  192. }
  193. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  194. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  195. #endif // __F16C__
  196. #endif // __ARM_NEON
  197. //
  198. // global data
  199. //
  200. // precomputed gelu table for f16 (128 KB)
  201. static ggml_fp16_t table_gelu_f16[1 << 16];
  202. // precomputed silu table for f16 (128 KB)
  203. static ggml_fp16_t table_silu_f16[1 << 16];
  204. // precomputed exp table for f16 (128 KB)
  205. static ggml_fp16_t table_exp_f16[1 << 16];
  206. // precomputed f32 table for f16 (256 KB)
  207. static float table_f32_f16[1 << 16];
  208. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  209. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  210. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  211. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  212. uint16_t s;
  213. memcpy(&s, &f, sizeof(uint16_t));
  214. return table_f32_f16[s];
  215. }
  216. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  217. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  218. #endif
  219. // note: do not use these inside ggml.c
  220. // these are meant to be used via the ggml.h API
  221. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  222. return GGML_FP16_TO_FP32(x);
  223. }
  224. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  225. return GGML_FP32_TO_FP16(x);
  226. }
  227. //
  228. // timing
  229. //
  230. #if defined(_MSC_VER) || defined(__MINGW32__)
  231. static int64_t timer_freq;
  232. void ggml_time_init(void) {
  233. LARGE_INTEGER frequency;
  234. QueryPerformanceFrequency(&frequency);
  235. timer_freq = frequency.QuadPart;
  236. }
  237. int64_t ggml_time_ms(void) {
  238. LARGE_INTEGER t;
  239. QueryPerformanceCounter(&t);
  240. return (t.QuadPart * 1000) / timer_freq;
  241. }
  242. int64_t ggml_time_us(void) {
  243. LARGE_INTEGER t;
  244. QueryPerformanceCounter(&t);
  245. return (t.QuadPart * 1000000) / timer_freq;
  246. }
  247. #else
  248. void ggml_time_init(void) {}
  249. int64_t ggml_time_ms(void) {
  250. struct timespec ts;
  251. clock_gettime(CLOCK_MONOTONIC, &ts);
  252. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  253. }
  254. int64_t ggml_time_us(void) {
  255. struct timespec ts;
  256. clock_gettime(CLOCK_MONOTONIC, &ts);
  257. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  258. }
  259. #endif
  260. int64_t ggml_cycles(void) {
  261. return clock();
  262. }
  263. int64_t ggml_cycles_per_ms(void) {
  264. return CLOCKS_PER_SEC/1000;
  265. }
  266. #ifdef GGML_PERF
  267. #define ggml_perf_time_ms() ggml_time_ms()
  268. #define ggml_perf_time_us() ggml_time_us()
  269. #define ggml_perf_cycles() ggml_cycles()
  270. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  271. #else
  272. #define ggml_perf_time_ms() 0
  273. #define ggml_perf_time_us() 0
  274. #define ggml_perf_cycles() 0
  275. #define ggml_perf_cycles_per_ms() 0
  276. #endif
  277. //
  278. // cache line
  279. //
  280. #if defined(__cpp_lib_hardware_interference_size)
  281. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  282. #else
  283. #if defined(__POWER9_VECTOR__)
  284. #define CACHE_LINE_SIZE 128
  285. #else
  286. #define CACHE_LINE_SIZE 64
  287. #endif
  288. #endif
  289. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  290. //
  291. // quantization
  292. //
  293. #define QK 32
  294. // AVX routines provided by GH user Const-me
  295. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  296. #if __AVX2__
  297. // Unpack 32 4-bit fields into 32 bytes
  298. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  299. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  300. {
  301. // Load 16 bytes from memory
  302. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  303. // Expand bytes into uint16_t values
  304. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  305. // Unpack values into individual bytes
  306. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  307. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  308. __m256i low = _mm256_and_si256( lowMask, bytes );
  309. high = _mm256_slli_epi16( high, 4 );
  310. bytes = _mm256_or_si256( low, high );
  311. return bytes;
  312. }
  313. static inline __m128i packNibbles( __m256i bytes )
  314. {
  315. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  316. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  317. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  318. __m256i low = _mm256_and_si256( lowByte, bytes );
  319. high = _mm256_srli_epi16( high, 4 );
  320. bytes = _mm256_or_si256( low, high );
  321. // Compress uint16_t lanes into bytes
  322. __m128i r0 = _mm256_castsi256_si128( bytes );
  323. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  324. return _mm_packus_epi16( r0, r1 );
  325. }
  326. #endif
  327. // method 5
  328. // blocks of QK elements
  329. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  330. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  331. assert(k % QK == 0);
  332. const int nb = k / QK;
  333. const size_t bs = sizeof(float) + QK/2;
  334. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  335. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  336. uint8_t pp[QK/2];
  337. #if __ARM_NEON
  338. #if QK == 32
  339. for (int i = 0; i < nb; i++) {
  340. float amax = 0.0f; // absolute max
  341. float32x4_t srcv [8];
  342. float32x4_t asrcv[8];
  343. float32x4_t amaxv[8];
  344. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  345. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  346. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  347. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  348. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  349. amax = MAX(
  350. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  351. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  352. const float d = amax / ((1 << 3) - 1);
  353. const float id = d ? 1.0/d : 0.0;
  354. *(float *)pd = d;
  355. pd += bs;
  356. for (int l = 0; l < 8; l++) {
  357. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  358. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  359. const int32x4_t vi = vcvtq_s32_f32(vf);
  360. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  361. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  362. }
  363. memcpy(pb, pp, sizeof(pp));
  364. pb += bs;
  365. }
  366. #else
  367. #error "not implemented for QK"
  368. #endif
  369. #elif defined(__AVX2__)
  370. #if QK == 32
  371. for (int i = 0; i < nb; i++) {
  372. // Load elements into 4 AVX vectors
  373. __m256 v0 = _mm256_loadu_ps( x );
  374. __m256 v1 = _mm256_loadu_ps( x + 8 );
  375. __m256 v2 = _mm256_loadu_ps( x + 16 );
  376. __m256 v3 = _mm256_loadu_ps( x + 24 );
  377. x += 32;
  378. // Compute max(abs(e)) for the block
  379. const __m256 signBit = _mm256_set1_ps( -0.0f );
  380. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  381. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  382. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  383. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  384. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  385. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  386. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  387. const float maxScalar = _mm_cvtss_f32( max4 );
  388. // Quantize these floats
  389. const float d = maxScalar / 7.0f;
  390. *(float *)pd = d;
  391. pd += bs;
  392. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  393. const __m256 mul = _mm256_set1_ps( id );
  394. // Apply the multiplier
  395. v0 = _mm256_mul_ps( v0, mul );
  396. v1 = _mm256_mul_ps( v1, mul );
  397. v2 = _mm256_mul_ps( v2, mul );
  398. v3 = _mm256_mul_ps( v3, mul );
  399. // Round to nearest integer
  400. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  401. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  402. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  403. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  404. // Convert floats to integers
  405. __m256i i0 = _mm256_cvtps_epi32( v0 );
  406. __m256i i1 = _mm256_cvtps_epi32( v1 );
  407. __m256i i2 = _mm256_cvtps_epi32( v2 );
  408. __m256i i3 = _mm256_cvtps_epi32( v3 );
  409. // Convert int32 to int16
  410. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  411. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  412. // Convert int16 to int8
  413. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  414. // We got our precious signed bytes, but the order is now wrong
  415. // These AVX2 pack instructions process 16-byte pieces independently
  416. // The following instruction is fixing the order
  417. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  418. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  419. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  420. const __m256i off = _mm256_set1_epi8( 8 );
  421. i0 = _mm256_add_epi8( i0, off );
  422. // Compress the vector into 4 bit/value, and store
  423. __m128i res = packNibbles( i0 );
  424. _mm_storeu_si128( ( __m128i* )pb, res );
  425. pb += bs;
  426. }
  427. #else
  428. #error "not implemented for QK"
  429. #endif
  430. #elif defined(__wasm_simd128__)
  431. #if QK == 32
  432. for (int i = 0; i < nb; i++) {
  433. float amax = 0.0f; // absolute max
  434. v128_t srcv [8];
  435. v128_t asrcv[8];
  436. v128_t amaxv[8];
  437. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  438. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  439. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  440. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  441. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  442. amax = MAX(
  443. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  444. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  445. const float d = amax / ((1 << 3) - 1);
  446. const float id = d ? 1.0/d : 0.0;
  447. *(float *)pd = d;
  448. pd += bs;
  449. for (int l = 0; l < 8; l++) {
  450. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  451. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  452. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  453. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  454. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  455. }
  456. memcpy(pb, pp, sizeof(pp));
  457. pb += bs;
  458. }
  459. #else
  460. #error "not implemented for QK"
  461. #endif
  462. #else
  463. // scalar
  464. for (int i = 0; i < nb; i++) {
  465. float amax = 0.0f; // absolute max
  466. for (int l = 0; l < QK; l++) {
  467. const float v = x[i*QK + l];
  468. amax = MAX(amax, fabsf(v));
  469. }
  470. const float d = amax / ((1 << 3) - 1);
  471. const float id = d ? 1.0f/d : 0.0f;
  472. *(float *)pd = d;
  473. pd += bs;
  474. for (int l = 0; l < QK; l += 2) {
  475. const float v0 = x[i*QK + l + 0]*id;
  476. const float v1 = x[i*QK + l + 1]*id;
  477. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  478. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  479. assert(vi0 >= 0 && vi0 < 16);
  480. assert(vi1 >= 0 && vi1 < 16);
  481. pp[l/2] = vi0 | (vi1 << 4);
  482. }
  483. memcpy(pb, pp, sizeof(pp));
  484. pb += bs;
  485. }
  486. #endif
  487. }
  488. // method 4
  489. // blocks of QK elements
  490. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  491. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  492. assert(k % QK == 0);
  493. const int nb = k / QK;
  494. const size_t bs = 2*sizeof(float) + QK/2;
  495. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  496. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  497. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  498. uint8_t pp[QK/2];
  499. for (int i = 0; i < nb; i++) {
  500. float min = FLT_MAX;
  501. float max = -FLT_MAX;
  502. for (int l = 0; l < QK; l++) {
  503. const float v = x[i*QK + l];
  504. if (v < min) min = v;
  505. if (v > max) max = v;
  506. }
  507. const float d = (max - min) / ((1 << 4) - 1);
  508. const float id = d ? 1.0f/d : 0.0f;
  509. *(float *)pm = min;
  510. *(float *)pd = d;
  511. pm += bs;
  512. pd += bs;
  513. for (int l = 0; l < QK; l += 2) {
  514. const float v0 = (x[i*QK + l + 0] - min)*id;
  515. const float v1 = (x[i*QK + l + 1] - min)*id;
  516. const uint8_t vi0 = round(v0);
  517. const uint8_t vi1 = round(v1);
  518. assert(vi0 >= 0 && vi0 < 16);
  519. assert(vi1 >= 0 && vi1 < 16);
  520. pp[l/2] = vi0 | (vi1 << 4);
  521. }
  522. memcpy(pb, pp, sizeof(pp));
  523. pb += bs;
  524. }
  525. }
  526. // TODO: vectorize
  527. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  528. assert(k % QK == 0);
  529. const int nb = k / QK;
  530. const size_t bs = sizeof(float) + QK/2;
  531. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  532. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  533. // scalar
  534. for (int i = 0; i < nb; i++) {
  535. const float d = *(const float *) (pd + i*bs);
  536. const uint8_t * restrict pp = pb + i*bs;
  537. for (int l = 0; l < QK; l += 2) {
  538. const uint8_t vi = pp[l/2];
  539. const int8_t vi0 = vi & 0xf;
  540. const int8_t vi1 = vi >> 4;
  541. const float v0 = (vi0 - 8)*d;
  542. const float v1 = (vi1 - 8)*d;
  543. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  544. y[i*QK + l + 0] = v0;
  545. y[i*QK + l + 1] = v1;
  546. assert(!isnan(y[i*QK + l + 0]));
  547. assert(!isnan(y[i*QK + l + 1]));
  548. }
  549. }
  550. }
  551. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  552. assert(k % QK == 0);
  553. const int nb = k / QK;
  554. const size_t bs = 2*sizeof(float) + QK/2;
  555. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  556. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  557. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  558. for (int i = 0; i < nb; i++) {
  559. const float d = *(const float *) (pd + i*bs);
  560. const float m = *(const float *) (pm + i*bs);
  561. const uint8_t * restrict pp = pb + i*bs;
  562. for (int l = 0; l < QK; l += 2) {
  563. const uint8_t vi = pp[l/2];
  564. const int8_t vi0 = vi & 0xf;
  565. const int8_t vi1 = vi >> 4;
  566. const float v0 = vi0*d + m;
  567. const float v1 = vi1*d + m;
  568. y[i*QK + l + 0] = v0;
  569. y[i*QK + l + 1] = v1;
  570. assert(!isnan(y[i*QK + l + 0]));
  571. assert(!isnan(y[i*QK + l + 1]));
  572. }
  573. }
  574. }
  575. //
  576. // simd mappings
  577. //
  578. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  579. // we then implement the fundamental computation operations below using only these macros
  580. // adding support for new architectures requires to define the corresponding SIMD macros
  581. //
  582. // GGML_F32_STEP / GGML_F16_STEP
  583. // number of elements to process in a single step
  584. //
  585. // GGML_F32_EPR / GGML_F16_EPR
  586. // number of elements to fit in a single register
  587. //
  588. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  589. #define GGML_SIMD
  590. // F32 NEON
  591. #define GGML_F32_STEP 16
  592. #define GGML_F32_EPR 4
  593. #define GGML_F32x4 float32x4_t
  594. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  595. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  596. #define GGML_F32x4_LOAD vld1q_f32
  597. #define GGML_F32x4_STORE vst1q_f32
  598. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  599. #define GGML_F32x4_ADD vaddq_f32
  600. #define GGML_F32x4_MUL vmulq_f32
  601. #if defined(__ARM_FEATURE_QRDMX)
  602. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  603. #else
  604. #define GGML_F32x4_REDUCE_ONE(x) \
  605. (vgetq_lane_f32(x, 0) + \
  606. vgetq_lane_f32(x, 1) + \
  607. vgetq_lane_f32(x, 2) + \
  608. vgetq_lane_f32(x, 3))
  609. #endif
  610. #define GGML_F32x4_REDUCE(res, x) \
  611. { \
  612. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  613. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  614. } \
  615. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  616. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  617. } \
  618. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  619. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  620. } \
  621. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  622. }
  623. #define GGML_F32_VEC GGML_F32x4
  624. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  625. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  626. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  627. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  628. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  629. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  630. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  631. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  632. // F16 NEON
  633. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  634. #define GGML_F16_STEP 32
  635. #define GGML_F16_EPR 8
  636. #define GGML_F16x8 float16x8_t
  637. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  638. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  639. #define GGML_F16x8_LOAD vld1q_f16
  640. #define GGML_F16x8_STORE vst1q_f16
  641. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  642. #define GGML_F16x8_ADD vaddq_f16
  643. #define GGML_F16x8_MUL vmulq_f16
  644. #define GGML_F16x8_REDUCE(res, x) \
  645. { \
  646. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  647. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  648. } \
  649. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  650. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  651. } \
  652. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  653. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  654. } \
  655. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  656. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  657. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  658. }
  659. #define GGML_F16_VEC GGML_F16x8
  660. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  661. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  662. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  663. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  664. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  665. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  666. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  667. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  668. #else
  669. // if FP16 vector arithmetic is not supported, we use FP32 instead
  670. // and take advantage of the vcvt_ functions to convert to/from FP16
  671. #define GGML_F16_STEP 16
  672. #define GGML_F16_EPR 4
  673. #define GGML_F32Cx4 float32x4_t
  674. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  675. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  676. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  677. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  678. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  679. #define GGML_F32Cx4_ADD vaddq_f32
  680. #define GGML_F32Cx4_MUL vmulq_f32
  681. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  682. #define GGML_F16_VEC GGML_F32Cx4
  683. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  684. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  685. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  686. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  687. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  688. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  689. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  690. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  691. #endif
  692. #elif defined(__AVX__)
  693. #define GGML_SIMD
  694. // F32 AVX
  695. #define GGML_F32_STEP 32
  696. #define GGML_F32_EPR 8
  697. #define GGML_F32x8 __m256
  698. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  699. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  700. #define GGML_F32x8_LOAD _mm256_loadu_ps
  701. #define GGML_F32x8_STORE _mm256_storeu_ps
  702. #if defined(__FMA__)
  703. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  704. #else
  705. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  706. #endif
  707. #define GGML_F32x8_ADD _mm256_add_ps
  708. #define GGML_F32x8_MUL _mm256_mul_ps
  709. #define GGML_F32x8_REDUCE(res, x) \
  710. { \
  711. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  712. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  713. } \
  714. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  715. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  716. } \
  717. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  718. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  719. } \
  720. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  721. _mm256_extractf128_ps(x[0], 1)); \
  722. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  723. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  724. }
  725. // TODO: is this optimal ?
  726. #define GGML_F32_VEC GGML_F32x8
  727. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  728. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  729. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  730. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  731. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  732. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  733. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  734. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  735. // F16 AVX
  736. #define GGML_F16_STEP 32
  737. #define GGML_F16_EPR 8
  738. // F16 arithmetic is not supported by AVX, so we use F32 instead
  739. // we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32
  740. #define GGML_F32Cx8 __m256
  741. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  742. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  743. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  744. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  745. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  746. #define GGML_F32Cx8_ADD _mm256_add_ps
  747. #define GGML_F32Cx8_MUL _mm256_mul_ps
  748. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  749. #define GGML_F16_VEC GGML_F32Cx8
  750. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  751. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  752. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  753. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  754. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  755. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  756. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  757. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  758. #elif defined(__POWER9_VECTOR__)
  759. #define GGML_SIMD
  760. // F32 POWER9
  761. #define GGML_F32_STEP 32
  762. #define GGML_F32_EPR 4
  763. #define GGML_F32x4 vector float
  764. #define GGML_F32x4_ZERO 0.0f
  765. #define GGML_F32x4_SET1 vec_splats
  766. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  767. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  768. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  769. #define GGML_F32x4_ADD vec_add
  770. #define GGML_F32x4_MUL vec_mul
  771. #define GGML_F32x4_REDUCE(res, x) \
  772. { \
  773. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  774. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  775. } \
  776. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  777. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  778. } \
  779. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  780. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  781. } \
  782. res = vec_extract(x[0], 0) + \
  783. vec_extract(x[0], 1) + \
  784. vec_extract(x[0], 2) + \
  785. vec_extract(x[0], 3); \
  786. }
  787. #define GGML_F32_VEC GGML_F32x4
  788. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  789. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  790. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  791. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  792. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  793. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  794. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  795. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  796. // F16 POWER9
  797. #define GGML_F16_STEP GGML_F32_STEP
  798. #define GGML_F16_EPR GGML_F32_EPR
  799. #define GGML_F16_VEC GGML_F32x4
  800. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  801. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  802. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  803. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  804. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  805. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  806. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  807. vec_extract_fp32_from_shortl(vec_xl(0, p))
  808. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  809. #define GGML_F16_VEC_STORE(p, r, i) \
  810. if (i & 0x1) \
  811. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  812. r[i - GGML_ENDIAN_BYTE(0)]), \
  813. 0, p - GGML_F16_EPR)
  814. #elif defined(__wasm_simd128__)
  815. #define GGML_SIMD
  816. // F32 WASM
  817. #define GGML_F32_STEP 16
  818. #define GGML_F32_EPR 4
  819. #define GGML_F32x4 v128_t
  820. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  821. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  822. #define GGML_F32x4_LOAD wasm_v128_load
  823. #define GGML_F32x4_STORE wasm_v128_store
  824. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  825. #define GGML_F32x4_ADD wasm_f32x4_add
  826. #define GGML_F32x4_MUL wasm_f32x4_mul
  827. #define GGML_F32x4_REDUCE(res, x) \
  828. { \
  829. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  830. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  831. } \
  832. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  833. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  834. } \
  835. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  836. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  837. } \
  838. res = wasm_f32x4_extract_lane(x[0], 0) + \
  839. wasm_f32x4_extract_lane(x[0], 1) + \
  840. wasm_f32x4_extract_lane(x[0], 2) + \
  841. wasm_f32x4_extract_lane(x[0], 3); \
  842. }
  843. #define GGML_F32_VEC GGML_F32x4
  844. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  845. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  846. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  847. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  848. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  849. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  850. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  851. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  852. // F16 WASM
  853. #define GGML_F16_STEP 16
  854. #define GGML_F16_EPR 4
  855. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  856. float tmp[4];
  857. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  858. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  859. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  860. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  861. return wasm_v128_load(tmp);
  862. }
  863. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  864. float tmp[4];
  865. wasm_v128_store(tmp, x);
  866. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  867. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  868. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  869. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  870. }
  871. #define GGML_F16x4 v128_t
  872. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  873. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  874. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  875. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  876. #define GGML_F16x4_FMA GGML_F32x4_FMA
  877. #define GGML_F16x4_ADD wasm_f32x4_add
  878. #define GGML_F16x4_MUL wasm_f32x4_mul
  879. #define GGML_F16x4_REDUCE(res, x) \
  880. { \
  881. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  882. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  883. } \
  884. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  885. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  886. } \
  887. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  888. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  889. } \
  890. res = wasm_f32x4_extract_lane(x[0], 0) + \
  891. wasm_f32x4_extract_lane(x[0], 1) + \
  892. wasm_f32x4_extract_lane(x[0], 2) + \
  893. wasm_f32x4_extract_lane(x[0], 3); \
  894. }
  895. #define GGML_F16_VEC GGML_F16x4
  896. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  897. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  898. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  899. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  900. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  901. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  902. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  903. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  904. #elif defined(__SSE3__)
  905. #define GGML_SIMD
  906. // F32 SSE
  907. #define GGML_F32_STEP 32
  908. #define GGML_F32_EPR 4
  909. #define GGML_F32x4 __m128
  910. #define GGML_F32x4_ZERO _mm_setzero_ps()
  911. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  912. #define GGML_F32x4_LOAD _mm_loadu_ps
  913. #define GGML_F32x4_STORE _mm_storeu_ps
  914. #if defined(__FMA__)
  915. // TODO: Does this work?
  916. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  917. #else
  918. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  919. #endif
  920. #define GGML_F32x4_ADD _mm_add_ps
  921. #define GGML_F32x4_MUL _mm_mul_ps
  922. #define GGML_F32x4_REDUCE(res, x) \
  923. { \
  924. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  925. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  926. } \
  927. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  928. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  929. } \
  930. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  931. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  932. } \
  933. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  934. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  935. }
  936. // TODO: is this optimal ?
  937. #define GGML_F32_VEC GGML_F32x4
  938. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  939. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  940. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  941. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  942. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  943. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  944. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  945. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  946. // F16 SSE
  947. #define GGML_F16_STEP 32
  948. #define GGML_F16_EPR 4
  949. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  950. float tmp[4];
  951. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  952. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  953. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  954. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  955. return _mm_loadu_ps(tmp);
  956. }
  957. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  958. float arr[4];
  959. _mm_storeu_ps(arr, y);
  960. x[0] = GGML_FP32_TO_FP16(arr[0]);
  961. x[1] = GGML_FP32_TO_FP16(arr[1]);
  962. x[2] = GGML_FP32_TO_FP16(arr[2]);
  963. x[3] = GGML_FP32_TO_FP16(arr[3]);
  964. }
  965. #define GGML_F32Cx4 __m128
  966. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  967. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  968. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  969. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  970. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  971. #define GGML_F32Cx4_ADD _mm_add_ps
  972. #define GGML_F32Cx4_MUL _mm_mul_ps
  973. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  974. #define GGML_F16_VEC GGML_F32Cx4
  975. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  976. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  977. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  978. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  979. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  980. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  981. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  982. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  983. #endif
  984. // GGML_F32_ARR / GGML_F16_ARR
  985. // number of registers to use per step
  986. #ifdef GGML_SIMD
  987. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  988. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  989. #endif
  990. //
  991. // fundamental operations
  992. //
  993. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  994. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  995. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  996. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  997. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  998. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  999. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1000. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1001. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1002. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1003. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1004. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1005. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1006. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1007. ggml_float sumf = 0.0;
  1008. #ifdef GGML_SIMD
  1009. const int np = (n & ~(GGML_F32_STEP - 1));
  1010. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1011. GGML_F32_VEC ax[GGML_F32_ARR];
  1012. GGML_F32_VEC ay[GGML_F32_ARR];
  1013. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1014. for (int j = 0; j < GGML_F32_ARR; j++) {
  1015. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1016. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1017. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1018. }
  1019. }
  1020. // reduce sum0..sum3 to sum0
  1021. GGML_F32_VEC_REDUCE(sumf, sum);
  1022. // leftovers
  1023. for (int i = np; i < n; ++i) {
  1024. sumf += x[i]*y[i];
  1025. }
  1026. #else
  1027. // scalar
  1028. for (int i = 0; i < n; ++i) {
  1029. sumf += x[i]*y[i];
  1030. }
  1031. #endif
  1032. *s = sumf;
  1033. }
  1034. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1035. ggml_float sumf = 0.0;
  1036. #if defined(GGML_SIMD)
  1037. const int np = (n & ~(GGML_F16_STEP - 1));
  1038. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1039. GGML_F16_VEC ax[GGML_F16_ARR];
  1040. GGML_F16_VEC ay[GGML_F16_ARR];
  1041. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1042. for (int j = 0; j < GGML_F16_ARR; j++) {
  1043. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1044. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1045. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1046. }
  1047. }
  1048. // reduce sum0..sum3 to sum0
  1049. GGML_F16_VEC_REDUCE(sumf, sum);
  1050. // leftovers
  1051. for (int i = np; i < n; ++i) {
  1052. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1053. }
  1054. #else
  1055. for (int i = 0; i < n; ++i) {
  1056. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1057. }
  1058. #endif
  1059. *s = sumf;
  1060. }
  1061. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1062. const int nb = n / QK;
  1063. assert(n % QK == 0);
  1064. assert(nb % 2 == 0);
  1065. const size_t bs = sizeof(float) + QK/2;
  1066. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1067. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1068. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1069. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1070. float sumf = 0.0;
  1071. #ifdef __ARM_NEON
  1072. #if QK == 32
  1073. float sum0 = 0.0f;
  1074. float sum1 = 0.0f;
  1075. for (int i = 0; i < nb; i += 2) {
  1076. const float d0_0 = *(const float *) (pd0 + i*bs);
  1077. const float d1_0 = *(const float *) (pd1 + i*bs);
  1078. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1079. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1080. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1081. const uint8_t * restrict p0 = pb0 + i*bs;
  1082. const uint8_t * restrict p1 = pb1 + i*bs;
  1083. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1084. const int8x16_t s8b = vdupq_n_s8(0x8);
  1085. const uint8x16_t v0_0 = vld1q_u8(p0);
  1086. const uint8x16_t v1_0 = vld1q_u8(p1);
  1087. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1088. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1089. // 4-bit -> 8-bit
  1090. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1091. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1092. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1093. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1094. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1095. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1096. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1097. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1098. // sub 8
  1099. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1100. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1101. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1102. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1103. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1104. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1105. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1106. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1107. #if defined(__ARM_FEATURE_DOTPROD)
  1108. // dot product into int16x8_t
  1109. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1110. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1111. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1112. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1113. // scalar
  1114. #if defined(__ARM_FEATURE_QRDMX)
  1115. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1116. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1117. #else
  1118. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1119. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1120. #endif
  1121. #else
  1122. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1123. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1124. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1125. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1126. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1127. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1128. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1129. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1130. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1131. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1132. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1133. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1134. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1135. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1136. // scalar
  1137. #if defined(__ARM_FEATURE_QRDMX)
  1138. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1139. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1140. #else
  1141. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1142. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1143. #endif
  1144. #endif
  1145. }
  1146. sumf = sum0 + sum1;
  1147. #else
  1148. #error "not implemented for QK"
  1149. #endif
  1150. #elif defined(__AVX2__)
  1151. #if QK == 32
  1152. const size_t countBlocks = nb;
  1153. // Initialize accumulator with zeros
  1154. __m256 acc = _mm256_setzero_ps();
  1155. // Main loop
  1156. for (int i = 0; i < nb; ++i) {
  1157. const float * d0_0 = (const float *) (pd0 + i*bs);
  1158. const float * d1_0 = (const float *) (pd1 + i*bs);
  1159. const uint8_t * restrict p0 = pb0 + i*bs;
  1160. const uint8_t * restrict p1 = pb1 + i*bs;
  1161. // Compute combined scale for the block
  1162. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1163. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1164. __m256i bx = bytesFromNibbles( p0 );
  1165. __m256i by = bytesFromNibbles( p1 );
  1166. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1167. const __m256i off = _mm256_set1_epi8( 8 );
  1168. bx = _mm256_sub_epi8( bx, off );
  1169. by = _mm256_sub_epi8( by, off );
  1170. // Sign-extend first 16 signed bytes into int16_t
  1171. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1172. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1173. // Compute products of int16_t integers, add pairwise
  1174. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1175. // Sign-extend last 16 signed bytes into int16_t vectors
  1176. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1177. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1178. // Accumulate products of int16_t integers
  1179. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1180. // Convert int32_t to float
  1181. __m256 p = _mm256_cvtepi32_ps( i32 );
  1182. // Apply the scale, and accumulate
  1183. acc = _mm256_fmadd_ps( scale, p, acc );
  1184. }
  1185. // Return horizontal sum of the acc vector
  1186. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1187. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1188. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1189. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1190. sumf = _mm_cvtss_f32( res );
  1191. #else
  1192. #error "not implemented for QK"
  1193. #endif
  1194. #elif defined(__wasm_simd128__)
  1195. #if QK == 32
  1196. // wasm simd
  1197. float sum0 = 0.0f;
  1198. float sum1 = 0.0f;
  1199. for (int i = 0; i < nb; i += 2) {
  1200. const float d0_0 = *(const float *) (pd0 + i*bs);
  1201. const float d1_0 = *(const float *) (pd1 + i*bs);
  1202. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1203. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1204. const uint8_t * restrict p0 = pb0 + i*bs;
  1205. const uint8_t * restrict p1 = pb1 + i*bs;
  1206. const v128_t m4b = wasm_u8x16_splat(0xf);
  1207. const v128_t s8b = wasm_i8x16_splat(0x8);
  1208. const v128_t v0_0 = wasm_v128_load(p0);
  1209. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1210. const v128_t v1_0 = wasm_v128_load(p1);
  1211. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1212. // 4-bit -> 8-bit
  1213. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1214. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1215. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1216. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1217. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1218. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1219. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1220. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1221. // sub 8
  1222. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1223. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1224. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1225. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1226. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1227. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1228. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1229. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1230. // dot product into int16x8_t
  1231. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1232. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1233. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1234. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1235. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1236. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1237. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1238. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1239. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1240. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1241. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1242. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1243. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1244. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1245. sum0 += d0_0*d1_0*(
  1246. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1247. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1248. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1249. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1250. sum1 += d0_1*d1_1*(
  1251. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1252. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1253. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1254. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1255. }
  1256. sumf = sum0 + sum1;
  1257. #else
  1258. #error "not implemented for QK"
  1259. #endif
  1260. #else
  1261. // scalar
  1262. for (int i = 0; i < nb; i++) {
  1263. const float d0 = *(const float *) (pd0 + i*bs);
  1264. const float d1 = *(const float *) (pd1 + i*bs);
  1265. const uint8_t * restrict p0 = pb0 + i*bs;
  1266. const uint8_t * restrict p1 = pb1 + i*bs;
  1267. for (int j = 0; j < QK/2; j++) {
  1268. const uint8_t v0 = p0[j];
  1269. const uint8_t v1 = p1[j];
  1270. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1271. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1272. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1273. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1274. sumf += f0*f2 + f1*f3;
  1275. }
  1276. }
  1277. #endif
  1278. *s = sumf;
  1279. }
  1280. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1281. const int nb = n / QK;
  1282. const size_t bs = 2*sizeof(float) + QK/2;
  1283. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1284. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1285. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1286. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1287. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1288. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1289. float sumf = 0.0;
  1290. #if defined(__AVX2__)
  1291. #if QK == 32
  1292. // Initialize accumulator with zeros
  1293. __m256 acc = _mm256_setzero_ps();
  1294. // Accumulator for constant offsets
  1295. float acc_offset = 0.0f;
  1296. // Main loop
  1297. for (int i = 0; i < nb; ++i) {
  1298. const float * m0 = (const float *) (pm0 + i*bs);
  1299. const float * m1 = (const float *) (pm1 + i*bs);
  1300. const float * d0 = (const float *) (pd0 + i*bs);
  1301. const float * d1 = (const float *) (pd1 + i*bs);
  1302. const uint8_t * restrict p0 = pb0 + i*bs;
  1303. const uint8_t * restrict p1 = pb1 + i*bs;
  1304. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1305. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1306. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1307. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1308. // Compute combined scale for the block
  1309. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1310. // Compute cross scales for the block
  1311. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1312. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1313. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1314. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1315. __m256i bx = bytesFromNibbles( p0 );
  1316. __m256i by = bytesFromNibbles( p1 );
  1317. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1318. // Sign-extend first 16 signed bytes into int16_t
  1319. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1320. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1321. // Compute products of int16_t integers, add pairwise
  1322. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1323. // Sign-extend last 16 signed bytes into int16_t vectors
  1324. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1325. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1326. // Accumulate products of int16_t integers
  1327. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1328. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1329. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1330. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1331. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1332. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1333. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1334. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1335. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1336. // Convert int32_t to float
  1337. __m256 p = _mm256_cvtepi32_ps( i32 );
  1338. // Apply the scale, and accumulate
  1339. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1340. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1341. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1342. // acc_offset += m0*m1 (for each entry in the block)
  1343. acc_offset += (*m0)*(*m1);
  1344. }
  1345. // Return horizontal sum of the acc vector
  1346. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1347. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1348. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1349. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1350. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1351. #else
  1352. #error "not implemented for QK"
  1353. #endif
  1354. #else
  1355. // scalar
  1356. for (int i = 0; i < nb; i++) {
  1357. const float m0 = *(const float *) (pm0 + i*bs);
  1358. const float m1 = *(const float *) (pm1 + i*bs);
  1359. const float d0 = *(const float *) (pd0 + i*bs);
  1360. const float d1 = *(const float *) (pd1 + i*bs);
  1361. const uint8_t * restrict p0 = pb0 + i*bs;
  1362. const uint8_t * restrict p1 = pb1 + i*bs;
  1363. for (int j = 0; j < QK/2; j++) {
  1364. const uint8_t v0 = p0[j];
  1365. const uint8_t v1 = p1[j];
  1366. const float f0 = d0*(v0 & 0xf) + m0;
  1367. const float f1 = d0*(v0 >> 4) + m0;
  1368. const float f2 = d1*(v1 & 0xf) + m1;
  1369. const float f3 = d1*(v1 >> 4) + m1;
  1370. sumf += f0*f2 + f1*f3;
  1371. }
  1372. }
  1373. #endif
  1374. *s = sumf;
  1375. }
  1376. // compute GGML_VEC_DOT_UNROLL dot products at once
  1377. // xs - x row stride in bytes
  1378. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1379. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1380. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1381. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1382. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1383. }
  1384. #if defined(GGML_SIMD)
  1385. const int np = (n & ~(GGML_F16_STEP - 1));
  1386. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1387. GGML_F16_VEC ax[GGML_F16_ARR];
  1388. GGML_F16_VEC ay[GGML_F16_ARR];
  1389. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1390. for (int j = 0; j < GGML_F16_ARR; j++) {
  1391. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1392. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1393. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1394. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1395. }
  1396. }
  1397. }
  1398. // reduce sum0..sum3 to sum0
  1399. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1400. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1401. }
  1402. // leftovers
  1403. for (int i = np; i < n; ++i) {
  1404. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1405. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1406. }
  1407. }
  1408. #else
  1409. for (int i = 0; i < n; ++i) {
  1410. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1411. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1412. }
  1413. }
  1414. #endif
  1415. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1416. s[i] = sumf[i];
  1417. }
  1418. }
  1419. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1420. #if defined(GGML_SIMD)
  1421. const int np = (n & ~(GGML_F32_STEP - 1));
  1422. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1423. GGML_F32_VEC ax[GGML_F32_ARR];
  1424. GGML_F32_VEC ay[GGML_F32_ARR];
  1425. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1426. for (int j = 0; j < GGML_F32_ARR; j++) {
  1427. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1428. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1429. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1430. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1431. }
  1432. }
  1433. // leftovers
  1434. for (int i = np; i < n; ++i) {
  1435. y[i] += x[i]*v;
  1436. }
  1437. #else
  1438. // scalar
  1439. for (int i = 0; i < n; ++i) {
  1440. y[i] += x[i]*v;
  1441. }
  1442. #endif
  1443. }
  1444. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) {
  1445. #if defined(GGML_SIMD)
  1446. const int np = (n & ~(GGML_F16_STEP - 1));
  1447. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1448. GGML_F16_VEC ax[GGML_F16_ARR];
  1449. GGML_F16_VEC ay[GGML_F16_ARR];
  1450. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1451. for (int j = 0; j < GGML_F16_ARR; j++) {
  1452. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1453. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1454. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1455. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1456. }
  1457. }
  1458. // leftovers
  1459. for (int i = np; i < n; ++i) {
  1460. GGML_ASSERT(false);
  1461. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1462. }
  1463. #else
  1464. for (int i = 0; i < n; ++i) {
  1465. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1466. }
  1467. #endif
  1468. }
  1469. inline static void ggml_vec_mad_q4_0(const int n, float * restrict y, void * restrict x, const float v) {
  1470. assert(n % QK == 0);
  1471. const int nb = n / QK;
  1472. const size_t bs = sizeof(float) + QK/2;
  1473. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1474. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  1475. #if __ARM_NEON
  1476. #if QK == 32
  1477. for (int i = 0; i < nb; ++i) {
  1478. const float d0 = v*(*(const float *) (pd + i*bs));
  1479. const uint8_t * restrict pp = pb + i*bs;
  1480. const uint8x8_t m4b = vdup_n_u8(0xf);
  1481. const int8x8_t s8b = vdup_n_s8(0x8);
  1482. const float32x4_t vd = vdupq_n_f32(d0);
  1483. for (int j = 0; j < 2; j++) {
  1484. const uint8x8_t vx = vld1_u8(pp + j*8);
  1485. const int8x8_t vxl = vreinterpret_s8_u8(vand_u8(vx, m4b));
  1486. const int8x8_t vxh = vreinterpret_s8_u8(vshr_n_u8(vx, 4));
  1487. // sub 8
  1488. const int8x8_t vxls = vsub_s8(vxl, s8b);
  1489. const int8x8_t vxhs = vsub_s8(vxh, s8b);
  1490. //const int8x8_t vxlt = vzip_s8(vxls, vxhs)[0];
  1491. //const int8x8_t vxht = vzip_s8(vxls, vxhs)[1];
  1492. const int8x8_t vxlt = vzip1_s8(vxls, vxhs);
  1493. const int8x8_t vxht = vzip2_s8(vxls, vxhs);
  1494. const int8x16_t vxq = vcombine_s8(vxlt, vxht);
  1495. // convert to 2x int16x8_t
  1496. const int16x8_t vxq0 = vmovl_s8(vget_low_s8 (vxq));
  1497. const int16x8_t vxq1 = vmovl_s8(vget_high_s8(vxq));
  1498. // convert to 4x float32x4_t
  1499. const float32x4_t vx0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq0)));
  1500. const float32x4_t vx1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq0)));
  1501. const float32x4_t vx2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq1)));
  1502. const float32x4_t vx3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq1)));
  1503. const float32x4_t vy0 = vld1q_f32(y + i*32 + j*16 + 0);
  1504. const float32x4_t vy1 = vld1q_f32(y + i*32 + j*16 + 4);
  1505. const float32x4_t vy2 = vld1q_f32(y + i*32 + j*16 + 8);
  1506. const float32x4_t vy3 = vld1q_f32(y + i*32 + j*16 + 12);
  1507. const float32x4_t vr0 = vfmaq_f32(vy0, vx0, vd);
  1508. const float32x4_t vr1 = vfmaq_f32(vy1, vx1, vd);
  1509. const float32x4_t vr2 = vfmaq_f32(vy2, vx2, vd);
  1510. const float32x4_t vr3 = vfmaq_f32(vy3, vx3, vd);
  1511. vst1q_f32(y + i*32 + j*16 + 0, vr0);
  1512. vst1q_f32(y + i*32 + j*16 + 4, vr1);
  1513. vst1q_f32(y + i*32 + j*16 + 8, vr2);
  1514. vst1q_f32(y + i*32 + j*16 + 12, vr3);
  1515. }
  1516. }
  1517. #endif
  1518. #else
  1519. // scalar
  1520. for (int i = 0; i < nb; i++) {
  1521. const float d = *(const float *) (pd + i*bs);
  1522. const uint8_t * restrict pp = pb + i*bs;
  1523. for (int l = 0; l < QK; l += 2) {
  1524. const uint8_t vi = pp[l/2];
  1525. const int8_t vi0 = vi & 0xf;
  1526. const int8_t vi1 = vi >> 4;
  1527. const float v0 = (vi0 - 8)*d;
  1528. const float v1 = (vi1 - 8)*d;
  1529. y[i*QK + l + 0] += v0*v;
  1530. y[i*QK + l + 1] += v1*v;
  1531. assert(!isnan(y[i*QK + l + 0]));
  1532. assert(!isnan(y[i*QK + l + 1]));
  1533. assert(!isinf(y[i*QK + l + 0]));
  1534. assert(!isinf(y[i*QK + l + 1]));
  1535. }
  1536. }
  1537. #endif
  1538. }
  1539. inline static void ggml_vec_mad_q4_1(const int n, float * restrict y, void * restrict x, const float v) {
  1540. assert(n % QK == 0);
  1541. const int nb = n / QK;
  1542. const size_t bs = 2*sizeof(float) + QK/2;
  1543. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1544. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  1545. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1546. for (int i = 0; i < nb; i++) {
  1547. const float d = *(const float *) (pd + i*bs);
  1548. const float m = *(const float *) (pm + i*bs);
  1549. const uint8_t * restrict pp = pb + i*bs;
  1550. for (int l = 0; l < QK; l += 2) {
  1551. const uint8_t vi = pp[l/2];
  1552. const uint8_t vi0 = vi & 0xf;
  1553. const uint8_t vi1 = vi >> 4;
  1554. const float v0 = d*vi0 + m;
  1555. const float v1 = d*vi1 + m;
  1556. y[i*QK + l + 0] += v0*v;
  1557. y[i*QK + l + 1] += v1*v;
  1558. assert(!isnan(y[i*QK + l + 0]));
  1559. assert(!isnan(y[i*QK + l + 1]));
  1560. assert(!isinf(y[i*QK + l + 0]));
  1561. assert(!isinf(y[i*QK + l + 1]));
  1562. //printf("mad: v0 %f v1 %f, i = %d, l = %d, d = %f, vi = %d, vi0 = %d, vi1 = %d\n", v0, v1, i, l, d, vi, vi0, vi1);
  1563. }
  1564. }
  1565. }
  1566. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1567. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1568. #if defined(GGML_SIMD)
  1569. const int np = (n & ~(GGML_F32_STEP - 1));
  1570. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1571. GGML_F32_VEC ay[GGML_F32_ARR];
  1572. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1573. for (int j = 0; j < GGML_F32_ARR; j++) {
  1574. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1575. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1576. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1577. }
  1578. }
  1579. // leftovers
  1580. for (int i = np; i < n; ++i) {
  1581. y[i] *= v;
  1582. }
  1583. #else
  1584. // scalar
  1585. for (int i = 0; i < n; ++i) {
  1586. y[i] *= v;
  1587. }
  1588. #endif
  1589. }
  1590. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1591. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1592. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1593. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1594. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1595. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1596. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1597. static const ggml_float GELU_COEF_A = 0.044715;
  1598. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1599. inline static float ggml_gelu_f32(float x) {
  1600. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1601. }
  1602. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1603. const uint16_t * i16 = (const uint16_t *) x;
  1604. for (int i = 0; i < n; ++i) {
  1605. y[i] = table_gelu_f16[i16[i]];
  1606. }
  1607. }
  1608. #ifdef GGML_GELU_FP16
  1609. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1610. uint16_t t;
  1611. for (int i = 0; i < n; ++i) {
  1612. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1613. memcpy(&t, &fp16, sizeof(uint16_t));
  1614. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1615. }
  1616. }
  1617. #else
  1618. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1619. for (int i = 0; i < n; ++i) {
  1620. y[i] = ggml_gelu_f32(x[i]);
  1621. }
  1622. }
  1623. #endif
  1624. // Sigmoid Linear Unit (SiLU) function
  1625. inline static float ggml_silu_f32(float x) {
  1626. return x/(1.0 + exp(-x));
  1627. }
  1628. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1629. const uint16_t * i16 = (const uint16_t *) x;
  1630. for (int i = 0; i < n; ++i) {
  1631. y[i] = table_silu_f16[i16[i]];
  1632. }
  1633. }
  1634. #ifdef GGML_SILU_FP16
  1635. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1636. uint16_t t;
  1637. for (int i = 0; i < n; ++i) {
  1638. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1639. memcpy(&t, &fp16, sizeof(uint16_t));
  1640. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1641. }
  1642. }
  1643. #else
  1644. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1645. for (int i = 0; i < n; ++i) {
  1646. y[i] = ggml_silu_f32(x[i]);
  1647. }
  1648. }
  1649. #endif
  1650. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1651. #ifndef GGML_USE_ACCELERATE
  1652. ggml_float sum = 0.0;
  1653. for (int i = 0; i < n; ++i) {
  1654. sum += x[i];
  1655. }
  1656. *s = sum;
  1657. #else
  1658. vDSP_sve(x, 1, s, n);
  1659. #endif
  1660. }
  1661. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1662. #ifndef GGML_USE_ACCELERATE
  1663. ggml_float max = -INFINITY;
  1664. for (int i = 0; i < n; ++i) {
  1665. max = MAX(max, x[i]);
  1666. }
  1667. *s = max;
  1668. #else
  1669. vDSP_maxv(x, 1, s, n);
  1670. #endif
  1671. }
  1672. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1673. //
  1674. // logging
  1675. //
  1676. #if (GGML_DEBUG >= 1)
  1677. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1678. #else
  1679. #define GGML_PRINT_DEBUG(...)
