convert_hf_to_gguf.py 205 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. # some models need extra generated tensors (like rope_freqs)
  228. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  229. return ()
  230. def prepare_tensors(self):
  231. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  232. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  233. # we don't need these
  234. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  235. continue
  236. old_dtype = data_torch.dtype
  237. # convert any unsupported data types to float32
  238. if data_torch.dtype not in (torch.float16, torch.float32):
  239. data_torch = data_torch.to(torch.float32)
  240. # use the first number-like part of the tensor name as the block id
  241. bid = None
  242. for part in name.split("."):
  243. if part.isdecimal():
  244. bid = int(part)
  245. break
  246. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  247. data = data_torch.squeeze().numpy()
  248. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  249. if len(data.shape) == 0:
  250. data = data_torch.numpy()
  251. n_dims = len(data.shape)
  252. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  253. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  254. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  255. data_qtype = gguf.GGMLQuantizationType.F32
  256. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  257. # Some tensor types are always in float32
  258. if data_qtype is False and (
  259. any(
  260. self.match_model_tensor_name(new_name, key, bid)
  261. for key in (
  262. gguf.MODEL_TENSOR.FFN_GATE_INP,
  263. gguf.MODEL_TENSOR.POS_EMBD,
  264. gguf.MODEL_TENSOR.TOKEN_TYPES,
  265. gguf.MODEL_TENSOR.SSM_CONV1D,
  266. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  267. gguf.MODEL_TENSOR.TIME_MIX_W1,
  268. gguf.MODEL_TENSOR.TIME_MIX_W2,
  269. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  270. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  271. )
  272. )
  273. or not new_name.endswith(".weight")
  274. ):
  275. data_qtype = gguf.GGMLQuantizationType.F32
  276. if data_qtype is False and any(
  277. self.match_model_tensor_name(new_name, key, bid)
  278. for key in (
  279. gguf.MODEL_TENSOR.TOKEN_EMBD,
  280. gguf.MODEL_TENSOR.OUTPUT,
  281. )
  282. ):
  283. if self.ftype in (
  284. gguf.LlamaFileType.MOSTLY_TQ1_0,
  285. gguf.LlamaFileType.MOSTLY_TQ2_0,
  286. ):
  287. # TODO: use Q4_K and Q6_K
  288. data_qtype = gguf.GGMLQuantizationType.F16
  289. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  290. if isinstance(data_qtype, bool):
  291. if self.ftype == gguf.LlamaFileType.ALL_F32:
  292. data_qtype = gguf.GGMLQuantizationType.F32
  293. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  294. data_qtype = gguf.GGMLQuantizationType.F16
  295. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  296. data_qtype = gguf.GGMLQuantizationType.BF16
  297. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  298. data_qtype = gguf.GGMLQuantizationType.Q8_0
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  300. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  302. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  303. else:
  304. raise ValueError(f"Unknown file type: {self.ftype.name}")
  305. try:
  306. data = gguf.quants.quantize(data, data_qtype)
  307. except gguf.QuantError as e:
  308. logger.warning("%s, %s", e, "falling back to F16")
  309. data_qtype = gguf.GGMLQuantizationType.F16
  310. data = gguf.quants.quantize(data, data_qtype)
  311. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  312. # reverse shape to make it similar to the internal ggml dimension order
  313. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  314. # n_dims is implicit in the shape
  315. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  316. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  317. def set_type(self):
  318. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  319. def prepare_metadata(self, vocab_only: bool):
  320. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  321. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  329. output_type: str = self.ftype.name.partition("_")[2]
  330. # Filename Output
  331. if self.fname_out.is_dir():
  332. # Generate default filename based on model specification and available metadata
  333. if not vocab_only:
  334. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  335. else:
  336. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  337. # Use the default filename
  338. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  339. else:
  340. # Output path is a custom defined templated filename
  341. # Note: `not is_dir()` is used because `.is_file()` will not detect
  342. # file template strings as it doesn't actually exist as a file
  343. # Process templated file name with the output ftype, useful with the "auto" ftype
  344. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  345. self.set_type()
  346. logger.info("Set meta model")
  347. self.metadata.set_gguf_meta_model(self.gguf_writer)
  348. logger.info("Set model parameters")
  349. self.set_gguf_parameters()
  350. logger.info("Set model tokenizer")
  351. self.set_vocab()
  352. logger.info("Set model quantization version")
  353. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  354. def write(self):
  355. self.prepare_tensors()
  356. self.prepare_metadata(vocab_only=False)
  357. self.gguf_writer.write_header_to_file(path=self.fname_out)
  358. self.gguf_writer.write_kv_data_to_file()
  359. self.gguf_writer.write_tensors_to_file(progress=True)
  360. self.gguf_writer.close()
  361. def write_vocab(self):
  362. if len(self.gguf_writer.tensors) != 1:
  363. raise ValueError('Splitting the vocabulary is not supported')
  364. self.prepare_metadata(vocab_only=True)
  365. self.gguf_writer.write_header_to_file(path=self.fname_out)
  366. self.gguf_writer.write_kv_data_to_file()
  367. self.gguf_writer.close()
  368. @staticmethod
  369. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  370. part_names: list[str] = []
  371. for filename in os.listdir(dir_model):
  372. if filename.startswith(prefix) and filename.endswith(suffix):
  373. part_names.append(filename)
  374. part_names.sort()
  375. return part_names
  376. @staticmethod
  377. def load_hparams(dir_model: Path):
  378. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  379. return json.load(f)
  380. @classmethod
  381. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  382. assert names
  383. def func(modelcls: AnyModel) -> AnyModel:
  384. for name in names:
  385. cls._model_classes[name] = modelcls
  386. return modelcls
  387. return func
  388. @classmethod
  389. def from_model_architecture(cls, arch: str) -> type[Model]:
  390. try:
  391. return cls._model_classes[arch]
  392. except KeyError:
  393. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  394. def does_token_look_special(self, token: str | bytes) -> bool:
  395. if isinstance(token, (bytes, bytearray)):
  396. token_text = token.decode(encoding="utf-8")
  397. elif isinstance(token, memoryview):
  398. token_text = token.tobytes().decode(encoding="utf-8")
  399. else:
  400. token_text = token
  401. # Some models mark some added tokens which ought to be control tokens as not special.
  402. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  403. seems_special = token_text in (
  404. "<pad>", # deepseek-coder
  405. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  406. )
  407. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  408. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  409. # TODO: should these be marked as UNUSED instead? (maybe not)
  410. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  411. return seems_special
  412. # used for GPT-2 BPE and WordPiece vocabs
  413. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  414. tokens: list[str] = []
  415. toktypes: list[int] = []
  416. from transformers import AutoTokenizer
  417. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  418. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  419. assert max(tokenizer.vocab.values()) < vocab_size
  420. tokpre = self.get_vocab_base_pre(tokenizer)
  421. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  422. added_vocab = tokenizer.get_added_vocab()
  423. for i in range(vocab_size):
  424. if i not in reverse_vocab:
  425. tokens.append(f"[PAD{i}]")
  426. toktypes.append(gguf.TokenType.UNUSED)
  427. else:
  428. token: str = reverse_vocab[i]
  429. if token in added_vocab:
  430. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  431. toktypes.append(gguf.TokenType.CONTROL)
  432. else:
  433. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  434. toktypes.append(gguf.TokenType.USER_DEFINED)
  435. else:
  436. toktypes.append(gguf.TokenType.NORMAL)
  437. tokens.append(token)
  438. return tokens, toktypes, tokpre
  439. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  440. # do not modify it manually!
  441. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  442. # Marker: Start get_vocab_base_pre
  443. def get_vocab_base_pre(self, tokenizer) -> str:
  444. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  445. # is specific for the BPE pre-tokenizer used by the model
  446. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  447. # use in llama.cpp to implement the same pre-tokenizer
  448. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  449. chktok = tokenizer.encode(chktxt)
  450. chkhsh = sha256(str(chktok).encode()).hexdigest()
  451. logger.debug(f"chktok: {chktok}")
  452. logger.debug(f"chkhsh: {chkhsh}")
  453. res = None
  454. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  455. # or pull the latest version of the model from Huggingface
  456. # don't edit the hashes manually!
  457. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  458. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  459. res = "llama-bpe"
  460. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  461. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  462. res = "deepseek-llm"
  463. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  464. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  465. res = "deepseek-coder"
  466. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  467. # ref: https://huggingface.co/tiiuae/falcon-7b
  468. res = "falcon"
  469. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  470. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  471. res = "bert-bge"
  472. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  473. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  474. res = "bert-bge-large"
  475. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  476. # ref: https://huggingface.co/mosaicml/mpt-7b
  477. res = "mpt"
  478. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  479. # ref: https://huggingface.co/bigcode/starcoder2-3b
  480. res = "starcoder"
  481. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  482. # ref: https://huggingface.co/openai-community/gpt2
  483. res = "gpt-2"
  484. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  485. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  486. res = "stablelm2"
  487. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  488. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  489. res = "refact"
  490. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  491. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  492. res = "command-r"
  493. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  494. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  495. res = "qwen2"
  496. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  497. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  498. res = "olmo"
  499. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  500. # ref: https://huggingface.co/databricks/dbrx-base
  501. res = "dbrx"
  502. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  503. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  504. res = "jina-v1-en"
  505. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  506. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  507. res = "jina-v2-en"
  508. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  509. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  510. res = "jina-v2-es"
  511. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  512. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  513. res = "jina-v2-de"
  514. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  515. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  516. res = "smaug-bpe"
  517. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  518. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  519. res = "poro-chat"
  520. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  521. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  522. res = "jina-v2-code"
  523. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  524. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  525. res = "chatglm-bpe"
  526. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  527. # ref: https://huggingface.co/LumiOpen/Viking-7B
  528. res = "viking"
  529. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  530. # ref: https://huggingface.co/core42/jais-13b
  531. res = "jais"
  532. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  533. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  534. res = "codeshell"
  535. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  536. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  537. res = "tekken"
  538. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  539. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  540. res = "smollm"
  541. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  542. # ref: https://huggingface.co/bigscience/bloom
  543. res = "bloom"
  544. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  545. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  546. res = "gpt3-finnish"
  547. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  548. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  549. res = "exaone"
  550. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  551. # ref: https://huggingface.co/microsoft/phi-2
  552. res = "phi-2"
  553. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  554. # ref: https://huggingface.co/facebook/chameleon-7b
  555. res = "chameleon"
  556. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  557. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  558. res = "minerva-7b"
  559. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  560. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  561. res = "roberta-bpe"
  562. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  563. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  564. res = "gigachat"
  565. if res is None:
  566. logger.warning("\n")
  567. logger.warning("**************************************************************************************")
  568. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  569. logger.warning("** There are 2 possible reasons for this:")
  570. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  571. logger.warning("** - the pre-tokenization config has changed upstream")
  572. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  573. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  574. logger.warning("**")
  575. logger.warning(f"** chkhsh: {chkhsh}")
  576. logger.warning("**************************************************************************************")
  577. logger.warning("\n")
  578. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  579. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  580. logger.debug(f"chkhsh: {chkhsh}")
  581. return res
  582. # Marker: End get_vocab_base_pre
  583. def _set_vocab_gpt2(self) -> None:
  584. tokens, toktypes, tokpre = self.get_vocab_base()
  585. self.gguf_writer.add_tokenizer_model("gpt2")
  586. self.gguf_writer.add_tokenizer_pre(tokpre)
  587. self.gguf_writer.add_token_list(tokens)
  588. self.gguf_writer.add_token_types(toktypes)
  589. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  590. special_vocab.add_to_gguf(self.gguf_writer)
  591. def _set_vocab_qwen(self):
  592. dir_model = self.dir_model
  593. hparams = self.hparams
  594. tokens: list[str] = []
  595. toktypes: list[int] = []
  596. from transformers import AutoTokenizer
  597. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  598. vocab_size = hparams["vocab_size"]
  599. assert max(tokenizer.get_vocab().values()) < vocab_size
  600. tokpre = self.get_vocab_base_pre(tokenizer)
  601. merges = []
  602. vocab = {}
  603. mergeable_ranks = tokenizer.mergeable_ranks
  604. for token, rank in mergeable_ranks.items():
  605. vocab[QwenModel.token_bytes_to_string(token)] = rank
  606. if len(token) == 1:
  607. continue
  608. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  609. assert len(merged) == 2
  610. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  611. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  612. added_vocab = tokenizer.special_tokens
  613. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  614. for i in range(vocab_size):
  615. if i not in reverse_vocab:
  616. tokens.append(f"[PAD{i}]")
  617. toktypes.append(gguf.TokenType.UNUSED)
  618. elif reverse_vocab[i] in added_vocab:
  619. tokens.append(reverse_vocab[i])
  620. toktypes.append(gguf.TokenType.CONTROL)
  621. else:
  622. tokens.append(reverse_vocab[i])
  623. toktypes.append(gguf.TokenType.NORMAL)
  624. self.gguf_writer.add_tokenizer_model("gpt2")
  625. self.gguf_writer.add_tokenizer_pre(tokpre)
  626. self.gguf_writer.add_token_list(tokens)
  627. self.gguf_writer.add_token_types(toktypes)
  628. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  629. special_vocab.merges = merges
  630. # only add special tokens when they were not already loaded from config.json
  631. if len(special_vocab.special_token_ids) == 0:
  632. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  633. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  634. # this one is usually not in config.json anyway
  635. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  636. special_vocab.add_to_gguf(self.gguf_writer)
  637. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  638. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  639. self.gguf_writer.add_tokenizer_model("llama")
  640. self.gguf_writer.add_tokenizer_pre("default")
  641. self.gguf_writer.add_token_list(tokens)
  642. self.gguf_writer.add_token_scores(scores)
  643. self.gguf_writer.add_token_types(toktypes)
  644. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  645. special_vocab.add_to_gguf(self.gguf_writer)
  646. def _create_vocab_sentencepiece(self):
  647. from sentencepiece import SentencePieceProcessor
  648. tokenizer_path = self.dir_model / 'tokenizer.model'
  649. if not tokenizer_path.is_file():
  650. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  651. tokenizer = SentencePieceProcessor()
  652. tokenizer.LoadFromFile(str(tokenizer_path))
  653. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  654. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  655. scores: list[float] = [-10000.0] * vocab_size
  656. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  657. for token_id in range(tokenizer.vocab_size()):
  658. piece = tokenizer.IdToPiece(token_id)
  659. text = piece.encode("utf-8")
  660. score = tokenizer.GetScore(token_id)
  661. toktype = SentencePieceTokenTypes.NORMAL
  662. if tokenizer.IsUnknown(token_id):
  663. toktype = SentencePieceTokenTypes.UNKNOWN
  664. elif tokenizer.IsControl(token_id):
  665. toktype = SentencePieceTokenTypes.CONTROL
  666. elif tokenizer.IsUnused(token_id):
  667. toktype = SentencePieceTokenTypes.UNUSED
  668. elif tokenizer.IsByte(token_id):
  669. toktype = SentencePieceTokenTypes.BYTE
  670. tokens[token_id] = text
  671. scores[token_id] = score
  672. toktypes[token_id] = toktype
  673. added_tokens_file = self.dir_model / 'added_tokens.json'
  674. if added_tokens_file.is_file():
  675. with open(added_tokens_file, "r", encoding="utf-8") as f:
  676. added_tokens_json = json.load(f)
  677. for key in added_tokens_json:
  678. token_id = added_tokens_json[key]
  679. if token_id >= vocab_size:
  680. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  681. continue
  682. tokens[token_id] = key.encode("utf-8")
  683. scores[token_id] = -1000.0
  684. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  685. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  686. if tokenizer_config_file.is_file():
  687. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  688. tokenizer_config_json = json.load(f)
  689. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  690. for token_id, token_data in added_tokens_decoder.items():
  691. token_id = int(token_id)
  692. token: str = token_data["content"]
  693. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  694. if tokens[token_id] != token.encode("utf-8"):
  695. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  696. if token_data.get("special") or self.does_token_look_special(token):
