ggml-cpu-quants.c 478 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835
  1. #define GGML_COMMON_IMPL_C
  2. #include "ggml-common.h"
  3. #include "ggml-quants.h"
  4. #include "ggml-cpu-quants.h"
  5. #include "ggml-impl.h"
  6. #include "ggml-cpu-impl.h"
  7. #include "ggml-cpu.h"
  8. #include <math.h>
  9. #include <string.h>
  10. #include <assert.h>
  11. #include <float.h>
  12. #include <stdlib.h> // for qsort
  13. #include <stdio.h> // for GGML_ASSERT
  14. #define GROUP_MAX_EPS 1e-15f
  15. #define GROUP_MAX_EPS_IQ3_XXS 1e-8f
  16. #define GROUP_MAX_EPS_IQ2_S 1e-8f
  17. #define GROUP_MAX_EPS_IQ1_M 1e-7f
  18. #define GROUP_MAX_EPS_IQ1_S 1e-12f
  19. #if defined(_MSC_VER)
  20. // disable "possible loss of data" to avoid warnings for hundreds of casts
  21. // we should just be careful :)
  22. #pragma warning(disable: 4244 4267)
  23. #endif
  24. #define UNUSED GGML_UNUSED
  25. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  26. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  27. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  28. // multiply int8_t, add results pairwise twice
  29. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  30. // Get absolute values of x vectors
  31. const __m128i ax = _mm_sign_epi8(x, x);
  32. // Sign the values of the y vectors
  33. const __m128i sy = _mm_sign_epi8(y, x);
  34. // Perform multiplication and create 16-bit values
  35. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  36. const __m128i ones = _mm_set1_epi16(1);
  37. return _mm_madd_epi16(ones, dot);
  38. }
  39. #if __AVX__ || __AVX2__ || __AVX512F__
  40. // horizontally add 8 floats
  41. static inline float hsum_float_8(const __m256 x) {
  42. __m128 res = _mm256_extractf128_ps(x, 1);
  43. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  44. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  45. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  46. return _mm_cvtss_f32(res);
  47. }
  48. // horizontally add 8 int32_t
  49. static inline int hsum_i32_8(const __m256i a) {
  50. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  51. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  52. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  53. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  54. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  55. }
  56. // horizontally add 4 int32_t
  57. static inline int hsum_i32_4(const __m128i a) {
  58. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  59. const __m128i sum64 = _mm_add_epi32(hi64, a);
  60. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  61. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  62. }
  63. #if defined(__AVX2__) || defined(__AVX512F__)
  64. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  65. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  66. uint32_t x32;
  67. memcpy(&x32, x, sizeof(uint32_t));
  68. const __m256i shuf_mask = _mm256_set_epi64x(
  69. 0x0303030303030303, 0x0202020202020202,
  70. 0x0101010101010101, 0x0000000000000000);
  71. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  72. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  73. bytes = _mm256_or_si256(bytes, bit_mask);
  74. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  75. }
  76. // Unpack 32 4-bit fields into 32 bytes
  77. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  78. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  79. {
  80. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  81. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  82. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  83. return _mm256_and_si256(lowMask, bytes);
  84. }
  85. // add int16_t pairwise and return as float vector
  86. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  87. const __m256i ones = _mm256_set1_epi16(1);
  88. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  89. return _mm256_cvtepi32_ps(summed_pairs);
  90. }
  91. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  92. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  93. const __m256i zero = _mm256_setzero_si256();
  94. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  95. return _mm256_cvtepi32_ps(summed_pairs);
  96. #else
  97. // Perform multiplication and create 16-bit values
  98. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  99. return sum_i16_pairs_float(dot);
  100. #endif
  101. }
  102. // multiply int8_t, add results pairwise twice and return as float vector
  103. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  104. #if __AVXVNNIINT8__
  105. const __m256i zero = _mm256_setzero_si256();
  106. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  107. return _mm256_cvtepi32_ps(summed_pairs);
  108. #else
  109. // Get absolute values of x vectors
  110. const __m256i ax = _mm256_sign_epi8(x, x);
  111. // Sign the values of the y vectors
  112. const __m256i sy = _mm256_sign_epi8(y, x);
  113. return mul_sum_us8_pairs_float(ax, sy);
  114. #endif
  115. }
  116. static inline __m128i packNibbles( __m256i bytes )
  117. {
  118. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  119. #if __AVX512F__
  120. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  121. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  122. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  123. #else
  124. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  125. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  126. __m256i low = _mm256_and_si256( lowByte, bytes );
  127. high = _mm256_srli_epi16( high, 4 );
  128. bytes = _mm256_or_si256( low, high );
  129. // Compress uint16_t lanes into bytes
  130. __m128i r0 = _mm256_castsi256_si128( bytes );
  131. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  132. return _mm_packus_epi16( r0, r1 );
  133. #endif
  134. }
  135. #elif defined(__AVX__)
  136. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  137. {
  138. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  139. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  140. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  141. __m128i low = _mm_and_si128( lowByte, bytes1 );
  142. high = _mm_srli_epi16( high, 4 );
  143. bytes1 = _mm_or_si128( low, high );
  144. high = _mm_andnot_si128( lowByte, bytes2 );
  145. low = _mm_and_si128( lowByte, bytes2 );
  146. high = _mm_srli_epi16( high, 4 );
  147. bytes2 = _mm_or_si128( low, high );
  148. return _mm_packus_epi16( bytes1, bytes2);
  149. }
  150. static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
  151. const __m128i ax = _mm_sign_epi8(x, x);
  152. const __m128i sy = _mm_sign_epi8(y, x);
  153. return _mm_maddubs_epi16(ax, sy);
  154. }
  155. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  156. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  157. uint32_t x32;
  158. memcpy(&x32, x, sizeof(uint32_t));
  159. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  160. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  161. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  162. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  163. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  164. bytesl = _mm_or_si128(bytesl, bit_mask);
  165. bytesh = _mm_or_si128(bytesh, bit_mask);
  166. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  167. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  168. return MM256_SET_M128I(bytesh, bytesl);
  169. }
  170. // Unpack 32 4-bit fields into 32 bytes
  171. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  172. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  173. {
  174. // Load 16 bytes from memory
  175. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  176. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  177. const __m128i lowMask = _mm_set1_epi8(0xF);
  178. tmpl = _mm_and_si128(lowMask, tmpl);
  179. tmph = _mm_and_si128(lowMask, tmph);
  180. return MM256_SET_M128I(tmph, tmpl);
  181. }
  182. // add int16_t pairwise and return as float vector
  183. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  184. const __m128i ones = _mm_set1_epi16(1);
  185. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  186. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  187. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  188. return _mm256_cvtepi32_ps(summed_pairs);
  189. }
  190. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  191. const __m128i axl = _mm256_castsi256_si128(ax);
  192. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  193. const __m128i syl = _mm256_castsi256_si128(sy);
  194. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  195. // Perform multiplication and create 16-bit values
  196. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  197. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  198. return sum_i16_pairs_float(doth, dotl);
  199. }
  200. // multiply int8_t, add results pairwise twice and return as float vector
  201. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  202. const __m128i xl = _mm256_castsi256_si128(x);
  203. const __m128i xh = _mm256_extractf128_si256(x, 1);
  204. const __m128i yl = _mm256_castsi256_si128(y);
  205. const __m128i yh = _mm256_extractf128_si256(y, 1);
  206. // Get absolute values of x vectors
  207. const __m128i axl = _mm_sign_epi8(xl, xl);
  208. const __m128i axh = _mm_sign_epi8(xh, xh);
  209. // Sign the values of the y vectors
  210. const __m128i syl = _mm_sign_epi8(yl, xl);
  211. const __m128i syh = _mm_sign_epi8(yh, xh);
  212. // Perform multiplication and create 16-bit values
  213. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  214. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  215. return sum_i16_pairs_float(doth, dotl);
  216. }
  217. // larger version of mul_sum_i8_pairs_float where x and y are each represented by four 128-bit vectors
  218. static inline __m256 mul_sum_i8_quad_float(const __m128i x_1_0, const __m128i x_1_1, const __m128i x_2_0, const __m128i x_2_1,
  219. const __m128i y_1_0, const __m128i y_1_1, const __m128i y_2_0, const __m128i y_2_1) {
  220. const __m128i mone = _mm_set1_epi16(1);
  221. const __m128i p16_1_0 = mul_add_epi8_sse(x_1_0, y_1_0);
  222. const __m128i p16_1_1 = mul_add_epi8_sse(x_1_1, y_1_1);
  223. const __m128i p16_2_0 = mul_add_epi8_sse(x_2_0, y_2_0);
  224. const __m128i p16_2_1 = mul_add_epi8_sse(x_2_1, y_2_1);
  225. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
  226. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
  227. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
  228. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
  229. const __m128i p_1 = _mm_add_epi32(p_1_0, p_1_1);
  230. const __m128i p_2 = _mm_add_epi32(p_2_0, p_2_1);
  231. return _mm256_cvtepi32_ps(MM256_SET_M128I(p_2, p_1));
  232. }
  233. // quad fp16 delta calculation
  234. static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const float x1, const float y1) {
  235. // GGML_FP16_TO_FP32 is faster than Intel F16C
  236. return _mm256_set_m128(_mm_set1_ps(GGML_FP16_TO_FP32(x1) * GGML_FP16_TO_FP32(y1)),
  237. _mm_set1_ps(GGML_FP16_TO_FP32(x0) * GGML_FP16_TO_FP32(y0)));
  238. }
  239. #endif
  240. #elif defined(__SSSE3__)
  241. // horizontally add 4x4 floats
  242. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  243. __m128 res_0 =_mm_hadd_ps(a, b);
  244. __m128 res_1 =_mm_hadd_ps(c, d);
  245. __m128 res =_mm_hadd_ps(res_0, res_1);
  246. res =_mm_hadd_ps(res, res);
  247. res =_mm_hadd_ps(res, res);
  248. return _mm_cvtss_f32(res);
  249. }
  250. #endif // __AVX__ || __AVX2__ || __AVX512F__
  251. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  252. #if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  253. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  254. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  255. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  256. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  257. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  258. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  259. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  260. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  261. // precomputed tables for expanding 8bits to 8 bytes:
  262. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  263. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  264. #endif
  265. #if defined(__loongarch_asx)
  266. #ifdef __clang__
  267. #define VREGS_PREFIX "$vr"
  268. #define XREGS_PREFIX "$xr"
  269. #else // GCC
  270. #define VREGS_PREFIX "$f"
  271. #define XREGS_PREFIX "$f"
  272. #endif
  273. #define __ALL_REGS "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31"
  274. // Convert __m128i to __m256i
  275. static inline __m256i ____m256i(__m128i in) {
  276. __m256i out = __lasx_xvldi(0);
  277. __asm__ volatile (
  278. ".irp i," __ALL_REGS "\n\t"
  279. " .ifc %[out], " XREGS_PREFIX"\\i \n\t"
  280. " .irp j," __ALL_REGS "\n\t"
  281. " .ifc %[in], " VREGS_PREFIX "\\j \n\t"
  282. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  283. " .endif \n\t"
  284. " .endr \n\t"
  285. " .endif \n\t"
  286. ".endr \n\t"
  287. : [out] "+f" (out) : [in] "f" (in)
  288. );
  289. return out;
  290. }
  291. // Convert two __m128i to __m256i
  292. static inline __m256i lasx_set_q(__m128i inhi, __m128i inlo) {
  293. __m256i out;
  294. __asm__ volatile (
  295. ".irp i," __ALL_REGS "\n\t"
  296. " .ifc %[hi], " VREGS_PREFIX "\\i \n\t"
  297. " .irp j," __ALL_REGS "\n\t"
  298. " .ifc %[lo], " VREGS_PREFIX "\\j \n\t"
  299. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  300. " .endif \n\t"
  301. " .endr \n\t"
  302. " .endif \n\t"
  303. ".endr \n\t"
  304. ".ifnc %[out], %[hi] \n\t"
  305. ".irp i," __ALL_REGS "\n\t"
  306. " .ifc %[out], " XREGS_PREFIX "\\i \n\t"
  307. " .irp j," __ALL_REGS "\n\t"
  308. " .ifc %[hi], " VREGS_PREFIX "\\j \n\t"
  309. " xvori.b $xr\\i, $xr\\j, 0 \n\t"
  310. " .endif \n\t"
  311. " .endr \n\t"
  312. " .endif \n\t"
  313. ".endr \n\t"
  314. ".endif \n\t"
  315. : [out] "=f" (out), [hi] "+f" (inhi)
  316. : [lo] "f" (inlo)
  317. );
  318. return out;
  319. }
  320. // Convert __m256i low part to __m128i
  321. static inline __m128i lasx_extracti128_lo(__m256i in) {
  322. __m128i out;
  323. __asm__ volatile (
  324. ".ifnc %[out], %[in] \n\t"
  325. ".irp i," __ALL_REGS "\n\t"
  326. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  327. " .irp j," __ALL_REGS "\n\t"
  328. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  329. " vori.b $vr\\i, $vr\\j, 0 \n\t"
  330. " .endif \n\t"
  331. " .endr \n\t"
  332. " .endif \n\t"
  333. ".endr \n\t"
  334. ".endif \n\t"
  335. : [out] "=f" (out) : [in] "f" (in)
  336. );
  337. return out;
  338. }
  339. // Convert __m256i high part to __m128i
  340. static inline __m128i lasx_extracti128_hi(__m256i in) {
  341. __m128i out;
  342. __asm__ volatile (
  343. ".irp i," __ALL_REGS "\n\t"
  344. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  345. " .irp j," __ALL_REGS "\n\t"
  346. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  347. " xvpermi.q $xr\\i, $xr\\j, 0x11 \n\t"
  348. " .endif \n\t"
  349. " .endr \n\t"
  350. " .endif \n\t"
  351. ".endr \n\t"
  352. : [out] "=f" (out) : [in] "f" (in)
  353. );
  354. return out;
  355. }
  356. static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0) {
  357. v8i32 __ret = {e0, e1, e2, e3, e4, e5, e6, e7};
  358. return (__m256i)__ret;
  359. }
  360. static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
  361. v4i32 __ret = {d, c, b, a};
  362. return (__m128i)__ret;
  363. }
  364. static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) {
  365. v4i64 __ret = {d, c, b, a};
  366. return (__m256i)__ret;
  367. }
  368. static __m256i lasx_insertf128( __m128i x, __m128i y) {
  369. return lasx_set_q(x, y);
  370. }
  371. static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
  372. __m128i mask_f, zero, tmp0, tmp2, mask;
  373. int f = 0x8f;
  374. mask_f = __lsx_vreplgr2vr_b(f);
  375. zero = __lsx_vldi(0);
  376. tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
  377. tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  378. mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
  379. tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
  380. return __lsx_vshuf_b(a, zero, tmp2);
  381. }
  382. static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
  383. __m256i mask_f, zero, tmp0, tmp2, mask;
  384. int f = 0x8f;
  385. mask_f = __lasx_xvreplgr2vr_b(f);
  386. zero = __lasx_xvldi(0);
  387. tmp0 = __lasx_xvand_v(b, mask_f); // get mask with low 4 bit and sign bits
  388. tmp0 = __lasx_xvori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  389. mask = __lasx_xvsle_b(zero, tmp0); // if mask >= 0, set mask
  390. tmp2 = __lasx_xvand_v(tmp0, mask); // maskout the in2 < ones
  391. return __lasx_xvshuf_b(a, zero, tmp2);
  392. }
  393. static __m256i lasx_extu8_16(__m128i a) {
  394. __m128i zero = __lsx_vldi(0);
  395. __m128i vlo = __lsx_vilvl_b(zero, a);
  396. __m128i vhi = __lsx_vilvh_b(zero, a);
  397. return lasx_set_q(vhi, vlo);
  398. }
  399. static __m256i lasx_ext8_16(__m128i a) {
  400. __m128i sign = __lsx_vslti_b(a, 0);
  401. __m128i vlo = __lsx_vilvl_b(sign, a);
  402. __m128i vhi = __lsx_vilvh_b(sign, a);
  403. return lasx_set_q(vhi, vlo);
  404. }
  405. static __m256i lasx_ext16_32(__m128i a) {
  406. __m256i tmp1;
  407. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0);
  408. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1);
  409. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2);
  410. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3);
  411. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4);
  412. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5);
  413. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6);
  414. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7);
  415. return tmp1;
  416. }
  417. static __m128i lasx_extracti128( __m256i a, int pos) {
  418. __m128i ret;
  419. if( pos == 0)
  420. {
  421. ret = lasx_extracti128_lo(a);
  422. } else {
  423. ret = lasx_extracti128_hi(a);
  424. }
  425. return ret;
  426. }
  427. static __m128 lasx_extractf128( __m256 a, int pos) {
  428. __m128 ret;
  429. if( pos == 0)
  430. {
  431. ret = (__m128)lasx_extracti128_lo((__m256i)a);
  432. } else {
  433. ret = (__m128)lasx_extracti128_hi((__m256i)a);
  434. }
  435. return ret;
  436. }
  437. static __m128i lsx_hadd_h(__m128i a, __m128i b) {
  438. __m128i tmp1 = __lsx_vpickev_h(b, a);
  439. __m128i tmp2 = __lsx_vpickod_h(b, a);
  440. return __lsx_vadd_h(tmp1, tmp2);
  441. }
  442. static __m128i lsx_hadd_w(__m128i a, __m128i b) {
  443. __m128i tmp1 = __lsx_vpickev_w(b, a);
  444. __m128i tmp2 = __lsx_vpickod_w(b, a);
  445. return __lsx_vadd_w(tmp1, tmp2);
  446. }
  447. static __m128 lsx_hadd_s(__m128 a, __m128 b) {
  448. __m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
  449. __m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
  450. return __lsx_vfadd_s(tmp1, tmp2);
  451. }
  452. static __m256i lasx_maddubs_h(__m256i a, __m256i b) {
  453. __m256i tmp1, tmp2;
  454. tmp1 = __lasx_xvmulwev_h_b(a, b);
  455. tmp2 = __lasx_xvmulwod_h_b(a, b);
  456. return __lasx_xvsadd_h(tmp1, tmp2);
  457. }
  458. static __m256i lasx_madd_h(__m256i a, __m256i b) {
  459. __m256i tmp1, tmp2;
  460. tmp1 = __lasx_xvmulwev_w_h(a, b);
  461. tmp2 = __lasx_xvmulwod_w_h(a, b);
  462. return __lasx_xvadd_w(tmp1, tmp2);
  463. }
  464. static __m256i lasx_packs_w(__m256i a, __m256i b) {
  465. __m256i tmp, tmp1;
  466. tmp = __lasx_xvsat_w(a, 15);
  467. tmp1 = __lasx_xvsat_w(b, 15);
  468. return __lasx_xvpickev_h(tmp1, tmp);
  469. }
  470. static __m256i lasx_packs_h(__m256i a, __m256i b) {
  471. __m256i tmp, tmp1;
  472. tmp = __lasx_xvsat_h(a, 7);
  473. tmp1 = __lasx_xvsat_h(b, 7);
  474. return __lasx_xvpickev_b(tmp1, tmp);
  475. }
  476. static __m128i lsx_packs_w(__m128i a, __m128i b) {
  477. __m128i tmp, tmp1;
  478. tmp = __lsx_vsat_w(a, 15);
  479. tmp1 = __lsx_vsat_w(b, 15);
  480. return __lsx_vpickev_h(tmp1, tmp);
  481. }
  482. static __m128i lsx_packs_h(__m128i a, __m128i b) {
  483. __m128i tmp, tmp1;
  484. tmp = __lsx_vsat_h(a, 7);
  485. tmp1 = __lsx_vsat_h(b, 7);
  486. return __lsx_vpickev_b(tmp1, tmp);
  487. }
  488. static __m128i lsx_packus_h(__m128i a, __m128i b) {
  489. __m128i tmp, tmp1;
  490. tmp = __lsx_vsat_hu(a, 7);
  491. tmp1 = __lsx_vsat_hu(b, 7);
  492. return __lsx_vpickev_b(tmp1, tmp);
  493. }
  494. static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
  495. __m128i tmp1, tmp2;
  496. tmp1 = __lsx_vmulwev_h_b(a, b);
  497. tmp2 = __lsx_vmulwod_h_b(a, b);
  498. return __lsx_vsadd_h(tmp1, tmp2);
  499. }
  500. static __m128i lsx_madd_h(__m128i a, __m128i b) {
  501. __m128i tmp1, tmp2;
  502. tmp1 = __lsx_vmulwev_w_h(a, b);
  503. tmp2 = __lsx_vmulwod_w_h(a, b);
  504. return __lsx_vadd_w(tmp1, tmp2);
  505. }
  506. // multiply int8_t, add results pairwise twice
  507. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  508. // Get absolute values of x vectors
  509. const __m128i ax = __lsx_vsigncov_b(x, x);
  510. // Sign the values of the y vectors
  511. const __m128i sy = __lsx_vsigncov_b(x, y);
  512. // Perform multiplication and create 16-bit values
  513. const __m128i dot = lsx_maddubs_h(ax, sy);
  514. const __m128i ones = __lsx_vreplgr2vr_h(1);
  515. return lsx_madd_h(ones, dot);
  516. }
  517. // horizontally add 8 floats
  518. static inline float hsum_float_8(const __m256 x) {
  519. __m128 res = lasx_extractf128(x, 1);
  520. ft_union tmp;
  521. res = __lsx_vfadd_s(res, lasx_extractf128(x, 0));
  522. res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res));
  523. res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0));
  524. tmp.i = __lsx_vpickve2gr_w(res, 0);
  525. return tmp.f;
  526. }
  527. // horizontally add 8 int32_t
  528. static inline int hsum_i32_8(const __m256i a) {
  529. __m256i tmp1 = __lasx_xvpermi_q(a, a, 0x11);
  530. __m256i tmp2 = __lasx_xvpermi_q(a, a, 0x00);
  531. __m128i tmp1_128 = lasx_extracti128_lo(tmp1);
  532. __m128i tmp2_128 = lasx_extracti128_lo(tmp2);
  533. __m128i sum128 = __lsx_vadd_w(tmp1_128, tmp2_128);
  534. __m128i ev = __lsx_vpickev_w(sum128, sum128);
  535. __m128i od = __lsx_vpickod_w(sum128, sum128);
  536. __m128i sum64 = __lsx_vadd_w(ev, od);
  537. int sum64_1, sum64_2;
  538. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  539. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  540. return sum64_1 + sum64_2;
  541. }
  542. // horizontally add 4 int32_t
  543. static inline int hsum_i32_4(const __m128i a) {
  544. __m128i ev = __lsx_vpickev_w(a, a);
  545. __m128i od = __lsx_vpickod_w(a, a);
  546. __m128i sum64 = __lsx_vadd_w(ev, od);
  547. int sum64_1, sum64_2;
  548. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  549. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  550. return sum64_1 + sum64_2;
  551. }
  552. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  553. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  554. uint32_t x32;
  555. memcpy(&x32, x, sizeof(uint32_t));
  556. const __m256i shuf_mask = lasx_set_d(
  557. 0x0303030303030303, 0x0202020202020202,
  558. 0x0101010101010101, 0x0000000000000000);
  559. __m256i bytes = lasx_shuffle_b(__lasx_xvreplgr2vr_w(x32), shuf_mask);
  560. const __m256i bit_mask = __lasx_xvreplgr2vr_d(0x7fbfdfeff7fbfdfe);
  561. bytes = __lasx_xvor_v(bytes, bit_mask);
  562. return __lasx_xvseq_b(bytes, __lasx_xvreplgr2vr_d(-1));
  563. }
  564. // Unpack 32 4-bit fields into 32 bytes
  565. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  566. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
  567. const __m128i lo = __lsx_vld((const __m128i *)rsi, 0);
  568. __m128i hi = __lsx_vsrli_h(lo, 4);
  569. return __lasx_xvandi_b(lasx_insertf128(hi, lo), 0xf);
  570. }
  571. // add int16_t pairwise and return as float vector
  572. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  573. __m256i v = __lasx_xvpackod_h(x, x);
  574. __m256i summed_pairs = __lasx_xvaddwev_w_h(x, v);
  575. return __lasx_xvffint_s_w(summed_pairs);
  576. }
  577. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  578. // Perform multiplication and create 16-bit values
  579. const __m256i dot = lasx_maddubs_h(ax, sy);
  580. return sum_i16_pairs_float(dot);
  581. }
  582. // multiply int8_t, add results pairwise twice and return as float vector
  583. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  584. // Get absolute values of x vectors
  585. const __m256i ax = __lasx_xvsigncov_b(x, x);
  586. // Sign the values of the y vectors
  587. const __m256i sy = __lasx_xvsigncov_b(x, y);
  588. return mul_sum_us8_pairs_float(ax, sy);
  589. }
  590. static inline __m128i packNibbles( __m256i bytes ) {
  591. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  592. const __m256i lowByte = __lasx_xvreplgr2vr_h(0xFF);
  593. __m256i high = __lasx_xvandn_v(lowByte, bytes);
  594. __m256i low = __lasx_xvand_v(lowByte, bytes);
  595. high = __lasx_xvsrli_h(high, 4);
  596. bytes = __lasx_xvor_v(low, high);
  597. // Compress uint16_t lanes into bytes
  598. __m128i *r0 = (__m128i *)&bytes;
  599. __m256i tmp_h128 = __lasx_xvpermi_q(bytes, bytes, 0x11);
  600. __m128i *r1 = (__m128i *)&tmp_h128;
  601. __m128i zero = __lsx_vldi(0);
  602. __m128i tmp, tmp2, tmp3;
  603. tmp = __lsx_vmax_h(zero, *r0);
  604. tmp2 = __lsx_vsat_hu(tmp, 7);
  605. tmp = __lsx_vmax_h(zero, *r1);
  606. tmp3 = __lsx_vsat_hu(tmp, 7);
  607. return __lsx_vpickev_b(tmp3, tmp2);
  608. }
  609. #endif //__loongarch_asx
  610. void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
  611. quantize_row_q4_0_ref(x, y, k);
  612. }
  613. void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) {
  614. quantize_row_q4_1_ref(x, y, k);
  615. }
  616. void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) {
  617. quantize_row_q5_0_ref(x, y, k);
  618. }
  619. void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) {
  620. quantize_row_q5_1_ref(x, y, k);
  621. }
  622. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) {
  623. assert(QK8_0 == 32);
  624. assert(k % QK8_0 == 0);
  625. const int nb = k / QK8_0;
  626. block_q8_0 * restrict y = vy;
  627. #if defined(__ARM_NEON)
  628. for (int i = 0; i < nb; i++) {
  629. float32x4_t srcv [8];
  630. float32x4_t asrcv[8];
  631. float32x4_t amaxv[8];
  632. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  633. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  634. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  635. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  636. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  637. const float amax = vmaxvq_f32(amaxv[0]);
  638. const float d = amax / ((1 << 7) - 1);
  639. const float id = d ? 1.0f/d : 0.0f;
  640. y[i].d = GGML_FP32_TO_FP16(d);
  641. for (int j = 0; j < 8; j++) {
  642. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  643. const int32x4_t vi = vcvtnq_s32_f32(v);
  644. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  645. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  646. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  647. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  648. }
  649. }
  650. #elif defined(__wasm_simd128__)
  651. for (int i = 0; i < nb; i++) {
  652. v128_t srcv [8];
  653. v128_t asrcv[8];
  654. v128_t amaxv[8];
  655. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  656. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  657. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  658. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  659. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  660. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  661. wasm_f32x4_extract_lane(amaxv[0], 1)),
  662. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  663. wasm_f32x4_extract_lane(amaxv[0], 3)));
  664. const float d = amax / ((1 << 7) - 1);
  665. const float id = d ? 1.0f/d : 0.0f;
  666. y[i].d = GGML_FP32_TO_FP16(d);
  667. for (int j = 0; j < 8; j++) {
  668. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  669. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  670. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  671. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  672. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  673. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  674. }
  675. }
  676. #elif defined(__AVX2__) || defined(__AVX__)
  677. for (int i = 0; i < nb; i++) {
  678. // Load elements into 4 AVX vectors
  679. __m256 v0 = _mm256_loadu_ps( x );
  680. __m256 v1 = _mm256_loadu_ps( x + 8 );
  681. __m256 v2 = _mm256_loadu_ps( x + 16 );
  682. __m256 v3 = _mm256_loadu_ps( x + 24 );
  683. x += 32;
  684. // Compute max(abs(e)) for the block
  685. const __m256 signBit = _mm256_set1_ps( -0.0f );