  1680. #endif
  1681. #if (GGML_DEBUG >= 5)
  1682. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1683. #else
  1684. #define GGML_PRINT_DEBUG_5(...)
  1685. #endif
  1686. #if (GGML_DEBUG >= 10)
  1687. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1688. #else
  1689. #define GGML_PRINT_DEBUG_10(...)
  1690. #endif
  1691. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1692. //
  1693. // data types
  1694. //
  1695. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1696. QK,
  1697. QK,
  1698. 1,
  1699. 1,
  1700. 1,
  1701. 1,
  1702. 1,
  1703. };
  1704. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1705. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1706. sizeof(float ) + QK/2,
  1707. sizeof(float )*2 + QK/2,
  1708. sizeof(int8_t ),
  1709. sizeof(int16_t),
  1710. sizeof(int32_t),
  1711. sizeof(ggml_fp16_t),
  1712. sizeof(float ),
  1713. };
  1714. // don't forget to update the array above when adding new types
  1715. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1716. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1717. "NONE",
  1718. "DUP",
  1719. "ADD",
  1720. "SUB",
  1721. "MUL",
  1722. "DIV",
  1723. "SQR",
  1724. "SQRT",
  1725. "SUM",
  1726. "MEAN",
  1727. "REPEAT",
  1728. "ABS",
  1729. "SGN",
  1730. "NEG",
  1731. "STEP",
  1732. "RELU",
  1733. "GELU",
  1734. "SILU",
  1735. "NORM",
  1736. "RMS_NORM",
  1737. "MUL_MAT",
  1738. "SCALE",
  1739. "CPY",
  1740. "RESHAPE",
  1741. "VIEW",
  1742. "PERMUTE",
  1743. "TRANSPOSE",
  1744. "GET_ROWS",
  1745. "DIAG_MASK_INF",
  1746. "SOFT_MAX",
  1747. "ROPE",
  1748. "CONV_1D_1S",
  1749. "CONV_1D_2S",
  1750. "FLASH_ATTN",
  1751. "FLASH_FF",
  1752. };
  1753. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1754. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1755. "none",
  1756. "x",
  1757. "x+y",
  1758. "x-y",
  1759. "x*y",
  1760. "x/y",
  1761. "x^2",
  1762. "√x",
  1763. "Σx",
  1764. "Σx/n",
  1765. "repeat(x)",
  1766. "abs(x)",
  1767. "sgn(x)",
  1768. "-x",
  1769. "step(x)",
  1770. "relu(x)",
  1771. "gelu(x)",
  1772. "silu(x)",
  1773. "norm(x)",
  1774. "rms_norm(x)",
  1775. "X*Y",
  1776. "x*v",
  1777. "x-\\>y",
  1778. "reshape(x)",
  1779. "view(x)",
  1780. "permute(x)",
  1781. "transpose(x)",
  1782. "get_rows(x)",
  1783. "diag_mask_inf(x)",
  1784. "soft_max(x)",
  1785. "rope(x)",
  1786. "conv_1d_1s(x)",
  1787. "conv_1d_2s(x)",
  1788. "flash_attn(x)",
  1789. "flash_ff(x)",
  1790. };
  1791. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1792. //
  1793. // ggml object
  1794. //
  1795. struct ggml_object {
  1796. size_t offs;
  1797. size_t size;
  1798. struct ggml_object * next;
  1799. char padding[8];
  1800. };
  1801. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1802. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1803. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1804. //
  1805. // ggml context
  1806. //
  1807. struct ggml_context {
  1808. size_t mem_size;
  1809. void * mem_buffer;
  1810. bool mem_buffer_owned;
  1811. int n_objects;
  1812. struct ggml_object * objects_begin;
  1813. struct ggml_object * objects_end;
  1814. struct ggml_scratch scratch;
  1815. struct ggml_scratch scratch_save;
  1816. };
  1817. struct ggml_context_container {
  1818. bool used;
  1819. struct ggml_context context;
  1820. };
  1821. //
  1822. // compute types
  1823. //
  1824. enum ggml_task_type {
  1825. GGML_TASK_INIT = 0,
  1826. GGML_TASK_COMPUTE,
  1827. GGML_TASK_FINALIZE,
  1828. };
  1829. struct ggml_compute_params {
  1830. enum ggml_task_type type;
  1831. int ith, nth;
  1832. // work buffer for all threads
  1833. size_t wsize;
  1834. void * wdata;
  1835. };
  1836. //
  1837. // ggml state
  1838. //
  1839. struct ggml_state {
  1840. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1841. };
  1842. // global state
  1843. static struct ggml_state g_state;
  1844. static atomic_int g_state_barrier = 0;
  1845. // barrier via spin lock
  1846. inline static void ggml_critical_section_start(void) {
  1847. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1848. while (processing > 0) {
  1849. // wait for other threads to finish
  1850. atomic_fetch_sub(&g_state_barrier, 1);
  1851. sched_yield(); // TODO: reconsider this
  1852. processing = atomic_fetch_add(&g_state_barrier, 1);
  1853. }
  1854. }
  1855. // TODO: make this somehow automatically executed
  1856. // some sort of "sentry" mechanism
  1857. inline static void ggml_critical_section_end(void) {
  1858. atomic_fetch_sub(&g_state_barrier, 1);
  1859. }
  1860. ////////////////////////////////////////////////////////////////////////////////
  1861. void ggml_print_object(const struct ggml_object * obj) {
  1862. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1863. obj->offs, obj->size, (const void *) obj->next);
  1864. }
  1865. void ggml_print_objects(const struct ggml_context * ctx) {
  1866. struct ggml_object * obj = ctx->objects_begin;
  1867. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1868. while (obj != NULL) {
  1869. ggml_print_object(obj);
  1870. obj = obj->next;
  1871. }
  1872. GGML_PRINT("%s: --- end ---\n", __func__);
  1873. }
  1874. int ggml_nelements(const struct ggml_tensor * tensor) {
  1875. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1876. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1877. }
  1878. int ggml_nrows(const struct ggml_tensor * tensor) {
  1879. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1880. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1881. }
  1882. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1883. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1884. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  1885. }
  1886. int ggml_blck_size(enum ggml_type type) {
  1887. return GGML_BLCK_SIZE[type];
  1888. }
  1889. size_t ggml_type_size(enum ggml_type type) {
  1890. return GGML_TYPE_SIZE[type];
  1891. }
  1892. float ggml_type_sizef(enum ggml_type type) {
  1893. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  1894. }
  1895. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1896. return GGML_TYPE_SIZE[tensor->type];
  1897. }
  1898. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1899. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1900. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1901. }
  1902. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1903. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1904. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1905. }
  1906. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1907. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1908. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1909. }
  1910. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1911. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1912. return
  1913. (t0->ne[0] == t1->ne[0]) &&
  1914. (t0->ne[2] == t1->ne[2]) &&
  1915. (t0->ne[3] == t1->ne[3]);
  1916. }
  1917. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1918. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1919. return
  1920. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1921. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  1922. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1923. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1924. }
  1925. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1926. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1927. return
  1928. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1929. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1930. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1931. }
  1932. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1933. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1934. return
  1935. (t0->ne[0] == t1->ne[0] ) &&
  1936. (t0->ne[1] == t1->ne[1] ) &&
  1937. (t0->ne[2] == t1->ne[2] ) &&
  1938. (t0->ne[3] == t1->ne[3] );
  1939. }
  1940. // check if t1 can be represented as a repeatition of t0
  1941. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1942. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1943. return
  1944. (t1->ne[0]%t0->ne[0] == 0) &&
  1945. (t1->ne[1]%t0->ne[1] == 0) &&
  1946. (t1->ne[2]%t0->ne[2] == 0) &&
  1947. (t1->ne[3]%t0->ne[3] == 0);
  1948. }
  1949. static inline int ggml_up32(int n) {
  1950. return (n + 31) & ~31;
  1951. }
  1952. static inline int ggml_up64(int n) {
  1953. return (n + 63) & ~63;
  1954. }
  1955. static inline int ggml_up(int n, int m) {
  1956. // assert m is a power of 2
  1957. GGML_ASSERT((m & (m - 1)) == 0);
  1958. return (n + m - 1) & ~(m - 1);
  1959. }
  1960. // assert that pointer is aligned to GGML_MEM_ALIGN
  1961. #define ggml_assert_aligned(ptr) \
  1962. assert(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1963. ////////////////////////////////////////////////////////////////////////////////
  1964. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1965. // make this function thread safe
  1966. ggml_critical_section_start();
  1967. static bool is_first_call = true;
  1968. if (is_first_call) {
  1969. // initialize GELU, SILU and EXP F32 tables
  1970. {
  1971. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1972. ggml_fp16_t ii;
  1973. for (int i = 0; i < (1 << 16); ++i) {
  1974. uint16_t ui = i;
  1975. memcpy(&ii, &ui, sizeof(ii));
  1976. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1977. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1978. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1979. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  1980. }
  1981. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1982. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1983. }
  1984. // initialize g_state
  1985. {
  1986. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1987. g_state = (struct ggml_state) {
  1988. /*.contexts =*/ { { 0 } },
  1989. };
  1990. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1991. g_state.contexts[i].used = false;
  1992. }
  1993. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1994. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1995. }
  1996. is_first_call = false;
  1997. }
  1998. // find non-used context in g_state
  1999. struct ggml_context * ctx = NULL;
  2000. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2001. if (!g_state.contexts[i].used) {
  2002. g_state.contexts[i].used = true;
  2003. ctx = &g_state.contexts[i].context;
  2004. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2005. break;
  2006. }
  2007. }
  2008. if (ctx == NULL) {
  2009. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2010. ggml_critical_section_end();
  2011. return NULL;
  2012. }
  2013. *ctx = (struct ggml_context) {
  2014. /*.mem_size =*/ params.mem_size,
  2015. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2016. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2017. /*.n_objects =*/ 0,
  2018. /*.objects_begin =*/ NULL,
  2019. /*.objects_end =*/ NULL,
  2020. /*.scratch =*/ { 0, 0, NULL, },
  2021. /*.scratch_save =*/ { 0, 0, NULL, },
  2022. };
  2023. ggml_assert_aligned(ctx->mem_buffer);
  2024. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2025. ggml_critical_section_end();
  2026. return ctx;
  2027. }
  2028. void ggml_free(struct ggml_context * ctx) {
  2029. // make this function thread safe
  2030. ggml_critical_section_start();
  2031. bool found = false;
  2032. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2033. if (&g_state.contexts[i].context == ctx) {
  2034. g_state.contexts[i].used = false;
  2035. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2036. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2037. if (ctx->mem_buffer_owned) {
  2038. free(ctx->mem_buffer);
  2039. }
  2040. found = true;
  2041. break;
  2042. }
  2043. }
  2044. if (!found) {
  2045. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2046. }
  2047. ggml_critical_section_end();
  2048. }
  2049. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2050. return ctx->objects_end->offs + ctx->objects_end->size;
  2051. }
  2052. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2053. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2054. ctx->scratch = scratch;
  2055. return result;
  2056. }
  2057. ////////////////////////////////////////////////////////////////////////////////
  2058. struct ggml_tensor * ggml_new_tensor_impl(
  2059. struct ggml_context * ctx,
  2060. enum ggml_type type,
  2061. int n_dims,
  2062. const int* ne,
  2063. void* data) {
  2064. // always insert objects at the end of the context's memory pool
  2065. struct ggml_object * obj_cur = ctx->objects_end;
  2066. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2067. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2068. const size_t cur_end = cur_offs + cur_size;
  2069. size_t size_needed = 0;
  2070. if (data == NULL) {
  2071. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2072. for (int i = 1; i < n_dims; i++) {
  2073. size_needed *= ne[i];
  2074. }
  2075. // align to GGML_MEM_ALIGN
  2076. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2077. }
  2078. char * const mem_buffer = ctx->mem_buffer;
  2079. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2080. if (ctx->scratch.data == NULL || data != NULL) {
  2081. size_needed += sizeof(struct ggml_tensor);
  2082. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2083. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2084. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2085. assert(false);
  2086. return NULL;
  2087. }
  2088. *obj_new = (struct ggml_object) {
  2089. .offs = cur_end + GGML_OBJECT_SIZE,
  2090. .size = size_needed,
  2091. .next = NULL,
  2092. };
  2093. } else {
  2094. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2095. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2096. assert(false);
  2097. return NULL;
  2098. }
  2099. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2100. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2101. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2102. assert(false);
  2103. return NULL;
  2104. }
  2105. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2106. *obj_new = (struct ggml_object) {
  2107. .offs = cur_end + GGML_OBJECT_SIZE,
  2108. .size = sizeof(struct ggml_tensor),
  2109. .next = NULL,
  2110. };
  2111. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2112. ctx->scratch.offs += size_needed;
  2113. }
  2114. if (obj_cur != NULL) {
  2115. obj_cur->next = obj_new;
  2116. } else {
  2117. // this is the first object in this context
  2118. ctx->objects_begin = obj_new;
  2119. }
  2120. ctx->objects_end = obj_new;
  2121. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2122. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2123. ggml_assert_aligned(result);
  2124. *result = (struct ggml_tensor) {
  2125. /*.type =*/ type,
  2126. /*.n_dims =*/ n_dims,
  2127. /*.ne =*/ { 1, 1, 1, 1 },
  2128. /*.nb =*/ { 0, 0, 0, 0 },
  2129. /*.op =*/ GGML_OP_NONE,
  2130. /*.is_param =*/ false,
  2131. /*.grad =*/ NULL,
  2132. /*.src0 =*/ NULL,
  2133. /*.src1 =*/ NULL,
  2134. /*.opt =*/ { NULL },
  2135. /*.n_tasks =*/ 0,
  2136. /*.perf_runs =*/ 0,
  2137. /*.perf_cycles =*/ 0,
  2138. /*.perf_time_us =*/ 0,
  2139. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2140. /*.pad =*/ { 0 },
  2141. };
  2142. ggml_assert_aligned(result->data);
  2143. for (int i = 0; i < n_dims; i++) {
  2144. result->ne[i] = ne[i];
  2145. }
  2146. result->nb[0] = GGML_TYPE_SIZE[type];
  2147. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2148. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2149. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2150. }
  2151. ctx->n_objects++;
  2152. return result;
  2153. }
  2154. struct ggml_tensor * ggml_new_tensor(
  2155. struct ggml_context * ctx,
  2156. enum ggml_type type,
  2157. int n_dims,
  2158. const int * ne) {
  2159. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2160. }
  2161. struct ggml_tensor * ggml_new_tensor_1d(
  2162. struct ggml_context * ctx,
  2163. enum ggml_type type,
  2164. int ne0) {
  2165. return ggml_new_tensor(ctx, type, 1, &ne0);
  2166. }
  2167. struct ggml_tensor * ggml_new_tensor_2d(
  2168. struct ggml_context * ctx,
  2169. enum ggml_type type,
  2170. int ne0,
  2171. int ne1) {
  2172. const int ne[2] = { ne0, ne1 };
  2173. return ggml_new_tensor(ctx, type, 2, ne);
  2174. }
  2175. struct ggml_tensor * ggml_new_tensor_3d(
  2176. struct ggml_context * ctx,
  2177. enum ggml_type type,
  2178. int ne0,
  2179. int ne1,
  2180. int ne2) {
  2181. const int ne[3] = { ne0, ne1, ne2 };
  2182. return ggml_new_tensor(ctx, type, 3, ne);
  2183. }
  2184. struct ggml_tensor * ggml_new_tensor_4d(
  2185. struct ggml_context * ctx,
  2186. enum ggml_type type,
  2187. int ne0,
  2188. int ne1,
  2189. int ne2,
  2190. int ne3) {
  2191. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2192. return ggml_new_tensor(ctx, type, 4, ne);
  2193. }
  2194. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2195. ctx->scratch_save = ctx->scratch;
  2196. ctx->scratch.data = NULL;
  2197. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2198. ctx->scratch = ctx->scratch_save;
  2199. ggml_set_i32(result, value);
  2200. return result;
  2201. }
  2202. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2203. ctx->scratch_save = ctx->scratch;
  2204. ctx->scratch.data = NULL;
  2205. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2206. ctx->scratch = ctx->scratch_save;
  2207. ggml_set_f32(result, value);
  2208. return result;
  2209. }
  2210. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2211. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2212. }
  2213. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2214. memset(tensor->data, 0, ggml_nbytes(tensor));
  2215. return tensor;
  2216. }
  2217. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2218. const int n = ggml_nrows(tensor);
  2219. const int nc = tensor->ne[0];
  2220. const size_t n1 = tensor->nb[1];
  2221. char * const data = tensor->data;
  2222. switch (tensor->type) {
  2223. case GGML_TYPE_Q4_0:
  2224. {
  2225. GGML_ASSERT(false);
  2226. } break;
  2227. case GGML_TYPE_Q4_1:
  2228. {
  2229. GGML_ASSERT(false);
  2230. } break;
  2231. case GGML_TYPE_I8:
  2232. {
  2233. assert(tensor->nb[0] == sizeof(int8_t));
  2234. for (int i = 0; i < n; i++) {
  2235. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2236. }
  2237. } break;
  2238. case GGML_TYPE_I16:
  2239. {
  2240. assert(tensor->nb[0] == sizeof(int16_t));
  2241. for (int i = 0; i < n; i++) {
  2242. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2243. }
  2244. } break;
  2245. case GGML_TYPE_I32:
  2246. {
  2247. assert(tensor->nb[0] == sizeof(int32_t));
  2248. for (int i = 0; i < n; i++) {
  2249. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2250. }
  2251. } break;
  2252. case GGML_TYPE_F16:
  2253. {
  2254. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2255. for (int i = 0; i < n; i++) {
  2256. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2257. }
  2258. } break;
  2259. case GGML_TYPE_F32:
  2260. {
  2261. assert(tensor->nb[0] == sizeof(float));
  2262. for (int i = 0; i < n; i++) {
  2263. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2264. }
  2265. } break;
  2266. case GGML_TYPE_COUNT:
  2267. {
  2268. GGML_ASSERT(false);
  2269. } break;
  2270. }
  2271. return tensor;
  2272. }
  2273. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2274. const int n = ggml_nrows(tensor);
  2275. const int nc = tensor->ne[0];
  2276. const size_t n1 = tensor->nb[1];
  2277. char * const data = tensor->data;
  2278. switch (tensor->type) {
  2279. case GGML_TYPE_Q4_0:
  2280. {
  2281. GGML_ASSERT(false);
  2282. } break;
  2283. case GGML_TYPE_Q4_1:
  2284. {
  2285. GGML_ASSERT(false);
  2286. } break;
  2287. case GGML_TYPE_I8:
  2288. {
  2289. assert(tensor->nb[0] == sizeof(int8_t));
  2290. for (int i = 0; i < n; i++) {
  2291. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2292. }
  2293. } break;
  2294. case GGML_TYPE_I16:
  2295. {
  2296. assert(tensor->nb[0] == sizeof(int16_t));
  2297. for (int i = 0; i < n; i++) {
  2298. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2299. }
  2300. } break;
  2301. case GGML_TYPE_I32:
  2302. {
  2303. assert(tensor->nb[0] == sizeof(int32_t));
  2304. for (int i = 0; i < n; i++) {
  2305. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2306. }
  2307. } break;
  2308. case GGML_TYPE_F16:
  2309. {
  2310. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2311. for (int i = 0; i < n; i++) {
  2312. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2313. }
  2314. } break;
  2315. case GGML_TYPE_F32:
  2316. {
  2317. assert(tensor->nb[0] == sizeof(float));
  2318. for (int i = 0; i < n; i++) {
  2319. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2320. }
  2321. } break;
  2322. case GGML_TYPE_COUNT:
  2323. {
  2324. GGML_ASSERT(false);
  2325. } break;
  2326. }
  2327. return tensor;
  2328. }
  2329. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2330. switch (tensor->type) {
  2331. case GGML_TYPE_Q4_0:
  2332. {
  2333. GGML_ASSERT(false);
  2334. } break;
  2335. case GGML_TYPE_Q4_1:
  2336. {
  2337. GGML_ASSERT(false);
  2338. } break;
  2339. case GGML_TYPE_I8:
  2340. {
  2341. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2342. return ((int8_t *)(tensor->data))[i];
  2343. } break;
  2344. case GGML_TYPE_I16:
  2345. {
  2346. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2347. return ((int16_t *)(tensor->data))[i];
  2348. } break;
  2349. case GGML_TYPE_I32:
  2350. {
  2351. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2352. return ((int32_t *)(tensor->data))[i];
  2353. } break;
  2354. case GGML_TYPE_F16:
  2355. {
  2356. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2357. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2358. } break;
  2359. case GGML_TYPE_F32:
  2360. {
  2361. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2362. return ((float *)(tensor->data))[i];
  2363. } break;
  2364. case GGML_TYPE_COUNT:
  2365. {
  2366. GGML_ASSERT(false);
  2367. } break;
  2368. }
  2369. return 0.0f;
  2370. }
  2371. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2372. switch (tensor->type) {
  2373. case GGML_TYPE_Q4_0:
  2374. {
  2375. GGML_ASSERT(false);
  2376. } break;
  2377. case GGML_TYPE_Q4_1:
  2378. {
  2379. GGML_ASSERT(false);
  2380. } break;
  2381. case GGML_TYPE_I8:
  2382. {
  2383. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2384. ((int8_t *)(tensor->data))[i] = value;
  2385. } break;
  2386. case GGML_TYPE_I16:
  2387. {
  2388. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2389. ((int16_t *)(tensor->data))[i] = value;
  2390. } break;
  2391. case GGML_TYPE_I32:
  2392. {
  2393. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2394. ((int32_t *)(tensor->data))[i] = value;
  2395. } break;
  2396. case GGML_TYPE_F16:
  2397. {
  2398. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2399. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2400. } break;
  2401. case GGML_TYPE_F32:
  2402. {
  2403. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2404. ((float *)(tensor->data))[i] = value;
  2405. } break;
  2406. case GGML_TYPE_COUNT:
  2407. {
  2408. GGML_ASSERT(false);
  2409. } break;
  2410. }
  2411. }
  2412. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2413. switch (tensor->type) {
  2414. case GGML_TYPE_Q4_0:
  2415. {
  2416. GGML_ASSERT(false);
  2417. } break;
  2418. case GGML_TYPE_Q4_1:
  2419. {
  2420. GGML_ASSERT(false);
  2421. } break;
  2422. case GGML_TYPE_I8:
  2423. {
  2424. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2425. return ((int8_t *)(tensor->data))[i];
  2426. } break;
  2427. case GGML_TYPE_I16:
  2428. {
  2429. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2430. return ((int16_t *)(tensor->data))[i];
  2431. } break;
  2432. case GGML_TYPE_I32:
  2433. {
  2434. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2435. return ((int32_t *)(tensor->data))[i];
  2436. } break;
  2437. case GGML_TYPE_F16:
  2438. {
  2439. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2440. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2441. } break;
  2442. case GGML_TYPE_F32:
  2443. {
  2444. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2445. return ((float *)(tensor->data))[i];
  2446. } break;
  2447. case GGML_TYPE_COUNT:
  2448. {
  2449. GGML_ASSERT(false);
  2450. } break;
  2451. }
  2452. return 0.0f;
  2453. }
  2454. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2455. switch (tensor->type) {
  2456. case GGML_TYPE_Q4_0:
  2457. {
  2458. GGML_ASSERT(false);
  2459. } break;
  2460. case GGML_TYPE_Q4_1:
  2461. {
  2462. GGML_ASSERT(false);
  2463. } break;
  2464. case GGML_TYPE_I8:
  2465. {
  2466. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2467. ((int8_t *)(tensor->data))[i] = value;
  2468. } break;
  2469. case GGML_TYPE_I16:
  2470. {
  2471. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2472. ((int16_t *)(tensor->data))[i] = value;
  2473. } break;
  2474. case GGML_TYPE_I32:
  2475. {
  2476. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2477. ((int32_t *)(tensor->data))[i] = value;
  2478. } break;
  2479. case GGML_TYPE_F16:
  2480. {
  2481. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2482. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2483. } break;
  2484. case GGML_TYPE_F32:
  2485. {
  2486. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2487. ((float *)(tensor->data))[i] = value;
  2488. } break;
  2489. case GGML_TYPE_COUNT:
  2490. {
  2491. GGML_ASSERT(false);
  2492. } break;
  2493. }
  2494. }
  2495. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2496. return tensor->data;
  2497. }
  2498. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2499. assert(tensor->type == GGML_TYPE_F32);
  2500. return (float *)(tensor->data);
  2501. }
  2502. struct ggml_tensor * ggml_view_tensor(
  2503. struct ggml_context * ctx,
  2504. const struct ggml_tensor * src) {
  2505. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2506. }
  2507. ////////////////////////////////////////////////////////////////////////////////
  2508. // ggml_dup
  2509. struct ggml_tensor * ggml_dup_impl(
  2510. struct ggml_context * ctx,
  2511. struct ggml_tensor * a,
  2512. bool inplace) {
  2513. bool is_node = false;
  2514. if (!inplace && (a->grad)) {
  2515. is_node = true;
  2516. }
  2517. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2518. result->op = GGML_OP_DUP;
  2519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2520. result->src0 = a;
  2521. result->src1 = NULL;
  2522. return result;
  2523. }
  2524. struct ggml_tensor * ggml_dup(
  2525. struct ggml_context * ctx,
  2526. struct ggml_tensor * a) {
  2527. return ggml_dup_impl(ctx, a, false);
  2528. }
  2529. struct ggml_tensor * ggml_dup_inplace(
  2530. struct ggml_context * ctx,
  2531. struct ggml_tensor * a) {
  2532. return ggml_dup_impl(ctx, a, true);
  2533. }
  2534. // ggml_add
  2535. struct ggml_tensor * ggml_add_impl(
  2536. struct ggml_context * ctx,
  2537. struct ggml_tensor * a,
  2538. struct ggml_tensor * b,
  2539. bool inplace) {
  2540. GGML_ASSERT(ggml_are_same_shape(a, b));
  2541. bool is_node = false;
  2542. if (!inplace && (a->grad || b->grad)) {
  2543. is_node = true;
  2544. }
  2545. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2546. result->op = GGML_OP_ADD;
  2547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2548. result->src0 = a;
  2549. result->src1 = b;
  2550. return result;
  2551. }
  2552. struct ggml_tensor * ggml_add(
  2553. struct ggml_context * ctx,
  2554. struct ggml_tensor * a,
  2555. struct ggml_tensor * b) {
  2556. return ggml_add_impl(ctx, a, b, false);
  2557. }
  2558. struct ggml_tensor * ggml_add_inplace(
  2559. struct ggml_context * ctx,
  2560. struct ggml_tensor * a,
  2561. struct ggml_tensor * b) {
  2562. return ggml_add_impl(ctx, a, b, true);
  2563. }
  2564. // ggml_sub
  2565. struct ggml_tensor * ggml_sub_impl(
  2566. struct ggml_context * ctx,
  2567. struct ggml_tensor * a,
  2568. struct ggml_tensor * b,
  2569. bool inplace) {
  2570. GGML_ASSERT(ggml_are_same_shape(a, b));
  2571. bool is_node = false;
  2572. if (!inplace && (a->grad || b->grad)) {
  2573. is_node = true;
  2574. }
  2575. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2576. result->op = GGML_OP_SUB;
  2577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2578. result->src0 = a;
  2579. result->src1 = b;
  2580. return result;
  2581. }
  2582. struct ggml_tensor * ggml_sub(
  2583. struct ggml_context * ctx,
  2584. struct ggml_tensor * a,
  2585. struct ggml_tensor * b) {
  2586. return ggml_sub_impl(ctx, a, b, false);
  2587. }
  2588. struct ggml_tensor * ggml_sub_inplace(
  2589. struct ggml_context * ctx,
  2590. struct ggml_tensor * a,
  2591. struct ggml_tensor * b) {
  2592. return ggml_sub_impl(ctx, a, b, true);
  2593. }
  2594. // ggml_mul
  2595. struct ggml_tensor * ggml_mul_impl(
  2596. struct ggml_context * ctx,
  2597. struct ggml_tensor * a,
  2598. struct ggml_tensor * b,
  2599. bool inplace) {
  2600. GGML_ASSERT(ggml_are_same_shape(a, b));
  2601. bool is_node = false;
  2602. if (!inplace && (a->grad || b->grad)) {
  2603. is_node = true;
  2604. }
  2605. if (inplace) {
  2606. GGML_ASSERT(is_node == false);
  2607. }
  2608. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2609. result->op = GGML_OP_MUL;
  2610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2611. result->src0 = a;
  2612. result->src1 = b;
  2613. return result;
  2614. }
  2615. struct ggml_tensor * ggml_mul(
  2616. struct ggml_context * ctx,
  2617. struct ggml_tensor * a,
  2618. struct ggml_tensor * b) {
  2619. return ggml_mul_impl(ctx, a, b, false);
  2620. }
  2621. struct ggml_tensor * ggml_mul_inplace(
  2622. struct ggml_context * ctx,
  2623. struct ggml_tensor * a,
  2624. struct ggml_tensor * b) {
  2625. return ggml_mul_impl(ctx, a, b, true);
  2626. }
  2627. // ggml_div
  2628. struct ggml_tensor * ggml_div_impl(
  2629. struct ggml_context * ctx,
  2630. struct ggml_tensor * a,
  2631. struct ggml_tensor * b,
  2632. bool inplace) {
  2633. GGML_ASSERT(ggml_are_same_shape(a, b));
  2634. bool is_node = false;
  2635. if (!inplace && (a->grad || b->grad)) {
  2636. is_node = true;
  2637. }
  2638. if (inplace) {
  2639. GGML_ASSERT(is_node == false);
  2640. }
  2641. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2642. result->op = GGML_OP_DIV;
  2643. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2644. result->src0 = a;
  2645. result->src1 = b;
  2646. return result;
  2647. }
  2648. struct ggml_tensor * ggml_div(
  2649. struct ggml_context * ctx,
  2650. struct ggml_tensor * a,
  2651. struct ggml_tensor * b) {
  2652. return ggml_div_impl(ctx, a, b, false);
  2653. }
  2654. struct ggml_tensor * ggml_div_inplace(
  2655. struct ggml_context * ctx,
  2656. struct ggml_tensor * a,
  2657. struct ggml_tensor * b) {
  2658. return ggml_div_impl(ctx, a, b, true);
  2659. }
  2660. // ggml_sqr
  2661. struct ggml_tensor * ggml_sqr_impl(
  2662. struct ggml_context * ctx,
  2663. struct ggml_tensor * a,
  2664. bool inplace) {
  2665. bool is_node = false;
  2666. if (!inplace && (a->grad)) {
  2667. is_node = true;
  2668. }
  2669. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2670. result->op = GGML_OP_SQR;
  2671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2672. result->src0 = a;
  2673. result->src1 = NULL;
  2674. return result;
  2675. }
  2676. struct ggml_tensor * ggml_sqr(
  2677. struct ggml_context * ctx,
  2678. struct ggml_tensor * a) {
  2679. return ggml_sqr_impl(ctx, a, false);
  2680. }
  2681. struct ggml_tensor * ggml_sqr_inplace(
  2682. struct ggml_context * ctx,
  2683. struct ggml_tensor * a) {
  2684. return ggml_sqr_impl(ctx, a, true);
  2685. }
  2686. // ggml_sqrt
  2687. struct ggml_tensor * ggml_sqrt_impl(
  2688. struct ggml_context * ctx,
  2689. struct ggml_tensor * a,
  2690. bool inplace) {
  2691. bool is_node = false;
  2692. if (!inplace && (a->grad)) {
  2693. is_node = true;
  2694. }
  2695. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2696. result->op = GGML_OP_SQRT;
  2697. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2698. result->src0 = a;
  2699. result->src1 = NULL;
  2700. return result;
  2701. }
  2702. struct ggml_tensor * ggml_sqrt(
  2703. struct ggml_context * ctx,
  2704. struct ggml_tensor * a) {
  2705. return ggml_sqrt_impl(ctx, a, false);
  2706. }
  2707. struct ggml_tensor * ggml_sqrt_inplace(
  2708. struct ggml_context * ctx,
  2709. struct ggml_tensor * a) {
  2710. return ggml_sqrt_impl(ctx, a, true);
  2711. }
  2712. // ggml_sum
  2713. struct ggml_tensor * ggml_sum(
  2714. struct ggml_context * ctx,
  2715. struct ggml_tensor * a) {
  2716. bool is_node = false;
  2717. if (a->grad) {
  2718. is_node = true;
  2719. }
  2720. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2721. result->op = GGML_OP_SUM;
  2722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2723. result->src0 = a;
  2724. result->src1 = NULL;
  2725. return result;
  2726. }
  2727. // ggml_mean
  2728. struct ggml_tensor * ggml_mean(
  2729. struct ggml_context * ctx,
  2730. struct ggml_tensor * a) {