  697. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  698. else:
  699. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  700. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  701. scores[token_id] = -1000.0
  702. tokens[token_id] = token.encode("utf-8")
  703. if vocab_size > len(tokens):
  704. pad_count = vocab_size - len(tokens)
  705. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  706. for i in range(1, pad_count + 1):
  707. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  708. scores.append(-1000.0)
  709. toktypes.append(SentencePieceTokenTypes.UNUSED)
  710. return tokens, scores, toktypes
  711. def _set_vocab_llama_hf(self):
  712. vocab = gguf.LlamaHfVocab(self.dir_model)
  713. tokens = []
  714. scores = []
  715. toktypes = []
  716. for text, score, toktype in vocab.all_tokens():
  717. tokens.append(text)
  718. scores.append(score)
  719. toktypes.append(toktype)
  720. assert len(tokens) == vocab.vocab_size
  721. self.gguf_writer.add_tokenizer_model("llama")
  722. self.gguf_writer.add_tokenizer_pre("default")
  723. self.gguf_writer.add_token_list(tokens)
  724. self.gguf_writer.add_token_scores(scores)
  725. self.gguf_writer.add_token_types(toktypes)
  726. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  727. special_vocab.add_to_gguf(self.gguf_writer)
  728. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  729. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  730. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  731. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  732. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  733. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  734. assert field # tokenizer model
  735. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  736. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  737. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  738. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  739. assert field # token list
  740. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  741. if model_name == "llama-spm":
  742. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  743. assert field # token scores
  744. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  745. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  746. assert field # token types
  747. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  748. if model_name != "llama-spm":
  749. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  750. assert field # token merges
  751. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  752. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  753. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  754. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  755. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  756. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  757. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  758. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  759. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  760. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  761. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  762. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  763. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  764. @Model.register("GPTNeoXForCausalLM")
  765. class GPTNeoXModel(Model):
  766. model_arch = gguf.MODEL_ARCH.GPTNEOX
  767. def set_gguf_parameters(self):
  768. block_count = self.hparams["num_hidden_layers"]
  769. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  770. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  771. self.gguf_writer.add_block_count(block_count)
  772. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  773. self.gguf_writer.add_rope_dimension_count(
  774. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  775. )
  776. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  777. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  778. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  779. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  780. del bid # unused
  781. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  782. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  783. tensors: list[tuple[str, Tensor]] = []
  784. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  785. # Map bloom-style qkv_linear to gpt-style qkv_linear
  786. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  787. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  788. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  789. data_torch = torch.cat(
  790. (
  791. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  792. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  793. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  794. ),
  795. dim=0,
  796. )
  797. logger.info("re-format attention.linear_qkv.weight")
  798. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  799. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  800. data_torch = torch.cat(
  801. (
  802. qkv_bias[:, 0, :].reshape((n_embed,)),
  803. qkv_bias[:, 1, :].reshape((n_embed,)),
  804. qkv_bias[:, 2, :].reshape((n_embed,)),
  805. ),
  806. dim=0,
  807. )
  808. logger.info("re-format attention.linear_qkv.bias")
  809. tensors.append((self.map_tensor_name(name), data_torch))
  810. return tensors
  811. @Model.register("BloomForCausalLM", "BloomModel")
  812. class BloomModel(Model):
  813. model_arch = gguf.MODEL_ARCH.BLOOM
  814. def set_gguf_parameters(self):
  815. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  816. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  817. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  818. self.gguf_writer.add_embedding_length(n_embed)
  819. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  820. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  821. self.gguf_writer.add_head_count(n_head)
  822. self.gguf_writer.add_head_count_kv(n_head)
  823. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  824. self.gguf_writer.add_file_type(self.ftype)
  825. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  826. del bid # unused
  827. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  828. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  829. name = re.sub(r'transformer\.', '', name)
  830. tensors: list[tuple[str, Tensor]] = []
  831. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  832. # Map bloom-style qkv_linear to gpt-style qkv_linear
  833. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  834. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  835. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  836. data_torch = torch.cat(
  837. (
  838. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  839. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  840. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  841. ),
  842. dim=0,
  843. )
  844. logger.info("re-format attention.linear_qkv.weight")
  845. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  846. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  847. data_torch = torch.cat(
  848. (
  849. qkv_bias[:, 0, :].reshape((n_embed,)),
  850. qkv_bias[:, 1, :].reshape((n_embed,)),
  851. qkv_bias[:, 2, :].reshape((n_embed,)),
  852. ),
  853. dim=0,
  854. )
  855. logger.info("re-format attention.linear_qkv.bias")
  856. tensors.append((self.map_tensor_name(name), data_torch))
  857. if name == "word_embeddings.weight":
  858. assert self.tensor_names is not None
  859. # TODO: tie them at runtime, don't duplicate in the model file
  860. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  861. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  862. return tensors
  863. @Model.register("MPTForCausalLM")
  864. class MPTModel(Model):
  865. model_arch = gguf.MODEL_ARCH.MPT
  866. def set_vocab(self):
  867. try:
  868. self._set_vocab_gpt2()
  869. except Exception:
  870. # Fallback for SEA-LION model
  871. self._set_vocab_sentencepiece()
  872. self.gguf_writer.add_add_bos_token(False)
  873. self.gguf_writer.add_pad_token_id(3)
  874. self.gguf_writer.add_eos_token_id(1)
  875. self.gguf_writer.add_unk_token_id(0)
  876. def set_gguf_parameters(self):
  877. block_count = self.hparams["n_layers"]
  878. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  879. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  880. self.gguf_writer.add_block_count(block_count)
  881. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  882. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  883. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  884. self.gguf_writer.add_head_count_kv(kv_n_heads)
  885. self.gguf_writer.add_layer_norm_eps(1e-5)
  886. if self.hparams["attn_config"]["clip_qkv"] is not None:
  887. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  888. if self.hparams["attn_config"]["alibi"]:
  889. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  890. else:
  891. self.gguf_writer.add_max_alibi_bias(0.0)
  892. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  893. del bid # unused
  894. if "scales" in name:
  895. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  896. new_name = new_name.replace("scales", "act.scales")
  897. else:
  898. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  899. return [(new_name, data_torch)]
  900. @Model.register("OrionForCausalLM")
  901. class OrionModel(Model):
  902. model_arch = gguf.MODEL_ARCH.ORION
  903. def set_vocab(self):
  904. self._set_vocab_sentencepiece()
  905. def set_gguf_parameters(self):
  906. block_count = self.hparams["num_hidden_layers"]
  907. head_count = self.hparams["num_attention_heads"]
  908. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  909. ctx_length = 0
  910. if "max_sequence_length" in self.hparams:
  911. ctx_length = self.hparams["max_sequence_length"]
  912. elif "max_position_embeddings" in self.hparams:
  913. ctx_length = self.hparams["max_position_embeddings"]
  914. elif "model_max_length" in self.hparams:
  915. ctx_length = self.hparams["model_max_length"]
  916. else:
  917. raise ValueError("gguf: can not find ctx length parameter.")
  918. self.gguf_writer.add_file_type(self.ftype)
  919. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  920. self.gguf_writer.add_context_length(ctx_length)
  921. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  922. self.gguf_writer.add_block_count(block_count)
  923. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  924. self.gguf_writer.add_head_count(head_count)
  925. self.gguf_writer.add_head_count_kv(head_count_kv)
  926. # note: config provides rms norm but it is actually layer norm
  927. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  928. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  929. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  930. class BaichuanModel(Model):
  931. model_arch = gguf.MODEL_ARCH.BAICHUAN
  932. def set_vocab(self):
  933. self._set_vocab_sentencepiece()
  934. def set_gguf_parameters(self):
  935. block_count = self.hparams["num_hidden_layers"]
  936. head_count = self.hparams["num_attention_heads"]
  937. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  938. ctx_length = 0
  939. if "max_sequence_length" in self.hparams:
  940. ctx_length = self.hparams["max_sequence_length"]
  941. elif "max_position_embeddings" in self.hparams:
  942. ctx_length = self.hparams["max_position_embeddings"]
  943. elif "model_max_length" in self.hparams:
  944. ctx_length = self.hparams["model_max_length"]
  945. else:
  946. raise ValueError("gguf: can not find ctx length parameter.")
  947. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  948. self.gguf_writer.add_context_length(ctx_length)
  949. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  950. self.gguf_writer.add_block_count(block_count)
  951. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  952. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  953. self.gguf_writer.add_head_count(head_count)
  954. self.gguf_writer.add_head_count_kv(head_count_kv)
  955. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  956. self.gguf_writer.add_file_type(self.ftype)
  957. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  958. if self.hparams["rope_scaling"].get("type") == "linear":
  959. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  960. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  962. head_count = self.hparams["num_attention_heads"]
  963. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  964. tensors: list[tuple[str, Tensor]] = []
  965. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  966. logger.info(f"Unpacking and permuting layer {bid}")
  967. tensors = [
  968. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  969. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  970. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  971. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  972. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  973. self._reverse_hf_part(data_torch, 2)),
  974. ]
  975. else:
  976. tensors = [(self.map_tensor_name(name), data_torch)]
  977. return tensors
  978. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  979. if n_kv_head is not None and n_head != n_kv_head:
  980. n_head //= n_kv_head
  981. return (
  982. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  983. .swapaxes(1, 2)
  984. .reshape(weights.shape)
  985. )
  986. def _reverse_hf_permute_part(
  987. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  988. ) -> Tensor:
  989. r = weights.shape[0] // 3
  990. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  991. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  992. r = weights.shape[0] // 3
  993. return weights[r * n_part:r * n_part + r, ...]
  994. @Model.register("XverseForCausalLM")
  995. class XverseModel(Model):
  996. model_arch = gguf.MODEL_ARCH.XVERSE
  997. def set_vocab(self):
  998. assert (self.dir_model / "tokenizer.json").is_file()
  999. dir_model = self.dir_model
  1000. hparams = self.hparams
  1001. tokens: list[bytes] = []
  1002. toktypes: list[int] = []
  1003. from transformers import AutoTokenizer
  1004. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1005. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1006. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1007. # because vocab_size is the count of items, and indexes start at 0.
  1008. max_vocab_index = max(tokenizer.get_vocab().values())
  1009. if max_vocab_index >= vocab_size:
  1010. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1011. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1012. added_vocab = tokenizer.get_added_vocab()
  1013. for token_id in range(vocab_size):
  1014. token_text = reverse_vocab[token_id].encode('utf-8')
  1015. # replace "\x00" to string with length > 0
  1016. if token_text == b"\x00":
  1017. toktype = gguf.TokenType.BYTE # special
  1018. token_text = f"<{token_text}>".encode('utf-8')
  1019. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1020. toktype = gguf.TokenType.BYTE # special
  1021. elif reverse_vocab[token_id] in added_vocab:
  1022. if tokenizer.added_tokens_decoder[token_id].special:
  1023. toktype = gguf.TokenType.CONTROL
  1024. else:
  1025. toktype = gguf.TokenType.USER_DEFINED
  1026. else:
  1027. toktype = gguf.TokenType.NORMAL
  1028. tokens.append(token_text)
  1029. toktypes.append(toktype)
  1030. self.gguf_writer.add_tokenizer_model("llama")
  1031. self.gguf_writer.add_tokenizer_pre("default")
  1032. self.gguf_writer.add_token_list(tokens)
  1033. self.gguf_writer.add_token_types(toktypes)
  1034. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1035. special_vocab.add_to_gguf(self.gguf_writer)
  1036. def set_gguf_parameters(self):
  1037. block_count = self.hparams["num_hidden_layers"]
  1038. head_count = self.hparams["num_attention_heads"]
  1039. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1040. ctx_length = 0
  1041. if "max_sequence_length" in self.hparams:
  1042. ctx_length = self.hparams["max_sequence_length"]
  1043. elif "max_position_embeddings" in self.hparams:
  1044. ctx_length = self.hparams["max_position_embeddings"]
  1045. elif "model_max_length" in self.hparams:
  1046. ctx_length = self.hparams["model_max_length"]
  1047. else:
  1048. raise ValueError("gguf: can not find ctx length parameter.")
  1049. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1050. self.gguf_writer.add_context_length(ctx_length)
  1051. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1052. self.gguf_writer.add_block_count(block_count)
  1053. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1054. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1055. self.gguf_writer.add_head_count(head_count)
  1056. self.gguf_writer.add_head_count_kv(head_count_kv)
  1057. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1058. self.gguf_writer.add_file_type(self.ftype)
  1059. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1060. if self.hparams["rope_scaling"].get("type") == "linear":
  1061. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1062. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1063. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1064. del bid # unused
  1065. head_count = self.hparams["num_attention_heads"]
  1066. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1067. # HF models permute some of the tensors, so we need to undo that
  1068. if name.endswith("q_proj.weight"):
  1069. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1070. if name.endswith("k_proj.weight"):
  1071. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1072. return [(self.map_tensor_name(name), data_torch)]
  1073. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1074. if n_kv_head is not None and n_head != n_kv_head:
  1075. n_head //= n_kv_head
  1076. return (
  1077. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1078. .swapaxes(1, 2)
  1079. .reshape(weights.shape)
  1080. )
  1081. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1082. class FalconModel(Model):
  1083. model_arch = gguf.MODEL_ARCH.FALCON
  1084. def set_gguf_parameters(self):
  1085. block_count = self.hparams.get("num_hidden_layers")
  1086. if block_count is None:
  1087. block_count = self.hparams["n_layer"] # old name
  1088. n_head = self.hparams.get("num_attention_heads")
  1089. if n_head is None:
  1090. n_head = self.hparams["n_head"] # old name
  1091. n_head_kv = self.hparams.get("num_kv_heads")
  1092. if n_head_kv is None:
  1093. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1094. self.gguf_writer.add_context_length(2048) # not in config.json
  1095. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1096. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1097. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1098. self.gguf_writer.add_block_count(block_count)
  1099. self.gguf_writer.add_head_count(n_head)
  1100. self.gguf_writer.add_head_count_kv(n_head_kv)
  1101. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1102. self.gguf_writer.add_file_type(self.ftype)
  1103. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1104. del bid # unused
  1105. # QKV tensor transform
  1106. # The original query_key_value tensor contains n_head_kv "kv groups",
  1107. # each consisting of n_head/n_head_kv query weights followed by one key
  1108. # and one value weight (shared by all query heads in the kv group).
  1109. # This layout makes it a big pain to work with in GGML.
  1110. # So we rearrange them here,, so that we have n_head query weights
  1111. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1112. # in contiguous fashion.
  1113. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1114. if "query_key_value" in name:
  1115. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1116. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1117. head_dim = self.hparams["hidden_size"] // n_head
  1118. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1119. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1120. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1121. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1122. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1123. return [(self.map_tensor_name(name), data_torch)]
  1124. @Model.register("GPTBigCodeForCausalLM")
  1125. class StarCoderModel(Model):
  1126. model_arch = gguf.MODEL_ARCH.STARCODER
  1127. def set_gguf_parameters(self):
  1128. block_count = self.hparams["n_layer"]
  1129. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1130. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1131. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1132. self.gguf_writer.add_block_count(block_count)
  1133. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1134. self.gguf_writer.add_head_count_kv(1)
  1135. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1136. self.gguf_writer.add_file_type(self.ftype)
  1137. @Model.register("GPTRefactForCausalLM")
  1138. class RefactModel(Model):
  1139. model_arch = gguf.MODEL_ARCH.REFACT
  1140. def set_vocab(self):
  1141. super().set_vocab()
  1142. # TODO: how to determine special FIM tokens automatically?