  686. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  687. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  688. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  689. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  690. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  691. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  692. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  693. const float maxScalar = _mm_cvtss_f32( max4 );
  694. // Quantize these floats
  695. const float d = maxScalar / 127.f;
  696. y[i].d = GGML_FP32_TO_FP16(d);
  697. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  698. const __m256 mul = _mm256_set1_ps( id );
  699. // Apply the multiplier
  700. v0 = _mm256_mul_ps( v0, mul );
  701. v1 = _mm256_mul_ps( v1, mul );
  702. v2 = _mm256_mul_ps( v2, mul );
  703. v3 = _mm256_mul_ps( v3, mul );
  704. // Round to nearest integer
  705. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  706. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  707. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  708. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  709. // Convert floats to integers
  710. __m256i i0 = _mm256_cvtps_epi32( v0 );
  711. __m256i i1 = _mm256_cvtps_epi32( v1 );
  712. __m256i i2 = _mm256_cvtps_epi32( v2 );
  713. __m256i i3 = _mm256_cvtps_epi32( v3 );
  714. #if defined(__AVX2__)
  715. // Convert int32 to int16
  716. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  717. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  718. // Convert int16 to int8
  719. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  720. // We got our precious signed bytes, but the order is now wrong
  721. // These AVX2 pack instructions process 16-byte pieces independently
  722. // The following instruction is fixing the order
  723. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  724. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  725. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  726. #else
  727. // Since we don't have in AVX some necessary functions,
  728. // we split the registers in half and call AVX2 analogs from SSE
  729. __m128i ni0 = _mm256_castsi256_si128( i0 );
  730. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  731. __m128i ni2 = _mm256_castsi256_si128( i1 );
  732. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  733. __m128i ni4 = _mm256_castsi256_si128( i2 );
  734. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  735. __m128i ni6 = _mm256_castsi256_si128( i3 );
  736. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  737. // Convert int32 to int16
  738. ni0 = _mm_packs_epi32( ni0, ni1 );
  739. ni2 = _mm_packs_epi32( ni2, ni3 );
  740. ni4 = _mm_packs_epi32( ni4, ni5 );
  741. ni6 = _mm_packs_epi32( ni6, ni7 );
  742. // Convert int16 to int8
  743. ni0 = _mm_packs_epi16( ni0, ni2 );
  744. ni4 = _mm_packs_epi16( ni4, ni6 );
  745. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  746. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  747. #endif
  748. }
  749. #elif defined(__riscv_v_intrinsic)
  750. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  751. for (int i = 0; i < nb; i++) {
  752. // load elements
  753. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  754. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  755. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  756. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  757. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  758. const float d = amax / ((1 << 7) - 1);
  759. const float id = d ? 1.0f/d : 0.0f;
  760. y[i].d = GGML_FP32_TO_FP16(d);
  761. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  762. // convert to integer
  763. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  764. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  765. // store result
  766. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  767. }
  768. #elif defined(__POWER9_VECTOR__)
  769. for (int i = 0; i < nb; i++) {
  770. vector float srcv [8];
  771. vector float asrcv[8];
  772. vector float amaxv[8];
  773. vector signed int vi[8];
  774. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  775. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  776. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  777. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  778. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  779. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  780. vec_extract(amaxv[0], 1)),
  781. MAX(vec_extract(amaxv[0], 2),
  782. vec_extract(amaxv[0], 3)));
  783. const float d = amax / ((1 << 7) - 1);
  784. const float id = d ? 1.0f/d : 0.0f;
  785. const vector float vid = vec_splats(id);
  786. y[i].d = GGML_FP32_TO_FP16(d);
  787. for (int j = 0; j < 8; j++) {
  788. const vector float v = vec_round(vec_mul(srcv[j], vid));
  789. vi[j] = vec_cts(v, 0);
  790. }
  791. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  792. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  793. }
  794. #elif defined(__loongarch_asx)
  795. for (int i = 0; i < nb; i++) {
  796. ft_union fi;
  797. __m256 v0 = (__m256)__lasx_xvld( x , 0);
  798. __m256 v1 = (__m256)__lasx_xvld( x , 32);
  799. __m256 v2 = (__m256)__lasx_xvld( x , 64);
  800. __m256 v3 = (__m256)__lasx_xvld( x , 96);
  801. x += 32;
  802. // Compute max(abs(e)) for the block
  803. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  804. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  805. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  806. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  807. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  808. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs , 0) );
  809. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  810. __m128 tmp = max4;
  811. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 ));
  812. fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  813. const float max_scalar = fi.f;
  814. // Quantize these floats
  815. const float d = max_scalar / 127.f;
  816. y[i].d = GGML_FP32_TO_FP16(d);
  817. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  818. const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id );
  819. // Apply the multiplier
  820. v0 = __lasx_xvfmul_s( v0, mul );
  821. v1 = __lasx_xvfmul_s( v1, mul );
  822. v2 = __lasx_xvfmul_s( v2, mul );
  823. v3 = __lasx_xvfmul_s( v3, mul );
  824. // Round to nearest integer
  825. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  826. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  827. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  828. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  829. __m128i ni0 = lasx_extracti128( i0, 0 );
  830. __m128i ni1 = lasx_extracti128( i0, 1);
  831. __m128i ni2 = lasx_extracti128( i1, 0);
  832. __m128i ni3 = lasx_extracti128( i1, 1);
  833. __m128i ni4 = lasx_extracti128( i2, 0);
  834. __m128i ni5 = lasx_extracti128( i2, 1);
  835. __m128i ni6 = lasx_extracti128( i3, 0);
  836. __m128i ni7 = lasx_extracti128( i3, 1);
  837. // Convert int32 to int16
  838. ni0 = lsx_packs_w( ni0, ni1 );
  839. ni2 = lsx_packs_w( ni2, ni3 );
  840. ni4 = lsx_packs_w( ni4, ni5 );
  841. ni6 = lsx_packs_w( ni6, ni7 );
  842. // Convert int16 to int8
  843. ni0 = lsx_packs_h( ni0, ni2 );
  844. ni4 = lsx_packs_h( ni4, ni6 );
  845. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  846. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  847. }
  848. #else
  849. GGML_UNUSED(nb);
  850. // scalar
  851. quantize_row_q8_0_ref(x, y, k);
  852. #endif
  853. }
  854. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) {
  855. assert(k % QK8_1 == 0);
  856. const int nb = k / QK8_1;
  857. block_q8_1 * restrict y = vy;
  858. #if defined(__ARM_NEON)
  859. for (int i = 0; i < nb; i++) {
  860. float32x4_t srcv [8];
  861. float32x4_t asrcv[8];
  862. float32x4_t amaxv[8];
  863. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  864. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  865. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  866. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  867. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  868. const float amax = vmaxvq_f32(amaxv[0]);
  869. const float d = amax / ((1 << 7) - 1);
  870. const float id = d ? 1.0f/d : 0.0f;
  871. y[i].d = GGML_FP32_TO_FP16(d);
  872. int32x4_t accv = vdupq_n_s32(0);
  873. for (int j = 0; j < 8; j++) {
  874. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  875. const int32x4_t vi = vcvtnq_s32_f32(v);
  876. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  877. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  878. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  879. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  880. accv = vaddq_s32(accv, vi);
  881. }
  882. y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
  883. }
  884. #elif defined(__wasm_simd128__)
  885. for (int i = 0; i < nb; i++) {
  886. v128_t srcv [8];
  887. v128_t asrcv[8];
  888. v128_t amaxv[8];
  889. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  890. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  891. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  892. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  893. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  894. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  895. wasm_f32x4_extract_lane(amaxv[0], 1)),
  896. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  897. wasm_f32x4_extract_lane(amaxv[0], 3)));
  898. const float d = amax / ((1 << 7) - 1);
  899. const float id = d ? 1.0f/d : 0.0f;
  900. y[i].d = GGML_FP32_TO_FP16(d);
  901. v128_t accv = wasm_i32x4_splat(0);
  902. for (int j = 0; j < 8; j++) {
  903. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  904. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  905. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  906. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  907. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  908. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  909. accv = wasm_i32x4_add(accv, vi);
  910. }
  911. y[i].s = GGML_FP32_TO_FP16(
  912. d * (wasm_i32x4_extract_lane(accv, 0) +
  913. wasm_i32x4_extract_lane(accv, 1) +
  914. wasm_i32x4_extract_lane(accv, 2) +
  915. wasm_i32x4_extract_lane(accv, 3)));
  916. }
  917. #elif defined(__AVX2__) || defined(__AVX__)
  918. for (int i = 0; i < nb; i++) {
  919. // Load elements into 4 AVX vectors
  920. __m256 v0 = _mm256_loadu_ps( x );
  921. __m256 v1 = _mm256_loadu_ps( x + 8 );
  922. __m256 v2 = _mm256_loadu_ps( x + 16 );
  923. __m256 v3 = _mm256_loadu_ps( x + 24 );
  924. x += 32;
  925. // Compute max(abs(e)) for the block
  926. const __m256 signBit = _mm256_set1_ps( -0.0f );
  927. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  928. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  929. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  930. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  931. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  932. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  933. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  934. const float max_scalar = _mm_cvtss_f32( max4 );
  935. // Quantize these floats
  936. const float d = max_scalar / 127.f;
  937. y[i].d = GGML_FP32_TO_FP16(d);
  938. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  939. const __m256 mul = _mm256_set1_ps( id );
  940. // Apply the multiplier
  941. v0 = _mm256_mul_ps( v0, mul );
  942. v1 = _mm256_mul_ps( v1, mul );
  943. v2 = _mm256_mul_ps( v2, mul );
  944. v3 = _mm256_mul_ps( v3, mul );
  945. // Round to nearest integer
  946. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  947. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  948. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  949. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  950. // Convert floats to integers
  951. __m256i i0 = _mm256_cvtps_epi32( v0 );
  952. __m256i i1 = _mm256_cvtps_epi32( v1 );
  953. __m256i i2 = _mm256_cvtps_epi32( v2 );
  954. __m256i i3 = _mm256_cvtps_epi32( v3 );
  955. #if defined(__AVX2__)
  956. // Compute the sum of the quants and set y[i].s
  957. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))));
  958. // Convert int32 to int16
  959. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  960. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  961. // Convert int16 to int8
  962. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  963. // We got our precious signed bytes, but the order is now wrong
  964. // These AVX2 pack instructions process 16-byte pieces independently
  965. // The following instruction is fixing the order
  966. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  967. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  968. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  969. #else
  970. // Since we don't have in AVX some necessary functions,
  971. // we split the registers in half and call AVX2 analogs from SSE
  972. __m128i ni0 = _mm256_castsi256_si128( i0 );
  973. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  974. __m128i ni2 = _mm256_castsi256_si128( i1 );
  975. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  976. __m128i ni4 = _mm256_castsi256_si128( i2 );
  977. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  978. __m128i ni6 = _mm256_castsi256_si128( i3 );
  979. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  980. // Compute the sum of the quants and set y[i].s
  981. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  982. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  983. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1)));
  984. // Convert int32 to int16
  985. ni0 = _mm_packs_epi32( ni0, ni1 );
  986. ni2 = _mm_packs_epi32( ni2, ni3 );
  987. ni4 = _mm_packs_epi32( ni4, ni5 );
  988. ni6 = _mm_packs_epi32( ni6, ni7 );
  989. // Convert int16 to int8
  990. ni0 = _mm_packs_epi16( ni0, ni2 );
  991. ni4 = _mm_packs_epi16( ni4, ni6 );
  992. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  993. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  994. #endif
  995. }
  996. #elif defined(__riscv_v_intrinsic)
  997. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  998. for (int i = 0; i < nb; i++) {
  999. // load elements
  1000. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1001. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1002. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1003. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1004. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1005. const float d = amax / ((1 << 7) - 1);
  1006. const float id = d ? 1.0f/d : 0.0f;
  1007. y[i].d = GGML_FP32_TO_FP16(d);
  1008. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1009. // convert to integer
  1010. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1011. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1012. // store result
  1013. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1014. // compute sum for y[i].s
  1015. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1016. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1017. // set y[i].s
  1018. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1019. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1020. }
  1021. #elif defined(__POWER9_VECTOR__)
  1022. for (int i = 0; i < nb; i++) {
  1023. vector float srcv [8];
  1024. vector float asrcv[8];
  1025. vector float amaxv[8];
  1026. vector signed int vi[8];
  1027. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  1028. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  1029. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  1030. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  1031. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  1032. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  1033. vec_extract(amaxv[0], 1)),
  1034. MAX(vec_extract(amaxv[0], 2),
  1035. vec_extract(amaxv[0], 3)));
  1036. const float d = amax / ((1 << 7) - 1);
  1037. const float id = d ? 1.0f/d : 0.0f;
  1038. const vector float vid = vec_splats(id);
  1039. y[i].d = GGML_FP32_TO_FP16(d);
  1040. vector int accv = vec_splats(0);
  1041. for (int j = 0; j < 8; j++) {
  1042. const vector float v = vec_round(vec_mul(srcv[j], vid));
  1043. vi[j] = vec_cts(v, 0);
  1044. accv = vec_add(accv, vi[j]);
  1045. }
  1046. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  1047. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  1048. accv = vec_add(accv, vec_sld(accv, accv, 4));
  1049. accv = vec_add(accv, vec_sld(accv, accv, 8));
  1050. y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0));
  1051. }
  1052. #elif defined(__loongarch_asx)
  1053. for (int i = 0; i < nb; i++) {
  1054. ft_union ft;
  1055. __m256 v0 = (__m256)__lasx_xvld( x , 0 );
  1056. __m256 v1 = (__m256)__lasx_xvld( x , 32 );
  1057. __m256 v2 = (__m256)__lasx_xvld( x , 64 );
  1058. __m256 v3 = (__m256)__lasx_xvld( x , 96 );
  1059. x += 32;
  1060. // Compute max(abs(e)) for the block
  1061. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  1062. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  1063. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  1064. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  1065. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  1066. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) );
  1067. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  1068. __m128 tmp = max4;
  1069. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
  1070. ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  1071. const float max_scalar = ft.f;
  1072. // Quantize these floats
  1073. const float d = max_scalar / 127.f;
  1074. y[i].d = GGML_FP32_TO_FP16(d);
  1075. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1076. const __m256 mul = __lasx_xvreplfr2vr_s( id );
  1077. // Apply the multiplier
  1078. v0 = __lasx_xvfmul_s( v0, mul );
  1079. v1 = __lasx_xvfmul_s( v1, mul );
  1080. v2 = __lasx_xvfmul_s( v2, mul );
  1081. v3 = __lasx_xvfmul_s( v3, mul );
  1082. // Round to nearest integer
  1083. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  1084. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  1085. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  1086. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  1087. __m128i ni0 = lasx_extracti128(i0, 0);
  1088. __m128i ni1 = lasx_extracti128( i0, 1);
  1089. __m128i ni2 = lasx_extracti128( i1, 0);
  1090. __m128i ni3 = lasx_extracti128( i1, 1);
  1091. __m128i ni4 = lasx_extracti128( i2, 0 );
  1092. __m128i ni5 = lasx_extracti128( i2, 1);
  1093. __m128i ni6 = lasx_extracti128( i3, 0);
  1094. __m128i ni7 = lasx_extracti128( i3, 1);
  1095. // Compute the sum of the quants and set y[i].s
  1096. const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3));
  1097. const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7));
  1098. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
  1099. // Convert int32 to int16
  1100. ni0 = lsx_packs_w( ni0, ni1 );
  1101. ni2 = lsx_packs_w( ni2, ni3 );
  1102. ni4 = lsx_packs_w( ni4, ni5 );
  1103. ni6 = lsx_packs_w( ni6, ni7 );
  1104. // Convert int16 to int8
  1105. ni0 = lsx_packs_h( ni0, ni2 );
  1106. ni4 = lsx_packs_h( ni4, ni6 );
  1107. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  1108. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  1109. }
  1110. #else
  1111. GGML_UNUSED(nb);
  1112. // scalar
  1113. quantize_row_q8_1_ref(x, y, k);
  1114. #endif
  1115. }
  1116. //
  1117. // 2-6 bit quantization in super-blocks
  1118. //
  1119. //
  1120. // ===================== Helper functions
  1121. //
  1122. static inline int nearest_int(float fval) {
  1123. assert(fabsf(fval) <= 4194303.f);
  1124. float val = fval + 12582912.f;
  1125. int i; memcpy(&i, &val, sizeof(int));
  1126. return (i & 0x007fffff) - 0x00400000;
  1127. }
  1128. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1129. const float * restrict qw) {
  1130. float max = 0;
  1131. float amax = 0;
  1132. for (int i = 0; i < n; ++i) {
  1133. float ax = fabsf(x[i]);
  1134. if (ax > amax) { amax = ax; max = x[i]; }
  1135. }
  1136. if (amax < GROUP_MAX_EPS) { // all zero
  1137. for (int i = 0; i < n; ++i) {
  1138. L[i] = 0;
  1139. }
  1140. return 0.f;
  1141. }
  1142. float iscale = -nmax / max;
  1143. if (rmse_type == 0) {
  1144. for (int i = 0; i < n; ++i) {
  1145. int l = nearest_int(iscale * x[i]);
  1146. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1147. }
  1148. return 1/iscale;
  1149. }
  1150. bool return_early = false;
  1151. if (rmse_type < 0) {
  1152. rmse_type = -rmse_type;
  1153. return_early = true;
  1154. }
  1155. float sumlx = 0;
  1156. float suml2 = 0;
  1157. #ifdef HAVE_BUGGY_APPLE_LINKER
  1158. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1159. for (volatile int i = 0; i < n; ++i) {
  1160. #else
  1161. for (int i = 0; i < n; ++i) {
  1162. #endif
  1163. int l = nearest_int(iscale * x[i]);
  1164. l = MAX(-nmax, MIN(nmax-1, l));
  1165. L[i] = l + nmax;
  1166. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1167. sumlx += w*x[i]*l;
  1168. suml2 += w*l*l;
  1169. }
  1170. float scale = suml2 ? sumlx/suml2 : 0.0f;
  1171. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1172. float best = scale * sumlx;
  1173. for (int is = -9; is <= 9; ++is) {
  1174. if (is == 0) {
  1175. continue;
  1176. }
  1177. iscale = -(nmax + 0.1f*is) / max;
  1178. sumlx = suml2 = 0;
  1179. for (int i = 0; i < n; ++i) {
  1180. int l = nearest_int(iscale * x[i]);
  1181. l = MAX(-nmax, MIN(nmax-1, l));
  1182. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1183. sumlx += w*x[i]*l;
  1184. suml2 += w*l*l;
  1185. }
  1186. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1187. for (int i = 0; i < n; ++i) {
  1188. int l = nearest_int(iscale * x[i]);
  1189. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1190. }
  1191. scale = sumlx/suml2; best = scale*sumlx;
  1192. }
  1193. }
  1194. return scale;
  1195. }
  1196. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1197. float max = 0;
  1198. float amax = 0;
  1199. for (int i = 0; i < n; ++i) {
  1200. float ax = fabsf(x[i]);
  1201. if (ax > amax) { amax = ax; max = x[i]; }
  1202. }
  1203. if (amax < GROUP_MAX_EPS) { // all zero
  1204. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1205. return 0.f;
  1206. }
  1207. float iscale = -nmax / max;
  1208. if (do_rmse) {
  1209. float sumlx = 0;
  1210. float suml2 = 0;
  1211. for (int i = 0; i < n; ++i) {
  1212. int l = nearest_int(iscale * x[i]);
  1213. l = MAX(-nmax, MIN(nmax-1, l));
  1214. L[i] = l;
  1215. float w = x[i]*x[i];
  1216. sumlx += w*x[i]*l;
  1217. suml2 += w*l*l;
  1218. }
  1219. for (int itry = 0; itry < 5; ++itry) {
  1220. int n_changed = 0;
  1221. for (int i = 0; i < n; ++i) {
  1222. float w = x[i]*x[i];
  1223. float slx = sumlx - w*x[i]*L[i];
  1224. if (slx > 0) {
  1225. float sl2 = suml2 - w*L[i]*L[i];
  1226. int new_l = nearest_int(x[i] * sl2 / slx);
  1227. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1228. if (new_l != L[i]) {
  1229. slx += w*x[i]*new_l;
  1230. sl2 += w*new_l*new_l;
  1231. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1232. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1233. ++n_changed;
  1234. }
  1235. }
  1236. }
  1237. }
  1238. if (!n_changed) {
  1239. break;
  1240. }
  1241. }
  1242. for (int i = 0; i < n; ++i) {
  1243. L[i] += nmax;
  1244. }
  1245. return sumlx / suml2;
  1246. }
  1247. for (int i = 0; i < n; ++i) {
  1248. int l = nearest_int(iscale * x[i]);
  1249. l = MAX(-nmax, MIN(nmax-1, l));
  1250. L[i] = l + nmax;
  1251. }
  1252. return 1/iscale;
  1253. }
  1254. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1255. int ntry, float alpha) {
  1256. float min = x[0];
  1257. float max = x[0];
  1258. for (int i = 1; i < n; ++i) {
  1259. if (x[i] < min) min = x[i];
  1260. if (x[i] > max) max = x[i];
  1261. }
  1262. if (max == min) {
  1263. for (int i = 0; i < n; ++i) L[i] = 0;
  1264. *the_min = 0;
  1265. return 0.f;
  1266. }
  1267. if (min > 0) min = 0;
  1268. float iscale = nmax/(max - min);
  1269. float scale = 1/iscale;
  1270. for (int itry = 0; itry < ntry; ++itry) {
  1271. float sumlx = 0; int suml2 = 0;
  1272. bool did_change = false;
  1273. for (int i = 0; i < n; ++i) {
  1274. int l = nearest_int(iscale*(x[i] - min));
  1275. l = MAX(0, MIN(nmax, l));
  1276. if (l != L[i]) {
  1277. L[i] = l;
  1278. did_change = true;
  1279. }
  1280. sumlx += (x[i] - min)*l;
  1281. suml2 += l*l;
  1282. }
  1283. scale = sumlx/suml2;
  1284. float sum = 0;
  1285. for (int i = 0; i < n; ++i) {
  1286. sum += x[i] - scale*L[i];
  1287. }
  1288. min = alpha*min + (1 - alpha)*sum/n;
  1289. if (min > 0) min = 0;
  1290. iscale = 1/scale;
  1291. if (!did_change) break;
  1292. }
  1293. *the_min = -min;
  1294. return scale;
  1295. }
  1296. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1297. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1298. float rmin, float rdelta, int nstep, bool use_mad) {
  1299. float min = x[0];
  1300. float max = x[0];
  1301. float sum_w = weights[0];
  1302. float sum_x = sum_w * x[0];
  1303. #ifdef HAVE_BUGGY_APPLE_LINKER
  1304. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1305. for (volatile int i = 1; i < n; ++i) {
  1306. #else
  1307. for (int i = 1; i < n; ++i) {
  1308. #endif
  1309. if (x[i] < min) min = x[i];
  1310. if (x[i] > max) max = x[i];
  1311. float w = weights[i];
  1312. sum_w += w;
  1313. sum_x += w * x[i];
  1314. }
  1315. if (min > 0) min = 0;
  1316. if (max == min) {
  1317. for (int i = 0; i < n; ++i) L[i] = 0;
  1318. *the_min = -min;
  1319. return 0.f;
  1320. }
  1321. float iscale = nmax/(max - min);
  1322. float scale = 1/iscale;
  1323. float best_mad = 0;
  1324. for (int i = 0; i < n; ++i) {
  1325. int l = nearest_int(iscale*(x[i] - min));
  1326. L[i] = MAX(0, MIN(nmax, l));
  1327. float diff = scale * L[i] + min - x[i];
  1328. diff = use_mad ? fabsf(diff) : diff * diff;
  1329. float w = weights[i];
  1330. best_mad += w * diff;
  1331. }
  1332. if (nstep < 1) {
  1333. *the_min = -min;
  1334. return scale;
  1335. }
  1336. for (int is = 0; is <= nstep; ++is) {
  1337. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1338. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1339. for (int i = 0; i < n; ++i) {
  1340. int l = nearest_int(iscale*(x[i] - min));
  1341. l = MAX(0, MIN(nmax, l));
  1342. Laux[i] = l;
  1343. float w = weights[i];
  1344. sum_l += w*l;
  1345. sum_l2 += w*l*l;
  1346. sum_xl += w*l*x[i];
  1347. }
  1348. float D = sum_w * sum_l2 - sum_l * sum_l;
  1349. if (D > 0) {
  1350. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1351. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1352. if (this_min > 0) {
  1353. this_min = 0;
  1354. this_scale = sum_xl / sum_l2;
  1355. }
  1356. float mad = 0;
  1357. for (int i = 0; i < n; ++i) {
  1358. float diff = this_scale * Laux[i] + this_min - x[i];
  1359. diff = use_mad ? fabsf(diff) : diff * diff;
  1360. float w = weights[i];
  1361. mad += w * diff;
  1362. }
  1363. if (mad < best_mad) {
  1364. for (int i = 0; i < n; ++i) {
  1365. L[i] = Laux[i];
  1366. }
  1367. best_mad = mad;
  1368. scale = this_scale;
  1369. min = this_min;
  1370. }
  1371. }
  1372. }
  1373. *the_min = -min;
  1374. return scale;
  1375. }
  1376. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1377. if (j < 4) {
  1378. *d = q[j] & 63; *m = q[j + 4] & 63;
  1379. } else {
  1380. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1381. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1382. }
  1383. }
  1384. //========================- 2-bit (de)-quantization
  1385. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) {
  1386. quantize_row_q2_K_ref(x, vy, k);
  1387. }
  1388. //========================= 3-bit (de)-quantization
  1389. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) {
  1390. quantize_row_q3_K_ref(x, vy, k);
  1391. }
  1392. // ====================== 4-bit (de)-quantization
  1393. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) {
  1394. assert(k % QK_K == 0);
  1395. block_q4_K * restrict y = vy;
  1396. quantize_row_q4_K_ref(x, y, k);
  1397. }
  1398. // ====================== 5-bit (de)-quantization
  1399. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) {
  1400. assert(k % QK_K == 0);
  1401. block_q5_K * restrict y = vy;
  1402. quantize_row_q5_K_ref(x, y, k);
  1403. }
  1404. // ====================== 6-bit (de)-quantization
  1405. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) {
  1406. assert(k % QK_K == 0);
  1407. block_q6_K * restrict y = vy;
  1408. quantize_row_q6_K_ref(x, y, k);
  1409. }
  1410. // ====================== Ternary (de)-quantization (BitNet b1.58 and TriLMs)
  1411. void quantize_row_tq1_0(const float * restrict x, void * restrict vy, int64_t k) {
  1412. assert(k % QK_K == 0);
  1413. block_tq1_0 * restrict y = vy;
