ggml-alloc.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038
  1. #include "ggml-alloc.h"
  2. #include "ggml-backend-impl.h"
  3. #include "ggml.h"
  4. #include "ggml-impl.h"
  5. #include <assert.h>
  6. #include <limits.h>
  7. #include <stdarg.h>
  8. #include <stdio.h>
  9. #include <stdlib.h>
  10. #include <string.h>
  11. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  12. #define MAX_FREE_BLOCKS 256
  13. //#define GGML_ALLOCATOR_DEBUG
  14. //#define AT_PRINTF(...) GGML_LOG_DEBUG(__VA_ARGS__)
  15. #define AT_PRINTF(...)
  16. static bool ggml_is_view(const struct ggml_tensor * t) {
  17. return t->view_src != NULL;
  18. }
  19. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  20. if (a->type != b->type) {
  21. return false;
  22. }
  23. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  24. if (a->ne[i] != b->ne[i]) {
  25. return false;
  26. }
  27. if (a->nb[i] != b->nb[i]) {
  28. return false;
  29. }
  30. }
  31. return true;
  32. }
  33. static bool ggml_op_can_inplace(enum ggml_op op) {
  34. switch (op) {
  35. case GGML_OP_SCALE:
  36. case GGML_OP_DIAG_MASK_ZERO:
  37. case GGML_OP_DIAG_MASK_INF:
  38. case GGML_OP_ADD:
  39. case GGML_OP_ADD1:
  40. case GGML_OP_SUB:
  41. case GGML_OP_MUL:
  42. case GGML_OP_DIV:
  43. case GGML_OP_SQR:
  44. case GGML_OP_SQRT:
  45. case GGML_OP_LOG:
  46. case GGML_OP_UNARY:
  47. case GGML_OP_ROPE:
  48. case GGML_OP_RMS_NORM:
  49. case GGML_OP_SOFT_MAX:
  50. return true;
  51. default:
  52. return false;
  53. }
  54. }
  55. static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
  56. assert(alignment && !(alignment & (alignment - 1))); // power of 2
  57. size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
  58. return offset + align;
  59. }
  60. // tallocr
  61. struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) {
  62. void * base = ggml_backend_buffer_get_base(buffer);
  63. size_t align = ggml_backend_buffer_get_alignment(buffer);
  64. assert(align && !(align & (align - 1))); // power of 2
  65. struct ggml_tallocr talloc = (struct ggml_tallocr) {
  66. /*.buffer = */ buffer,
  67. /*.base = */ base,
  68. /*.alignment = */ align,
  69. /*.offset = */ aligned_offset(base, 0, align),
  70. };
  71. return talloc;
  72. }
  73. void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
  74. size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
  75. size = GGML_PAD(size, talloc->alignment);
  76. if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) {
  77. GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n",
  78. __func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset);
  79. GGML_ABORT("not enough space in the buffer");
  80. }
  81. void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset;
  82. talloc->offset += size;
  83. assert(((uintptr_t)addr % talloc->alignment) == 0);
  84. ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
  85. }
  86. // dynamic tensor allocator
  87. struct free_block {
  88. size_t offset;
  89. size_t size;
  90. };
  91. struct ggml_dyn_tallocr {
  92. size_t alignment;
  93. int n_free_blocks;
  94. struct free_block free_blocks[MAX_FREE_BLOCKS];
  95. size_t max_size;
  96. #ifdef GGML_ALLOCATOR_DEBUG
  97. struct {
  98. const struct ggml_tensor * tensor;
  99. size_t offset;
  100. } allocated_tensors[1024];
  101. #endif
  102. };
  103. #ifdef GGML_ALLOCATOR_DEBUG
  104. static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
  105. for (int i = 0; i < 1024; i++) {
  106. if (alloc->allocated_tensors[i].tensor == NULL) {
  107. alloc->allocated_tensors[i].tensor = tensor;
  108. alloc->allocated_tensors[i].offset = offset;
  109. return;
  110. }
  111. }
  112. GGML_ABORT("out of allocated_tensors");
  113. }
  114. static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
  115. for (int i = 0; i < 1024; i++) {
  116. if (alloc->allocated_tensors[i].offset == offset) {
  117. alloc->allocated_tensors[i].tensor = NULL;
  118. return;
  119. }
  120. }
  121. GGML_ABORT("tried to free tensor %s not found\n", tensor->name);
  122. }
  123. #endif
  124. static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
  125. size = aligned_offset(NULL, size, alloc->alignment);