  2731. bool is_node = false;
  2732. if (a->grad) {
  2733. GGML_ASSERT(false); // TODO: implement
  2734. is_node = true;
  2735. }
  2736. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2737. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2738. result->op = GGML_OP_MEAN;
  2739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2740. result->src0 = a;
  2741. result->src1 = NULL;
  2742. return result;
  2743. }
  2744. // ggml_repeat
  2745. struct ggml_tensor * ggml_repeat(
  2746. struct ggml_context * ctx,
  2747. struct ggml_tensor * a,
  2748. struct ggml_tensor * b) {
  2749. GGML_ASSERT(ggml_can_repeat(a, b));
  2750. bool is_node = false;
  2751. if (a->grad) {
  2752. is_node = true;
  2753. }
  2754. if (ggml_are_same_shape(a, b) && !is_node) {
  2755. return a;
  2756. }
  2757. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2758. result->op = GGML_OP_REPEAT;
  2759. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2760. result->src0 = a;
  2761. result->src1 = b;
  2762. return result;
  2763. }
  2764. // ggml_abs
  2765. struct ggml_tensor * ggml_abs_impl(
  2766. struct ggml_context * ctx,
  2767. struct ggml_tensor * a,
  2768. bool inplace) {
  2769. bool is_node = false;
  2770. if (!inplace && (a->grad)) {
  2771. is_node = true;
  2772. }
  2773. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2774. result->op = GGML_OP_ABS;
  2775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2776. result->src0 = a;
  2777. result->src1 = NULL;
  2778. return result;
  2779. }
  2780. struct ggml_tensor * ggml_abs(
  2781. struct ggml_context * ctx,
  2782. struct ggml_tensor * a) {
  2783. return ggml_abs_impl(ctx, a, false);
  2784. }
  2785. struct ggml_tensor * ggml_abs_inplace(
  2786. struct ggml_context * ctx,
  2787. struct ggml_tensor * a) {
  2788. return ggml_abs_impl(ctx, a, true);
  2789. }
  2790. // ggml_sgn
  2791. struct ggml_tensor * ggml_sgn_impl(
  2792. struct ggml_context * ctx,
  2793. struct ggml_tensor * a,
  2794. bool inplace) {
  2795. bool is_node = false;
  2796. if (!inplace && (a->grad)) {
  2797. is_node = true;
  2798. }
  2799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2800. result->op = GGML_OP_SGN;
  2801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2802. result->src0 = a;
  2803. result->src1 = NULL;
  2804. return result;
  2805. }
  2806. struct ggml_tensor * ggml_sgn(
  2807. struct ggml_context * ctx,
  2808. struct ggml_tensor * a) {
  2809. return ggml_sgn_impl(ctx, a, false);
  2810. }
  2811. struct ggml_tensor * ggml_sgn_inplace(
  2812. struct ggml_context * ctx,
  2813. struct ggml_tensor * a) {
  2814. return ggml_sgn_impl(ctx, a, true);
  2815. }
  2816. // ggml_neg
  2817. struct ggml_tensor * ggml_neg_impl(
  2818. struct ggml_context * ctx,
  2819. struct ggml_tensor * a,
  2820. bool inplace) {
  2821. bool is_node = false;
  2822. if (!inplace && (a->grad)) {
  2823. is_node = true;
  2824. }
  2825. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2826. result->op = GGML_OP_NEG;
  2827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2828. result->src0 = a;
  2829. result->src1 = NULL;
  2830. return result;
  2831. }
  2832. struct ggml_tensor * ggml_neg(
  2833. struct ggml_context * ctx,
  2834. struct ggml_tensor * a) {
  2835. return ggml_neg_impl(ctx, a, false);
  2836. }
  2837. struct ggml_tensor * ggml_neg_inplace(
  2838. struct ggml_context * ctx,
  2839. struct ggml_tensor * a) {
  2840. return ggml_neg_impl(ctx, a, true);
  2841. }
  2842. // ggml_step
  2843. struct ggml_tensor * ggml_step_impl(
  2844. struct ggml_context * ctx,
  2845. struct ggml_tensor * a,
  2846. bool inplace) {
  2847. bool is_node = false;
  2848. if (!inplace && (a->grad)) {
  2849. is_node = true;
  2850. }
  2851. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2852. result->op = GGML_OP_STEP;
  2853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2854. result->src0 = a;
  2855. result->src1 = NULL;
  2856. return result;
  2857. }
  2858. struct ggml_tensor * ggml_step(
  2859. struct ggml_context * ctx,
  2860. struct ggml_tensor * a) {
  2861. return ggml_step_impl(ctx, a, false);
  2862. }
  2863. struct ggml_tensor * ggml_step_inplace(
  2864. struct ggml_context * ctx,
  2865. struct ggml_tensor * a) {
  2866. return ggml_step_impl(ctx, a, true);
  2867. }
  2868. // ggml_relu
  2869. struct ggml_tensor * ggml_relu_impl(
  2870. struct ggml_context * ctx,
  2871. struct ggml_tensor * a,
  2872. bool inplace) {
  2873. bool is_node = false;
  2874. if (!inplace && (a->grad)) {
  2875. is_node = true;
  2876. }
  2877. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2878. result->op = GGML_OP_RELU;
  2879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2880. result->src0 = a;
  2881. result->src1 = NULL;
  2882. return result;
  2883. }
  2884. struct ggml_tensor * ggml_relu(
  2885. struct ggml_context * ctx,
  2886. struct ggml_tensor * a) {
  2887. return ggml_relu_impl(ctx, a, false);
  2888. }
  2889. struct ggml_tensor * ggml_relu_inplace(
  2890. struct ggml_context * ctx,
  2891. struct ggml_tensor * a) {
  2892. return ggml_relu_impl(ctx, a, true);
  2893. }
  2894. // ggml_gelu
  2895. struct ggml_tensor * ggml_gelu_impl(
  2896. struct ggml_context * ctx,
  2897. struct ggml_tensor * a,
  2898. bool inplace) {
  2899. bool is_node = false;
  2900. if (!inplace && (a->grad)) {
  2901. is_node = true;
  2902. }
  2903. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2904. result->op = GGML_OP_GELU;
  2905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2906. result->src0 = a;
  2907. result->src1 = NULL;
  2908. return result;
  2909. }
  2910. struct ggml_tensor * ggml_gelu(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a) {
  2913. return ggml_gelu_impl(ctx, a, false);
  2914. }
  2915. struct ggml_tensor * ggml_gelu_inplace(
  2916. struct ggml_context * ctx,
  2917. struct ggml_tensor * a) {
  2918. return ggml_gelu_impl(ctx, a, true);
  2919. }
  2920. // ggml_silu
  2921. struct ggml_tensor * ggml_silu_impl(
  2922. struct ggml_context * ctx,
  2923. struct ggml_tensor * a,
  2924. bool inplace) {
  2925. bool is_node = false;
  2926. if (!inplace && (a->grad)) {
  2927. is_node = true;
  2928. }
  2929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2930. result->op = GGML_OP_SILU;
  2931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2932. result->src0 = a;
  2933. result->src1 = NULL;
  2934. return result;
  2935. }
  2936. struct ggml_tensor * ggml_silu(
  2937. struct ggml_context * ctx,
  2938. struct ggml_tensor * a) {
  2939. return ggml_silu_impl(ctx, a, false);
  2940. }
  2941. struct ggml_tensor * ggml_silu_inplace(
  2942. struct ggml_context * ctx,
  2943. struct ggml_tensor * a) {
  2944. return ggml_silu_impl(ctx, a, true);
  2945. }
  2946. // ggml_norm
  2947. struct ggml_tensor * ggml_norm_impl(
  2948. struct ggml_context * ctx,
  2949. struct ggml_tensor * a,
  2950. bool inplace) {
  2951. bool is_node = false;
  2952. if (!inplace && (a->grad)) {
  2953. GGML_ASSERT(false); // TODO: implement backward
  2954. is_node = true;
  2955. }
  2956. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2957. result->op = GGML_OP_NORM;
  2958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2959. result->src0 = a;
  2960. result->src1 = NULL; // TODO: maybe store epsilon here?
  2961. return result;
  2962. }
  2963. struct ggml_tensor * ggml_norm(
  2964. struct ggml_context * ctx,
  2965. struct ggml_tensor * a) {
  2966. return ggml_norm_impl(ctx, a, false);
  2967. }
  2968. struct ggml_tensor * ggml_norm_inplace(
  2969. struct ggml_context * ctx,
  2970. struct ggml_tensor * a) {
  2971. return ggml_norm_impl(ctx, a, true);
  2972. }
  2973. struct ggml_tensor * ggml_rms_norm_impl(
  2974. struct ggml_context * ctx,
  2975. struct ggml_tensor * a,
  2976. bool inplace) {
  2977. bool is_node = false;
  2978. if (!inplace && (a->grad)) {
  2979. GGML_ASSERT(false); // TODO: implement backward
  2980. is_node = true;
  2981. }
  2982. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2983. result->op = GGML_OP_RMS_NORM;
  2984. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2985. result->src0 = a;
  2986. result->src1 = NULL; // TODO: maybe store epsilon here?
  2987. return result;
  2988. }
  2989. struct ggml_tensor * ggml_rms_norm(
  2990. struct ggml_context * ctx,
  2991. struct ggml_tensor * a) {
  2992. return ggml_rms_norm_impl(ctx, a, false);
  2993. }
  2994. struct ggml_tensor * ggml_rms_norm_inplace(
  2995. struct ggml_context * ctx,
  2996. struct ggml_tensor * a) {
  2997. return ggml_rms_norm_impl(ctx, a, true);
  2998. }
  2999. // ggml_mul_mat
  3000. struct ggml_tensor * ggml_mul_mat(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a,
  3003. struct ggml_tensor * b) {
  3004. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3005. bool is_node = false;
  3006. if (a->grad || b->grad) {
  3007. is_node = true;
  3008. }
  3009. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3010. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3011. result->op = GGML_OP_MUL_MAT;
  3012. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3013. result->src0 = a;
  3014. result->src1 = b;
  3015. return result;
  3016. }
  3017. // ggml_scale
  3018. struct ggml_tensor * ggml_scale_impl(
  3019. struct ggml_context * ctx,
  3020. struct ggml_tensor * a,
  3021. struct ggml_tensor * b,
  3022. bool inplace) {
  3023. GGML_ASSERT(ggml_is_scalar(b));
  3024. GGML_ASSERT(ggml_is_padded_1d(a));
  3025. bool is_node = false;
  3026. if (!inplace && (a->grad || b->grad)) {
  3027. GGML_ASSERT(false); // TODO: implement backward
  3028. is_node = true;
  3029. }
  3030. // TODO: when implement backward, fix this:
  3031. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3032. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3033. result->op = GGML_OP_SCALE;
  3034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3035. result->src0 = a;
  3036. result->src1 = b;
  3037. return result;
  3038. }
  3039. struct ggml_tensor * ggml_scale(
  3040. struct ggml_context * ctx,
  3041. struct ggml_tensor * a,
  3042. struct ggml_tensor * b) {
  3043. return ggml_scale_impl(ctx, a, b, false);
  3044. }
  3045. struct ggml_tensor * ggml_scale_inplace(
  3046. struct ggml_context * ctx,
  3047. struct ggml_tensor * a,
  3048. struct ggml_tensor * b) {
  3049. return ggml_scale_impl(ctx, a, b, true);
  3050. }
  3051. // ggml_cpy
  3052. struct ggml_tensor * ggml_cpy_impl(
  3053. struct ggml_context * ctx,
  3054. struct ggml_tensor * a,
  3055. struct ggml_tensor * b,
  3056. bool inplace) {
  3057. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3058. bool is_node = false;
  3059. if (!inplace && (a->grad || b->grad)) {
  3060. GGML_ASSERT(false); // TODO: implement backward
  3061. is_node = true;
  3062. }
  3063. // make a view of the destination
  3064. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3065. result->op = GGML_OP_CPY;
  3066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3067. result->src0 = a;
  3068. result->src1 = b;
  3069. return result;
  3070. }
  3071. struct ggml_tensor * ggml_cpy(
  3072. struct ggml_context * ctx,
  3073. struct ggml_tensor * a,
  3074. struct ggml_tensor * b) {
  3075. return ggml_cpy_impl(ctx, a, b, false);
  3076. }
  3077. struct ggml_tensor * ggml_cpy_inplace(
  3078. struct ggml_context * ctx,
  3079. struct ggml_tensor * a,
  3080. struct ggml_tensor * b) {
  3081. return ggml_cpy_impl(ctx, a, b, true);
  3082. }
  3083. // ggml_reshape
  3084. struct ggml_tensor * ggml_reshape(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a,
  3087. struct ggml_tensor * b) {
  3088. GGML_ASSERT(ggml_is_contiguous(a));
  3089. GGML_ASSERT(ggml_is_contiguous(b));
  3090. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3091. bool is_node = false;
  3092. if (a->grad || b->grad) {
  3093. GGML_ASSERT(false); // TODO: implement backward
  3094. is_node = true;
  3095. }
  3096. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3097. result->op = GGML_OP_RESHAPE;
  3098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3099. result->src0 = a;
  3100. result->src1 = NULL;
  3101. return result;
  3102. }
  3103. struct ggml_tensor * ggml_reshape_2d(
  3104. struct ggml_context * ctx,
  3105. struct ggml_tensor * a,
  3106. int ne0,
  3107. int ne1) {
  3108. GGML_ASSERT(ggml_is_contiguous(a));
  3109. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3110. bool is_node = false;
  3111. if (a->grad) {
  3112. GGML_ASSERT(false); // TODO: implement backward
  3113. is_node = true;
  3114. }
  3115. const int ne[2] = { ne0, ne1 };
  3116. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3117. result->op = GGML_OP_RESHAPE;
  3118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3119. result->src0 = a;
  3120. result->src1 = NULL;
  3121. return result;
  3122. }
  3123. struct ggml_tensor * ggml_reshape_3d(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a,
  3126. int ne0,
  3127. int ne1,
  3128. int ne2) {
  3129. GGML_ASSERT(ggml_is_contiguous(a));
  3130. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3131. bool is_node = false;
  3132. if (a->grad) {
  3133. GGML_ASSERT(false); // TODO: implement backward
  3134. is_node = true;
  3135. }
  3136. const int ne[3] = { ne0, ne1, ne2 };
  3137. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3138. result->op = GGML_OP_RESHAPE;
  3139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3140. result->src0 = a;
  3141. result->src1 = NULL;
  3142. return result;
  3143. }
  3144. // ggml_view_1d
  3145. struct ggml_tensor * ggml_view_1d(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a,
  3148. int ne0,
  3149. size_t offset) {
  3150. if (a->grad) {
  3151. GGML_ASSERT(false); // gradient propagation is not supported
  3152. }
  3153. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3154. result->op = GGML_OP_VIEW;
  3155. result->grad = NULL;
  3156. result->src0 = a;
  3157. result->src1 = NULL; // TODO: maybe store the offset here?
  3158. return result;
  3159. }
  3160. // ggml_view_2d
  3161. struct ggml_tensor * ggml_view_2d(
  3162. struct ggml_context * ctx,
  3163. struct ggml_tensor * a,
  3164. int ne0,
  3165. int ne1,
  3166. size_t nb1,
  3167. size_t offset) {
  3168. if (a->grad) {
  3169. GGML_ASSERT(false); // gradient propagation is not supported
  3170. }
  3171. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3172. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3173. result->nb[1] = nb1;
  3174. result->nb[2] = result->nb[1]*ne1;
  3175. result->nb[3] = result->nb[2];
  3176. result->op = GGML_OP_VIEW;
  3177. result->grad = NULL;
  3178. result->src0 = a;
  3179. result->src1 = NULL; // TODO: maybe store the offset here?
  3180. return result;
  3181. }
  3182. // ggml_permute
  3183. struct ggml_tensor * ggml_permute(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a,
  3186. int axis0,
  3187. int axis1,
  3188. int axis2,
  3189. int axis3) {
  3190. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3191. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3192. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3193. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3194. GGML_ASSERT(axis0 != axis1);
  3195. GGML_ASSERT(axis0 != axis2);
  3196. GGML_ASSERT(axis0 != axis3);
  3197. GGML_ASSERT(axis1 != axis2);
  3198. GGML_ASSERT(axis1 != axis3);
  3199. GGML_ASSERT(axis2 != axis3);
  3200. bool is_node = false;
  3201. if (a->grad) {
  3202. GGML_ASSERT(false); // TODO: implement backward
  3203. is_node = true;
  3204. }
  3205. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3206. int ne[GGML_MAX_DIMS];
  3207. int nb[GGML_MAX_DIMS];
  3208. ne[axis0] = a->ne[0];
  3209. ne[axis1] = a->ne[1];
  3210. ne[axis2] = a->ne[2];
  3211. ne[axis3] = a->ne[3];
  3212. nb[axis0] = a->nb[0];
  3213. nb[axis1] = a->nb[1];
  3214. nb[axis2] = a->nb[2];
  3215. nb[axis3] = a->nb[3];
  3216. result->ne[0] = ne[0];
  3217. result->ne[1] = ne[1];
  3218. result->ne[2] = ne[2];
  3219. result->ne[3] = ne[3];
  3220. result->nb[0] = nb[0];
  3221. result->nb[1] = nb[1];
  3222. result->nb[2] = nb[2];
  3223. result->nb[3] = nb[3];
  3224. result->op = GGML_OP_PERMUTE;
  3225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3226. result->src0 = a;
  3227. result->src1 = NULL; // TODO: maybe store the permutation here?
  3228. return result;
  3229. }
  3230. // ggml_transpose
  3231. struct ggml_tensor * ggml_transpose(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a) {
  3234. bool is_node = false;
  3235. if (a->grad) {
  3236. GGML_ASSERT(false); // TODO: implement backward
  3237. is_node = true;
  3238. }
  3239. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3240. result->ne[0] = a->ne[1];
  3241. result->ne[1] = a->ne[0];
  3242. result->nb[0] = a->nb[1];
  3243. result->nb[1] = a->nb[0];
  3244. result->op = GGML_OP_TRANSPOSE;
  3245. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3246. result->src0 = a;
  3247. result->src1 = NULL;
  3248. return result;
  3249. }
  3250. // ggml_get_rows
  3251. struct ggml_tensor * ggml_get_rows(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a,
  3254. struct ggml_tensor * b) {
  3255. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3256. bool is_node = false;
  3257. if (a->grad || b->grad) {
  3258. GGML_ASSERT(false); // TODO: implement backward
  3259. is_node = true;
  3260. }
  3261. // TODO: implement non F32 return
  3262. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3263. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3264. result->op = GGML_OP_GET_ROWS;
  3265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3266. result->src0 = a;
  3267. result->src1 = b;
  3268. return result;
  3269. }
  3270. // ggml_diag_mask_inf
  3271. struct ggml_tensor * ggml_diag_mask_inf(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a,
  3274. int n_past) {
  3275. bool is_node = false;
  3276. if (a->grad) {
  3277. GGML_ASSERT(false); // TODO: implement backward
  3278. is_node = true;
  3279. }
  3280. // TODO: when implement backward, fix this:
  3281. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3282. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3283. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3284. result->op = GGML_OP_DIAG_MASK_INF;
  3285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3286. result->src0 = a;
  3287. result->src1 = b;
  3288. return result;
  3289. }
  3290. // ggml_soft_max
  3291. struct ggml_tensor * ggml_soft_max(
  3292. struct ggml_context * ctx,
  3293. struct ggml_tensor * a) {
  3294. bool is_node = false;
  3295. if (a->grad) {
  3296. GGML_ASSERT(false); // TODO: implement backward
  3297. is_node = true;
  3298. }
  3299. // TODO: when implement backward, fix this:
  3300. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3301. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3302. result->op = GGML_OP_SOFT_MAX;
  3303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3304. result->src0 = a;
  3305. result->src1 = NULL;
  3306. return result;
  3307. }
  3308. // ggml_rope
  3309. struct ggml_tensor * ggml_rope(
  3310. struct ggml_context * ctx,
  3311. struct ggml_tensor * a,
  3312. int n_past,
  3313. int n_dims,
  3314. int mode) {
  3315. GGML_ASSERT(n_past >= 0);
  3316. bool is_node = false;
  3317. if (a->grad) {
  3318. GGML_ASSERT(false); // TODO: implement backward
  3319. is_node = true;
  3320. }
  3321. // TODO: when implement backward, fix this:
  3322. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3323. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3324. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3325. ((int32_t *) b->data)[0] = n_past;
  3326. ((int32_t *) b->data)[1] = n_dims;
  3327. ((int32_t *) b->data)[2] = mode;
  3328. result->op = GGML_OP_ROPE;
  3329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3330. result->src0 = a;
  3331. result->src1 = b;
  3332. return result;
  3333. }
  3334. // ggml_conv_1d_1s
  3335. struct ggml_tensor * ggml_conv_1d_1s(
  3336. struct ggml_context * ctx,
  3337. struct ggml_tensor * a,
  3338. struct ggml_tensor * b) {
  3339. GGML_ASSERT(ggml_is_matrix(b));
  3340. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3341. GGML_ASSERT(a->ne[3] == 1);
  3342. bool is_node = false;
  3343. if (a->grad || b->grad) {
  3344. GGML_ASSERT(false); // TODO: implement backward
  3345. is_node = true;
  3346. }
  3347. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3348. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3349. result->op = GGML_OP_CONV_1D_1S;
  3350. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3351. result->src0 = a;
  3352. result->src1 = b;
  3353. return result;
  3354. }
  3355. // ggml_conv_1d_2s
  3356. struct ggml_tensor * ggml_conv_1d_2s(
  3357. struct ggml_context * ctx,
  3358. struct ggml_tensor * a,
  3359. struct ggml_tensor * b) {
  3360. GGML_ASSERT(ggml_is_matrix(b));
  3361. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3362. GGML_ASSERT(a->ne[3] == 1);
  3363. bool is_node = false;
  3364. if (a->grad || b->grad) {
  3365. GGML_ASSERT(false); // TODO: implement backward
  3366. is_node = true;
  3367. }
  3368. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3369. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3370. result->op = GGML_OP_CONV_1D_2S;
  3371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3372. result->src0 = a;
  3373. result->src1 = b;
  3374. return result;
  3375. }
  3376. // ggml_flash_attn
  3377. struct ggml_tensor * ggml_flash_attn(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * q,
  3380. struct ggml_tensor * k,
  3381. struct ggml_tensor * v,
  3382. bool masked) {
  3383. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3384. // TODO: check if vT can be multiplied by (k*qT)
  3385. bool is_node = false;
  3386. if (q->grad || k->grad || v->grad) {
  3387. GGML_ASSERT(false); // TODO: implement backward
  3388. is_node = true;
  3389. }
  3390. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3391. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3392. result->op = GGML_OP_FLASH_ATTN;
  3393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3394. result->src0 = q;
  3395. result->src1 = k;
  3396. result->opt[0] = v;
  3397. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3398. return result;
  3399. }
  3400. // ggml_flash_ff
  3401. struct ggml_tensor * ggml_flash_ff(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a,
  3404. struct ggml_tensor * b0,
  3405. struct ggml_tensor * b1,
  3406. struct ggml_tensor * c0,
  3407. struct ggml_tensor * c1) {
  3408. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3409. // TODO: more checks
  3410. bool is_node = false;
  3411. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3412. GGML_ASSERT(false); // TODO: implement backward
  3413. is_node = true;
  3414. }
  3415. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3416. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3417. result->op = GGML_OP_FLASH_FF;
  3418. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3419. result->src0 = a;
  3420. result->src1 = b0;
  3421. result->opt[0] = b1;
  3422. result->opt[1] = c0;
  3423. result->opt[2] = c1;
  3424. return result;
  3425. }
  3426. ////////////////////////////////////////////////////////////////////////////////
  3427. void ggml_set_param(
  3428. struct ggml_context * ctx,
  3429. struct ggml_tensor * tensor) {
  3430. tensor->is_param = true;
  3431. GGML_ASSERT(tensor->grad == NULL);
  3432. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3433. }
  3434. // ggml_compute_forward_dup
  3435. static void ggml_compute_forward_dup_f16(
  3436. const struct ggml_compute_params * params,
  3437. const struct ggml_tensor * src0,
  3438. struct ggml_tensor * dst) {
  3439. GGML_ASSERT(params->ith == 0);
  3440. GGML_ASSERT(ggml_is_contiguous(dst));
  3441. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3442. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3443. return;
  3444. }
  3445. const int ne00 = src0->ne[0];
  3446. const int ne01 = src0->ne[1];
  3447. const int ne02 = src0->ne[2];
  3448. const int ne03 = src0->ne[3];
  3449. const size_t nb00 = src0->nb[0];
  3450. const size_t nb01 = src0->nb[1];
  3451. const size_t nb02 = src0->nb[2];
  3452. const size_t nb03 = src0->nb[3];
  3453. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3454. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3455. return;
  3456. }
  3457. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3458. if (dst->type == GGML_TYPE_F16) {
  3459. int id = 0;
  3460. const size_t rs = ne00*nb00;
  3461. for (int i03 = 0; i03 < ne03; i03++) {
  3462. for (int i02 = 0; i02 < ne02; i02++) {
  3463. for (int i01 = 0; i01 < ne01; i01++) {
  3464. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3465. char * dst_ptr = (char *) dst->data + id*rs;
  3466. memcpy(dst_ptr, src0_ptr, rs);
  3467. id++;
  3468. }
  3469. }
  3470. }
  3471. } else if (dst->type == GGML_TYPE_F32) {
  3472. int id = 0;
  3473. float * dst_ptr = (float *) dst->data;
  3474. for (int i03 = 0; i03 < ne03; i03++) {
  3475. for (int i02 = 0; i02 < ne02; i02++) {
  3476. for (int i01 = 0; i01 < ne01; i01++) {
  3477. for (int i00 = 0; i00 < ne00; i00++) {
  3478. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3479. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3480. id++;
  3481. }
  3482. }
  3483. }
  3484. }
  3485. } else {
  3486. GGML_ASSERT(false); // TODO: implement
  3487. }
  3488. } else {
  3489. //printf("%s: this is not optimal - fix me\n", __func__);
  3490. if (dst->type == GGML_TYPE_F32) {
  3491. int id = 0;
  3492. float * dst_ptr = (float *) dst->data;
  3493. for (int i03 = 0; i03 < ne03; i03++) {
  3494. for (int i02 = 0; i02 < ne02; i02++) {
  3495. for (int i01 = 0; i01 < ne01; i01++) {
  3496. for (int i00 = 0; i00 < ne00; i00++) {
  3497. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3498. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3499. id++;
  3500. }
  3501. }
  3502. }
  3503. }
  3504. } else if (dst->type == GGML_TYPE_F16) {
  3505. int id = 0;
  3506. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3507. for (int i03 = 0; i03 < ne03; i03++) {
  3508. for (int i02 = 0; i02 < ne02; i02++) {
  3509. for (int i01 = 0; i01 < ne01; i01++) {
  3510. for (int i00 = 0; i00 < ne00; i00++) {
  3511. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3512. dst_ptr[id] = *src0_ptr;
  3513. id++;
  3514. }
  3515. }
  3516. }
  3517. }
  3518. } else {
  3519. GGML_ASSERT(false); // TODO: implement
  3520. }
  3521. }
  3522. }
  3523. static void ggml_compute_forward_dup_f32(
  3524. const struct ggml_compute_params * params,
  3525. const struct ggml_tensor * src0,
  3526. struct ggml_tensor * dst) {
  3527. GGML_ASSERT(params->ith == 0);
  3528. GGML_ASSERT(ggml_is_contiguous(dst));
  3529. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3530. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3531. return;
  3532. }
  3533. const int ne00 = src0->ne[0];
  3534. const int ne01 = src0->ne[1];
  3535. const int ne02 = src0->ne[2];
  3536. const int ne03 = src0->ne[3];
  3537. const size_t nb00 = src0->nb[0];
  3538. const size_t nb01 = src0->nb[1];
  3539. const size_t nb02 = src0->nb[2];
  3540. const size_t nb03 = src0->nb[3];
  3541. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3542. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3543. return;
  3544. }
  3545. if (src0->nb[0] == sizeof(float)) {
  3546. if (dst->type == GGML_TYPE_F32) {
  3547. int id = 0;
  3548. const size_t rs = ne00*nb00;
  3549. for (int i03 = 0; i03 < ne03; i03++) {
  3550. for (int i02 = 0; i02 < ne02; i02++) {
  3551. for (int i01 = 0; i01 < ne01; i01++) {
  3552. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3553. char * dst_ptr = (char *) dst->data + id*rs;
  3554. memcpy(dst_ptr, src0_ptr, rs);
  3555. id++;
  3556. }
  3557. }
  3558. }
  3559. } else if (dst->type == GGML_TYPE_F16) {
  3560. int id = 0;
  3561. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3562. for (int i03 = 0; i03 < ne03; i03++) {
  3563. for (int i02 = 0; i02 < ne02; i02++) {
  3564. for (int i01 = 0; i01 < ne01; i01++) {
  3565. for (int i00 = 0; i00 < ne00; i00++) {
  3566. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3567. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3568. id++;
  3569. }
  3570. }
  3571. }
  3572. }
  3573. } else {
  3574. GGML_ASSERT(false); // TODO: implement
  3575. }
  3576. } else {
  3577. //printf("%s: this is not optimal - fix me\n", __func__);
  3578. if (dst->type == GGML_TYPE_F32) {
  3579. int id = 0;
  3580. float * dst_ptr = (float *) dst->data;
  3581. for (int i03 = 0; i03 < ne03; i03++) {
  3582. for (int i02 = 0; i02 < ne02; i02++) {
  3583. for (int i01 = 0; i01 < ne01; i01++) {
  3584. for (int i00 = 0; i00 < ne00; i00++) {
  3585. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3586. dst_ptr[id] = *src0_ptr;
  3587. id++;
  3588. }
  3589. }
  3590. }
  3591. }
  3592. } else if (dst->type == GGML_TYPE_F16) {
  3593. int id = 0;
  3594. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3595. for (int i03 = 0; i03 < ne03; i03++) {
  3596. for (int i02 = 0; i02 < ne02; i02++) {
  3597. for (int i01 = 0; i01 < ne01; i01++) {
  3598. for (int i00 = 0; i00 < ne00; i00++) {
  3599. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3600. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3601. id++;
  3602. }
  3603. }
  3604. }
  3605. }
  3606. } else {
  3607. GGML_ASSERT(false); // TODO: implement
  3608. }
  3609. }
  3610. }
  3611. static void ggml_compute_forward_dup(
  3612. const struct ggml_compute_params * params,
  3613. const struct ggml_tensor * src0,
  3614. struct ggml_tensor * dst) {
  3615. switch (src0->type) {
  3616. case GGML_TYPE_F16:
  3617. {
  3618. ggml_compute_forward_dup_f16(params, src0, dst);
  3619. } break;
  3620. case GGML_TYPE_F32:
  3621. {
  3622. ggml_compute_forward_dup_f32(params, src0, dst);
  3623. } break;
  3624. case GGML_TYPE_Q4_0:
  3625. case GGML_TYPE_Q4_1:
  3626. case GGML_TYPE_I8:
  3627. case GGML_TYPE_I16:
  3628. case GGML_TYPE_I32:
  3629. case GGML_TYPE_COUNT:
  3630. {
  3631. GGML_ASSERT(false);
  3632. } break;
  3633. }
  3634. }
  3635. // ggml_compute_forward_add
  3636. static void ggml_compute_forward_add_f32(
  3637. const struct ggml_compute_params * params,
  3638. const struct ggml_tensor * src0,
  3639. const struct ggml_tensor * src1,
  3640. struct ggml_tensor * dst) {
  3641. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3643. return;
  3644. }
  3645. const int ith = params->ith;
  3646. const int nth = params->nth;
  3647. const int n = ggml_nrows(src0);
  3648. const int nc = src0->ne[0];
  3649. const size_t nb00 = src0->nb[0];
  3650. const size_t nb01 = src0->nb[1];
  3651. const size_t nb10 = src1->nb[0];
  3652. const size_t nb11 = src1->nb[1];
  3653. const size_t nb0 = dst->nb[0];
  3654. const size_t nb1 = dst->nb[1];
  3655. GGML_ASSERT( nb0 == sizeof(float));
  3656. GGML_ASSERT(nb00 == sizeof(float));
  3657. if (nb10 == sizeof(float)) {
  3658. const int j0 = (n/nth)*ith;
  3659. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3660. for (int j = j0; j < j1; j++) {
  3661. ggml_vec_add_f32(nc,
  3662. (float *) ((char *) dst->data + j*nb1),
  3663. (float *) ((char *) src0->data + j*nb01),
  3664. (float *) ((char *) src1->data + j*nb11));
  3665. }
  3666. } else {
  3667. // src1 is not contiguous
  3668. for (int j = ith; j < n; j += nth) {
  3669. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3670. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3671. for (int i = 0; i < nc; i++) {
  3672. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3673. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3674. }
  3675. }
  3676. }
  3677. }
  3678. static void ggml_compute_forward_add(
  3679. const struct ggml_compute_params * params,
  3680. const struct ggml_tensor * src0,
  3681. const struct ggml_tensor * src1,
  3682. struct ggml_tensor * dst) {
  3683. switch (src0->type) {
  3684. case GGML_TYPE_F32:
  3685. {
  3686. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3687. } break;
  3688. case GGML_TYPE_Q4_0:
  3689. case GGML_TYPE_Q4_1:
  3690. case GGML_TYPE_I8:
  3691. case GGML_TYPE_I16:
  3692. case GGML_TYPE_I32:
  3693. case GGML_TYPE_F16:
  3694. case GGML_TYPE_COUNT:
  3695. {
  3696. GGML_ASSERT(false);
  3697. } break;
  3698. }
  3699. }
  3700. // ggml_compute_forward_sub
  3701. static void ggml_compute_forward_sub_f32(
  3702. const struct ggml_compute_params * params,
  3703. const struct ggml_tensor * src0,
  3704. const struct ggml_tensor * src1,
  3705. struct ggml_tensor * dst) {
  3706. assert(params->ith == 0);
  3707. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3708. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3709. return;
  3710. }
  3711. const int n = ggml_nrows(src0);
  3712. const int nc = src0->ne[0];
  3713. assert( dst->nb[0] == sizeof(float));
  3714. assert(src0->nb[0] == sizeof(float));
  3715. assert(src1->nb[0] == sizeof(float));
  3716. for (int i = 0; i < n; i++) {
  3717. ggml_vec_sub_f32(nc,
  3718. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3719. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3720. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3721. }
  3722. }
  3723. static void ggml_compute_forward_sub(