  1414. quantize_row_tq1_0_ref(x, y, k);
  1415. }
  1416. void quantize_row_tq2_0(const float * restrict x, void * restrict vy, int64_t k) {
  1417. assert(k % QK_K == 0);
  1418. block_tq2_0 * restrict y = vy;
  1419. quantize_row_tq2_0_ref(x, y, k);
  1420. }
  1421. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  1422. //===================================== Q8_K ==============================================
  1423. void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) {
  1424. quantize_row_q8_K_ref(x, y, k);
  1425. }
  1426. //===================================== Dot products =================================
  1427. //
  1428. // Helper functions
  1429. //
  1430. #if __AVX__ || __AVX2__ || __AVX512F__
  1431. // shuffles to pick the required scales in dot products
  1432. static inline __m256i get_scale_shuffle_q3k(int i) {
  1433. static const uint8_t k_shuffle[128] = {
  1434. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1435. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1436. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1437. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1438. };
  1439. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1440. }
  1441. static inline __m256i get_scale_shuffle_k4(int i) {
  1442. static const uint8_t k_shuffle[256] = {
  1443. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1444. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1445. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1446. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1447. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1448. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1449. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1450. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1451. };
  1452. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1453. }
  1454. static inline __m128i get_scale_shuffle(int i) {
  1455. static const uint8_t k_shuffle[128] = {
  1456. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1457. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1458. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1459. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1460. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1461. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1462. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1463. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1464. };
  1465. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1466. }
  1467. #elif defined(__loongarch_asx)
  1468. // shuffles to pick the required scales in dot products
  1469. static inline __m256i get_scale_shuffle_q3k(int i) {
  1470. static const uint8_t k_shuffle[128] = {
  1471. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1472. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1473. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1474. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1475. };
  1476. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  1477. }
  1478. static inline __m256i get_scale_shuffle_k4(int i) {
  1479. static const uint8_t k_shuffle[256] = {
  1480. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1481. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1482. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1483. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1484. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1485. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1486. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1487. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1488. };
  1489. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  1490. }
  1491. static inline __m128i get_scale_shuffle(int i) {
  1492. static const uint8_t k_shuffle[128] = {
  1493. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1494. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1495. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1496. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1497. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1498. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1499. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1500. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1501. };
  1502. return __lsx_vld((const __m128i*)k_shuffle + i, 0);
  1503. }
  1504. #endif
  1505. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  1506. const int qk = QK8_0;
  1507. const int nb = n / qk;
  1508. assert(n % qk == 0);
  1509. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1510. assert((nrc == 2) || (nrc == 1));
  1511. #else
  1512. assert(nrc == 1);
  1513. #endif
  1514. UNUSED(nrc);
  1515. UNUSED(bx);
  1516. UNUSED(by);
  1517. UNUSED(bs);
  1518. const block_q4_0 * restrict x = vx;
  1519. const block_q8_0 * restrict y = vy;
  1520. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1521. if (nrc == 2) {
  1522. const block_q4_0 * restrict vx0 = vx;
  1523. const block_q4_0 * restrict vx1 = (const block_q4_0 *) ((const uint8_t*)vx + bx);
  1524. const block_q8_0 * restrict vy0 = vy;
  1525. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  1526. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1527. for (int i = 0; i < nb; i++) {
  1528. const block_q4_0 * restrict b_x0 = &vx0[i];
  1529. const block_q4_0 * restrict b_x1 = &vx1[i];
  1530. const block_q8_0 * restrict b_y0 = &vy0[i];
  1531. const block_q8_0 * restrict b_y1 = &vy1[i];
  1532. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1533. const int8x16_t s8b = vdupq_n_s8(0x8);
  1534. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  1535. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  1536. // 4-bit -> 8-bit
  1537. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1538. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1539. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1540. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1541. // sub 8
  1542. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  1543. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  1544. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  1545. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  1546. // load y
  1547. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  1548. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  1549. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  1550. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  1551. float32_t _scale[4] = {
  1552. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  1553. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  1554. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  1555. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
  1556. };
  1557. float32x4_t scale = vld1q_f32(_scale);
  1558. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  1559. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  1560. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  1561. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  1562. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  1563. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  1564. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  1565. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  1566. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  1567. l1, r1)), l2, r2)), l3, r3))), scale);
  1568. }
  1569. float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
  1570. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  1571. vst1_f32(s, vget_low_f32 (sumv2));
  1572. vst1_f32(s + bs, vget_high_f32(sumv2));
  1573. return;
  1574. }
  1575. #endif
  1576. int ib = 0;
  1577. float sumf = 0;
  1578. #if defined(__ARM_FEATURE_SVE)
  1579. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  1580. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  1581. const int vector_length = ggml_cpu_get_sve_cnt()*8;
  1582. // VLA Implementation using switch case
  1583. switch (vector_length) {
  1584. case 128:
  1585. {
  1586. // predicate for activating higher lanes for 4 float32 elements
  1587. const svbool_t ph4 = svptrue_pat_b32(SV_VL4);
  1588. for (; ib + 1 < nb; ib += 2) {
  1589. const block_q4_0 * restrict x0 = &x[ib + 0];
  1590. const block_q4_0 * restrict x1 = &x[ib + 1];
  1591. const block_q8_0 * restrict y0 = &y[ib + 0];
  1592. const block_q8_0 * restrict y1 = &y[ib + 1];
  1593. // load x
  1594. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  1595. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  1596. // 4-bit -> 8-bit
  1597. const svint8_t qx0l = svreinterpret_s8_u8(svand_n_u8_m(svptrue_b8(), qx0r, 0x0F));
  1598. const svint8_t qx0h = svreinterpret_s8_u8(svlsr_n_u8_m(svptrue_b8(), qx0r, 0x04));
  1599. const svint8_t qx1l = svreinterpret_s8_u8(svand_n_u8_m(svptrue_b8(), qx1r, 0x0F));
  1600. const svint8_t qx1h = svreinterpret_s8_u8(svlsr_n_u8_m(svptrue_b8(), qx1r, 0x04));
  1601. // sub 8
  1602. const svint8_t qx0ls = svsub_n_s8_x(svptrue_b8(), qx0h, 8);
  1603. const svint8_t qx0hs = svsub_n_s8_x(svptrue_b8(), qx0l, 8);
  1604. const svint8_t qx1ls = svsub_n_s8_x(svptrue_b8(), qx1h, 8);
  1605. const svint8_t qx1hs = svsub_n_s8_x(svptrue_b8(), qx1l, 8);
  1606. // load y
  1607. const svint8_t qy0h = svld1_s8(svptrue_b8(), y0->qs);
  1608. const svint8_t qy0l = svld1_s8(svptrue_b8(), y0->qs + 16);
  1609. const svint8_t qy1h = svld1_s8(svptrue_b8(), y1->qs);
  1610. const svint8_t qy1l = svld1_s8(svptrue_b8(), y1->qs + 16);
  1611. // dot product
  1612. sumv0 = svmla_n_f32_x(ph4, sumv0, svcvt_f32_s32_x(ph4, svadd_x(ph4,
  1613. svdot_s32(svdup_n_s32(0), qx0ls, qy0l),
  1614. svdot_s32(svdup_n_s32(0), qx0hs, qy0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1615. sumv1 = svmla_n_f32_x(ph4, sumv1, svcvt_f32_s32_x(ph4, svadd_x(ph4,
  1616. svdot_s32(svdup_n_s32(0), qx1ls, qy1l),
  1617. svdot_s32(svdup_n_s32(0), qx1hs, qy1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1618. }
  1619. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  1620. } break;
  1621. case 256:
  1622. {
  1623. // predicate for activating higher lanes for 16 int8 elements
  1624. const svbool_t ph16 = svptrue_pat_b8(SV_VL16);
  1625. // predicate for activating lower lanes for 16 int8 elements
  1626. const svbool_t pl16 = svnot_b_z(svptrue_b8(), ph16);
  1627. for (; ib + 1 < nb; ib += 2) {
  1628. const block_q4_0 * restrict x0 = &x[ib + 0];
  1629. const block_q4_0 * restrict x1 = &x[ib + 1];
  1630. const block_q8_0 * restrict y0 = &y[ib + 0];
  1631. const block_q8_0 * restrict y1 = &y[ib + 1];
  1632. // load x
  1633. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  1634. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  1635. // 4-bit -> 8-bit
  1636. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx0r, 0x0F), 0x04));
  1637. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx1r, 0x0F), 0x04));
  1638. // sub 8
  1639. const svint8_t qx0s = svsub_n_s8_x(svptrue_b8(), qx0, 8);
  1640. const svint8_t qx1s = svsub_n_s8_x(svptrue_b8(), qx1, 8);
  1641. // load y
  1642. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  1643. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  1644. // dot product
  1645. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
  1646. svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1647. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
  1648. svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1649. }
  1650. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  1651. } break;
  1652. case 512:
  1653. {
  1654. // predicate for activating higher lanes for 32 int8 elements
  1655. const svbool_t ph32 = svptrue_pat_b8(SV_VL32);
  1656. // predicate for activating higher lanes for 16 int8 elements
  1657. const svbool_t ph16 = svptrue_pat_b8(SV_VL16);
  1658. // predicate for activating lower lanes for 16 int8 elements from first 32 int8 activated lanes
  1659. const svbool_t pl16 = svnot_b_z(ph32, ph16);
  1660. for (; ib + 1 < nb; ib += 2) {
  1661. const block_q4_0 * restrict x0 = &x[ib + 0];
  1662. const block_q4_0 * restrict x1 = &x[ib + 1];
  1663. const block_q8_0 * restrict y0 = &y[ib + 0];
  1664. const block_q8_0 * restrict y1 = &y[ib + 1];
  1665. // load x
  1666. const svuint8_t qx0r = svld1rq_u8(ph32, x0->qs);
  1667. const svuint8_t qx1r = svld1rq_u8(ph32, x1->qs);
  1668. // 4-bit -> 8-bit
  1669. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx0r, 0x0F), 0x04));
  1670. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx1r, 0x0F), 0x04));
  1671. // sub 8
  1672. const svint8_t qx0s = svsub_n_s8_x(ph32, qx0, 8);
  1673. const svint8_t qx1s = svsub_n_s8_x(ph32, qx1, 8);
  1674. // load y
  1675. const svint8_t qy0 = svld1_s8(ph32, y0->qs);
  1676. const svint8_t qy1 = svld1_s8(ph32, y1->qs);
  1677. // dot product
  1678. sumv0 = svmla_n_f32_x(ph32, sumv0, svcvt_f32_s32_x(ph32,
  1679. svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1680. sumv1 = svmla_n_f32_x(ph32, sumv1, svcvt_f32_s32_x(ph32,
  1681. svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1682. }
  1683. sumf = svaddv_f32(ph32, svadd_f32_x(ph32, sumv0, sumv1));
  1684. } break;
  1685. default:
  1686. assert(false && "Unsupported vector length");
  1687. break;
  1688. }
  1689. #elif defined(__ARM_NEON)
  1690. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1691. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1692. for (; ib + 1 < nb; ib += 2) {
  1693. const block_q4_0 * restrict x0 = &x[ib + 0];
  1694. const block_q4_0 * restrict x1 = &x[ib + 1];
  1695. const block_q8_0 * restrict y0 = &y[ib + 0];
  1696. const block_q8_0 * restrict y1 = &y[ib + 1];
  1697. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1698. const int8x16_t s8b = vdupq_n_s8(0x8);
  1699. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1700. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1701. // 4-bit -> 8-bit
  1702. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1703. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1704. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1705. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1706. // sub 8
  1707. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1708. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1709. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1710. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1711. // load y
  1712. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1713. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1714. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1715. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1716. // dot product into int32x4_t
  1717. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1718. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1719. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1720. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1721. }
  1722. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1723. #elif defined(__AVX2__)
  1724. // Initialize accumulator with zeros
  1725. __m256 acc = _mm256_setzero_ps();
  1726. // Main loop
  1727. for (; ib < nb; ++ib) {
  1728. /* Compute combined scale for the block */
  1729. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1730. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  1731. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1732. const __m256i off = _mm256_set1_epi8( 8 );
  1733. qx = _mm256_sub_epi8( qx, off );
  1734. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  1735. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  1736. /* Multiply q with scale and accumulate */
  1737. acc = _mm256_fmadd_ps( d, q, acc );
  1738. }
  1739. sumf = hsum_float_8(acc);
  1740. #elif defined(__AVX__)
  1741. __m256 accum = _mm256_setzero_ps();
  1742. for (; ib + 1 < nb; ib += 2) {
  1743. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
  1744. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  1745. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
  1746. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
  1747. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  1748. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  1749. const __m128i q4b_1_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_1), _mm_set1_epi8(8));
  1750. const __m128i q4b_1_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_1, 4)), _mm_set1_epi8(8));
  1751. const __m128i q4b_2_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_2), _mm_set1_epi8(8));
  1752. const __m128i q4b_2_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_2, 4)), _mm_set1_epi8(8));
  1753. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  1754. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  1755. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  1756. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  1757. const __m128i p_1 = _mm_add_epi16(p16_1_0, p16_1_1);
  1758. const __m128i p_2 = _mm_add_epi16(p16_2_0, p16_2_1);
  1759. const __m256 p = sum_i16_pairs_float(p_2, p_1);
  1760. const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
  1761. accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
  1762. }
  1763. sumf = hsum_float_8(accum);
  1764. #elif defined(__SSSE3__)
  1765. // set constants
  1766. const __m128i lowMask = _mm_set1_epi8(0xF);
  1767. const __m128i off = _mm_set1_epi8(8);
  1768. // Initialize accumulator with zeros
  1769. __m128 acc_0 = _mm_setzero_ps();
  1770. __m128 acc_1 = _mm_setzero_ps();
  1771. __m128 acc_2 = _mm_setzero_ps();
  1772. __m128 acc_3 = _mm_setzero_ps();
  1773. for (; ib + 1 < nb; ib += 2) {
  1774. _mm_prefetch(&x[ib] + sizeof(block_q4_0), _MM_HINT_T0);
  1775. _mm_prefetch(&y[ib] + sizeof(block_q8_0), _MM_HINT_T0);
  1776. // Compute combined scale for the block 0 and 1
  1777. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1778. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[ib].qs);
  1779. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1780. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
  1781. bx_0 = _mm_sub_epi8(bx_0, off);
  1782. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1783. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1784. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[ib].qs + 16));
  1785. bx_1 = _mm_sub_epi8(bx_1, off);
  1786. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1787. _mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1788. _mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1789. // Compute combined scale for the block 2 and 3
  1790. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  1791. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  1792. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1793. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  1794. bx_2 = _mm_sub_epi8(bx_2, off);
  1795. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1796. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1797. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[ib + 1].qs + 16));
  1798. bx_3 = _mm_sub_epi8(bx_3, off);
  1799. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1800. // Convert int32_t to float
  1801. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1802. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1803. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1804. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1805. // Apply the scale
  1806. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1807. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1808. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1809. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1810. // Acummulate
  1811. acc_0 = _mm_add_ps(p0_d, acc_0);
  1812. acc_1 = _mm_add_ps(p1_d, acc_1);
  1813. acc_2 = _mm_add_ps(p2_d, acc_2);
  1814. acc_3 = _mm_add_ps(p3_d, acc_3);
  1815. }
  1816. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1817. #elif defined(__riscv_v_intrinsic)
  1818. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  1819. for (; ib < nb; ++ib) {
  1820. // load elements
  1821. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  1822. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  1823. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  1824. // mask and store lower part of x, and then upper part
  1825. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  1826. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  1827. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  1828. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  1829. // subtract offset
  1830. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  1831. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  1832. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  1833. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  1834. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  1835. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  1836. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  1837. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  1838. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  1839. }
  1840. #elif defined(__POWER9_VECTOR__)
  1841. const vector signed char lowMask = vec_splats((signed char)0xF);
  1842. const vector signed int v0 = vec_splats((int32_t)0);
  1843. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  1844. const vector signed char v8 = vec_splats((signed char)0x8);
  1845. vector float vsumf0 = vec_splats(0.0f);
  1846. #pragma GCC unroll 8
  1847. for (; ib < nb; ++ib) {
  1848. __builtin_prefetch(x[ib].qs, 0, 1);
  1849. __builtin_prefetch(y[ib].qs, 0, 1);
  1850. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  1851. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  1852. vector float vd = vec_mul(vxd, vyd);
  1853. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  1854. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  1855. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  1856. vector signed char q4x0 = vec_and(qxs, lowMask);
  1857. vector signed char q4x1 = vec_sr(qxs, v4);
  1858. q4x0 = vec_sub(q4x0, v8);
  1859. q4x1 = vec_sub(q4x1, v8);
  1860. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  1861. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  1862. vector signed int vsumi0 = v0;
  1863. vsumi0 = vec_sum4s(qv0, vsumi0);
  1864. vsumi0 = vec_sum4s(qv1, vsumi0);
  1865. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  1866. }
  1867. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  1868. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  1869. sumf = vec_extract(vsumf0, 0);
  1870. #elif defined(__loongarch_asx)
  1871. // Initialize accumulator with zeros
  1872. __m256 acc = (__m256)__lasx_xvldi(0);
  1873. // Main loop
  1874. for (; ib < nb; ++ib) {
  1875. /* Compute combined scale for the block */
  1876. const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1877. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  1878. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1879. const __m256i off = __lasx_xvreplgr2vr_b( 8 );
  1880. qx = __lasx_xvsub_b( qx, off );
  1881. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  1882. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  1883. /* Multiply q with scale and accumulate */
  1884. acc = __lasx_xvfmadd_s( d, q, acc );
  1885. }
  1886. sumf = hsum_float_8(acc);
  1887. #elif defined(__loongarch_sx)
  1888. // set constants
  1889. const __m128i low_mask = __lsx_vreplgr2vr_b(0xF);
  1890. const __m128i off = __lsx_vreplgr2vr_b(8);
  1891. // Initialize accumulator with zeros
  1892. __m128 acc_0 = __lsx_vldi(0);
  1893. __m128 acc_1 = __lsx_vldi(0);
  1894. __m128 acc_2 = __lsx_vldi(0);
  1895. __m128 acc_3 = __lsx_vldi(0);
  1896. for (; ib + 1 < nb; ib += 2) {
  1897. // Compute combined scale for the block 0 and 1
  1898. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1899. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[ib].qs, 0);
  1900. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  1901. __m128i by_0 = __lsx_vld((const __m128i *)y[ib].qs, 0);
  1902. bx_0 = __lsx_vsub_b(bx_0, off);
  1903. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1904. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  1905. __m128i by_1 = __lsx_vld((const __m128i *)(y[ib].qs + 16), 0);
  1906. bx_1 = __lsx_vsub_b(bx_1, off);
  1907. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1908. //_mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1909. //_mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1910. // Compute combined scale for the block 2 and 3
  1911. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  1912. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[ib + 1].qs, 0);
  1913. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  1914. __m128i by_2 = __lsx_vld((const __m128i *)y[ib + 1].qs, 0);
  1915. bx_2 = __lsx_vsub_b(bx_2, off);
  1916. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1917. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  1918. __m128i by_3 = __lsx_vld((const __m128i *)(y[ib + 1].qs + 16), 0);
  1919. bx_3 = __lsx_vsub_b(bx_3, off);
  1920. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1921. // Convert int32_t to float
  1922. __m128 p0 = __lsx_vffint_s_w(i32_0);
  1923. __m128 p1 = __lsx_vffint_s_w(i32_1);
  1924. __m128 p2 = __lsx_vffint_s_w(i32_2);
  1925. __m128 p3 = __lsx_vffint_s_w(i32_3);
  1926. // Apply the scale
  1927. __m128 p0_d = __lsx_vfmul_s( d_0_1, p0 );
  1928. __m128 p1_d = __lsx_vfmul_s( d_0_1, p1 );
  1929. __m128 p2_d = __lsx_vfmul_s( d_2_3, p2 );
  1930. __m128 p3_d = __lsx_vfmul_s( d_2_3, p3 );
  1931. // Acummulate
  1932. acc_0 = __lsx_vfadd_s(p0_d, acc_0);
  1933. acc_1 = __lsx_vfadd_s(p1_d, acc_1);
  1934. acc_2 = __lsx_vfadd_s(p2_d, acc_2);
  1935. acc_3 = __lsx_vfadd_s(p3_d, acc_3);
  1936. }
  1937. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1938. #endif
  1939. for (; ib < nb; ++ib) {
  1940. int sumi0 = 0;
  1941. int sumi1 = 0;
  1942. for (int j = 0; j < qk/2; ++j) {
  1943. const int v0 = (x[ib].qs[j] & 0x0F) - 8;
  1944. const int v1 = (x[ib].qs[j] >> 4) - 8;
  1945. sumi0 += (v0 * y[ib].qs[j]);
  1946. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  1947. }
  1948. int sumi = sumi0 + sumi1;
  1949. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  1950. }
  1951. *s = sumf;
  1952. }
  1953. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  1954. const int qk = QK8_1;
  1955. const int nb = n / qk;
  1956. assert(n % qk == 0);
  1957. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1958. assert((nrc == 2) || (nrc == 1));
  1959. #else
  1960. assert(nrc == 1);
  1961. #endif
  1962. UNUSED(nrc);
  1963. UNUSED(bx);
  1964. UNUSED(by);
  1965. UNUSED(bs);
  1966. const block_q4_1 * restrict x = vx;
  1967. const block_q8_1 * restrict y = vy;
  1968. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1969. if (nrc == 2) {
  1970. const block_q4_1 * restrict vx0 = vx;
  1971. const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx);
  1972. const block_q8_1 * restrict vy0 = vy;
  1973. const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by);
  1974. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1975. float32x4_t summs0 = vdupq_n_f32(0.0f);
  1976. for (int i = 0; i < nb; i++) {
  1977. const block_q4_1 * restrict b_x0 = &vx0[i];
  1978. const block_q4_1 * restrict b_x1 = &vx1[i];
  1979. const block_q8_1 * restrict b_y0 = &vy0[i];
  1980. const block_q8_1 * restrict b_y1 = &vy1[i];
  1981. float32_t summs_t[4] = {
  1982. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
  1983. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
  1984. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
  1985. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)
  1986. };
  1987. summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
  1988. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1989. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  1990. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  1991. // 4-bit -> 8-bit
  1992. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1993. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1994. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1995. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1996. // load y
  1997. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  1998. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  1999. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  2000. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  2001. // mmla into int32x4_t
  2002. float32_t _scale[4] = {
  2003. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  2004. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  2005. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  2006. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
  2007. };
  2008. float32x4_t scale = vld1q_f32(_scale);