  126. AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
  127. size_t max_avail = 0;
  128. // find the best fitting free block besides the last block
  129. int best_fit_block = -1;
  130. size_t best_fit_size = SIZE_MAX;
  131. for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
  132. struct free_block * block = &alloc->free_blocks[i];
  133. max_avail = MAX(max_avail, block->size);
  134. if (block->size >= size && block->size <= best_fit_size) {
  135. best_fit_block = i;
  136. best_fit_size = block->size;
  137. }
  138. }
  139. if (best_fit_block == -1) {
  140. // the last block is our last resort
  141. struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
  142. max_avail = MAX(max_avail, block->size);
  143. if (block->size >= size) {
  144. best_fit_block = alloc->n_free_blocks - 1;
  145. } else {
  146. // this should never happen
  147. GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
  148. __func__, size, max_avail);
  149. GGML_ABORT("not enough space in the buffer");
  150. }
  151. }
  152. struct free_block * block = &alloc->free_blocks[best_fit_block];
  153. size_t offset = block->offset;
  154. block->offset = offset + size;
  155. block->size -= size;
  156. if (block->size == 0) {
  157. // remove block if empty
  158. alloc->n_free_blocks--;
  159. for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
  160. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  161. }
  162. }
  163. AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
  164. #ifdef GGML_ALLOCATOR_DEBUG
  165. add_allocated_tensor(alloc, offset, tensor);
  166. size_t cur_max = offset + size;
  167. if (cur_max > alloc->max_size) {
  168. // sort allocated_tensors by offset
  169. for (int i = 0; i < 1024; i++) {
  170. for (int j = i + 1; j < 1024; j++) {
  171. if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
  172. const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
  173. size_t tmp_offset = alloc->allocated_tensors[i].offset;
  174. alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
  175. alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
  176. alloc->allocated_tensors[j].tensor = tmp_tensor;
  177. alloc->allocated_tensors[j].offset = tmp_offset;
  178. }
  179. }
  180. }
  181. GGML_LOG_DEBUG("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
  182. for (int i = 0; i < 1024; i++) {
  183. if (alloc->allocated_tensors[i].tensor) {
  184. GGML_LOG_DEBUG("%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
  185. alloc->allocated_tensors[i].offset,
  186. alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
  187. ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
  188. }
  189. }
  190. GGML_LOG_DEBUG("\n");
  191. }
  192. #endif
  193. alloc->max_size = MAX(alloc->max_size, offset + size);
  194. return offset;
  195. GGML_UNUSED(tensor);
  196. }
  197. // this is a very naive implementation, but for our case the number of free blocks should be very small
  198. static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) {
  199. size = aligned_offset(NULL, size, alloc->alignment);
  200. AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
  201. #ifdef GGML_ALLOCATOR_DEBUG
  202. remove_allocated_tensor(alloc, offset, tensor);
  203. #endif
  204. // see if we can merge with an existing block
  205. for (int i = 0; i < alloc->n_free_blocks; i++) {
  206. struct free_block * block = &alloc->free_blocks[i];
  207. // check if ptr is at the end of the block
  208. if (block->offset + block->size == offset) {
  209. block->size += size;
  210. // check if we can merge with the next block
  211. if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
  212. block->size += alloc->free_blocks[i+1].size;
  213. alloc->n_free_blocks--;
  214. for (int j = i+1; j < alloc->n_free_blocks; j++) {
  215. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  216. }
  217. }
  218. return;
  219. }
  220. // check if ptr is at the beginning of the block
  221. if (offset + size == block->offset) {
  222. block->offset = offset;
  223. block->size += size;
  224. // check if we can merge with the previous block
  225. if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