  3724. const struct ggml_compute_params * params,
  3725. const struct ggml_tensor * src0,
  3726. const struct ggml_tensor * src1,
  3727. struct ggml_tensor * dst) {
  3728. switch (src0->type) {
  3729. case GGML_TYPE_F32:
  3730. {
  3731. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3732. } break;
  3733. case GGML_TYPE_Q4_0:
  3734. case GGML_TYPE_Q4_1:
  3735. case GGML_TYPE_I8:
  3736. case GGML_TYPE_I16:
  3737. case GGML_TYPE_I32:
  3738. case GGML_TYPE_F16:
  3739. case GGML_TYPE_COUNT:
  3740. {
  3741. GGML_ASSERT(false);
  3742. } break;
  3743. }
  3744. }
  3745. // ggml_compute_forward_mul
  3746. static void ggml_compute_forward_mul_f32(
  3747. const struct ggml_compute_params * params,
  3748. const struct ggml_tensor * src0,
  3749. const struct ggml_tensor * src1,
  3750. struct ggml_tensor * dst) {
  3751. assert(params->ith == 0);
  3752. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3753. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3754. return;
  3755. }
  3756. const int n = ggml_nrows(src0);
  3757. const int nc = src0->ne[0];
  3758. assert( dst->nb[0] == sizeof(float));
  3759. assert(src0->nb[0] == sizeof(float));
  3760. assert(src1->nb[0] == sizeof(float));
  3761. for (int i = 0; i < n; i++) {
  3762. ggml_vec_mul_f32(nc,
  3763. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3764. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3765. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3766. }
  3767. }
  3768. static void ggml_compute_forward_mul(
  3769. const struct ggml_compute_params * params,
  3770. const struct ggml_tensor * src0,
  3771. const struct ggml_tensor * src1,
  3772. struct ggml_tensor * dst) {
  3773. switch (src0->type) {
  3774. case GGML_TYPE_F32:
  3775. {
  3776. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3777. } break;
  3778. case GGML_TYPE_Q4_0:
  3779. case GGML_TYPE_Q4_1:
  3780. case GGML_TYPE_I8:
  3781. case GGML_TYPE_I16:
  3782. case GGML_TYPE_I32:
  3783. case GGML_TYPE_F16:
  3784. case GGML_TYPE_COUNT:
  3785. {
  3786. GGML_ASSERT(false);
  3787. } break;
  3788. }
  3789. }
  3790. // ggml_compute_forward_div
  3791. static void ggml_compute_forward_div_f32(
  3792. const struct ggml_compute_params * params,
  3793. const struct ggml_tensor * src0,
  3794. const struct ggml_tensor * src1,
  3795. struct ggml_tensor * dst) {
  3796. assert(params->ith == 0);
  3797. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3798. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3799. return;
  3800. }
  3801. const int n = ggml_nrows(src0);
  3802. const int nc = src0->ne[0];
  3803. assert( dst->nb[0] == sizeof(float));
  3804. assert(src0->nb[0] == sizeof(float));
  3805. assert(src1->nb[0] == sizeof(float));
  3806. for (int i = 0; i < n; i++) {
  3807. ggml_vec_div_f32(nc,
  3808. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3809. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3810. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3811. }
  3812. }
  3813. static void ggml_compute_forward_div(
  3814. const struct ggml_compute_params * params,
  3815. const struct ggml_tensor * src0,
  3816. const struct ggml_tensor * src1,
  3817. struct ggml_tensor * dst) {
  3818. switch (src0->type) {
  3819. case GGML_TYPE_F32:
  3820. {
  3821. ggml_compute_forward_div_f32(params, src0, src1, dst);
  3822. } break;
  3823. case GGML_TYPE_Q4_0:
  3824. case GGML_TYPE_Q4_1:
  3825. case GGML_TYPE_I8:
  3826. case GGML_TYPE_I16:
  3827. case GGML_TYPE_I32:
  3828. case GGML_TYPE_F16:
  3829. case GGML_TYPE_COUNT:
  3830. {
  3831. GGML_ASSERT(false);
  3832. } break;
  3833. }
  3834. }
  3835. // ggml_compute_forward_sqr
  3836. static void ggml_compute_forward_sqr_f32(
  3837. const struct ggml_compute_params * params,
  3838. const struct ggml_tensor * src0,
  3839. struct ggml_tensor * dst) {
  3840. assert(params->ith == 0);
  3841. assert(ggml_are_same_shape(src0, dst));
  3842. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3843. return;
  3844. }
  3845. const int n = ggml_nrows(src0);
  3846. const int nc = src0->ne[0];
  3847. assert( dst->nb[0] == sizeof(float));
  3848. assert(src0->nb[0] == sizeof(float));
  3849. for (int i = 0; i < n; i++) {
  3850. ggml_vec_sqr_f32(nc,
  3851. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3852. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3853. }
  3854. }
  3855. static void ggml_compute_forward_sqr(
  3856. const struct ggml_compute_params * params,
  3857. const struct ggml_tensor * src0,
  3858. struct ggml_tensor * dst) {
  3859. switch (src0->type) {
  3860. case GGML_TYPE_F32:
  3861. {
  3862. ggml_compute_forward_sqr_f32(params, src0, dst);
  3863. } break;
  3864. case GGML_TYPE_Q4_0:
  3865. case GGML_TYPE_Q4_1:
  3866. case GGML_TYPE_I8:
  3867. case GGML_TYPE_I16:
  3868. case GGML_TYPE_I32:
  3869. case GGML_TYPE_F16:
  3870. case GGML_TYPE_COUNT:
  3871. {
  3872. GGML_ASSERT(false);
  3873. } break;
  3874. }
  3875. }
  3876. // ggml_compute_forward_sqrt
  3877. static void ggml_compute_forward_sqrt_f32(
  3878. const struct ggml_compute_params * params,
  3879. const struct ggml_tensor * src0,
  3880. struct ggml_tensor * dst) {
  3881. assert(params->ith == 0);
  3882. assert(ggml_are_same_shape(src0, dst));
  3883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3884. return;
  3885. }
  3886. const int n = ggml_nrows(src0);
  3887. const int nc = src0->ne[0];
  3888. assert( dst->nb[0] == sizeof(float));
  3889. assert(src0->nb[0] == sizeof(float));
  3890. for (int i = 0; i < n; i++) {
  3891. ggml_vec_sqrt_f32(nc,
  3892. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3893. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3894. }
  3895. }
  3896. static void ggml_compute_forward_sqrt(
  3897. const struct ggml_compute_params * params,
  3898. const struct ggml_tensor * src0,
  3899. struct ggml_tensor * dst) {
  3900. switch (src0->type) {
  3901. case GGML_TYPE_F32:
  3902. {
  3903. ggml_compute_forward_sqrt_f32(params, src0, dst);
  3904. } break;
  3905. case GGML_TYPE_Q4_0:
  3906. case GGML_TYPE_Q4_1:
  3907. case GGML_TYPE_I8:
  3908. case GGML_TYPE_I16:
  3909. case GGML_TYPE_I32:
  3910. case GGML_TYPE_F16:
  3911. case GGML_TYPE_COUNT:
  3912. {
  3913. GGML_ASSERT(false);
  3914. } break;
  3915. }
  3916. }
  3917. // ggml_compute_forward_sum
  3918. static void ggml_compute_forward_sum_f32(
  3919. const struct ggml_compute_params * params,
  3920. const struct ggml_tensor * src0,
  3921. struct ggml_tensor * dst) {
  3922. assert(params->ith == 0);
  3923. assert(ggml_is_scalar(dst));
  3924. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3925. return;
  3926. }
  3927. assert(ggml_is_scalar(dst));
  3928. assert(src0->nb[0] == sizeof(float));
  3929. const int ne00 = src0->ne[0];
  3930. const int ne01 = src0->ne[1];
  3931. const int ne02 = src0->ne[2];
  3932. const int ne03 = src0->ne[3];
  3933. const size_t nb01 = src0->nb[1];
  3934. const size_t nb02 = src0->nb[2];
  3935. const size_t nb03 = src0->nb[3];
  3936. for (int i03 = 0; i03 < ne03; i03++) {
  3937. for (int i02 = 0; i02 < ne02; i02++) {
  3938. for (int i01 = 0; i01 < ne01; i01++) {
  3939. ggml_vec_sum_f32(ne00,
  3940. (float *) (dst->data),
  3941. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  3942. }
  3943. }
  3944. }
  3945. }
  3946. static void ggml_compute_forward_sum(
  3947. const struct ggml_compute_params * params,
  3948. const struct ggml_tensor * src0,
  3949. struct ggml_tensor * dst) {
  3950. switch (src0->type) {
  3951. case GGML_TYPE_F32:
  3952. {
  3953. ggml_compute_forward_sum_f32(params, src0, dst);
  3954. } break;
  3955. case GGML_TYPE_Q4_0:
  3956. case GGML_TYPE_Q4_1:
  3957. case GGML_TYPE_I8:
  3958. case GGML_TYPE_I16:
  3959. case GGML_TYPE_I32:
  3960. case GGML_TYPE_F16:
  3961. case GGML_TYPE_COUNT:
  3962. {
  3963. GGML_ASSERT(false);
  3964. } break;
  3965. }
  3966. }
  3967. // ggml_compute_forward_mean
  3968. static void ggml_compute_forward_mean_f32(
  3969. const struct ggml_compute_params * params,
  3970. const struct ggml_tensor * src0,
  3971. struct ggml_tensor * dst) {
  3972. assert(params->ith == 0);
  3973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3974. return;
  3975. }
  3976. assert(src0->nb[0] == sizeof(float));
  3977. const int ne00 = src0->ne[0];
  3978. const int ne01 = src0->ne[1];
  3979. const int ne02 = src0->ne[2];
  3980. const int ne03 = src0->ne[3];
  3981. const size_t nb01 = src0->nb[1];
  3982. const size_t nb02 = src0->nb[2];
  3983. const size_t nb03 = src0->nb[3];
  3984. const int ne0 = dst->ne[0];
  3985. const int ne1 = dst->ne[1];
  3986. const int ne2 = dst->ne[2];
  3987. const int ne3 = dst->ne[3];
  3988. assert(ne0 == 1);
  3989. assert(ne1 == ne01);
  3990. assert(ne2 == ne02);
  3991. assert(ne3 == ne03);
  3992. UNUSED(ne0);
  3993. UNUSED(ne1);
  3994. UNUSED(ne2);
  3995. UNUSED(ne3);
  3996. const size_t nb1 = dst->nb[1];
  3997. const size_t nb2 = dst->nb[2];
  3998. const size_t nb3 = dst->nb[3];
  3999. for (int i03 = 0; i03 < ne03; i03++) {
  4000. for (int i02 = 0; i02 < ne02; i02++) {
  4001. for (int i01 = 0; i01 < ne01; i01++) {
  4002. ggml_vec_sum_f32(ne00,
  4003. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4004. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4005. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4006. }
  4007. }
  4008. }
  4009. }
  4010. static void ggml_compute_forward_mean(
  4011. const struct ggml_compute_params * params,
  4012. const struct ggml_tensor * src0,
  4013. struct ggml_tensor * dst) {
  4014. switch (src0->type) {
  4015. case GGML_TYPE_F32:
  4016. {
  4017. ggml_compute_forward_mean_f32(params, src0, dst);
  4018. } break;
  4019. case GGML_TYPE_Q4_0:
  4020. case GGML_TYPE_Q4_1:
  4021. case GGML_TYPE_I8:
  4022. case GGML_TYPE_I16:
  4023. case GGML_TYPE_I32:
  4024. case GGML_TYPE_F16:
  4025. case GGML_TYPE_COUNT:
  4026. {
  4027. GGML_ASSERT(false);
  4028. } break;
  4029. }
  4030. }
  4031. // ggml_compute_forward_repeat
  4032. static void ggml_compute_forward_repeat_f32(
  4033. const struct ggml_compute_params * params,
  4034. const struct ggml_tensor * src0,
  4035. struct ggml_tensor * dst) {
  4036. assert(params->ith == 0);
  4037. assert(ggml_can_repeat(src0, dst));
  4038. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4039. return;
  4040. }
  4041. // TODO: implement support for rank > 2 tensors
  4042. assert(src0->ne[2] == 1);
  4043. assert(src0->ne[3] == 1);
  4044. assert( dst->ne[2] == 1);
  4045. assert( dst->ne[3] == 1);
  4046. const int nc = dst->ne[0];
  4047. const int nr = dst->ne[1];
  4048. const int nc0 = src0->ne[0];
  4049. const int nr0 = src0->ne[1];
  4050. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4051. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4052. // TODO: support for transposed / permuted tensors
  4053. assert( dst->nb[0] == sizeof(float));
  4054. assert(src0->nb[0] == sizeof(float));
  4055. // TODO: maybe this is not optimal?
  4056. for (int i = 0; i < nrr; i++) {
  4057. for (int j = 0; j < ncr; j++) {
  4058. for (int k = 0; k < nr0; k++) {
  4059. ggml_vec_cpy_f32(nc0,
  4060. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4061. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4062. }
  4063. }
  4064. }
  4065. }
  4066. static void ggml_compute_forward_repeat(
  4067. const struct ggml_compute_params * params,
  4068. const struct ggml_tensor * src0,
  4069. struct ggml_tensor * dst) {
  4070. switch (src0->type) {
  4071. case GGML_TYPE_F32:
  4072. {
  4073. ggml_compute_forward_repeat_f32(params, src0, dst);
  4074. } break;
  4075. case GGML_TYPE_Q4_0:
  4076. case GGML_TYPE_Q4_1:
  4077. case GGML_TYPE_I8:
  4078. case GGML_TYPE_I16:
  4079. case GGML_TYPE_I32:
  4080. case GGML_TYPE_F16:
  4081. case GGML_TYPE_COUNT:
  4082. {
  4083. GGML_ASSERT(false);
  4084. } break;
  4085. }
  4086. }
  4087. // ggml_compute_forward_abs
  4088. static void ggml_compute_forward_abs_f32(
  4089. const struct ggml_compute_params * params,
  4090. const struct ggml_tensor * src0,
  4091. struct ggml_tensor * dst) {
  4092. assert(params->ith == 0);
  4093. assert(ggml_are_same_shape(src0, dst));
  4094. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4095. return;
  4096. }
  4097. const int n = ggml_nrows(src0);
  4098. const int nc = src0->ne[0];
  4099. assert(dst->nb[0] == sizeof(float));
  4100. assert(src0->nb[0] == sizeof(float));
  4101. for (int i = 0; i < n; i++) {
  4102. ggml_vec_abs_f32(nc,
  4103. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4104. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4105. }
  4106. }
  4107. static void ggml_compute_forward_abs(
  4108. const struct ggml_compute_params * params,
  4109. const struct ggml_tensor * src0,
  4110. struct ggml_tensor * dst) {
  4111. switch (src0->type) {
  4112. case GGML_TYPE_F32:
  4113. {
  4114. ggml_compute_forward_abs_f32(params, src0, dst);
  4115. } break;
  4116. case GGML_TYPE_Q4_0:
  4117. case GGML_TYPE_Q4_1:
  4118. case GGML_TYPE_I8:
  4119. case GGML_TYPE_I16:
  4120. case GGML_TYPE_I32:
  4121. case GGML_TYPE_F16:
  4122. case GGML_TYPE_COUNT:
  4123. {
  4124. GGML_ASSERT(false);
  4125. } break;
  4126. }
  4127. }
  4128. // ggml_compute_forward_sgn
  4129. static void ggml_compute_forward_sgn_f32(
  4130. const struct ggml_compute_params * params,
  4131. const struct ggml_tensor * src0,
  4132. struct ggml_tensor * dst) {
  4133. assert(params->ith == 0);
  4134. assert(ggml_are_same_shape(src0, dst));
  4135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4136. return;
  4137. }
  4138. const int n = ggml_nrows(src0);
  4139. const int nc = src0->ne[0];
  4140. assert(dst->nb[0] == sizeof(float));
  4141. assert(src0->nb[0] == sizeof(float));
  4142. for (int i = 0; i < n; i++) {
  4143. ggml_vec_sgn_f32(nc,
  4144. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4145. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4146. }
  4147. }
  4148. static void ggml_compute_forward_sgn(
  4149. const struct ggml_compute_params * params,
  4150. const struct ggml_tensor * src0,
  4151. struct ggml_tensor * dst) {
  4152. switch (src0->type) {
  4153. case GGML_TYPE_F32:
  4154. {
  4155. ggml_compute_forward_sgn_f32(params, src0, dst);
  4156. } break;
  4157. case GGML_TYPE_Q4_0:
  4158. case GGML_TYPE_Q4_1:
  4159. case GGML_TYPE_I8:
  4160. case GGML_TYPE_I16:
  4161. case GGML_TYPE_I32:
  4162. case GGML_TYPE_F16:
  4163. case GGML_TYPE_COUNT:
  4164. {
  4165. GGML_ASSERT(false);
  4166. } break;
  4167. }
  4168. }
  4169. // ggml_compute_forward_neg
  4170. static void ggml_compute_forward_neg_f32(
  4171. const struct ggml_compute_params * params,
  4172. const struct ggml_tensor * src0,
  4173. struct ggml_tensor * dst) {
  4174. assert(params->ith == 0);
  4175. assert(ggml_are_same_shape(src0, dst));
  4176. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4177. return;
  4178. }
  4179. const int n = ggml_nrows(src0);
  4180. const int nc = src0->ne[0];
  4181. assert(dst->nb[0] == sizeof(float));
  4182. assert(src0->nb[0] == sizeof(float));
  4183. for (int i = 0; i < n; i++) {
  4184. ggml_vec_neg_f32(nc,
  4185. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4186. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4187. }
  4188. }
  4189. static void ggml_compute_forward_neg(
  4190. const struct ggml_compute_params * params,
  4191. const struct ggml_tensor * src0,
  4192. struct ggml_tensor * dst) {
  4193. switch (src0->type) {
  4194. case GGML_TYPE_F32:
  4195. {
  4196. ggml_compute_forward_neg_f32(params, src0, dst);
  4197. } break;
  4198. case GGML_TYPE_Q4_0:
  4199. case GGML_TYPE_Q4_1:
  4200. case GGML_TYPE_I8:
  4201. case GGML_TYPE_I16:
  4202. case GGML_TYPE_I32:
  4203. case GGML_TYPE_F16:
  4204. case GGML_TYPE_COUNT:
  4205. {
  4206. GGML_ASSERT(false);
  4207. } break;
  4208. }
  4209. }
  4210. // ggml_compute_forward_step
  4211. static void ggml_compute_forward_step_f32(
  4212. const struct ggml_compute_params * params,
  4213. const struct ggml_tensor * src0,
  4214. struct ggml_tensor * dst) {
  4215. assert(params->ith == 0);
  4216. assert(ggml_are_same_shape(src0, dst));
  4217. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4218. return;
  4219. }
  4220. const int n = ggml_nrows(src0);
  4221. const int nc = src0->ne[0];
  4222. assert(dst->nb[0] == sizeof(float));
  4223. assert(src0->nb[0] == sizeof(float));
  4224. for (int i = 0; i < n; i++) {
  4225. ggml_vec_step_f32(nc,
  4226. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4227. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4228. }
  4229. }
  4230. static void ggml_compute_forward_step(
  4231. const struct ggml_compute_params * params,
  4232. const struct ggml_tensor * src0,
  4233. struct ggml_tensor * dst) {
  4234. switch (src0->type) {
  4235. case GGML_TYPE_F32:
  4236. {
  4237. ggml_compute_forward_step_f32(params, src0, dst);
  4238. } break;
  4239. case GGML_TYPE_Q4_0:
  4240. case GGML_TYPE_Q4_1:
  4241. case GGML_TYPE_I8:
  4242. case GGML_TYPE_I16:
  4243. case GGML_TYPE_I32:
  4244. case GGML_TYPE_F16:
  4245. case GGML_TYPE_COUNT:
  4246. {
  4247. GGML_ASSERT(false);
  4248. } break;
  4249. }
  4250. }
  4251. // ggml_compute_forward_relu
  4252. static void ggml_compute_forward_relu_f32(
  4253. const struct ggml_compute_params * params,
  4254. const struct ggml_tensor * src0,
  4255. struct ggml_tensor * dst) {
  4256. assert(params->ith == 0);
  4257. assert(ggml_are_same_shape(src0, dst));
  4258. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4259. return;
  4260. }
  4261. const int n = ggml_nrows(src0);
  4262. const int nc = src0->ne[0];
  4263. assert(dst->nb[0] == sizeof(float));
  4264. assert(src0->nb[0] == sizeof(float));
  4265. for (int i = 0; i < n; i++) {
  4266. ggml_vec_relu_f32(nc,
  4267. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4268. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4269. }
  4270. }
  4271. static void ggml_compute_forward_relu(
  4272. const struct ggml_compute_params * params,
  4273. const struct ggml_tensor * src0,
  4274. struct ggml_tensor * dst) {
  4275. switch (src0->type) {
  4276. case GGML_TYPE_F32:
  4277. {
  4278. ggml_compute_forward_relu_f32(params, src0, dst);
  4279. } break;
  4280. case GGML_TYPE_Q4_0:
  4281. case GGML_TYPE_Q4_1:
  4282. case GGML_TYPE_I8:
  4283. case GGML_TYPE_I16:
  4284. case GGML_TYPE_I32:
  4285. case GGML_TYPE_F16:
  4286. case GGML_TYPE_COUNT:
  4287. {
  4288. GGML_ASSERT(false);
  4289. } break;
  4290. }
  4291. }
  4292. // ggml_compute_forward_gelu
  4293. static void ggml_compute_forward_gelu_f32(
  4294. const struct ggml_compute_params * params,
  4295. const struct ggml_tensor * src0,
  4296. struct ggml_tensor * dst) {
  4297. GGML_ASSERT(ggml_is_contiguous(src0));
  4298. GGML_ASSERT(ggml_is_contiguous(dst));
  4299. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4300. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4301. return;
  4302. }
  4303. const int ith = params->ith;
  4304. const int nth = params->nth;
  4305. const int nc = src0->ne[0];
  4306. const int nr = ggml_nrows(src0);
  4307. // rows per thread
  4308. const int dr = (nr + nth - 1)/nth;
  4309. // row range for this thread
  4310. const int ir0 = dr*ith;
  4311. const int ir1 = MIN(ir0 + dr, nr);
  4312. for (int i1 = ir0; i1 < ir1; i1++) {
  4313. ggml_vec_gelu_f32(nc,
  4314. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4315. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4316. #ifndef NDEBUG
  4317. for (int k = 0; k < nc; k++) {
  4318. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4319. UNUSED(x);
  4320. assert(!isnan(x));
  4321. assert(!isinf(x));
  4322. }
  4323. #endif
  4324. }
  4325. }
  4326. static void ggml_compute_forward_gelu(
  4327. const struct ggml_compute_params * params,
  4328. const struct ggml_tensor * src0,
  4329. struct ggml_tensor * dst) {
  4330. switch (src0->type) {
  4331. case GGML_TYPE_F32:
  4332. {
  4333. ggml_compute_forward_gelu_f32(params, src0, dst);
  4334. } break;
  4335. case GGML_TYPE_Q4_0:
  4336. case GGML_TYPE_Q4_1:
  4337. case GGML_TYPE_I8:
  4338. case GGML_TYPE_I16:
  4339. case GGML_TYPE_I32:
  4340. case GGML_TYPE_F16:
  4341. case GGML_TYPE_COUNT:
  4342. {
  4343. GGML_ASSERT(false);
  4344. } break;
  4345. }
  4346. //printf("XXXXXXXX gelu\n");
  4347. }
  4348. // ggml_compute_forward_silu
  4349. static void ggml_compute_forward_silu_f32(
  4350. const struct ggml_compute_params * params,
  4351. const struct ggml_tensor * src0,
  4352. struct ggml_tensor * dst) {
  4353. GGML_ASSERT(ggml_is_contiguous(src0));
  4354. GGML_ASSERT(ggml_is_contiguous(dst));
  4355. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4357. return;
  4358. }
  4359. const int ith = params->ith;
  4360. const int nth = params->nth;
  4361. const int nc = src0->ne[0];
  4362. const int nr = ggml_nrows(src0);
  4363. // rows per thread
  4364. const int dr = (nr + nth - 1)/nth;
  4365. // row range for this thread
  4366. const int ir0 = dr*ith;
  4367. const int ir1 = MIN(ir0 + dr, nr);
  4368. for (int i1 = ir0; i1 < ir1; i1++) {
  4369. ggml_vec_silu_f32(nc,
  4370. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4371. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4372. #ifndef NDEBUG
  4373. for (int k = 0; k < nc; k++) {
  4374. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4375. UNUSED(x);
  4376. assert(!isnan(x));
  4377. assert(!isinf(x));
  4378. }
  4379. #endif
  4380. }
  4381. }
  4382. static void ggml_compute_forward_silu(
  4383. const struct ggml_compute_params * params,
  4384. const struct ggml_tensor * src0,
  4385. struct ggml_tensor * dst) {
  4386. switch (src0->type) {
  4387. case GGML_TYPE_F32:
  4388. {
  4389. ggml_compute_forward_silu_f32(params, src0, dst);
  4390. } break;
  4391. case GGML_TYPE_Q4_0:
  4392. case GGML_TYPE_Q4_1:
  4393. case GGML_TYPE_I8:
  4394. case GGML_TYPE_I16:
  4395. case GGML_TYPE_I32:
  4396. case GGML_TYPE_F16:
  4397. case GGML_TYPE_COUNT:
  4398. {
  4399. GGML_ASSERT(false);
  4400. } break;
  4401. }
  4402. }
  4403. // ggml_compute_forward_norm
  4404. static void ggml_compute_forward_norm_f32(
  4405. const struct ggml_compute_params * params,
  4406. const struct ggml_tensor * src0,
  4407. struct ggml_tensor * dst) {
  4408. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4409. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4410. return;
  4411. }
  4412. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4413. const int ith = params->ith;
  4414. const int nth = params->nth;
  4415. const int ne00 = src0->ne[0];
  4416. const int ne01 = src0->ne[1];
  4417. const int ne02 = src0->ne[2];
  4418. const int ne03 = src0->ne[3];
  4419. const size_t nb01 = src0->nb[1];
  4420. const size_t nb02 = src0->nb[2];
  4421. const size_t nb03 = src0->nb[3];
  4422. const size_t nb1 = dst->nb[1];
  4423. const size_t nb2 = dst->nb[2];
  4424. const size_t nb3 = dst->nb[3];
  4425. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4426. // TODO: optimize
  4427. for (int i03 = 0; i03 < ne03; i03++) {
  4428. for (int i02 = 0; i02 < ne02; i02++) {
  4429. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4430. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4431. ggml_float mean = 0.0;
  4432. for (int i00 = 0; i00 < ne00; i00++) {
  4433. mean += x[i00];
  4434. }
  4435. mean /= ne00;
  4436. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4437. ggml_float sum2 = 0.0;
  4438. for (int i00 = 0; i00 < ne00; i00++) {
  4439. ggml_float v = x[i00] - mean;
  4440. y[i00] = v;
  4441. sum2 += v*v;
  4442. }
  4443. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4444. ggml_vec_scale_f32(ne00, y, scale);
  4445. }
  4446. }
  4447. }
  4448. }
  4449. static void ggml_compute_forward_norm(
  4450. const struct ggml_compute_params * params,
  4451. const struct ggml_tensor * src0,
  4452. struct ggml_tensor * dst) {
  4453. switch (src0->type) {
  4454. case GGML_TYPE_F32:
  4455. {
  4456. ggml_compute_forward_norm_f32(params, src0, dst);
  4457. } break;
  4458. case GGML_TYPE_Q4_0:
  4459. case GGML_TYPE_Q4_1:
  4460. case GGML_TYPE_I8:
  4461. case GGML_TYPE_I16:
  4462. case GGML_TYPE_I32:
  4463. case GGML_TYPE_F16:
  4464. case GGML_TYPE_COUNT:
  4465. {
  4466. GGML_ASSERT(false);
  4467. } break;
  4468. }
  4469. }
  4470. static void ggml_compute_forward_rms_norm_f32(
  4471. const struct ggml_compute_params * params,
  4472. const struct ggml_tensor * src0,
  4473. struct ggml_tensor * dst) {
  4474. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4475. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4476. return;
  4477. }
  4478. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4479. const int ith = params->ith;
  4480. const int nth = params->nth;
  4481. const int ne00 = src0->ne[0];
  4482. const int ne01 = src0->ne[1];
  4483. const int ne02 = src0->ne[2];
  4484. const int ne03 = src0->ne[3];
  4485. const size_t nb01 = src0->nb[1];
  4486. const size_t nb02 = src0->nb[2];
  4487. const size_t nb03 = src0->nb[3];
  4488. const size_t nb1 = dst->nb[1];
  4489. const size_t nb2 = dst->nb[2];
  4490. const size_t nb3 = dst->nb[3];
  4491. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4492. // TODO: optimize
  4493. for (int i03 = 0; i03 < ne03; i03++) {
  4494. for (int i02 = 0; i02 < ne02; i02++) {
  4495. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4496. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4497. ggml_float mean = 0.0;
  4498. for (int i00 = 0; i00 < ne00; i00++) {
  4499. mean += x[i00] * x[i00];
  4500. }
  4501. mean /= ne00;
  4502. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4503. memcpy(y, x, ne00 * sizeof(float));
  4504. // for (int i00 = 0; i00 < ne00; i00++) {
  4505. // y[i00] = x[i00];
  4506. // }
  4507. const float scale = 1.0/sqrt(mean + eps);
  4508. ggml_vec_scale_f32(ne00, y, scale);
  4509. }
  4510. }
  4511. }
  4512. }
  4513. static void ggml_compute_forward_rms_norm(
  4514. const struct ggml_compute_params * params,
  4515. const struct ggml_tensor * src0,
  4516. struct ggml_tensor * dst) {
  4517. switch (src0->type) {
  4518. case GGML_TYPE_F32:
  4519. {
  4520. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4521. } break;
  4522. case GGML_TYPE_Q4_0:
  4523. case GGML_TYPE_Q4_1:
  4524. case GGML_TYPE_I8:
  4525. case GGML_TYPE_I16:
  4526. case GGML_TYPE_I32:
  4527. case GGML_TYPE_F16:
  4528. case GGML_TYPE_COUNT:
  4529. {
  4530. GGML_ASSERT(false);
  4531. } break;
  4532. }
  4533. }
  4534. // ggml_compute_forward_mul_mat
  4535. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4536. // helper function to determine if it is better to use BLAS or not
  4537. // for large matrices, BLAS is faster
  4538. static bool ggml_compute_forward_mul_mat_use_blas(
  4539. const struct ggml_tensor * src0,
  4540. const struct ggml_tensor * src1,
  4541. struct ggml_tensor * dst) {
  4542. UNUSED(src0);
  4543. const int ne10 = src1->ne[0];
  4544. const int ne0 = dst->ne[0];
  4545. const int ne1 = dst->ne[1];
  4546. // TODO: find the optimal values for these
  4547. if (ggml_is_contiguous(src0) &&
  4548. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4549. //printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
  4550. return true;
  4551. }
  4552. return false;
  4553. }
  4554. #endif
  4555. static void ggml_compute_forward_mul_mat_f32(
  4556. const struct ggml_compute_params * params,
  4557. const struct ggml_tensor * src0,
  4558. const struct ggml_tensor * src1,
  4559. struct ggml_tensor * dst) {
  4560. int64_t t0 = ggml_perf_time_us();
  4561. UNUSED(t0);
  4562. const int ne00 = src0->ne[0];
  4563. const int ne01 = src0->ne[1];
  4564. const int ne02 = src0->ne[2];
  4565. const int ne03 = src0->ne[3];
  4566. const int ne10 = src1->ne[0];
  4567. const int ne11 = src1->ne[1];
  4568. const int ne12 = src1->ne[2];
  4569. const int ne13 = src1->ne[3];
  4570. const int ne0 = dst->ne[0];
  4571. const int ne1 = dst->ne[1];
  4572. const int ne2 = dst->ne[2];
  4573. const int ne3 = dst->ne[3];
  4574. const int ne = ne0*ne1*ne2*ne3;
  4575. const int nb00 = src0->nb[0];
  4576. const int nb01 = src0->nb[1];
  4577. const int nb02 = src0->nb[2];
  4578. const int nb03 = src0->nb[3];
  4579. const int nb10 = src1->nb[0];
  4580. const int nb11 = src1->nb[1];
  4581. const int nb12 = src1->nb[2];
  4582. const int nb13 = src1->nb[3];
  4583. const int nb0 = dst->nb[0];
  4584. const int nb1 = dst->nb[1];
  4585. const int nb2 = dst->nb[2];
  4586. const int nb3 = dst->nb[3];
  4587. const int ith = params->ith;
  4588. const int nth = params->nth;
  4589. assert(ne02 == ne12);
  4590. assert(ne03 == ne13);
  4591. assert(ne2 == ne12);
  4592. assert(ne3 == ne13);
  4593. // TODO: we don't support permuted src0
  4594. assert(nb00 == sizeof(float) || nb01 == sizeof(float));
  4595. // dst cannot be transposed or permuted
  4596. assert(nb0 == sizeof(float));
  4597. assert(nb0 <= nb1);
  4598. assert(nb1 <= nb2);
  4599. assert(nb2 <= nb3);
  4600. assert(ne0 == ne01);
  4601. assert(ne1 == ne11);
  4602. assert(ne2 == ne02);
  4603. assert(ne3 == ne03);
  4604. // nb01 >= nb00 - src0 is not transposed
  4605. // compute by src0 rows
  4606. //
  4607. // nb00 < nb01 - src0 is transposed
  4608. // compute by src0 columns
  4609. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4610. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4611. GGML_ASSERT(nb10 == sizeof(float));
  4612. if (params->ith != 0) {
  4613. return;
  4614. }
  4615. if (params->type == GGML_TASK_INIT) {
  4616. return;
  4617. }
  4618. if (params->type == GGML_TASK_FINALIZE) {
  4619. return;
  4620. }
  4621. for (int i03 = 0; i03 < ne03; i03++) {
  4622. for (int i02 = 0; i02 < ne02; i02++) {
  4623. const float * x = (float *) (src0->data);
  4624. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4625. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4626. // zT = y * xT
  4627. {
  4628. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4629. ne11, ne01, ne10,
  4630. 1.0f, y, ne10,
  4631. x, ne10,
  4632. 0.0f, d, ne01);
  4633. }
  4634. }
  4635. }
  4636. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4637. return;
  4638. }
  4639. #endif
  4640. if (params->type == GGML_TASK_INIT) {
  4641. if (nb01 >= nb00) {
  4642. return;
  4643. }
  4644. // TODO: fix this memset (wsize is overestimated)
  4645. memset(params->wdata, 0, params->wsize);
  4646. return;
  4647. }
  4648. if (params->type == GGML_TASK_FINALIZE) {
  4649. if (nb01 >= nb00) {
  4650. return;
  4651. }
  4652. // TODO: fix this memset (wsize is overestimated)
  4653. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4654. float * const wdata = params->wdata;
  4655. // cols per thread
  4656. const int dc = (ne + nth - 1)/nth;
  4657. // col range for this thread
  4658. const int ic0 = dc*ith;
  4659. const int ic1 = MIN(ic0 + dc, ne);
  4660. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  4661. for (int k = 1; k < nth; k++) {
  4662. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  4663. }
  4664. return;
  4665. }
  4666. if (nb01 >= nb00) {
  4667. // TODO: do not support transposed src1
  4668. assert(nb10 == sizeof(float));
  4669. // parallelize by src0 rows using ggml_vec_dot_f32
  4670. // total rows in src0
  4671. const int nr = ne01*ne02*ne03;
  4672. // rows per thread
  4673. const int dr = (nr + nth - 1)/nth;
  4674. // row range for this thread
  4675. const int ir0 = dr*ith;
  4676. const int ir1 = MIN(ir0 + dr, nr);
  4677. for (int ir = ir0; ir < ir1; ++ir) {
  4678. // src0 indices
  4679. const int i03 = ir/(ne02*ne01);
  4680. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4681. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4682. for (int ic = 0; ic < ne11; ++ic) {
  4683. // src1 indices
  4684. const int i13 = i03;
  4685. const int i12 = i02;
  4686. const int i11 = ic;
  4687. // dst indices
  4688. const int i0 = i01;
  4689. const int i1 = i11;
  4690. const int i2 = i02;
  4691. const int i3 = i03;
  4692. ggml_vec_dot_f32(ne00,
  4693. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4694. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4695. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4696. }
  4697. }
  4698. } else {
  4699. // parallelize by src1 columns using ggml_vec_mad_f32
  4700. // each thread has its own work data
  4701. // during FINALIZE we accumulate all work data into dst
  4702. // total columns in src1
  4703. const int nc = ne10;
  4704. // columns per thread
  4705. const int dc = (nc + nth - 1)/nth;
  4706. // column range for this thread
  4707. const int ic0 = dc*ith;
  4708. const int ic1 = MIN(ic0 + dc, nc);
  4709. // work data for thread
  4710. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  4711. float * const wdata = params->wdata;
  4712. for (int i13 = 0; i13 < ne13; ++i13) {
  4713. for (int i12 = 0; i12 < ne12; ++i12) {
  4714. for (int i11 = 0; i11 < ne11; ++i11) {
  4715. for (int ic = ic0; ic < ic1; ++ic) {
  4716. // src1 indices
  4717. const int i10 = ic;
  4718. // src0 indices
  4719. const int i03 = i13;
  4720. const int i02 = i12;
  4721. const int i00 = ic;
  4722. // dst indices
  4723. const int i1 = i11;
  4724. const int i2 = i12;
  4725. const int i3 = i13;
  4726. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  4727. ggml_vec_mad_f32(ne01,