  2009. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2010. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2011. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2012. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2013. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2014. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2015. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2016. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2017. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  2018. l1, r1)), l2, r2)), l3, r3))), scale);
  2019. }
  2020. float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
  2021. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  2022. sumv2 = vaddq_f32(sumv2, summs0);
  2023. vst1_f32(s, vget_low_f32 (sumv2));
  2024. vst1_f32(s + bs, vget_high_f32(sumv2));
  2025. return;
  2026. }
  2027. #endif
  2028. int ib = 0;
  2029. float sumf = 0;
  2030. // TODO: add WASM SIMD
  2031. #if defined(__ARM_NEON)
  2032. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2033. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2034. float summs = 0;
  2035. for (; ib + 1 < nb; ib += 2) {
  2036. const block_q4_1 * restrict x0 = &x[ib + 0];
  2037. const block_q4_1 * restrict x1 = &x[ib + 1];
  2038. const block_q8_1 * restrict y0 = &y[ib + 0];
  2039. const block_q8_1 * restrict y1 = &y[ib + 1];
  2040. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  2041. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2042. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2043. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2044. // 4-bit -> 8-bit
  2045. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2046. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2047. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2048. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2049. // load y
  2050. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2051. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2052. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2053. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2054. // dot product into int32x4_t
  2055. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2056. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2057. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2058. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2059. }
  2060. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2061. #elif defined(__AVX2__) || defined(__AVX__)
  2062. // Initialize accumulator with zeros
  2063. __m256 acc = _mm256_setzero_ps();
  2064. float summs = 0;
  2065. // Main loop
  2066. for (; ib < nb; ++ib) {
  2067. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  2068. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  2069. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2070. const __m256 d0v = _mm256_set1_ps( d0 );
  2071. const __m256 d1v = _mm256_set1_ps( d1 );
  2072. // Compute combined scales
  2073. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2074. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2075. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2076. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[ib].qs );
  2077. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  2078. // Accumulate d0*d1*x*y
  2079. #if defined(__AVX2__)
  2080. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2081. #else
  2082. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2083. #endif
  2084. }
  2085. sumf = hsum_float_8(acc) + summs;
  2086. #elif defined(__riscv_v_intrinsic)
  2087. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2088. for (; ib < nb; ++ib) {
  2089. // load elements
  2090. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  2091. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  2092. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  2093. // mask and store lower part of x, and then upper part
  2094. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2095. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2096. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2097. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2098. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2099. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2100. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2101. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2102. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2103. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2104. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2105. }
  2106. #elif defined(__POWER9_VECTOR__)
  2107. const vector signed char lowMask = vec_splats((signed char)0xF);
  2108. const vector signed int v0 = vec_splats((int32_t)0);
  2109. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  2110. vector float vsumf0 = vec_splats(0.0f);
  2111. #pragma GCC unroll 4
  2112. for (; ib < nb; ++ib) {
  2113. __builtin_prefetch(x[ib].qs, 0, 1);
  2114. __builtin_prefetch(y[ib].qs, 0, 1);
  2115. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2116. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2117. vector float vd = vec_mul(vxd, vyd);
  2118. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  2119. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.0f, 0.0f, 0.0f};
  2120. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  2121. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  2122. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2123. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  2124. vector unsigned char q4x0 = (vector unsigned char)vec_and(qxs, lowMask);
  2125. vector unsigned char q4x1 = (vector unsigned char)vec_sr(qxs, v4);
  2126. vector signed int vsumi0 = v0;
  2127. vsumi0 = vec_msum(q8y0, q4x0, vsumi0);
  2128. vsumi0 = vec_msum(q8y1, q4x1, vsumi0);
  2129. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2130. }
  2131. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2132. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2133. sumf = vec_extract(vsumf0, 0);
  2134. #elif defined(__loongarch_asx)
  2135. // Initialize accumulator with zeros
  2136. __m256 acc = (__m256)__lasx_xvldi(0);
  2137. float summs = 0;
  2138. // Main loop
  2139. for (; ib < nb; ++ib) {
  2140. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  2141. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  2142. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2143. const __m256 d0v = __lasx_xvreplfr2vr_s( d0 );
  2144. const __m256 d1v = __lasx_xvreplfr2vr_s( d1 );
  2145. // Compute combined scales
  2146. const __m256 d0d1 = __lasx_xvfmul_s( d0v, d1v );
  2147. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2148. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2149. const __m256i qy = __lasx_xvld( (const __m256i *)y[ib].qs, 0);
  2150. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  2151. // Accumulate d0*d1*x*y
  2152. acc = __lasx_xvfmadd_s( d0d1, xy, acc );
  2153. }
  2154. sumf = hsum_float_8(acc) + summs;
  2155. #endif
  2156. for (; ib < nb; ++ib) {
  2157. int sumi0 = 0;
  2158. int sumi1 = 0;
  2159. for (int j = 0; j < qk/2; ++j) {
  2160. const int v0 = (x[ib].qs[j] & 0x0F);
  2161. const int v1 = (x[ib].qs[j] >> 4);
  2162. sumi0 += (v0 * y[ib].qs[j]);
  2163. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  2164. }
  2165. int sumi = sumi0 + sumi1;
  2166. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2167. }
  2168. *s = sumf;
  2169. }
  2170. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  2171. const int qk = QK8_0;
  2172. const int nb = n / qk;
  2173. int ib = 0;
  2174. float sumf = 0;
  2175. assert(n % qk == 0);
  2176. assert(qk == QK5_0);
  2177. assert(nrc == 1);
  2178. UNUSED(nrc);
  2179. UNUSED(bx);
  2180. UNUSED(by);
  2181. UNUSED(bs);
  2182. const block_q5_0 * restrict x = vx;
  2183. const block_q8_0 * restrict y = vy;
  2184. #if defined(__ARM_NEON)
  2185. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2186. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2187. uint32_t qh0;
  2188. uint32_t qh1;
  2189. uint64_t tmp0[4];
  2190. uint64_t tmp1[4];
  2191. for (; ib + 1 < nb; ib += 2) {
  2192. const block_q5_0 * restrict x0 = &x[ib];
  2193. const block_q5_0 * restrict x1 = &x[ib + 1];
  2194. const block_q8_0 * restrict y0 = &y[ib];
  2195. const block_q8_0 * restrict y1 = &y[ib + 1];
  2196. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2197. // extract the 5th bit via lookup table ((!b) << 4)
  2198. memcpy(&qh0, x0->qh, sizeof(qh0));
  2199. memcpy(&qh1, x1->qh, sizeof(qh1));
  2200. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2201. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2202. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2203. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2204. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2205. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2206. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2207. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2208. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2209. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2210. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2211. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2212. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2213. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2214. // 4-bit -> 8-bit
  2215. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2216. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2217. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2218. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2219. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2220. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2221. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2222. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2223. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2224. // load y
  2225. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2226. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2227. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2228. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2229. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2230. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2231. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2232. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2233. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2234. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2235. }
  2236. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2237. #elif defined(__wasm_simd128__)
  2238. v128_t sumv = wasm_f32x4_splat(0.0f);
  2239. uint32_t qh;
  2240. uint64_t tmp[4];
  2241. // TODO: check if unrolling this is better
  2242. for (; ib < nb; ++ib) {
  2243. const block_q5_0 * restrict x0 = &x[ib];
  2244. const block_q8_0 * restrict y0 = &y[ib];
  2245. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2246. // extract the 5th bit
  2247. memcpy(&qh, x0->qh, sizeof(qh));
  2248. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2249. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2250. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2251. tmp[3] = table_b2b_1[(qh >> 24) ];
  2252. const v128_t qhl = wasm_v128_load(tmp + 0);
  2253. const v128_t qhh = wasm_v128_load(tmp + 2);
  2254. const v128_t v0 = wasm_v128_load(x0->qs);
  2255. // 4-bit -> 8-bit
  2256. const v128_t v0l = wasm_v128_and (v0, m4b);
  2257. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2258. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2259. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2260. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2261. // load y
  2262. const v128_t v1l = wasm_v128_load(y0->qs);
  2263. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2264. // int8x16 -> int16x8
  2265. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2266. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2267. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2268. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2269. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2270. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2271. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2272. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2273. // dot product
  2274. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2275. wasm_i32x4_add(
  2276. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2277. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2278. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2279. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2280. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2281. }
  2282. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2283. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2284. #elif defined(__AVX2__)
  2285. // Initialize accumulator with zeros
  2286. __m256 acc = _mm256_setzero_ps();
  2287. // Main loop
  2288. for (; ib < nb; ++ib) {
  2289. /* Compute combined scale for the block */
  2290. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2291. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2292. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2293. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2294. qx = _mm256_or_si256(qx, bxhi);
  2295. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2296. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  2297. /* Multiply q with scale and accumulate */
  2298. acc = _mm256_fmadd_ps(d, q, acc);
  2299. }
  2300. sumf = hsum_float_8(acc);
  2301. #elif defined(__AVX__)
  2302. // Initialize accumulator with zeros
  2303. __m256 acc = _mm256_setzero_ps();
  2304. __m128i mask = _mm_set1_epi8((char)0xF0);
  2305. // Main loop
  2306. for (; ib < nb; ++ib) {
  2307. /* Compute combined scale for the block */
  2308. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2309. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  2310. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2311. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2312. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2313. bxhil = _mm_andnot_si128(bxhil, mask);
  2314. bxhih = _mm_andnot_si128(bxhih, mask);
  2315. __m128i bxl = _mm256_castsi256_si128(bx_0);
  2316. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  2317. bxl = _mm_or_si128(bxl, bxhil);
  2318. bxh = _mm_or_si128(bxh, bxhih);
  2319. bx_0 = MM256_SET_M128I(bxh, bxl);
  2320. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2321. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  2322. /* Multiply q with scale and accumulate */
  2323. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2324. }
  2325. sumf = hsum_float_8(acc);
  2326. #elif defined(__riscv_v_intrinsic)
  2327. uint32_t qh;
  2328. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2329. // These temporary registers are for masking and shift operations
  2330. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  2331. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  2332. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  2333. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  2334. for (; ib < nb; ++ib) {
  2335. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  2336. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2337. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  2338. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  2339. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  2340. // ((qh & (1u << (j + 16))) >> (j + 12));
  2341. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  2342. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  2343. // narrowing
  2344. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  2345. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  2346. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  2347. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  2348. // load
  2349. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  2350. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  2351. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  2352. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2353. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2354. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  2355. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  2356. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2357. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2358. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  2359. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  2360. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2361. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2362. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2363. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2364. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2365. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2366. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  2367. }
  2368. #elif defined(__POWER9_VECTOR__)
  2369. const vector signed char lowMask = vec_splats((signed char)0xF);
  2370. const vector unsigned char v4 = vec_splats((unsigned char)4);
  2371. vector float vsumf0 = vec_splats(0.0f);
  2372. #pragma GCC unroll 4
  2373. for (; ib < nb; ++ib) {
  2374. __builtin_prefetch(x[ib].qs, 0, 1);
  2375. __builtin_prefetch(y[ib].qs, 0, 1);
  2376. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2377. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2378. vector float vd = vec_mul(vxd, vyd);
  2379. vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[ib].qh[0]]), (uint64_t)(table_b2b_1[x[ib].qh[1]])};
  2380. vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[ib].qh[2]]), (uint64_t)(table_b2b_1[x[ib].qh[3]])};
  2381. vector signed char qh0 = (vector signed char)aux64x2_0;
  2382. vector signed char qh1 = (vector signed char)aux64x2_1;
  2383. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  2384. vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0);
  2385. vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1);
  2386. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2387. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  2388. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  2389. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  2390. qv0 = vec_add(qv0, qv1);
  2391. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  2392. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2393. }
  2394. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2395. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2396. sumf = vec_extract(vsumf0, 0);
  2397. #elif defined(__loongarch_asx)
  2398. // Initialize accumulator with zeros
  2399. __m256 acc = (__m256)__lasx_xvldi(0);
  2400. // Main loop
  2401. for (; ib < nb; ++ib) {
  2402. /* Compute combined scale for the block */
  2403. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d)); //FIXME
  2404. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2405. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2406. bxhi = __lasx_xvandn_v(bxhi, __lasx_xvreplgr2vr_b((char)0xF0));
  2407. qx = __lasx_xvor_v(qx, bxhi);
  2408. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  2409. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  2410. /* Multiply q with scale and accumulate */
  2411. acc = __lasx_xvfmadd_s(d, q, acc);
  2412. }
  2413. sumf = hsum_float_8(acc);
  2414. #endif
  2415. for (; ib < nb; ++ib) {
  2416. uint32_t qh;
  2417. memcpy(&qh, x[ib].qh, sizeof(qh));
  2418. int sumi0 = 0;
  2419. int sumi1 = 0;
  2420. for (int j = 0; j < qk/2; ++j) {
  2421. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2422. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2423. const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
  2424. const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
  2425. sumi0 += (x0 * y[ib].qs[j]);
  2426. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  2427. }
  2428. int sumi = sumi0 + sumi1;
  2429. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  2430. }
  2431. *s = sumf;
  2432. }
  2433. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  2434. const int qk = QK8_1;
  2435. const int nb = n / qk;
  2436. int ib = 0;
  2437. float sumf = 0;
  2438. assert(n % qk == 0);
  2439. assert(qk == QK5_1);
  2440. assert(nrc == 1);
  2441. UNUSED(nrc);
  2442. UNUSED(bx);
  2443. UNUSED(by);
  2444. UNUSED(bs);
  2445. const block_q5_1 * restrict x = vx;
  2446. const block_q8_1 * restrict y = vy;
  2447. #if defined(__ARM_NEON)
  2448. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2449. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2450. float summs0 = 0.0f;
  2451. float summs1 = 0.0f;
  2452. uint32_t qh0;
  2453. uint32_t qh1;
  2454. uint64_t tmp0[4];
  2455. uint64_t tmp1[4];
  2456. for (; ib + 1 < nb; ib += 2) {
  2457. const block_q5_1 * restrict x0 = &x[ib];
  2458. const block_q5_1 * restrict x1 = &x[ib + 1];
  2459. const block_q8_1 * restrict y0 = &y[ib];
  2460. const block_q8_1 * restrict y1 = &y[ib + 1];
  2461. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2462. summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  2463. summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  2464. // extract the 5th bit via lookup table ((b) << 4)
  2465. memcpy(&qh0, x0->qh, sizeof(qh0));
  2466. memcpy(&qh1, x1->qh, sizeof(qh1));
  2467. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2468. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2469. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2470. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2471. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2472. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2473. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2474. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2475. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2476. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2477. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2478. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2479. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2480. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2481. // 4-bit -> 8-bit
  2482. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2483. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2484. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2485. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2486. // add high bit
  2487. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2488. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2489. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2490. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2491. // load y
  2492. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2493. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2494. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2495. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2496. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2497. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2498. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2499. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2500. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2501. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2502. }
  2503. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2504. #elif defined(__wasm_simd128__)
  2505. v128_t sumv = wasm_f32x4_splat(0.0f);
  2506. float summs = 0.0f;
  2507. uint32_t qh;
  2508. uint64_t tmp[4];
  2509. // TODO: check if unrolling this is better
  2510. for (; ib < nb; ++ib) {
  2511. const block_q5_1 * restrict x0 = &x[ib];
  2512. const block_q8_1 * restrict y0 = &y[ib];
  2513. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  2514. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2515. // extract the 5th bit
  2516. memcpy(&qh, x0->qh, sizeof(qh));
  2517. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2518. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2519. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2520. tmp[3] = table_b2b_0[(qh >> 24) ];
  2521. const v128_t qhl = wasm_v128_load(tmp + 0);
  2522. const v128_t qhh = wasm_v128_load(tmp + 2);
  2523. const v128_t v0 = wasm_v128_load(x0->qs);
  2524. // 4-bit -> 8-bit
  2525. const v128_t v0l = wasm_v128_and (v0, m4b);
  2526. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2527. // add high bit
  2528. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2529. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2530. // load y
  2531. const v128_t v1l = wasm_v128_load(y0->qs);
  2532. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2533. // int8x16 -> int16x8
  2534. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2535. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2536. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2537. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2538. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2539. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2540. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2541. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2542. // dot product
  2543. sumv = wasm_f32x4_add(sumv,
  2544. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2545. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2546. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2547. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2548. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2549. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2550. }
  2551. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2552. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2553. #elif defined(__AVX2__)
  2554. // Initialize accumulator with zeros
  2555. __m256 acc = _mm256_setzero_ps();
  2556. float summs = 0.0f;
  2557. // Main loop
  2558. for (; ib < nb; ++ib) {
  2559. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  2560. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2561. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2562. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2563. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2564. qx = _mm256_or_si256(qx, bxhi);
  2565. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  2566. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2567. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  2568. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2569. }
  2570. sumf = hsum_float_8(acc) + summs;
  2571. #elif defined(__AVX__)
  2572. // Initialize accumulator with zeros
  2573. __m256 acc = _mm256_setzero_ps();
  2574. __m128i mask = _mm_set1_epi8(0x10);
  2575. float summs = 0.0f;
  2576. // Main loop
  2577. for (; ib < nb; ++ib) {
  2578. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  2579. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2580. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  2581. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2582. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2583. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2584. bxhil = _mm_and_si128(bxhil, mask);
  2585. bxhih = _mm_and_si128(bxhih, mask);
  2586. __m128i bxl = _mm256_castsi256_si128(bx_0);
  2587. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  2588. bxl = _mm_or_si128(bxl, bxhil);
  2589. bxh = _mm_or_si128(bxh, bxhih);
  2590. bx_0 = MM256_SET_M128I(bxh, bxl);
  2591. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  2592. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2593. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  2594. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2595. }
  2596. sumf = hsum_float_8(acc) + summs;
  2597. #elif defined(__riscv_v_intrinsic)
  2598. uint32_t qh;
  2599. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2600. // temporary registers for shift operations
  2601. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  2602. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  2603. for (; ib < nb; ++ib) {
  2604. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  2605. // load qh
  2606. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  2607. // ((qh >> (j + 0)) << 4) & 0x10;
  2608. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  2609. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  2610. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  2611. // ((qh >> (j + 12)) ) & 0x10;
  2612. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  2613. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  2614. // narrowing
  2615. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  2616. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  2617. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  2618. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  2619. // load
