ggml.h 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport) extern
  178. # else
  179. # define GGML_API __declspec(dllimport) extern
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default"))) extern
  183. # endif
  184. #else
  185. # define GGML_API extern
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #include <stdbool.h>
  203. #include <stddef.h>
  204. #include <stdint.h>
  205. #include <stdio.h>
  206. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  207. #define GGML_FILE_VERSION 2
  208. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  209. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  210. #define GGML_MAX_DIMS 4
  211. #define GGML_MAX_PARAMS 2048
  212. #define GGML_MAX_SRC 10
  213. #define GGML_MAX_N_THREADS 512
  214. #define GGML_MAX_OP_PARAMS 64
  215. #ifndef GGML_MAX_NAME
  216. # define GGML_MAX_NAME 64
  217. #endif
  218. #define GGML_DEFAULT_N_THREADS 4
  219. #define GGML_DEFAULT_GRAPH_SIZE 2048
  220. #if UINTPTR_MAX == 0xFFFFFFFF
  221. #define GGML_MEM_ALIGN 4
  222. #else
  223. #define GGML_MEM_ALIGN 16
  224. #endif
  225. #define GGML_EXIT_SUCCESS 0
  226. #define GGML_EXIT_ABORTED 1
  227. #define GGML_ROPE_TYPE_NEOX 2
  228. #define GGML_ROPE_TYPE_MROPE 8
  229. #define GGML_ROPE_TYPE_VISION 24
  230. #define GGUF_MAGIC "GGUF"
  231. #define GGUF_VERSION 3
  232. #define GGUF_DEFAULT_ALIGNMENT 32
  233. #define GGML_UNUSED(x) (void)(x)
  234. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  235. #ifndef NDEBUG
  236. # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  237. #elif defined(__GNUC__)
  238. # define GGML_UNREACHABLE() __builtin_unreachable()
  239. #elif defined(_MSC_VER)
  240. # define GGML_UNREACHABLE() __assume(0)
  241. #else
  242. # define GGML_UNREACHABLE() ((void) 0)
  243. #endif
  244. #ifdef __cplusplus
  245. # define GGML_NORETURN [[noreturn]]
  246. #elif defined(_MSC_VER)
  247. # define GGML_NORETURN __declspec(noreturn)
  248. #else
  249. # define GGML_NORETURN _Noreturn
  250. #endif
  251. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  252. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  253. // used to copy the number of elements and stride in bytes of tensors into local variables.
  254. // main purpose is to reduce code duplication and improve readability.
  255. //
  256. // example:
  257. //
  258. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  259. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  260. //
  261. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  262. const type prefix##0 = (pointer)->array[0]; \
  263. GGML_UNUSED(prefix##0);
  264. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  265. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  266. const type prefix##1 = (pointer)->array[1]; \
  267. GGML_UNUSED(prefix##1);
  268. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  269. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  270. const type prefix##2 = (pointer)->array[2]; \
  271. GGML_UNUSED(prefix##2);
  272. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  273. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  274. const type prefix##3 = (pointer)->array[3]; \
  275. GGML_UNUSED(prefix##3);
  276. #define GGML_TENSOR_UNARY_OP_LOCALS \
  277. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  278. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  279. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  280. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  281. #define GGML_TENSOR_BINARY_OP_LOCALS \
  282. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  283. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  284. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  285. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  286. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  287. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  288. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  289. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  290. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  291. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  292. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  293. #ifdef __cplusplus
  294. extern "C" {
  295. #endif
  296. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  297. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  298. enum ggml_status {
  299. GGML_STATUS_ALLOC_FAILED = -2,
  300. GGML_STATUS_FAILED = -1,
  301. GGML_STATUS_SUCCESS = 0,
  302. GGML_STATUS_ABORTED = 1,
  303. };
  304. // get ggml_status name string
  305. GGML_API const char * ggml_status_to_string(enum ggml_status status);
  306. // ieee 754-2008 half-precision float16
  307. // todo: make this not an integral type
  308. typedef uint16_t ggml_fp16_t;
  309. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  310. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  311. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  312. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  313. // google brain half-precision bfloat16
  314. typedef struct { uint16_t bits; } ggml_bf16_t;
  315. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  316. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  317. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  318. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  319. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  320. struct ggml_object;
  321. struct ggml_context;
  322. struct ggml_cgraph;
  323. // NOTE: always add types at the end of the enum to keep backward compatibility
  324. enum ggml_type {
  325. GGML_TYPE_F32 = 0,
  326. GGML_TYPE_F16 = 1,
  327. GGML_TYPE_Q4_0 = 2,
  328. GGML_TYPE_Q4_1 = 3,
  329. // GGML_TYPE_Q4_2 = 4, support has been removed
  330. // GGML_TYPE_Q4_3 = 5, support has been removed
  331. GGML_TYPE_Q5_0 = 6,
  332. GGML_TYPE_Q5_1 = 7,
  333. GGML_TYPE_Q8_0 = 8,
  334. GGML_TYPE_Q8_1 = 9,
  335. GGML_TYPE_Q2_K = 10,
  336. GGML_TYPE_Q3_K = 11,
  337. GGML_TYPE_Q4_K = 12,
  338. GGML_TYPE_Q5_K = 13,
  339. GGML_TYPE_Q6_K = 14,
  340. GGML_TYPE_Q8_K = 15,
  341. GGML_TYPE_IQ2_XXS = 16,
  342. GGML_TYPE_IQ2_XS = 17,
  343. GGML_TYPE_IQ3_XXS = 18,
  344. GGML_TYPE_IQ1_S = 19,
  345. GGML_TYPE_IQ4_NL = 20,
  346. GGML_TYPE_IQ3_S = 21,
  347. GGML_TYPE_IQ2_S = 22,
  348. GGML_TYPE_IQ4_XS = 23,
  349. GGML_TYPE_I8 = 24,
  350. GGML_TYPE_I16 = 25,
  351. GGML_TYPE_I32 = 26,
  352. GGML_TYPE_I64 = 27,
  353. GGML_TYPE_F64 = 28,
  354. GGML_TYPE_IQ1_M = 29,
  355. GGML_TYPE_BF16 = 30,
  356. // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
  357. // GGML_TYPE_Q4_0_4_8 = 32,
  358. // GGML_TYPE_Q4_0_8_8 = 33,
  359. GGML_TYPE_TQ1_0 = 34,
  360. GGML_TYPE_TQ2_0 = 35,
  361. // GGML_TYPE_IQ4_NL_4_4 = 36,
  362. // GGML_TYPE_IQ4_NL_4_8 = 37,
  363. // GGML_TYPE_IQ4_NL_8_8 = 38,
  364. GGML_TYPE_COUNT = 39,
  365. };
  366. // precision
  367. enum ggml_prec {
  368. GGML_PREC_DEFAULT,
  369. GGML_PREC_F32,
  370. };
  371. enum ggml_backend_type {
  372. GGML_BACKEND_TYPE_CPU = 0,
  373. GGML_BACKEND_TYPE_GPU = 10,
  374. GGML_BACKEND_TYPE_GPU_SPLIT = 20,
  375. };
  376. // model file types
  377. enum ggml_ftype {
  378. GGML_FTYPE_UNKNOWN = -1,
  379. GGML_FTYPE_ALL_F32 = 0,
  380. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  381. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  382. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  383. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  384. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  385. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  386. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  387. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  388. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  389. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  390. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  391. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  392. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  393. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  394. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  395. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  396. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  397. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  398. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  399. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  400. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  401. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  402. };