  4728. (float *) (wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0),
  4729. (float *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)),
  4730. *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13)));
  4731. }
  4732. }
  4733. }
  4734. }
  4735. }
  4736. //int64_t t1 = ggml_perf_time_us();
  4737. //static int64_t acc = 0;
  4738. //acc += t1 - t0;
  4739. //if (t1 - t0 > 10) {
  4740. // printf("\n");
  4741. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4742. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4743. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4744. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4745. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4746. //}
  4747. }
  4748. static void ggml_compute_forward_mul_mat_f16_f32(
  4749. const struct ggml_compute_params * params,
  4750. const struct ggml_tensor * src0,
  4751. const struct ggml_tensor * src1,
  4752. struct ggml_tensor * dst) {
  4753. int64_t t0 = ggml_perf_time_us();
  4754. UNUSED(t0);
  4755. const int ne00 = src0->ne[0];
  4756. const int ne01 = src0->ne[1];
  4757. const int ne02 = src0->ne[2];
  4758. const int ne03 = src0->ne[3];
  4759. const int ne10 = src1->ne[0];
  4760. const int ne11 = src1->ne[1];
  4761. const int ne12 = src1->ne[2];
  4762. const int ne13 = src1->ne[3];
  4763. const int ne0 = dst->ne[0];
  4764. const int ne1 = dst->ne[1];
  4765. const int ne2 = dst->ne[2];
  4766. const int ne3 = dst->ne[3];
  4767. const int ne = ne0*ne1*ne2*ne3;
  4768. const int nb00 = src0->nb[0];
  4769. const int nb01 = src0->nb[1];
  4770. const int nb02 = src0->nb[2];
  4771. const int nb03 = src0->nb[3];
  4772. const int nb10 = src1->nb[0];
  4773. const int nb11 = src1->nb[1];
  4774. const int nb12 = src1->nb[2];
  4775. const int nb13 = src1->nb[3];
  4776. const int nb0 = dst->nb[0];
  4777. const int nb1 = dst->nb[1];
  4778. const int nb2 = dst->nb[2];
  4779. const int nb3 = dst->nb[3];
  4780. const int ith = params->ith;
  4781. const int nth = params->nth;
  4782. GGML_ASSERT(ne02 == ne12);
  4783. GGML_ASSERT(ne03 == ne13);
  4784. GGML_ASSERT(ne2 == ne12);
  4785. GGML_ASSERT(ne3 == ne13);
  4786. // TODO: we don't support permuted src0
  4787. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
  4788. // dst cannot be transposed or permuted
  4789. GGML_ASSERT(nb0 == sizeof(float));
  4790. GGML_ASSERT(nb0 <= nb1);
  4791. GGML_ASSERT(nb1 <= nb2);
  4792. GGML_ASSERT(nb2 <= nb3);
  4793. GGML_ASSERT(ne0 == ne01);
  4794. GGML_ASSERT(ne1 == ne11);
  4795. GGML_ASSERT(ne2 == ne02);
  4796. GGML_ASSERT(ne3 == ne03);
  4797. // nb01 >= nb00 - src0 is not transposed
  4798. // compute by src0 rows
  4799. //
  4800. // nb00 < nb01 - src0 is transposed
  4801. // compute by src0 columns
  4802. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4803. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4804. GGML_ASSERT(nb10 == sizeof(float));
  4805. if (params->ith != 0) {
  4806. return;
  4807. }
  4808. if (params->type == GGML_TASK_INIT) {
  4809. return;
  4810. }
  4811. if (params->type == GGML_TASK_FINALIZE) {
  4812. return;
  4813. }
  4814. float * const wdata = params->wdata;
  4815. for (int i03 = 0; i03 < ne03; i03++) {
  4816. for (int i02 = 0; i02 < ne02; i02++) {
  4817. {
  4818. int id = 0;
  4819. for (int i01 = 0; i01 < ne01; ++i01) {
  4820. for (int i00 = 0; i00 < ne00; ++i00) {
  4821. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4822. }
  4823. }
  4824. }
  4825. const float * x = wdata;
  4826. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4827. // float * z = wdata + ne00*ne01;
  4828. // z = x * yT
  4829. //{
  4830. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4831. // ne01, ne11, ne00,
  4832. // 1.0f, x, ne00,
  4833. // y, ne00,
  4834. // 0.0f, z, ne11);
  4835. //}
  4836. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4837. // transpose z
  4838. //for (int j = 0; j < ne11; ++j) {
  4839. // for (int i = 0; i < ne01; ++i) {
  4840. // d[j*ne01 + i] = z[i*ne11 + j];
  4841. // }
  4842. //}
  4843. {
  4844. #if 1
  4845. // zT = y * xT
  4846. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4847. ne11, ne01, ne10,
  4848. 1.0f, y, ne00,
  4849. x, ne00,
  4850. 0.0f, d, ne01);
  4851. #else
  4852. // zT = (xT * y)T
  4853. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  4854. ne01, ne11, ne10,
  4855. 1.0f, x, ne00,
  4856. y, ne00,
  4857. 0.0f, d, ne01);
  4858. #endif
  4859. }
  4860. }
  4861. }
  4862. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4863. return;
  4864. }
  4865. #endif
  4866. if (params->type == GGML_TASK_INIT) {
  4867. if (nb01 >= nb00) {
  4868. ggml_fp16_t * const wdata = params->wdata;
  4869. int id = 0;
  4870. for (int i13 = 0; i13 < ne13; ++i13) {
  4871. for (int i12 = 0; i12 < ne12; ++i12) {
  4872. for (int i11 = 0; i11 < ne11; ++i11) {
  4873. for (int i10 = 0; i10 < ne10; ++i10) {
  4874. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4875. }
  4876. }
  4877. }
  4878. }
  4879. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4880. return;
  4881. }
  4882. // TODO: fix this memset (wsize is overestimated)
  4883. memset(params->wdata, 0, params->wsize);
  4884. return;
  4885. }
  4886. if (params->type == GGML_TASK_FINALIZE) {
  4887. if (nb01 >= nb00) {
  4888. return;
  4889. }
  4890. // TODO: fix this memset (wsize is overestimated)
  4891. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4892. ggml_fp16_t * const wdata = params->wdata;
  4893. // cols per thread
  4894. const int dc = (ne + nth - 1)/nth;
  4895. // col range for this thread
  4896. const int ic0 = dc*ith;
  4897. const int ic1 = MIN(ic0 + dc, ne);
  4898. for (int i = ic0; i < ic1; ++i) {
  4899. ((float *) dst->data)[i] = GGML_FP16_TO_FP32(wdata[i]);
  4900. }
  4901. for (int k = 1; k < nth; k++) {
  4902. for (int i = ic0; i < ic1; ++i) {
  4903. ((float *) dst->data)[i] += GGML_FP16_TO_FP32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]);
  4904. }
  4905. }
  4906. return;
  4907. }
  4908. if (nb01 >= nb00) {
  4909. // fp16 -> half the size, so divide by 2
  4910. // TODO: do not support transposed src1
  4911. assert(nb10/2 == sizeof(ggml_fp16_t));
  4912. // parallelize by src0 rows using ggml_vec_dot_f16
  4913. // total rows in src0
  4914. const int nr = ne01*ne02*ne03;
  4915. // rows per thread
  4916. const int dr = (nr + nth - 1)/nth;
  4917. // row range for this thread
  4918. const int ir0 = dr*ith;
  4919. const int ir1 = MIN(ir0 + dr, nr);
  4920. ggml_fp16_t * wdata = params->wdata;
  4921. for (int ir = ir0; ir < ir1; ++ir) {
  4922. // src0 indices
  4923. const int i03 = ir/(ne02*ne01);
  4924. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4925. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4926. const int i13 = i03;
  4927. const int i12 = i02;
  4928. const int i0 = i01;
  4929. const int i2 = i02;
  4930. const int i3 = i03;
  4931. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4932. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  4933. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  4934. assert(ne00 % 32 == 0);
  4935. for (int ic = 0; ic < ne11; ++ic) {
  4936. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  4937. }
  4938. }
  4939. } else {
  4940. // parallelize by src1 columns using ggml_vec_mad_f16
  4941. // each thread has its own work data
  4942. // during FINALIZE we accumulate all work data into dst
  4943. // total columns in src1
  4944. const int nc = ne10;
  4945. // columns per thread
  4946. const int dc = (nc + nth - 1)/nth;
  4947. // column range for this thread
  4948. const int ic0 = dc*ith;
  4949. const int ic1 = MIN(ic0 + dc, nc);
  4950. // work data for thread
  4951. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  4952. ggml_fp16_t * const wdata = params->wdata;
  4953. for (int i13 = 0; i13 < ne13; ++i13) {
  4954. for (int i12 = 0; i12 < ne12; ++i12) {
  4955. for (int i11 = 0; i11 < ne11; ++i11) {
  4956. // dst indices
  4957. const int i1 = i11;
  4958. const int i2 = i12;
  4959. const int i3 = i13;
  4960. ggml_fp16_t * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  4961. for (int ic = ic0; ic < ic1; ++ic) {
  4962. // src1 indices
  4963. const int i10 = ic;
  4964. // src0 indices
  4965. const int i03 = i13;
  4966. const int i02 = i12;
  4967. const int i00 = ic;
  4968. assert(sizeof(ggml_fp16_t)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  4969. ggml_fp16_t * src0_col = (ggml_fp16_t *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  4970. float src1_val = * (float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  4971. ggml_vec_mad_f16(ne01, dst_row, src0_col, src1_val);
  4972. }
  4973. }
  4974. }
  4975. }
  4976. }
  4977. //int64_t t1 = ggml_time_us();
  4978. //static int64_t acc = 0;
  4979. //acc += t1 - t0;
  4980. //if (t1 - t0 > 10) {
  4981. // printf("\n");
  4982. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4983. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4984. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4985. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4986. //}
  4987. }
  4988. static void ggml_compute_forward_mul_mat_q4_0_f32(
  4989. const struct ggml_compute_params * params,
  4990. const struct ggml_tensor * src0,
  4991. const struct ggml_tensor * src1,
  4992. struct ggml_tensor * dst) {
  4993. int64_t t0 = ggml_perf_time_us();
  4994. UNUSED(t0);
  4995. const int ne00 = src0->ne[0];
  4996. const int ne01 = src0->ne[1];
  4997. const int ne02 = src0->ne[2];
  4998. const int ne03 = src0->ne[3];
  4999. const int ne10 = src1->ne[0];
  5000. const int ne11 = src1->ne[1];
  5001. const int ne12 = src1->ne[2];
  5002. const int ne13 = src1->ne[3];
  5003. const int ne0 = dst->ne[0];
  5004. const int ne1 = dst->ne[1];
  5005. const int ne2 = dst->ne[2];
  5006. const int ne3 = dst->ne[3];
  5007. const int ne = ne0*ne1*ne2*ne3;
  5008. const int nb00 = src0->nb[0];
  5009. const int nb01 = src0->nb[1];
  5010. const int nb02 = src0->nb[2];
  5011. const int nb03 = src0->nb[3];
  5012. const int nb10 = src1->nb[0];
  5013. const int nb11 = src1->nb[1];
  5014. const int nb12 = src1->nb[2];
  5015. const int nb13 = src1->nb[3];
  5016. const int nb0 = dst->nb[0];
  5017. const int nb1 = dst->nb[1];
  5018. const int nb2 = dst->nb[2];
  5019. const int nb3 = dst->nb[3];
  5020. const int ith = params->ith;
  5021. const int nth = params->nth;
  5022. GGML_ASSERT(ne02 == ne12);
  5023. GGML_ASSERT(ne03 == ne13);
  5024. GGML_ASSERT(ne2 == ne12);
  5025. GGML_ASSERT(ne3 == ne13);
  5026. // TODO: we don't support permuted src0
  5027. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5028. // dst cannot be transposed or permuted
  5029. GGML_ASSERT(nb0 == sizeof(float));
  5030. GGML_ASSERT(nb0 <= nb1);
  5031. GGML_ASSERT(nb1 <= nb2);
  5032. GGML_ASSERT(nb2 <= nb3);
  5033. GGML_ASSERT(ne0 == ne01);
  5034. GGML_ASSERT(ne1 == ne11);
  5035. GGML_ASSERT(ne2 == ne02);
  5036. GGML_ASSERT(ne3 == ne03);
  5037. // nb01 >= nb00 - src0 is not transposed
  5038. // compute by src0 rows
  5039. //
  5040. // nb00 < nb01 - src0 is transposed
  5041. // compute by src0 columns
  5042. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5043. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5044. GGML_ASSERT(nb10 == sizeof(float));
  5045. if (params->ith != 0) {
  5046. return;
  5047. }
  5048. if (params->type == GGML_TASK_INIT) {
  5049. return;
  5050. }
  5051. if (params->type == GGML_TASK_FINALIZE) {
  5052. return;
  5053. }
  5054. float * const wdata = params->wdata;
  5055. for (int i03 = 0; i03 < ne03; i03++) {
  5056. for (int i02 = 0; i02 < ne02; i02++) {
  5057. {
  5058. int id = 0;
  5059. for (int i01 = 0; i01 < ne01; ++i01) {
  5060. //for (int i00 = 0; i00 < ne00; ++i00) {
  5061. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5062. //}
  5063. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5064. id += ne00;
  5065. }
  5066. }
  5067. const float * x = wdata;
  5068. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5069. // float * z = wdata + ne00*ne01;
  5070. // z = x * yT
  5071. //{
  5072. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5073. // ne01, ne11, ne00,
  5074. // 1.0f, x, ne00,
  5075. // y, ne00,
  5076. // 0.0f, z, ne11);
  5077. //}
  5078. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5079. // transpose z
  5080. //for (int j = 0; j < ne11; ++j) {
  5081. // for (int i = 0; i < ne01; ++i) {
  5082. // d[j*ne01 + i] = z[i*ne11 + j];
  5083. // }
  5084. //}
  5085. {
  5086. #if 1
  5087. // zT = y * xT
  5088. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5089. ne11, ne01, ne10,
  5090. 1.0f, y, ne00,
  5091. x, ne00,
  5092. 0.0f, d, ne01);
  5093. #else
  5094. // zT = (xT * y)T
  5095. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5096. ne01, ne11, ne10,
  5097. 1.0f, x, ne00,
  5098. y, ne00,
  5099. 0.0f, d, ne01);
  5100. #endif
  5101. }
  5102. }
  5103. }
  5104. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5105. return;
  5106. }
  5107. #endif
  5108. if (params->type == GGML_TASK_INIT) {
  5109. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5110. if (nb01 >= nb00) {
  5111. char * wdata = params->wdata;
  5112. for (int i13 = 0; i13 < ne13; ++i13) {
  5113. for (int i12 = 0; i12 < ne12; ++i12) {
  5114. for (int i11 = 0; i11 < ne11; ++i11) {
  5115. //for (int i10 = 0; i10 < ne10; ++i10) {
  5116. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5117. //}
  5118. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5119. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5120. }
  5121. }
  5122. }
  5123. return;
  5124. }
  5125. // TODO: fix this memset (wsize is overestimated)
  5126. memset(params->wdata, 0, params->wsize);
  5127. return;
  5128. }
  5129. if (params->type == GGML_TASK_FINALIZE) {
  5130. if (nb01 >= nb00) {
  5131. return;
  5132. }
  5133. float * const wdata = params->wdata;
  5134. // cols per thread
  5135. const int dc = (ne + nth - 1)/nth;
  5136. // col range for this thread
  5137. const int ic0 = dc*ith;
  5138. const int ic1 = MIN(ic0 + dc, ne);
  5139. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5140. for (int k = 1; k < nth; k++) {
  5141. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5142. }
  5143. return;
  5144. }
  5145. if (nb01 >= nb00) {
  5146. // TODO: do not support transposed src1
  5147. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5148. // total rows in src0
  5149. const int nr = ne01*ne02*ne03;
  5150. // rows per thread
  5151. const int dr = (nr + nth - 1)/nth;
  5152. // row range for this thread
  5153. const int ir0 = dr*ith;
  5154. const int ir1 = MIN(ir0 + dr, nr);
  5155. void * wdata = params->wdata;
  5156. for (int ir = ir0; ir < ir1; ++ir) {
  5157. // src0 indices
  5158. const int i03 = ir/(ne02*ne01);
  5159. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5160. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5161. const int i13 = i03;
  5162. const int i12 = i02;
  5163. const int i0 = i01;
  5164. const int i2 = i02;
  5165. const int i3 = i03;
  5166. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5167. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5168. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5169. assert(ne00 % 32 == 0);
  5170. for (int ic = 0; ic < ne11; ++ic) {
  5171. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5172. }
  5173. }
  5174. } else {
  5175. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5176. // parallelize by src1 columns using ggml_vec_mad_q4_0
  5177. // each thread has its own work data
  5178. // during FINALIZE we accumulate all work data into dst
  5179. // total columns in src1
  5180. const int nc = ne10;
  5181. // columns per thread
  5182. const int dc = (nc + nth - 1)/nth;
  5183. // column range for this thread
  5184. const int ic0 = dc*ith;
  5185. const int ic1 = MIN(ic0 + dc, nc);
  5186. // work data for thread
  5187. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5188. float * const wdata = params->wdata;
  5189. for (int i13 = 0; i13 < ne13; ++i13) {
  5190. for (int i12 = 0; i12 < ne12; ++i12) {
  5191. for (int i11 = 0; i11 < ne11; ++i11) {
  5192. // dst indices
  5193. const int i1 = i11;
  5194. const int i2 = i12;
  5195. const int i3 = i13;
  5196. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5197. for (int ic = ic0; ic < ic1; ++ic) {
  5198. // src1 indices
  5199. const int i10 = ic;
  5200. // src0 indices
  5201. const int i03 = i13;
  5202. const int i02 = i12;
  5203. const int i00 = ic;
  5204. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5205. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5206. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5207. ggml_vec_mad_q4_0(ne01, dst_row, src0_col, src1_val);
  5208. }
  5209. }
  5210. }
  5211. }
  5212. }
  5213. //int64_t t1 = ggml_time_us();
  5214. //static int64_t acc = 0;
  5215. //acc += t1 - t0;
  5216. //if (t1 - t0 > 10) {
  5217. // printf("\n");
  5218. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5219. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5220. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5221. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5222. //}
  5223. }
  5224. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5225. const struct ggml_compute_params * params,
  5226. const struct ggml_tensor * src0,
  5227. const struct ggml_tensor * src1,
  5228. struct ggml_tensor * dst) {
  5229. int64_t t0 = ggml_perf_time_us();
  5230. UNUSED(t0);
  5231. const int ne00 = src0->ne[0];
  5232. const int ne01 = src0->ne[1];
  5233. const int ne02 = src0->ne[2];
  5234. const int ne03 = src0->ne[3];
  5235. const int ne10 = src1->ne[0];
  5236. const int ne11 = src1->ne[1];
  5237. const int ne12 = src1->ne[2];
  5238. const int ne13 = src1->ne[3];
  5239. const int ne0 = dst->ne[0];
  5240. const int ne1 = dst->ne[1];
  5241. const int ne2 = dst->ne[2];
  5242. const int ne3 = dst->ne[3];
  5243. const int ne = ne0*ne1*ne2*ne3;
  5244. const int nb00 = src0->nb[0];
  5245. const int nb01 = src0->nb[1];
  5246. const int nb02 = src0->nb[2];
  5247. const int nb03 = src0->nb[3];
  5248. const int nb10 = src1->nb[0];
  5249. const int nb11 = src1->nb[1];
  5250. const int nb12 = src1->nb[2];
  5251. const int nb13 = src1->nb[3];
  5252. const int nb0 = dst->nb[0];
  5253. const int nb1 = dst->nb[1];
  5254. const int nb2 = dst->nb[2];
  5255. const int nb3 = dst->nb[3];
  5256. const int ith = params->ith;
  5257. const int nth = params->nth;
  5258. GGML_ASSERT(ne02 == ne12);
  5259. GGML_ASSERT(ne03 == ne13);
  5260. GGML_ASSERT(ne2 == ne12);
  5261. GGML_ASSERT(ne3 == ne13);
  5262. // TODO: we don't support permuted src0
  5263. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5264. // dst cannot be transposed or permuted
  5265. GGML_ASSERT(nb0 == sizeof(float));
  5266. GGML_ASSERT(nb0 <= nb1);
  5267. GGML_ASSERT(nb1 <= nb2);
  5268. GGML_ASSERT(nb2 <= nb3);
  5269. GGML_ASSERT(ne0 == ne01);
  5270. GGML_ASSERT(ne1 == ne11);
  5271. GGML_ASSERT(ne2 == ne02);
  5272. GGML_ASSERT(ne3 == ne03);
  5273. // nb01 >= nb00 - src0 is not transposed
  5274. // compute by src0 rows
  5275. //
  5276. // nb00 < nb01 - src0 is transposed
  5277. // compute by src0 columns
  5278. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5279. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5280. GGML_ASSERT(nb10 == sizeof(float));
  5281. if (params->ith != 0) {
  5282. return;
  5283. }
  5284. if (params->type == GGML_TASK_INIT) {
  5285. return;
  5286. }
  5287. if (params->type == GGML_TASK_FINALIZE) {
  5288. return;
  5289. }
  5290. float * const wdata = params->wdata;
  5291. for (int i03 = 0; i03 < ne03; i03++) {
  5292. for (int i02 = 0; i02 < ne02; i02++) {
  5293. {
  5294. int id = 0;
  5295. for (int i01 = 0; i01 < ne01; ++i01) {
  5296. //for (int i00 = 0; i00 < ne00; ++i00) {
  5297. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5298. //}
  5299. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5300. id += ne00;
  5301. }
  5302. }
  5303. const float * x = wdata;
  5304. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5305. // float * z = wdata + ne00*ne01;
  5306. // z = x * yT
  5307. //{
  5308. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5309. // ne01, ne11, ne00,
  5310. // 1.0f, x, ne00,
  5311. // y, ne00,
  5312. // 0.0f, z, ne11);
  5313. //}
  5314. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5315. // transpose z
  5316. //for (int j = 0; j < ne11; ++j) {
  5317. // for (int i = 0; i < ne01; ++i) {
  5318. // d[j*ne01 + i] = z[i*ne11 + j];
  5319. // }
  5320. //}
  5321. {
  5322. #if 1
  5323. // zT = y * xT
  5324. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5325. ne11, ne01, ne10,
  5326. 1.0f, y, ne00,
  5327. x, ne00,
  5328. 0.0f, d, ne01);
  5329. #else
  5330. // zT = (xT * y)T
  5331. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5332. ne01, ne11, ne10,
  5333. 1.0f, x, ne00,
  5334. y, ne00,
  5335. 0.0f, d, ne01);
  5336. #endif
  5337. }
  5338. }
  5339. }
  5340. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5341. return;
  5342. }
  5343. #endif
  5344. if (params->type == GGML_TASK_INIT) {
  5345. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5346. if (nb01 >= nb00) {
  5347. char * wdata = params->wdata;
  5348. for (int i13 = 0; i13 < ne13; ++i13) {
  5349. for (int i12 = 0; i12 < ne12; ++i12) {
  5350. for (int i11 = 0; i11 < ne11; ++i11) {
  5351. //for (int i10 = 0; i10 < ne10; ++i10) {
  5352. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5353. //}
  5354. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5355. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5356. }
  5357. }
  5358. }
  5359. return;
  5360. }
  5361. // TODO: fix this memset (wsize is overestimated)
  5362. memset(params->wdata, 0, params->wsize);
  5363. return;
  5364. }
  5365. if (params->type == GGML_TASK_FINALIZE) {
  5366. if (nb01 >= nb00) {
  5367. return;
  5368. }
  5369. float * const wdata = params->wdata;
  5370. // cols per thread
  5371. const int dc = (ne + nth - 1)/nth;
  5372. // col range for this thread
  5373. const int ic0 = dc*ith;
  5374. const int ic1 = MIN(ic0 + dc, ne);
  5375. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5376. for (int k = 1; k < nth; k++) {
  5377. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5378. }
  5379. return;
  5380. }
  5381. if (nb01 >= nb00) {
  5382. // TODO: do not support transposed src1
  5383. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5384. // total rows in src0
  5385. const int nr = ne01*ne02*ne03;
  5386. // rows per thread
  5387. const int dr = (nr + nth - 1)/nth;
  5388. // row range for this thread
  5389. const int ir0 = dr*ith;
  5390. const int ir1 = MIN(ir0 + dr, nr);
  5391. void * wdata = params->wdata;
  5392. for (int ir = ir0; ir < ir1; ++ir) {
  5393. // src0 indices
  5394. const int i03 = ir/(ne02*ne01);
  5395. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5396. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5397. const int i13 = i03;
  5398. const int i12 = i02;
  5399. const int i0 = i01;
  5400. const int i2 = i02;
  5401. const int i3 = i03;
  5402. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5403. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5404. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5405. assert(ne00 % 32 == 0);
  5406. for (int ic = 0; ic < ne11; ++ic) {
  5407. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5408. }
  5409. }
  5410. } else {
  5411. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5412. // parallelize by src1 columns using ggml_vec_mad_q4_1
  5413. // each thread has its own work data
  5414. // during FINALIZE we accumulate all work data into dst
  5415. // total columns in src1
  5416. const int nc = ne10;
  5417. // columns per thread
  5418. const int dc = (nc + nth - 1)/nth;
  5419. // column range for this thread
  5420. const int ic0 = dc*ith;
  5421. const int ic1 = MIN(ic0 + dc, nc);
  5422. // work data for thread
  5423. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5424. float * const wdata = params->wdata;
  5425. for (int i13 = 0; i13 < ne13; ++i13) {
  5426. for (int i12 = 0; i12 < ne12; ++i12) {
  5427. for (int i11 = 0; i11 < ne11; ++i11) {
  5428. // dst indices
  5429. const int i1 = i11;
  5430. const int i2 = i12;
  5431. const int i3 = i13;
  5432. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5433. for (int ic = ic0; ic < ic1; ++ic) {
  5434. // src1 indices
  5435. const int i10 = ic;
  5436. // src0 indices
  5437. const int i03 = i13;
  5438. const int i02 = i12;
  5439. const int i00 = ic;
  5440. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5441. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5442. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5443. ggml_vec_mad_q4_1(ne01, dst_row, src0_col, src1_val);
  5444. }
  5445. }
  5446. }
  5447. }
  5448. }
  5449. //int64_t t1 = ggml_time_us();
  5450. //static int64_t acc = 0;
  5451. //acc += t1 - t0;
  5452. //if (t1 - t0 > 10) {
  5453. // printf("\n");
  5454. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5455. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5456. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5457. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5458. //}
  5459. }
  5460. static void ggml_compute_forward_mul_mat(
  5461. const struct ggml_compute_params * params,
  5462. const struct ggml_tensor * src0,
  5463. const struct ggml_tensor * src1,
  5464. struct ggml_tensor * dst) {
  5465. switch (src0->type) {
  5466. case GGML_TYPE_Q4_0:
  5467. {
  5468. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5469. } break;
  5470. case GGML_TYPE_Q4_1:
  5471. {
  5472. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5473. } break;
  5474. case GGML_TYPE_F16:
  5475. {
  5476. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5477. } break;
  5478. case GGML_TYPE_F32:
  5479. {
  5480. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5481. } break;
  5482. case GGML_TYPE_I8:
  5483. case GGML_TYPE_I16:
  5484. case GGML_TYPE_I32:
  5485. case GGML_TYPE_COUNT:
  5486. {
  5487. GGML_ASSERT(false);
  5488. } break;
  5489. }
  5490. #if 0
  5491. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5492. static int first = 8;
  5493. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5494. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5495. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5496. if (first) {
  5497. --first;
  5498. } else {
  5499. for (int k = 0; k < dst->ne[1]; ++k) {
  5500. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5501. for (int i = 0; i < 16; ++i) {
  5502. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5503. }
  5504. printf("\n");
  5505. }
  5506. printf("\n");
  5507. }
  5508. printf("\n");
  5509. exit(0);
  5510. }
  5511. } else {
  5512. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5513. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5514. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5515. }
  5516. #endif
  5517. }
  5518. // ggml_compute_forward_scale
  5519. static void ggml_compute_forward_scale_f32(
  5520. const struct ggml_compute_params * params,
  5521. const struct ggml_tensor * src0,
  5522. const struct ggml_tensor * src1,
  5523. struct ggml_tensor * dst) {
  5524. GGML_ASSERT(ggml_is_contiguous(src0));
  5525. GGML_ASSERT(ggml_is_contiguous(dst));
  5526. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5527. GGML_ASSERT(ggml_is_scalar(src1));
  5528. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5529. return;
  5530. }
  5531. // scale factor
  5532. const float v = *(float *) src1->data;
  5533. const int ith = params->ith;
  5534. const int nth = params->nth;
  5535. const int nc = src0->ne[0];
  5536. const int nr = ggml_nrows(src0);
  5537. // rows per thread
  5538. const int dr = (nr + nth - 1)/nth;
  5539. // row range for this thread
  5540. const int ir0 = dr*ith;
  5541. const int ir1 = MIN(ir0 + dr, nr);
  5542. for (int i1 = ir0; i1 < ir1; i1++) {
  5543. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5544. }
  5545. }
  5546. static void ggml_compute_forward_scale(
  5547. const struct ggml_compute_params * params,
  5548. const struct ggml_tensor * src0,
  5549. const struct ggml_tensor * src1,
  5550. struct ggml_tensor * dst) {
  5551. switch (src0->type) {
  5552. case GGML_TYPE_F32:
  5553. {
  5554. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5555. } break;
  5556. case GGML_TYPE_Q4_0:
  5557. case GGML_TYPE_Q4_1:
  5558. case GGML_TYPE_I8:
  5559. case GGML_TYPE_I16:
  5560. case GGML_TYPE_I32:
  5561. case GGML_TYPE_F16:
  5562. case GGML_TYPE_COUNT:
  5563. {
  5564. GGML_ASSERT(false);
  5565. } break;
  5566. }
  5567. }
  5568. // ggml_compute_forward_cpy
  5569. static void ggml_compute_forward_cpy(
  5570. const struct ggml_compute_params * params,
  5571. const struct ggml_tensor * src0,
  5572. struct ggml_tensor * dst) {
  5573. ggml_compute_forward_dup(params, src0, dst);
  5574. }
  5575. // ggml_compute_forward_reshape
  5576. static void ggml_compute_forward_reshape(
  5577. const struct ggml_compute_params * params,
  5578. const struct ggml_tensor * src0,
  5579. struct ggml_tensor * dst) {
  5580. // NOP
  5581. UNUSED(params);
  5582. UNUSED(src0);
  5583. UNUSED(dst);
  5584. }
  5585. // ggml_compute_forward_view
  5586. static void ggml_compute_forward_view(
  5587. const struct ggml_compute_params * params,
  5588. const struct ggml_tensor * src0) {
  5589. // NOP
  5590. UNUSED(params);
  5591. UNUSED(src0);
  5592. }
  5593. // ggml_compute_forward_permute
  5594. static void ggml_compute_forward_permute(
  5595. const struct ggml_compute_params * params,
  5596. const struct ggml_tensor * src0) {
  5597. // NOP
  5598. UNUSED(params);
  5599. UNUSED(src0);
  5600. }
  5601. // ggml_compute_forward_transpose
  5602. static void ggml_compute_forward_transpose(
  5603. const struct ggml_compute_params * params,
  5604. const struct ggml_tensor * src0) {
  5605. // NOP
  5606. UNUSED(params);
  5607. UNUSED(src0);
  5608. }
  5609. // ggml_compute_forward_get_rows
  5610. static void ggml_compute_forward_get_rows_q4_0(
  5611. const struct ggml_compute_params * params,
  5612. const struct ggml_tensor * src0,
  5613. const struct ggml_tensor * src1,
  5614. struct ggml_tensor * dst) {
  5615. assert(params->ith == 0);
  5616. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5617. return;
  5618. }
  5619. const int nc = src0->ne[0];
  5620. const int nr = ggml_nelements(src1);
  5621. assert( dst->ne[0] == nc);
  5622. assert( dst->ne[1] == nr);
  5623. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5624. for (int i = 0; i < nr; ++i) {
  5625. const int r = ((int32_t *) src1->data)[i];
  5626. dequantize_row_q4_0(
  5627. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5628. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5629. }
  5630. }
  5631. static void ggml_compute_forward_get_rows_q4_1(
  5632. const struct ggml_compute_params * params,
  5633. const struct ggml_tensor * src0,
  5634. const struct ggml_tensor * src1,
  5635. struct ggml_tensor * dst) {
  5636. assert(params->ith == 0);
  5637. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5638. return;
  5639. }
  5640. const int nc = src0->ne[0];
  5641. const int nr = ggml_nelements(src1);
  5642. assert( dst->ne[0] == nc);
  5643. assert( dst->ne[1] == nr);
  5644. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5645. for (int i = 0; i < nr; ++i) {
  5646. const int r = ((int32_t *) src1->data)[i];
  5647. dequantize_row_q4_1(
  5648. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5649. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5650. }
  5651. }
  5652. static void ggml_compute_forward_get_rows_f16(
  5653. const struct ggml_compute_params * params,
  5654. const struct ggml_tensor * src0,
  5655. const struct ggml_tensor * src1,
  5656. struct ggml_tensor * dst) {
  5657. assert(params->ith == 0);
  5658. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5659. return;
  5660. }
  5661. const int nc = src0->ne[0];
  5662. const int nr = ggml_nelements(src1);
  5663. assert( dst->ne[0] == nc);
  5664. assert( dst->ne[1] == nr);
  5665. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5666. for (int i = 0; i < nr; ++i) {
  5667. const int r = ((int32_t *) src1->data)[i];
  5668. for (int j = 0; j < nc; ++j) {
  5669. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5670. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5671. }
  5672. }
  5673. }
  5674. static void ggml_compute_forward_get_rows_f32(
  5675. const struct ggml_compute_params * params,
  5676. const struct ggml_tensor * src0,
  5677. const struct ggml_tensor * src1,
  5678. struct ggml_tensor * dst) {
  5679. assert(params->ith == 0);
  5680. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5681. return;
  5682. }
  5683. const int nc = src0->ne[0];
  5684. const int nr = ggml_nelements(src1);
  5685. assert( dst->ne[0] == nc);
  5686. assert( dst->ne[1] == nr);
  5687. assert(src0->nb[0] == sizeof(float));
  5688. for (int i = 0; i < nr; ++i) {
  5689. const int r = ((int32_t *) src1->data)[i];
  5690. ggml_vec_cpy_f32(nc,
  5691. (float *) ((char *) dst->data + i*dst->nb[1]),
  5692. (float *) ((char *) src0->data + r*src0->nb[1]));
  5693. }
  5694. }
  5695. static void ggml_compute_forward_get_rows(