  2620. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  2621. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  2622. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  2623. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2624. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2625. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  2626. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  2627. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2628. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2629. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2630. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2631. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2632. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2633. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2634. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2635. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2636. }
  2637. #elif defined(__POWER9_VECTOR__)
  2638. const vector signed char lowMask = vec_splats((signed char)0xF);
  2639. const vector signed int v0 = vec_splats((int32_t)0);
  2640. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  2641. vector float vsumf0 = vec_splats(0.0f);
  2642. #pragma GCC unroll 4
  2643. for (; ib < nb; ++ib) {
  2644. __builtin_prefetch(x[ib].qs, 0, 1);
  2645. __builtin_prefetch(y[ib].qs, 0, 1);
  2646. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2647. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2648. vector float vd = vec_mul(vxd, vyd);
  2649. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  2650. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.f, 0.f, 0.f};
  2651. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  2652. vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[ib].qh[0]]), (uint64_t)(table_b2b_0[x[ib].qh[1]])};
  2653. vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[ib].qh[2]]), (uint64_t)(table_b2b_0[x[ib].qh[3]])};
  2654. vector signed char qh0 = (vector signed char)aux64x2_0;
  2655. vector signed char qh1 = (vector signed char)aux64x2_1;
  2656. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  2657. vector unsigned char q5x0 = (vector unsigned char)vec_or(vec_and(qxs, lowMask), qh0);
  2658. vector unsigned char q5x1 = (vector unsigned char)vec_or(vec_sr(qxs, v4), qh1);
  2659. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2660. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  2661. vector signed int vsumi0 = v0;
  2662. vsumi0 = vec_msum(q8y0, q5x0, vsumi0);
  2663. vsumi0 = vec_msum(q8y1, q5x1, vsumi0);
  2664. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2665. }
  2666. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2667. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2668. sumf = vec_extract(vsumf0, 0);
  2669. #elif defined(__loongarch_asx)
  2670. // Initialize accumulator with zeros
  2671. __m256 acc = (__m256)__lasx_xvldi(0);
  2672. float summs = 0.0f;
  2673. // Main loop
  2674. for (; ib < nb; ++ib) {
  2675. const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d));
  2676. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2677. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2678. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2679. bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10));
  2680. qx = __lasx_xvor_v(qx, bxhi);
  2681. const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib].d));
  2682. const __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  2683. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  2684. acc = __lasx_xvfmadd_s(q, __lasx_xvfmul_s(dx, dy), acc);
  2685. }
  2686. sumf = hsum_float_8(acc) + summs;
  2687. #endif
  2688. for (; ib < nb; ++ib) {
  2689. uint32_t qh;
  2690. memcpy(&qh, x[ib].qh, sizeof(qh));
  2691. int sumi0 = 0;
  2692. int sumi1 = 0;
  2693. for (int j = 0; j < qk/2; ++j) {
  2694. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2695. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2696. const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
  2697. const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
  2698. sumi0 += (x0 * y[ib].qs[j]);
  2699. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  2700. }
  2701. int sumi = sumi0 + sumi1;
  2702. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2703. }
  2704. *s = sumf;
  2705. }
  2706. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  2707. const int qk = QK8_0;
  2708. const int nb = n / qk;
  2709. assert(n % qk == 0);
  2710. #if defined(__ARM_FEATURE_MATMUL_INT8)
  2711. assert((nrc == 2) || (nrc == 1));
  2712. #else
  2713. assert(nrc == 1);
  2714. #endif
  2715. UNUSED(nrc);
  2716. UNUSED(bx);
  2717. UNUSED(by);
  2718. UNUSED(bs);
  2719. const block_q8_0 * restrict x = vx;
  2720. const block_q8_0 * restrict y = vy;
  2721. #if defined(__ARM_FEATURE_MATMUL_INT8)
  2722. if (nrc == 2) {
  2723. const block_q8_0 * restrict vx0 = vx;
  2724. const block_q8_0 * restrict vx1 = (const block_q8_0 *) ((const uint8_t*)vx + bx);
  2725. const block_q8_0 * restrict vy0 = vy;
  2726. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  2727. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2728. for (int i = 0; i < nb; i++) {
  2729. const block_q8_0 * restrict b_x0 = &vx0[i];
  2730. const block_q8_0 * restrict b_y0 = &vy0[i];
  2731. const block_q8_0 * restrict b_x1 = &vx1[i];
  2732. const block_q8_0 * restrict b_y1 = &vy1[i];
  2733. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  2734. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  2735. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  2736. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  2737. // load y
  2738. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  2739. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  2740. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  2741. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  2742. float32_t _scale[4] = {
  2743. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  2744. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  2745. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  2746. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
  2747. };
  2748. float32x4_t scale = vld1q_f32(_scale);
  2749. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2750. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2751. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2752. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2753. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2754. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2755. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2756. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2757. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  2758. l1, r1)), l2, r2)), l3, r3))), scale);
  2759. }
  2760. float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
  2761. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  2762. vst1_f32(s, vget_low_f32 (sumv2));
  2763. vst1_f32(s + bs, vget_high_f32(sumv2));
  2764. return;
  2765. }
  2766. #endif
  2767. int ib = 0;
  2768. float sumf = 0;
  2769. #if defined(__ARM_FEATURE_SVE)
  2770. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  2771. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  2772. const int vector_length = ggml_cpu_get_sve_cnt()*8;
  2773. //VLA Implemenation for SVE
  2774. switch (vector_length) {
  2775. case 128:
  2776. {
  2777. // predicate for activating lanes for 16 Int8 elements
  2778. const svbool_t ph16 = svptrue_pat_b8 (SV_VL16);
  2779. const svbool_t pl16 = svptrue_pat_b32(SV_VL4);
  2780. for (; ib + 1 < nb; ib += 2) {
  2781. const block_q8_0 * restrict x0 = &x[ib + 0];
  2782. const block_q8_0 * restrict x1 = &x[ib + 1];
  2783. const block_q8_0 * restrict y0 = &y[ib + 0];
  2784. const block_q8_0 * restrict y1 = &y[ib + 1];
  2785. // load x
  2786. const svint8_t qx0_0 = svld1_s8(ph16, x0->qs);
  2787. const svint8_t qx0_1 = svld1_s8(ph16, x0->qs+16);
  2788. const svint8_t qx1_0 = svld1_s8(ph16, x1->qs);
  2789. const svint8_t qx1_1 = svld1_s8(ph16, x1->qs+16);
  2790. // load y
  2791. const svint8_t qy0_0 = svld1_s8(ph16, y0->qs);
  2792. const svint8_t qy0_1 = svld1_s8(ph16, y0->qs+16);
  2793. const svint8_t qy1_0 = svld1_s8(ph16, y1->qs);
  2794. const svint8_t qy1_1 = svld1_s8(ph16, y1->qs+16);
  2795. sumv0 = svmla_n_f32_x(pl16, sumv0, svcvt_f32_s32_x(pl16, svadd_x(pl16,
  2796. svdot_s32(svdup_n_s32(0), qx0_0, qy0_0),
  2797. svdot_s32(svdup_n_s32(0), qx0_1, qy0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2798. sumv1 = svmla_n_f32_x(pl16, sumv1, svcvt_f32_s32_x(pl16, svadd_x(pl16,
  2799. svdot_s32(svdup_n_s32(0), qx1_0, qy1_0),
  2800. svdot_s32(svdup_n_s32(0), qx1_1, qy1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2801. }
  2802. sumf = svaddv_f32(pl16, svadd_f32_x(pl16, sumv0, sumv1));
  2803. } break;
  2804. case 256:
  2805. {
  2806. //printf("sve256");
  2807. for (; ib + 1 < nb; ib += 2) {
  2808. const block_q8_0 * restrict x0 = &x[ib + 0];
  2809. const block_q8_0 * restrict x1 = &x[ib + 1];
  2810. const block_q8_0 * restrict y0 = &y[ib + 0];
  2811. const block_q8_0 * restrict y1 = &y[ib + 1];
  2812. // load x
  2813. const svint8_t qx0 = svld1_s8(svptrue_b8(), x0->qs);
  2814. const svint8_t qx1 = svld1_s8(svptrue_b8(), x1->qs);
  2815. // load y
  2816. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  2817. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  2818. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
  2819. svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2820. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
  2821. svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2822. }
  2823. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  2824. } break;
  2825. case 512:
  2826. {
  2827. // predicate for activating high 256 bit
  2828. const svbool_t ph32 = svptrue_pat_b8(SV_VL32);
  2829. // predicate for activating low 256 bit
  2830. const svbool_t pl32 = svnot_b_z(svptrue_b8(), ph32);
  2831. // predicate for activating high lanes for 8 float32 elements
  2832. const svbool_t ph8 = svptrue_pat_b32(SV_VL8);
  2833. // predicate for activating low lanes for 8 float32 elements
  2834. const svbool_t pl8 = svnot_b_z(svptrue_b32(), ph8);
  2835. svfloat32_t sumv00 = svdup_n_f32(0.0f);
  2836. for (; ib + 1 < nb; ib += 2) {
  2837. const block_q8_0 * restrict x0 = &x[ib + 0];
  2838. const block_q8_0 * restrict x1 = &x[ib + 1];
  2839. const block_q8_0 * restrict y0 = &y[ib + 0];
  2840. const block_q8_0 * restrict y1 = &y[ib + 1];
  2841. //load 32 int8_t in first half of vector and put another 32 int8_t in second vector lower bits
  2842. // and add them to make one 64 element vector
  2843. // load x
  2844. const svint8_t qx_32 = svld1_s8(ph32, x0->qs);
  2845. svint8_t qx_64 = svld1_s8(pl32, x0->qs + 2);
  2846. qx_64 = svadd_s8_x(svptrue_b8(), qx_32, qx_64);
  2847. // load y
  2848. const svint8_t qy_32 = svld1_s8(ph32, y0->qs);
  2849. svint8_t qy_64 = svld1_s8(pl32, y0->qs + 2);
  2850. qy_64 = svadd_s8_x(svptrue_b8(), qy_32, qy_64);
  2851. // scale creation
  2852. const float32_t deq1 = GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d);
  2853. const float32_t deq2 = GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d);
  2854. // duplicate deq1 in first half of vector and deq2 in second half of vector
  2855. const svfloat32_t temp = svdup_f32_m(svdup_f32_z(ph8, deq1), pl8, deq2);
  2856. const svfloat32_t sumvt = svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx_64, qy_64));
  2857. sumv00 = svmla_f32_m(svptrue_b32(), sumv00, sumvt, temp);
  2858. }
  2859. sumf = svaddv_f32(svptrue_b32(), sumv00);
  2860. break;
  2861. }
  2862. default:
  2863. assert(false && "Unsupported vector length");
  2864. break;
  2865. }
  2866. #elif defined(__ARM_NEON)
  2867. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2868. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2869. for (; ib + 1 < nb; ib += 2) {
  2870. const block_q8_0 * restrict x0 = &x[ib + 0];
  2871. const block_q8_0 * restrict x1 = &x[ib + 1];
  2872. const block_q8_0 * restrict y0 = &y[ib + 0];
  2873. const block_q8_0 * restrict y1 = &y[ib + 1];
  2874. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2875. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2876. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2877. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2878. // load y
  2879. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2880. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2881. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2882. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2883. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2884. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2885. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2886. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2887. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2888. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2889. }
  2890. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2891. #elif defined(__AVX2__)
  2892. // Initialize accumulator with zeros
  2893. __m256 acc = _mm256_setzero_ps();
  2894. // Main loop
  2895. for (; ib < nb; ++ib) {
  2896. // Compute combined scale for the block
  2897. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2898. __m256i qx = _mm256_loadu_si256((const __m256i *)x[ib].qs);
  2899. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2900. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  2901. // Multiply q with scale and accumulate
  2902. acc = _mm256_fmadd_ps( d, q, acc );
  2903. }
  2904. sumf = hsum_float_8(acc);
  2905. #elif defined(__AVX__)
  2906. __m256 accum = _mm256_setzero_ps();
  2907. for (; ib + 1 < nb; ib += 2) {
  2908. const __m128i qx_1_0 = _mm_loadu_si128((const __m128i *)x[ib].qs);
  2909. const __m128i qx_1_1 = _mm_loadu_si128((const __m128i *)x[ib].qs + 1);
  2910. const __m128i qx_2_0 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  2911. const __m128i qx_2_1 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs + 1);
  2912. const __m128i qy_1_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
  2913. const __m128i qy_1_1 = _mm_loadu_si128((const __m128i *)y[ib].qs + 1);
  2914. const __m128i qy_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  2915. const __m128i qy_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  2916. const __m256 p = mul_sum_i8_quad_float(qx_1_0, qx_1_1, qx_2_0, qx_2_1, qy_1_0, qy_1_1, qy_2_0, qy_2_1);
  2917. const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
  2918. accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
  2919. }
  2920. sumf = hsum_float_8(accum);
  2921. #elif defined(__riscv_v_intrinsic)
  2922. size_t vl = __riscv_vsetvl_e8m1(qk);
  2923. for (; ib < nb; ++ib) {
  2924. // load elements
  2925. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[ib].qs, vl);
  2926. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[ib].qs, vl);
  2927. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  2928. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2929. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2930. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2931. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  2932. }
  2933. #elif defined(__POWER9_VECTOR__)
  2934. const vector signed int v0 = vec_splats((int32_t)0);
  2935. vector float vsumf0 = vec_splats(0.0f);
  2936. #pragma GCC unroll 8
  2937. for (; ib < nb; ++ib) {
  2938. __builtin_prefetch(x[ib].qs, 0, 1);
  2939. __builtin_prefetch(y[ib].qs, 0, 1);
  2940. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2941. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2942. vector float vd = vec_mul(vxd, vyd);
  2943. vector signed char q8x0 = vec_xl( 0, x[ib].qs);
  2944. vector signed char q8x1 = vec_xl(16, x[ib].qs);
  2945. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2946. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  2947. vector signed short qv0 = vec_mule(q8x0, q8y0);
  2948. vector signed short qv1 = vec_mulo(q8x0, q8y0);
  2949. vector signed short qv2 = vec_mule(q8x1, q8y1);
  2950. vector signed short qv3 = vec_mulo(q8x1, q8y1);
  2951. vector signed int vsumi0 = v0;
  2952. vector signed int vsumi1 = v0;
  2953. vsumi0 = vec_sum4s(qv0, vsumi0);
  2954. vsumi1 = vec_sum4s(qv1, vsumi1);
  2955. vsumi0 = vec_sum4s(qv2, vsumi0);
  2956. vsumi1 = vec_sum4s(qv3, vsumi1);
  2957. vsumi0 = vec_add(vsumi0, vsumi1);
  2958. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2959. }
  2960. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2961. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2962. sumf = vec_extract(vsumf0, 0);
  2963. #elif defined(__loongarch_asx)
  2964. // Initialize accumulator with zeros
  2965. __m256 acc = (__m256)__lasx_xvldi(0);
  2966. // Main loop
  2967. for (; ib < nb; ++ib) {
  2968. // Compute combined scale for the block
  2969. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2970. __m256i qx = __lasx_xvld((const __m256i *)x[ib].qs, 0);
  2971. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  2972. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  2973. // Multiply q with scale and accumulate
  2974. acc = __lasx_xvfmadd_s( d, q, acc );
  2975. }
  2976. sumf = hsum_float_8(acc);
  2977. #endif
  2978. for (; ib < nb; ++ib) {
  2979. int sumi = 0;
  2980. for (int j = 0; j < qk; j++) {
  2981. sumi += x[ib].qs[j]*y[ib].qs[j];
  2982. }
  2983. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  2984. }
  2985. *s = sumf;
  2986. }
  2987. void ggml_vec_dot_tq1_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  2988. assert(nrc == 1);
  2989. UNUSED(nrc);
  2990. UNUSED(bx);
  2991. UNUSED(by);
  2992. UNUSED(bs);
  2993. const block_tq1_0 * restrict x = vx;
  2994. const block_q8_K * restrict y = vy;
  2995. const int nb = n / QK_K;
  2996. #if defined(__ARM_NEON)
  2997. float sumf = 0.0f;
  2998. uint8_t k_shift[16] = {1, 1, 1, 1, 3, 3, 3, 3, 9, 9, 9, 9, 27, 27, 27, 27};
  2999. const uint8x16_t shift = vld1q_u8(k_shift);
  3000. for (int i = 0; i < nb; ++i) {
  3001. #if defined(__ARM_FEATURE_DOTPROD)
  3002. int32x4_t sumi0 = vdupq_n_s32(0);
  3003. int32x4_t sumi1 = vdupq_n_s32(0);
  3004. #else
  3005. int16x8_t sumi0 = vdupq_n_s16(0);
  3006. int16x8_t sumi1 = vdupq_n_s16(0);
  3007. #endif
  3008. // first 32 bytes of 5 elements
  3009. {
  3010. uint8x16_t qx0 = vld1q_u8(x[i].qs + 0);
  3011. uint8x16_t qx1 = vld1q_u8(x[i].qs + 16);
  3012. uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(3));
  3013. uint8x16_t qx3 = vmulq_u8(qx1, vdupq_n_u8(3));
  3014. uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(9));
  3015. uint8x16_t qx5 = vmulq_u8(qx1, vdupq_n_u8(9));
  3016. uint8x16_t qx6 = vmulq_u8(qx0, vdupq_n_u8(27));
  3017. uint8x16_t qx7 = vmulq_u8(qx1, vdupq_n_u8(27));
  3018. uint8x16_t qx8 = vmulq_u8(qx0, vdupq_n_u8(81));
  3019. uint8x16_t qx9 = vmulq_u8(qx1, vdupq_n_u8(81));
  3020. // multiply by 3 and keep the 2 bits above 8 bits
  3021. int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
  3022. int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
  3023. int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
  3024. int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
  3025. int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
  3026. int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
  3027. int8x16_t sqx6 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx6, vshrq_n_u8(qx6, 1)), 6));
  3028. int8x16_t sqx7 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx7, vshrq_n_u8(qx7, 1)), 6));
  3029. int8x16_t sqx8 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx8, vshrq_n_u8(qx8, 1)), 6));
  3030. int8x16_t sqx9 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx9, vshrq_n_u8(qx9, 1)), 6));
  3031. const int8x16_t qy0 = vld1q_s8(y[i].qs + 0);
  3032. const int8x16_t qy1 = vld1q_s8(y[i].qs + 16);
  3033. const int8x16_t qy2 = vld1q_s8(y[i].qs + 32);
  3034. const int8x16_t qy3 = vld1q_s8(y[i].qs + 48);
  3035. const int8x16_t qy4 = vld1q_s8(y[i].qs + 64);
  3036. const int8x16_t qy5 = vld1q_s8(y[i].qs + 80);
  3037. const int8x16_t qy6 = vld1q_s8(y[i].qs + 96);
  3038. const int8x16_t qy7 = vld1q_s8(y[i].qs + 112);
  3039. const int8x16_t qy8 = vld1q_s8(y[i].qs + 128);
  3040. const int8x16_t qy9 = vld1q_s8(y[i].qs + 144);
  3041. #if defined(__ARM_FEATURE_DOTPROD)
  3042. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  3043. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  3044. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  3045. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  3046. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  3047. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  3048. sumi0 = vdotq_s32(sumi0, sqx6, qy6);
  3049. sumi1 = vdotq_s32(sumi1, sqx7, qy7);
  3050. sumi0 = vdotq_s32(sumi0, sqx8, qy8);
  3051. sumi1 = vdotq_s32(sumi1, sqx9, qy9);
  3052. #else
  3053. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  3054. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  3055. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  3056. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  3057. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  3058. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  3059. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  3060. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  3061. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  3062. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  3063. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  3064. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  3065. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
  3066. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
  3067. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
  3068. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
  3069. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx8), vget_low_s8(qy8));
  3070. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx8), vget_high_s8(qy8));
  3071. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx9), vget_low_s8(qy9));
  3072. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx9), vget_high_s8(qy9));
  3073. #endif
  3074. }
  3075. // last 16 bytes of 5-element, along with the 4 bytes of 4 elements
  3076. {
  3077. uint8x16_t qx0 = vld1q_u8(x[i].qs + 32);
  3078. uint8x16_t qx1 = vmulq_u8(qx0, vdupq_n_u8(3));
  3079. uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(9));
  3080. uint8x16_t qx3 = vmulq_u8(qx0, vdupq_n_u8(27));
  3081. uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(81));
  3082. uint32_t qh;
  3083. memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
  3084. uint8x16_t qx5 = vreinterpretq_u8_u32(vdupq_n_u32(qh));
  3085. qx5 = vmulq_u8(qx5, shift);
  3086. // multiply by 3 and keep the 2 bits above 8 bits
  3087. int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
  3088. int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
  3089. int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
  3090. int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
  3091. int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
  3092. int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
  3093. const int8x16_t qy0 = vld1q_s8(y[i].qs + 160);
  3094. const int8x16_t qy1 = vld1q_s8(y[i].qs + 176);
  3095. const int8x16_t qy2 = vld1q_s8(y[i].qs + 192);
  3096. const int8x16_t qy3 = vld1q_s8(y[i].qs + 208);
  3097. const int8x16_t qy4 = vld1q_s8(y[i].qs + 224);
  3098. const int8x16_t qy5 = vld1q_s8(y[i].qs + 240);
  3099. #if defined(__ARM_FEATURE_DOTPROD)
  3100. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  3101. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  3102. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  3103. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  3104. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  3105. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  3106. #else
  3107. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  3108. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  3109. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  3110. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  3111. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  3112. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  3113. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  3114. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  3115. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  3116. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  3117. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  3118. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  3119. #endif
  3120. }
  3121. const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
  3122. const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
  3123. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  3124. #if defined(__ARM_FEATURE_DOTPROD)
  3125. sumi0 = vaddq_s32(sumi0, sumi1);
  3126. sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
  3127. sumf += d * (float) vaddvq_s32(sumi0);
  3128. #else
  3129. sumi0 = vaddq_s16(sumi0, sumi1);
  3130. sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
  3131. sumf += d * (float) vaddlvq_s16(sumi0);
  3132. #endif
  3133. }
  3134. *s = sumf;
  3135. #elif defined(__AVX2__)
  3136. __m256 sumf = _mm256_setzero_ps();
  3137. for (int i = 0; i < nb; ++i) {
  3138. // 16-bit sums
  3139. __m256i sumi0 = _mm256_setzero_si256();
  3140. __m256i sumi1 = _mm256_setzero_si256();
  3141. __m256i sumi2 = _mm256_setzero_si256();
  3142. // first 32 bytes of 5 elements
  3143. {
  3144. __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs));
  3145. // 8-bit multiplies with shifts, masks and adds
  3146. __m256i qx1 = _mm256_add_epi8(qx0, _mm256_add_epi8(qx0, qx0)); // 1 * 3
  3147. __m256i qx2 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx0, 3), _mm256_set1_epi8(-8)), qx0); // 1 * 9
  3148. __m256i qx3 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx1, 3), _mm256_set1_epi8(-8)), qx1); // 3 * 9
  3149. __m256i qx4 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx2, 3), _mm256_set1_epi8(-8)), qx2); // 9 * 9
  3150. // TODO: can _mm256_mulhi_epu16 be faster even if 16-bits?
  3151. // Cancel the +1 from avg so that it behaves like a halving add
  3152. qx0 = _mm256_subs_epu8(qx0, _mm256_set1_epi8(1));
  3153. qx1 = _mm256_subs_epu8(qx1, _mm256_set1_epi8(1));
  3154. qx2 = _mm256_subs_epu8(qx2, _mm256_set1_epi8(1));
  3155. qx3 = _mm256_subs_epu8(qx3, _mm256_set1_epi8(1));
  3156. qx4 = _mm256_subs_epu8(qx4, _mm256_set1_epi8(1));
  3157. // Multiply by 3 and get the top 2 bits
  3158. qx0 = _mm256_avg_epu8(qx0, _mm256_avg_epu8(qx0, _mm256_setzero_si256()));
  3159. qx1 = _mm256_avg_epu8(qx1, _mm256_avg_epu8(qx1, _mm256_setzero_si256()));
  3160. qx2 = _mm256_avg_epu8(qx2, _mm256_avg_epu8(qx2, _mm256_setzero_si256()));
  3161. qx3 = _mm256_avg_epu8(qx3, _mm256_avg_epu8(qx3, _mm256_setzero_si256()));
  3162. qx4 = _mm256_avg_epu8(qx4, _mm256_avg_epu8(qx4, _mm256_setzero_si256()));
  3163. qx0 = _mm256_and_si256(_mm256_srli_epi16(qx0, 6), _mm256_set1_epi8(3));
  3164. qx1 = _mm256_and_si256(_mm256_srli_epi16(qx1, 6), _mm256_set1_epi8(3));
  3165. qx2 = _mm256_and_si256(_mm256_srli_epi16(qx2, 6), _mm256_set1_epi8(3));
  3166. qx3 = _mm256_and_si256(_mm256_srli_epi16(qx3, 6), _mm256_set1_epi8(3));
  3167. qx4 = _mm256_and_si256(_mm256_srli_epi16(qx4, 6), _mm256_set1_epi8(3));
  3168. const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 0));
  3169. const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 32));
  3170. const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 64));
  3171. const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 96));
  3172. const __m256i qy4 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 128));
  3173. qx0 = _mm256_maddubs_epi16(qx0, qy0);
  3174. qx1 = _mm256_maddubs_epi16(qx1, qy1);
  3175. qx2 = _mm256_maddubs_epi16(qx2, qy2);
  3176. qx3 = _mm256_maddubs_epi16(qx3, qy3);
  3177. qx4 = _mm256_maddubs_epi16(qx4, qy4);
  3178. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
  3179. sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
  3180. sumi2 = _mm256_add_epi16(sumi2, qx4);
  3181. }
  3182. // last 16 bytes of 5-element, along with the 4 bytes of 4 elements
  3183. {
  3184. __m128i qx0 = _mm_loadu_si128((const __m128i *) (x[i].qs + 32));
  3185. uint32_t qh;
  3186. memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
  3187. __m256i qx5_l = _mm256_cvtepu8_epi16(_mm_set1_epi32(qh));
  3188. __m128i qx1 = _mm_add_epi8(qx0, _mm_add_epi8(qx0, qx0)); // 1 * 3
  3189. __m128i qx2 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx0, 3), _mm_set1_epi8(-8)), qx0); // 1 * 9
  3190. __m128i qx3 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx1, 3), _mm_set1_epi8(-8)), qx1); // 3 * 9
  3191. __m128i qx4 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx2, 3), _mm_set1_epi8(-8)), qx2); // 9 * 9
  3192. __m256i qx01 = MM256_SET_M128I(qx1, qx0);
  3193. __m256i qx23 = MM256_SET_M128I(qx3, qx2);
  3194. // avx2 does not have 8-bit multiplies, so 16-bit it is.