  226. alloc->free_blocks[i-1].size += block->size;
  227. alloc->n_free_blocks--;
  228. for (int j = i; j < alloc->n_free_blocks; j++) {
  229. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  230. }
  231. }
  232. return;
  233. }
  234. }
  235. // otherwise, add a new block
  236. GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
  237. // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
  238. int insert_pos = 0;
  239. while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
  240. insert_pos++;
  241. }
  242. // shift all blocks from insert_pos onward to make room for the new block
  243. for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
  244. alloc->free_blocks[i] = alloc->free_blocks[i-1];
  245. }
  246. // insert the new block
  247. alloc->free_blocks[insert_pos].offset = offset;
  248. alloc->free_blocks[insert_pos].size = size;
  249. alloc->n_free_blocks++;
  250. GGML_UNUSED(tensor);
  251. }
  252. static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
  253. alloc->n_free_blocks = 1;
  254. alloc->free_blocks[0].offset = 0;
  255. alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
  256. alloc->max_size = 0;
  257. #ifdef GGML_ALLOCATOR_DEBUG
  258. for (int i = 0; i < 1024; i++) {
  259. alloc->allocated_tensors[i].tensor = NULL;
  260. }
  261. #endif
  262. }
  263. static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
  264. struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr));
  265. *alloc = (struct ggml_dyn_tallocr) {
  266. /*.alignment = */ alignment,
  267. /*.n_free_blocks = */ 0,
  268. /*.free_blocks = */ {{0}},
  269. /*.max_size = */ 0,
  270. #ifdef GGML_ALLOCATOR_DEBUG
  271. /*.allocated_tensors = */ {{0}},
  272. #endif
  273. };
  274. ggml_dyn_tallocr_reset(alloc);
  275. return alloc;
  276. }
  277. static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
  278. free(alloc);
  279. }
  280. static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
  281. return alloc->max_size;
  282. }
  283. /////////////////////////////////////
  284. // graph allocator
  285. struct hash_node {
  286. int n_children;
  287. int n_views;
  288. int buffer_id;
  289. size_t offset; // offset within the buffer
  290. bool allocated;
  291. };
  292. struct tensor_alloc {
  293. int buffer_id;
  294. size_t offset;
  295. size_t size_max; // 0 = pre-allocated, unused, or view
  296. };
  297. struct leaf_alloc {
  298. struct tensor_alloc leaf;
  299. };
  300. struct node_alloc {
  301. struct tensor_alloc dst;
  302. struct tensor_alloc src[GGML_MAX_SRC];
  303. };
  304. struct ggml_gallocr {
  305. ggml_backend_buffer_type_t * bufts; // [n_buffers]
  306. ggml_backend_buffer_t * buffers; // [n_buffers]
  307. struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
  308. int n_buffers;
  309. struct ggml_hash_set hash_set;
  310. struct hash_node * hash_values; // [hash_set.size]
  311. struct node_alloc * node_allocs; // [n_nodes]
  312. int n_nodes;
  313. struct leaf_alloc * leaf_allocs; // [n_leafs]
  314. int n_leafs;
  315. };
  316. ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) {
  317. ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(1, sizeof(struct ggml_gallocr));
  318. GGML_ASSERT(galloc != NULL);
  319. galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t));
  320. GGML_ASSERT(galloc->bufts != NULL);
  321. galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t));
  322. GGML_ASSERT(galloc->buffers != NULL);
  323. galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
  324. GGML_ASSERT(galloc->buf_tallocs != NULL);
  325. for (int i = 0; i < n_bufs; i++) {
  326. galloc->bufts[i] = bufts[i];
  327. galloc->buffers[i] = NULL;
  328. // check if the same buffer type is used multiple times and reuse the same allocator
  329. for (int j = 0; j < i; j++) {
  330. if (bufts[i] == bufts[j]) {
  331. galloc->buf_tallocs[i] = galloc->buf_tallocs[j];
  332. break;
  333. }
  334. }
  335. if (galloc->buf_tallocs[i] == NULL) {
  336. size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
  337. galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
  338. }
  339. }
  340. galloc->n_buffers = n_bufs;
  341. return galloc;
  342. }