  403. // available tensor operations:
  404. enum ggml_op {
  405. GGML_OP_NONE = 0,
  406. GGML_OP_DUP,
  407. GGML_OP_ADD,
  408. GGML_OP_ADD1,
  409. GGML_OP_ACC,
  410. GGML_OP_SUB,
  411. GGML_OP_MUL,
  412. GGML_OP_DIV,
  413. GGML_OP_SQR,
  414. GGML_OP_SQRT,
  415. GGML_OP_LOG,
  416. GGML_OP_SIN,
  417. GGML_OP_COS,
  418. GGML_OP_SUM,
  419. GGML_OP_SUM_ROWS,
  420. GGML_OP_MEAN,
  421. GGML_OP_ARGMAX,
  422. GGML_OP_COUNT_EQUAL,
  423. GGML_OP_REPEAT,
  424. GGML_OP_REPEAT_BACK,
  425. GGML_OP_CONCAT,
  426. GGML_OP_SILU_BACK,
  427. GGML_OP_NORM, // normalize
  428. GGML_OP_RMS_NORM,
  429. GGML_OP_RMS_NORM_BACK,
  430. GGML_OP_GROUP_NORM,
  431. GGML_OP_MUL_MAT,
  432. GGML_OP_MUL_MAT_ID,
  433. GGML_OP_OUT_PROD,
  434. GGML_OP_SCALE,
  435. GGML_OP_SET,
  436. GGML_OP_CPY,
  437. GGML_OP_CONT,
  438. GGML_OP_RESHAPE,
  439. GGML_OP_VIEW,
  440. GGML_OP_PERMUTE,
  441. GGML_OP_TRANSPOSE,
  442. GGML_OP_GET_ROWS,
  443. GGML_OP_GET_ROWS_BACK,
  444. GGML_OP_DIAG,
  445. GGML_OP_DIAG_MASK_INF,
  446. GGML_OP_DIAG_MASK_ZERO,
  447. GGML_OP_SOFT_MAX,
  448. GGML_OP_SOFT_MAX_BACK,
  449. GGML_OP_ROPE,
  450. GGML_OP_ROPE_BACK,
  451. GGML_OP_CLAMP,
  452. GGML_OP_CONV_TRANSPOSE_1D,
  453. GGML_OP_IM2COL,
  454. GGML_OP_IM2COL_BACK,
  455. GGML_OP_CONV_TRANSPOSE_2D,
  456. GGML_OP_POOL_1D,
  457. GGML_OP_POOL_2D,
  458. GGML_OP_POOL_2D_BACK,
  459. GGML_OP_UPSCALE, // nearest interpolate
  460. GGML_OP_PAD,
  461. GGML_OP_PAD_REFLECT_1D,
  462. GGML_OP_ARANGE,
  463. GGML_OP_TIMESTEP_EMBEDDING,
  464. GGML_OP_ARGSORT,
  465. GGML_OP_LEAKY_RELU,
  466. GGML_OP_FLASH_ATTN_EXT,
  467. GGML_OP_FLASH_ATTN_BACK,
  468. GGML_OP_SSM_CONV,
  469. GGML_OP_SSM_SCAN,
  470. GGML_OP_WIN_PART,
  471. GGML_OP_WIN_UNPART,
  472. GGML_OP_GET_REL_POS,
  473. GGML_OP_ADD_REL_POS,
  474. GGML_OP_RWKV_WKV6,
  475. GGML_OP_UNARY,
  476. GGML_OP_MAP_UNARY,
  477. GGML_OP_MAP_BINARY,
  478. GGML_OP_MAP_CUSTOM1_F32,
  479. GGML_OP_MAP_CUSTOM2_F32,
  480. GGML_OP_MAP_CUSTOM3_F32,
  481. GGML_OP_MAP_CUSTOM1,
  482. GGML_OP_MAP_CUSTOM2,
  483. GGML_OP_MAP_CUSTOM3,
  484. GGML_OP_CROSS_ENTROPY_LOSS,
  485. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  486. GGML_OP_OPT_STEP_ADAMW,
  487. GGML_OP_COUNT,
  488. };
  489. enum ggml_unary_op {
  490. GGML_UNARY_OP_ABS,
  491. GGML_UNARY_OP_SGN,
  492. GGML_UNARY_OP_NEG,
  493. GGML_UNARY_OP_STEP,
  494. GGML_UNARY_OP_TANH,
  495. GGML_UNARY_OP_ELU,
  496. GGML_UNARY_OP_RELU,
  497. GGML_UNARY_OP_SIGMOID,
  498. GGML_UNARY_OP_GELU,
  499. GGML_UNARY_OP_GELU_QUICK,
  500. GGML_UNARY_OP_SILU,
  501. GGML_UNARY_OP_HARDSWISH,
  502. GGML_UNARY_OP_HARDSIGMOID,
  503. GGML_UNARY_OP_EXP,
  504. GGML_UNARY_OP_COUNT,
  505. };
  506. enum ggml_object_type {
  507. GGML_OBJECT_TYPE_TENSOR,
  508. GGML_OBJECT_TYPE_GRAPH,
  509. GGML_OBJECT_TYPE_WORK_BUFFER
  510. };
  511. enum ggml_log_level {
  512. GGML_LOG_LEVEL_NONE = 0,
  513. GGML_LOG_LEVEL_DEBUG = 1,
  514. GGML_LOG_LEVEL_INFO = 2,
  515. GGML_LOG_LEVEL_WARN = 3,
  516. GGML_LOG_LEVEL_ERROR = 4,
  517. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  518. };
  519. // this tensor...
  520. enum ggml_tensor_flag {
  521. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  522. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  523. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  524. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  525. };
  526. struct ggml_init_params {
  527. // memory pool
  528. size_t mem_size; // bytes
  529. void * mem_buffer; // if NULL, memory will be allocated internally
  530. bool no_alloc; // don't allocate memory for the tensor data
  531. };
  532. // n-dimensional tensor
  533. struct ggml_tensor {
  534. enum ggml_type type;
  535. GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
  536. struct ggml_backend_buffer * buffer;
  537. int64_t ne[GGML_MAX_DIMS]; // number of elements
  538. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  539. // nb[0] = ggml_type_size(type)
  540. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  541. // nb[i] = nb[i-1] * ne[i-1]
  542. // compute data
  543. enum ggml_op op;
  544. // op params - allocated as int32_t for alignment
  545. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  546. int32_t flags;
  547. struct ggml_tensor * src[GGML_MAX_SRC];
  548. // source tensor and offset for views
  549. struct ggml_tensor * view_src;
  550. size_t view_offs;
  551. void * data;
  552. char name[GGML_MAX_NAME];
  553. void * extra; // extra things e.g. for ggml-cuda.cu
  554. char padding[8];
  555. };
  556. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  557. // Abort callback
  558. // If not NULL, called before ggml computation
  559. // If it returns true, the computation is aborted
  560. typedef bool (*ggml_abort_callback)(void * data);
  561. //
  562. // GUID
  563. //
  564. // GUID types
  565. typedef uint8_t ggml_guid[16];
  566. typedef ggml_guid * ggml_guid_t;
  567. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  568. // misc
  569. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  570. GGML_API int64_t ggml_time_ms(void);
  571. GGML_API int64_t ggml_time_us(void);
  572. GGML_API int64_t ggml_cycles(void);
  573. GGML_API int64_t ggml_cycles_per_ms(void);
  574. // accepts a UTF-8 path, even on Windows
  575. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  576. GGML_API void ggml_print_object (const struct ggml_object * obj);
  577. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  578. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  579. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  580. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  581. GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  582. GGML_API int64_t ggml_blck_size(enum ggml_type type);
  583. GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  584. GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  585. GGML_DEPRECATED(
  586. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  587. "use ggml_row_size() instead");
  588. GGML_API const char * ggml_type_name(enum ggml_type type);
  589. GGML_API const char * ggml_op_name (enum ggml_op op);
  590. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  591. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  592. GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  593. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  594. GGML_API bool ggml_is_quantized(enum ggml_type type);
  595. // TODO: temporary until model loading of ggml examples is refactored
  596. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  597. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  598. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  599. GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
  600. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  601. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  602. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  603. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  604. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  605. GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  606. GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  607. GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  608. GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  609. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  610. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  611. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  612. // use this to compute the memory overhead of a tensor
  613. GGML_API size_t ggml_tensor_overhead(void);