  3195. qx5_l = _mm256_mullo_epi16(qx5_l, _mm256_set_epi16(27, 27, 27, 27, 9, 9, 9, 9, 3, 3, 3, 3, 1, 1, 1, 1));
  3196. qx5_l = _mm256_and_si256(qx5_l, _mm256_set1_epi16(0xFF));
  3197. __m128i qx5 = _mm_packus_epi16(_mm256_castsi256_si128(qx5_l), _mm256_extracti128_si256(qx5_l, 1));
  3198. __m256i qx45 = MM256_SET_M128I(qx5, qx4);
  3199. // Cancel the +1 from avg so that it behaves like a halving add
  3200. qx01 = _mm256_subs_epu8(qx01, _mm256_set1_epi8(1));
  3201. qx23 = _mm256_subs_epu8(qx23, _mm256_set1_epi8(1));
  3202. qx45 = _mm256_subs_epu8(qx45, _mm256_set1_epi8(1));
  3203. // Multiply by 3 and get the top 2 bits
  3204. qx01 = _mm256_avg_epu8(qx01, _mm256_avg_epu8(qx01, _mm256_setzero_si256()));
  3205. qx23 = _mm256_avg_epu8(qx23, _mm256_avg_epu8(qx23, _mm256_setzero_si256()));
  3206. qx45 = _mm256_avg_epu8(qx45, _mm256_avg_epu8(qx45, _mm256_setzero_si256()));
  3207. qx01 = _mm256_and_si256(_mm256_srli_epi16(qx01, 6), _mm256_set1_epi8(3));
  3208. qx23 = _mm256_and_si256(_mm256_srli_epi16(qx23, 6), _mm256_set1_epi8(3));
  3209. qx45 = _mm256_and_si256(_mm256_srli_epi16(qx45, 6), _mm256_set1_epi8(3));
  3210. const __m256i qy01 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 160));
  3211. const __m256i qy23 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 192));
  3212. const __m256i qy45 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 224));
  3213. qx01 = _mm256_maddubs_epi16(qx01, qy01);
  3214. qx23 = _mm256_maddubs_epi16(qx23, qy23);
  3215. qx45 = _mm256_maddubs_epi16(qx45, qy45);
  3216. sumi0 = _mm256_add_epi16(sumi0, qx01);
  3217. sumi1 = _mm256_add_epi16(sumi1, qx23);
  3218. sumi2 = _mm256_add_epi16(sumi2, qx45);
  3219. }
  3220. const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
  3221. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  3222. sumi0 = _mm256_sub_epi16(sumi0, ysum);
  3223. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(sumi1, sumi2));
  3224. sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
  3225. sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
  3226. }
  3227. *s = hsum_float_8(sumf);
  3228. #else
  3229. const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
  3230. float sumf = 0.0f;
  3231. for (int i = 0; i < nb; ++i) {
  3232. int sum = 0;
  3233. for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
  3234. for (size_t l = 0; l < 5; ++l) {
  3235. for (size_t m = 0; m < 32; ++m) {
  3236. uint8_t q = x[i].qs[j + m] * pow3[l];
  3237. uint16_t xi = ((uint16_t) q * 3) >> 8;
  3238. sum += (xi - 1) * y[i].qs[j*5 + l*32 + m];
  3239. }
  3240. }
  3241. }
  3242. for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
  3243. for (size_t l = 0; l < 5; ++l) {
  3244. for (size_t m = 0; m < 16; ++m) {
  3245. uint8_t q = x[i].qs[j + m] * pow3[l];
  3246. uint16_t xi = ((uint16_t) q * 3) >> 8;
  3247. sum += (xi - 1) * y[i].qs[j*5 + l*16 + m];
  3248. }
  3249. }
  3250. }
  3251. for (size_t l = 0; l < 4; ++l) {
  3252. for (size_t j = 0; j < sizeof(x->qh); ++j) {
  3253. uint8_t q = x[i].qh[j] * pow3[l];
  3254. uint16_t xi = ((uint16_t) q * 3) >> 8;
  3255. sum += (xi - 1) * y[i].qs[sizeof(x->qs)*5 + l*sizeof(x->qh) + j];
  3256. }
  3257. }
  3258. sumf += (float) sum * (GGML_FP16_TO_FP32(x[i].d) * y[i].d);
  3259. }
  3260. *s = sumf;
  3261. #endif
  3262. }
  3263. void ggml_vec_dot_tq2_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3264. assert(nrc == 1);
  3265. UNUSED(nrc);
  3266. UNUSED(bx);
  3267. UNUSED(by);
  3268. UNUSED(bs);
  3269. const block_tq2_0 * restrict x = vx;
  3270. const block_q8_K * restrict y = vy;
  3271. const int nb = n / QK_K;
  3272. #if defined(__ARM_NEON)
  3273. float sumf = 0.0f;
  3274. const uint8x16_t m3 = vdupq_n_u8(3);
  3275. for (int i = 0; i < nb; ++i) {
  3276. #if defined(__ARM_FEATURE_DOTPROD)
  3277. int32x4_t sumi0 = vdupq_n_s32(0);
  3278. int32x4_t sumi1 = vdupq_n_s32(0);
  3279. #else
  3280. int16x8_t sumi0 = vdupq_n_s16(0);
  3281. int16x8_t sumi1 = vdupq_n_s16(0);
  3282. #endif
  3283. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  3284. uint8x16_t qx0 = vld1q_u8(x[i].qs + j);
  3285. uint8x16_t qx1 = vld1q_u8(x[i].qs + j + 16);
  3286. uint8x16_t qx2 = vshrq_n_u8(qx0, 2);
  3287. uint8x16_t qx3 = vshrq_n_u8(qx1, 2);
  3288. uint8x16_t qx4 = vshrq_n_u8(qx0, 4);
  3289. uint8x16_t qx5 = vshrq_n_u8(qx1, 4);
  3290. uint8x16_t qx6 = vshrq_n_u8(qx0, 6);
  3291. uint8x16_t qx7 = vshrq_n_u8(qx1, 6);
  3292. int8x16_t sqx0 = vreinterpretq_s8_u8(vandq_u8(qx0, m3));
  3293. int8x16_t sqx1 = vreinterpretq_s8_u8(vandq_u8(qx1, m3));
  3294. int8x16_t sqx2 = vreinterpretq_s8_u8(vandq_u8(qx2, m3));
  3295. int8x16_t sqx3 = vreinterpretq_s8_u8(vandq_u8(qx3, m3));
  3296. int8x16_t sqx4 = vreinterpretq_s8_u8(vandq_u8(qx4, m3));
  3297. int8x16_t sqx5 = vreinterpretq_s8_u8(vandq_u8(qx5, m3));
  3298. int8x16_t sqx6 = vreinterpretq_s8_u8(vandq_u8(qx6, m3));
  3299. int8x16_t sqx7 = vreinterpretq_s8_u8(vandq_u8(qx7, m3));
  3300. const int8x16_t qy0 = vld1q_s8(y[i].qs + j*4 + 0);
  3301. const int8x16_t qy1 = vld1q_s8(y[i].qs + j*4 + 16);
  3302. const int8x16_t qy2 = vld1q_s8(y[i].qs + j*4 + 32);
  3303. const int8x16_t qy3 = vld1q_s8(y[i].qs + j*4 + 48);
  3304. const int8x16_t qy4 = vld1q_s8(y[i].qs + j*4 + 64);
  3305. const int8x16_t qy5 = vld1q_s8(y[i].qs + j*4 + 80);
  3306. const int8x16_t qy6 = vld1q_s8(y[i].qs + j*4 + 96);
  3307. const int8x16_t qy7 = vld1q_s8(y[i].qs + j*4 + 112);
  3308. #if defined(__ARM_FEATURE_DOTPROD)
  3309. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  3310. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  3311. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  3312. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  3313. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  3314. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  3315. sumi0 = vdotq_s32(sumi0, sqx6, qy6);
  3316. sumi1 = vdotq_s32(sumi1, sqx7, qy7);
  3317. #else
  3318. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  3319. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  3320. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  3321. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  3322. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  3323. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  3324. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  3325. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  3326. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  3327. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  3328. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  3329. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  3330. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
  3331. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
  3332. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
  3333. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
  3334. #endif
  3335. }
  3336. const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
  3337. const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
  3338. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  3339. #if defined(__ARM_FEATURE_DOTPROD)
  3340. sumi0 = vaddq_s32(sumi0, sumi1);
  3341. sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
  3342. sumf += d * (float) vaddvq_s32(sumi0);
  3343. #else
  3344. sumi0 = vaddq_s16(sumi0, sumi1);
  3345. sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
  3346. sumf += d * (float) vaddlvq_s16(sumi0);
  3347. #endif
  3348. }
  3349. *s = sumf;
  3350. #elif defined(__AVX2__)
  3351. __m256 sumf = _mm256_setzero_ps();
  3352. for (int i = 0; i < nb; ++i) {
  3353. // 16-bit sums, because 256*127 still fits
  3354. __m256i sumi0 = _mm256_setzero_si256();
  3355. __m256i sumi1 = _mm256_setzero_si256();
  3356. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  3357. __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs + j));
  3358. __m256i qx1 = _mm256_srli_epi16(qx0, 2);
  3359. __m256i qx2 = _mm256_srli_epi16(qx0, 4);
  3360. __m256i qx3 = _mm256_srli_epi16(qx0, 6);
  3361. // 0, 1, 2 (should not be 3)
  3362. qx0 = _mm256_and_si256(qx0, _mm256_set1_epi8(3));
  3363. qx1 = _mm256_and_si256(qx1, _mm256_set1_epi8(3));
  3364. qx2 = _mm256_and_si256(qx2, _mm256_set1_epi8(3));
  3365. qx3 = _mm256_and_si256(qx3, _mm256_set1_epi8(3));
  3366. const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 0));
  3367. const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 32));
  3368. const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 64));
  3369. const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 96));
  3370. qx0 = _mm256_maddubs_epi16(qx0, qy0);
  3371. qx1 = _mm256_maddubs_epi16(qx1, qy1);
  3372. qx2 = _mm256_maddubs_epi16(qx2, qy2);
  3373. qx3 = _mm256_maddubs_epi16(qx3, qy3);
  3374. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
  3375. sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
  3376. }
  3377. const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
  3378. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  3379. sumi0 = _mm256_add_epi16(sumi0, sumi1);
  3380. sumi0 = _mm256_sub_epi16(sumi0, ysum);
  3381. sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
  3382. sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
  3383. }
  3384. *s = hsum_float_8(sumf);
  3385. #else
  3386. float sumf = 0.0f;
  3387. for (int i = 0; i < nb; ++i) {
  3388. int32_t sumi = 0;
  3389. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  3390. for (size_t l = 0; l < 4; ++l) {
  3391. for (size_t k = 0; k < 32; ++k) {
  3392. sumi += y[i].qs[j*4 + l*32 + k] * (((x[i].qs[j + k] >> (l*2)) & 3) - 1);
  3393. }
  3394. }
  3395. }
  3396. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3397. sumf += (float) sumi * d;
  3398. }
  3399. *s = sumf;
  3400. #endif
  3401. }
  3402. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3403. assert(nrc == 1);
  3404. UNUSED(nrc);
  3405. UNUSED(bx);
  3406. UNUSED(by);
  3407. UNUSED(bs);
  3408. const block_q2_K * restrict x = vx;
  3409. const block_q8_K * restrict y = vy;
  3410. const int nb = n / QK_K;
  3411. #ifdef __ARM_NEON
  3412. const uint8x16_t m3 = vdupq_n_u8(0x3);
  3413. const uint8x16_t m4 = vdupq_n_u8(0xF);
  3414. const int32x4_t vzero = vdupq_n_s32(0);
  3415. ggml_int8x16x2_t q2bytes;
  3416. uint8_t aux[16];
  3417. float sum = 0;
  3418. for (int i = 0; i < nb; ++i) {
  3419. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3420. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3421. const uint8_t * restrict q2 = x[i].qs;
  3422. const int8_t * restrict q8 = y[i].qs;
  3423. const uint8_t * restrict sc = x[i].scales;
  3424. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  3425. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  3426. vst1q_u8(aux, scales);
  3427. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  3428. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  3429. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  3430. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  3431. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  3432. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  3433. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  3434. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  3435. int isum = 0;
  3436. int is = 0;
  3437. // We use this macro instead of a function call because for some reason
  3438. // the code runs 2-3% slower, even if the function is declared inline
  3439. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  3440. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  3441. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  3442. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  3443. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  3444. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  3445. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  3446. MULTIPLY_ACCUM_WITH_SCALE((index));
  3447. for (int j = 0; j < QK_K/128; ++j) {
  3448. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  3449. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  3450. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  3451. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  3452. MULTIPLY_ACCUM_WITH_SCALE(0);
  3453. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  3454. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  3455. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  3456. is += 8;
  3457. }
  3458. sum += d * isum;
  3459. }
  3460. *s = sum;
  3461. #elif defined __AVX2__
  3462. const __m256i m3 = _mm256_set1_epi8(3);
  3463. const __m128i m4 = _mm_set1_epi8(0xF);
  3464. __m256 acc = _mm256_setzero_ps();
  3465. for (int i = 0; i < nb; ++i) {
  3466. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3467. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3468. const uint8_t * restrict q2 = x[i].qs;
  3469. const int8_t * restrict q8 = y[i].qs;
  3470. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3471. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  3472. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  3473. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  3474. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  3475. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  3476. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  3477. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  3478. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  3479. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  3480. __m256i sumi = _mm256_setzero_si256();
  3481. for (int j = 0; j < QK_K/128; ++j) {
  3482. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  3483. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3484. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3485. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3486. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3487. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  3488. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  3489. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  3490. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  3491. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  3492. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  3493. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  3494. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  3495. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  3496. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  3497. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  3498. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  3499. p0 = _mm256_add_epi32(p0, p1);
  3500. p2 = _mm256_add_epi32(p2, p3);
  3501. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  3502. }
  3503. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3504. }
  3505. *s = hsum_float_8(acc);
  3506. #elif defined __AVX__
  3507. const __m128i m3 = _mm_set1_epi8(0x3);
  3508. const __m128i m4 = _mm_set1_epi8(0xF);
  3509. const __m128i m2 = _mm_set1_epi8(0x2);
  3510. __m256 acc = _mm256_setzero_ps();
  3511. for (int i = 0; i < nb; ++i) {
  3512. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3513. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3514. const uint8_t * restrict q2 = x[i].qs;
  3515. const int8_t * restrict q8 = y[i].qs;
  3516. // load mins and scales from block_q2_K.scales[QK_K/16]
  3517. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3518. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  3519. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  3520. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  3521. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  3522. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  3523. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  3524. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  3525. // sumf += -dmin * summs in 32bits*8
  3526. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  3527. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  3528. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  3529. const __m128i scales[2] = { scales_0, scales_1 };
  3530. __m128i sumi_0 = _mm_setzero_si128();
  3531. __m128i sumi_1 = _mm_setzero_si128();
  3532. for (int j = 0; j < QK_K/128; ++j) {
  3533. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  3534. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3535. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3536. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3537. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3538. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3539. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3540. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3541. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3542. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  3543. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  3544. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  3545. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  3546. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  3547. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  3548. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  3549. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  3550. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  3551. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  3552. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  3553. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  3554. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  3555. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  3556. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  3557. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  3558. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  3559. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  3560. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  3561. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  3562. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  3563. __m128i shuffle = _mm_set1_epi16(0x0100);
  3564. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  3565. shuffle = _mm_add_epi16(shuffle, m2);
  3566. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  3567. shuffle = _mm_add_epi16(shuffle, m2);
  3568. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  3569. shuffle = _mm_add_epi16(shuffle, m2);
  3570. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  3571. shuffle = _mm_add_epi16(shuffle, m2);
  3572. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  3573. shuffle = _mm_add_epi16(shuffle, m2);
  3574. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  3575. shuffle = _mm_add_epi16(shuffle, m2);
  3576. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  3577. shuffle = _mm_add_epi16(shuffle, m2);
  3578. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  3579. p0 = _mm_add_epi32(p0, p1);
  3580. p2 = _mm_add_epi32(p2, p3);
  3581. p4 = _mm_add_epi32(p4, p5);
  3582. p6 = _mm_add_epi32(p6, p7);
  3583. // isum in 32bits*4*2
  3584. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  3585. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  3586. }
  3587. // sumf += dall * isum - dmin * summs in 32bits
  3588. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  3589. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  3590. }
  3591. *s = hsum_float_8(acc);
  3592. #elif defined __riscv_v_intrinsic
  3593. float sumf = 0;
  3594. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3595. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  3596. for (int i = 0; i < nb; ++i) {
  3597. const uint8_t * q2 = x[i].qs;
  3598. const int8_t * q8 = y[i].qs;
  3599. const uint8_t * sc = x[i].scales;
  3600. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3601. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3602. size_t vl = 16;
  3603. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  3604. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  3605. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  3606. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  3607. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  3608. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  3609. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  3610. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  3611. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  3612. vl = 32;
  3613. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  3614. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  3615. uint8_t is=0;
  3616. int isum=0;
  3617. for (int j = 0; j < QK_K/128; ++j) {
  3618. // load Q2
  3619. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  3620. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  3621. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  3622. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  3623. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  3624. // duplicate scale elements for product
  3625. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  3626. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  3627. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  3628. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  3629. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  3630. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  3631. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  3632. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  3633. // load Q8
  3634. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  3635. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  3636. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  3637. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  3638. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  3639. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  3640. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  3641. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  3642. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  3643. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  3644. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  3645. q2+=32; q8+=128; is=8;
  3646. }
  3647. sumf += dall * isum;
  3648. }
  3649. *s = sumf;
  3650. #elif defined(__POWER9_VECTOR__)
  3651. const vector signed char lowMask = vec_splats((signed char)0x3);
  3652. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  3653. const vector int v0 = vec_splats((int32_t)0);
  3654. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  3655. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  3656. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3657. vector float vsumf0 = vec_splats(0.0f);
  3658. vector float vsumf1 = vec_splats(0.0f);
  3659. vector float vsumf2 = vec_splats(0.0f);
  3660. vector float vsumf3 = vec_splats(0.0f);
  3661. for (int i = 0; i < nb; ++i) {
  3662. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3663. vector float vyd = vec_splats(y[i].d);
  3664. vector float vd = vec_mul(vxd, vyd);
  3665. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  3666. vector float vdmin = vec_mul(vxmin, vyd);
  3667. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  3668. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  3669. vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales);
  3670. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  3671. q2xmins = vec_sr(q2xmins, v4);
  3672. vector signed short q2xmins0 = vec_unpackh(q2xmins);
  3673. vector signed short q2xmins1 = vec_unpackl(q2xmins);
  3674. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  3675. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  3676. vector signed int prod2 = vec_mule(q2xmins1, q8ysums1);
  3677. vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1);
  3678. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  3679. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  3680. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  3681. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  3682. vector signed int vsumi0 = v0;
  3683. vector signed int vsumi1 = v0;
  3684. vector signed int vsumi2 = v0;
  3685. vector signed int vsumi3 = v0;
  3686. vector signed int vsumi4 = v0;
  3687. vector signed int vsumi5 = v0;
  3688. vector signed int vsumi6 = v0;
  3689. vector signed int vsumi7 = v0;
  3690. const uint8_t * restrict q2 = x[i].qs;
  3691. const int8_t * restrict q8 = y[i].qs;
  3692. for (int j = 0; j < QK_K/128; ++j) {
  3693. __builtin_prefetch(q2, 0, 1);
  3694. __builtin_prefetch(q8, 0, 1);
  3695. vector signed char qxs0 = (vector signed char)vec_xl( 0, q2);
  3696. vector signed char qxs1 = (vector signed char)vec_xl(16, q2);
  3697. q2 += 32;
  3698. vector unsigned char q2x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  3699. vector unsigned char q2x01 = (vector unsigned char)vec_and(vec_sr(qxs0, v2), lowMask);
  3700. vector unsigned char q2x02 = (vector unsigned char)vec_and(vec_sr(qxs0, v4), lowMask);
  3701. vector unsigned char q2x03 = (vector unsigned char)vec_and(vec_sr(qxs0, v6), lowMask);
  3702. vector unsigned char q2x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  3703. vector unsigned char q2x11 = (vector unsigned char)vec_and(vec_sr(qxs1, v2), lowMask);
  3704. vector unsigned char q2x12 = (vector unsigned char)vec_and(vec_sr(qxs1, v4), lowMask);
  3705. vector unsigned char q2x13 = (vector unsigned char)vec_and(vec_sr(qxs1, v6), lowMask);
  3706. vector signed char q8y00 = vec_xl( 0, q8);
  3707. vector signed char q8y10 = vec_xl( 16, q8);
  3708. vector signed char q8y01 = vec_xl( 32, q8);
  3709. vector signed char q8y11 = vec_xl( 48, q8);
  3710. vector signed char q8y02 = vec_xl( 64, q8);
  3711. vector signed char q8y12 = vec_xl( 80, q8);
  3712. vector signed char q8y03 = vec_xl( 96, q8);
  3713. vector signed char q8y13 = vec_xl(112, q8);
  3714. q8 += 128;
  3715. vector signed int qv0 = vec_msum(q8y00, q2x00, v0);
  3716. vector signed int qv1 = vec_msum(q8y01, q2x01, v0);
  3717. vector signed int qv2 = vec_msum(q8y02, q2x02, v0);
  3718. vector signed int qv3 = vec_msum(q8y03, q2x03, v0);
  3719. vector signed int qv4 = vec_msum(q8y10, q2x10, v0);
  3720. vector signed int qv5 = vec_msum(q8y11, q2x11, v0);
  3721. vector signed int qv6 = vec_msum(q8y12, q2x12, v0);
  3722. vector signed int qv7 = vec_msum(q8y13, q2x13, v0);
  3723. vector signed short vscales_07 = vec_unpackh(vscales);
  3724. vector signed int vscales_03 = vec_unpackh(vscales_07);
  3725. vector signed int vscales_47 = vec_unpackl(vscales_07);
  3726. vector signed int vs0 = vec_splat(vscales_03, 0);
  3727. vector signed int vs1 = vec_splat(vscales_03, 1);
  3728. vector signed int vs2 = vec_splat(vscales_03, 2);
  3729. vector signed int vs3 = vec_splat(vscales_03, 3);
  3730. vector signed int vs4 = vec_splat(vscales_47, 0);
  3731. vector signed int vs5 = vec_splat(vscales_47, 1);
  3732. vector signed int vs6 = vec_splat(vscales_47, 2);
  3733. vector signed int vs7 = vec_splat(vscales_47, 3);
  3734. vscales = vec_sld(vscales, vscales, 8);
  3735. vsumi0 = vec_add(vec_mul(qv0, vs0), vsumi0);
  3736. vsumi1 = vec_add(vec_mul(qv1, vs2), vsumi1);
  3737. vsumi2 = vec_add(vec_mul(qv2, vs4), vsumi2);
  3738. vsumi3 = vec_add(vec_mul(qv3, vs6), vsumi3);
  3739. vsumi4 = vec_add(vec_mul(qv4, vs1), vsumi4);
  3740. vsumi5 = vec_add(vec_mul(qv5, vs3), vsumi5);
  3741. vsumi6 = vec_add(vec_mul(qv6, vs5), vsumi6);
  3742. vsumi7 = vec_add(vec_mul(qv7, vs7), vsumi7);
  3743. }
  3744. vsumi0 = vec_add(vsumi0, vsumi4);
  3745. vsumi1 = vec_add(vsumi1, vsumi5);
  3746. vsumi2 = vec_add(vsumi2, vsumi6);
  3747. vsumi3 = vec_add(vsumi3, vsumi7);
  3748. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3749. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  3750. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  3751. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  3752. }
  3753. vsumf0 = vec_add(vsumf0, vsumf2);
  3754. vsumf1 = vec_add(vsumf1, vsumf3);
  3755. vsumf0 = vec_add(vsumf0, vsumf1);
  3756. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3757. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3758. *s = vec_extract(vsumf0, 0);
  3759. #elif defined __loongarch_asx
  3760. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  3761. const __m128i m4 = __lsx_vreplgr2vr_b(0xF);
  3762. __m256 acc = (__m256)__lasx_xvldi(0);
  3763. for (int i = 0; i < nb; ++i) {
  3764. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3765. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3766. const uint8_t * restrict q2 = x[i].qs;
  3767. const int8_t * restrict q8 = y[i].qs;
  3768. const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  3769. const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
  3770. const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
  3771. const __m256i mins = lasx_ext8_16(mins8);
  3772. const __m256i prod = lasx_madd_h(mins, __lasx_xvld((const __m256i*)y[i].bsums, 0));
  3773. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(dmin), __lasx_xvffint_s_w(prod), acc);
  3774. const __m256i all_scales = lasx_ext8_16(scales8);
  3775. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  3776. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  3777. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  3778. __m256i sumi = __lasx_xvldi(0);
  3779. for (int j = 0; j < QK_K/128; ++j) {
  3780. const __m256i q2bits = __lasx_xvld((const __m256i*)q2, 0); q2 += 32;
  3781. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3782. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3783. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3784. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3785. const __m256i q2_0 = __lasx_xvand_v(q2bits, m3);
  3786. const __m256i q2_1 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 2), m3);
  3787. const __m256i q2_2 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 4), m3);
  3788. const __m256i q2_3 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 6), m3);
  3789. __m256i p0 = lasx_maddubs_h(q2_0, q8_0);
  3790. __m256i p1 = lasx_maddubs_h(q2_1, q8_1);
  3791. __m256i p2 = lasx_maddubs_h(q2_2, q8_2);
  3792. __m256i p3 = lasx_maddubs_h(q2_3, q8_3);
  3793. p0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(0)), p0);
  3794. p1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(1)), p1);
  3795. p2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(2)), p2);
  3796. p3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(3)), p3);
  3797. p0 = __lasx_xvadd_w(p0, p1);
  3798. p2 = __lasx_xvadd_w(p2, p3);
  3799. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p0, p2));
  3800. }
  3801. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  3802. }
  3803. *s = hsum_float_8(acc);
  3804. #else
  3805. float sumf = 0;
  3806. for (int i = 0; i < nb; ++i) {
  3807. const uint8_t * q2 = x[i].qs;
  3808. const int8_t * q8 = y[i].qs;
  3809. const uint8_t * sc = x[i].scales;
  3810. int summs = 0;
  3811. for (int j = 0; j < 16; ++j) {
  3812. summs += y[i].bsums[j] * (sc[j] >> 4);
  3813. }
  3814. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3815. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3816. int isum = 0;
  3817. int is = 0;
  3818. int d;
  3819. for (int k = 0; k < QK_K/128; ++k) {
  3820. int shift = 0;
  3821. for (int j = 0; j < 4; ++j) {
  3822. d = sc[is++] & 0xF;
  3823. int isuml = 0;
  3824. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  3825. isum += d * isuml;
  3826. d = sc[is++] & 0xF;
  3827. isuml = 0;
  3828. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  3829. isum += d * isuml;
  3830. shift += 2;
  3831. q8 += 32;
  3832. }
  3833. q2 += 32;
  3834. }
  3835. sumf += dall * isum - dmin * summs;
  3836. }
  3837. *s = sumf;
  3838. #endif
  3839. }
  3840. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3841. assert(n % QK_K == 0);
  3842. assert(nrc == 1);
  3843. UNUSED(nrc);
  3844. UNUSED(bx);
  3845. UNUSED(by);
  3846. UNUSED(bs);
  3847. const uint32_t kmask1 = 0x03030303;
  3848. const uint32_t kmask2 = 0x0f0f0f0f;
  3849. const block_q3_K * restrict x = vx;
  3850. const block_q8_K * restrict y = vy;
  3851. const int nb = n / QK_K;
  3852. #ifdef __ARM_NEON
  3853. uint32_t aux[3];
  3854. uint32_t utmp[4];
  3855. const uint8x16_t m3b = vdupq_n_u8(0x3);
  3856. const int32x4_t vzero = vdupq_n_s32(0);
  3857. const uint8x16_t m0 = vdupq_n_u8(1);
  3858. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  3859. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  3860. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  3861. const int8_t m32 = 32;
  3862. ggml_int8x16x4_t q3bytes;
  3863. float sum = 0;
  3864. for (int i = 0; i < nb; ++i) {
  3865. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3866. const uint8_t * restrict q3 = x[i].qs;
  3867. const uint8_t * restrict qh = x[i].hmask;
  3868. const int8_t * restrict q8 = y[i].qs;
  3869. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  3870. ggml_uint8x16x4_t q3h;
  3871. int32_t isum = 0;
  3872. // Set up scales
  3873. memcpy(aux, x[i].scales, 12);
  3874. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  3875. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  3876. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  3877. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  3878. int8_t * scale = (int8_t *)utmp;
  3879. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  3880. for (int j = 0; j < QK_K/128; ++j) {
  3881. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  3882. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  3883. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  3884. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  3885. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  3886. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  3887. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  3888. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  3889. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  3890. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  3891. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  3892. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  3893. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  3894. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  3895. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  3896. scale += 4;
  3897. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  3898. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  3899. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  3900. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  3901. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  3902. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  3903. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  3904. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  3905. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  3906. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  3907. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  3908. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  3909. scale += 4;
  3910. if (j == 0) {
  3911. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  3912. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  3913. }
  3914. }
  3915. sum += d * isum;
  3916. }
  3917. *s = sum;
  3918. #elif defined __AVX2__
  3919. const __m256i m3 = _mm256_set1_epi8(3);
  3920. const __m256i mone = _mm256_set1_epi8(1);
  3921. const __m128i m32 = _mm_set1_epi8(32);
  3922. __m256 acc = _mm256_setzero_ps();
  3923. uint32_t aux[3];
  3924. for (int i = 0; i < nb; ++i) {
  3925. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3926. const uint8_t * restrict q3 = x[i].qs;
  3927. const int8_t * restrict q8 = y[i].qs;
  3928. // Set up scales
  3929. memcpy(aux, x[i].scales, 12);
  3930. __m128i scales128 = _mm_set_epi32(
  3931. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  3932. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  3933. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  3934. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  3935. scales128 = _mm_sub_epi8(scales128, m32);
  3936. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  3937. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  3938. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  3939. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  3940. // high bit
  3941. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  3942. // integer accumulator
  3943. __m256i sumi = _mm256_setzero_si256();
  3944. int bit = 0;
  3945. int is = 0;
  3946. for (int j = 0; j < QK_K/128; ++j) {
  3947. // load low 2 bits
  3948. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  3949. // prepare low and high bits
  3950. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  3951. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3952. ++bit;
  3953. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  3954. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3955. ++bit;
  3956. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  3957. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3958. ++bit;
  3959. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  3960. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3961. ++bit;
  3962. // load Q8 quants
  3963. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3964. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3965. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3966. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3967. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  3968. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  3969. // and 2 if the high bit was set)