  5696. const struct ggml_compute_params * params,
  5697. const struct ggml_tensor * src0,
  5698. const struct ggml_tensor * src1,
  5699. struct ggml_tensor * dst) {
  5700. switch (src0->type) {
  5701. case GGML_TYPE_Q4_0:
  5702. {
  5703. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5704. } break;
  5705. case GGML_TYPE_Q4_1:
  5706. {
  5707. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5708. } break;
  5709. case GGML_TYPE_F16:
  5710. {
  5711. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5712. } break;
  5713. case GGML_TYPE_F32:
  5714. {
  5715. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5716. } break;
  5717. case GGML_TYPE_I8:
  5718. case GGML_TYPE_I16:
  5719. case GGML_TYPE_I32:
  5720. case GGML_TYPE_COUNT:
  5721. {
  5722. GGML_ASSERT(false);
  5723. } break;
  5724. }
  5725. //static bool first = true;
  5726. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5727. //if (first) {
  5728. // first = false;
  5729. //} else {
  5730. // for (int k = 0; k < dst->ne[1]; ++k) {
  5731. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5732. // for (int i = 0; i < 16; ++i) {
  5733. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5734. // }
  5735. // printf("\n");
  5736. // }
  5737. // printf("\n");
  5738. // }
  5739. // printf("\n");
  5740. // exit(0);
  5741. //}
  5742. }
  5743. // ggml_compute_forward_diag_mask_inf
  5744. static void ggml_compute_forward_diag_mask_inf_f32(
  5745. const struct ggml_compute_params * params,
  5746. const struct ggml_tensor * src0,
  5747. const struct ggml_tensor * src1,
  5748. struct ggml_tensor * dst) {
  5749. assert(params->ith == 0);
  5750. assert(src1->type == GGML_TYPE_I32);
  5751. assert(ggml_nelements(src1) == 1);
  5752. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5753. return;
  5754. }
  5755. const int n_past = ((int32_t *) src1->data)[0];
  5756. // TODO: handle transposed/permuted matrices
  5757. const int n = ggml_nrows(src0);
  5758. const int nc = src0->ne[0];
  5759. const int nr = src0->ne[1];
  5760. const int nz = n/nr;
  5761. assert( dst->nb[0] == sizeof(float));
  5762. assert(src0->nb[0] == sizeof(float));
  5763. for (int k = 0; k < nz; k++) {
  5764. for (int j = 0; j < nr; j++) {
  5765. for (int i = n_past; i < nc; i++) {
  5766. if (i > n_past + j) {
  5767. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5768. }
  5769. }
  5770. }
  5771. }
  5772. }
  5773. static void ggml_compute_forward_diag_mask_inf(
  5774. const struct ggml_compute_params * params,
  5775. const struct ggml_tensor * src0,
  5776. const struct ggml_tensor * src1,
  5777. struct ggml_tensor * dst) {
  5778. switch (src0->type) {
  5779. case GGML_TYPE_F32:
  5780. {
  5781. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5782. } break;
  5783. case GGML_TYPE_Q4_0:
  5784. case GGML_TYPE_Q4_1:
  5785. case GGML_TYPE_I8:
  5786. case GGML_TYPE_I16:
  5787. case GGML_TYPE_I32:
  5788. case GGML_TYPE_F16:
  5789. case GGML_TYPE_COUNT:
  5790. {
  5791. GGML_ASSERT(false);
  5792. } break;
  5793. }
  5794. }
  5795. // ggml_compute_forward_soft_max
  5796. static void ggml_compute_forward_soft_max_f32(
  5797. const struct ggml_compute_params * params,
  5798. const struct ggml_tensor * src0,
  5799. struct ggml_tensor * dst) {
  5800. GGML_ASSERT(ggml_is_contiguous(src0));
  5801. GGML_ASSERT(ggml_is_contiguous(dst));
  5802. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5803. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5804. return;
  5805. }
  5806. // TODO: handle transposed/permuted matrices
  5807. const int ith = params->ith;
  5808. const int nth = params->nth;
  5809. const int nc = src0->ne[0];
  5810. const int nr = ggml_nrows(src0);
  5811. // rows per thread
  5812. const int dr = (nr + nth - 1)/nth;
  5813. // row range for this thread
  5814. const int ir0 = dr*ith;
  5815. const int ir1 = MIN(ir0 + dr, nr);
  5816. for (int i1 = ir0; i1 < ir1; i1++) {
  5817. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5818. #ifndef NDEBUG
  5819. for (int i = 0; i < nc; ++i) {
  5820. //printf("p[%d] = %f\n", i, p[i]);
  5821. assert(!isnan(p[i]));
  5822. }
  5823. #endif
  5824. float max = -INFINITY;
  5825. ggml_vec_max_f32(nc, &max, p);
  5826. ggml_float sum = 0.0;
  5827. uint16_t scvt;
  5828. for (int i = 0; i < nc; i++) {
  5829. if (p[i] == -INFINITY) {
  5830. p[i] = 0.0f;
  5831. } else {
  5832. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5833. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5834. memcpy(&scvt, &s, sizeof(scvt));
  5835. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5836. sum += val;
  5837. p[i] = val;
  5838. }
  5839. }
  5840. assert(sum > 0.0f);
  5841. sum = 1.0/sum;
  5842. ggml_vec_scale_f32(nc, p, sum);
  5843. #ifndef NDEBUG
  5844. for (int i = 0; i < nc; ++i) {
  5845. assert(!isnan(p[i]));
  5846. assert(!isinf(p[i]));
  5847. }
  5848. #endif
  5849. }
  5850. }
  5851. static void ggml_compute_forward_soft_max(
  5852. const struct ggml_compute_params * params,
  5853. const struct ggml_tensor * src0,
  5854. struct ggml_tensor * dst) {
  5855. switch (src0->type) {
  5856. case GGML_TYPE_F32:
  5857. {
  5858. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5859. } break;
  5860. case GGML_TYPE_Q4_0:
  5861. case GGML_TYPE_Q4_1:
  5862. case GGML_TYPE_I8:
  5863. case GGML_TYPE_I16:
  5864. case GGML_TYPE_I32:
  5865. case GGML_TYPE_F16:
  5866. case GGML_TYPE_COUNT:
  5867. {
  5868. GGML_ASSERT(false);
  5869. } break;
  5870. }
  5871. }
  5872. // ggml_compute_forward_rope
  5873. static void ggml_compute_forward_rope_f32(
  5874. const struct ggml_compute_params * params,
  5875. const struct ggml_tensor * src0,
  5876. const struct ggml_tensor * src1,
  5877. struct ggml_tensor * dst) {
  5878. assert(params->ith == 0);
  5879. assert(src1->type == GGML_TYPE_I32);
  5880. assert(ggml_nelements(src1) == 3);
  5881. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5882. return;
  5883. }
  5884. const int n_past = ((int32_t *) src1->data)[0];
  5885. const int n_dims = ((int32_t *) src1->data)[1];
  5886. const int mode = ((int32_t *) src1->data)[2];
  5887. //const int ne0 = src0->ne[0];
  5888. const int ne1 = src0->ne[1];
  5889. const int ne2 = src0->ne[2];
  5890. const int ne3 = src0->ne[3];
  5891. const int nb0 = src0->nb[0];
  5892. const int nb1 = src0->nb[1];
  5893. const int nb2 = src0->nb[2];
  5894. const int nb3 = src0->nb[3];
  5895. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5896. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5897. assert(nb0 == sizeof(float));
  5898. // TODO: optimize
  5899. for (int i3 = 0; i3 < ne3; i3++) {
  5900. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5901. const int p = (mode == 0 ? n_past + i2 : i2);
  5902. for (int i1 = 0; i1 < ne1; i1++) {
  5903. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5904. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5905. const double cos_theta = cos(p*theta);
  5906. const double sin_theta = sin(p*theta);
  5907. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5908. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5909. double x0 = src[0];
  5910. double x1 = src[1];
  5911. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5912. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5913. }
  5914. }
  5915. }
  5916. }
  5917. }
  5918. static void ggml_compute_forward_rope_f16(
  5919. const struct ggml_compute_params * params,
  5920. const struct ggml_tensor * src0,
  5921. const struct ggml_tensor * src1,
  5922. struct ggml_tensor * dst) {
  5923. assert(params->ith == 0);
  5924. assert(src1->type == GGML_TYPE_I32);
  5925. assert(ggml_nelements(src1) == 3);
  5926. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5927. return;
  5928. }
  5929. const int n_past = ((int32_t *) src1->data)[0];
  5930. const int n_dims = ((int32_t *) src1->data)[1];
  5931. const int mode = ((int32_t *) src1->data)[2];
  5932. //const int ne0 = src0->ne[0];
  5933. const int ne1 = src0->ne[1];
  5934. const int ne2 = src0->ne[2];
  5935. const int ne3 = src0->ne[3];
  5936. const int nb0 = src0->nb[0];
  5937. const int nb1 = src0->nb[1];
  5938. const int nb2 = src0->nb[2];
  5939. const int nb3 = src0->nb[3];
  5940. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5941. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5942. assert(nb0 == sizeof(ggml_fp16_t));
  5943. for (int i3 = 0; i3 < ne3; i3++) {
  5944. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5945. const int p = (mode == 0 ? n_past + i2 : i2);
  5946. for (int i1 = 0; i1 < ne1; i1++) {
  5947. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5948. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5949. const double cos_theta = cos(p*theta);
  5950. const double sin_theta = sin(p*theta);
  5951. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5952. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5953. double x0 = ggml_fp16_to_fp32(src[0]);
  5954. double x1 = ggml_fp16_to_fp32(src[1]);
  5955. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5956. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5957. }
  5958. }
  5959. }
  5960. }
  5961. }
  5962. static void ggml_compute_forward_rope(
  5963. const struct ggml_compute_params * params,
  5964. const struct ggml_tensor * src0,
  5965. const struct ggml_tensor * src1,
  5966. struct ggml_tensor * dst) {
  5967. switch (src0->type) {
  5968. case GGML_TYPE_F16:
  5969. {
  5970. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5971. } break;
  5972. case GGML_TYPE_F32:
  5973. {
  5974. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5975. } break;
  5976. case GGML_TYPE_Q4_0:
  5977. case GGML_TYPE_Q4_1:
  5978. case GGML_TYPE_I8:
  5979. case GGML_TYPE_I16:
  5980. case GGML_TYPE_I32:
  5981. case GGML_TYPE_COUNT:
  5982. {
  5983. GGML_ASSERT(false);
  5984. } break;
  5985. }
  5986. }
  5987. // ggml_compute_forward_conv_1d_1s
  5988. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5989. const struct ggml_compute_params * params,
  5990. const struct ggml_tensor * src0,
  5991. const struct ggml_tensor * src1,
  5992. struct ggml_tensor * dst) {
  5993. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5994. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5995. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5996. int64_t t0 = ggml_perf_time_us();
  5997. UNUSED(t0);
  5998. const int ne00 = src0->ne[0];
  5999. const int ne01 = src0->ne[1];
  6000. const int ne02 = src0->ne[2];
  6001. //const int ne03 = src0->ne[3];
  6002. const int ne10 = src1->ne[0];
  6003. const int ne11 = src1->ne[1];
  6004. //const int ne12 = src1->ne[2];
  6005. //const int ne13 = src1->ne[3];
  6006. //const int ne0 = dst->ne[0];
  6007. //const int ne1 = dst->ne[1];
  6008. //const int ne2 = dst->ne[2];
  6009. //const int ne3 = dst->ne[3];
  6010. //const int ne = ne0*ne1*ne2*ne3;
  6011. const int nb00 = src0->nb[0];
  6012. const int nb01 = src0->nb[1];
  6013. const int nb02 = src0->nb[2];
  6014. //const int nb03 = src0->nb[3];
  6015. const int nb10 = src1->nb[0];
  6016. const int nb11 = src1->nb[1];
  6017. //const int nb12 = src1->nb[2];
  6018. //const int nb13 = src1->nb[3];
  6019. //const int nb0 = dst->nb[0];
  6020. const int nb1 = dst->nb[1];
  6021. //const int nb2 = dst->nb[2];
  6022. //const int nb3 = dst->nb[3];
  6023. const int ith = params->ith;
  6024. const int nth = params->nth;
  6025. const int nk = ne00;
  6026. const int nh = nk/2;
  6027. const int ew0 = ggml_up32(ne01);
  6028. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6029. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6030. GGML_ASSERT(nb10 == sizeof(float));
  6031. if (params->type == GGML_TASK_INIT) {
  6032. // TODO: fix this memset (wsize is overestimated)
  6033. memset(params->wdata, 0, params->wsize);
  6034. // prepare kernel data (src0)
  6035. {
  6036. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6037. for (int i02 = 0; i02 < ne02; i02++) {
  6038. for (int i01 = 0; i01 < ne01; i01++) {
  6039. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6040. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6041. for (int i00 = 0; i00 < ne00; i00++) {
  6042. dst_data[i00*ew0 + i01] = src[i00];
  6043. }
  6044. }
  6045. }
  6046. }
  6047. // prepare source data (src1)
  6048. {
  6049. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6050. for (int i11 = 0; i11 < ne11; i11++) {
  6051. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6052. ggml_fp16_t * dst_data = wdata;
  6053. for (int i10 = 0; i10 < ne10; i10++) {
  6054. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6055. }
  6056. }
  6057. }
  6058. return;
  6059. }
  6060. if (params->type == GGML_TASK_FINALIZE) {
  6061. return;
  6062. }
  6063. // total rows in dst
  6064. const int nr = ne02;
  6065. // rows per thread
  6066. const int dr = (nr + nth - 1)/nth;
  6067. // row range for this thread
  6068. const int ir0 = dr*ith;
  6069. const int ir1 = MIN(ir0 + dr, nr);
  6070. for (int i1 = ir0; i1 < ir1; i1++) {
  6071. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6072. for (int i0 = 0; i0 < ne10; ++i0) {
  6073. dst_data[i0] = 0;
  6074. for (int k = -nh; k <= nh; k++) {
  6075. float v = 0.0f;
  6076. ggml_vec_dot_f16(ew0, &v,
  6077. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6078. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6079. dst_data[i0] += v;
  6080. }
  6081. }
  6082. }
  6083. }
  6084. static void ggml_compute_forward_conv_1d_1s_f32(
  6085. const struct ggml_compute_params * params,
  6086. const struct ggml_tensor * src0,
  6087. const struct ggml_tensor * src1,
  6088. struct ggml_tensor * dst) {
  6089. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6090. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6091. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6092. int64_t t0 = ggml_perf_time_us();
  6093. UNUSED(t0);
  6094. const int ne00 = src0->ne[0];
  6095. const int ne01 = src0->ne[1];
  6096. const int ne02 = src0->ne[2];
  6097. //const int ne03 = src0->ne[3];
  6098. const int ne10 = src1->ne[0];
  6099. const int ne11 = src1->ne[1];
  6100. //const int ne12 = src1->ne[2];
  6101. //const int ne13 = src1->ne[3];
  6102. //const int ne0 = dst->ne[0];
  6103. //const int ne1 = dst->ne[1];
  6104. //const int ne2 = dst->ne[2];
  6105. //const int ne3 = dst->ne[3];
  6106. //const int ne = ne0*ne1*ne2*ne3;
  6107. const int nb00 = src0->nb[0];
  6108. const int nb01 = src0->nb[1];
  6109. const int nb02 = src0->nb[2];
  6110. //const int nb03 = src0->nb[3];
  6111. const int nb10 = src1->nb[0];
  6112. const int nb11 = src1->nb[1];
  6113. //const int nb12 = src1->nb[2];
  6114. //const int nb13 = src1->nb[3];
  6115. //const int nb0 = dst->nb[0];
  6116. const int nb1 = dst->nb[1];
  6117. //const int nb2 = dst->nb[2];
  6118. //const int nb3 = dst->nb[3];
  6119. const int ith = params->ith;
  6120. const int nth = params->nth;
  6121. const int nk = ne00;
  6122. const int nh = nk/2;
  6123. const int ew0 = ggml_up32(ne01);
  6124. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6125. GGML_ASSERT(nb00 == sizeof(float));
  6126. GGML_ASSERT(nb10 == sizeof(float));
  6127. if (params->type == GGML_TASK_INIT) {
  6128. // TODO: fix this memset (wsize is overestimated)
  6129. memset(params->wdata, 0, params->wsize);
  6130. // prepare kernel data (src0)
  6131. {
  6132. float * const wdata = (float *) params->wdata + 0;
  6133. for (int i02 = 0; i02 < ne02; i02++) {
  6134. for (int i01 = 0; i01 < ne01; i01++) {
  6135. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6136. float * dst_data = wdata + i02*ew0*ne00;
  6137. for (int i00 = 0; i00 < ne00; i00++) {
  6138. dst_data[i00*ew0 + i01] = src[i00];
  6139. }
  6140. }
  6141. }
  6142. }
  6143. // prepare source data (src1)
  6144. {
  6145. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6146. for (int i11 = 0; i11 < ne11; i11++) {
  6147. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6148. float * dst_data = wdata;
  6149. for (int i10 = 0; i10 < ne10; i10++) {
  6150. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6151. }
  6152. }
  6153. }
  6154. return;
  6155. }
  6156. if (params->type == GGML_TASK_FINALIZE) {
  6157. return;
  6158. }
  6159. // total rows in dst
  6160. const int nr = ne02;
  6161. // rows per thread
  6162. const int dr = (nr + nth - 1)/nth;
  6163. // row range for this thread
  6164. const int ir0 = dr*ith;
  6165. const int ir1 = MIN(ir0 + dr, nr);
  6166. for (int i1 = ir0; i1 < ir1; i1++) {
  6167. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6168. for (int i0 = 0; i0 < ne10; ++i0) {
  6169. dst_data[i0] = 0;
  6170. for (int k = -nh; k <= nh; k++) {
  6171. float v = 0.0f;
  6172. ggml_vec_dot_f32(ew0, &v,
  6173. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6174. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6175. dst_data[i0] += v;
  6176. }
  6177. }
  6178. }
  6179. }
  6180. static void ggml_compute_forward_conv_1d_1s(
  6181. const struct ggml_compute_params * params,
  6182. const struct ggml_tensor * src0,
  6183. const struct ggml_tensor * src1,
  6184. struct ggml_tensor * dst) {
  6185. switch (src0->type) {
  6186. case GGML_TYPE_F16:
  6187. {
  6188. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6189. } break;
  6190. case GGML_TYPE_F32:
  6191. {
  6192. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6193. } break;
  6194. case GGML_TYPE_Q4_0:
  6195. case GGML_TYPE_Q4_1:
  6196. case GGML_TYPE_I8:
  6197. case GGML_TYPE_I16:
  6198. case GGML_TYPE_I32:
  6199. case GGML_TYPE_COUNT:
  6200. {
  6201. GGML_ASSERT(false);
  6202. } break;
  6203. }
  6204. }
  6205. // ggml_compute_forward_conv_1d_2s
  6206. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6207. const struct ggml_compute_params * params,
  6208. const struct ggml_tensor * src0,
  6209. const struct ggml_tensor * src1,
  6210. struct ggml_tensor * dst) {
  6211. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6212. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6213. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6214. int64_t t0 = ggml_perf_time_us();
  6215. UNUSED(t0);
  6216. const int ne00 = src0->ne[0];
  6217. const int ne01 = src0->ne[1];
  6218. const int ne02 = src0->ne[2];
  6219. //const int ne03 = src0->ne[3];
  6220. const int ne10 = src1->ne[0];
  6221. const int ne11 = src1->ne[1];
  6222. //const int ne12 = src1->ne[2];
  6223. //const int ne13 = src1->ne[3];
  6224. //const int ne0 = dst->ne[0];
  6225. //const int ne1 = dst->ne[1];
  6226. //const int ne2 = dst->ne[2];
  6227. //const int ne3 = dst->ne[3];
  6228. //const int ne = ne0*ne1*ne2*ne3;
  6229. const int nb00 = src0->nb[0];
  6230. const int nb01 = src0->nb[1];
  6231. const int nb02 = src0->nb[2];
  6232. //const int nb03 = src0->nb[3];
  6233. const int nb10 = src1->nb[0];
  6234. const int nb11 = src1->nb[1];
  6235. //const int nb12 = src1->nb[2];
  6236. //const int nb13 = src1->nb[3];
  6237. //const int nb0 = dst->nb[0];
  6238. const int nb1 = dst->nb[1];
  6239. //const int nb2 = dst->nb[2];
  6240. //const int nb3 = dst->nb[3];
  6241. const int ith = params->ith;
  6242. const int nth = params->nth;
  6243. const int nk = ne00;
  6244. const int nh = nk/2;
  6245. const int ew0 = ggml_up32(ne01);
  6246. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6247. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6248. GGML_ASSERT(nb10 == sizeof(float));
  6249. if (params->type == GGML_TASK_INIT) {
  6250. // TODO: fix this memset (wsize is overestimated)
  6251. memset(params->wdata, 0, params->wsize);
  6252. // prepare kernel data (src0)
  6253. {
  6254. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6255. for (int i02 = 0; i02 < ne02; i02++) {
  6256. for (int i01 = 0; i01 < ne01; i01++) {
  6257. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6258. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6259. for (int i00 = 0; i00 < ne00; i00++) {
  6260. dst_data[i00*ew0 + i01] = src[i00];
  6261. }
  6262. }
  6263. }
  6264. }
  6265. // prepare source data (src1)
  6266. {
  6267. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6268. for (int i11 = 0; i11 < ne11; i11++) {
  6269. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6270. ggml_fp16_t * dst_data = wdata;
  6271. for (int i10 = 0; i10 < ne10; i10++) {
  6272. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6273. }
  6274. }
  6275. }
  6276. return;
  6277. }
  6278. if (params->type == GGML_TASK_FINALIZE) {
  6279. return;
  6280. }
  6281. // total rows in dst
  6282. const int nr = ne02;
  6283. // rows per thread
  6284. const int dr = (nr + nth - 1)/nth;
  6285. // row range for this thread
  6286. const int ir0 = dr*ith;
  6287. const int ir1 = MIN(ir0 + dr, nr);
  6288. for (int i1 = ir0; i1 < ir1; i1++) {
  6289. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6290. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6291. dst_data[i0/2] = 0;
  6292. for (int k = -nh; k <= nh; k++) {
  6293. float v = 0.0f;
  6294. ggml_vec_dot_f16(ew0, &v,
  6295. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6296. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6297. dst_data[i0/2] += v;
  6298. }
  6299. }
  6300. }
  6301. }
  6302. static void ggml_compute_forward_conv_1d_2s_f32(
  6303. const struct ggml_compute_params * params,
  6304. const struct ggml_tensor * src0,
  6305. const struct ggml_tensor * src1,
  6306. struct ggml_tensor * dst) {
  6307. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6308. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6309. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6310. int64_t t0 = ggml_perf_time_us();
  6311. UNUSED(t0);
  6312. const int ne00 = src0->ne[0];
  6313. const int ne01 = src0->ne[1];
  6314. const int ne02 = src0->ne[2];
  6315. //const int ne03 = src0->ne[3];
  6316. const int ne10 = src1->ne[0];
  6317. const int ne11 = src1->ne[1];
  6318. //const int ne12 = src1->ne[2];
  6319. //const int ne13 = src1->ne[3];
  6320. //const int ne0 = dst->ne[0];
  6321. //const int ne1 = dst->ne[1];
  6322. //const int ne2 = dst->ne[2];
  6323. //const int ne3 = dst->ne[3];
  6324. //const int ne = ne0*ne1*ne2*ne3;
  6325. const int nb00 = src0->nb[0];
  6326. const int nb01 = src0->nb[1];
  6327. const int nb02 = src0->nb[2];
  6328. //const int nb03 = src0->nb[3];
  6329. const int nb10 = src1->nb[0];
  6330. const int nb11 = src1->nb[1];
  6331. //const int nb12 = src1->nb[2];
  6332. //const int nb13 = src1->nb[3];
  6333. //const int nb0 = dst->nb[0];
  6334. const int nb1 = dst->nb[1];
  6335. //const int nb2 = dst->nb[2];
  6336. //const int nb3 = dst->nb[3];
  6337. const int ith = params->ith;
  6338. const int nth = params->nth;
  6339. const int nk = ne00;
  6340. const int nh = nk/2;
  6341. const int ew0 = ggml_up32(ne01);
  6342. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6343. GGML_ASSERT(nb00 == sizeof(float));
  6344. GGML_ASSERT(nb10 == sizeof(float));
  6345. if (params->type == GGML_TASK_INIT) {
  6346. // TODO: fix this memset (wsize is overestimated)
  6347. memset(params->wdata, 0, params->wsize);
  6348. // prepare kernel data (src0)
  6349. {
  6350. float * const wdata = (float *) params->wdata + 0;
  6351. for (int i02 = 0; i02 < ne02; i02++) {
  6352. for (int i01 = 0; i01 < ne01; i01++) {
  6353. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6354. float * dst_data = wdata + i02*ew0*ne00;
  6355. for (int i00 = 0; i00 < ne00; i00++) {
  6356. dst_data[i00*ew0 + i01] = src[i00];
  6357. }
  6358. }
  6359. }
  6360. }
  6361. // prepare source data (src1)
  6362. {
  6363. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6364. for (int i11 = 0; i11 < ne11; i11++) {
  6365. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6366. float * dst_data = wdata;
  6367. for (int i10 = 0; i10 < ne10; i10++) {
  6368. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6369. }
  6370. }
  6371. }
  6372. return;
  6373. }
  6374. if (params->type == GGML_TASK_FINALIZE) {
  6375. return;
  6376. }
  6377. // total rows in dst
  6378. const int nr = ne02;
  6379. // rows per thread
  6380. const int dr = (nr + nth - 1)/nth;
  6381. // row range for this thread
  6382. const int ir0 = dr*ith;
  6383. const int ir1 = MIN(ir0 + dr, nr);
  6384. for (int i1 = ir0; i1 < ir1; i1++) {
  6385. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6386. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6387. dst_data[i0/2] = 0;
  6388. for (int k = -nh; k <= nh; k++) {
  6389. float v = 0.0f;
  6390. ggml_vec_dot_f32(ew0, &v,
  6391. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6392. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6393. dst_data[i0/2] += v;
  6394. }
  6395. }
  6396. }
  6397. }
  6398. static void ggml_compute_forward_conv_1d_2s(
  6399. const struct ggml_compute_params * params,
  6400. const struct ggml_tensor * src0,
  6401. const struct ggml_tensor * src1,
  6402. struct ggml_tensor * dst) {
  6403. switch (src0->type) {
  6404. case GGML_TYPE_F16:
  6405. {
  6406. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6407. } break;
  6408. case GGML_TYPE_F32:
  6409. {
  6410. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6411. } break;
  6412. case GGML_TYPE_Q4_0:
  6413. case GGML_TYPE_Q4_1:
  6414. case GGML_TYPE_I8:
  6415. case GGML_TYPE_I16:
  6416. case GGML_TYPE_I32:
  6417. case GGML_TYPE_COUNT:
  6418. {
  6419. GGML_ASSERT(false);
  6420. } break;
  6421. }
  6422. }
  6423. // ggml_compute_forward_flash_attn
  6424. static void ggml_compute_forward_flash_attn_f32(
  6425. const struct ggml_compute_params * params,
  6426. const struct ggml_tensor * q,
  6427. const struct ggml_tensor * k,
  6428. const struct ggml_tensor * v,
  6429. const bool masked,
  6430. struct ggml_tensor * dst) {
  6431. int64_t t0 = ggml_perf_time_us();
  6432. UNUSED(t0);
  6433. const int neq0 = q->ne[0];
  6434. const int neq1 = q->ne[1];
  6435. const int neq2 = q->ne[2];
  6436. const int neq3 = q->ne[3];
  6437. const int nek0 = k->ne[0];
  6438. const int nek1 = k->ne[1];
  6439. //const int nek2 = k->ne[2];
  6440. //const int nek3 = k->ne[3];
  6441. //const int nev0 = v->ne[0];
  6442. const int nev1 = v->ne[1];
  6443. //const int nev2 = v->ne[2];
  6444. //const int nev3 = v->ne[3];
  6445. const int ne0 = dst->ne[0];
  6446. const int ne1 = dst->ne[1];
  6447. //const int ne2 = dst->ne[2];
  6448. //const int ne3 = dst->ne[3];
  6449. const int nbk0 = k->nb[0];
  6450. const int nbk1 = k->nb[1];
  6451. const int nbk2 = k->nb[2];
  6452. const int nbk3 = k->nb[3];
  6453. const int nbq0 = q->nb[0];
  6454. const int nbq1 = q->nb[1];
  6455. const int nbq2 = q->nb[2];
  6456. const int nbq3 = q->nb[3];
  6457. const int nbv0 = v->nb[0];
  6458. const int nbv1 = v->nb[1];
  6459. const int nbv2 = v->nb[2];
  6460. const int nbv3 = v->nb[3];
  6461. const int nb0 = dst->nb[0];
  6462. const int nb1 = dst->nb[1];
  6463. const int nb2 = dst->nb[2];
  6464. const int nb3 = dst->nb[3];
  6465. const int ith = params->ith;
  6466. const int nth = params->nth;
  6467. const int D = neq0;
  6468. const int N = neq1;
  6469. const int P = nek1 - N;
  6470. const int M = P + N;
  6471. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6472. GGML_ASSERT(ne0 == D);
  6473. GGML_ASSERT(ne1 == N);
  6474. GGML_ASSERT(P >= 0);
  6475. GGML_ASSERT(nbq0 == sizeof(float));
  6476. GGML_ASSERT(nbk0 == sizeof(float));
  6477. GGML_ASSERT(nbv0 == sizeof(float));
  6478. GGML_ASSERT(neq0 == D);
  6479. GGML_ASSERT(nek0 == D);
  6480. GGML_ASSERT(nev1 == D);
  6481. GGML_ASSERT(neq1 == N);
  6482. GGML_ASSERT(nek1 == N + P);
  6483. GGML_ASSERT(nev1 == D);
  6484. // dst cannot be transposed or permuted
  6485. GGML_ASSERT(nb0 == sizeof(float));
  6486. GGML_ASSERT(nb0 <= nb1);
  6487. GGML_ASSERT(nb1 <= nb2);
  6488. GGML_ASSERT(nb2 <= nb3);
  6489. if (params->type == GGML_TASK_INIT) {
  6490. return;
  6491. }
  6492. if (params->type == GGML_TASK_FINALIZE) {
  6493. return;
  6494. }
  6495. // parallelize by q rows using ggml_vec_dot_f32
  6496. // total rows in q
  6497. const int nr = neq1*neq2*neq3;
  6498. // rows per thread
  6499. const int dr = (nr + nth - 1)/nth;
  6500. // row range for this thread
  6501. const int ir0 = dr*ith;
  6502. const int ir1 = MIN(ir0 + dr, nr);
  6503. const float scale = 1.0/sqrt((double) D);
  6504. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6505. for (int ir = ir0; ir < ir1; ++ir) {
  6506. // q indices
  6507. const int iq3 = ir/(neq2*neq1);
  6508. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6509. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6510. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6511. for (int i = M; i < Mup; ++i) {
  6512. S[i] = -INFINITY;
  6513. }
  6514. for (int ic = 0; ic < nek1; ++ic) {
  6515. // k indices
  6516. const int ik3 = iq3;
  6517. const int ik2 = iq2;
  6518. const int ik1 = ic;
  6519. // S indices
  6520. const int i1 = ik1;
  6521. ggml_vec_dot_f32(neq0,
  6522. S + i1,
  6523. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6524. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6525. }
  6526. // scale
  6527. ggml_vec_scale_f32(nek1, S, scale);
  6528. if (masked) {
  6529. for (int i = P; i < M; i++) {
  6530. if (i > P + iq1) {
  6531. S[i] = -INFINITY;
  6532. }
  6533. }
  6534. }
  6535. // softmax
  6536. {
  6537. float max = -INFINITY;
  6538. ggml_vec_max_f32(M, &max, S);
  6539. float sum = 0.0f;
  6540. {
  6541. #ifdef GGML_SOFT_MAX_ACCELERATE
  6542. max = -max;
  6543. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6544. vvexpf(S, S, &Mup);
  6545. ggml_vec_sum_f32(Mup, &sum, S);
  6546. #else
  6547. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6548. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6549. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6550. float * SS = S + i;
  6551. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6552. if (SS[j] == -INFINITY) {
  6553. SS[j] = 0.0f;
  6554. } else {
  6555. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6556. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6557. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6558. sump[j] += val;
  6559. SS[j] = val;
  6560. }
  6561. }
  6562. }
  6563. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6564. sum += sump[i];
  6565. }
  6566. #endif
  6567. }
  6568. assert(sum > 0.0f);
  6569. sum = 1.0/sum;
  6570. ggml_vec_scale_f32(M, S, sum);
  6571. #ifndef NDEBUG
  6572. for (int i = 0; i < M; ++i) {
  6573. assert(!isnan(S[i]));
  6574. assert(!isinf(S[i]));
  6575. }
  6576. #endif
  6577. }
  6578. for (int ic = 0; ic < nev1; ++ic) {
  6579. // dst indices
  6580. const int i1 = iq1;
  6581. const int i2 = iq2;
  6582. const int i3 = iq3;
  6583. ggml_vec_dot_f32(nek1,
  6584. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6585. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6586. S);
  6587. }
  6588. }
  6589. }
  6590. static void ggml_compute_forward_flash_attn_f16(
  6591. const struct ggml_compute_params * params,
  6592. const struct ggml_tensor * q,
  6593. const struct ggml_tensor * k,
  6594. const struct ggml_tensor * v,
  6595. const bool masked,
  6596. struct ggml_tensor * dst) {
  6597. int64_t t0 = ggml_perf_time_us();
  6598. UNUSED(t0);
  6599. const int neq0 = q->ne[0];
  6600. const int neq1 = q->ne[1];
  6601. const int neq2 = q->ne[2];
  6602. const int neq3 = q->ne[3];
  6603. const int nek0 = k->ne[0];
  6604. const int nek1 = k->ne[1];
  6605. //const int nek2 = k->ne[2];
  6606. //const int nek3 = k->ne[3];
  6607. //const int nev0 = v->ne[0];
  6608. const int nev1 = v->ne[1];
  6609. //const int nev2 = v->ne[2];
  6610. //const int nev3 = v->ne[3];
  6611. const int ne0 = dst->ne[0];
  6612. const int ne1 = dst->ne[1];
  6613. //const int ne2 = dst->ne[2];
  6614. //const int ne3 = dst->ne[3];
  6615. const int nbk0 = k->nb[0];
  6616. const int nbk1 = k->nb[1];
  6617. const int nbk2 = k->nb[2];
  6618. const int nbk3 = k->nb[3];
  6619. const int nbq0 = q->nb[0];
  6620. const int nbq1 = q->nb[1];
  6621. const int nbq2 = q->nb[2];
  6622. const int nbq3 = q->nb[3];
  6623. const int nbv0 = v->nb[0];
  6624. const int nbv1 = v->nb[1];
  6625. const int nbv2 = v->nb[2];
  6626. const int nbv3 = v->nb[3];
  6627. const int nb0 = dst->nb[0];
  6628. const int nb1 = dst->nb[1];
  6629. const int nb2 = dst->nb[2];
  6630. const int nb3 = dst->nb[3];
  6631. const int ith = params->ith;
  6632. const int nth = params->nth;
  6633. const int D = neq0;
  6634. const int N = neq1;
  6635. const int P = nek1 - N;
  6636. const int M = P + N;
  6637. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6638. GGML_ASSERT(ne0 == D);
  6639. GGML_ASSERT(ne1 == N);
  6640. GGML_ASSERT(P >= 0);
  6641. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6642. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6643. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6644. GGML_ASSERT(neq0 == D);
  6645. GGML_ASSERT(nek0 == D);
  6646. GGML_ASSERT(nev1 == D);
  6647. GGML_ASSERT(neq1 == N);
  6648. GGML_ASSERT(nek1 == N + P);
  6649. GGML_ASSERT(nev1 == D);
  6650. // dst cannot be transposed or permuted
  6651. GGML_ASSERT(nb0 == sizeof(float));
  6652. GGML_ASSERT(nb0 <= nb1);
  6653. GGML_ASSERT(nb1 <= nb2);
  6654. GGML_ASSERT(nb2 <= nb3);
  6655. if (params->type == GGML_TASK_INIT) {
  6656. return;
  6657. }