  614. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  615. // main
  616. GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
  617. GGML_API void ggml_reset(struct ggml_context * ctx);
  618. GGML_API void ggml_free (struct ggml_context * ctx);
  619. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  620. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  621. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  622. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  623. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  624. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  625. GGML_API struct ggml_tensor * ggml_new_tensor(
  626. struct ggml_context * ctx,
  627. enum ggml_type type,
  628. int n_dims,
  629. const int64_t *ne);
  630. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  631. struct ggml_context * ctx,
  632. enum ggml_type type,
  633. int64_t ne0);
  634. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  635. struct ggml_context * ctx,
  636. enum ggml_type type,
  637. int64_t ne0,
  638. int64_t ne1);
  639. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  640. struct ggml_context * ctx,
  641. enum ggml_type type,
  642. int64_t ne0,
  643. int64_t ne1,
  644. int64_t ne2);
  645. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  646. struct ggml_context * ctx,
  647. enum ggml_type type,
  648. int64_t ne0,
  649. int64_t ne1,
  650. int64_t ne2,
  651. int64_t ne3);
  652. GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
  653. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  654. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  655. // Context tensor enumeration and lookup
  656. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  657. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  658. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  659. // Converts a flat index into coordinates
  660. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  661. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  662. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  663. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  664. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  665. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  666. GGML_ATTRIBUTE_FORMAT(2, 3)
  667. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  668. // Tensor flags
  669. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  670. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  671. GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
  672. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  673. //
  674. // operations on tensors with backpropagation
  675. //
  676. GGML_API struct ggml_tensor * ggml_dup(
  677. struct ggml_context * ctx,
  678. struct ggml_tensor * a);
  679. // in-place, returns view(a)
  680. GGML_API struct ggml_tensor * ggml_dup_inplace(
  681. struct ggml_context * ctx,
  682. struct ggml_tensor * a);
  683. GGML_API struct ggml_tensor * ggml_add(
  684. struct ggml_context * ctx,
  685. struct ggml_tensor * a,
  686. struct ggml_tensor * b);
  687. GGML_API struct ggml_tensor * ggml_add_inplace(
  688. struct ggml_context * ctx,
  689. struct ggml_tensor * a,
  690. struct ggml_tensor * b);
  691. GGML_API struct ggml_tensor * ggml_add_cast(
  692. struct ggml_context * ctx,
  693. struct ggml_tensor * a,
  694. struct ggml_tensor * b,
  695. enum ggml_type type);
  696. GGML_API struct ggml_tensor * ggml_add1(
  697. struct ggml_context * ctx,
  698. struct ggml_tensor * a,
  699. struct ggml_tensor * b);
  700. GGML_API struct ggml_tensor * ggml_add1_inplace(
  701. struct ggml_context * ctx,
  702. struct ggml_tensor * a,
  703. struct ggml_tensor * b);
  704. // dst = a
  705. // view(dst, nb1, nb2, nb3, offset) += b
  706. // return dst
  707. GGML_API struct ggml_tensor * ggml_acc(
  708. struct ggml_context * ctx,
  709. struct ggml_tensor * a,
  710. struct ggml_tensor * b,
  711. size_t nb1,
  712. size_t nb2,
  713. size_t nb3,
  714. size_t offset);
  715. GGML_API struct ggml_tensor * ggml_acc_inplace(
  716. struct ggml_context * ctx,
  717. struct ggml_tensor * a,
  718. struct ggml_tensor * b,
  719. size_t nb1,
  720. size_t nb2,
  721. size_t nb3,
  722. size_t offset);
  723. GGML_API struct ggml_tensor * ggml_sub(
  724. struct ggml_context * ctx,
  725. struct ggml_tensor * a,
  726. struct ggml_tensor * b);
  727. GGML_API struct ggml_tensor * ggml_sub_inplace(
  728. struct ggml_context * ctx,
  729. struct ggml_tensor * a,
  730. struct ggml_tensor * b);
  731. GGML_API struct ggml_tensor * ggml_mul(
  732. struct ggml_context * ctx,
  733. struct ggml_tensor * a,
  734. struct ggml_tensor * b);
  735. GGML_API struct ggml_tensor * ggml_mul_inplace(
  736. struct ggml_context * ctx,
  737. struct ggml_tensor * a,
  738. struct ggml_tensor * b);
  739. GGML_API struct ggml_tensor * ggml_div(
  740. struct ggml_context * ctx,
  741. struct ggml_tensor * a,
  742. struct ggml_tensor * b);
  743. GGML_API struct ggml_tensor * ggml_div_inplace(
  744. struct ggml_context * ctx,
  745. struct ggml_tensor * a,
  746. struct ggml_tensor * b);
  747. GGML_API struct ggml_tensor * ggml_sqr(
  748. struct ggml_context * ctx,
  749. struct ggml_tensor * a);
  750. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  751. struct ggml_context * ctx,
  752. struct ggml_tensor * a);
  753. GGML_API struct ggml_tensor * ggml_sqrt(
  754. struct ggml_context * ctx,
  755. struct ggml_tensor * a);
  756. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  757. struct ggml_context * ctx,
  758. struct ggml_tensor * a);
  759. GGML_API struct ggml_tensor * ggml_log(
  760. struct ggml_context * ctx,
  761. struct ggml_tensor * a);
  762. GGML_API struct ggml_tensor * ggml_log_inplace(
  763. struct ggml_context * ctx,
  764. struct ggml_tensor * a);
  765. GGML_API struct ggml_tensor * ggml_sin(
  766. struct ggml_context * ctx,
  767. struct ggml_tensor * a);
  768. GGML_API struct ggml_tensor * ggml_sin_inplace(
  769. struct ggml_context * ctx,
  770. struct ggml_tensor * a);
  771. GGML_API struct ggml_tensor * ggml_cos(
  772. struct ggml_context * ctx,
  773. struct ggml_tensor * a);
  774. GGML_API struct ggml_tensor * ggml_cos_inplace(
  775. struct ggml_context * ctx,
  776. struct ggml_tensor * a);
  777. // return scalar
  778. GGML_API struct ggml_tensor * ggml_sum(
  779. struct ggml_context * ctx,
  780. struct ggml_tensor * a);
  781. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  782. GGML_API struct ggml_tensor * ggml_sum_rows(
  783. struct ggml_context * ctx,
  784. struct ggml_tensor * a);
  785. // mean along rows
  786. GGML_API struct ggml_tensor * ggml_mean(
  787. struct ggml_context * ctx,
  788. struct ggml_tensor * a);
  789. // argmax along rows
  790. GGML_API struct ggml_tensor * ggml_argmax(
  791. struct ggml_context * ctx,
  792. struct ggml_tensor * a);
  793. // count number of equal elements in a and b
  794. GGML_API struct ggml_tensor * ggml_count_equal(
  795. struct ggml_context * ctx,
  796. struct ggml_tensor * a,
  797. struct ggml_tensor * b);
  798. // if a is the same shape as b, and a is not parameter, return a
  799. // otherwise, return a new tensor: repeat(a) to fit in b
  800. GGML_API struct ggml_tensor * ggml_repeat(
  801. struct ggml_context * ctx,
  802. struct ggml_tensor * a,
  803. struct ggml_tensor * b);
  804. // sums repetitions in a into shape of b
  805. GGML_API struct ggml_tensor * ggml_repeat_back(
  806. struct ggml_context * ctx,
  807. struct ggml_tensor * a,
  808. struct ggml_tensor * b);
  809. // concat a and b along dim
  810. // used in stable-diffusion
  811. GGML_API struct ggml_tensor * ggml_concat(
  812. struct ggml_context * ctx,
  813. struct ggml_tensor * a,
  814. struct ggml_tensor * b,
  815. int dim);
  816. GGML_API struct ggml_tensor * ggml_abs(
  817. struct ggml_context * ctx,
  818. struct ggml_tensor * a);
  819. GGML_API struct ggml_tensor * ggml_abs_inplace(
  820. struct ggml_context * ctx,