  343. ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) {
  344. return ggml_gallocr_new_n(&buft, 1);
  345. }
  346. void ggml_gallocr_free(ggml_gallocr_t galloc) {
  347. if (galloc == NULL) {
  348. return;
  349. }
  350. for (int i = 0; i < galloc->n_buffers; i++) {
  351. if (galloc->buffers != NULL) {
  352. // skip if already freed
  353. bool freed = false;
  354. for (int j = 0; j < i; j++) {
  355. if (galloc->buffers[j] == galloc->buffers[i]) {
  356. freed = true;
  357. break;
  358. }
  359. }
  360. if (!freed) {
  361. ggml_backend_buffer_free(galloc->buffers[i]);
  362. }
  363. }
  364. if (galloc->buf_tallocs != NULL) {
  365. // skip if already freed
  366. bool freed = false;
  367. for (int j = 0; j < i; j++) {
  368. if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
  369. freed = true;
  370. break;
  371. }
  372. }
  373. if (!freed) {
  374. ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
  375. }
  376. }
  377. }
  378. ggml_hash_set_free(&galloc->hash_set);
  379. free(galloc->hash_values);
  380. free(galloc->bufts);
  381. free(galloc->buffers);
  382. free(galloc->buf_tallocs);
  383. free(galloc->node_allocs);
  384. free(galloc->leaf_allocs);
  385. free(galloc);
  386. }
  387. typedef struct ggml_gallocr * ggml_gallocr_t;
  388. static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
  389. size_t i = ggml_hash_find_or_insert(&galloc->hash_set, t);
  390. return &galloc->hash_values[i];
  391. }
  392. static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) {
  393. return ggml_gallocr_hash_get(galloc, t)->allocated;
  394. }
  395. static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) {
  396. return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated;
  397. }
  398. static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
  399. GGML_ASSERT(buffer_id >= 0);
  400. struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
  401. if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
  402. hn->allocated = true;
  403. assert(hn->offset == 0);
  404. // try to reuse a parent's buffer (inplace)
  405. if (ggml_op_can_inplace(node->op)) {
  406. for (int i = 0; i < GGML_MAX_SRC; i++) {
  407. struct ggml_tensor * parent = node->src[i];
  408. if (parent == NULL) {
  409. continue;
  410. }
  411. // if the node's data is external, then we cannot re-use it
  412. if (!ggml_gallocr_is_own(galloc, parent)) {
  413. AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
  414. continue;
  415. }
  416. // outputs cannot be reused
  417. if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) {
  418. AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name);
  419. continue;
  420. }
  421. if (!ggml_are_same_layout(node, parent)) {
  422. AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name);
  423. continue;
  424. }
  425. struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
  426. if (p_hn->n_children == 1 && p_hn->n_views == 0) {
  427. if (ggml_is_view(parent)) {
  428. struct ggml_tensor * view_src = parent->view_src;
  429. struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
  430. if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
  431. AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
  432. assert(view_src_hn->offset == p_hn->offset);
  433. hn->buffer_id = p_hn->buffer_id;
  434. hn->offset = p_hn->offset;
  435. p_hn->allocated = false; // avoid freeing the parent
  436. view_src_hn->allocated = false;
  437. return;
  438. }
  439. } else {
  440. AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
  441. hn->buffer_id = p_hn->buffer_id;
  442. hn->offset = p_hn->offset;
  443. p_hn->allocated = false; // avoid freeing the parent
  444. return;
  445. }
  446. }
  447. }
  448. }
  449. // allocate tensor from the buffer
  450. struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
  451. ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
  452. size_t size = ggml_backend_buft_get_alloc_size(buft, node);
  453. size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node);
  454. hn->buffer_id = buffer_id;
  455. hn->offset = offset;
  456. return;
  457. }
  458. }
  459. static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