  1143. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1144. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1145. special_vocab._set_special_token("prefix", 1)
  1146. special_vocab._set_special_token("suffix", 3)
  1147. special_vocab._set_special_token("middle", 2)
  1148. special_vocab.chat_template = None # do not add it twice
  1149. special_vocab.add_to_gguf(self.gguf_writer)
  1150. def set_gguf_parameters(self):
  1151. hidden_dim = self.hparams["n_embd"]
  1152. inner_dim = 4 * hidden_dim
  1153. hidden_dim = int(2 * inner_dim / 3)
  1154. multiple_of = 256
  1155. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1156. block_count = self.hparams["n_layer"]
  1157. # refact uses Alibi. So this is from config.json which might be used by training.
  1158. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1159. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1160. self.gguf_writer.add_feed_forward_length(ff_dim)
  1161. self.gguf_writer.add_block_count(block_count)
  1162. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1163. self.gguf_writer.add_head_count_kv(1)
  1164. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1165. self.gguf_writer.add_file_type(self.ftype)
  1166. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1167. hidden_dim = self.hparams["n_embd"]
  1168. inner_dim = 4 * hidden_dim
  1169. hidden_dim = int(2 * inner_dim / 3)
  1170. multiple_of = 256
  1171. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1172. n_head = self.hparams["n_head"]
  1173. n_head_kv = 1
  1174. head_dim = self.hparams["n_embd"] // n_head
  1175. tensors: list[tuple[str, Tensor]] = []
  1176. if bid is not None:
  1177. if name == f"transformer.h.{bid}.attn.kv.weight":
  1178. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1179. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1180. elif name == f"transformer.h.{bid}.attn.q.weight":
  1181. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1182. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1183. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1184. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1185. if len(tensors) == 0:
  1186. tensors.append((self.map_tensor_name(name), data_torch))
  1187. return tensors
  1188. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1189. class StableLMModel(Model):
  1190. model_arch = gguf.MODEL_ARCH.STABLELM
  1191. def set_vocab(self):
  1192. if (self.dir_model / "tokenizer.json").is_file():
  1193. self._set_vocab_gpt2()
  1194. else:
  1195. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1196. self._set_vocab_qwen()
  1197. def set_gguf_parameters(self):
  1198. hparams = self.hparams
  1199. block_count = hparams["num_hidden_layers"]
  1200. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1201. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1202. self.gguf_writer.add_block_count(block_count)
  1203. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1204. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1205. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1206. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1207. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1208. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1209. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1210. self.gguf_writer.add_file_type(self.ftype)
  1211. _q_norms: list[dict[str, Tensor]] | None = None
  1212. _k_norms: list[dict[str, Tensor]] | None = None
  1213. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1214. n_head = self.hparams["num_attention_heads"]
  1215. n_kv_head = self.hparams["num_key_value_heads"]
  1216. if name.find("q_layernorm.norms") != -1:
  1217. assert bid is not None
  1218. if self._q_norms is None:
  1219. self._q_norms = [{} for _ in range(self.block_count)]
  1220. self._q_norms[bid][name] = data_torch
  1221. if len(self._q_norms[bid]) >= n_head:
  1222. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1223. else:
  1224. return []
  1225. if name.find("k_layernorm.norms") != -1:
  1226. assert bid is not None
  1227. if self._k_norms is None:
  1228. self._k_norms = [{} for _ in range(self.block_count)]
  1229. self._k_norms[bid][name] = data_torch
  1230. if len(self._k_norms[bid]) >= n_kv_head:
  1231. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1232. else:
  1233. return []
  1234. return [(self.map_tensor_name(name), data_torch)]
  1235. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1236. datas: list[Tensor] = []
  1237. # extract the norms in order
  1238. for xid in range(n_head):
  1239. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1240. datas.append(norms[ename])
  1241. del norms[ename]
  1242. data_torch = torch.stack(datas, dim=0)
  1243. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1244. new_name = self.map_tensor_name(merged_name)
  1245. return [(new_name, data_torch)]
  1246. def prepare_tensors(self):
  1247. super().prepare_tensors()
  1248. if self._q_norms is not None or self._k_norms is not None:
  1249. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1250. norms = (
  1251. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1252. ) + (
  1253. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1254. )
  1255. if len(norms) > 0:
  1256. raise ValueError(f"Unprocessed norms: {norms}")
  1257. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1258. class LlamaModel(Model):
  1259. model_arch = gguf.MODEL_ARCH.LLAMA
  1260. def set_vocab(self):
  1261. try:
  1262. self._set_vocab_sentencepiece()
  1263. except FileNotFoundError:
  1264. try:
  1265. self._set_vocab_llama_hf()
  1266. except (FileNotFoundError, TypeError):
  1267. # Llama 3
  1268. self._set_vocab_gpt2()
  1269. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1270. if self.hparams.get("vocab_size", 32000) == 32016:
  1271. special_vocab = gguf.SpecialVocab(
  1272. self.dir_model, load_merges=False,
  1273. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1274. )
  1275. special_vocab._set_special_token("prefix", 32007)
  1276. special_vocab._set_special_token("suffix", 32008)
  1277. special_vocab._set_special_token("middle", 32009)
  1278. special_vocab._set_special_token("eot", 32010)
  1279. special_vocab.add_to_gguf(self.gguf_writer)
  1280. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1281. if tokenizer_config_file.is_file():
  1282. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1283. tokenizer_config_json = json.load(f)
  1284. if "add_prefix_space" in tokenizer_config_json:
  1285. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1286. # Apply to granite small models only
  1287. if self.hparams.get("vocab_size", 32000) == 49152:
  1288. self.gguf_writer.add_add_bos_token(False)
  1289. def set_gguf_parameters(self):
  1290. super().set_gguf_parameters()
  1291. hparams = self.hparams
  1292. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1293. if "head_dim" in hparams:
  1294. rope_dim = hparams["head_dim"]
  1295. else:
  1296. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1297. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1298. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1299. if self.hparams["rope_scaling"].get("type") == "linear":
  1300. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1301. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1302. @staticmethod
  1303. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1304. if n_head_kv is not None and n_head != n_head_kv:
  1305. n_head = n_head_kv
  1306. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1307. .swapaxes(1, 2)
  1308. .reshape(weights.shape))
  1309. _experts: list[dict[str, Tensor]] | None = None
  1310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1311. n_head = self.hparams["num_attention_heads"]
  1312. n_kv_head = self.hparams.get("num_key_value_heads")
  1313. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1314. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1315. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1316. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1317. # process the experts separately
  1318. if name.find("block_sparse_moe.experts") != -1:
  1319. n_experts = self.hparams["num_local_experts"]
  1320. assert bid is not None
  1321. if self._experts is None:
  1322. self._experts = [{} for _ in range(self.block_count)]
  1323. self._experts[bid][name] = data_torch
  1324. if len(self._experts[bid]) >= n_experts * 3:
  1325. tensors: list[tuple[str, Tensor]] = []
  1326. # merge the experts into a single 3d tensor
  1327. for wid in ["w1", "w2", "w3"]:
  1328. datas: list[Tensor] = []
  1329. for xid in range(n_experts):
  1330. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1331. datas.append(self._experts[bid][ename])
  1332. del self._experts[bid][ename]
  1333. data_torch = torch.stack(datas, dim=0)
  1334. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1335. new_name = self.map_tensor_name(merged_name)
  1336. tensors.append((new_name, data_torch))
  1337. return tensors
  1338. else:
  1339. return []
  1340. return [(self.map_tensor_name(name), data_torch)]
  1341. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1342. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1343. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1344. base = self.hparams.get("rope_theta", 10000.0)
  1345. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1346. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1347. factor = rope_scaling.get("factor", 8.0)
  1348. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1349. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1350. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1351. low_freq_wavelen = old_context_len / low_freq_factor
  1352. high_freq_wavelen = old_context_len / high_freq_factor
  1353. assert low_freq_wavelen != high_freq_wavelen
  1354. rope_factors = []
  1355. for freq in freqs:
  1356. wavelen = 2 * math.pi / freq
  1357. if wavelen < high_freq_wavelen:
  1358. rope_factors.append(1)
  1359. elif wavelen > low_freq_wavelen:
  1360. rope_factors.append(factor)
  1361. else:
  1362. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1363. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1364. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1365. def prepare_tensors(self):
  1366. super().prepare_tensors()
  1367. if self._experts is not None:
  1368. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1369. experts = [k for d in self._experts for k in d.keys()]
  1370. if len(experts) > 0:
  1371. raise ValueError(f"Unprocessed experts: {experts}")
  1372. @Model.register("BitnetForCausalLM")
  1373. class BitnetModel(Model):
  1374. model_arch = gguf.MODEL_ARCH.BITNET
  1375. def set_vocab(self):
  1376. self._set_vocab_sentencepiece()
  1377. def set_gguf_parameters(self):
  1378. super().set_gguf_parameters()
  1379. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1380. self.gguf_writer.add_rope_scaling_factor(1.0)
  1381. def weight_quant(self, weight: Tensor) -> Tensor:
  1382. dtype = weight.dtype
  1383. weight = weight.float()
  1384. scale = weight.abs().mean().clamp(min=1e-5)
  1385. iscale = 1 / scale
  1386. # TODO: multiply by the scale directly instead of inverting it twice
  1387. # (this is also unnecessarily doubly inverted upstream)
  1388. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1389. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1390. return result.type(dtype)
  1391. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1392. new_name = self.map_tensor_name(name)
  1393. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1394. gguf.MODEL_TENSOR.ATTN_Q,
  1395. gguf.MODEL_TENSOR.ATTN_K,
  1396. gguf.MODEL_TENSOR.ATTN_V,
  1397. gguf.MODEL_TENSOR.ATTN_OUT,
  1398. gguf.MODEL_TENSOR.FFN_UP,
  1399. gguf.MODEL_TENSOR.FFN_DOWN,
  1400. gguf.MODEL_TENSOR.FFN_GATE,
  1401. ]):
  1402. # transform weight into 1/0/-1 (in fp32)
  1403. data_torch = self.weight_quant(data_torch)
  1404. yield (new_name, data_torch)
  1405. @Model.register("GrokForCausalLM")
  1406. class GrokModel(Model):
  1407. model_arch = gguf.MODEL_ARCH.GROK
  1408. def set_vocab(self):
  1409. self._set_vocab_sentencepiece()
  1410. def __init__(self, *args, **kwargs):
  1411. super().__init__(*args, **kwargs)
  1412. def set_gguf_parameters(self):
  1413. super().set_gguf_parameters()
  1414. _experts: list[dict[str, Tensor]] | None = None
  1415. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1416. # process the experts separately
  1417. if name.find(".moe.") != -1:
  1418. n_experts = self.hparams["num_local_experts"]
  1419. assert bid is not None
  1420. if self._experts is None:
  1421. self._experts = [{} for _ in range(self.block_count)]
  1422. self._experts[bid][name] = data_torch
  1423. if len(self._experts[bid]) >= n_experts * 3:
  1424. tensors: list[tuple[str, Tensor]] = []
  1425. # merge the experts into a single 3d tensor
  1426. for wid in ["linear", "linear_1", "linear_v"]:
  1427. datas: list[Tensor] = []
  1428. for xid in range(n_experts):
  1429. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1430. datas.append(self._experts[bid][ename])
  1431. del self._experts[bid][ename]
  1432. data_torch = torch.stack(datas, dim=0)
  1433. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1434. new_name = self.map_tensor_name(merged_name)
  1435. tensors.append((new_name, data_torch))
  1436. return tensors
  1437. else:
  1438. return []
  1439. return [(self.map_tensor_name(name), data_torch)]
  1440. @Model.register("DbrxForCausalLM")
  1441. class DbrxModel(Model):
  1442. model_arch = gguf.MODEL_ARCH.DBRX
  1443. def set_gguf_parameters(self):
  1444. ffn_config = self.hparams["ffn_config"]
  1445. attn_config = self.hparams["attn_config"]
  1446. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1447. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1448. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1449. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1450. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1451. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1452. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1453. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1454. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1455. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1456. self.gguf_writer.add_layer_norm_eps(1e-5)
  1457. self.gguf_writer.add_file_type(self.ftype)
  1458. logger.info(f"gguf: file type = {self.ftype}")
  1459. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1460. del bid # unused
  1461. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1462. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1463. n_embd = self.hparams["d_model"]
  1464. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1465. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1466. # But llama.cpp moe graph works differently
  1467. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1468. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1469. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1470. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1471. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1472. experts = False
  1473. for exp_tensor_name in exp_tensor_names.keys():
  1474. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1475. experts = True
  1476. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1477. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1478. data_torch = data_torch.permute(*permute_tensor)
  1479. break
  1480. # map tensor names
  1481. # In MoE models the ffn tensors are typically most of the model weights,
  1482. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1483. # Every other model has the weight names ending in .weight,
  1484. # let's assume that is the convention which is not the case for dbrx:
  1485. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1486. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1487. return [(new_name, data_torch)]
  1488. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1489. del name, new_name, bid # unused
  1490. return n_dims > 1
  1491. @Model.register("MiniCPMForCausalLM")
  1492. class MiniCPMModel(Model):
  1493. model_arch = gguf.MODEL_ARCH.MINICPM
  1494. def set_gguf_parameters(self):
  1495. super().set_gguf_parameters()
  1496. embedding_scale = float(self.hparams["scale_emb"])
  1497. self.gguf_writer.add_embedding_scale(embedding_scale)
  1498. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1499. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1500. self.gguf_writer.add_residual_scale(residual_scale)
  1501. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1502. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1503. self.gguf_writer.add_logit_scale(logit_scale)
  1504. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1505. if self.hparams.get("rope_scaling") is not None:
  1506. if self.hparams["rope_scaling"].get("type") == "longrope":
  1507. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1508. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1509. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1510. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1511. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1512. if rope_scaling is not None:
  1513. long_factors = rope_scaling.get('long_factor', None)
  1514. short_factors = rope_scaling.get('short_factor', None)
  1515. if long_factors is None or short_factors is None:
  1516. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1517. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1518. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1519. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1520. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1521. def set_vocab(self):
  1522. self._set_vocab_sentencepiece()
  1523. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1524. del bid # unused
  1525. n_head = self.hparams["num_attention_heads"]
  1526. n_kv_head = self.hparams.get("num_key_value_heads")
  1527. # HF models permute some of the tensors, so we need to undo that
  1528. if name.endswith(("q_proj.weight")):
  1529. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1530. if name.endswith(("k_proj.weight")):
  1531. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1532. return [(self.map_tensor_name(name), data_torch)]
  1533. @Model.register("MiniCPM3ForCausalLM")
  1534. class MiniCPM3Model(Model):
  1535. model_arch = gguf.MODEL_ARCH.MINICPM3
  1536. def set_gguf_parameters(self):
  1537. hparams = self.hparams
  1538. self.gguf_writer.add_file_type(self.ftype)
  1539. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1540. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1541. self.gguf_writer.add_block_count(self.block_count)
  1542. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1543. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1544. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1545. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1546. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1547. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1548. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1549. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1550. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1551. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1552. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1553. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1554. if rope_scaling is not None:
  1555. rope_dims = self.hparams["qk_rope_head_dim"]
  1556. long_factors = rope_scaling.get('long_factor', None)
  1557. short_factors = rope_scaling.get('short_factor', None)
  1558. if long_factors is None or short_factors is None:
  1559. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1560. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1561. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1562. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1563. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1564. def set_vocab(self):
  1565. self._set_vocab_sentencepiece()
  1566. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1567. if n_kv_head is not None and n_head != n_kv_head:
  1568. n_head //= n_kv_head
  1569. return (
  1570. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1571. .swapaxes(1, 2)
  1572. .reshape(weights.shape)
  1573. )
  1574. @Model.register("QWenLMHeadModel")
  1575. class QwenModel(Model):
  1576. model_arch = gguf.MODEL_ARCH.QWEN
  1577. @staticmethod
  1578. def token_bytes_to_string(b):
  1579. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1580. byte_encoder = bytes_to_unicode()
  1581. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1582. @staticmethod
  1583. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1584. parts = [bytes([b]) for b in token]
  1585. while True:
  1586. min_idx = None
  1587. min_rank = None
  1588. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1589. rank = mergeable_ranks.get(pair[0] + pair[1])