  821. struct ggml_tensor * a);
  822. GGML_API struct ggml_tensor * ggml_sgn(
  823. struct ggml_context * ctx,
  824. struct ggml_tensor * a);
  825. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  826. struct ggml_context * ctx,
  827. struct ggml_tensor * a);
  828. GGML_API struct ggml_tensor * ggml_neg(
  829. struct ggml_context * ctx,
  830. struct ggml_tensor * a);
  831. GGML_API struct ggml_tensor * ggml_neg_inplace(
  832. struct ggml_context * ctx,
  833. struct ggml_tensor * a);
  834. GGML_API struct ggml_tensor * ggml_step(
  835. struct ggml_context * ctx,
  836. struct ggml_tensor * a);
  837. GGML_API struct ggml_tensor * ggml_step_inplace(
  838. struct ggml_context * ctx,
  839. struct ggml_tensor * a);
  840. GGML_API struct ggml_tensor * ggml_tanh(
  841. struct ggml_context * ctx,
  842. struct ggml_tensor * a);
  843. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  844. struct ggml_context * ctx,
  845. struct ggml_tensor * a);
  846. GGML_API struct ggml_tensor * ggml_elu(
  847. struct ggml_context * ctx,
  848. struct ggml_tensor * a);
  849. GGML_API struct ggml_tensor * ggml_elu_inplace(
  850. struct ggml_context * ctx,
  851. struct ggml_tensor * a);
  852. GGML_API struct ggml_tensor * ggml_relu(
  853. struct ggml_context * ctx,
  854. struct ggml_tensor * a);
  855. GGML_API struct ggml_tensor * ggml_leaky_relu(
  856. struct ggml_context * ctx,
  857. struct ggml_tensor * a, float negative_slope, bool inplace);
  858. GGML_API struct ggml_tensor * ggml_relu_inplace(
  859. struct ggml_context * ctx,
  860. struct ggml_tensor * a);
  861. GGML_API struct ggml_tensor * ggml_sigmoid(
  862. struct ggml_context * ctx,
  863. struct ggml_tensor * a);
  864. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  865. struct ggml_context * ctx,
  866. struct ggml_tensor * a);
  867. GGML_API struct ggml_tensor * ggml_gelu(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * a);
  870. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  871. struct ggml_context * ctx,
  872. struct ggml_tensor * a);
  873. GGML_API struct ggml_tensor * ggml_gelu_quick(
  874. struct ggml_context * ctx,
  875. struct ggml_tensor * a);
  876. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  877. struct ggml_context * ctx,
  878. struct ggml_tensor * a);
  879. GGML_API struct ggml_tensor * ggml_silu(
  880. struct ggml_context * ctx,
  881. struct ggml_tensor * a);
  882. GGML_API struct ggml_tensor * ggml_silu_inplace(
  883. struct ggml_context * ctx,
  884. struct ggml_tensor * a);
  885. // a - x
  886. // b - dy
  887. GGML_API struct ggml_tensor * ggml_silu_back(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a,
  890. struct ggml_tensor * b);
  891. // hardswish(x) = x * relu6(x + 3) / 6
  892. GGML_API struct ggml_tensor * ggml_hardswish(
  893. struct ggml_context * ctx,
  894. struct ggml_tensor * a);
  895. // hardsigmoid(x) = relu6(x + 3) / 6
  896. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  897. struct ggml_context * ctx,
  898. struct ggml_tensor * a);
  899. GGML_API struct ggml_tensor * ggml_exp(
  900. struct ggml_context * ctx,
  901. struct ggml_tensor * a);
  902. GGML_API struct ggml_tensor * ggml_exp_inplace(
  903. struct ggml_context * ctx,
  904. struct ggml_tensor * a);
  905. // normalize along rows
  906. GGML_API struct ggml_tensor * ggml_norm(
  907. struct ggml_context * ctx,
  908. struct ggml_tensor * a,
  909. float eps);
  910. GGML_API struct ggml_tensor * ggml_norm_inplace(
  911. struct ggml_context * ctx,
  912. struct ggml_tensor * a,
  913. float eps);
  914. GGML_API struct ggml_tensor * ggml_rms_norm(
  915. struct ggml_context * ctx,
  916. struct ggml_tensor * a,
  917. float eps);
  918. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  919. struct ggml_context * ctx,
  920. struct ggml_tensor * a,
  921. float eps);
  922. // group normalize along ne0*ne1*n_groups
  923. // used in stable-diffusion
  924. GGML_API struct ggml_tensor * ggml_group_norm(
  925. struct ggml_context * ctx,
  926. struct ggml_tensor * a,
  927. int n_groups,
  928. float eps);
  929. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  930. struct ggml_context * ctx,
  931. struct ggml_tensor * a,
  932. int n_groups,
  933. float eps);
  934. // a - x
  935. // b - dy
  936. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a,
  939. struct ggml_tensor * b,
  940. float eps);
  941. // A: k columns, n rows => [ne03, ne02, n, k]
  942. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  943. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  944. GGML_API struct ggml_tensor * ggml_mul_mat(
  945. struct ggml_context * ctx,
  946. struct ggml_tensor * a,
  947. struct ggml_tensor * b);
  948. // change the precision of a matrix multiplication
  949. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  950. GGML_API void ggml_mul_mat_set_prec(
  951. struct ggml_tensor * a,
  952. enum ggml_prec prec);
  953. // indirect matrix multiplication
  954. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  955. struct ggml_context * ctx,
  956. struct ggml_tensor * as,
  957. struct ggml_tensor * b,
  958. struct ggml_tensor * ids);
  959. // A: m columns, n rows,
  960. // B: p columns, n rows,
  961. // result is m columns, p rows
  962. GGML_API struct ggml_tensor * ggml_out_prod(
  963. struct ggml_context * ctx,
  964. struct ggml_tensor * a,
  965. struct ggml_tensor * b);
  966. //
  967. // operations on tensors without backpropagation
  968. //
  969. GGML_API struct ggml_tensor * ggml_scale(
  970. struct ggml_context * ctx,
  971. struct ggml_tensor * a,
  972. float s);
  973. // in-place, returns view(a)
  974. GGML_API struct ggml_tensor * ggml_scale_inplace(
  975. struct ggml_context * ctx,
  976. struct ggml_tensor * a,
  977. float s);
  978. // b -> view(a,offset,nb1,nb2,3), return modified a
  979. GGML_API struct ggml_tensor * ggml_set(
  980. struct ggml_context * ctx,
  981. struct ggml_tensor * a,
  982. struct ggml_tensor * b,
  983. size_t nb1,
  984. size_t nb2,
  985. size_t nb3,
  986. size_t offset); // in bytes
  987. // b -> view(a,offset,nb1,nb2,3), return view(a)
  988. GGML_API struct ggml_tensor * ggml_set_inplace(
  989. struct ggml_context * ctx,
  990. struct ggml_tensor * a,
  991. struct ggml_tensor * b,
  992. size_t nb1,
  993. size_t nb2,
  994. size_t nb3,
  995. size_t offset); // in bytes
  996. GGML_API struct ggml_tensor * ggml_set_1d(
  997. struct ggml_context * ctx,
  998. struct ggml_tensor * a,
  999. struct ggml_tensor * b,
  1000. size_t offset); // in bytes
  1001. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1002. struct ggml_context * ctx,
  1003. struct ggml_tensor * a,
  1004. struct ggml_tensor * b,
  1005. size_t offset); // in bytes
  1006. // b -> view(a,offset,nb1,nb2,3), return modified a
  1007. GGML_API struct ggml_tensor * ggml_set_2d(
  1008. struct ggml_context * ctx,
  1009. struct ggml_tensor * a,
  1010. struct ggml_tensor * b,
  1011. size_t nb1,
  1012. size_t offset); // in bytes
  1013. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1014. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1015. struct ggml_context * ctx,
  1016. struct ggml_tensor * a,
  1017. struct ggml_tensor * b,
  1018. size_t nb1,
  1019. size_t offset); // in bytes
  1020. // a -> b, return view(b)
  1021. GGML_API struct ggml_tensor * ggml_cpy(
  1022. struct ggml_context * ctx,
  1023. struct ggml_tensor * a,
  1024. struct ggml_tensor * b);
  1025. GGML_API struct ggml_tensor * ggml_cast(
  1026. struct ggml_context * ctx,
  1027. struct ggml_tensor * a,
  1028. enum ggml_type type);
  1029. // make contiguous
  1030. GGML_API struct ggml_tensor * ggml_cont(
  1031. struct ggml_context * ctx,
  1032. struct ggml_tensor * a);
  1033. // make contiguous, with new shape
  1034. GGML_API struct ggml_tensor * ggml_cont_1d(
  1035. struct ggml_context * ctx,
  1036. struct ggml_tensor * a,
  1037. int64_t ne0);
  1038. GGML_API struct ggml_tensor * ggml_cont_2d(
  1039. struct ggml_context * ctx,