  460. // graph outputs are never freed
  461. if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
  462. AT_PRINTF("not freeing output %s\n", node->name);
  463. return;
  464. }
  465. struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
  466. size_t offset = hn->offset;
  467. int buffer_id = hn->buffer_id;
  468. struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
  469. ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
  470. size_t size = ggml_backend_buft_get_alloc_size(buft, node);
  471. ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
  472. hn->allocated = false;
  473. }
  474. static int get_node_buffer_id(const int * node_buffer_ids, int i) {
  475. return node_buffer_ids ? node_buffer_ids[i] : 0;
  476. }
  477. static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
  478. // clear hash tables
  479. ggml_hash_set_reset(&galloc->hash_set);
  480. memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
  481. // allocate leafs
  482. // these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
  483. for (int i = 0; i < graph->n_leafs; i++) {
  484. struct ggml_tensor * leaf = graph->leafs[i];
  485. ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i));
  486. }
  487. // count number of children and views
  488. // allocate other graph inputs and leafs first to avoid overwriting them
  489. for (int i = 0; i < graph->n_nodes; i++) {
  490. struct ggml_tensor * node = graph->nodes[i];
  491. // TODO: better way to add external dependencies
  492. // GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
  493. // control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
  494. // itself is never used and should not be considered a dependency
  495. if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
  496. struct ggml_tensor * view_src = node->view_src;
  497. ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
  498. }
  499. if (node->flags & GGML_TENSOR_FLAG_INPUT) {
  500. ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
  501. }
  502. for (int j = 0; j < GGML_MAX_SRC; j++) {
  503. struct ggml_tensor * src = node->src[j];
  504. if (src == NULL) {
  505. continue;
  506. }
  507. ggml_gallocr_hash_get(galloc, src)->n_children += 1;
  508. // allocate explicit inputs
  509. if (src->flags & GGML_TENSOR_FLAG_INPUT) {
  510. ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
  511. }
  512. }
  513. }
  514. // allocate tensors
  515. for (int i = 0; i < graph->n_nodes; i++) {
  516. struct ggml_tensor * node = graph->nodes[i];
  517. int buffer_id = get_node_buffer_id(node_buffer_ids, i);
  518. // allocate parents (only leafs need to be allocated at this point)
  519. for (int j = 0; j < GGML_MAX_SRC; j++) {
  520. struct ggml_tensor * parent = node->src[j];
  521. if (parent == NULL) {
  522. continue;
  523. }
  524. ggml_gallocr_allocate_node(galloc, parent, buffer_id);
  525. }
  526. // allocate node
  527. ggml_gallocr_allocate_node(galloc, node, buffer_id);
  528. AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name);
  529. for (int j = 0; j < GGML_MAX_SRC; j++) {
  530. struct ggml_tensor * parent = node->src[j];
  531. if (parent == NULL) {
  532. continue;
  533. }
  534. AT_PRINTF("%s", parent->name);
  535. if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
  536. AT_PRINTF(", ");
  537. }
  538. }
  539. AT_PRINTF("\n");
  540. // update parents
  541. for (int j = 0; j < GGML_MAX_SRC; j++) {
  542. struct ggml_tensor * parent = node->src[j];
  543. if (parent == NULL) {
  544. continue;
  545. }
  546. struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
  547. p_hn->n_children -= 1;
  548. AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n",
  549. parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated);
  550. if (p_hn->n_children == 0 && p_hn->n_views == 0) {
  551. if (ggml_is_view(parent)) {
  552. struct ggml_tensor * view_src = parent->view_src;
  553. struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
  554. view_src_hn->n_views -= 1;
  555. AT_PRINTF("view_src %s: %d children, %d views\n",
  556. view_src->name, view_src_hn->n_children, view_src_hn->n_views);
  557. if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) {