  3970. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  3971. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  3972. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  3973. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  3974. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  3975. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  3976. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  3977. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  3978. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3979. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3980. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  3981. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  3982. // multiply with scales
  3983. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  3984. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  3985. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  3986. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  3987. // accumulate
  3988. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  3989. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  3990. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  3991. }
  3992. // multiply with block scale and accumulate
  3993. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3994. }
  3995. *s = hsum_float_8(acc);
  3996. #elif defined __AVX__
  3997. const __m128i m3 = _mm_set1_epi8(3);
  3998. const __m128i mone = _mm_set1_epi8(1);
  3999. const __m128i m32 = _mm_set1_epi8(32);
  4000. const __m128i m2 = _mm_set1_epi8(2);
  4001. __m256 acc = _mm256_setzero_ps();
  4002. const uint32_t *aux;
  4003. for (int i = 0; i < nb; ++i) {
  4004. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4005. const uint8_t * restrict q3 = x[i].qs;
  4006. const int8_t * restrict q8 = y[i].qs;
  4007. // Set up scales
  4008. aux = (const uint32_t *)x[i].scales;
  4009. __m128i scales128 = _mm_set_epi32(
  4010. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4011. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4012. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4013. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4014. scales128 = _mm_sub_epi8(scales128, m32);
  4015. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  4016. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  4017. const __m128i scales[2] = { scales_0, scales_1 };
  4018. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  4019. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  4020. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  4021. // integer accumulator
  4022. __m128i sumi_0 = _mm_setzero_si128();
  4023. __m128i sumi_1 = _mm_setzero_si128();
  4024. for (int j = 0; j < QK_K/128; ++j) {
  4025. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  4026. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  4027. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  4028. // prepare low and high bits
  4029. const int bit = j << 2;
  4030. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  4031. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  4032. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  4033. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  4034. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  4035. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  4036. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  4037. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  4038. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  4039. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  4040. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  4041. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  4042. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  4043. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  4044. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  4045. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  4046. // load Q8 quants from block_q8_K.qs[QK_K]
  4047. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4048. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4049. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4050. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4051. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4052. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4053. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4054. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4055. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  4056. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  4057. // and 2 if the high bit was set)
  4058. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  4059. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  4060. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  4061. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  4062. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  4063. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  4064. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  4065. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  4066. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  4067. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  4068. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  4069. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  4070. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  4071. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  4072. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  4073. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  4074. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  4075. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  4076. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  4077. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  4078. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  4079. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  4080. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  4081. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  4082. // multiply with scales
  4083. __m128i shuffle = _mm_set1_epi16(0x0100);
  4084. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  4085. shuffle = _mm_add_epi16(shuffle, m2);
  4086. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  4087. shuffle = _mm_add_epi16(shuffle, m2);
  4088. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  4089. shuffle = _mm_add_epi16(shuffle, m2);
  4090. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  4091. shuffle = _mm_add_epi16(shuffle, m2);
  4092. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  4093. shuffle = _mm_add_epi16(shuffle, m2);
  4094. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  4095. shuffle = _mm_add_epi16(shuffle, m2);
  4096. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  4097. shuffle = _mm_add_epi16(shuffle, m2);
  4098. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  4099. // accumulate
  4100. p16_0 = _mm_add_epi32(p16_0, p16_1);
  4101. p16_2 = _mm_add_epi32(p16_2, p16_3);
  4102. p16_4 = _mm_add_epi32(p16_4, p16_5);
  4103. p16_6 = _mm_add_epi32(p16_6, p16_7);
  4104. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  4105. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  4106. }
  4107. // multiply with block scale and accumulate
  4108. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4109. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  4110. }
  4111. *s = hsum_float_8(acc);
  4112. #elif defined __riscv_v_intrinsic
  4113. uint32_t aux[3];
  4114. uint32_t utmp[4];
  4115. float sumf = 0;
  4116. for (int i = 0; i < nb; ++i) {
  4117. const uint8_t * restrict q3 = x[i].qs;
  4118. const uint8_t * restrict qh = x[i].hmask;
  4119. const int8_t * restrict q8 = y[i].qs;
  4120. memcpy(aux, x[i].scales, 12);
  4121. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  4122. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  4123. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  4124. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  4125. int8_t * scale = (int8_t *)utmp;
  4126. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  4127. size_t vl = 32;
  4128. uint8_t m = 1;
  4129. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4130. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  4131. int sum_t = 0;
  4132. for (int j = 0; j < QK_K; j += 128) {
  4133. vl = 32;
  4134. // load Q3
  4135. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  4136. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  4137. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  4138. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  4139. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  4140. // compute mask for subtraction
  4141. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4142. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  4143. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_mu(vmask_0, q3_0, q3_0, 0x4, vl);
  4144. m <<= 1;
  4145. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4146. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  4147. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_mu(vmask_1, q3_1, q3_1, 0x4, vl);
  4148. m <<= 1;
  4149. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4150. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  4151. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_mu(vmask_2, q3_2, q3_2, 0x4, vl);
  4152. m <<= 1;
  4153. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4154. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  4155. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_mu(vmask_3, q3_3, q3_3, 0x4, vl);
  4156. m <<= 1;
  4157. // load Q8 and take product with Q3
  4158. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  4159. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  4160. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  4161. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  4162. vl = 16;
  4163. // retrieve lane to multiply with scale
  4164. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  4165. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  4166. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  4167. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  4168. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  4169. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  4170. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  4171. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  4172. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  4173. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  4174. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  4175. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  4176. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  4177. q3 += 32; q8 += 128; scale += 8;
  4178. }
  4179. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4180. sumf += d*sum_t;
  4181. }
  4182. *s = sumf;
  4183. #elif defined(__POWER9_VECTOR__)
  4184. const vector signed char lowMask = vec_splats((signed char)0x3);
  4185. const vector signed char lowMask1 = vec_splats((int8_t)0xf);
  4186. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  4187. const vector int v0 = vec_splats((int32_t)0);
  4188. const vector signed char v1 = vec_splats((signed char)0x1);
  4189. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  4190. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  4191. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4192. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  4193. const vector signed char off = vec_splats((signed char)0x20);
  4194. vector float vsumf0 = vec_splats(0.0f);
  4195. vector float vsumf1 = vec_splats(0.0f);
  4196. vector float vsumf2 = vec_splats(0.0f);
  4197. vector float vsumf3 = vec_splats(0.0f);
  4198. for (int i = 0; i < nb; ++i) {
  4199. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4200. vector float vyd = vec_splats(y[i].d);
  4201. vector float vd = vec_mul(vxd, vyd);
  4202. UNUSED(kmask1);
  4203. UNUSED(kmask2);
  4204. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  4205. vector signed char u1 = vec_and(u0, lowMask1);
  4206. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  4207. vector signed char u3 = (vector signed char)vec_mergeh((vector signed int)u2, (vector signed int)vec_sr(u2, v2));
  4208. vector signed char u30 = vec_sl(vec_and(u3, lowMask), v4);
  4209. vector signed char u31 = vec_and(u3, lowMask2);
  4210. u1 = vec_or(u1, u30);
  4211. u2 = vec_or(vec_sr(u0, v4), u31);
  4212. vector signed char vscales = (vector signed char)vec_mergeh((vector signed long long)u1, (vector signed long long)u2);
  4213. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask);
  4214. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask);
  4215. vscales = vec_sub(vscales, off);
  4216. vector signed int vsumi0 = v0;
  4217. vector signed int vsumi1 = v0;
  4218. vector signed int vsumi2 = v0;
  4219. vector signed int vsumi3 = v0;
  4220. vector signed int vsumi4 = v0;
  4221. vector signed int vsumi5 = v0;
  4222. vector signed int vsumi6 = v0;
  4223. vector signed int vsumi7 = v0;
  4224. const uint8_t * restrict q3 = x[i].qs;
  4225. const int8_t * restrict q8 = y[i].qs;
  4226. for (int j = 0; j < QK_K/128; ++j) {
  4227. __builtin_prefetch(q3, 0, 1);
  4228. __builtin_prefetch(q8, 0, 1);
  4229. vector signed char qxs0 = (vector signed char)vec_xl( 0, q3);
  4230. vector signed char qxs1 = (vector signed char)vec_xl(16, q3);
  4231. q3 += 32;
  4232. //the low 2 bits
  4233. vector signed char qxs00 = vec_and(qxs0, lowMask);
  4234. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  4235. vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask);
  4236. vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask);
  4237. vector signed char qxs10 = vec_and(qxs1, lowMask);
  4238. vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask);
  4239. vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask);
  4240. vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask);
  4241. //the 3rd bit
  4242. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  4243. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2);
  4244. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  4245. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2);
  4246. vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2);
  4247. vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2);
  4248. vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2);
  4249. vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2);
  4250. qxhs0 = vec_sr(qxhs0, v4);
  4251. qxhs1 = vec_sr(qxhs1, v4);
  4252. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  4253. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  4254. vector signed char q3x02 = vec_sub(qxs02, qxh02);
  4255. vector signed char q3x03 = vec_sub(qxs03, qxh03);
  4256. vector signed char q3x10 = vec_sub(qxs10, qxh10);
  4257. vector signed char q3x11 = vec_sub(qxs11, qxh11);
  4258. vector signed char q3x12 = vec_sub(qxs12, qxh12);
  4259. vector signed char q3x13 = vec_sub(qxs13, qxh13);
  4260. vector signed char q8y00 = vec_xl( 0, q8);
  4261. vector signed char q8y10 = vec_xl( 16, q8);
  4262. vector signed char q8y01 = vec_xl( 32, q8);
  4263. vector signed char q8y11 = vec_xl( 48, q8);
  4264. vector signed char q8y02 = vec_xl( 64, q8);
  4265. vector signed char q8y12 = vec_xl( 80, q8);
  4266. vector signed char q8y03 = vec_xl( 96, q8);
  4267. vector signed char q8y13 = vec_xl(112, q8);
  4268. q8 += 128;
  4269. vector signed short vscales_h = vec_unpackh(vscales);
  4270. vector signed short vs0 = vec_splat(vscales_h, 0);
  4271. vector signed short vs1 = vec_splat(vscales_h, 1);
  4272. vector signed short vs2 = vec_splat(vscales_h, 2);
  4273. vector signed short vs3 = vec_splat(vscales_h, 3);
  4274. vector signed short vs4 = vec_splat(vscales_h, 4);
  4275. vector signed short vs5 = vec_splat(vscales_h, 5);
  4276. vector signed short vs6 = vec_splat(vscales_h, 6);
  4277. vector signed short vs7 = vec_splat(vscales_h, 7);
  4278. vscales = vec_sld(vscales, vscales, 8);
  4279. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  4280. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  4281. vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02));
  4282. vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03));
  4283. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  4284. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  4285. vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12));
  4286. vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13));
  4287. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  4288. vsumi1 = vec_msum(qv01, vs2, vsumi1);
  4289. vsumi2 = vec_msum(qv02, vs4, vsumi2);
  4290. vsumi3 = vec_msum(qv03, vs6, vsumi3);
  4291. vsumi4 = vec_msum(qv10, vs1, vsumi4);
  4292. vsumi5 = vec_msum(qv11, vs3, vsumi5);
  4293. vsumi6 = vec_msum(qv12, vs5, vsumi6);
  4294. vsumi7 = vec_msum(qv13, vs7, vsumi7);
  4295. }
  4296. vsumi0 = vec_add(vsumi0, vsumi4);
  4297. vsumi1 = vec_add(vsumi1, vsumi5);
  4298. vsumi2 = vec_add(vsumi2, vsumi6);
  4299. vsumi3 = vec_add(vsumi3, vsumi7);
  4300. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4301. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4302. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4303. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4304. }
  4305. vsumf0 = vec_add(vsumf0, vsumf2);
  4306. vsumf1 = vec_add(vsumf1, vsumf3);
  4307. vsumf0 = vec_add(vsumf0, vsumf1);
  4308. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4309. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4310. *s = vec_extract(vsumf0, 0);
  4311. #elif defined __loongarch_asx
  4312. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  4313. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  4314. const __m128i m32 = __lsx_vreplgr2vr_b(32);
  4315. __m256 acc = (__m256)__lasx_xvldi(0);
  4316. uint32_t aux[3];
  4317. for (int i = 0; i < nb; ++i) {
  4318. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4319. const uint8_t * restrict q3 = x[i].qs;
  4320. const int8_t * restrict q8 = y[i].qs;
  4321. // Set up scales
  4322. memcpy(aux, x[i].scales, 12);
  4323. __m128i scales128 = lsx_set_w(
  4324. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4325. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4326. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4327. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4328. scales128 = __lsx_vsub_b(scales128, m32);
  4329. const __m256i all_scales = lasx_ext8_16(scales128);
  4330. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  4331. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  4332. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  4333. // high bit
  4334. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].hmask, 0);
  4335. // integer accumulator
  4336. __m256i sumi = __lasx_xvldi(0);
  4337. int bit = 0;
  4338. int is = 0;
  4339. __m256i xvbit;
  4340. for (int j = 0; j < QK_K/128; ++j) {
  4341. // load low 2 bits
  4342. const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32;
  4343. xvbit = __lasx_xvreplgr2vr_h(bit);
  4344. // prepare low and high bits
  4345. const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3);
  4346. const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4347. ++bit;
  4348. xvbit = __lasx_xvreplgr2vr_h(bit);
  4349. const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3);
  4350. const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4351. ++bit;
  4352. xvbit = __lasx_xvreplgr2vr_h(bit);
  4353. const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3);
  4354. const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4355. ++bit;
  4356. xvbit = __lasx_xvreplgr2vr_h(bit);
  4357. const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3);
  4358. const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4359. ++bit;
  4360. // load Q8 quants
  4361. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4362. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4363. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4364. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4365. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h,
  4366. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  4367. // and 2 if the high bit was set)
  4368. __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0);
  4369. __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1);
  4370. __m256i q8s_2 = lasx_maddubs_h(q3h_2, q8_2);
  4371. __m256i q8s_3 = lasx_maddubs_h(q3h_3, q8_3);
  4372. __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0);
  4373. __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1);
  4374. __m256i p16_2 = lasx_maddubs_h(q3l_2, q8_2);
  4375. __m256i p16_3 = lasx_maddubs_h(q3l_3, q8_3);
  4376. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  4377. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  4378. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  4379. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  4380. // multiply with scales
  4381. p16_0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  4382. p16_1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  4383. p16_2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  4384. p16_3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  4385. // accumulate
  4386. p16_0 = __lasx_xvadd_w(p16_0, p16_1);
  4387. p16_2 = __lasx_xvadd_w(p16_2, p16_3);
  4388. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_2));
  4389. }
  4390. // multiply with block scale and accumulate
  4391. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);//FIXME
  4392. }
  4393. *s = hsum_float_8(acc);
  4394. #else
  4395. // scalar version
  4396. // This function is written like this so the compiler can manage to vectorize most of it
  4397. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  4398. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  4399. // The ideal situation would be if we could just write the code once, and the compiler would
  4400. // automatically produce the best possible set of machine instructions, instead of us having to manually
  4401. // write vectorized versions for AVX, ARM_NEON, etc.
  4402. int8_t aux8[QK_K];
  4403. int16_t aux16[8];
  4404. float sums [8];
  4405. int32_t aux32[8];
  4406. memset(sums, 0, 8*sizeof(float));
  4407. uint32_t auxs[4];
  4408. const int8_t * scales = (const int8_t*)auxs;
  4409. float sumf = 0;
  4410. for (int i = 0; i < nb; ++i) {
  4411. const uint8_t * restrict q3 = x[i].qs;
  4412. const uint8_t * restrict hm = x[i].hmask;
  4413. const int8_t * restrict q8 = y[i].qs;
  4414. memset(aux32, 0, 8*sizeof(int32_t));
  4415. int8_t * restrict a = aux8;
  4416. uint8_t m = 1;
  4417. for (int j = 0; j < QK_K; j += 128) {
  4418. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  4419. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4420. a += 32; m <<= 1;
  4421. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  4422. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4423. a += 32; m <<= 1;
  4424. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  4425. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4426. a += 32; m <<= 1;
  4427. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  4428. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4429. a += 32; m <<= 1;
  4430. q3 += 32;
  4431. }
  4432. a = aux8;
  4433. memcpy(auxs, x[i].scales, 12);
  4434. uint32_t tmp = auxs[2];
  4435. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  4436. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  4437. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  4438. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  4439. for (int j = 0; j < QK_K/16; ++j) {
  4440. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4441. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  4442. q8 += 8; a += 8;
  4443. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4444. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  4445. q8 += 8; a += 8;
  4446. }
  4447. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4448. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  4449. }
  4450. for (int l = 0; l < 8; ++l) sumf += sums[l];
  4451. *s = sumf;
  4452. #endif
  4453. }
  4454. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4455. assert(n % QK_K == 0);
  4456. assert(nrc == 1);
  4457. UNUSED(nrc);
  4458. UNUSED(bx);
  4459. UNUSED(by);
  4460. UNUSED(bs);
  4461. const block_q4_K * restrict x = vx;
  4462. const block_q8_K * restrict y = vy;
  4463. const int nb = n / QK_K;
  4464. static const uint32_t kmask1 = 0x3f3f3f3f;
  4465. static const uint32_t kmask2 = 0x0f0f0f0f;
  4466. static const uint32_t kmask3 = 0x03030303;
  4467. uint32_t utmp[4];
  4468. #ifdef __ARM_NEON
  4469. const uint8x16_t m4b = vdupq_n_u8(0xf);
  4470. const int32x4_t mzero = vdupq_n_s32(0);
  4471. ggml_int8x16x2_t q4bytes;
  4472. ggml_int8x16x2_t q8bytes;
  4473. float sumf = 0;
  4474. for (int i = 0; i < nb; ++i) {
  4475. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4476. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4477. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  4478. memcpy(utmp, x[i].scales, 12);
  4479. uint32x2_t mins8 = { 0 };
  4480. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  4481. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  4482. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4483. utmp[0] &= kmask1;
  4484. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  4485. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  4486. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  4487. sumf -= dmin * vaddvq_s32(prod);
  4488. const uint8_t * scales = (const uint8_t *)utmp;
  4489. const uint8_t * restrict q4 = x[i].qs;
  4490. const int8_t * restrict q8 = y[i].qs;
  4491. int32_t sumi1 = 0;
  4492. int32_t sumi2 = 0;
  4493. for (int j = 0; j < QK_K/64; ++j) {
  4494. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  4495. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4496. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  4497. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  4498. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  4499. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  4500. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4501. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  4502. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  4503. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  4504. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  4505. }
  4506. sumf += d * (sumi1 + sumi2);
  4507. }
  4508. *s = sumf;
  4509. #elif defined __AVX2__
  4510. const __m256i m4 = _mm256_set1_epi8(0xF);
  4511. __m256 acc = _mm256_setzero_ps();
  4512. __m128 acc_m = _mm_setzero_ps();
  4513. for (int i = 0; i < nb; ++i) {
  4514. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4515. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4516. memcpy(utmp, x[i].scales, 12);
  4517. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4518. const uint32_t uaux = utmp[1] & kmask1;
  4519. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4520. utmp[2] = uaux;
  4521. utmp[0] &= kmask1;
  4522. const uint8_t * restrict q4 = x[i].qs;
  4523. const int8_t * restrict q8 = y[i].qs;
  4524. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  4525. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  4526. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  4527. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  4528. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  4529. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  4530. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  4531. __m256i sumi = _mm256_setzero_si256();
  4532. for (int j = 0; j < QK_K/64; ++j) {
  4533. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  4534. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  4535. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  4536. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  4537. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  4538. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4539. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  4540. p16l = _mm256_madd_epi16(scale_l, p16l);
  4541. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4542. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  4543. p16h = _mm256_madd_epi16(scale_h, p16h);
  4544. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  4545. sumi = _mm256_add_epi32(sumi, sumj);
  4546. }
  4547. __m256 vd = _mm256_set1_ps(d);
  4548. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  4549. }
  4550. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  4551. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  4552. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  4553. #elif defined __AVX__
  4554. const __m128i m4 = _mm_set1_epi8(0xF);
  4555. const __m128i m2 = _mm_set1_epi8(0x2);
  4556. __m256 acc = _mm256_setzero_ps();
  4557. __m128 acc_m = _mm_setzero_ps();
  4558. for (int i = 0; i < nb; ++i) {
  4559. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4560. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4561. const uint8_t * restrict q4 = x[i].qs;
  4562. const int8_t * restrict q8 = y[i].qs;
  4563. memcpy(utmp, x[i].scales, 12);
  4564. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4565. const uint32_t uaux = utmp[1] & kmask1;
  4566. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4567. utmp[2] = uaux;
  4568. utmp[0] &= kmask1;
  4569. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  4570. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  4571. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  4572. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  4573. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  4574. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  4575. const __m128i prod = _mm_madd_epi16(mins, q8s);
  4576. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  4577. __m128i sumi_0 = _mm_setzero_si128();
  4578. __m128i sumi_1 = _mm_setzero_si128();
  4579. __m128i shuffle = _mm_set1_epi16(0x0100);
  4580. for (int j = 0; j < QK_K/64; ++j) {
  4581. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  4582. shuffle = _mm_add_epi16(shuffle, m2);
  4583. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  4584. shuffle = _mm_add_epi16(shuffle, m2);
  4585. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  4586. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  4587. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  4588. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  4589. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  4590. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  4591. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4592. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  4593. p16l = _mm_madd_epi16(scale_l, p16l);
  4594. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  4595. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4596. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  4597. p16l = _mm_madd_epi16(scale_l, p16l);
  4598. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  4599. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4600. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  4601. p16h = _mm_madd_epi16(scale_h, p16h);
  4602. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  4603. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4604. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  4605. p16h = _mm_madd_epi16(scale_h, p16h);
  4606. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  4607. }
  4608. __m256 vd = _mm256_set1_ps(d);
  4609. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4610. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  4611. }
  4612. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  4613. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  4614. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  4615. #elif defined __riscv_v_intrinsic
  4616. const uint8_t * scales = (const uint8_t*)&utmp[0];
  4617. const uint8_t * mins = (const uint8_t*)&utmp[2];
  4618. float sumf = 0;
  4619. for (int i = 0; i < nb; ++i) {
  4620. size_t vl = 8;
  4621. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4622. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4623. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  4624. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  4625. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  4626. memcpy(utmp, x[i].scales, 12);
  4627. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4628. const uint32_t uaux = utmp[1] & kmask1;
  4629. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4630. utmp[2] = uaux;
  4631. utmp[0] &= kmask1;
  4632. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  4633. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  4634. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  4635. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4636. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  4637. const uint8_t * restrict q4 = x[i].qs;
  4638. const int8_t * restrict q8 = y[i].qs;
  4639. vl = 32;
  4640. int32_t sum_1 = 0;
  4641. int32_t sum_2 = 0;
  4642. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  4643. for (int j = 0; j < QK_K/64; ++j) {
  4644. // load Q4
  4645. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  4646. // load Q8 and multiply it with lower Q4 nibble
  4647. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4648. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  4649. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  4650. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  4651. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  4652. // load Q8 and multiply it with upper Q4 nibble
  4653. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4654. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  4655. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  4656. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  4657. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  4658. q4 += 32; q8 += 64;
  4659. }
  4660. sumf += d*(sum_1 + sum_2);
  4661. }
  4662. *s = sumf;
  4663. #elif defined(__POWER9_VECTOR__)
  4664. const vector signed char lowMask = vec_splats((signed char)0xF);
  4665. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  4666. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  4667. const vector int v0 = vec_splats((int32_t)0);
  4668. const vector unsigned char v2 = vec_splats((uint8_t)2);
  4669. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4670. vector float vsumf0 = vec_splats(0.0f);
  4671. vector float vsumf1 = vec_splats(0.0f);
  4672. vector float vsumf2 = vec_splats(0.0f);
  4673. vector float vsumf3 = vec_splats(0.0f);
  4674. for (int i = 0; i < nb; ++i) {
  4675. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4676. vector float vyd = vec_splats(y[i].d);
  4677. vector float vd = vec_mul(vxd, vyd);
  4678. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  4679. vector float vdmin = vec_mul(vxmin, vyd);
  4680. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  4681. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  4682. UNUSED(kmask1);
  4683. UNUSED(kmask2);
  4684. UNUSED(kmask3);
  4685. UNUSED(utmp);
  4686. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  4687. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  4688. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  4689. vector signed char u3 = vec_sr(u2, v4);
  4690. vector signed char u30 = u1;
  4691. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  4692. u1 = vec_and(u0, lowMask1);
  4693. u2 = vec_or(u30, u31);
  4694. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  4695. vector signed short vscales = vec_unpackh(utmps);
  4696. vector signed short q4xmins = vec_unpackl(utmps);
  4697. vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins);
  4698. vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins);
  4699. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  4700. vector signed int prod1 = vec_mule(q4xmins1, q8ysums1);
  4701. vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0);
  4702. vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1);
  4703. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  4704. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  4705. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  4706. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  4707. vector signed int vsumi0 = v0;
  4708. vector signed int vsumi1 = v0;
  4709. vector signed int vsumi2 = v0;
  4710. vector signed int vsumi3 = v0;
  4711. const uint8_t * restrict q4 = x[i].qs;
  4712. const int8_t * restrict q8 = y[i].qs;
  4713. for (int j = 0; j < QK_K/64; j+=2) {
  4714. __builtin_prefetch(q4, 0, 1);
  4715. __builtin_prefetch(q8, 0, 1);
  4716. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  4717. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  4718. vector signed char qxs2 = (vector signed char)vec_xl(32, q4);
  4719. vector signed char qxs3 = (vector signed char)vec_xl(48, q4);
  4720. q4 += 64;
  4721. vector unsigned char q4x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  4722. vector unsigned char q4x01 = (vector unsigned char)vec_sr(qxs0, v4);
  4723. vector unsigned char q4x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  4724. vector unsigned char q4x11 = (vector unsigned char)vec_sr(qxs1, v4);
  4725. vector unsigned char q4x20 = (vector unsigned char)vec_and(qxs2, lowMask);