  1040. struct ggml_tensor * a,
  1041. int64_t ne0,
  1042. int64_t ne1);
  1043. GGML_API struct ggml_tensor * ggml_cont_3d(
  1044. struct ggml_context * ctx,
  1045. struct ggml_tensor * a,
  1046. int64_t ne0,
  1047. int64_t ne1,
  1048. int64_t ne2);
  1049. GGML_API struct ggml_tensor * ggml_cont_4d(
  1050. struct ggml_context * ctx,
  1051. struct ggml_tensor * a,
  1052. int64_t ne0,
  1053. int64_t ne1,
  1054. int64_t ne2,
  1055. int64_t ne3);
  1056. // return view(a), b specifies the new shape
  1057. // TODO: when we start computing gradient, make a copy instead of view
  1058. GGML_API struct ggml_tensor * ggml_reshape(
  1059. struct ggml_context * ctx,
  1060. struct ggml_tensor * a,
  1061. struct ggml_tensor * b);
  1062. // return view(a)
  1063. // TODO: when we start computing gradient, make a copy instead of view
  1064. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1065. struct ggml_context * ctx,
  1066. struct ggml_tensor * a,
  1067. int64_t ne0);
  1068. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1069. struct ggml_context * ctx,
  1070. struct ggml_tensor * a,
  1071. int64_t ne0,
  1072. int64_t ne1);
  1073. // return view(a)
  1074. // TODO: when we start computing gradient, make a copy instead of view
  1075. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1076. struct ggml_context * ctx,
  1077. struct ggml_tensor * a,
  1078. int64_t ne0,
  1079. int64_t ne1,
  1080. int64_t ne2);
  1081. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1082. struct ggml_context * ctx,
  1083. struct ggml_tensor * a,
  1084. int64_t ne0,
  1085. int64_t ne1,
  1086. int64_t ne2,
  1087. int64_t ne3);
  1088. // offset in bytes
  1089. GGML_API struct ggml_tensor * ggml_view_1d(
  1090. struct ggml_context * ctx,
  1091. struct ggml_tensor * a,
  1092. int64_t ne0,
  1093. size_t offset);
  1094. GGML_API struct ggml_tensor * ggml_view_2d(
  1095. struct ggml_context * ctx,
  1096. struct ggml_tensor * a,
  1097. int64_t ne0,
  1098. int64_t ne1,
  1099. size_t nb1, // row stride in bytes
  1100. size_t offset);
  1101. GGML_API struct ggml_tensor * ggml_view_3d(
  1102. struct ggml_context * ctx,
  1103. struct ggml_tensor * a,
  1104. int64_t ne0,
  1105. int64_t ne1,
  1106. int64_t ne2,
  1107. size_t nb1, // row stride in bytes
  1108. size_t nb2, // slice stride in bytes
  1109. size_t offset);
  1110. GGML_API struct ggml_tensor * ggml_view_4d(
  1111. struct ggml_context * ctx,
  1112. struct ggml_tensor * a,
  1113. int64_t ne0,
  1114. int64_t ne1,
  1115. int64_t ne2,
  1116. int64_t ne3,
  1117. size_t nb1, // row stride in bytes
  1118. size_t nb2, // slice stride in bytes
  1119. size_t nb3,
  1120. size_t offset);
  1121. GGML_API struct ggml_tensor * ggml_permute(
  1122. struct ggml_context * ctx,
  1123. struct ggml_tensor * a,
  1124. int axis0,
  1125. int axis1,
  1126. int axis2,
  1127. int axis3);
  1128. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1129. GGML_API struct ggml_tensor * ggml_transpose(
  1130. struct ggml_context * ctx,
  1131. struct ggml_tensor * a);
  1132. // supports 3D: a->ne[2] == b->ne[1]
  1133. GGML_API struct ggml_tensor * ggml_get_rows(
  1134. struct ggml_context * ctx,
  1135. struct ggml_tensor * a, // data
  1136. struct ggml_tensor * b); // row indices
  1137. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1138. struct ggml_context * ctx,
  1139. struct ggml_tensor * a, // gradients of ggml_get_rows result
  1140. struct ggml_tensor * b, // row indices
  1141. struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
  1142. GGML_API struct ggml_tensor * ggml_diag(
  1143. struct ggml_context * ctx,
  1144. struct ggml_tensor * a);
  1145. // set elements above the diagonal to -INF
  1146. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1147. struct ggml_context * ctx,
  1148. struct ggml_tensor * a,
  1149. int n_past);
  1150. // in-place, returns view(a)
  1151. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1152. struct ggml_context * ctx,
  1153. struct ggml_tensor * a,
  1154. int n_past);
  1155. // set elements above the diagonal to 0
  1156. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1157. struct ggml_context * ctx,
  1158. struct ggml_tensor * a,
  1159. int n_past);
  1160. // in-place, returns view(a)
  1161. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1162. struct ggml_context * ctx,
  1163. struct ggml_tensor * a,
  1164. int n_past);
  1165. GGML_API struct ggml_tensor * ggml_soft_max(
  1166. struct ggml_context * ctx,
  1167. struct ggml_tensor * a);
  1168. // in-place, returns view(a)
  1169. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1170. struct ggml_context * ctx,
  1171. struct ggml_tensor * a);
  1172. // fused soft_max(a*scale + mask*(ALiBi slope))
  1173. // mask is optional
  1174. // max_bias = 0.0f for no ALiBi
  1175. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1176. struct ggml_context * ctx,
  1177. struct ggml_tensor * a,
  1178. struct ggml_tensor * mask,
  1179. float scale,
  1180. float max_bias);
  1181. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1182. struct ggml_context * ctx,
  1183. struct ggml_tensor * a,
  1184. struct ggml_tensor * b);
  1185. // in-place, returns view(a)
  1186. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1187. struct ggml_context * ctx,
  1188. struct ggml_tensor * a,
  1189. struct ggml_tensor * b);
  1190. // rotary position embedding
  1191. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1192. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1193. //
  1194. // b is an int32 vector with size a->ne[2], it contains the positions
  1195. GGML_API struct ggml_tensor * ggml_rope(
  1196. struct ggml_context * ctx,
  1197. struct ggml_tensor * a,
  1198. struct ggml_tensor * b,
  1199. int n_dims,
  1200. int mode);
  1201. // in-place, returns view(a)
  1202. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1203. struct ggml_context * ctx,
  1204. struct ggml_tensor * a,
  1205. struct ggml_tensor * b,
  1206. int n_dims,
  1207. int mode);
  1208. // custom RoPE
  1209. // c is freq factors (e.g. phi3-128k), (optional)
  1210. GGML_API struct ggml_tensor * ggml_rope_ext(
  1211. struct ggml_context * ctx,
  1212. struct ggml_tensor * a,
  1213. struct ggml_tensor * b,
  1214. struct ggml_tensor * c,
  1215. int n_dims,
  1216. int mode,
  1217. int n_ctx_orig,
  1218. float freq_base,
  1219. float freq_scale,
  1220. float ext_factor,
  1221. float attn_factor,
  1222. float beta_fast,
  1223. float beta_slow);
  1224. GGML_API struct ggml_tensor * ggml_rope_multi(
  1225. struct ggml_context * ctx,
  1226. struct ggml_tensor * a,
  1227. struct ggml_tensor * b,
  1228. struct ggml_tensor * c,
  1229. int n_dims,
  1230. int sections[4],
  1231. int mode,
  1232. int n_ctx_orig,
  1233. float freq_base,
  1234. float freq_scale,
  1235. float ext_factor,
  1236. float attn_factor,
  1237. float beta_fast,
  1238. float beta_slow);
  1239. // in-place, returns view(a)
  1240. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1241. struct ggml_context * ctx,
  1242. struct ggml_tensor * a,
  1243. struct ggml_tensor * b,
  1244. struct ggml_tensor * c,
  1245. int n_dims,
  1246. int mode,
  1247. int n_ctx_orig,
  1248. float freq_base,
  1249. float freq_scale,
  1250. float ext_factor,
  1251. float attn_factor,
  1252. float beta_fast,
  1253. float beta_slow);
  1254. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1255. struct ggml_context * ctx,
  1256. struct ggml_tensor * a,
  1257. struct ggml_tensor * b,
  1258. int n_dims,
  1259. int mode,
  1260. int n_ctx_orig,
  1261. float freq_base,
  1262. float freq_scale,
  1263. float ext_factor,
  1264. float attn_factor,
  1265. float beta_fast,
  1266. float beta_slow),
  1267. "use ggml_rope_ext instead");
  1268. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1269. struct ggml_context * ctx,
  1270. struct ggml_tensor * a,
  1271. struct ggml_tensor * b,
  1272. int n_dims,
  1273. int mode,
  1274. int n_ctx_orig,
  1275. float freq_base,