  558. ggml_gallocr_free_node(galloc, view_src);
  559. }
  560. }
  561. else if (p_hn->allocated) {
  562. ggml_gallocr_free_node(galloc, parent);
  563. }
  564. }
  565. AT_PRINTF("\n");
  566. }
  567. }
  568. }
  569. bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
  570. size_t min_hash_size = graph->n_nodes + graph->n_leafs;
  571. // add 25% margin to avoid hash collisions
  572. min_hash_size += min_hash_size / 4;
  573. // initialize hash table
  574. if (galloc->hash_set.size < min_hash_size) {
  575. ggml_hash_set_free(&galloc->hash_set);
  576. galloc->hash_set = ggml_hash_set_new(min_hash_size);
  577. GGML_ASSERT(galloc->hash_set.keys != NULL);
  578. free(galloc->hash_values);
  579. galloc->hash_values = malloc(sizeof(struct hash_node) * galloc->hash_set.size);
  580. GGML_ASSERT(galloc->hash_values != NULL);
  581. }
  582. // reset allocators
  583. for (int i = 0; i < galloc->n_buffers; i++) {
  584. ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]);
  585. }
  586. // allocate in hash table
  587. ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids);
  588. // set the node_allocs from the hash table
  589. if (galloc->n_nodes < graph->n_nodes) {
  590. free(galloc->node_allocs);
  591. galloc->node_allocs = calloc(graph->n_nodes, sizeof(struct node_alloc));
  592. GGML_ASSERT(galloc->node_allocs != NULL);
  593. }
  594. galloc->n_nodes = graph->n_nodes;
  595. for (int i = 0; i < graph->n_nodes; i++) {
  596. struct ggml_tensor * node = graph->nodes[i];
  597. struct node_alloc * node_alloc = &galloc->node_allocs[i];
  598. if (node->view_src || node->data) {
  599. node_alloc->dst.buffer_id = -1;
  600. node_alloc->dst.offset = SIZE_MAX;
  601. node_alloc->dst.size_max = 0;
  602. } else {
  603. struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
  604. node_alloc->dst.buffer_id = hn->buffer_id;
  605. node_alloc->dst.offset = hn->offset;
  606. node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
  607. }
  608. for (int j = 0; j < GGML_MAX_SRC; j++) {
  609. struct ggml_tensor * src = node->src[j];
  610. if (!src || src->view_src || src->data) {
  611. node_alloc->src[j].buffer_id = -1;
  612. node_alloc->src[j].offset = SIZE_MAX;
  613. node_alloc->src[j].size_max = 0;
  614. } else {
  615. struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
  616. node_alloc->src[j].buffer_id = hn->buffer_id;
  617. node_alloc->src[j].offset = hn->offset;
  618. node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
  619. }
  620. }
  621. }
  622. if (galloc->n_leafs < graph->n_leafs) {
  623. free(galloc->leaf_allocs);
  624. galloc->leaf_allocs = calloc(graph->n_leafs, sizeof(galloc->leaf_allocs[0]));
  625. GGML_ASSERT(galloc->leaf_allocs != NULL);
  626. }
  627. galloc->n_leafs = graph->n_leafs;
  628. for (int i = 0; i < graph->n_leafs; i++) {
  629. struct ggml_tensor * leaf = graph->leafs[i];
  630. struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
  631. if (leaf->view_src || leaf->data) {
  632. galloc->leaf_allocs[i].leaf.buffer_id = -1;
  633. galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
  634. galloc->leaf_allocs[i].leaf.size_max = 0;
  635. } else {
  636. galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id;
  637. galloc->leaf_allocs[i].leaf.offset = hn->offset;
  638. galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
  639. }
  640. }
  641. // reallocate buffers if needed
  642. for (int i = 0; i < galloc->n_buffers; i++) {
  643. // if the buffer type is used multiple times, we reuse the same buffer
  644. for (int j = 0; j < i; j++) {
  645. if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
  646. galloc->buffers[i] = galloc->buffers[j];
  647. break;
  648. }
  649. }
  650. size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
  651. size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
  652. // even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
  653. if (new_size > cur_size || galloc->buffers[i] == NULL) {
  654. #ifndef NDEBUG
  655. GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  656. #endif
  657. ggml_backend_buffer_free(galloc->buffers[i]);
  658. galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