  1590. if rank is not None and (min_rank is None or rank < min_rank):
  1591. min_idx = i
  1592. min_rank = rank
  1593. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1594. break
  1595. assert min_idx is not None
  1596. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1597. return parts
  1598. def set_vocab(self):
  1599. self._set_vocab_qwen()
  1600. def set_gguf_parameters(self):
  1601. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1602. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1603. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1604. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1605. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1606. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1607. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1608. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1609. self.gguf_writer.add_file_type(self.ftype)
  1610. @Model.register("Qwen2ForCausalLM")
  1611. class Qwen2Model(Model):
  1612. model_arch = gguf.MODEL_ARCH.QWEN2
  1613. def set_vocab(self):
  1614. try:
  1615. self._set_vocab_sentencepiece()
  1616. except FileNotFoundError:
  1617. self._set_vocab_gpt2()
  1618. def set_gguf_parameters(self):
  1619. super().set_gguf_parameters()
  1620. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1621. if self.hparams["rope_scaling"].get("type") == "yarn":
  1622. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1623. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1624. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1625. @Model.register("Qwen2VLForConditionalGeneration")
  1626. class Qwen2VLModel(Model):
  1627. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1628. def set_gguf_parameters(self):
  1629. super().set_gguf_parameters()
  1630. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1631. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1632. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1633. def set_vocab(self):
  1634. try:
  1635. self._set_vocab_sentencepiece()
  1636. except FileNotFoundError:
  1637. self._set_vocab_gpt2()
  1638. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1639. for name, data in super().get_tensors():
  1640. if name.startswith("visual."):
  1641. continue
  1642. yield name, data
  1643. @Model.register("Qwen2MoeForCausalLM")
  1644. class Qwen2MoeModel(Model):
  1645. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1646. def set_gguf_parameters(self):
  1647. super().set_gguf_parameters()
  1648. if (n_experts := self.hparams.get("num_experts")) is not None:
  1649. self.gguf_writer.add_expert_count(n_experts)
  1650. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1651. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1652. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1653. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1654. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1655. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1656. _experts: list[dict[str, Tensor]] | None = None
  1657. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1658. # process the experts separately
  1659. if name.find("experts") != -1:
  1660. n_experts = self.hparams["num_experts"]
  1661. assert bid is not None
  1662. if self._experts is None:
  1663. self._experts = [{} for _ in range(self.block_count)]
  1664. self._experts[bid][name] = data_torch
  1665. if len(self._experts[bid]) >= n_experts * 3:
  1666. tensors: list[tuple[str, Tensor]] = []
  1667. # merge the experts into a single 3d tensor
  1668. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1669. datas: list[Tensor] = []
  1670. for xid in range(n_experts):
  1671. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1672. datas.append(self._experts[bid][ename])
  1673. del self._experts[bid][ename]
  1674. data_torch = torch.stack(datas, dim=0)
  1675. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1676. new_name = self.map_tensor_name(merged_name)
  1677. tensors.append((new_name, data_torch))
  1678. return tensors
  1679. else:
  1680. return []
  1681. return [(self.map_tensor_name(name), data_torch)]
  1682. def prepare_tensors(self):
  1683. super().prepare_tensors()
  1684. if self._experts is not None:
  1685. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1686. experts = [k for d in self._experts for k in d.keys()]
  1687. if len(experts) > 0:
  1688. raise ValueError(f"Unprocessed experts: {experts}")
  1689. @Model.register("GPT2LMHeadModel")
  1690. class GPT2Model(Model):
  1691. model_arch = gguf.MODEL_ARCH.GPT2
  1692. def set_gguf_parameters(self):
  1693. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1694. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1695. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1696. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1697. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1698. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1699. self.gguf_writer.add_file_type(self.ftype)
  1700. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1701. del bid # unused
  1702. tensors: list[tuple[str, Tensor]] = []
  1703. # we don't need these
  1704. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1705. return tensors
  1706. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1707. data_torch = data_torch.transpose(1, 0)
  1708. new_name = self.map_tensor_name(name)
  1709. tensors.append((new_name, data_torch))
  1710. # note: GPT2 output is tied to (same as) wte in original model
  1711. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1712. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1713. return tensors
  1714. @Model.register("PhiForCausalLM")
  1715. class Phi2Model(Model):
  1716. model_arch = gguf.MODEL_ARCH.PHI2
  1717. def set_gguf_parameters(self):
  1718. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1719. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1720. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1721. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1722. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1723. self.gguf_writer.add_embedding_length(n_embd)
  1724. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1725. self.gguf_writer.add_block_count(block_count)
  1726. self.gguf_writer.add_head_count(n_head)
  1727. self.gguf_writer.add_head_count_kv(n_head)
  1728. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1729. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1730. self.gguf_writer.add_file_type(self.ftype)
  1731. self.gguf_writer.add_add_bos_token(False)
  1732. @Model.register("Phi3ForCausalLM")
  1733. class Phi3MiniModel(Model):
  1734. model_arch = gguf.MODEL_ARCH.PHI3
  1735. def set_vocab(self):
  1736. from sentencepiece import SentencePieceProcessor
  1737. tokenizer_path = self.dir_model / 'tokenizer.model'
  1738. if not tokenizer_path.is_file():
  1739. raise ValueError(f'Error: Missing {tokenizer_path}')
  1740. tokenizer = SentencePieceProcessor()
  1741. tokenizer.LoadFromFile(str(tokenizer_path))
  1742. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1743. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1744. scores: list[float] = [-10000.0] * vocab_size
  1745. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1746. for token_id in range(tokenizer.vocab_size()):
  1747. piece = tokenizer.IdToPiece(token_id)
  1748. text = piece.encode("utf-8")
  1749. score = tokenizer.GetScore(token_id)
  1750. toktype = SentencePieceTokenTypes.NORMAL
  1751. if tokenizer.IsUnknown(token_id):
  1752. toktype = SentencePieceTokenTypes.UNKNOWN
  1753. elif tokenizer.IsControl(token_id):
  1754. toktype = SentencePieceTokenTypes.CONTROL
  1755. elif tokenizer.IsUnused(token_id):
  1756. toktype = SentencePieceTokenTypes.UNUSED
  1757. elif tokenizer.IsByte(token_id):
  1758. toktype = SentencePieceTokenTypes.BYTE
  1759. tokens[token_id] = text
  1760. scores[token_id] = score
  1761. toktypes[token_id] = toktype
  1762. added_tokens_file = self.dir_model / 'added_tokens.json'
  1763. if added_tokens_file.is_file():
  1764. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1765. added_tokens_json = json.load(f)
  1766. for key in added_tokens_json:
  1767. token_id = added_tokens_json[key]
  1768. if token_id >= vocab_size:
  1769. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1770. continue
  1771. tokens[token_id] = key.encode("utf-8")
  1772. scores[token_id] = -1000.0
  1773. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1774. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1775. if tokenizer_config_file.is_file():
  1776. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1777. tokenizer_config_json = json.load(f)
  1778. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1779. for token_id, foken_data in added_tokens_decoder.items():
  1780. token_id = int(token_id)
  1781. token = foken_data["content"].encode("utf-8")
  1782. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1783. if tokens[token_id] != token:
  1784. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1785. tokens[token_id] = token
  1786. scores[token_id] = -1000.0
  1787. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1788. if foken_data.get("special"):
  1789. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1790. tokenizer_file = self.dir_model / 'tokenizer.json'
  1791. if tokenizer_file.is_file():
  1792. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1793. tokenizer_json = json.load(f)
  1794. added_tokens = tokenizer_json.get("added_tokens", [])
  1795. for foken_data in added_tokens:
  1796. token_id = int(foken_data["id"])
  1797. token = foken_data["content"].encode("utf-8")
  1798. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1799. if tokens[token_id] != token:
  1800. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1801. tokens[token_id] = token
  1802. scores[token_id] = -1000.0
  1803. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1804. if foken_data.get("special"):
  1805. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1806. self.gguf_writer.add_tokenizer_model("llama")
  1807. self.gguf_writer.add_tokenizer_pre("default")
  1808. self.gguf_writer.add_token_list(tokens)
  1809. self.gguf_writer.add_token_scores(scores)
  1810. self.gguf_writer.add_token_types(toktypes)
  1811. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1812. special_vocab.add_to_gguf(self.gguf_writer)
  1813. def set_gguf_parameters(self):
  1814. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1815. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1816. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1817. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1818. rms_eps = self.find_hparam(["rms_norm_eps"])
  1819. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1820. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1821. rope_dims = n_embd // n_head
  1822. self.gguf_writer.add_context_length(max_pos_embds)
  1823. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1824. self.gguf_writer.add_embedding_length(n_embd)
  1825. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1826. self.gguf_writer.add_block_count(block_count)
  1827. self.gguf_writer.add_head_count(n_head)
  1828. self.gguf_writer.add_head_count_kv(n_head_kv)
  1829. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1830. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1831. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1832. self.gguf_writer.add_file_type(self.ftype)
  1833. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1834. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1835. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1836. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1837. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1838. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1839. rope_dims = n_embd // n_head
  1840. # write rope scaling for long context (128k) model
  1841. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1842. if rope_scaling is None:
  1843. return
  1844. scale = max_pos_embds / orig_max_pos_embds
  1845. rope_scaling_type = rope_scaling.get('type', '').lower()
  1846. if len(rope_scaling_type) == 0:
  1847. raise KeyError('Missing the required key rope_scaling.type')
  1848. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1849. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1850. elif rope_scaling_type == 'yarn':
  1851. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1852. else:
  1853. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1854. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1855. long_factors = rope_scaling.get('long_factor', None)
  1856. short_factors = rope_scaling.get('short_factor', None)
  1857. if long_factors is None or short_factors is None:
  1858. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1859. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1860. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1861. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1862. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1863. @Model.register("PlamoForCausalLM")
  1864. class PlamoModel(Model):
  1865. model_arch = gguf.MODEL_ARCH.PLAMO
  1866. def set_vocab(self):
  1867. self._set_vocab_sentencepiece()
  1868. def set_gguf_parameters(self):
  1869. hparams = self.hparams
  1870. block_count = hparams["num_hidden_layers"]
  1871. self.gguf_writer.add_context_length(4096) # not in config.json
  1872. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1873. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1874. self.gguf_writer.add_block_count(block_count)
  1875. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1876. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1877. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1878. self.gguf_writer.add_file_type(self.ftype)
  1879. def shuffle_attn_q_weight(self, data_torch):
  1880. assert data_torch.size() == (5120, 5120)
  1881. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1882. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1883. data_torch = torch.reshape(data_torch, (5120, 5120))
  1884. return data_torch
  1885. def shuffle_attn_output_weight(self, data_torch):
  1886. assert data_torch.size() == (5120, 5120)
  1887. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1888. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1889. data_torch = torch.reshape(data_torch, (5120, 5120))
  1890. return data_torch
  1891. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1892. del bid # unused
  1893. new_name = self.map_tensor_name(name)
  1894. # shuffle for broadcasting of gqa in ggml_mul_mat
  1895. if new_name.endswith("attn_q.weight"):
  1896. data_torch = self.shuffle_attn_q_weight(data_torch)
  1897. elif new_name.endswith("attn_output.weight"):
  1898. data_torch = self.shuffle_attn_output_weight(data_torch)
  1899. return [(new_name, data_torch)]
  1900. @Model.register("CodeShellForCausalLM")
  1901. class CodeShellModel(Model):
  1902. model_arch = gguf.MODEL_ARCH.CODESHELL
  1903. def set_gguf_parameters(self):
  1904. block_count = self.hparams["n_layer"]
  1905. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1906. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1907. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1908. self.gguf_writer.add_block_count(block_count)
  1909. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1910. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1911. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1912. self.gguf_writer.add_file_type(self.ftype)
  1913. self.gguf_writer.add_rope_freq_base(10000.0)
  1914. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1915. self.gguf_writer.add_rope_scaling_factor(1.0)
  1916. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1917. del bid # unused
  1918. new_name = self.map_tensor_name(name)
  1919. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1920. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1921. assert self.tensor_names is not None
  1922. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1923. # copy tok_embd.weight to output.weight
  1924. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1925. return tensors
  1926. @Model.register("InternLM2ForCausalLM")
  1927. class InternLM2Model(Model):
  1928. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1929. def set_vocab(self):
  1930. # (TODO): Is there a better way?
  1931. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1932. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1933. # recognized as an empty string in C++.
  1934. from sentencepiece import SentencePieceProcessor
  1935. from sentencepiece import sentencepiece_model_pb2 as model
  1936. tokenizer_path = self.dir_model / 'tokenizer.model'
  1937. tokens: list[bytes] = []
  1938. scores: list[float] = []
  1939. toktypes: list[int] = []
  1940. if not tokenizer_path.is_file():
  1941. logger.error(f'Error: Missing {tokenizer_path}')
  1942. sys.exit(1)
  1943. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1944. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1945. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1946. tokenizer = SentencePieceProcessor()
  1947. tokenizer.LoadFromFile(str(tokenizer_path))
  1948. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1949. for token_id in range(vocab_size):
  1950. piece = tokenizer.IdToPiece(token_id)
  1951. text = piece.encode("utf-8")
  1952. score = tokenizer.GetScore(token_id)
  1953. if text == b"\x00":
  1954. # (TODO): fixme
  1955. # Hack here and replace the \x00 characters.
  1956. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1957. text = "🐉".encode("utf-8")
  1958. toktype = SentencePieceTokenTypes.NORMAL
  1959. if tokenizer.IsUnknown(token_id):
  1960. toktype = SentencePieceTokenTypes.UNKNOWN
  1961. elif tokenizer.IsControl(token_id):
  1962. toktype = SentencePieceTokenTypes.CONTROL
  1963. elif tokenizer.IsUnused(token_id):
  1964. toktype = SentencePieceTokenTypes.UNUSED
  1965. elif tokenizer.IsByte(token_id):
  1966. toktype = SentencePieceTokenTypes.BYTE
  1967. # take care of ununsed raw token
  1968. if piece.startswith('[UNUSED'):
  1969. toktype = SentencePieceTokenTypes.UNUSED
  1970. tokens.append(text)
  1971. scores.append(score)
  1972. toktypes.append(toktype)
  1973. added_tokens_file = self.dir_model / 'added_tokens.json'
  1974. if added_tokens_file.is_file():
  1975. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1976. added_tokens_json = json.load(f)
  1977. for key in added_tokens_json:
  1978. tokens.append(key.encode("utf-8"))
  1979. scores.append(-1000.0)
  1980. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1981. chat_eos_token = '<|im_end|>'
  1982. chat_eos_token_id = None
  1983. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1984. if tokenizer_config_file.is_file():
  1985. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1986. tokenizer_config_json = json.load(f)
  1987. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1988. for token_id, foken_data in added_tokens_decoder.items():
  1989. token_id = int(token_id)
  1990. token = foken_data["content"]
  1991. if token == chat_eos_token:
  1992. chat_eos_token_id = token_id
  1993. token = token.encode("utf-8")
  1994. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1995. if tokens[token_id] != token:
  1996. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1997. tokens[token_id] = token
  1998. scores[token_id] = -1000.0
  1999. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2000. if foken_data.get("special"):
  2001. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2002. tokenizer_file = self.dir_model / 'tokenizer.json'
  2003. if tokenizer_file.is_file():
  2004. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2005. tokenizer_json = json.load(f)
  2006. added_tokens = tokenizer_json.get("added_tokens", [])
  2007. for foken_data in added_tokens:
  2008. token_id = int(foken_data["id"])
  2009. token = foken_data["content"]
  2010. if token == chat_eos_token:
  2011. chat_eos_token_id = token_id
  2012. token = token.encode("utf-8")
  2013. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2014. if tokens[token_id] != token:
  2015. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2016. tokens[token_id] = token
  2017. scores[token_id] = -1000.0
  2018. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2019. if foken_data.get("special"):
  2020. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2021. self.gguf_writer.add_tokenizer_model("llama")
  2022. self.gguf_writer.add_tokenizer_pre("default")
  2023. self.gguf_writer.add_token_list(tokens)
  2024. self.gguf_writer.add_token_scores(scores)
  2025. self.gguf_writer.add_token_types(toktypes)
  2026. self.gguf_writer.add_add_space_prefix(add_prefix)
  2027. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2028. old_eos = special_vocab.special_token_ids["eos"]
  2029. if chat_eos_token_id is not None:
  2030. # For the chat model, we replace the eos with '<|im_end|>'.