  1276. float freq_scale,
  1277. float ext_factor,
  1278. float attn_factor,
  1279. float beta_fast,
  1280. float beta_slow),
  1281. "use ggml_rope_ext_inplace instead");
  1282. // compute correction dims for YaRN RoPE scaling
  1283. GGML_API void ggml_rope_yarn_corr_dims(
  1284. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1285. // rotary position embedding backward, i.e compute dx from dy
  1286. // a - dy
  1287. GGML_API struct ggml_tensor * ggml_rope_back(
  1288. struct ggml_context * ctx,
  1289. struct ggml_tensor * a, // gradients of ggml_rope result
  1290. struct ggml_tensor * b, // positions
  1291. struct ggml_tensor * c, // freq factors
  1292. int n_dims,
  1293. int mode,
  1294. int n_ctx_orig,
  1295. float freq_base,
  1296. float freq_scale,
  1297. float ext_factor,
  1298. float attn_factor,
  1299. float beta_fast,
  1300. float beta_slow);
  1301. // clamp
  1302. // in-place, returns view(a)
  1303. GGML_API struct ggml_tensor * ggml_clamp(
  1304. struct ggml_context * ctx,
  1305. struct ggml_tensor * a,
  1306. float min,
  1307. float max);
  1308. // im2col
  1309. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1310. GGML_API struct ggml_tensor * ggml_im2col(
  1311. struct ggml_context * ctx,
  1312. struct ggml_tensor * a, // convolution kernel
  1313. struct ggml_tensor * b, // data
  1314. int s0, // stride dimension 0
  1315. int s1, // stride dimension 1
  1316. int p0, // padding dimension 0
  1317. int p1, // padding dimension 1
  1318. int d0, // dilation dimension 0
  1319. int d1, // dilation dimension 1
  1320. bool is_2D,
  1321. enum ggml_type dst_type);
  1322. GGML_API struct ggml_tensor * ggml_im2col_back(
  1323. struct ggml_context * ctx,
  1324. struct ggml_tensor * a, // convolution kernel
  1325. struct ggml_tensor * b, // gradient of im2col output
  1326. int64_t * ne, // shape of im2col input
  1327. int s0, // stride dimension 0
  1328. int s1, // stride dimension 1
  1329. int p0, // padding dimension 0
  1330. int p1, // padding dimension 1
  1331. int d0, // dilation dimension 0
  1332. int d1, // dilation dimension 1
  1333. bool is_2D);
  1334. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1335. struct ggml_context * ctx,
  1336. struct ggml_tensor * a, // convolution kernel
  1337. struct ggml_tensor * b, // data
  1338. int s0, // stride dimension 0
  1339. int s1, // stride dimension 1
  1340. int p0, // padding dimension 0
  1341. int p1, // padding dimension 1
  1342. int d0, // dilation dimension 0
  1343. int d1); // dilation dimension 1
  1344. GGML_API struct ggml_tensor * ggml_conv_1d(
  1345. struct ggml_context * ctx,
  1346. struct ggml_tensor * a, // convolution kernel
  1347. struct ggml_tensor * b, // data
  1348. int s0, // stride
  1349. int p0, // padding
  1350. int d0); // dilation
  1351. // conv_1d with padding = half
  1352. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1353. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1354. struct ggml_context * ctx,
  1355. struct ggml_tensor * a, // convolution kernel
  1356. struct ggml_tensor * b, // data
  1357. int s, // stride
  1358. int d); // dilation
  1359. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1360. struct ggml_context * ctx,
  1361. struct ggml_tensor * a, // convolution kernel
  1362. struct ggml_tensor * b, // data
  1363. int s0, // stride
  1364. int p0, // padding
  1365. int d0); // dilation
  1366. GGML_API struct ggml_tensor * ggml_conv_2d(
  1367. struct ggml_context * ctx,
  1368. struct ggml_tensor * a, // convolution kernel
  1369. struct ggml_tensor * b, // data
  1370. int s0, // stride dimension 0
  1371. int s1, // stride dimension 1
  1372. int p0, // padding dimension 0
  1373. int p1, // padding dimension 1
  1374. int d0, // dilation dimension 0
  1375. int d1); // dilation dimension 1
  1376. // kernel size is a->ne[0] x a->ne[1]
  1377. // stride is equal to kernel size
  1378. // padding is zero
  1379. // example:
  1380. // a: 16 16 3 768
  1381. // b: 1024 1024 3 1
  1382. // res: 64 64 768 1
  1383. // used in sam
  1384. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1385. struct ggml_context * ctx,
  1386. struct ggml_tensor * a,
  1387. struct ggml_tensor * b);
  1388. // kernel size is a->ne[0] x a->ne[1]
  1389. // stride is 1
  1390. // padding is half
  1391. // example:
  1392. // a: 3 3 256 256
  1393. // b: 64 64 256 1
  1394. // res: 64 64 256 1
  1395. // used in sam
  1396. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1397. struct ggml_context * ctx,
  1398. struct ggml_tensor * a,
  1399. struct ggml_tensor * b);
  1400. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1401. struct ggml_context * ctx,
  1402. struct ggml_tensor * a,
  1403. struct ggml_tensor * b,
  1404. int stride);
  1405. enum ggml_op_pool {
  1406. GGML_OP_POOL_MAX,
  1407. GGML_OP_POOL_AVG,
  1408. GGML_OP_POOL_COUNT,
  1409. };
  1410. GGML_API struct ggml_tensor * ggml_pool_1d(
  1411. struct ggml_context * ctx,
  1412. struct ggml_tensor * a,
  1413. enum ggml_op_pool op,
  1414. int k0, // kernel size
  1415. int s0, // stride
  1416. int p0); // padding
  1417. // the result will have 2*p0 padding for the first dimension
  1418. // and 2*p1 padding for the second dimension
  1419. GGML_API struct ggml_tensor * ggml_pool_2d(
  1420. struct ggml_context * ctx,
  1421. struct ggml_tensor * a,
  1422. enum ggml_op_pool op,
  1423. int k0,
  1424. int k1,
  1425. int s0,
  1426. int s1,
  1427. float p0,
  1428. float p1);
  1429. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1430. struct ggml_context * ctx,
  1431. struct ggml_tensor * a,
  1432. struct ggml_tensor * af, // "a"/input used in forward pass
  1433. enum ggml_op_pool op,
  1434. int k0,
  1435. int k1,
  1436. int s0,
  1437. int s1,
  1438. float p0,
  1439. float p1);
  1440. // nearest interpolate
  1441. // multiplies ne0 and ne1 by scale factor
  1442. // used in stable-diffusion
  1443. GGML_API struct ggml_tensor * ggml_upscale(
  1444. struct ggml_context * ctx,
  1445. struct ggml_tensor * a,
  1446. int scale_factor);
  1447. // nearest interpolate
  1448. // nearest interpolate to specified dimensions
  1449. // used in tortoise.cpp
  1450. GGML_API struct ggml_tensor * ggml_upscale_ext(
  1451. struct ggml_context * ctx,
  1452. struct ggml_tensor * a,
  1453. int ne0,
  1454. int ne1,
  1455. int ne2,
  1456. int ne3);
  1457. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1458. GGML_API struct ggml_tensor * ggml_pad(
  1459. struct ggml_context * ctx,
  1460. struct ggml_tensor * a,
  1461. int p0,
  1462. int p1,
  1463. int p2,
  1464. int p3);
  1465. // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
  1466. GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
  1467. struct ggml_context * ctx,
  1468. struct ggml_tensor * a,
  1469. int p0,
  1470. int p1);
  1471. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1472. // timesteps: [N,]
  1473. // return: [N, dim]
  1474. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1475. struct ggml_context * ctx,
  1476. struct ggml_tensor * timesteps,
  1477. int dim,
  1478. int max_period);
  1479. // sort rows
  1480. enum ggml_sort_order {
  1481. GGML_SORT_ORDER_ASC,
  1482. GGML_SORT_ORDER_DESC,
  1483. };
  1484. GGML_API struct ggml_tensor * ggml_argsort(
  1485. struct ggml_context * ctx,
  1486. struct ggml_tensor * a,
  1487. enum ggml_sort_order order);
  1488. GGML_API struct ggml_tensor * ggml_arange(
  1489. struct ggml_context * ctx,
  1490. float start,
  1491. float stop,
  1492. float step);
  1493. // top k elements per row
  1494. GGML_API struct ggml_tensor * ggml_top_k(
  1495. struct ggml_context * ctx,
  1496. struct ggml_tensor * a,
  1497. int k);
  1498. #define GGML_KQ_MASK_PAD 32
  1499. // q: [n_embd, n_batch, n_head, 1]
  1500. // k: [n_embd, n_kv, n_head_kv, 1]
  1501. // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
  1502. // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1503. // res: [n_embd, n_head, n_batch, 1] !! permuted !!