  659. if (galloc->buffers[i] == NULL) {
  660. GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
  661. return false;
  662. }
  663. ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
  664. }
  665. }
  666. return true;
  667. }
  668. bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
  669. return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL);
  670. }
  671. static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) {
  672. int buffer_id = tensor_alloc->buffer_id;
  673. assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
  674. if (tensor->view_src != NULL) {
  675. if (tensor->buffer == NULL) {
  676. assert(tensor_alloc->offset == SIZE_MAX);
  677. if (tensor->view_src->buffer == NULL) {
  678. // this tensor was allocated without ggml-backend
  679. return;
  680. }
  681. ggml_backend_view_init(tensor);
  682. }
  683. } else {
  684. if (tensor->data == NULL) {
  685. assert(tensor_alloc->offset != SIZE_MAX);
  686. assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
  687. void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
  688. void * addr = (char *)base + tensor_alloc->offset;
  689. ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
  690. } else {
  691. if (tensor->buffer == NULL) {
  692. // this tensor was allocated without ggml-backend
  693. return;
  694. }
  695. }
  696. }
  697. }
  698. static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
  699. size_t node_size = 0;
  700. if (!node->data && !node->view_src) {
  701. GGML_ASSERT(talloc->buffer_id >= 0); // prevent segfault when misusing the API
  702. node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
  703. }
  704. return talloc->size_max >= node_size;
  705. }
  706. static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
  707. if (galloc->n_nodes != graph->n_nodes) {
  708. #ifndef NDEBUG
  709. GGML_LOG_DEBUG("%s: graph has different number of nodes\n", __func__);
  710. #endif
  711. return true;
  712. }
  713. if (galloc->n_leafs != graph->n_leafs) {
  714. #ifndef NDEBUG
  715. GGML_LOG_DEBUG("%s: graph has different number of leafs\n", __func__);
  716. #endif
  717. return true;
  718. }
  719. for (int i = 0; i < graph->n_nodes; i++) {
  720. struct ggml_tensor * node = graph->nodes[i];
  721. struct node_alloc * node_alloc = &galloc->node_allocs[i];
  722. if (!ggml_gallocr_node_needs_realloc(galloc, node, &node_alloc->dst)) {
  723. #ifndef NDEBUG
  724. GGML_LOG_DEBUG("%s: node %s is not valid\n", __func__, node->name);
  725. #endif
  726. return true;
  727. }
  728. for (int j = 0; j < GGML_MAX_SRC; j++) {
  729. struct ggml_tensor * src = node->src[j];
  730. if (src == NULL) {
  731. continue;
  732. }
  733. if (!ggml_gallocr_node_needs_realloc(galloc, src, &node_alloc->src[j])) {
  734. #ifndef NDEBUG
  735. GGML_LOG_DEBUG("%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name);
  736. #endif
  737. return true;
  738. }
  739. }
  740. }
  741. return false;
  742. }
  743. bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
  744. if (ggml_gallocr_needs_realloc(galloc, graph)) {
  745. if (galloc->n_buffers == 1) {
  746. #ifndef NDEBUG
  747. GGML_LOG_DEBUG("%s: reallocating buffers automatically\n", __func__);
  748. #endif
  749. if (!ggml_gallocr_reserve(galloc, graph)) {
  750. return false;
  751. }
  752. } else {
  753. #ifndef NDEBUG
  754. GGML_LOG_DEBUG("%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__);
  755. #endif
  756. return false;
  757. }
  758. }
  759. // reset buffers
  760. for (int i = 0; i < galloc->n_buffers; i++) {
  761. if (galloc->buffers[i] != NULL) {
  762. ggml_backend_buffer_reset(galloc->buffers[i]);
  763. }
  764. }
  765. // allocate the graph tensors from the previous assignments
  766. // leafs
  767. for (int i = 0; i < graph->n_leafs; i++) {
  768. struct ggml_tensor * leaf = graph->leafs[i];
  769. struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i];
  770. ggml_gallocr_init_tensor(galloc, leaf, &leaf_alloc->leaf);
  771. }
  772. // nodes
  773. for (int i = 0; i < graph->n_nodes; i++) {
  774. struct ggml_tensor * node = graph->nodes[i];
  775. struct node_alloc * node_alloc = &galloc->node_allocs[i];