  2031. # TODO: this is a hack, should be fixed
  2032. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  2033. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2034. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2035. " in chat mode so that the conversation can end normally.")
  2036. special_vocab.add_to_gguf(self.gguf_writer)
  2037. def set_gguf_parameters(self):
  2038. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2039. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2040. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2041. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2042. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2043. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2044. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2045. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2046. self.gguf_writer.add_file_type(self.ftype)
  2047. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2048. if self.hparams["rope_scaling"].get("type") == "linear":
  2049. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2050. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2051. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2052. num_heads = self.hparams["num_attention_heads"]
  2053. num_kv_heads = self.hparams["num_key_value_heads"]
  2054. n_embd = self.hparams["hidden_size"]
  2055. q_per_kv = num_heads // num_kv_heads
  2056. head_dim = n_embd // num_heads
  2057. num_groups = num_heads // q_per_kv
  2058. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2059. qkv = data_torch
  2060. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2061. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2062. # The model weights of q and k equire additional reshape.
  2063. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2064. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2065. v = v.reshape((-1, v.shape[-1]))
  2066. return [
  2067. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2068. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2069. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2070. ]
  2071. else:
  2072. return [(self.map_tensor_name(name), data_torch)]
  2073. @Model.register("BertModel", "CamembertModel", "RobertaModel")
  2074. class BertModel(Model):
  2075. model_arch = gguf.MODEL_ARCH.BERT
  2076. def __init__(self, *args, **kwargs):
  2077. super().__init__(*args, **kwargs)
  2078. self.vocab_size = None
  2079. def set_gguf_parameters(self):
  2080. super().set_gguf_parameters()
  2081. self.gguf_writer.add_causal_attention(False)
  2082. # get pooling path
  2083. pooling_path = None
  2084. module_path = self.dir_model / "modules.json"
  2085. if module_path.is_file():
  2086. with open(module_path, encoding="utf-8") as f:
  2087. modules = json.load(f)
  2088. for mod in modules:
  2089. if mod["type"] == "sentence_transformers.models.Pooling":
  2090. pooling_path = mod["path"]
  2091. break
  2092. # get pooling type
  2093. if pooling_path is not None:
  2094. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2095. pooling = json.load(f)
  2096. if pooling["pooling_mode_mean_tokens"]:
  2097. pooling_type = gguf.PoolingType.MEAN
  2098. elif pooling["pooling_mode_cls_token"]:
  2099. pooling_type = gguf.PoolingType.CLS
  2100. else:
  2101. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2102. self.gguf_writer.add_pooling_type(pooling_type)
  2103. def set_vocab(self):
  2104. tokens, toktypes, tokpre = self.get_vocab_base()
  2105. self.vocab_size = len(tokens)
  2106. # we need this to validate the size of the token_type embeddings
  2107. # though currently we are passing all zeros to the token_type embeddings
  2108. # "Sequence A" or "Sequence B"
  2109. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2110. # convert to phantom space vocab
  2111. def phantom(tok):
  2112. if tok.startswith("[") and tok.endswith("]"):
  2113. return tok
  2114. if tok.startswith("##"):
  2115. return tok[2:]
  2116. return "\u2581" + tok
  2117. tokens = list(map(phantom, tokens))
  2118. # add vocab to gguf
  2119. self.gguf_writer.add_tokenizer_model("bert")
  2120. self.gguf_writer.add_tokenizer_pre(tokpre)
  2121. self.gguf_writer.add_token_list(tokens)
  2122. self.gguf_writer.add_token_types(toktypes)
  2123. # handle special tokens
  2124. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2125. special_vocab.add_to_gguf(self.gguf_writer)
  2126. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2127. del bid # unused
  2128. # we are only using BERT for embeddings so we don't need the pooling layer
  2129. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2130. return [] # we don't need these
  2131. return [(self.map_tensor_name(name), data_torch)]
  2132. @Model.register("NomicBertModel")
  2133. class NomicBertModel(BertModel):
  2134. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2135. def __init__(self, *args, **kwargs):
  2136. super().__init__(*args, **kwargs)
  2137. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2138. self.hparams["n_ctx"] = 2048
  2139. # SwigLU activation
  2140. assert self.hparams["activation_function"] == "swiglu"
  2141. # this doesn't do anything in the HF version
  2142. assert self.hparams["causal"] is False
  2143. # no bias tensors
  2144. assert self.hparams["qkv_proj_bias"] is False
  2145. assert self.hparams["mlp_fc1_bias"] is False
  2146. assert self.hparams["mlp_fc2_bias"] is False
  2147. # norm at end of layer
  2148. assert self.hparams["prenorm"] is False
  2149. # standard RoPE
  2150. assert self.hparams["rotary_emb_fraction"] == 1.0
  2151. assert self.hparams["rotary_emb_interleaved"] is False
  2152. assert self.hparams["rotary_emb_scale_base"] is None
  2153. def set_gguf_parameters(self):
  2154. super().set_gguf_parameters()
  2155. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2156. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2157. class XLMRobertaModel(BertModel):
  2158. model_arch = gguf.MODEL_ARCH.BERT
  2159. def __init__(self, *args, **kwargs):
  2160. super().__init__(*args, **kwargs)
  2161. # we need the pad_token_id to know how to chop down position_embd matrix
  2162. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2163. self._position_offset = 1 + pad_token_id
  2164. if "max_position_embeddings" in self.hparams:
  2165. self.hparams["max_position_embeddings"] -= self._position_offset
  2166. else:
  2167. self._position_offset = None
  2168. def set_vocab(self):
  2169. # to avoid TypeError: Descriptors cannot be created directly
  2170. # exception when importing sentencepiece_model_pb2
  2171. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2172. from sentencepiece import SentencePieceProcessor
  2173. from sentencepiece import sentencepiece_model_pb2 as model
  2174. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2175. if not tokenizer_path.is_file():
  2176. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2177. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2178. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2179. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2180. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2181. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2182. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2183. tokenizer = SentencePieceProcessor()
  2184. tokenizer.LoadFromFile(str(tokenizer_path))
  2185. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2186. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2187. scores: list[float] = [-10000.0] * vocab_size
  2188. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2189. for token_id in range(tokenizer.vocab_size()):
  2190. piece = tokenizer.IdToPiece(token_id)
  2191. text = piece.encode("utf-8")
  2192. score = tokenizer.GetScore(token_id)
  2193. toktype = SentencePieceTokenTypes.NORMAL
  2194. if tokenizer.IsUnknown(token_id):
  2195. toktype = SentencePieceTokenTypes.UNKNOWN
  2196. elif tokenizer.IsControl(token_id):
  2197. toktype = SentencePieceTokenTypes.CONTROL
  2198. elif tokenizer.IsUnused(token_id):
  2199. toktype = SentencePieceTokenTypes.UNUSED
  2200. elif tokenizer.IsByte(token_id):
  2201. toktype = SentencePieceTokenTypes.BYTE
  2202. tokens[token_id] = text
  2203. scores[token_id] = score
  2204. toktypes[token_id] = toktype
  2205. if vocab_size > len(tokens):
  2206. pad_count = vocab_size - len(tokens)
  2207. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2208. for i in range(1, pad_count + 1):
  2209. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2210. scores.append(-1000.0)
  2211. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2212. # realign tokens (see HF tokenizer code)
  2213. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2214. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2215. toktypes = [
  2216. SentencePieceTokenTypes.CONTROL,
  2217. SentencePieceTokenTypes.CONTROL,
  2218. SentencePieceTokenTypes.CONTROL,
  2219. SentencePieceTokenTypes.UNKNOWN,
  2220. ] + toktypes[3:-1]
  2221. self.gguf_writer.add_tokenizer_model("t5")
  2222. self.gguf_writer.add_tokenizer_pre("default")
  2223. self.gguf_writer.add_token_list(tokens)
  2224. self.gguf_writer.add_token_scores(scores)
  2225. self.gguf_writer.add_token_types(toktypes)
  2226. self.gguf_writer.add_add_space_prefix(add_prefix)
  2227. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2228. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2229. if precompiled_charsmap:
  2230. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2231. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2232. special_vocab.add_to_gguf(self.gguf_writer)
  2233. self.gguf_writer.add_add_bos_token(True)
  2234. self.gguf_writer.add_add_eos_token(True)
  2235. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2236. # if name starts with "roberta.", remove the prefix
  2237. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2238. if name.startswith("roberta."):
  2239. name = name[8:]
  2240. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2241. if name == "embeddings.position_embeddings.weight":
  2242. if self._position_offset is not None:
  2243. data_torch = data_torch[self._position_offset:,:]
  2244. return super().modify_tensors(data_torch, name, bid)
  2245. @Model.register("GemmaForCausalLM")
  2246. class GemmaModel(Model):
  2247. model_arch = gguf.MODEL_ARCH.GEMMA
  2248. def set_vocab(self):
  2249. self._set_vocab_sentencepiece()
  2250. # TODO: these special tokens should be exported only for the CodeGemma family
  2251. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2252. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2253. special_vocab._set_special_token("prefix", 67)
  2254. special_vocab._set_special_token("suffix", 69)
  2255. special_vocab._set_special_token("middle", 68)
  2256. special_vocab._set_special_token("fsep", 70)
  2257. special_vocab._set_special_token("eot", 107)
  2258. special_vocab.chat_template = None # do not add it twice
  2259. special_vocab.add_to_gguf(self.gguf_writer)
  2260. self.gguf_writer.add_add_space_prefix(False)
  2261. def set_gguf_parameters(self):
  2262. hparams = self.hparams
  2263. block_count = hparams["num_hidden_layers"]
  2264. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2265. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2266. self.gguf_writer.add_block_count(block_count)
  2267. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2268. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2269. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2270. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2271. self.gguf_writer.add_key_length(hparams["head_dim"])
  2272. self.gguf_writer.add_value_length(hparams["head_dim"])
  2273. self.gguf_writer.add_file_type(self.ftype)
  2274. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2275. del bid # unused
  2276. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2277. # To prevent errors, skip loading lm_head.weight.
  2278. if name == "lm_head.weight":
  2279. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2280. return []
  2281. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2282. if name.endswith("norm.weight"):
  2283. data_torch = data_torch + 1
  2284. return [(self.map_tensor_name(name), data_torch)]
  2285. @Model.register("Gemma2ForCausalLM")
  2286. class Gemma2Model(Model):
  2287. model_arch = gguf.MODEL_ARCH.GEMMA2
  2288. def set_vocab(self):
  2289. self._set_vocab_sentencepiece()
  2290. self.gguf_writer.add_add_space_prefix(False)
  2291. def set_gguf_parameters(self):
  2292. hparams = self.hparams
  2293. block_count = hparams["num_hidden_layers"]
  2294. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2295. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2296. self.gguf_writer.add_block_count(block_count)
  2297. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2298. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2299. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2300. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2301. self.gguf_writer.add_key_length(hparams["head_dim"])
  2302. self.gguf_writer.add_value_length(hparams["head_dim"])
  2303. self.gguf_writer.add_file_type(self.ftype)
  2304. self.gguf_writer.add_attn_logit_softcapping(
  2305. self.hparams["attn_logit_softcapping"]
  2306. )
  2307. self.gguf_writer.add_final_logit_softcapping(
  2308. self.hparams["final_logit_softcapping"]
  2309. )
  2310. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2311. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2312. del bid # unused
  2313. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2314. # To prevent errors, skip loading lm_head.weight.