  1504. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1505. struct ggml_context * ctx,
  1506. struct ggml_tensor * q,
  1507. struct ggml_tensor * k,
  1508. struct ggml_tensor * v,
  1509. struct ggml_tensor * mask,
  1510. float scale,
  1511. float max_bias,
  1512. float logit_softcap);
  1513. GGML_API void ggml_flash_attn_ext_set_prec(
  1514. struct ggml_tensor * a,
  1515. enum ggml_prec prec);
  1516. GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
  1517. const struct ggml_tensor * a);
  1518. // TODO: needs to be adapted to ggml_flash_attn_ext
  1519. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1520. struct ggml_context * ctx,
  1521. struct ggml_tensor * q,
  1522. struct ggml_tensor * k,
  1523. struct ggml_tensor * v,
  1524. struct ggml_tensor * d,
  1525. bool masked);
  1526. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1527. struct ggml_context * ctx,
  1528. struct ggml_tensor * sx,
  1529. struct ggml_tensor * c);
  1530. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1531. struct ggml_context * ctx,
  1532. struct ggml_tensor * s,
  1533. struct ggml_tensor * x,
  1534. struct ggml_tensor * dt,
  1535. struct ggml_tensor * A,
  1536. struct ggml_tensor * B,
  1537. struct ggml_tensor * C);
  1538. // partition into non-overlapping windows with padding if needed
  1539. // example:
  1540. // a: 768 64 64 1
  1541. // w: 14
  1542. // res: 768 14 14 25
  1543. // used in sam
  1544. GGML_API struct ggml_tensor * ggml_win_part(
  1545. struct ggml_context * ctx,
  1546. struct ggml_tensor * a,
  1547. int w);
  1548. // reverse of ggml_win_part
  1549. // used in sam
  1550. GGML_API struct ggml_tensor * ggml_win_unpart(
  1551. struct ggml_context * ctx,
  1552. struct ggml_tensor * a,
  1553. int w0,
  1554. int h0,
  1555. int w);
  1556. GGML_API struct ggml_tensor * ggml_unary(
  1557. struct ggml_context * ctx,
  1558. struct ggml_tensor * a,
  1559. enum ggml_unary_op op);
  1560. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1561. struct ggml_context * ctx,
  1562. struct ggml_tensor * a,
  1563. enum ggml_unary_op op);
  1564. // used in sam
  1565. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1566. struct ggml_context * ctx,
  1567. struct ggml_tensor * a,
  1568. int qh,
  1569. int kh);
  1570. // used in sam
  1571. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1572. struct ggml_context * ctx,
  1573. struct ggml_tensor * a,
  1574. struct ggml_tensor * pw,
  1575. struct ggml_tensor * ph);
  1576. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1577. struct ggml_context * ctx,
  1578. struct ggml_tensor * a,
  1579. struct ggml_tensor * pw,
  1580. struct ggml_tensor * ph);
  1581. GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
  1582. struct ggml_context * ctx,
  1583. struct ggml_tensor * k,
  1584. struct ggml_tensor * v,
  1585. struct ggml_tensor * r,
  1586. struct ggml_tensor * tf,
  1587. struct ggml_tensor * td,
  1588. struct ggml_tensor * state);
  1589. // custom operators
  1590. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1591. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1592. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1593. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1594. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1595. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1596. struct ggml_context * ctx,
  1597. struct ggml_tensor * a,
  1598. ggml_unary_op_f32_t fun),
  1599. "use ggml_map_custom1 instead");
  1600. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1601. struct ggml_context * ctx,
  1602. struct ggml_tensor * a,
  1603. ggml_unary_op_f32_t fun),
  1604. "use ggml_map_custom1_inplace instead");
  1605. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1606. struct ggml_context * ctx,
  1607. struct ggml_tensor * a,
  1608. struct ggml_tensor * b,
  1609. ggml_binary_op_f32_t fun),
  1610. "use ggml_map_custom2 instead");
  1611. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1612. struct ggml_context * ctx,
  1613. struct ggml_tensor * a,
  1614. struct ggml_tensor * b,
  1615. ggml_binary_op_f32_t fun),
  1616. "use ggml_map_custom2_inplace instead");
  1617. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1618. struct ggml_context * ctx,
  1619. struct ggml_tensor * a,
  1620. ggml_custom1_op_f32_t fun),
  1621. "use ggml_map_custom1 instead");
  1622. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1623. struct ggml_context * ctx,
  1624. struct ggml_tensor * a,
  1625. ggml_custom1_op_f32_t fun),
  1626. "use ggml_map_custom1_inplace instead");
  1627. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1628. struct ggml_context * ctx,
  1629. struct ggml_tensor * a,
  1630. struct ggml_tensor * b,
  1631. ggml_custom2_op_f32_t fun),
  1632. "use ggml_map_custom2 instead");
  1633. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1634. struct ggml_context * ctx,
  1635. struct ggml_tensor * a,
  1636. struct ggml_tensor * b,
  1637. ggml_custom2_op_f32_t fun),
  1638. "use ggml_map_custom2_inplace instead");
  1639. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1640. struct ggml_context * ctx,
  1641. struct ggml_tensor * a,
  1642. struct ggml_tensor * b,
  1643. struct ggml_tensor * c,
  1644. ggml_custom3_op_f32_t fun),
  1645. "use ggml_map_custom3 instead");
  1646. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1647. struct ggml_context * ctx,
  1648. struct ggml_tensor * a,
  1649. struct ggml_tensor * b,
  1650. struct ggml_tensor * c,
  1651. ggml_custom3_op_f32_t fun),
  1652. "use ggml_map_custom3_inplace instead");
  1653. // custom operators v2
  1654. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1655. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1656. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1657. #define GGML_N_TASKS_MAX (-1)
  1658. // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
  1659. GGML_API struct ggml_tensor * ggml_map_custom1(
  1660. struct ggml_context * ctx,
  1661. struct ggml_tensor * a,
  1662. ggml_custom1_op_t fun,
  1663. int n_tasks,
  1664. void * userdata);
  1665. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1666. struct ggml_context * ctx,
  1667. struct ggml_tensor * a,
  1668. ggml_custom1_op_t fun,
  1669. int n_tasks,
  1670. void * userdata);
  1671. GGML_API struct ggml_tensor * ggml_map_custom2(
  1672. struct ggml_context * ctx,
  1673. struct ggml_tensor * a,
  1674. struct ggml_tensor * b,
  1675. ggml_custom2_op_t fun,
  1676. int n_tasks,
  1677. void * userdata);
  1678. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1679. struct ggml_context * ctx,
  1680. struct ggml_tensor * a,
  1681. struct ggml_tensor * b,
  1682. ggml_custom2_op_t fun,
  1683. int n_tasks,
  1684. void * userdata);
  1685. GGML_API struct ggml_tensor * ggml_map_custom3(
  1686. struct ggml_context * ctx,
  1687. struct ggml_tensor * a,
  1688. struct ggml_tensor * b,
  1689. struct ggml_tensor * c,
  1690. ggml_custom3_op_t fun,
  1691. int n_tasks,
  1692. void * userdata);
  1693. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1694. struct ggml_context * ctx,
  1695. struct ggml_tensor * a,
  1696. struct ggml_tensor * b,
  1697. struct ggml_tensor * c,
  1698. ggml_custom3_op_t fun,
  1699. int n_tasks,
  1700. void * userdata);
  1701. // loss function
  1702. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1703. struct ggml_context * ctx,
  1704. struct ggml_tensor * a, // logits
  1705. struct ggml_tensor * b); // labels
  1706. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1707. struct ggml_context * ctx,
  1708. struct ggml_tensor * a, // logits
  1709. struct ggml_tensor * b, // labels
  1710. struct ggml_tensor * c); // gradients of cross_entropy_loss result
  1711. // AdamW optimizer step
  1712. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  1713. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  1714. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  1715. struct ggml_context * ctx,
  1716. struct ggml_tensor * a,
  1717. struct ggml_tensor * grad,
  1718. struct ggml_tensor * m,
  1719. struct ggml_tensor * v,
  1720. struct ggml_tensor * adamw_params); // parameters such a the learning rate
  1721. //
  1722. // automatic differentiation
  1723. //
  1724. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1725. GGML_API void ggml_build_backward_expand(
  1726. struct ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
  1727. struct ggml_context * ctx_compute, // context for gradient computation
  1728. struct ggml_cgraph * cgraph,
  1729. bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
  1730. // graph allocation in a context
  1731. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1732. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  1733. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1734. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1735. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  1736. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1737. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  1738. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  1739. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  1740. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  1741. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1742. GGML_API size_t ggml_graph_overhead(void);
  1743. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1744. GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
  1745. GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  1746. GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  1747. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1748. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1749. // print info and performance information for the graph
  1750. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1751. // dump the graph into a file using the dot format
  1752. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1753. // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
  1754. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1755. // Set callback for all future logging events.