  776. for (int j = 0; j < GGML_MAX_SRC; j++) {
  777. struct ggml_tensor * src = node->src[j];
  778. if (src == NULL) {
  779. continue;
  780. }
  781. ggml_gallocr_init_tensor(galloc, src, &node_alloc->src[j]);
  782. }
  783. ggml_gallocr_init_tensor(galloc, node, &node_alloc->dst);
  784. }
  785. return true;
  786. }
  787. size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
  788. GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
  789. if (galloc->buffers[buffer_id] == NULL) {
  790. return 0;
  791. }
  792. for (int i = 0; i < buffer_id; i++) {
  793. if (galloc->buffers[i] == galloc->buffers[buffer_id]) {
  794. // this buffer is the same as a previous one due to the same buffer type being used multiple times
  795. // only return the buffer size the first time it appears to avoid double counting
  796. return 0;
  797. }
  798. }
  799. return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
  800. }
  801. // utils
  802. static bool alloc_tensor_range(struct ggml_context * ctx,
  803. struct ggml_tensor * first, struct ggml_tensor * last,
  804. ggml_backend_buffer_type_t buft, size_t size,
  805. ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
  806. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
  807. if (buffer == NULL) {
  808. #ifndef NDEBUG
  809. GGML_LOG_DEBUG("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
  810. #endif
  811. for (size_t i = 0; i < *n_buffers; i++) {
  812. ggml_backend_buffer_free((*buffers)[i]);
  813. }
  814. free(*buffers);
  815. return false;
  816. }
  817. struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
  818. for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
  819. if (t->data == NULL) {
  820. if (t->view_src == NULL) {
  821. ggml_tallocr_alloc(&tallocr, t);
  822. } else if (t->buffer == NULL) {
  823. ggml_backend_view_init(t);
  824. }
  825. } else {
  826. if (t->view_src != NULL && t->buffer == NULL) {
  827. // view of a pre-allocated tensor
  828. ggml_backend_view_init(t);
  829. }
  830. }
  831. }
  832. *buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
  833. (*buffers)[(*n_buffers)++] = buffer;
  834. return true;
  835. }
  836. ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
  837. GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
  838. size_t alignment = ggml_backend_buft_get_alignment(buft);
  839. size_t max_size = ggml_backend_buft_get_max_size(buft);
  840. ggml_backend_buffer_t * buffers = NULL;
  841. size_t n_buffers = 0;
  842. size_t cur_buf_size = 0;
  843. struct ggml_tensor * first = ggml_get_first_tensor(ctx);
  844. for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  845. size_t this_size = 0;
  846. if (t->data == NULL && t->view_src == NULL) {
  847. this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
  848. }
  849. if (this_size > max_size) {
  850. GGML_LOG_ERROR("%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
  851. __func__, t->name,
  852. ggml_backend_buft_name(buft),
  853. this_size, max_size);
  854. for (size_t i = 0; i < n_buffers; i++) {
  855. ggml_backend_buffer_free(buffers[i]);
  856. }
  857. free(buffers);
  858. return NULL;
  859. }
  860. if ((cur_buf_size + this_size) > max_size) {
  861. // allocate tensors in the current buffer
  862. if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
  863. return NULL;
  864. }
  865. first = t;
  866. cur_buf_size = this_size;
  867. } else {
  868. cur_buf_size += this_size;
  869. }
  870. }
  871. // allocate remaining tensors
  872. if (cur_buf_size > 0) {
  873. if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) {
  874. return NULL;
  875. }
  876. }
  877. if (n_buffers == 0) {
  878. #ifndef NDEBUG
  879. GGML_LOG_DEBUG("%s: all tensors in the context are already allocated\n", __func__);
  880. #endif
  881. return NULL;
  882. }
  883. ggml_backend_buffer_t buffer;
  884. if (n_buffers == 1) {
  885. buffer = buffers[0];
  886. } else {
  887. buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers);
  888. }
  889. free(buffers);
  890. return buffer;
  891. }
  892. ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
  893. return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
  894. }