  2315. if name == "lm_head.weight":
  2316. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2317. return []
  2318. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2319. if name.endswith("norm.weight"):
  2320. data_torch = data_torch + 1
  2321. return [(self.map_tensor_name(name), data_torch)]
  2322. @Model.register("Starcoder2ForCausalLM")
  2323. class StarCoder2Model(Model):
  2324. model_arch = gguf.MODEL_ARCH.STARCODER2
  2325. @Model.register("Rwkv6ForCausalLM")
  2326. class Rwkv6Model(Model):
  2327. model_arch = gguf.MODEL_ARCH.RWKV6
  2328. def set_vocab(self):
  2329. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2330. vocab_size = self.hparams.get("vocab_size", 65536)
  2331. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2332. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2333. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2334. lines = f.readlines()
  2335. for line in lines:
  2336. parts = line.split(' ')
  2337. assert len(parts) >= 3
  2338. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2339. token = token.encode("utf-8") if isinstance(token, str) else token
  2340. assert isinstance(token, bytes)
  2341. assert len(token) == token_len
  2342. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2343. tokens.append(token_text.encode("utf-8"))
  2344. toktypes.append(gguf.TokenType.NORMAL)
  2345. remainder = vocab_size - len(tokens)
  2346. assert remainder >= 0
  2347. for i in range(len(tokens), vocab_size):
  2348. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2349. toktypes.append(gguf.TokenType.UNUSED)
  2350. self.gguf_writer.add_tokenizer_model("rwkv")
  2351. self.gguf_writer.add_token_list(tokens)
  2352. self.gguf_writer.add_token_types(toktypes)
  2353. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2354. special_vocab.chat_template = "rwkv-world"
  2355. # hack: Add '\n\n' as the EOT token to make it chat normally
  2356. special_vocab._set_special_token("eot", 261)
  2357. special_vocab.add_to_gguf(self.gguf_writer)
  2358. def set_gguf_parameters(self):
  2359. block_count = self.hparams["num_hidden_layers"]
  2360. head_size = self.hparams["head_size"]
  2361. hidden_size = self.hparams["hidden_size"]
  2362. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2363. rescale_every_n_layers = self.hparams["rescale_every"]
  2364. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2365. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2366. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2367. # RWKV isn't context limited
  2368. self.gguf_writer.add_context_length(1048576)
  2369. self.gguf_writer.add_embedding_length(hidden_size)
  2370. self.gguf_writer.add_block_count(block_count)
  2371. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2372. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2373. self.gguf_writer.add_wkv_head_size(head_size)
  2374. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2375. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2376. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2377. self.gguf_writer.add_file_type(self.ftype)
  2378. # required by llama.cpp, unused
  2379. self.gguf_writer.add_head_count(0)
  2380. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2381. new_name = self.map_tensor_name(name)
  2382. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2383. new_name += ".weight"
  2384. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2385. data_torch = data_torch.transpose(0, 1)
  2386. if new_name.endswith("time_mix_w2.weight"):
  2387. data_torch = data_torch.permute(0, 2, 1)
  2388. rescale_every_n_layers = self.hparams["rescale_every"]
  2389. if rescale_every_n_layers > 0:
  2390. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2391. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2392. yield (new_name, data_torch)
  2393. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2394. class MambaModel(Model):
  2395. model_arch = gguf.MODEL_ARCH.MAMBA
  2396. def set_vocab(self):
  2397. vocab_size = self.hparams["vocab_size"]
  2398. # Round vocab size to next multiple of 8
  2399. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2400. # pad using ceiling division
  2401. # ref: https://stackoverflow.com/a/17511341/22827863
  2402. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2403. self.hparams["vocab_size"] = vocab_size
  2404. if (self.dir_model / "tokenizer.json").is_file():
  2405. self._set_vocab_gpt2()
  2406. elif (self.dir_model / "tokenizer.model").is_file():
  2407. self._set_vocab_sentencepiece()
  2408. else:
  2409. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2410. self._set_vocab_builtin("gpt-neox", vocab_size)
  2411. def set_gguf_parameters(self):
  2412. d_model = self.find_hparam(["hidden_size", "d_model"])
  2413. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2414. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2415. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2416. # ceiling division
  2417. # ref: https://stackoverflow.com/a/17511341/22827863
  2418. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2419. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2420. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2421. use_dt_b_c_norm = False
  2422. # For falconmamba we do apply RMS norm on B / DT and C layers
  2423. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2424. use_dt_b_c_norm = True
  2425. # Fail early for models which don't have a block expansion factor of 2
  2426. assert d_inner == 2 * d_model
  2427. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2428. self.gguf_writer.add_embedding_length(d_model)
  2429. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2430. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2431. self.gguf_writer.add_block_count(self.block_count)
  2432. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2433. self.gguf_writer.add_ssm_inner_size(d_inner)
  2434. self.gguf_writer.add_ssm_state_size(d_state)
  2435. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2436. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2437. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2438. self.gguf_writer.add_file_type(self.ftype)
  2439. _tok_embd = None
  2440. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2441. del bid # unused
  2442. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2443. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2444. new_name = self.map_tensor_name(name)
  2445. if name.endswith(".A_log"):
  2446. logger.debug("A_log --> A ==> " + new_name)
  2447. data_torch = -torch.exp(data_torch)
  2448. # assuming token_embd.weight is seen before output.weight
  2449. if self._tok_embd is not None and new_name == output_name:
  2450. if torch.equal(self._tok_embd, data_torch):
  2451. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2452. return []
  2453. elif new_name == tok_embd_name:
  2454. self._tok_embd = data_torch
  2455. return [(new_name, data_torch)]
  2456. @Model.register("CohereForCausalLM")
  2457. class CommandR2Model(Model):
  2458. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2459. def __init__(self, *args, **kwargs):
  2460. super().__init__(*args, **kwargs)
  2461. # max_position_embeddings = 8192 in config.json but model was actually
  2462. # trained on 128k context length
  2463. # aya-23 models don't have model_max_length specified
  2464. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2465. def set_gguf_parameters(self):
  2466. super().set_gguf_parameters()
  2467. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2468. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2469. @Model.register("OlmoForCausalLM")
  2470. @Model.register("OLMoForCausalLM")
  2471. class OlmoModel(Model):
  2472. model_arch = gguf.MODEL_ARCH.OLMO
  2473. def set_gguf_parameters(self):
  2474. super().set_gguf_parameters()
  2475. self.gguf_writer.add_layer_norm_eps(1e-5)
  2476. clip_qkv = self.hparams.get("clip_qkv")
  2477. if clip_qkv is not None:
  2478. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2479. # Same as super class, but permuting q_proj, k_proj
  2480. # Copied from: LlamaModel
  2481. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2482. del bid # unused
  2483. n_head = self.hparams["num_attention_heads"]
  2484. n_kv_head = self.hparams.get("num_key_value_heads")
  2485. if name.endswith("q_proj.weight"):
  2486. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2487. if name.endswith("k_proj.weight"):
  2488. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2489. return [(self.map_tensor_name(name), data_torch)]
  2490. @Model.register("Olmo2ForCausalLM")
  2491. class Olmo2Model(Model):
  2492. model_arch = gguf.MODEL_ARCH.OLMO2
  2493. @Model.register("OlmoeForCausalLM")
  2494. class OlmoeModel(Model):
  2495. model_arch = gguf.MODEL_ARCH.OLMOE
  2496. def set_gguf_parameters(self):
  2497. super().set_gguf_parameters()
  2498. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2499. if (n_experts := self.hparams.get("num_experts")) is not None:
  2500. self.gguf_writer.add_expert_count(n_experts)
  2501. _experts: list[dict[str, Tensor]] | None = None
  2502. # Copied from: Qwen2MoeModel
  2503. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2504. # process the experts separately
  2505. if name.find("experts") != -1:
  2506. n_experts = self.hparams["num_experts"]
  2507. assert bid is not None
  2508. if self._experts is None:
  2509. self._experts = [{} for _ in range(self.block_count)]
  2510. self._experts[bid][name] = data_torch
  2511. if len(self._experts[bid]) >= n_experts * 3:
  2512. tensors: list[tuple[str, Tensor]] = []
  2513. # merge the experts into a single 3d tensor
  2514. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2515. datas: list[Tensor] = []
  2516. for xid in range(n_experts):
  2517. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2518. datas.append(self._experts[bid][ename])
  2519. del self._experts[bid][ename]
  2520. data_torch = torch.stack(datas, dim=0)
  2521. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2522. new_name = self.map_tensor_name(merged_name)
  2523. tensors.append((new_name, data_torch))
  2524. return tensors
  2525. else:
  2526. return []
  2527. return [(self.map_tensor_name(name), data_torch)]
  2528. # Copied from: Qwen2MoeModel
  2529. def prepare_tensors(self):
  2530. super().prepare_tensors()
  2531. if self._experts is not None:
  2532. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2533. experts = [k for d in self._experts for k in d.keys()]
  2534. if len(experts) > 0:
  2535. raise ValueError(f"Unprocessed experts: {experts}")
  2536. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2537. class JinaBertV2Model(BertModel):
  2538. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2539. def __init__(self, *args, **kwargs):
  2540. super().__init__(*args, **kwargs)
  2541. self.intermediate_size = self.hparams["intermediate_size"]
  2542. def get_tensors(self):
  2543. for name, data in super().get_tensors():
  2544. if 'gated_layer' in name:
  2545. d1 = data[:self.intermediate_size, :]
  2546. name1 = name.replace('gated_layers', 'gated_layers_w')
  2547. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2548. d2 = data[self.intermediate_size:, :]
  2549. name2 = name.replace('gated_layers', 'gated_layers_v')
  2550. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2551. yield name1, d1
  2552. yield name2, d2
  2553. continue
  2554. yield name, data
  2555. def set_vocab(self):
  2556. tokenizer_class = 'BertTokenizer'
  2557. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2558. tokenizer_class = json.load(f)['tokenizer_class']
  2559. if tokenizer_class == 'BertTokenizer':
  2560. super().set_vocab()
  2561. elif tokenizer_class == 'RobertaTokenizer':
  2562. self._set_vocab_gpt2()
  2563. self.gguf_writer.add_token_type_count(2)
  2564. else:
  2565. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2566. self.gguf_writer.add_add_bos_token(True)
  2567. self.gguf_writer.add_add_eos_token(True)
  2568. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2569. # if name starts with "bert.", remove the prefix
  2570. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  2571. if name.startswith("bert."):
  2572. name = name[5:]
  2573. return super().modify_tensors(data_torch, name, bid)
  2574. @Model.register("OpenELMForCausalLM")
  2575. class OpenELMModel(Model):
  2576. model_arch = gguf.MODEL_ARCH.OPENELM
  2577. @staticmethod
  2578. def _make_divisible(v: float | int, divisor: int) -> int:
  2579. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2580. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2581. # Make sure that round down does not go down by more than 10%.
  2582. if new_v < 0.9 * v:
  2583. new_v += divisor
  2584. return new_v
  2585. def __init__(self, *args, **kwargs):
  2586. super().__init__(*args, **kwargs)
  2587. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2588. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2589. self._n_embd: int = self.hparams["model_dim"]
  2590. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2591. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2592. self._ffn_dims: list[int] = [
  2593. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2594. for multiplier in ffn_multipliers
  2595. ]
  2596. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2597. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2598. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2599. def set_vocab(self):
  2600. try:
  2601. self._set_vocab_sentencepiece()
  2602. except FileNotFoundError:
  2603. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2604. def set_gguf_parameters(self):
  2605. n_embd = self._n_embd
  2606. head_dim = self.hparams["head_dim"]
  2607. rot_pct = 1.0
  2608. assert self.block_count == len(self._num_kv_heads)
  2609. assert self.block_count == len(self._num_query_heads)
  2610. assert self.block_count == len(self._ffn_dims)
  2611. self.gguf_writer.add_block_count(self.block_count)
  2612. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2613. self.gguf_writer.add_embedding_length(n_embd)
  2614. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2615. self.gguf_writer.add_head_count(self._num_query_heads)
  2616. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2617. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2618. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2619. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2620. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2621. self.gguf_writer.add_key_length(head_dim)
  2622. self.gguf_writer.add_value_length(head_dim)
  2623. self.gguf_writer.add_file_type(self.ftype)
  2624. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2625. if "n_layers" in keys:
  2626. return self.hparams["num_transformer_layers"]
  2627. return super().find_hparam(keys, optional)
  2628. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2629. # split ff
  2630. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2631. ff_dim = self._ffn_dims[bid]
  2632. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2633. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2634. return
  2635. yield (self.map_tensor_name(name), data_torch)
  2636. @Model.register("ArcticForCausalLM")
  2637. class ArcticModel(Model):
  2638. model_arch = gguf.MODEL_ARCH.ARCTIC
  2639. def set_vocab(self):
  2640. # The reason for using a custom implementation here is that the
  2641. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2642. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2643. from sentencepiece import SentencePieceProcessor
  2644. tokenizer_path = self.dir_model / 'tokenizer.model'
  2645. if not tokenizer_path.is_file():
  2646. logger.error(f'Error: Missing {tokenizer_path}')
  2647. sys.exit(1)
  2648. # Read the whole vocabulary from the tokenizer.model file
  2649. tokenizer = SentencePieceProcessor()
  2650. tokenizer.LoadFromFile(str(tokenizer_path))
  2651. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2652. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2653. scores: list[float] = [-10000.0] * vocab_size
  2654. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2655. for token_id in range(tokenizer.vocab_size()):
  2656. piece = tokenizer.IdToPiece(token_id)
  2657. text = piece.encode("utf-8")
  2658. score = tokenizer.GetScore(token_id)
  2659. toktype = SentencePieceTokenTypes.NORMAL
  2660. if tokenizer.IsUnknown(token_id):
  2661. toktype = SentencePieceTokenTypes.UNKNOWN
  2662. elif tokenizer.IsControl(token_id):
  2663. toktype = SentencePieceTokenTypes.CONTROL
  2664. elif tokenizer.IsUnused(token_id):
  2665. toktype = SentencePieceTokenTypes.UNUSED
  2666. elif tokenizer.IsByte(token_id):
  2667. toktype = SentencePieceTokenTypes.BYTE
  2668. tokens[token_id] = text
  2669. scores[token_id] = score
  2670. toktypes[token_id] = toktype
  2671. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2672. # of information about added/redefined tokens and modify them accordingly.
  2673. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2674. if tokenizer_config_file.is_file():
  2675. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2676. tokenizer_config_json = json.load(f)
  2677. if "added_tokens_decoder" in tokenizer_config_json:
  2678. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2679. for token_id, token_json in added_tokens_decoder.items():
  2680. token_id = int(token_id)
  2681. if token_id >= vocab_size:
  2682. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2683. continue
  2684. token_content = token_json["content"]
  2685. token_type = SentencePieceTokenTypes.USER_DEFINED
  2686. token_score = -10000.0
  2687. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2688. # Set the score to 0.0 as in the original tokenizer.model
  2689. if ("special" in token_json) and token_json["special"]:
  2690. if token_content == tokenizer_config_json["unk_token"]:
  2691. token_type = SentencePieceTokenTypes.UNKNOWN
  2692. else:
  2693. token_type = SentencePieceTokenTypes.CONTROL
  2694. token_score = 0.0
  2695. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2696. tokens[token_id] = token_content.encode("utf-8")
  2697. toktypes[token_id] = token_type
  2698. scores[token_id] = token_score
  2699. self.gguf_writer.add_tokenizer_model("llama")
  2700. self.gguf_writer.add_tokenizer_pre("default")
  2701. self.gguf_writer.add_token_list(tokens)
  2702. self.gguf_writer.add_token_scores(scores)
  2703. self.gguf_writer.add_token_types(toktypes)
  2704. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2705. special_vocab.add_to_gguf(self.gguf_writer)
  2706. def set_gguf_parameters(self):
  2707. super().set_gguf_parameters()
  2708. hparams = self.hparams
  2709. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2710. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2711. _experts: list[dict[str, Tensor]] | None = None
  2712. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2713. n_head = self.hparams["num_attention_heads"]
  2714. n_kv_head = self.hparams.get("num_key_value_heads")
  2715. if name.endswith("q_proj.weight"):
  2716. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2717. if name.endswith("k_proj.weight"):
  2718. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2719. # process the experts separately
  2720. if name.find("block_sparse_moe.experts") != -1:
  2721. n_experts = self.hparams["num_local_experts"]
  2722. assert bid is not None
  2723. if self._experts is None:
  2724. self._experts = [{} for _ in range(self.block_count)]
  2725. self._experts[bid][name] = data_torch
  2726. if len(self._experts[bid]) >= n_experts * 3:
  2727. tensors: list[tuple[str, Tensor]] = []
  2728. # merge the experts into a single 3d tensor
  2729. for wid in ["w1", "w2", "w3"]:
  2730. datas: list[Tensor] = []
  2731. for xid in range(n_experts):
  2732. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2733. datas.append(self._experts[bid][ename])
  2734. del self._experts[bid][ename]
  2735. data_torch = torch.stack(datas, dim=0)
  2736. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2737. new_name = self.map_tensor_name(merged_name)
  2738. tensors.append((new_name, data_torch))
  2739. return tensors
  2740. else:
  2741. return []
  2742. return [(self.map_tensor_name(name), data_torch)]
  2743. def prepare_tensors(self):
  2744. super().prepare_tensors()
  2745. if self._experts is not None:
  2746. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2747. experts = [k for d in self._experts for k in d.keys()]
  2748. if len(experts) > 0:
  2749. raise ValueError(f"Unprocessed experts: {experts}")
  2750. @Model.register("DeepseekForCausalLM")
  2751. class DeepseekModel(Model):
  2752. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  2753. def set_vocab(self):
  2754. try:
  2755. self._set_vocab_sentencepiece()
  2756. except FileNotFoundError:
  2757. self._set_vocab_gpt2()
  2758. def set_gguf_parameters(self):
  2759. super().set_gguf_parameters()
  2760. hparams = self.hparams
  2761. if "head_dim" in hparams:
  2762. rope_dim = hparams["head_dim"]
  2763. else:
  2764. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2765. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2766. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2767. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2768. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2769. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2770. self.gguf_writer.add_expert_weights_scale(1.0)
  2771. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2772. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2773. _experts: list[dict[str, Tensor]] | None = None
  2774. @staticmethod
  2775. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2776. if n_head_kv is not None and n_head != n_head_kv:
  2777. n_head = n_head_kv
  2778. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2779. .swapaxes(1, 2)
  2780. .reshape(weights.shape))
  2781. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2782. n_head = self.hparams["num_attention_heads"]
  2783. n_kv_head = self.hparams.get("num_key_value_heads")
  2784. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2785. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  2786. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2787. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  2788. # process the experts separately
  2789. if name.find("mlp.experts") != -1:
  2790. n_experts = self.hparams["n_routed_experts"]
  2791. assert bid is not None
  2792. if self._experts is None:
  2793. self._experts = [{} for _ in range(self.block_count)]
  2794. self._experts[bid][name] = data_torch
  2795. if len(self._experts[bid]) >= n_experts * 3:
  2796. tensors: list[tuple[str, Tensor]] = []
  2797. # merge the experts into a single 3d tensor
  2798. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2799. datas: list[Tensor] = []
  2800. for xid in range(n_experts):
  2801. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2802. datas.append(self._experts[bid][ename])
  2803. del self._experts[bid][ename]
  2804. data_torch = torch.stack(datas, dim=0)
  2805. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2806. new_name = self.map_tensor_name(merged_name)
  2807. tensors.append((new_name, data_torch))
  2808. return tensors
  2809. else:
  2810. return []
  2811. return [(self.map_tensor_name(name), data_torch)]
  2812. def prepare_tensors(self):
  2813. super().prepare_tensors()
  2814. if self._experts is not None:
  2815. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2816. experts = [k for d in self._experts for k in d.keys()]
  2817. if len(experts) > 0:
  2818. raise ValueError(f"Unprocessed experts: {experts}")
  2819. @Model.register("DeepseekV2ForCausalLM")
  2820. class DeepseekV2Model(Model):