  1756. // If this is not called, or NULL is supplied, everything is output on stderr.
  1757. GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
  1758. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  1759. //
  1760. // quantization
  1761. //
  1762. // - ggml_quantize_init can be called multiple times with the same type
  1763. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1764. // automatically called by ggml_quantize_chunk for convenience
  1765. //
  1766. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1767. // call this at the end of the program to avoid memory leaks
  1768. //
  1769. // note: these are thread-safe
  1770. //
  1771. GGML_API void ggml_quantize_init(enum ggml_type type);
  1772. GGML_API void ggml_quantize_free(void);
  1773. // some quantization type cannot be used without an importance matrix
  1774. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1775. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1776. GGML_API size_t ggml_quantize_chunk(
  1777. enum ggml_type type,
  1778. const float * src,
  1779. void * dst,
  1780. int64_t start,
  1781. int64_t nrows,
  1782. int64_t n_per_row,
  1783. const float * imatrix);
  1784. //
  1785. // gguf
  1786. //
  1787. enum gguf_type {
  1788. GGUF_TYPE_UINT8 = 0,
  1789. GGUF_TYPE_INT8 = 1,
  1790. GGUF_TYPE_UINT16 = 2,
  1791. GGUF_TYPE_INT16 = 3,
  1792. GGUF_TYPE_UINT32 = 4,
  1793. GGUF_TYPE_INT32 = 5,
  1794. GGUF_TYPE_FLOAT32 = 6,
  1795. GGUF_TYPE_BOOL = 7,
  1796. GGUF_TYPE_STRING = 8,
  1797. GGUF_TYPE_ARRAY = 9,
  1798. GGUF_TYPE_UINT64 = 10,
  1799. GGUF_TYPE_INT64 = 11,
  1800. GGUF_TYPE_FLOAT64 = 12,
  1801. GGUF_TYPE_COUNT, // marks the end of the enum
  1802. };
  1803. struct gguf_context;
  1804. struct gguf_init_params {
  1805. bool no_alloc;
  1806. // if not NULL, create a ggml_context and allocate the tensor data in it
  1807. struct ggml_context ** ctx;
  1808. };
  1809. GGML_API struct gguf_context * gguf_init_empty(void);
  1810. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1811. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1812. GGML_API void gguf_free(struct gguf_context * ctx);
  1813. GGML_API const char * gguf_type_name(enum gguf_type type);
  1814. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1815. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1816. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1817. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1818. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1819. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1820. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1821. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1822. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1823. // will abort if the wrong type is used for the key
  1824. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1825. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1826. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1827. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1828. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1829. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1830. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1831. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1832. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1833. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1834. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1835. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1836. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1837. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1838. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1839. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1840. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1841. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1842. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1843. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1844. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  1845. // removes key if it exists
  1846. GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
  1847. // overrides existing values or adds a new one
  1848. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1849. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1850. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1851. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1852. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1853. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1854. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1855. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1856. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1857. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1858. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1859. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1860. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1861. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1862. // set or add KV pairs from another context
  1863. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1864. // manage tensor info
  1865. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1866. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1867. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1868. // writing gguf files can be done in 2 ways:
  1869. //
  1870. // - write the entire gguf_context to a binary file in a single pass:
  1871. //
  1872. // gguf_write_to_file(ctx, fname);
  1873. //
  1874. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1875. //
  1876. // FILE * f = fopen(fname, "wb");
  1877. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1878. // fwrite(f, ...);
  1879. // void * data = gguf_meta_get_meta_data(ctx);
  1880. // fseek(f, 0, SEEK_SET);
  1881. // fwrite(f, data, gguf_get_meta_size(ctx));
  1882. // free(data);
  1883. // fclose(f);
  1884. //
  1885. // write the entire context to a binary file
  1886. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  1887. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1888. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  1889. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  1890. #ifdef __cplusplus
  1891. // restrict not standard in C++
  1892. # if defined(__GNUC__)
  1893. # define GGML_RESTRICT __restrict__
  1894. # elif defined(__clang__)
  1895. # define GGML_RESTRICT __restrict
  1896. # elif defined(_MSC_VER)
  1897. # define GGML_RESTRICT __restrict
  1898. # else
  1899. # define GGML_RESTRICT
  1900. # endif
  1901. #else
  1902. # define GGML_RESTRICT restrict
  1903. #endif
  1904. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  1905. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  1906. struct ggml_type_traits {
  1907. const char * type_name;
  1908. int64_t blck_size;
  1909. int64_t blck_size_interleave; // interleave elements in blocks
  1910. size_t type_size;
  1911. bool is_quantized;
  1912. ggml_to_float_t to_float;
  1913. ggml_from_float_t from_float_ref;
  1914. };
  1915. GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
  1916. // ggml threadpool
  1917. // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
  1918. // the goal should be to create an API that other backends can use move everything to the ggml base
  1919. // scheduling priorities
  1920. enum ggml_sched_priority {
  1921. GGML_SCHED_PRIO_NORMAL,
  1922. GGML_SCHED_PRIO_MEDIUM,
  1923. GGML_SCHED_PRIO_HIGH,
  1924. GGML_SCHED_PRIO_REALTIME
  1925. };
  1926. // threadpool params
  1927. // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
  1928. struct ggml_threadpool_params {
  1929. bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
  1930. int n_threads; // number of threads
  1931. enum ggml_sched_priority prio; // thread priority
  1932. uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
  1933. bool strict_cpu; // strict cpu placement
  1934. bool paused; // start in paused state
  1935. };
  1936. struct ggml_threadpool; // forward declaration, see ggml.c
  1937. typedef struct ggml_threadpool * ggml_threadpool_t;
  1938. GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
  1939. GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
  1940. GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
  1941. #ifdef __cplusplus
  1942. }
  1943. #endif