  6658. if (params->type == GGML_TASK_FINALIZE) {
  6659. return;
  6660. }
  6661. // parallelize by q rows using ggml_vec_dot_f32
  6662. // total rows in q
  6663. const int nr = neq1*neq2*neq3;
  6664. // rows per thread
  6665. const int dr = (nr + nth - 1)/nth;
  6666. // row range for this thread
  6667. const int ir0 = dr*ith;
  6668. const int ir1 = MIN(ir0 + dr, nr);
  6669. const float scale = 1.0/sqrt((double) D);
  6670. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6671. for (int ir = ir0; ir < ir1; ++ir) {
  6672. // q indices
  6673. const int iq3 = ir/(neq2*neq1);
  6674. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6675. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6676. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6677. for (int i = M; i < Mup; ++i) {
  6678. S[i] = -INFINITY;
  6679. }
  6680. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6681. for (int ic = 0; ic < nek1; ++ic) {
  6682. // k indices
  6683. const int ik3 = iq3;
  6684. const int ik2 = iq2;
  6685. const int ik1 = ic;
  6686. // S indices
  6687. const int i1 = ik1;
  6688. ggml_vec_dot_f16(neq0,
  6689. S + i1,
  6690. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6691. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6692. }
  6693. } else {
  6694. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6695. // k indices
  6696. const int ik3 = iq3;
  6697. const int ik2 = iq2;
  6698. const int ik1 = ic;
  6699. // S indices
  6700. const int i1 = ik1;
  6701. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6702. S + i1,
  6703. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6704. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6705. }
  6706. }
  6707. // scale
  6708. ggml_vec_scale_f32(nek1, S, scale);
  6709. if (masked) {
  6710. for (int i = P; i < M; i++) {
  6711. if (i > P + iq1) {
  6712. S[i] = -INFINITY;
  6713. }
  6714. }
  6715. }
  6716. // softmax
  6717. {
  6718. float max = -INFINITY;
  6719. ggml_vec_max_f32(M, &max, S);
  6720. float sum = 0.0f;
  6721. {
  6722. #ifdef GGML_SOFT_MAX_ACCELERATE
  6723. max = -max;
  6724. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6725. vvexpf(S, S, &Mup);
  6726. ggml_vec_sum_f32(Mup, &sum, S);
  6727. #else
  6728. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6729. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6730. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6731. float * SS = S + i;
  6732. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6733. if (SS[j] == -INFINITY) {
  6734. SS[j] = 0.0f;
  6735. } else {
  6736. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6737. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6738. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6739. sump[j] += val;
  6740. SS[j] = val;
  6741. }
  6742. }
  6743. }
  6744. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6745. sum += sump[i];
  6746. }
  6747. #endif
  6748. }
  6749. assert(sum > 0.0f);
  6750. sum = 1.0/sum;
  6751. ggml_vec_scale_f32(M, S, sum);
  6752. #ifndef NDEBUG
  6753. for (int i = 0; i < M; ++i) {
  6754. assert(!isnan(S[i]));
  6755. assert(!isinf(S[i]));
  6756. }
  6757. #endif
  6758. }
  6759. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6760. for (int i = 0; i < M; i++) {
  6761. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6762. }
  6763. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6764. for (int ic = 0; ic < nev1; ++ic) {
  6765. // dst indices
  6766. const int i1 = iq1;
  6767. const int i2 = iq2;
  6768. const int i3 = iq3;
  6769. ggml_vec_dot_f16(nek1,
  6770. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6771. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6772. S16);
  6773. }
  6774. } else {
  6775. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6776. // dst indices
  6777. const int i1 = iq1;
  6778. const int i2 = iq2;
  6779. const int i3 = iq3;
  6780. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6781. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6782. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6783. S16);
  6784. }
  6785. }
  6786. }
  6787. }
  6788. static void ggml_compute_forward_flash_attn(
  6789. const struct ggml_compute_params * params,
  6790. const struct ggml_tensor * q,
  6791. const struct ggml_tensor * k,
  6792. const struct ggml_tensor * v,
  6793. const bool masked,
  6794. struct ggml_tensor * dst) {
  6795. switch (q->type) {
  6796. case GGML_TYPE_F16:
  6797. {
  6798. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6799. } break;
  6800. case GGML_TYPE_F32:
  6801. {
  6802. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6803. } break;
  6804. case GGML_TYPE_Q4_0:
  6805. case GGML_TYPE_Q4_1:
  6806. case GGML_TYPE_I8:
  6807. case GGML_TYPE_I16:
  6808. case GGML_TYPE_I32:
  6809. case GGML_TYPE_COUNT:
  6810. {
  6811. GGML_ASSERT(false);
  6812. } break;
  6813. }
  6814. }
  6815. // ggml_compute_forward_flash_ff
  6816. static void ggml_compute_forward_flash_ff_f16(
  6817. const struct ggml_compute_params * params,
  6818. const struct ggml_tensor * a, // F16
  6819. const struct ggml_tensor * b0, // F16 fc_w
  6820. const struct ggml_tensor * b1, // F32 fc_b
  6821. const struct ggml_tensor * c0, // F16 proj_w
  6822. const struct ggml_tensor * c1, // F32 proj_b
  6823. struct ggml_tensor * dst) {
  6824. int64_t t0 = ggml_perf_time_us();
  6825. UNUSED(t0);
  6826. const int nea0 = a->ne[0];
  6827. const int nea1 = a->ne[1];
  6828. const int nea2 = a->ne[2];
  6829. const int nea3 = a->ne[3];
  6830. const int neb00 = b0->ne[0];
  6831. const int neb01 = b0->ne[1];
  6832. //const int neb02 = b0->ne[2];
  6833. //const int neb03 = b0->ne[3];
  6834. const int neb10 = b1->ne[0];
  6835. const int neb11 = b1->ne[1];
  6836. //const int neb12 = b1->ne[2];
  6837. //const int neb13 = b1->ne[3];
  6838. const int nec00 = c0->ne[0];
  6839. const int nec01 = c0->ne[1];
  6840. //const int nec02 = c0->ne[2];
  6841. //const int nec03 = c0->ne[3];
  6842. const int nec10 = c1->ne[0];
  6843. const int nec11 = c1->ne[1];
  6844. //const int nec12 = c1->ne[2];
  6845. //const int nec13 = c1->ne[3];
  6846. const int ne0 = dst->ne[0];
  6847. const int ne1 = dst->ne[1];
  6848. const int ne2 = dst->ne[2];
  6849. //const int ne3 = dst->ne[3];
  6850. const int nba0 = a->nb[0];
  6851. const int nba1 = a->nb[1];
  6852. const int nba2 = a->nb[2];
  6853. const int nba3 = a->nb[3];
  6854. const int nbb00 = b0->nb[0];
  6855. const int nbb01 = b0->nb[1];
  6856. const int nbb02 = b0->nb[2];
  6857. const int nbb03 = b0->nb[3];
  6858. const int nbb10 = b1->nb[0];
  6859. //const int nbb11 = b1->nb[1];
  6860. //const int nbb12 = b1->nb[2];
  6861. //const int nbb13 = b1->nb[3];
  6862. const int nbc00 = c0->nb[0];
  6863. const int nbc01 = c0->nb[1];
  6864. const int nbc02 = c0->nb[2];
  6865. const int nbc03 = c0->nb[3];
  6866. const int nbc10 = c1->nb[0];
  6867. //const int nbc11 = c1->nb[1];
  6868. //const int nbc12 = c1->nb[2];
  6869. //const int nbc13 = c1->nb[3];
  6870. const int nb0 = dst->nb[0];
  6871. const int nb1 = dst->nb[1];
  6872. const int nb2 = dst->nb[2];
  6873. const int nb3 = dst->nb[3];
  6874. const int ith = params->ith;
  6875. const int nth = params->nth;
  6876. const int D = nea0;
  6877. //const int N = nea1;
  6878. const int M = neb01;
  6879. GGML_ASSERT(ne0 == nea0);
  6880. GGML_ASSERT(ne1 == nea1);
  6881. GGML_ASSERT(ne2 == nea2);
  6882. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6883. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6884. GGML_ASSERT(nbb10 == sizeof(float));
  6885. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6886. GGML_ASSERT(nbc10 == sizeof(float));
  6887. GGML_ASSERT(neb00 == D);
  6888. GGML_ASSERT(neb01 == M);
  6889. GGML_ASSERT(neb10 == M);
  6890. GGML_ASSERT(neb11 == 1);
  6891. GGML_ASSERT(nec00 == M);
  6892. GGML_ASSERT(nec01 == D);
  6893. GGML_ASSERT(nec10 == D);
  6894. GGML_ASSERT(nec11 == 1);
  6895. // dst cannot be transposed or permuted
  6896. GGML_ASSERT(nb0 == sizeof(float));
  6897. GGML_ASSERT(nb0 <= nb1);
  6898. GGML_ASSERT(nb1 <= nb2);
  6899. GGML_ASSERT(nb2 <= nb3);
  6900. if (params->type == GGML_TASK_INIT) {
  6901. return;
  6902. }
  6903. if (params->type == GGML_TASK_FINALIZE) {
  6904. return;
  6905. }
  6906. // parallelize by a rows using ggml_vec_dot_f32
  6907. // total rows in a
  6908. const int nr = nea1*nea2*nea3;
  6909. // rows per thread
  6910. const int dr = (nr + nth - 1)/nth;
  6911. // row range for this thread
  6912. const int ir0 = dr*ith;
  6913. const int ir1 = MIN(ir0 + dr, nr);
  6914. for (int ir = ir0; ir < ir1; ++ir) {
  6915. // a indices
  6916. const int ia3 = ir/(nea2*nea1);
  6917. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6918. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6919. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6920. for (int ic = 0; ic < neb01; ++ic) {
  6921. // b0 indices
  6922. const int ib03 = ia3;
  6923. const int ib02 = ia2;
  6924. const int ib01 = ic;
  6925. // S indices
  6926. const int i1 = ib01;
  6927. ggml_vec_dot_f16(nea0,
  6928. S + i1,
  6929. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6930. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6931. }
  6932. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6933. //ggml_vec_gelu_f32(neb01, S, S);
  6934. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6935. for (int i = 0; i < M; i++) {
  6936. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6937. }
  6938. ggml_vec_gelu_f16(neb01, S16, S16);
  6939. {
  6940. // dst indices
  6941. const int i1 = ia1;
  6942. const int i2 = ia2;
  6943. const int i3 = ia3;
  6944. for (int ic = 0; ic < nec01; ++ic) {
  6945. ggml_vec_dot_f16(neb01,
  6946. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6947. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6948. S16);
  6949. }
  6950. ggml_vec_add_f32(nec01,
  6951. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6952. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6953. (float *) c1->data);
  6954. }
  6955. }
  6956. }
  6957. static void ggml_compute_forward_flash_ff(
  6958. const struct ggml_compute_params * params,
  6959. const struct ggml_tensor * a,
  6960. const struct ggml_tensor * b0,
  6961. const struct ggml_tensor * b1,
  6962. const struct ggml_tensor * c0,
  6963. const struct ggml_tensor * c1,
  6964. struct ggml_tensor * dst) {
  6965. switch (b0->type) {
  6966. case GGML_TYPE_F16:
  6967. {
  6968. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6969. } break;
  6970. case GGML_TYPE_F32:
  6971. {
  6972. GGML_ASSERT(false); // TODO
  6973. } break;
  6974. case GGML_TYPE_Q4_0:
  6975. case GGML_TYPE_Q4_1:
  6976. case GGML_TYPE_I8:
  6977. case GGML_TYPE_I16:
  6978. case GGML_TYPE_I32:
  6979. case GGML_TYPE_COUNT:
  6980. {
  6981. GGML_ASSERT(false);
  6982. } break;
  6983. }
  6984. }
  6985. /////////////////////////////////
  6986. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6987. GGML_ASSERT(params);
  6988. switch (tensor->op) {
  6989. case GGML_OP_DUP:
  6990. {
  6991. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6992. } break;
  6993. case GGML_OP_ADD:
  6994. {
  6995. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6996. } break;
  6997. case GGML_OP_SUB:
  6998. {
  6999. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7000. } break;
  7001. case GGML_OP_MUL:
  7002. {
  7003. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7004. } break;
  7005. case GGML_OP_DIV:
  7006. {
  7007. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7008. } break;
  7009. case GGML_OP_SQR:
  7010. {
  7011. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7012. } break;
  7013. case GGML_OP_SQRT:
  7014. {
  7015. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7016. } break;
  7017. case GGML_OP_SUM:
  7018. {
  7019. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7020. } break;
  7021. case GGML_OP_MEAN:
  7022. {
  7023. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7024. } break;
  7025. case GGML_OP_REPEAT:
  7026. {
  7027. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7028. } break;
  7029. case GGML_OP_ABS:
  7030. {
  7031. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7032. } break;
  7033. case GGML_OP_SGN:
  7034. {
  7035. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7036. } break;
  7037. case GGML_OP_NEG:
  7038. {
  7039. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7040. } break;
  7041. case GGML_OP_STEP:
  7042. {
  7043. ggml_compute_forward_step(params, tensor->src0, tensor);
  7044. } break;
  7045. case GGML_OP_RELU:
  7046. {
  7047. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7048. } break;
  7049. case GGML_OP_GELU:
  7050. {
  7051. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7052. } break;
  7053. case GGML_OP_SILU:
  7054. {
  7055. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7056. } break;
  7057. case GGML_OP_NORM:
  7058. {
  7059. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7060. } break;
  7061. case GGML_OP_RMS_NORM:
  7062. {
  7063. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7064. } break;
  7065. case GGML_OP_MUL_MAT:
  7066. {
  7067. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7068. } break;
  7069. case GGML_OP_SCALE:
  7070. {
  7071. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7072. } break;
  7073. case GGML_OP_CPY:
  7074. {
  7075. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7076. } break;
  7077. case GGML_OP_RESHAPE:
  7078. {
  7079. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7080. } break;
  7081. case GGML_OP_VIEW:
  7082. {
  7083. ggml_compute_forward_view(params, tensor->src0);
  7084. } break;
  7085. case GGML_OP_PERMUTE:
  7086. {
  7087. ggml_compute_forward_permute(params, tensor->src0);
  7088. } break;
  7089. case GGML_OP_TRANSPOSE:
  7090. {
  7091. ggml_compute_forward_transpose(params, tensor->src0);
  7092. } break;
  7093. case GGML_OP_GET_ROWS:
  7094. {
  7095. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7096. } break;
  7097. case GGML_OP_DIAG_MASK_INF:
  7098. {
  7099. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7100. } break;
  7101. case GGML_OP_SOFT_MAX:
  7102. {
  7103. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7104. } break;
  7105. case GGML_OP_ROPE:
  7106. {
  7107. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7108. } break;
  7109. case GGML_OP_CONV_1D_1S:
  7110. {
  7111. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7112. } break;
  7113. case GGML_OP_CONV_1D_2S:
  7114. {
  7115. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7116. } break;
  7117. case GGML_OP_FLASH_ATTN:
  7118. {
  7119. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7120. GGML_ASSERT(t == 0 || t == 1);
  7121. bool masked = t != 0;
  7122. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7123. } break;
  7124. case GGML_OP_FLASH_FF:
  7125. {
  7126. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7127. } break;
  7128. case GGML_OP_NONE:
  7129. {
  7130. // nop
  7131. } break;
  7132. case GGML_OP_COUNT:
  7133. {
  7134. GGML_ASSERT(false);
  7135. } break;
  7136. }
  7137. }
  7138. ////////////////////////////////////////////////////////////////////////////////
  7139. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7140. struct ggml_tensor * src0 = tensor->src0;
  7141. struct ggml_tensor * src1 = tensor->src1;
  7142. switch (tensor->op) {
  7143. case GGML_OP_DUP:
  7144. {
  7145. if (src0->grad) {
  7146. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7147. }
  7148. } break;
  7149. case GGML_OP_ADD:
  7150. {
  7151. if (src0->grad) {
  7152. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7153. }
  7154. if (src1->grad) {
  7155. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7156. }
  7157. } break;
  7158. case GGML_OP_SUB:
  7159. {
  7160. if (src0->grad) {
  7161. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7162. }
  7163. if (src1->grad) {
  7164. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7165. }
  7166. } break;
  7167. case GGML_OP_MUL:
  7168. {
  7169. if (src0->grad) {
  7170. src0->grad =
  7171. ggml_add_impl(ctx,
  7172. src0->grad,
  7173. ggml_mul(ctx, src1, tensor->grad),
  7174. inplace);
  7175. }
  7176. if (src1->grad) {
  7177. src1->grad =
  7178. ggml_add_impl(ctx,
  7179. src1->grad,
  7180. ggml_mul(ctx, src0, tensor->grad),
  7181. inplace);
  7182. }
  7183. } break;
  7184. case GGML_OP_DIV:
  7185. {
  7186. if (src0->grad) {
  7187. src0->grad =
  7188. ggml_add_impl(ctx,
  7189. src0->grad,
  7190. ggml_div(ctx, tensor->grad, src1),
  7191. inplace);
  7192. }
  7193. if (src1->grad) {
  7194. src1->grad =
  7195. ggml_sub_impl(ctx,
  7196. src1->grad,
  7197. ggml_mul(ctx,
  7198. tensor->grad,
  7199. ggml_div(ctx, tensor, src1)),
  7200. inplace);
  7201. }
  7202. } break;
  7203. case GGML_OP_SQR:
  7204. {
  7205. if (src0->grad) {
  7206. src0->grad =
  7207. ggml_add_impl(ctx,
  7208. src0->grad,
  7209. ggml_mul(ctx,
  7210. ggml_mul(ctx, src0, tensor->grad),
  7211. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7212. inplace);
  7213. }
  7214. } break;
  7215. case GGML_OP_SQRT:
  7216. {
  7217. if (src0->grad) {
  7218. src0->grad =
  7219. ggml_add_impl(ctx,
  7220. src0->grad,
  7221. ggml_div(ctx,
  7222. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7223. tensor),
  7224. inplace);
  7225. }
  7226. } break;
  7227. case GGML_OP_SUM:
  7228. {
  7229. if (src0->grad) {
  7230. src0->grad =
  7231. ggml_add_impl(ctx,
  7232. src0->grad,
  7233. ggml_repeat(ctx, tensor->grad, src0->grad),
  7234. inplace);
  7235. }
  7236. } break;
  7237. case GGML_OP_MEAN:
  7238. {
  7239. GGML_ASSERT(false); // TODO: implement
  7240. } break;
  7241. case GGML_OP_REPEAT:
  7242. {
  7243. if (src0->grad) {
  7244. src0->grad =
  7245. ggml_add_impl(ctx,
  7246. src0->grad,
  7247. ggml_sum(ctx, tensor->grad),
  7248. inplace);
  7249. }
  7250. } break;
  7251. case GGML_OP_ABS:
  7252. {
  7253. if (src0->grad) {
  7254. src0->grad =
  7255. ggml_add_impl(ctx,
  7256. src0->grad,
  7257. ggml_mul(ctx,
  7258. ggml_sgn(ctx, src0),
  7259. tensor->grad),
  7260. inplace);
  7261. }
  7262. } break;
  7263. case GGML_OP_SGN:
  7264. {
  7265. if (src0->grad) {
  7266. // noop
  7267. }
  7268. } break;
  7269. case GGML_OP_NEG:
  7270. {
  7271. if (src0->grad) {
  7272. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7273. }
  7274. } break;
  7275. case GGML_OP_STEP:
  7276. {
  7277. if (src0->grad) {
  7278. // noop
  7279. }
  7280. } break;
  7281. case GGML_OP_RELU:
  7282. {
  7283. if (src0->grad) {
  7284. src0->grad = ggml_sub_impl(ctx,
  7285. src0->grad,
  7286. ggml_mul(ctx,
  7287. ggml_step(ctx, src0),
  7288. tensor->grad),
  7289. inplace);
  7290. }
  7291. } break;
  7292. case GGML_OP_GELU:
  7293. {
  7294. GGML_ASSERT(false); // TODO: not implemented
  7295. } break;
  7296. case GGML_OP_SILU:
  7297. {
  7298. GGML_ASSERT(false); // TODO: not implemented
  7299. } break;
  7300. case GGML_OP_NORM:
  7301. {
  7302. GGML_ASSERT(false); // TODO: not implemented
  7303. } break;
  7304. case GGML_OP_RMS_NORM:
  7305. {
  7306. GGML_ASSERT(false); // TODO: not implemented
  7307. } break;
  7308. case GGML_OP_MUL_MAT:
  7309. {
  7310. if (src0->grad) {
  7311. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7312. GGML_ASSERT(false);
  7313. }
  7314. if (src1->grad) {
  7315. src1->grad =
  7316. ggml_add_impl(ctx,
  7317. src1->grad,
  7318. // TODO: fix transpose, the node will break the graph connections
  7319. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7320. inplace);
  7321. }
  7322. } break;
  7323. case GGML_OP_SCALE:
  7324. {
  7325. GGML_ASSERT(false); // TODO: not implemented
  7326. } break;
  7327. case GGML_OP_CPY:
  7328. {
  7329. GGML_ASSERT(false); // TODO: not implemented
  7330. } break;
  7331. case GGML_OP_RESHAPE:
  7332. {
  7333. GGML_ASSERT(false); // TODO: not implemented
  7334. } break;
  7335. case GGML_OP_VIEW:
  7336. {
  7337. GGML_ASSERT(false); // not supported
  7338. } break;
  7339. case GGML_OP_PERMUTE:
  7340. {
  7341. GGML_ASSERT(false); // TODO: not implemented
  7342. } break;
  7343. case GGML_OP_TRANSPOSE:
  7344. {
  7345. GGML_ASSERT(false); // TODO: not implemented
  7346. } break;
  7347. case GGML_OP_GET_ROWS:
  7348. {
  7349. GGML_ASSERT(false); // TODO: not implemented
  7350. } break;
  7351. case GGML_OP_DIAG_MASK_INF:
  7352. {
  7353. GGML_ASSERT(false); // TODO: not implemented
  7354. } break;
  7355. case GGML_OP_SOFT_MAX:
  7356. {
  7357. GGML_ASSERT(false); // TODO: not implemented
  7358. } break;
  7359. case GGML_OP_ROPE:
  7360. {
  7361. GGML_ASSERT(false); // TODO: not implemented
  7362. } break;
  7363. case GGML_OP_CONV_1D_1S:
  7364. {
  7365. GGML_ASSERT(false); // TODO: not implemented
  7366. } break;
  7367. case GGML_OP_CONV_1D_2S:
  7368. {
  7369. GGML_ASSERT(false); // TODO: not implemented
  7370. } break;
  7371. case GGML_OP_FLASH_ATTN:
  7372. {
  7373. GGML_ASSERT(false); // not supported
  7374. } break;
  7375. case GGML_OP_FLASH_FF:
  7376. {
  7377. GGML_ASSERT(false); // not supported
  7378. } break;
  7379. case GGML_OP_NONE:
  7380. {
  7381. // nop
  7382. } break;
  7383. case GGML_OP_COUNT:
  7384. {
  7385. GGML_ASSERT(false);
  7386. } break;
  7387. }
  7388. }
  7389. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7390. if (node->grad == NULL) {
  7391. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7392. // it can also happen during forward pass, if the user performs computations with constants
  7393. if (node->op != GGML_OP_NONE) {
  7394. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7395. }
  7396. }
  7397. // check if already visited
  7398. for (int i = 0; i < cgraph->n_nodes; i++) {
  7399. if (cgraph->nodes[i] == node) {
  7400. return;
  7401. }
  7402. }
  7403. for (int i = 0; i < cgraph->n_leafs; i++) {
  7404. if (cgraph->leafs[i] == node) {
  7405. return;
  7406. }
  7407. }
  7408. if (node->src0) {
  7409. ggml_visit_parents(cgraph, node->src0);
  7410. }
  7411. if (node->src1) {
  7412. ggml_visit_parents(cgraph, node->src1);
  7413. }
  7414. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7415. if (node->opt[i]) {
  7416. ggml_visit_parents(cgraph, node->opt[i]);
  7417. }
  7418. }
  7419. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7420. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7421. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7422. cgraph->leafs[cgraph->n_leafs] = node;
  7423. cgraph->n_leafs++;
  7424. } else {
  7425. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7426. cgraph->nodes[cgraph->n_nodes] = node;
  7427. cgraph->grads[cgraph->n_nodes] = node->grad;
  7428. cgraph->n_nodes++;
  7429. }
  7430. }
  7431. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7432. if (!expand) {
  7433. cgraph->n_nodes = 0;
  7434. cgraph->n_leafs = 0;
  7435. }
  7436. const int n0 = cgraph->n_nodes;
  7437. UNUSED(n0);
  7438. ggml_visit_parents(cgraph, tensor);
  7439. const int n_new = cgraph->n_nodes - n0;
  7440. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7441. if (n_new > 0) {
  7442. // the last added node should always be starting point
  7443. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7444. }
  7445. }
  7446. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7447. ggml_build_forward_impl(cgraph, tensor, true);
  7448. }
  7449. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7450. struct ggml_cgraph result = {
  7451. /*.n_nodes =*/ 0,
  7452. /*.n_leafs =*/ 0,
  7453. /*.n_threads =*/ 0,
  7454. /*.work_size =*/ 0,
  7455. /*.work =*/ NULL,
  7456. /*.nodes =*/ { NULL },
  7457. /*.grads =*/ { NULL },
  7458. /*.leafs =*/ { NULL },
  7459. /*.perf_runs =*/ 0,
  7460. /*.perf_cycles =*/ 0,
  7461. /*.perf_time_us =*/ 0,
  7462. };
  7463. ggml_build_forward_impl(&result, tensor, false);
  7464. return result;
  7465. }
  7466. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7467. struct ggml_cgraph result = *gf;
  7468. GGML_ASSERT(gf->n_nodes > 0);
  7469. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7470. if (keep) {
  7471. for (int i = 0; i < gf->n_nodes; i++) {
  7472. struct ggml_tensor * node = gf->nodes[i];
  7473. if (node->grad) {
  7474. node->grad = ggml_dup_tensor(ctx, node);
  7475. gf->grads[i] = node->grad;
  7476. }
  7477. }
  7478. }
  7479. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7480. struct ggml_tensor * node = gf->nodes[i];
  7481. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7482. if (node->grad) {
  7483. ggml_compute_backward(ctx, node, keep);
  7484. }
  7485. }
  7486. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7487. struct ggml_tensor * node = gf->nodes[i];
  7488. if (node->is_param) {
  7489. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7490. ggml_build_forward_impl(&result, node->grad, true);
  7491. }
  7492. }
  7493. return result;
  7494. }
  7495. //
  7496. // thread data
  7497. //
  7498. // synchronization is done via busy loops
  7499. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7500. //
  7501. #ifdef __APPLE__
  7502. //#include <os/lock.h>
  7503. //
  7504. //typedef os_unfair_lock ggml_lock_t;
  7505. //
  7506. //#define ggml_lock_init(x) UNUSED(x)
  7507. //#define ggml_lock_destroy(x) UNUSED(x)
  7508. //#define ggml_lock_lock os_unfair_lock_lock
  7509. //#define ggml_lock_unlock os_unfair_lock_unlock
  7510. //
  7511. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7512. typedef int ggml_lock_t;
  7513. #define ggml_lock_init(x) UNUSED(x)
  7514. #define ggml_lock_destroy(x) UNUSED(x)
  7515. #define ggml_lock_lock(x) UNUSED(x)
  7516. #define ggml_lock_unlock(x) UNUSED(x)
  7517. #define GGML_LOCK_INITIALIZER 0
  7518. typedef pthread_t ggml_thread_t;
  7519. #define ggml_thread_create pthread_create
  7520. #define ggml_thread_join pthread_join
  7521. #else
  7522. //typedef pthread_spinlock_t ggml_lock_t;
  7523. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7524. //#define ggml_lock_destroy pthread_spin_destroy
  7525. //#define ggml_lock_lock pthread_spin_lock
  7526. //#define ggml_lock_unlock pthread_spin_unlock
  7527. typedef int ggml_lock_t;
  7528. #define ggml_lock_init(x) UNUSED(x)
  7529. #define ggml_lock_destroy(x) UNUSED(x)
  7530. #define ggml_lock_lock(x) UNUSED(x)
  7531. #define ggml_lock_unlock(x) UNUSED(x)
  7532. #define GGML_LOCK_INITIALIZER 0
  7533. typedef pthread_t ggml_thread_t;
  7534. #define ggml_thread_create pthread_create
  7535. #define ggml_thread_join pthread_join
  7536. #endif
  7537. struct ggml_compute_state_shared {
  7538. ggml_lock_t spin;
  7539. int n_threads;
  7540. // synchronization primitives
  7541. atomic_int n_ready;
  7542. atomic_bool has_work;
  7543. atomic_bool stop; // stop all threads
  7544. };
  7545. struct ggml_compute_state {
  7546. ggml_thread_t thrd;
  7547. struct ggml_compute_params params;
  7548. struct ggml_tensor * node;
  7549. struct ggml_compute_state_shared * shared;
  7550. };
  7551. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7552. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7553. const int n_threads = state->shared->n_threads;
  7554. while (true) {
  7555. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7556. atomic_store(&state->shared->has_work, false);
  7557. } else {
  7558. while (atomic_load(&state->shared->has_work)) {
  7559. if (atomic_load(&state->shared->stop)) {
  7560. return 0;
  7561. }
  7562. ggml_lock_lock (&state->shared->spin);
  7563. ggml_lock_unlock(&state->shared->spin);
  7564. }
  7565. }
  7566. atomic_fetch_sub(&state->shared->n_ready, 1);
  7567. // wait for work
  7568. while (!atomic_load(&state->shared->has_work)) {
  7569. if (atomic_load(&state->shared->stop)) {
  7570. return 0;
  7571. }
  7572. ggml_lock_lock (&state->shared->spin);
  7573. ggml_lock_unlock(&state->shared->spin);
  7574. }
  7575. // check if we should stop
  7576. if (atomic_load(&state->shared->stop)) {
  7577. break;
  7578. }
  7579. if (state->node) {
  7580. if (state->params.ith < state->params.nth) {
  7581. ggml_compute_forward(&state->params, state->node);
  7582. }
  7583. state->node = NULL;
  7584. } else {
  7585. break;
  7586. }
  7587. }
  7588. return 0;
  7589. }
  7590. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7591. const int n_threads = cgraph->n_threads;
  7592. struct ggml_compute_state_shared state_shared = {
  7593. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7594. /*.n_threads =*/ n_threads,
  7595. /*.n_ready =*/ 0,
  7596. /*.has_work =*/ false,
  7597. /*.stop =*/ false,
  7598. };
  7599. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7600. // create thread pool
  7601. if (n_threads > 1) {
  7602. ggml_lock_init(&state_shared.spin);
  7603. atomic_store(&state_shared.has_work, true);
  7604. for (int j = 0; j < n_threads - 1; j++) {
  7605. workers[j] = (struct ggml_compute_state) {
  7606. .thrd = 0,
  7607. .params = {
  7608. .type = GGML_TASK_COMPUTE,
  7609. .ith = j + 1,
  7610. .nth = n_threads,
  7611. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7612. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7613. },
  7614. .node = NULL,
  7615. .shared = &state_shared,
  7616. };
  7617. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7618. GGML_ASSERT(rc == 0);
  7619. UNUSED(rc);
  7620. }
  7621. }
  7622. // initialize tasks + work buffer
  7623. {
  7624. size_t work_size = 0;
  7625. // thread scheduling for the different operations
  7626. for (int i = 0; i < cgraph->n_nodes; i++) {
  7627. struct ggml_tensor * node = cgraph->nodes[i];
  7628. switch (node->op) {
  7629. case GGML_OP_DUP:
  7630. {
  7631. node->n_tasks = 1;
  7632. } break;
  7633. case GGML_OP_ADD:
  7634. {
  7635. node->n_tasks = n_threads;
  7636. } break;
  7637. case GGML_OP_SUB:
  7638. case GGML_OP_MUL:
  7639. case GGML_OP_DIV:
  7640. case GGML_OP_SQR:
  7641. case GGML_OP_SQRT:
  7642. case GGML_OP_SUM:
  7643. case GGML_OP_MEAN:
  7644. case GGML_OP_REPEAT:
  7645. case GGML_OP_ABS:
  7646. case GGML_OP_SGN:
  7647. case GGML_OP_NEG:
  7648. case GGML_OP_STEP:
  7649. case GGML_OP_RELU:
  7650. {
  7651. node->n_tasks = 1;
  7652. } break;
  7653. case GGML_OP_GELU:
  7654. {
  7655. node->n_tasks = n_threads;
  7656. } break;
  7657. case GGML_OP_SILU:
  7658. {
  7659. node->n_tasks = n_threads;
  7660. } break;
  7661. case GGML_OP_NORM:
  7662. case GGML_OP_RMS_NORM:
  7663. {
  7664. node->n_tasks = n_threads;
  7665. } break;
  7666. case GGML_OP_MUL_MAT:
  7667. {
  7668. node->n_tasks = n_threads;
  7669. // TODO: use different scheduling for different matrix sizes
  7670. //const int nr0 = ggml_nrows(node->src0);
  7671. //const int nr1 = ggml_nrows(node->src1);
  7672. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7673. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7674. size_t cur = 0;
  7675. // TODO: better way to determine if the matrix is transposed
  7676. if (node->src0->nb[1] < node->src0->nb[0]) {
  7677. cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
  7678. // TODO: overestimated by factor of x2 for FP16
  7679. } else {
  7680. if (node->src0->type == GGML_TYPE_F16 &&
  7681. node->src1->type == GGML_TYPE_F32) {
  7682. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7683. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7684. node->n_tasks = 1; // TODO: this actually is doing nothing
  7685. // the threads are still spinning
  7686. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7687. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7688. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7689. //printf("cur = %zu\n", cur);
  7690. } else {
  7691. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7692. }
  7693. #else
  7694. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7695. #endif
  7696. } else if (node->src0->type == GGML_TYPE_F32 &&
  7697. node->src1->type == GGML_TYPE_F32) {
  7698. cur = 0;
  7699. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7700. node->src1->type == GGML_TYPE_F32) {
  7701. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7702. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7703. node->n_tasks = 1;
  7704. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7705. } else {
  7706. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7707. }
  7708. #else
  7709. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7710. #endif
  7711. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7712. node->src1->type == GGML_TYPE_F32) {
  7713. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7714. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7715. node->n_tasks = 1;
  7716. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7717. } else {
  7718. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7719. }
  7720. #else
  7721. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7722. #endif
  7723. } else {
  7724. GGML_ASSERT(false);
  7725. }
  7726. }
  7727. work_size = MAX(work_size, cur);
  7728. } break;
  7729. case GGML_OP_SCALE:
  7730. {
  7731. node->n_tasks = n_threads;
  7732. } break;
  7733. case GGML_OP_CPY:
  7734. case GGML_OP_RESHAPE:
  7735. case GGML_OP_VIEW:
  7736. case GGML_OP_PERMUTE:
  7737. case GGML_OP_TRANSPOSE:
  7738. case GGML_OP_GET_ROWS:
  7739. case GGML_OP_DIAG_MASK_INF:
  7740. {
  7741. node->n_tasks = 1;
  7742. } break;