  2821. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2822. def set_vocab(self):
  2823. self._set_vocab_gpt2()
  2824. def set_gguf_parameters(self):
  2825. super().set_gguf_parameters()
  2826. hparams = self.hparams
  2827. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2828. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2829. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2830. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2831. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2832. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2833. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2834. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2835. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2836. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2837. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2838. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2839. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2840. if self.hparams["rope_scaling"].get("type") == "yarn":
  2841. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2842. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2843. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2844. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2845. _experts: list[dict[str, Tensor]] | None = None
  2846. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2847. # process the experts separately
  2848. if name.find("mlp.experts") != -1:
  2849. n_experts = self.hparams["n_routed_experts"]
  2850. assert bid is not None
  2851. if self._experts is None:
  2852. self._experts = [{} for _ in range(self.block_count)]
  2853. self._experts[bid][name] = data_torch
  2854. if len(self._experts[bid]) >= n_experts * 3:
  2855. tensors: list[tuple[str, Tensor]] = []
  2856. # merge the experts into a single 3d tensor
  2857. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2858. datas: list[Tensor] = []
  2859. for xid in range(n_experts):
  2860. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2861. datas.append(self._experts[bid][ename])
  2862. del self._experts[bid][ename]
  2863. data_torch = torch.stack(datas, dim=0)
  2864. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2865. new_name = self.map_tensor_name(merged_name)
  2866. tensors.append((new_name, data_torch))
  2867. return tensors
  2868. else:
  2869. return []
  2870. return [(self.map_tensor_name(name), data_torch)]
  2871. def prepare_tensors(self):
  2872. super().prepare_tensors()
  2873. if self._experts is not None:
  2874. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2875. experts = [k for d in self._experts for k in d.keys()]
  2876. if len(experts) > 0:
  2877. raise ValueError(f"Unprocessed experts: {experts}")
  2878. @Model.register("T5WithLMHeadModel")
  2879. @Model.register("T5ForConditionalGeneration")
  2880. @Model.register("MT5ForConditionalGeneration")
  2881. @Model.register("UMT5ForConditionalGeneration")
  2882. class T5Model(Model):
  2883. model_arch = gguf.MODEL_ARCH.T5
  2884. def __init__(self, *args, **kwargs):
  2885. super().__init__(*args, **kwargs)
  2886. self.shared_token_embeddings_found = False
  2887. def set_vocab(self):
  2888. # to avoid TypeError: Descriptors cannot be created directly
  2889. # exception when importing sentencepiece_model_pb2
  2890. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2891. from sentencepiece import SentencePieceProcessor
  2892. from sentencepiece import sentencepiece_model_pb2 as model
  2893. tokenizer_path = self.dir_model / 'tokenizer.model'
  2894. # many older models use spiece.model tokenizer model filename
  2895. if not tokenizer_path.is_file():
  2896. tokenizer_path = self.dir_model / 'spiece.model'
  2897. if not tokenizer_path.is_file():
  2898. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2899. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2900. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2901. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2902. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2903. # assure the tokenizer model file name is correct
  2904. assert tokenizer_path.name == 'tokenizer.model'
  2905. return self._set_vocab_sentencepiece()
  2906. else:
  2907. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2908. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2909. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2910. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2911. tokenizer = SentencePieceProcessor()
  2912. tokenizer.LoadFromFile(str(tokenizer_path))
  2913. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2914. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2915. scores: list[float] = [-10000.0] * vocab_size
  2916. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2917. for token_id in range(tokenizer.vocab_size()):
  2918. piece = tokenizer.IdToPiece(token_id)
  2919. text = piece.encode("utf-8")
  2920. score = tokenizer.GetScore(token_id)
  2921. toktype = SentencePieceTokenTypes.NORMAL
  2922. if tokenizer.IsUnknown(token_id):
  2923. toktype = SentencePieceTokenTypes.UNKNOWN
  2924. elif tokenizer.IsControl(token_id):
  2925. toktype = SentencePieceTokenTypes.CONTROL
  2926. elif tokenizer.IsUnused(token_id):
  2927. toktype = SentencePieceTokenTypes.UNUSED
  2928. elif tokenizer.IsByte(token_id):
  2929. toktype = SentencePieceTokenTypes.BYTE
  2930. tokens[token_id] = text
  2931. scores[token_id] = score
  2932. toktypes[token_id] = toktype
  2933. added_tokens_file = self.dir_model / 'added_tokens.json'
  2934. if added_tokens_file.is_file():
  2935. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2936. added_tokens_json = json.load(f)
  2937. for key in added_tokens_json:
  2938. token_id = added_tokens_json[key]
  2939. if token_id >= vocab_size:
  2940. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2941. continue
  2942. tokens[token_id] = key.encode("utf-8")
  2943. scores[token_id] = -1000.0
  2944. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2945. if vocab_size > len(tokens):
  2946. pad_count = vocab_size - len(tokens)
  2947. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2948. for i in range(1, pad_count + 1):
  2949. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2950. scores.append(-1000.0)
  2951. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2952. self.gguf_writer.add_tokenizer_model("t5")
  2953. self.gguf_writer.add_tokenizer_pre("default")
  2954. self.gguf_writer.add_token_list(tokens)
  2955. self.gguf_writer.add_token_scores(scores)
  2956. self.gguf_writer.add_token_types(toktypes)
  2957. self.gguf_writer.add_add_space_prefix(add_prefix)
  2958. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2959. if precompiled_charsmap:
  2960. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2961. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2962. special_vocab.add_to_gguf(self.gguf_writer)
  2963. self.gguf_writer.add_add_bos_token(False)
  2964. self.gguf_writer.add_add_eos_token(True)
  2965. def set_gguf_parameters(self):
  2966. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2967. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2968. n_ctx = 512
  2969. self.gguf_writer.add_context_length(n_ctx)
  2970. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2971. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2972. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2973. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2974. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2975. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2976. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2977. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2978. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2979. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2980. self.gguf_writer.add_file_type(self.ftype)
  2981. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2982. del bid # unused
  2983. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2984. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2985. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2986. # and decoder and ignore the remaining ones.
  2987. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2988. if not self.shared_token_embeddings_found:
  2989. name = "shared.weight"
  2990. self.shared_token_embeddings_found = True
  2991. else:
  2992. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2993. return []
  2994. return [(self.map_tensor_name(name), data_torch)]
  2995. @Model.register("T5EncoderModel")
  2996. class T5EncoderModel(Model):
  2997. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2998. def __init__(self, *args, **kwargs):
  2999. super().__init__(*args, **kwargs)
  3000. self.shared_token_embeddings_found = False
  3001. def set_vocab(self):
  3002. # to avoid TypeError: Descriptors cannot be created directly
  3003. # exception when importing sentencepiece_model_pb2
  3004. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3005. from sentencepiece import SentencePieceProcessor
  3006. from sentencepiece import sentencepiece_model_pb2 as model
  3007. tokenizer_path = self.dir_model / 'tokenizer.model'
  3008. # many older models use spiece.model tokenizer model filename
  3009. if not tokenizer_path.is_file():
  3010. tokenizer_path = self.dir_model / 'spiece.model'
  3011. if not tokenizer_path.is_file():
  3012. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3013. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3014. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3015. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3016. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3017. # assure the tokenizer model file name is correct
  3018. assert tokenizer_path.name == 'tokenizer.model'
  3019. return self._set_vocab_sentencepiece()
  3020. else:
  3021. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3022. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3023. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3024. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3025. tokenizer = SentencePieceProcessor()
  3026. tokenizer.LoadFromFile(str(tokenizer_path))
  3027. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3028. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3029. scores: list[float] = [-10000.0] * vocab_size
  3030. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3031. for token_id in range(tokenizer.vocab_size()):
  3032. piece = tokenizer.IdToPiece(token_id)
  3033. text = piece.encode("utf-8")
  3034. score = tokenizer.GetScore(token_id)
  3035. toktype = SentencePieceTokenTypes.NORMAL
  3036. if tokenizer.IsUnknown(token_id):
  3037. toktype = SentencePieceTokenTypes.UNKNOWN
  3038. elif tokenizer.IsControl(token_id):
  3039. toktype = SentencePieceTokenTypes.CONTROL
  3040. elif tokenizer.IsUnused(token_id):
  3041. toktype = SentencePieceTokenTypes.UNUSED
  3042. elif tokenizer.IsByte(token_id):
  3043. toktype = SentencePieceTokenTypes.BYTE
  3044. tokens[token_id] = text
  3045. scores[token_id] = score
  3046. toktypes[token_id] = toktype
  3047. added_tokens_file = self.dir_model / 'added_tokens.json'
  3048. if added_tokens_file.is_file():
  3049. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3050. added_tokens_json = json.load(f)
  3051. for key in added_tokens_json:
  3052. token_id = added_tokens_json[key]
  3053. if token_id >= vocab_size:
  3054. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3055. continue
  3056. tokens[token_id] = key.encode("utf-8")
  3057. scores[token_id] = -1000.0
  3058. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3059. if vocab_size > len(tokens):
  3060. pad_count = vocab_size - len(tokens)
  3061. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3062. for i in range(1, pad_count + 1):
  3063. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3064. scores.append(-1000.0)
  3065. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3066. self.gguf_writer.add_tokenizer_model("t5")
  3067. self.gguf_writer.add_tokenizer_pre("default")
  3068. self.gguf_writer.add_token_list(tokens)
  3069. self.gguf_writer.add_token_scores(scores)
  3070. self.gguf_writer.add_token_types(toktypes)
  3071. self.gguf_writer.add_add_space_prefix(add_prefix)
  3072. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3073. if precompiled_charsmap:
  3074. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3075. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3076. special_vocab.add_to_gguf(self.gguf_writer)
  3077. self.gguf_writer.add_add_bos_token(False)
  3078. self.gguf_writer.add_add_eos_token(True)
  3079. def set_gguf_parameters(self):
  3080. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3081. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3082. n_ctx = 512
  3083. self.gguf_writer.add_context_length(n_ctx)
  3084. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3085. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3086. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3087. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3088. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3089. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3090. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3091. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3092. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3093. self.gguf_writer.add_file_type(self.ftype)
  3094. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3095. del bid # unused
  3096. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3097. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3098. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3099. # and decoder and ignore the remaining ones.
  3100. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3101. if not self.shared_token_embeddings_found:
  3102. name = "shared.weight"
  3103. self.shared_token_embeddings_found = True
  3104. else:
  3105. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3106. return []
  3107. return [(self.map_tensor_name(name), data_torch)]
  3108. @Model.register("JAISLMHeadModel")
  3109. class JaisModel(Model):
  3110. model_arch = gguf.MODEL_ARCH.JAIS
  3111. def __init__(self, *args, **kwargs):
  3112. super().__init__(*args, **kwargs)
  3113. # SwigLU activation
  3114. assert self.hparams["activation_function"] == "swiglu"
  3115. # ALiBi position embedding
  3116. assert self.hparams["position_embedding_type"] == "alibi"
  3117. # Embeddings scale
  3118. self.embeddings_scale = 1.0
  3119. if 'mup_embeddings_scale' in self.hparams:
  3120. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3121. elif 'embeddings_scale' in self.hparams:
  3122. self.embeddings_scale = self.hparams['embeddings_scale']
  3123. else:
  3124. assert False
  3125. self.width_scale = 1.0
  3126. if 'mup_output_alpha' in self.hparams:
  3127. assert 'mup_width_scale' in self.hparams
  3128. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3129. elif 'width_scale' in self.hparams:
  3130. self.width_scale = self.hparams['width_scale']
  3131. else:
  3132. assert False
  3133. self.max_alibi_bias = 8.0
  3134. def set_vocab(self):
  3135. self._set_vocab_gpt2()
  3136. def set_gguf_parameters(self):
  3137. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3138. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3139. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3140. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3141. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3142. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3143. self.gguf_writer.add_file_type(self.ftype)
  3144. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3145. del bid # unused
  3146. tensors: list[tuple[str, Tensor]] = []
  3147. # we don't need these
  3148. if name.endswith((".attn.bias")):
  3149. return tensors
  3150. if name.endswith(("relative_pe.slopes")):
  3151. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3152. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3153. # but Jais's PyTorch model simply precalculates the slope values and places them
  3154. # in relative_pes.slopes
  3155. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3156. first_val = float(data_torch[0].item())
  3157. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3158. return tensors
  3159. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3160. data_torch = data_torch.transpose(1, 0)
  3161. new_name = self.map_tensor_name(name)
  3162. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3163. tensors.append((new_name, data_torch * self.embeddings_scale))
  3164. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3165. tensors.append((new_name, data_torch * self.width_scale))
  3166. else:
  3167. tensors.append((new_name, data_torch))
  3168. return tensors
  3169. def prepare_tensors(self):
  3170. super().prepare_tensors()
  3171. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3172. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3173. class ChatGLMModel(Model):
  3174. model_arch = gguf.MODEL_ARCH.CHATGLM
  3175. def set_vocab_chatglm3(self):
  3176. dir_model = self.dir_model
  3177. hparams = self.hparams
  3178. tokens: list[bytes] = []
  3179. toktypes: list[int] = []
  3180. scores: list[float] = []
  3181. from transformers import AutoTokenizer
  3182. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3183. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3184. assert max(tokenizer.get_vocab().values()) < vocab_size
  3185. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3186. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3187. for token_id in range(vocab_size):
  3188. piece = tokenizer._convert_id_to_token(token_id)
  3189. if token_id == 0:
  3190. piece = "<unk>"
  3191. elif token_id == 1:
  3192. piece = "<bos>"
  3193. elif token_id == 2:
  3194. piece = "<eos>"
  3195. text = piece.encode("utf-8")
  3196. score = 0.0
  3197. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3198. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3199. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3200. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3201. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3202. if piece in special_tokens:
  3203. toktype = SentencePieceTokenTypes.CONTROL
  3204. elif len(piece) == 0:
  3205. text = f"[PAD{token_id}]".encode("utf-8")
  3206. toktype = SentencePieceTokenTypes.UNUSED
  3207. else:
  3208. toktype = SentencePieceTokenTypes.USER_DEFINED
  3209. tokens.append(text)
  3210. scores.append(score)
  3211. toktypes.append(toktype)
  3212. continue
  3213. toktype = SentencePieceTokenTypes.NORMAL
  3214. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3215. toktype = SentencePieceTokenTypes.UNKNOWN
  3216. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3217. toktype = SentencePieceTokenTypes.CONTROL
  3218. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3219. toktype = SentencePieceTokenTypes.UNUSED
  3220. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3221. toktype = SentencePieceTokenTypes.BYTE
  3222. tokens.append(text)
  3223. scores.append(score)
  3224. toktypes.append(toktype)
  3225. self.gguf_writer.add_tokenizer_model("llama")
  3226. # glm3 needs prefix and suffix formatted as:
  3227. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3228. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3229. self.gguf_writer.add_token_list(tokens)
  3230. self.gguf_writer.add_token_scores(scores)
  3231. self.gguf_writer.add_token_types(toktypes)
  3232. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3233. special_vocab.add_to_gguf(self.gguf_writer)
  3234. @staticmethod
  3235. def token_bytes_to_string(b):
  3236. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3237. byte_encoder = bytes_to_unicode()
  3238. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3239. @staticmethod
  3240. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3241. parts = [bytes([b]) for b in token]
  3242. while True:
  3243. min_idx = None
  3244. min_rank = None
  3245. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3246. rank = mergeable_ranks.get(pair[0] + pair[1])
  3247. if rank is not None and (min_rank is None or rank < min_rank):
  3248. min_idx = i
  3249. min_rank = rank
  3250. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3251. break
  3252. assert min_idx is not None
  3253. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3254. return parts
  3255. def set_vocab(self):
  3256. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3257. self.set_vocab_chatglm3()
  3258. return
  3259. dir_model = self.dir_model
  3260. hparams = self.hparams
  3261. tokens: list[str] = []
  3262. toktypes: list[int] = []
  3263. from transformers import AutoTokenizer
  3264. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3265. vocab_size = hparams["padded_vocab_size"]
  3266. assert max(tokenizer.get_vocab().values()) < vocab_size
  3267. tokpre = self.get_vocab_base_pre(tokenizer)
  3268. merges = []
  3269. vocab = {}
  3270. mergeable_ranks = tokenizer.mergeable_ranks
  3271. for token, rank in mergeable_ranks.items():
  3272. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3273. if len(token) == 1:
  3274. continue
  3275. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3276. assert len(merged) >= 2 and len(merged) <= 7
  3277. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3278. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3279. added_vocab = tokenizer.get_added_vocab()
  3280. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3281. for i in range(vocab_size):
  3282. if i not in reverse_vocab:
  3283. tokens.append(f"[PAD{i}]")
  3284. toktypes.append(gguf.TokenType.UNUSED)
  3285. elif reverse_vocab[i] in added_vocab:
  3286. tokens.append(reverse_vocab[i])
  3287. if tokenizer.added_tokens_decoder[i].special:
  3288. toktypes.append(gguf.TokenType.CONTROL)
  3289. else:
  3290. toktypes.append(gguf.TokenType.USER_DEFINED)
  3291. else:
  3292. tokens.append(reverse_vocab[i])
  3293. toktypes.append(gguf.TokenType.NORMAL)
  3294. self.gguf_writer.add_tokenizer_model("gpt2")
  3295. self.gguf_writer.add_tokenizer_pre(tokpre)
  3296. self.gguf_writer.add_token_list(tokens)
  3297. self.gguf_writer.add_token_types(toktypes)
  3298. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3299. special_vocab.merges = merges
  3300. # only add special tokens when they were not already loaded from config.json
  3301. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3302. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3303. # this one is usually not in config.json anyway
  3304. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3305. special_vocab.add_to_gguf(self.gguf_writer)
  3306. def set_gguf_parameters(self):
  3307. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3308. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3309. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3310. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3311. self.gguf_writer.add_embedding_length(n_embed)
  3312. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3313. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3314. self.gguf_writer.add_head_count(n_head)
  3315. self.gguf_writer.add_head_count_kv(n_head_kv)
  3316. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3317. self.gguf_writer.add_file_type(self.ftype)
  3318. self.gguf_writer.add_rope_dimension_count(64)
  3319. self.gguf_writer.add_add_bos_token(False)
  3320. rope_freq = 10000
  3321. if "rope_ratio" in self.hparams:
  3322. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3323. self.gguf_writer.add_rope_freq_base(rope_freq)
  3324. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3325. del bid # unused
  3326. if name.endswith(".rotary_pos_emb.inv_freq"):
  3327. return []
  3328. name = name.removeprefix("transformer.")
  3329. return [(self.map_tensor_name(name), data_torch)]
  3330. @Model.register("NemotronForCausalLM")
  3331. class NemotronModel(Model):
  3332. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3333. def set_vocab(self):
  3334. self._set_vocab_sentencepiece()
  3335. self.gguf_writer.add_pad_token_id(0)
  3336. self.gguf_writer.add_unk_token_id(1)
  3337. def set_gguf_parameters(self):
  3338. super().set_gguf_parameters()
  3339. hparams = self.hparams
  3340. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3341. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3342. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3343. # * Partial RoPE
  3344. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3345. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3346. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3347. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3348. # * RopeScaling for Nemotron
  3349. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3350. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3351. else:
  3352. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3353. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3354. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3355. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3356. # model.layers.{l}.input_layernorm.weight
  3357. # model.layers.{l}.post_attention_layernorm.weight
  3358. # model.norm.weight
  3359. if name.endswith("norm.weight"):
  3360. data_torch = data_torch + 1
  3361. return [(self.map_tensor_name(name), data_torch)]
  3362. @Model.register("ExaoneForCausalLM")
  3363. class ExaoneModel(Model):
  3364. model_arch = gguf.MODEL_ARCH.EXAONE
  3365. def set_gguf_parameters(self):
  3366. hparams = self.hparams
  3367. assert (hparams["activation_function"] == "silu")
  3368. max_position_embeddings = hparams["max_position_embeddings"]
  3369. embed_dim = hparams["hidden_size"]
  3370. num_heads = hparams["num_attention_heads"]
  3371. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3372. layer_norm_eps = hparams["layer_norm_epsilon"]
  3373. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3374. num_layers = hparams["num_layers"]
  3375. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3376. # attention_dropout_rate = hparams["attention_dropout"]
  3377. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3378. # embed_dropout_rate = hparams["embed_dropout"]
  3379. self.gguf_writer.add_embedding_length(embed_dim)
  3380. self.gguf_writer.add_head_count(num_heads)
  3381. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3382. self.gguf_writer.add_context_length(max_position_embeddings)
  3383. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3384. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3385. self.gguf_writer.add_block_count(num_layers)
  3386. self.gguf_writer.add_file_type(self.ftype)
  3387. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3388. self.gguf_writer.add_rope_freq_base(rope_theta)
  3389. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3390. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3391. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3392. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3393. if hparams["rope_scaling"].get("type") == "linear":
  3394. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3395. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3396. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3397. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3398. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3399. base = self.hparams.get("rope_theta", 10000.0)
  3400. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3401. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3402. factor = rope_scaling.get("factor", 8.0)
  3403. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3404. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3405. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3406. low_freq_wavelen = old_context_len / low_freq_factor
  3407. high_freq_wavelen = old_context_len / high_freq_factor
  3408. assert low_freq_wavelen != high_freq_wavelen
  3409. rope_factors = []
  3410. for freq in freqs:
  3411. wavelen = 2 * math.pi / freq
  3412. if wavelen < high_freq_wavelen:
  3413. rope_factors.append(1)
  3414. elif wavelen > low_freq_wavelen:
  3415. rope_factors.append(factor)
  3416. else:
  3417. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3418. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3419. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3420. @Model.register("GraniteForCausalLM")
  3421. class GraniteModel(LlamaModel):
  3422. """Conversion for IBM's GraniteForCausalLM"""
  3423. model_arch = gguf.MODEL_ARCH.GRANITE
  3424. def set_gguf_parameters(self):
  3425. """Granite uses standard llama parameters with the following differences:
  3426. - No head_dim support
  3427. - New multiplier params:
  3428. - attention_scale
  3429. - embedding_scale
  3430. - residual_scale
  3431. - logits_scaling
  3432. """
  3433. if head_dim := self.hparams.pop("head_dim", None):
  3434. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3435. super().set_gguf_parameters()
  3436. # NOTE: Convert _multiplier params to _scale params for naming
  3437. # consistency
  3438. if attention_scale := self.hparams.get("attention_multiplier"):
  3439. self.gguf_writer.add_attention_scale(attention_scale)
  3440. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3441. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3442. self.gguf_writer.add_embedding_scale(embedding_scale)
  3443. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3444. if residual_scale := self.hparams.get("residual_multiplier"):
  3445. self.gguf_writer.add_residual_scale(residual_scale)
  3446. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3447. if logits_scale := self.hparams.get("logits_scaling"):
  3448. self.gguf_writer.add_logit_scale(logits_scale)
  3449. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3450. @Model.register("GraniteMoeForCausalLM")
  3451. class GraniteMoeModel(GraniteModel):
  3452. """Conversion for IBM's GraniteMoeForCausalLM"""
  3453. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3454. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3455. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3456. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3457. the hidden size that is then split during forward. To keep compatibility
  3458. with existing mixtral support, we pull them apart here.
  3459. """
  3460. if name.endswith("block_sparse_moe.input_linear.weight"):
  3461. ffn_dim = self.hparams["intermediate_size"]
  3462. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3463. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3464. return [
  3465. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3466. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3467. ]
  3468. return super().modify_tensors(data_torch, name, bid)
  3469. @Model.register("ChameleonForConditionalGeneration")
  3470. @Model.register("ChameleonForCausalLM") # obsolete
  3471. class ChameleonModel(Model):
  3472. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3473. def set_gguf_parameters(self):
  3474. super().set_gguf_parameters()
  3475. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3476. def set_vocab(self):
  3477. self._set_vocab_gpt2()
  3478. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3479. # ignore image tokenizer for now
  3480. # TODO: remove this once image support is implemented for Chameleon
  3481. if name.startswith("model.vqmodel"):
  3482. return []
  3483. n_head = self.hparams["num_attention_heads"]
  3484. n_kv_head = self.hparams.get("num_key_value_heads")
  3485. hidden_dim = self.hparams.get("hidden_size")
  3486. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3487. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3488. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3489. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3490. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3491. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3492. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3493. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3494. return [(self.map_tensor_name(name), data_torch)]
  3495. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3496. @staticmethod
  3497. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3498. head_dim = hidden_dim // n_heads
  3499. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3500. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3501. return data_torch
  3502. ###### CONVERSION LOGIC ######
  3503. # tree of lazy tensors
  3504. class LazyTorchTensor(gguf.LazyBase):
  3505. _tensor_type = torch.Tensor
  3506. # to keep the type-checker happy
  3507. dtype: torch.dtype
  3508. shape: torch.Size
  3509. # only used when converting a torch.Tensor to a np.ndarray
  3510. _dtype_map: dict[torch.dtype, type] = {
  3511. torch.float16: np.float16,
  3512. torch.float32: np.float32,
  3513. }
  3514. # used for safetensors slices
  3515. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3516. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3517. _dtype_str_map: dict[str, torch.dtype] = {
  3518. "F64": torch.float64,
  3519. "F32": torch.float32,
  3520. "BF16": torch.bfloat16,
  3521. "F16": torch.float16,
  3522. # "U64": torch.uint64,
  3523. "I64": torch.int64,
  3524. # "U32": torch.uint32,
  3525. "I32": torch.int32,
  3526. # "U16": torch.uint16,
  3527. "I16": torch.int16,
  3528. "U8": torch.uint8,
  3529. "I8": torch.int8,
  3530. "BOOL": torch.bool,
  3531. "F8_E4M3": torch.float8_e4m3fn,
  3532. "F8_E5M2": torch.float8_e5m2,
  3533. }
  3534. def numpy(self) -> gguf.LazyNumpyTensor:
  3535. dtype = self._dtype_map[self.dtype]
  3536. return gguf.LazyNumpyTensor(
  3537. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3538. args=(self,),
  3539. func=(lambda s: s.numpy())
  3540. )
  3541. @classmethod
  3542. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3543. return torch.empty(size=shape, dtype=dtype, device="meta")
  3544. @classmethod
  3545. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3546. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3547. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3548. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3549. return cast(torch.Tensor, lazy)
  3550. @classmethod
  3551. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3552. del types # unused
  3553. if kwargs is None:
  3554. kwargs = {}
  3555. if func is torch.Tensor.numpy:
  3556. return args[0].numpy()
  3557. return cls._wrap_fn(func)(*args, **kwargs)
  3558. def parse_args() -> argparse.Namespace:
  3559. parser = argparse.ArgumentParser(
  3560. description="Convert a huggingface model to a GGML compatible file")
  3561. parser.add_argument(
  3562. "--vocab-only", action="store_true",
  3563. help="extract only the vocab",
  3564. )
  3565. parser.add_argument(
  3566. "--outfile", type=Path,
  3567. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3568. )
  3569. parser.add_argument(
  3570. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3571. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3572. )
  3573. parser.add_argument(
  3574. "--bigendian", action="store_true",
  3575. help="model is executed on big endian machine",
  3576. )
  3577. parser.add_argument(
  3578. "model", type=Path,
  3579. help="directory containing model file",
  3580. )
  3581. parser.add_argument(
  3582. "--use-temp-file", action="store_true",
  3583. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3584. )
  3585. parser.add_argument(
  3586. "--no-lazy", action="store_true",
  3587. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3588. )
  3589. parser.add_argument(
  3590. "--model-name", type=str, default=None,
  3591. help="name of the model",
  3592. )
  3593. parser.add_argument(
  3594. "--verbose", action="store_true",
  3595. help="increase output verbosity",
  3596. )
  3597. parser.add_argument(
  3598. "--split-max-tensors", type=int, default=0,
  3599. help="max tensors in each split",
  3600. )
  3601. parser.add_argument(
  3602. "--split-max-size", type=str, default="0",
  3603. help="max size per split N(M|G)",
  3604. )
  3605. parser.add_argument(
  3606. "--dry-run", action="store_true",
  3607. help="only print out a split plan and exit, without writing any new files",
  3608. )
  3609. parser.add_argument(
  3610. "--no-tensor-first-split", action="store_true",
  3611. help="do not add tensors to the first split (disabled by default)"
  3612. )
  3613. parser.add_argument(
  3614. "--metadata", type=Path,
  3615. help="Specify the path for an authorship metadata override file"
  3616. )
  3617. return parser.parse_args()
  3618. def split_str_to_n_bytes(split_str: str) -> int:
  3619. if split_str.endswith("K"):
  3620. n = int(split_str[:-1]) * 1000
  3621. elif split_str.endswith("M"):
  3622. n = int(split_str[:-1]) * 1000 * 1000
  3623. elif split_str.endswith("G"):
  3624. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3625. elif split_str.isnumeric():
  3626. n = int(split_str)
  3627. else:
  3628. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3629. if n < 0:
  3630. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3631. return n
  3632. def main() -> None:
  3633. args = parse_args()
  3634. if args.verbose:
  3635. logging.basicConfig(level=logging.DEBUG)
  3636. else:
  3637. logging.basicConfig(level=logging.INFO)
  3638. dir_model = args.model
  3639. if not dir_model.is_dir():
  3640. logger.error(f'Error: {args.model} is not a directory')
  3641. sys.exit(1)
  3642. ftype_map: dict[str, gguf.LlamaFileType] = {
  3643. "f32": gguf.LlamaFileType.ALL_F32,
  3644. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3645. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3646. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3647. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3648. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3649. "auto": gguf.LlamaFileType.GUESSED,
  3650. }
  3651. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3652. if args.use_temp_file and is_split:
  3653. logger.error("Error: Cannot use temp file when splitting")
  3654. sys.exit(1)
  3655. if args.outfile is not None:
  3656. fname_out = args.outfile
  3657. else:
  3658. fname_out = dir_model
  3659. logger.info(f"Loading model: {dir_model.name}")
  3660. hparams = Model.load_hparams(dir_model)
  3661. with torch.inference_mode():
  3662. output_type = ftype_map[args.outtype]
  3663. model_architecture = hparams["architectures"][0]
  3664. try:
  3665. model_class = Model.from_model_architecture(model_architecture)
  3666. except NotImplementedError:
  3667. logger.error(f"Model {model_architecture} is not supported")
  3668. sys.exit(1)
  3669. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3670. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3671. eager=args.no_lazy,
  3672. metadata_override=args.metadata, model_name=args.model_name,
  3673. split_max_tensors=args.split_max_tensors,
  3674. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3675. small_first_shard=args.no_tensor_first_split)
  3676. if args.vocab_only:
  3677. logger.info("Exporting model vocab...")
  3678. model_instance.write_vocab()
  3679. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3680. else:
  3681. logger.info("Exporting model...")
  3682. model_instance.write()
  3683. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3684. logger.info(f"Model successfully exported to {out_path}")
  3685. if __name__ == '__main__':
  3686. main()