  7743. case GGML_OP_SOFT_MAX:
  7744. {
  7745. node->n_tasks = n_threads;
  7746. } break;
  7747. case GGML_OP_ROPE:
  7748. {
  7749. node->n_tasks = 1;
  7750. } break;
  7751. case GGML_OP_CONV_1D_1S:
  7752. case GGML_OP_CONV_1D_2S:
  7753. {
  7754. node->n_tasks = n_threads;
  7755. GGML_ASSERT(node->src0->ne[3] == 1);
  7756. GGML_ASSERT(node->src1->ne[2] == 1);
  7757. GGML_ASSERT(node->src1->ne[3] == 1);
  7758. size_t cur = 0;
  7759. const int nk = node->src0->ne[0];
  7760. if (node->src0->type == GGML_TYPE_F16 &&
  7761. node->src1->type == GGML_TYPE_F32) {
  7762. cur = sizeof(ggml_fp16_t)*(
  7763. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7764. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7765. );
  7766. } else if (node->src0->type == GGML_TYPE_F32 &&
  7767. node->src1->type == GGML_TYPE_F32) {
  7768. cur = sizeof(float)*(
  7769. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7770. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7771. );
  7772. } else {
  7773. GGML_ASSERT(false);
  7774. }
  7775. work_size = MAX(work_size, cur);
  7776. } break;
  7777. case GGML_OP_FLASH_ATTN:
  7778. {
  7779. node->n_tasks = n_threads;
  7780. size_t cur = 0;
  7781. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7782. if (node->src1->type == GGML_TYPE_F32) {
  7783. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7784. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7785. }
  7786. if (node->src1->type == GGML_TYPE_F16) {
  7787. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7788. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7789. }
  7790. work_size = MAX(work_size, cur);
  7791. } break;
  7792. case GGML_OP_FLASH_FF:
  7793. {
  7794. node->n_tasks = n_threads;
  7795. size_t cur = 0;
  7796. if (node->src1->type == GGML_TYPE_F32) {
  7797. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7798. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7799. }
  7800. if (node->src1->type == GGML_TYPE_F16) {
  7801. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7802. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7803. }
  7804. work_size = MAX(work_size, cur);
  7805. } break;
  7806. case GGML_OP_NONE:
  7807. {
  7808. node->n_tasks = 1;
  7809. } break;
  7810. case GGML_OP_COUNT:
  7811. {
  7812. GGML_ASSERT(false);
  7813. } break;
  7814. }
  7815. }
  7816. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7817. GGML_ASSERT(false); // TODO: better handling
  7818. }
  7819. if (work_size > 0 && cgraph->work == NULL) {
  7820. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7821. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7822. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7823. }
  7824. }
  7825. const int64_t perf_start_cycles = ggml_perf_cycles();
  7826. const int64_t perf_start_time_us = ggml_perf_time_us();
  7827. for (int i = 0; i < cgraph->n_nodes; i++) {
  7828. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7829. struct ggml_tensor * node = cgraph->nodes[i];
  7830. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7831. //if (node->grad == NULL && node->perf_runs > 0) {
  7832. // continue;
  7833. //}
  7834. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7835. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7836. // INIT
  7837. struct ggml_compute_params params = {
  7838. /*.type =*/ GGML_TASK_INIT,
  7839. /*.ith =*/ 0,
  7840. /*.nth =*/ node->n_tasks,
  7841. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7842. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7843. };
  7844. ggml_compute_forward(&params, node);
  7845. // COMPUTE
  7846. if (node->n_tasks > 1) {
  7847. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7848. atomic_store(&state_shared.has_work, false);
  7849. }
  7850. while (atomic_load(&state_shared.has_work)) {
  7851. ggml_lock_lock (&state_shared.spin);
  7852. ggml_lock_unlock(&state_shared.spin);
  7853. }
  7854. // launch thread pool
  7855. for (int j = 0; j < n_threads - 1; j++) {
  7856. workers[j].params = (struct ggml_compute_params) {
  7857. .type = GGML_TASK_COMPUTE,
  7858. .ith = j + 1,
  7859. .nth = node->n_tasks,
  7860. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7861. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7862. };
  7863. workers[j].node = node;
  7864. }
  7865. atomic_fetch_sub(&state_shared.n_ready, 1);
  7866. while (atomic_load(&state_shared.n_ready) > 0) {
  7867. ggml_lock_lock (&state_shared.spin);
  7868. ggml_lock_unlock(&state_shared.spin);
  7869. }
  7870. atomic_store(&state_shared.has_work, true);
  7871. }
  7872. params.type = GGML_TASK_COMPUTE;
  7873. ggml_compute_forward(&params, node);
  7874. // wait for thread pool
  7875. if (node->n_tasks > 1) {
  7876. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7877. atomic_store(&state_shared.has_work, false);
  7878. }
  7879. while (atomic_load(&state_shared.has_work)) {
  7880. ggml_lock_lock (&state_shared.spin);
  7881. ggml_lock_unlock(&state_shared.spin);
  7882. }
  7883. atomic_fetch_sub(&state_shared.n_ready, 1);
  7884. while (atomic_load(&state_shared.n_ready) != 0) {
  7885. ggml_lock_lock (&state_shared.spin);
  7886. ggml_lock_unlock(&state_shared.spin);
  7887. }
  7888. }
  7889. // FINALIZE
  7890. if (node->n_tasks > 1) {
  7891. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7892. atomic_store(&state_shared.has_work, false);
  7893. }
  7894. while (atomic_load(&state_shared.has_work)) {
  7895. ggml_lock_lock (&state_shared.spin);
  7896. ggml_lock_unlock(&state_shared.spin);
  7897. }
  7898. // launch thread pool
  7899. for (int j = 0; j < n_threads - 1; j++) {
  7900. workers[j].params = (struct ggml_compute_params) {
  7901. .type = GGML_TASK_FINALIZE,
  7902. .ith = j + 1,
  7903. .nth = node->n_tasks,
  7904. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7905. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7906. };
  7907. workers[j].node = node;
  7908. }
  7909. atomic_fetch_sub(&state_shared.n_ready, 1);
  7910. while (atomic_load(&state_shared.n_ready) > 0) {
  7911. ggml_lock_lock (&state_shared.spin);
  7912. ggml_lock_unlock(&state_shared.spin);
  7913. }
  7914. atomic_store(&state_shared.has_work, true);
  7915. }
  7916. params.type = GGML_TASK_FINALIZE;
  7917. ggml_compute_forward(&params, node);
  7918. // wait for thread pool
  7919. if (node->n_tasks > 1) {
  7920. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7921. atomic_store(&state_shared.has_work, false);
  7922. }
  7923. while (atomic_load(&state_shared.has_work)) {
  7924. ggml_lock_lock (&state_shared.spin);
  7925. ggml_lock_unlock(&state_shared.spin);
  7926. }
  7927. atomic_fetch_sub(&state_shared.n_ready, 1);
  7928. while (atomic_load(&state_shared.n_ready) != 0) {
  7929. ggml_lock_lock (&state_shared.spin);
  7930. ggml_lock_unlock(&state_shared.spin);
  7931. }
  7932. }
  7933. // performance stats (node)
  7934. {
  7935. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7936. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7937. node->perf_runs++;
  7938. node->perf_cycles += perf_cycles_cur;
  7939. node->perf_time_us += perf_time_us_cur;
  7940. }
  7941. }
  7942. // join thread pool
  7943. if (n_threads > 1) {
  7944. atomic_store(&state_shared.stop, true);
  7945. atomic_store(&state_shared.has_work, true);
  7946. for (int j = 0; j < n_threads - 1; j++) {
  7947. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7948. GGML_ASSERT(rc == 0);
  7949. UNUSED(rc);
  7950. }
  7951. ggml_lock_destroy(&state_shared.spin);
  7952. }
  7953. // performance stats (graph)
  7954. {
  7955. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7956. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7957. cgraph->perf_runs++;
  7958. cgraph->perf_cycles += perf_cycles_cur;
  7959. cgraph->perf_time_us += perf_time_us_cur;
  7960. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7961. __func__, cgraph->perf_runs,
  7962. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7963. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7964. (double) perf_time_us_cur / 1000.0,
  7965. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7966. }
  7967. }
  7968. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7969. for (int i = 0; i < cgraph->n_nodes; i++) {
  7970. struct ggml_tensor * grad = cgraph->grads[i];
  7971. if (grad) {
  7972. ggml_set_zero(grad);
  7973. }
  7974. }
  7975. }
  7976. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7977. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7978. GGML_PRINT("=== GRAPH ===\n");
  7979. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7980. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7981. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7982. for (int i = 0; i < cgraph->n_nodes; i++) {
  7983. struct ggml_tensor * node = cgraph->nodes[i];
  7984. perf_total_per_op_us[node->op] += node->perf_time_us;
  7985. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7986. i,
  7987. node->ne[0], node->ne[1], node->ne[2],
  7988. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7989. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7990. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7991. (double) node->perf_time_us / 1000.0,
  7992. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7993. }
  7994. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7995. for (int i = 0; i < cgraph->n_leafs; i++) {
  7996. struct ggml_tensor * node = cgraph->leafs[i];
  7997. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7998. i,
  7999. node->ne[0], node->ne[1],
  8000. GGML_OP_LABEL[node->op]);
  8001. }
  8002. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8003. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8004. }
  8005. GGML_PRINT("========================================\n");
  8006. }
  8007. // check if node is part of the graph
  8008. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8009. if (cgraph == NULL) {
  8010. return true;
  8011. }
  8012. for (int i = 0; i < cgraph->n_nodes; i++) {
  8013. if (cgraph->nodes[i] == node) {
  8014. return true;
  8015. }
  8016. }
  8017. return false;
  8018. }
  8019. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8020. for (int i = 0; i < cgraph->n_nodes; i++) {
  8021. struct ggml_tensor * parent = cgraph->nodes[i];
  8022. if (parent->grad == node) {
  8023. return parent;
  8024. }
  8025. }
  8026. return NULL;
  8027. }
  8028. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8029. char color[16];
  8030. FILE * fp = fopen(filename, "w");
  8031. GGML_ASSERT(fp);
  8032. fprintf(fp, "digraph G {\n");
  8033. fprintf(fp, " newrank = true;\n");
  8034. fprintf(fp, " rankdir = LR;\n");
  8035. for (int i = 0; i < gb->n_nodes; i++) {
  8036. struct ggml_tensor * node = gb->nodes[i];
  8037. if (ggml_graph_get_parent(gb, node) != NULL) {
  8038. continue;
  8039. }
  8040. if (node->is_param) {
  8041. snprintf(color, sizeof(color), "yellow");
  8042. } else if (node->grad) {
  8043. if (ggml_graph_find(gf, node)) {
  8044. snprintf(color, sizeof(color), "green");
  8045. } else {
  8046. snprintf(color, sizeof(color), "lightblue");
  8047. }
  8048. } else {
  8049. snprintf(color, sizeof(color), "white");
  8050. }
  8051. fprintf(fp, " \"%p\" [ \
  8052. style = filled; fillcolor = %s; shape = record; \
  8053. label=\"%d [%d, %d] | <x>%s",
  8054. (void *) node, color,
  8055. i, node->ne[0], node->ne[1],
  8056. GGML_OP_SYMBOL[node->op]);
  8057. if (node->grad) {
  8058. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8059. } else {
  8060. fprintf(fp, "\"; ]\n");
  8061. }
  8062. }
  8063. for (int i = 0; i < gb->n_leafs; i++) {
  8064. struct ggml_tensor * node = gb->leafs[i];
  8065. snprintf(color, sizeof(color), "pink");
  8066. if (ggml_nelements(node) == 1) {
  8067. fprintf(fp, " \"%p\" [ \
  8068. style = filled; fillcolor = %s; shape = record; \
  8069. label=\"<x>%.1e\"; ]\n",
  8070. (void *) node, color, ggml_get_f32_1d(node, 0));
  8071. } else {
  8072. fprintf(fp, " \"%p\" [ \
  8073. style = filled; fillcolor = %s; shape = record; \
  8074. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  8075. (void *) node, color,
  8076. i, node->ne[0], node->ne[1]);
  8077. }
  8078. }
  8079. for (int i = 0; i < gb->n_nodes; i++) {
  8080. struct ggml_tensor * node = gb->nodes[i];
  8081. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8082. if (node->src0) {
  8083. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8084. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8085. parent0 ? (void *) parent0 : (void *) node->src0,
  8086. parent0 ? "g" : "x",
  8087. parent ? (void *) parent : (void *) node,
  8088. parent ? "g" : "x",
  8089. parent ? "empty" : "vee",
  8090. parent ? "dashed" : "solid");
  8091. }
  8092. if (node->src1) {
  8093. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8094. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8095. parent1 ? (void *) parent1 : (void *) node->src1,
  8096. parent1 ? "g" : "x",
  8097. parent ? (void *) parent : (void *) node,
  8098. parent ? "g" : "x",
  8099. parent ? "empty" : "vee",
  8100. parent ? "dashed" : "solid");
  8101. }
  8102. }
  8103. for (int i = 0; i < gb->n_leafs; i++) {
  8104. struct ggml_tensor * node = gb->leafs[i];
  8105. if (node->src0) {
  8106. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8107. (void *) node->src0, "x",
  8108. (void *) node, "x");
  8109. }
  8110. if (node->src1) {
  8111. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8112. (void *) node->src1, "x",
  8113. (void *) node, "x");
  8114. }
  8115. }
  8116. fprintf(fp, "}\n");
  8117. fclose(fp);
  8118. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8119. }
  8120. ////////////////////////////////////////////////////////////////////////////////
  8121. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8122. int i = 0;
  8123. for (int p = 0; p < np; ++p) {
  8124. const int ne = ggml_nelements(ps[p]) ;
  8125. // TODO: add function to set tensor from array
  8126. for (int j = 0; j < ne; ++j) {
  8127. ggml_set_f32_1d(ps[p], j, x[i++]);
  8128. }
  8129. }
  8130. }
  8131. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8132. int i = 0;
  8133. for (int p = 0; p < np; ++p) {
  8134. const int ne = ggml_nelements(ps[p]) ;
  8135. // TODO: add function to get all elements at once
  8136. for (int j = 0; j < ne; ++j) {
  8137. x[i++] = ggml_get_f32_1d(ps[p], j);
  8138. }
  8139. }
  8140. }
  8141. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8142. int i = 0;
  8143. for (int p = 0; p < np; ++p) {
  8144. const int ne = ggml_nelements(ps[p]) ;
  8145. // TODO: add function to get all elements at once
  8146. for (int j = 0; j < ne; ++j) {
  8147. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8148. }
  8149. }
  8150. }
  8151. //
  8152. // ADAM
  8153. //
  8154. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8155. //
  8156. static enum ggml_opt_result ggml_opt_adam(
  8157. struct ggml_context * ctx,
  8158. struct ggml_opt_params params,
  8159. struct ggml_tensor * f,
  8160. struct ggml_cgraph * gf,
  8161. struct ggml_cgraph * gb) {
  8162. GGML_ASSERT(ggml_is_scalar(f));
  8163. gf->n_threads = params.n_threads;
  8164. gb->n_threads = params.n_threads;
  8165. // these will store the parameters we want to optimize
  8166. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8167. int np = 0;
  8168. int nx = 0;
  8169. for (int i = 0; i < gf->n_nodes; ++i) {
  8170. if (gf->nodes[i]->is_param) {
  8171. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8172. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8173. ps[np++] = gf->nodes[i];
  8174. nx += ggml_nelements(gf->nodes[i]);
  8175. }
  8176. }
  8177. // constants
  8178. const float alpha = params.adam.alpha;
  8179. const float beta1 = params.adam.beta1;
  8180. const float beta2 = params.adam.beta2;
  8181. const float eps = params.adam.eps;
  8182. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8183. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8184. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8185. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8186. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8187. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8188. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8189. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8190. // initialize
  8191. ggml_vec_set_f32(nx, m, 0.0f);
  8192. ggml_vec_set_f32(nx, v, 0.0f);
  8193. // update view
  8194. ggml_opt_get_params(np, ps, x);
  8195. // compute the function value
  8196. ggml_graph_reset (gf);
  8197. ggml_set_f32 (f->grad, 1.0f);
  8198. ggml_graph_compute(ctx, gb);
  8199. float fx_prev = ggml_get_f32_1d(f, 0);
  8200. if (pf) {
  8201. pf[0] = fx_prev;
  8202. }
  8203. int n_no_improvement = 0;
  8204. float fx_best = fx_prev;
  8205. // run the optimizer
  8206. for (int t = 0; t < params.adam.n_iter; ++t) {
  8207. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8208. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8209. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8210. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8211. for (int i = 0; i < np; ++i) {
  8212. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8213. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8214. }
  8215. const int64_t t_start_wall = ggml_time_us();
  8216. const int64_t t_start_cpu = ggml_cycles();
  8217. UNUSED(t_start_wall);
  8218. UNUSED(t_start_cpu);
  8219. {
  8220. // update the gradient
  8221. ggml_opt_get_grad(np, ps, g1);
  8222. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8223. ggml_vec_scale_f32(nx, m, beta1);
  8224. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8225. // g2 = g1^2
  8226. ggml_vec_sqr_f32 (nx, g2, g1);
  8227. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8228. ggml_vec_scale_f32(nx, v, beta2);
  8229. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8230. // m^hat = m_t / (1 - beta1^t)
  8231. // v^hat = v_t / (1 - beta2^t)
  8232. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8233. ggml_vec_cpy_f32 (nx, mh, m);
  8234. ggml_vec_cpy_f32 (nx, vh, v);
  8235. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8236. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8237. ggml_vec_sqrt_f32 (nx, vh, vh);
  8238. ggml_vec_acc1_f32 (nx, vh, eps);
  8239. ggml_vec_div_f32 (nx, mh, mh, vh);
  8240. ggml_vec_sub_f32 (nx, x, x, mh);
  8241. // update the parameters
  8242. ggml_opt_set_params(np, ps, x);
  8243. }
  8244. ggml_graph_reset (gf);
  8245. ggml_set_f32 (f->grad, 1.0f);
  8246. ggml_graph_compute(ctx, gb);
  8247. const float fx = ggml_get_f32_1d(f, 0);
  8248. // check convergence
  8249. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8250. GGML_PRINT_DEBUG("converged\n");
  8251. return GGML_OPT_OK;
  8252. }
  8253. // delta-based convergence test
  8254. if (pf != NULL) {
  8255. // need at least params.past iterations to start checking for convergence
  8256. if (params.past <= t) {
  8257. const float rate = (pf[t%params.past] - fx)/fx;
  8258. if (fabs(rate) < params.delta) {
  8259. return GGML_OPT_OK;
  8260. }
  8261. }
  8262. pf[t%params.past] = fx;
  8263. }
  8264. // check for improvement
  8265. if (params.max_no_improvement > 0) {
  8266. if (fx_best > fx) {
  8267. fx_best = fx;
  8268. n_no_improvement = 0;
  8269. } else {
  8270. ++n_no_improvement;
  8271. if (n_no_improvement >= params.max_no_improvement) {
  8272. return GGML_OPT_OK;
  8273. }
  8274. }
  8275. }
  8276. fx_prev = fx;
  8277. {
  8278. const int64_t t_end_cpu = ggml_cycles();
  8279. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8280. UNUSED(t_end_cpu);
  8281. const int64_t t_end_wall = ggml_time_us();
  8282. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8283. UNUSED(t_end_wall);
  8284. }
  8285. }
  8286. return GGML_OPT_DID_NOT_CONVERGE;
  8287. }
  8288. //
  8289. // L-BFGS
  8290. //
  8291. // the L-BFGS implementation below is based on the following implementation:
  8292. //
  8293. // https://github.com/chokkan/liblbfgs
  8294. //
  8295. struct ggml_lbfgs_iteration_data {
  8296. float alpha;
  8297. float ys;
  8298. float * s;
  8299. float * y;
  8300. };
  8301. static enum ggml_opt_result linesearch_backtracking(
  8302. struct ggml_context * ctx,
  8303. const struct ggml_opt_params * params,
  8304. int nx,
  8305. float * x,
  8306. float * fx,
  8307. float * g,
  8308. float * d,
  8309. float * step,
  8310. const float * xp,
  8311. struct ggml_tensor * f,
  8312. struct ggml_cgraph * gf,
  8313. struct ggml_cgraph * gb,
  8314. const int np,
  8315. struct ggml_tensor * ps[]) {
  8316. int count = 0;
  8317. float width = 0.0f;
  8318. float dg = 0.0f;
  8319. float finit = 0.0f;
  8320. float dginit = 0.0f;
  8321. float dgtest = 0.0f;
  8322. const float dec = 0.5f;
  8323. const float inc = 2.1f;
  8324. if (*step <= 0.) {
  8325. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8326. }
  8327. // compute the initial gradient in the search direction
  8328. ggml_vec_dot_f32(nx, &dginit, g, d);
  8329. // make sure that d points to a descent direction
  8330. if (0 < dginit) {
  8331. return GGML_LINESEARCH_FAIL;
  8332. }
  8333. // initialize local variables
  8334. finit = *fx;
  8335. dgtest = params->lbfgs.ftol*dginit;
  8336. while (true) {
  8337. ggml_vec_cpy_f32(nx, x, xp);
  8338. ggml_vec_mad_f32(nx, x, d, *step);
  8339. // evaluate the function and gradient values
  8340. {
  8341. ggml_opt_set_params(np, ps, x);
  8342. ggml_graph_reset (gf);
  8343. ggml_set_f32 (f->grad, 1.0f);
  8344. ggml_graph_compute(ctx, gb);
  8345. ggml_opt_get_grad(np, ps, g);
  8346. *fx = ggml_get_f32_1d(f, 0);
  8347. }
  8348. ++count;
  8349. if (*fx > finit + (*step)*dgtest) {
  8350. width = dec;
  8351. } else {
  8352. // Armijo condition is satisfied
  8353. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8354. return count;
  8355. }
  8356. ggml_vec_dot_f32(nx, &dg, g, d);
  8357. // check the Wolfe condition
  8358. if (dg < params->lbfgs.wolfe * dginit) {
  8359. width = inc;
  8360. } else {
  8361. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8362. // regular Wolfe conditions
  8363. return count;
  8364. }
  8365. if(dg > -params->lbfgs.wolfe*dginit) {
  8366. width = dec;
  8367. } else {
  8368. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8369. return count;
  8370. }
  8371. return count;
  8372. }
  8373. }
  8374. if (*step < params->lbfgs.min_step) {
  8375. return GGML_LINESEARCH_MINIMUM_STEP;
  8376. }
  8377. if (*step > params->lbfgs.max_step) {
  8378. return GGML_LINESEARCH_MAXIMUM_STEP;
  8379. }
  8380. if (params->lbfgs.max_linesearch <= count) {
  8381. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8382. }
  8383. (*step) *= width;
  8384. }
  8385. return GGML_LINESEARCH_FAIL;
  8386. }
  8387. static enum ggml_opt_result ggml_opt_lbfgs(
  8388. struct ggml_context * ctx,
  8389. struct ggml_opt_params params,
  8390. struct ggml_tensor * f,
  8391. struct ggml_cgraph * gf,
  8392. struct ggml_cgraph * gb) {
  8393. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8394. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8395. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8396. return GGML_OPT_INVALID_WOLFE;
  8397. }
  8398. }
  8399. gf->n_threads = params.n_threads;
  8400. gb->n_threads = params.n_threads;
  8401. const int m = params.lbfgs.m;
  8402. // these will store the parameters we want to optimize
  8403. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8404. int np = 0;
  8405. int nx = 0;
  8406. for (int i = 0; i < gf->n_nodes; ++i) {
  8407. if (gf->nodes[i]->is_param) {
  8408. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8409. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8410. ps[np++] = gf->nodes[i];
  8411. nx += ggml_nelements(gf->nodes[i]);
  8412. }
  8413. }
  8414. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8415. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8416. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8417. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8418. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8419. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8420. float fx = 0.0f; // cost function value
  8421. float xnorm = 0.0f; // ||x||
  8422. float gnorm = 0.0f; // ||g||
  8423. float step = 0.0f;
  8424. // initialize x from the graph nodes
  8425. ggml_opt_get_params(np, ps, x);
  8426. // the L-BFGS memory
  8427. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8428. for (int i = 0; i < m; ++i) {
  8429. lm[i].alpha = 0.0f;
  8430. lm[i].ys = 0.0f;
  8431. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8432. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8433. }
  8434. // evaluate the function value and its gradient
  8435. {
  8436. ggml_opt_set_params(np, ps, x);
  8437. ggml_graph_reset (gf);
  8438. ggml_set_f32 (f->grad, 1.0f);
  8439. ggml_graph_compute(ctx, gb);
  8440. ggml_opt_get_grad(np, ps, g);
  8441. fx = ggml_get_f32_1d(f, 0);
  8442. }
  8443. if (pf) {
  8444. pf[0] = fx;
  8445. }
  8446. float fx_best = fx;
  8447. // search direction = -gradient
  8448. ggml_vec_neg_f32(nx, d, g);
  8449. // ||x||, ||g||
  8450. ggml_vec_norm_f32(nx, &xnorm, x);
  8451. ggml_vec_norm_f32(nx, &gnorm, g);
  8452. if (xnorm < 1.0f) {
  8453. xnorm = 1.0f;
  8454. }
  8455. // already optimized
  8456. if (gnorm/xnorm <= params.lbfgs.eps) {
  8457. return GGML_OPT_OK;
  8458. }
  8459. // initial step
  8460. ggml_vec_norm_inv_f32(nx, &step, d);
  8461. int j = 0;
  8462. int k = 1;
  8463. int ls = 0;
  8464. int end = 0;
  8465. int bound = 0;
  8466. int n_no_improvement = 0;
  8467. float ys = 0.0f;
  8468. float yy = 0.0f;
  8469. float beta = 0.0f;
  8470. while (true) {
  8471. // store the current position and gradient vectors
  8472. ggml_vec_cpy_f32(nx, xp, x);
  8473. ggml_vec_cpy_f32(nx, gp, g);
  8474. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8475. if (ls < 0) {
  8476. // linesearch failed - go back to the previous point and return
  8477. ggml_vec_cpy_f32(nx, x, xp);
  8478. ggml_vec_cpy_f32(nx, g, gp);
  8479. return ls;
  8480. }
  8481. ggml_vec_norm_f32(nx, &xnorm, x);
  8482. ggml_vec_norm_f32(nx, &gnorm, g);
  8483. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8484. if (xnorm < 1.0) {
  8485. xnorm = 1.0;
  8486. }
  8487. if (gnorm/xnorm <= params.lbfgs.eps) {
  8488. // converged
  8489. return GGML_OPT_OK;
  8490. }
  8491. // delta-based convergence test
  8492. if (pf != NULL) {
  8493. // need at least params.past iterations to start checking for convergence
  8494. if (params.past <= k) {
  8495. const float rate = (pf[k%params.past] - fx)/fx;
  8496. if (fabs(rate) < params.delta) {
  8497. return GGML_OPT_OK;
  8498. }
  8499. }
  8500. pf[k%params.past] = fx;
  8501. }
  8502. // check for improvement
  8503. if (params.max_no_improvement > 0) {
  8504. if (fx < fx_best) {
  8505. fx_best = fx;
  8506. n_no_improvement = 0;
  8507. } else {
  8508. n_no_improvement++;
  8509. if (n_no_improvement >= params.max_no_improvement) {
  8510. return GGML_OPT_OK;
  8511. }
  8512. }
  8513. }
  8514. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8515. // reached the maximum number of iterations
  8516. return GGML_OPT_DID_NOT_CONVERGE;
  8517. }
  8518. // update vectors s and y:
  8519. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8520. // y_{k+1} = g_{k+1} - g_{k}.
  8521. //
  8522. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8523. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8524. // compute scalars ys and yy:
  8525. // ys = y^t \cdot s -> 1 / \rho.
  8526. // yy = y^t \cdot y.
  8527. //
  8528. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8529. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8530. lm[end].ys = ys;
  8531. // find new search direction
  8532. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8533. bound = (m <= k) ? m : k;
  8534. k++;
  8535. end = (end + 1)%m;
  8536. // initialize search direction with -g
  8537. ggml_vec_neg_f32(nx, d, g);
  8538. j = end;
  8539. for (int i = 0; i < bound; ++i) {
  8540. j = (j + m - 1) % m;
  8541. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8542. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8543. lm[j].alpha /= lm[j].ys;
  8544. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8545. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8546. }
  8547. ggml_vec_scale_f32(nx, d, ys/yy);
  8548. for (int i = 0; i < bound; ++i) {
  8549. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8550. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8551. beta /= lm[j].ys;
  8552. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8553. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8554. j = (j + 1)%m;
  8555. }
  8556. step = 1.0;
  8557. }
  8558. return GGML_OPT_DID_NOT_CONVERGE;
  8559. }
  8560. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8561. struct ggml_opt_params result;
  8562. switch (type) {
  8563. case GGML_OPT_ADAM:
  8564. {
  8565. result = (struct ggml_opt_params) {
  8566. .type = GGML_OPT_ADAM,
  8567. .n_threads = 1,
  8568. .past = 0,
  8569. .delta = 1e-5f,
  8570. .max_no_improvement = 100,
  8571. .print_forward_graph = true,
  8572. .print_backward_graph = true,
  8573. .adam = {
  8574. .n_iter = 10000,
  8575. .alpha = 0.001f,
  8576. .beta1 = 0.9f,
  8577. .beta2 = 0.999f,
  8578. .eps = 1e-8f,
  8579. .eps_f = 1e-5f,
  8580. .eps_g = 1e-3f,
  8581. },
  8582. };
  8583. } break;
  8584. case GGML_OPT_LBFGS:
  8585. {
  8586. result = (struct ggml_opt_params) {
  8587. .type = GGML_OPT_LBFGS,
  8588. .n_threads = 1,
  8589. .past = 0,
  8590. .delta = 1e-5f,
  8591. .max_no_improvement = 0,
  8592. .print_forward_graph = true,
  8593. .print_backward_graph = true,
  8594. .lbfgs = {
  8595. .m = 6,
  8596. .n_iter = 100,
  8597. .max_linesearch = 20,
  8598. .eps = 1e-5f,
  8599. .ftol = 1e-4f,
  8600. .wolfe = 0.9f,
  8601. .min_step = 1e-20f,
  8602. .max_step = 1e+20f,
  8603. .linesearch = GGML_LINESEARCH_DEFAULT,
  8604. },
  8605. };
  8606. } break;
  8607. }
  8608. return result;
  8609. }
  8610. enum ggml_opt_result ggml_opt(
  8611. struct ggml_context * ctx,
  8612. struct ggml_opt_params params,
  8613. struct ggml_tensor * f) {
  8614. bool free_ctx = false;
  8615. if (ctx == NULL) {
  8616. struct ggml_init_params params_ctx = {
  8617. .mem_size = 16*1024*1024,
  8618. .mem_buffer = NULL,
  8619. };
  8620. ctx = ggml_init(params_ctx);
  8621. if (ctx == NULL) {
  8622. return GGML_OPT_NO_CONTEXT;
  8623. }
  8624. free_ctx = true;
  8625. }
  8626. enum ggml_opt_result result = GGML_OPT_OK;
  8627. // build forward + backward compute graphs
  8628. struct ggml_cgraph gf = ggml_build_forward (f);
  8629. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8630. switch (params.type) {
  8631. case GGML_OPT_ADAM:
  8632. {
  8633. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8634. } break;
  8635. case GGML_OPT_LBFGS:
  8636. {
  8637. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8638. } break;
  8639. }
  8640. if (params.print_forward_graph) {
  8641. ggml_graph_print (&gf);
  8642. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8643. }
  8644. if (params.print_backward_graph) {
  8645. ggml_graph_print (&gb);
  8646. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8647. }
  8648. if (free_ctx) {
  8649. ggml_free(ctx);
  8650. }
  8651. return result;
  8652. }
  8653. ////////////////////////////////////////////////////////////////////////////////
  8654. int ggml_cpu_has_avx(void) {
  8655. #if defined(__AVX__)
  8656. return 1;
  8657. #else
  8658. return 0;
  8659. #endif
  8660. }
  8661. int ggml_cpu_has_avx2(void) {
  8662. #if defined(__AVX2__)
  8663. return 1;
  8664. #else
  8665. return 0;
  8666. #endif
  8667. }
  8668. int ggml_cpu_has_avx512(void) {
  8669. #if defined(__AVX512F__)
  8670. return 1;
  8671. #else
  8672. return 0;
  8673. #endif
  8674. }
  8675. int ggml_cpu_has_fma(void) {
  8676. #if defined(__FMA__)
  8677. return 1;
  8678. #else
  8679. return 0;
  8680. #endif
  8681. }
  8682. int ggml_cpu_has_neon(void) {
  8683. #if defined(__ARM_NEON)
  8684. return 1;
  8685. #else
  8686. return 0;
  8687. #endif
  8688. }
  8689. int ggml_cpu_has_arm_fma(void) {
  8690. #if defined(__ARM_FEATURE_FMA)
  8691. return 1;
  8692. #else
  8693. return 0;
  8694. #endif
  8695. }
  8696. int ggml_cpu_has_f16c(void) {
  8697. #if defined(__F16C__)
  8698. return 1;
  8699. #else
  8700. return 0;
  8701. #endif
  8702. }
  8703. int ggml_cpu_has_fp16_va(void) {
  8704. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8705. return 1;
  8706. #else
  8707. return 0;
  8708. #endif
  8709. }
  8710. int ggml_cpu_has_wasm_simd(void) {
  8711. #if defined(__wasm_simd128__)
  8712. return 1;
  8713. #else
  8714. return 0;
  8715. #endif
  8716. }
  8717. int ggml_cpu_has_blas(void) {
  8718. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8719. return 1;
  8720. #else
  8721. return 0;
  8722. #endif
  8723. }
  8724. int ggml_cpu_has_sse3(void) {
  8725. #if defined(__SSE3__)
  8726. return 1;
  8727. #else
  8728. return 0;
  8729. #endif
  8730. }
  8731. int ggml_cpu_has_vsx(void) {
  8732. #if defined(__POWER9_VECTOR__)
  8733. return 1;
  8734. #else
  8735. return 0;
  8736. #endif
  8737. }
  8738. ////////////////////////////////////////////////////////////////////////////////