  4726. vector unsigned char q4x21 = (vector unsigned char)vec_sr(qxs2, v4);
  4727. vector unsigned char q4x30 = (vector unsigned char)vec_and(qxs3, lowMask);
  4728. vector unsigned char q4x31 = (vector unsigned char)vec_sr(qxs3, v4);
  4729. vector signed char q8y00 = vec_xl( 0, q8);
  4730. vector signed char q8y10 = vec_xl( 16, q8);
  4731. vector signed char q8y01 = vec_xl( 32, q8);
  4732. vector signed char q8y11 = vec_xl( 48, q8);
  4733. vector signed char q8y20 = vec_xl( 64, q8);
  4734. vector signed char q8y30 = vec_xl( 80, q8);
  4735. vector signed char q8y21 = vec_xl( 96, q8);
  4736. vector signed char q8y31 = vec_xl(112, q8);
  4737. q8 += 128;
  4738. vector signed int qv00 = vec_msum(q8y00, q4x00, v0);
  4739. vector signed int qv01 = vec_msum(q8y01, q4x01, v0);
  4740. vector signed int qv10 = vec_msum(q8y10, q4x10, v0);
  4741. vector signed int qv11 = vec_msum(q8y11, q4x11, v0);
  4742. vector signed int qv20 = vec_msum(q8y20, q4x20, v0);
  4743. vector signed int qv21 = vec_msum(q8y21, q4x21, v0);
  4744. vector signed int qv30 = vec_msum(q8y30, q4x30, v0);
  4745. vector signed int qv31 = vec_msum(q8y31, q4x31, v0);
  4746. vector signed int vscales_h = vec_unpackh(vscales);
  4747. vector signed int vs0 = vec_splat(vscales_h, 0);
  4748. vector signed int vs1 = vec_splat(vscales_h, 1);
  4749. vector signed int vs2 = vec_splat(vscales_h, 2);
  4750. vector signed int vs3 = vec_splat(vscales_h, 3);
  4751. vscales = vec_sld(vscales, vscales, 8);
  4752. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  4753. vsumi1 = vec_add(vec_mul(qv01, vs1), vsumi1);
  4754. vsumi2 = vec_add(vec_mul(qv20, vs2), vsumi2);
  4755. vsumi3 = vec_add(vec_mul(qv21, vs3), vsumi3);
  4756. vsumi0 = vec_add(vec_mul(qv10, vs0), vsumi0);
  4757. vsumi1 = vec_add(vec_mul(qv11, vs1), vsumi1);
  4758. vsumi2 = vec_add(vec_mul(qv30, vs2), vsumi2);
  4759. vsumi3 = vec_add(vec_mul(qv31, vs3), vsumi3);
  4760. }
  4761. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4762. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4763. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4764. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4765. }
  4766. vsumf0 = vec_add(vsumf0, vsumf2);
  4767. vsumf1 = vec_add(vsumf1, vsumf3);
  4768. vsumf0 = vec_add(vsumf0, vsumf1);
  4769. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4770. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4771. *s = vec_extract(vsumf0, 0);
  4772. #elif defined __loongarch_asx
  4773. GGML_UNUSED(kmask1);
  4774. GGML_UNUSED(kmask2);
  4775. GGML_UNUSED(kmask3);
  4776. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  4777. __m256 acc = (__m256)__lasx_xvldi(0);
  4778. __m128 acc_m = (__m128)__lsx_vldi(0);
  4779. for (int i = 0; i < nb; ++i) {
  4780. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4781. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4782. memcpy(utmp, x[i].scales, 12);
  4783. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4784. const uint32_t uaux = utmp[1] & kmask1;
  4785. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4786. utmp[2] = uaux;
  4787. utmp[0] &= kmask1;
  4788. const uint8_t * restrict q4 = x[i].qs;
  4789. const int8_t * restrict q8 = y[i].qs;
  4790. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  4791. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  4792. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  4793. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  4794. acc_m = __lsx_vfmadd_s(__lsx_vreplfr2vr_s(dmin), __lsx_vffint_s_w(prod), acc_m);
  4795. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  4796. const __m256i scales = lasx_insertf128(sc128, sc128);
  4797. __m256i sumi = __lasx_xvldi(0);
  4798. for (int j = 0; j < QK_K/64; ++j) {
  4799. const __m256i scale_l = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  4800. const __m256i scale_h = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  4801. const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  4802. const __m256i q4l = __lasx_xvand_v(q4bits, m4);
  4803. const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4);
  4804. const __m256i q8l = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4805. __m256i p16l = lasx_maddubs_h(q4l, q8l);
  4806. p16l = lasx_madd_h(scale_l, p16l);
  4807. const __m256i q8h = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4808. __m256i p16h = lasx_maddubs_h(q4h, q8h);
  4809. p16h = lasx_madd_h(scale_h, p16h);
  4810. const __m256i sumj = __lasx_xvadd_w(p16l, p16h);
  4811. sumi = __lasx_xvadd_w(sumi, sumj);
  4812. }
  4813. __m256 vd = __lasx_xvreplfr2vr_s(d);
  4814. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  4815. }
  4816. acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
  4817. __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
  4818. acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
  4819. ft_union fi;
  4820. fi.i = __lsx_vpickve2gr_w(acc_m, 0);
  4821. *s = hsum_float_8(acc) + fi.f ;
  4822. #else
  4823. const uint8_t * scales = (const uint8_t*)&utmp[0];
  4824. const uint8_t * mins = (const uint8_t*)&utmp[2];
  4825. int8_t aux8[QK_K];
  4826. int16_t aux16[8];
  4827. float sums [8];
  4828. int32_t aux32[8];
  4829. memset(sums, 0, 8*sizeof(float));
  4830. float sumf = 0;
  4831. for (int i = 0; i < nb; ++i) {
  4832. const uint8_t * restrict q4 = x[i].qs;
  4833. const int8_t * restrict q8 = y[i].qs;
  4834. memset(aux32, 0, 8*sizeof(int32_t));
  4835. int8_t * restrict a = aux8;
  4836. for (int j = 0; j < QK_K/64; ++j) {
  4837. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  4838. a += 32;
  4839. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  4840. a += 32; q4 += 32;
  4841. }
  4842. memcpy(utmp, x[i].scales, 12);
  4843. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4844. const uint32_t uaux = utmp[1] & kmask1;
  4845. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4846. utmp[2] = uaux;
  4847. utmp[0] &= kmask1;
  4848. int sumi = 0;
  4849. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  4850. a = aux8;
  4851. int is = 0;
  4852. for (int j = 0; j < QK_K/32; ++j) {
  4853. int32_t scale = scales[is++];
  4854. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4855. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4856. q8 += 8; a += 8;
  4857. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4858. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4859. q8 += 8; a += 8;
  4860. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4861. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4862. q8 += 8; a += 8;
  4863. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4864. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4865. q8 += 8; a += 8;
  4866. }
  4867. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4868. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  4869. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  4870. sumf -= dmin * sumi;
  4871. }
  4872. for (int l = 0; l < 8; ++l) sumf += sums[l];
  4873. *s = sumf;
  4874. #endif
  4875. }
  4876. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4877. assert(n % QK_K == 0);
  4878. assert(nrc == 1);
  4879. UNUSED(nrc);
  4880. UNUSED(bx);
  4881. UNUSED(by);
  4882. UNUSED(bs);
  4883. const block_q5_K * restrict x = vx;
  4884. const block_q8_K * restrict y = vy;
  4885. const int nb = n / QK_K;
  4886. static const uint32_t kmask1 = 0x3f3f3f3f;
  4887. static const uint32_t kmask2 = 0x0f0f0f0f;
  4888. static const uint32_t kmask3 = 0x03030303;
  4889. uint32_t utmp[4];
  4890. #ifdef __ARM_NEON
  4891. const uint8x16_t m4b = vdupq_n_u8(0xf);
  4892. const uint8x16_t mone = vdupq_n_u8(1);
  4893. const uint8x16_t mtwo = vdupq_n_u8(2);
  4894. const int32x4_t mzero = vdupq_n_s32(0);
  4895. ggml_int8x16x4_t q5bytes;
  4896. float sumf = 0;
  4897. for (int i = 0; i < nb; ++i) {
  4898. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4899. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4900. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  4901. memcpy(utmp, x[i].scales, 12);
  4902. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4903. const uint32_t uaux = utmp[1] & kmask1;
  4904. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4905. utmp[2] = uaux;
  4906. utmp[0] &= kmask1;
  4907. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  4908. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  4909. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  4910. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  4911. int32_t sumi_mins = vaddvq_s32(prod);
  4912. const uint8_t * scales = (const uint8_t *)utmp;
  4913. const uint8_t * restrict q5 = x[i].qs;
  4914. const uint8_t * restrict qh = x[i].qh;
  4915. const int8_t * restrict q8 = y[i].qs;
  4916. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  4917. ggml_uint8x16x4_t q5h;
  4918. int32_t sumi = 0;
  4919. for (int j = 0; j < QK_K/64; ++j) {
  4920. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  4921. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  4922. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  4923. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  4924. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  4925. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  4926. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  4927. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  4928. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  4929. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  4930. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  4931. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  4932. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  4933. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  4934. }
  4935. sumf += d * sumi - dmin * sumi_mins;
  4936. }
  4937. *s = sumf;
  4938. #elif defined __AVX2__
  4939. const __m256i m4 = _mm256_set1_epi8(0xF);
  4940. const __m128i mzero = _mm_setzero_si128();
  4941. const __m256i mone = _mm256_set1_epi8(1);
  4942. __m256 acc = _mm256_setzero_ps();
  4943. float summs = 0.f;
  4944. for (int i = 0; i < nb; ++i) {
  4945. const uint8_t * restrict q5 = x[i].qs;
  4946. const int8_t * restrict q8 = y[i].qs;
  4947. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4948. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4949. memcpy(utmp, x[i].scales, 12);
  4950. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4951. const uint32_t uaux = utmp[1] & kmask1;
  4952. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4953. utmp[2] = uaux;
  4954. utmp[0] &= kmask1;
  4955. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  4956. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  4957. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  4958. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  4959. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  4960. summs += dmin * _mm_extract_epi32(hsum, 0);
  4961. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  4962. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  4963. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  4964. __m256i hmask = mone;
  4965. __m256i sumi = _mm256_setzero_si256();
  4966. int bit = 0;
  4967. for (int j = 0; j < QK_K/64; ++j) {
  4968. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  4969. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  4970. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  4971. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  4972. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  4973. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  4974. hmask = _mm256_slli_epi16(hmask, 1);
  4975. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  4976. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  4977. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  4978. hmask = _mm256_slli_epi16(hmask, 1);
  4979. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4980. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4981. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  4982. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  4983. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  4984. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  4985. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  4986. }
  4987. __m256 vd = _mm256_set1_ps(d);
  4988. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  4989. }
  4990. *s = hsum_float_8(acc) + summs;
  4991. #elif defined __AVX__
  4992. const __m128i m4 = _mm_set1_epi8(0xF);
  4993. const __m128i mzero = _mm_setzero_si128();
  4994. const __m128i mone = _mm_set1_epi8(1);
  4995. const __m128i m2 = _mm_set1_epi8(2);
  4996. __m256 acc = _mm256_setzero_ps();
  4997. float summs = 0.f;
  4998. for (int i = 0; i < nb; ++i) {
  4999. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5000. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5001. const uint8_t * restrict q5 = x[i].qs;
  5002. const int8_t * restrict q8 = y[i].qs;
  5003. memcpy(utmp, x[i].scales, 12);
  5004. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5005. const uint32_t uaux = utmp[1] & kmask1;
  5006. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5007. utmp[2] = uaux;
  5008. utmp[0] &= kmask1;
  5009. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5010. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5011. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5012. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5013. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5014. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5015. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5016. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  5017. summs += dmin * _mm_extract_epi32(hsum, 0);
  5018. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  5019. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  5020. __m128i hmask = mone;
  5021. __m128i sumi_0 = _mm_setzero_si128();
  5022. __m128i sumi_1 = _mm_setzero_si128();
  5023. int bit = 0;
  5024. __m128i shuffle = _mm_set1_epi16(0x0100);
  5025. for (int j = 0; j < QK_K/64; ++j) {
  5026. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  5027. shuffle = _mm_add_epi16(shuffle, m2);
  5028. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  5029. shuffle = _mm_add_epi16(shuffle, m2);
  5030. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  5031. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  5032. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  5033. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  5034. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  5035. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  5036. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  5037. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  5038. hmask = _mm_slli_epi16(hmask, 1);
  5039. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5040. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5041. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  5042. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  5043. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  5044. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  5045. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  5046. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  5047. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  5048. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  5049. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  5050. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  5051. hmask = _mm_slli_epi16(hmask, 1);
  5052. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5053. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5054. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  5055. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  5056. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  5057. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  5058. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5059. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  5060. }
  5061. __m256 vd = _mm256_set1_ps(d);
  5062. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5063. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5064. }
  5065. *s = hsum_float_8(acc) + summs;
  5066. #elif defined __riscv_v_intrinsic
  5067. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5068. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5069. float sumf = 0;
  5070. float sums = 0.0;
  5071. size_t vl;
  5072. for (int i = 0; i < nb; ++i) {
  5073. vl = 8;
  5074. const uint8_t * restrict q5 = x[i].qs;
  5075. const uint8_t * restrict hm = x[i].qh;
  5076. const int8_t * restrict q8 = y[i].qs;
  5077. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5078. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5079. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5080. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5081. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5082. memcpy(utmp, x[i].scales, 12);
  5083. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5084. const uint32_t uaux = utmp[1] & kmask1;
  5085. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5086. utmp[2] = uaux;
  5087. utmp[0] &= kmask1;
  5088. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5089. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5090. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5091. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5092. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5093. vl = 32;
  5094. int32_t aux32 = 0;
  5095. int is = 0;
  5096. uint8_t m = 1;
  5097. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5098. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  5099. for (int j = 0; j < QK_K/64; ++j) {
  5100. // load Q5 and Q8
  5101. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  5102. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  5103. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  5104. // compute mask for addition
  5105. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  5106. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5107. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  5108. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_mu(vmask_1, q5_a, q5_a, 16, vl);
  5109. m <<= 1;
  5110. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  5111. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5112. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  5113. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_mu(vmask_2, q5_l, q5_l, 16, vl);
  5114. m <<= 1;
  5115. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  5116. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  5117. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  5118. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  5119. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  5120. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  5121. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  5122. q5 += 32; q8 += 64;
  5123. }
  5124. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  5125. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  5126. }
  5127. *s = sumf+sums;
  5128. #elif defined(__POWER9_VECTOR__)
  5129. const vector signed char lowMask = vec_splats((signed char)0xF);
  5130. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  5131. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  5132. const vector int v0 = vec_splats((int32_t)0);
  5133. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  5134. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5135. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5136. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5137. vector float vsumf0 = vec_splats(0.0f);
  5138. vector float vsumf1 = vec_splats(0.0f);
  5139. vector float vsumf2 = vec_splats(0.0f);
  5140. vector float vsumf3 = vec_splats(0.0f);
  5141. for (int i = 0; i < nb; ++i) {
  5142. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5143. vector float vyd = vec_splats(y[i].d);
  5144. vector float vd = vec_mul(vxd, vyd);
  5145. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5146. vector float vdmin = vec_mul(vxmin, vyd);
  5147. UNUSED(kmask1);
  5148. UNUSED(kmask2);
  5149. UNUSED(kmask3);
  5150. UNUSED(utmp);
  5151. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  5152. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  5153. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  5154. vector signed char u3 = vec_sr(u2, v4);
  5155. vector signed char u30 = u1;
  5156. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  5157. u1 = vec_and(u0, lowMask1);
  5158. u2 = vec_or(u30, u31);
  5159. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  5160. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  5161. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  5162. vector signed short vscales = vec_unpackh(utmps);
  5163. vector signed short q5xmins = vec_unpackl(utmps);
  5164. vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins);
  5165. vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins);
  5166. vector signed int prod0 = vec_mule(q5xmins0, q8ysums0);
  5167. vector signed int prod1 = vec_mule(q5xmins1, q8ysums1);
  5168. vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0);
  5169. vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1);
  5170. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5171. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5172. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  5173. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  5174. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  5175. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh);
  5176. vector signed int vsumi0 = v0;
  5177. vector signed int vsumi1 = v0;
  5178. vector signed int vsumi2 = v0;
  5179. vector signed int vsumi3 = v0;
  5180. const uint8_t * restrict q5 = x[i].qs;
  5181. const int8_t * restrict q8 = y[i].qs;
  5182. for (int j = 0; j < QK_K/64; ++j) {
  5183. __builtin_prefetch(q5, 0, 1);
  5184. __builtin_prefetch(q8, 0, 1);
  5185. vector signed char qxs0 = (vector signed char)vec_xl( 0, q5);
  5186. vector signed char qxs1 = (vector signed char)vec_xl(16, q5);
  5187. q5 += 32;
  5188. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5189. vector signed char qxs01 = vec_sr(qxs0, v4);
  5190. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5191. vector signed char qxs11 = vec_sr(qxs1, v4);
  5192. vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4);
  5193. vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3);
  5194. vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4);
  5195. vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3);
  5196. qxhs0 = vec_sr(qxhs0, v2);
  5197. qxhs1 = vec_sr(qxhs1, v2);
  5198. vector unsigned char q5x00 = (vector unsigned char)vec_or(q5h00, qxs00);
  5199. vector unsigned char q5x01 = (vector unsigned char)vec_or(q5h01, qxs01);
  5200. vector unsigned char q5x10 = (vector unsigned char)vec_or(q5h10, qxs10);
  5201. vector unsigned char q5x11 = (vector unsigned char)vec_or(q5h11, qxs11);
  5202. vector signed char q8y00 = vec_xl( 0, q8);
  5203. vector signed char q8y10 = vec_xl(16, q8);
  5204. vector signed char q8y01 = vec_xl(32, q8);
  5205. vector signed char q8y11 = vec_xl(48, q8);
  5206. q8 += 64;
  5207. vector signed int qv00 = vec_msum(q8y00, q5x00, v0);
  5208. vector signed int qv01 = vec_msum(q8y01, q5x01, v0);
  5209. vector signed int qv10 = vec_msum(q8y10, q5x10, v0);
  5210. vector signed int qv11 = vec_msum(q8y11, q5x11, v0);
  5211. vector signed int vscales_h = vec_unpackh(vscales);
  5212. vector signed int vs0 = vec_splat(vscales_h, 0);
  5213. vector signed int vs1 = vec_splat(vscales_h, 1);
  5214. vscales = vec_sld(vscales, vscales, 12);
  5215. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  5216. vsumi1 = vec_add(vec_mul(qv10, vs0), vsumi1);
  5217. vsumi2 = vec_add(vec_mul(qv01, vs1), vsumi2);
  5218. vsumi3 = vec_add(vec_mul(qv11, vs1), vsumi3);
  5219. }
  5220. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5221. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5222. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5223. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5224. }
  5225. vsumf0 = vec_add(vsumf0, vsumf2);
  5226. vsumf1 = vec_add(vsumf1, vsumf3);
  5227. vsumf0 = vec_add(vsumf0, vsumf1);
  5228. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5229. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5230. *s = vec_extract(vsumf0, 0);
  5231. #elif defined __loongarch_asx
  5232. GGML_UNUSED(kmask1);
  5233. GGML_UNUSED(kmask2);
  5234. GGML_UNUSED(kmask3);
  5235. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  5236. const __m128i mzero = __lsx_vldi(0);
  5237. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  5238. __m256 acc = (__m256)__lasx_xvldi(0);
  5239. float summs = 0.f;
  5240. for (int i = 0; i < nb; ++i) {
  5241. const uint8_t * restrict q5 = x[i].qs;
  5242. const int8_t * restrict q8 = y[i].qs;
  5243. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5244. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5245. memcpy(utmp, x[i].scales, 12);
  5246. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5247. const uint32_t uaux = utmp[1] & kmask1;
  5248. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5249. utmp[2] = uaux;
  5250. utmp[0] &= kmask1;
  5251. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  5252. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  5253. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  5254. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  5255. const __m128i hsum = lsx_hadd_w(lsx_hadd_w(prod, mzero), mzero);
  5256. summs += dmin * __lsx_vpickve2gr_w(hsum, 0); //TODO check
  5257. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  5258. const __m256i scales = lasx_insertf128(sc128, sc128);
  5259. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].qh, 0);
  5260. __m256i hmask = mone;
  5261. __m256i sumi = __lasx_xvldi(0);
  5262. int bit = 0;
  5263. __m256i xvbit;
  5264. for (int j = 0; j < QK_K/64; ++j) {
  5265. const __m256i scale_0 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  5266. const __m256i scale_1 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  5267. const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32;
  5268. xvbit = __lasx_xvreplgr2vr_h(bit++);
  5269. const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
  5270. const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  5271. const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0);
  5272. hmask = __lasx_xvslli_h(hmask, 1);
  5273. xvbit = __lasx_xvreplgr2vr_h(bit++);
  5274. const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
  5275. const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  5276. const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1);
  5277. hmask = __lasx_xvslli_h(hmask, 1);
  5278. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5279. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5280. __m256i p16_0 = lasx_maddubs_h(q5_0, q8_0);
  5281. __m256i p16_1 = lasx_maddubs_h(q5_1, q8_1);
  5282. p16_0 = lasx_madd_h(scale_0, p16_0);
  5283. p16_1 = lasx_madd_h(scale_1, p16_1);
  5284. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  5285. }
  5286. __m256 vd = __lasx_xvreplfr2vr_s(d);
  5287. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  5288. }
  5289. *s = hsum_float_8(acc) + summs;
  5290. #else
  5291. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5292. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5293. int8_t aux8[QK_K];
  5294. int16_t aux16[8];
  5295. float sums [8];
  5296. int32_t aux32[8];
  5297. memset(sums, 0, 8*sizeof(float));
  5298. float sumf = 0;
  5299. for (int i = 0; i < nb; ++i) {
  5300. const uint8_t * restrict q4 = x[i].qs;
  5301. const uint8_t * restrict hm = x[i].qh;
  5302. const int8_t * restrict q8 = y[i].qs;
  5303. memset(aux32, 0, 8*sizeof(int32_t));
  5304. int8_t * restrict a = aux8;
  5305. uint8_t m = 1;
  5306. for (int j = 0; j < QK_K/64; ++j) {
  5307. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  5308. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  5309. a += 32; m <<= 1;
  5310. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  5311. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  5312. a += 32; m <<= 1;
  5313. q4 += 32;
  5314. }
  5315. memcpy(utmp, x[i].scales, 12);
  5316. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5317. const uint32_t uaux = utmp[1] & kmask1;
  5318. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5319. utmp[2] = uaux;
  5320. utmp[0] &= kmask1;
  5321. int sumi = 0;
  5322. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  5323. a = aux8;
  5324. int is = 0;
  5325. for (int j = 0; j < QK_K/32; ++j) {
  5326. int32_t scale = scales[is++];
  5327. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5328. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5329. q8 += 8; a += 8;
  5330. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5331. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5332. q8 += 8; a += 8;
  5333. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5334. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5335. q8 += 8; a += 8;
  5336. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5337. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5338. q8 += 8; a += 8;
  5339. }
  5340. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5341. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5342. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5343. sumf -= dmin * sumi;
  5344. }
  5345. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5346. *s = sumf;
  5347. #endif
  5348. }
  5349. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5350. assert(n % QK_K == 0);
  5351. assert(nrc == 1);
  5352. UNUSED(nrc);
  5353. UNUSED(bx);
  5354. UNUSED(by);
  5355. UNUSED(bs);
  5356. const block_q6_K * restrict x = vx;
  5357. const block_q8_K * restrict y = vy;
  5358. const int nb = n / QK_K;
  5359. #ifdef __ARM_NEON
  5360. float sum = 0;
  5361. const uint8x16_t m4b = vdupq_n_u8(0xF);
  5362. const int32x4_t vzero = vdupq_n_s32(0);
  5363. //const int8x16_t m32s = vdupq_n_s8(32);
  5364. const uint8x16_t mone = vdupq_n_u8(3);
  5365. ggml_int8x16x4_t q6bytes;
  5366. ggml_uint8x16x4_t q6h;
  5367. for (int i = 0; i < nb; ++i) {
  5368. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  5369. const uint8_t * restrict q6 = x[i].ql;
  5370. const uint8_t * restrict qh = x[i].qh;
  5371. const int8_t * restrict q8 = y[i].qs;
  5372. const int8_t * restrict scale = x[i].scales;
  5373. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  5374. const int8x16_t scales = vld1q_s8(scale);
  5375. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  5376. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  5377. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  5378. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  5379. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  5380. int32_t isum_mins = vaddvq_s32(prod);
  5381. int32_t isum = 0;
  5382. for (int j = 0; j < QK_K/128; ++j) {
  5383. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  5384. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  5385. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  5386. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  5387. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  5388. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  5389. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5390. shifted = vshrq_n_u8(qhbits.val[1], 2);
  5391. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5392. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  5393. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  5394. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  5395. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  5396. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  5397. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  5398. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  5399. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  5400. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  5401. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  5402. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  5403. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  5404. scale += 4;
  5405. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  5406. shifted = vshrq_n_u8(qhbits.val[0], 4);
  5407. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5408. shifted = vshrq_n_u8(qhbits.val[1], 4);
  5409. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5410. shifted = vshrq_n_u8(qhbits.val[0], 6);
  5411. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5412. shifted = vshrq_n_u8(qhbits.val[1], 6);
  5413. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5414. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  5415. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  5416. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  5417. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  5418. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  5419. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  5420. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  5421. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  5422. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  5423. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  5424. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  5425. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  5426. scale += 4;
  5427. }
  5428. //sum += isum * d_all * y[i].d;
  5429. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  5430. }
  5431. *s = sum;
  5432. #elif defined __AVX2__
  5433. const __m256i m4 = _mm256_set1_epi8(0xF);
  5434. const __m256i m2 = _mm256_set1_epi8(3);
  5435. const __m256i m32s = _mm256_set1_epi8(32);
  5436. __m256 acc = _mm256_setzero_ps();
  5437. for (int i = 0; i < nb; ++i) {
  5438. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5439. const uint8_t * restrict q4 = x[i].ql;
  5440. const uint8_t * restrict qh = x[i].qh;
  5441. const int8_t * restrict q8 = y[i].qs;
  5442. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  5443. __m256i sumi = _mm256_setzero_si256();
  5444. int is = 0;
  5445. for (int j = 0; j < QK_K/128; ++j) {
  5446. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  5447. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  5448. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  5449. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  5450. is += 4;
  5451. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5452. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5453. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  5454. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  5455. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  5456. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  5457. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  5458. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  5459. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  5460. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  5461. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  5462. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5463. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5464. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5465. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5466. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  5467. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  5468. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  5469. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  5470. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  5471. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  5472. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  5473. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  5474. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5475. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5476. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5477. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5478. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  5479. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  5480. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  5481. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  5482. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  5483. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  5484. }
  5485. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5486. }
  5487. *s = hsum_float_8(acc);
  5488. #elif defined __AVX__
  5489. const __m128i m3 = _mm_set1_epi8(3);
  5490. const __m128i m15 = _mm_set1_epi8(15);
  5491. __m256 acc = _mm256_setzero_ps();
  5492. for (int i = 0; i < nb; ++i) {
  5493. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5494. const uint8_t * restrict q4 = x[i].ql;
  5495. const uint8_t * restrict qh = x[i].qh;
  5496. const int8_t * restrict q8 = y[i].qs;
  5497. // handle the q6_k -32 offset separately using bsums
  5498. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)y[i].bsums);
  5499. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)y[i].bsums + 1);
  5500. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  5501. const __m128i scales_16_0 = _mm_cvtepi8_epi16(scales);
  5502. const __m128i scales_16_1 = _mm_cvtepi8_epi16(_mm_bsrli_si128(scales, 8));
  5503. const __m128i q8sclsub_0 = _mm_slli_epi32(_mm_madd_epi16(q8sums_0, scales_16_0), 5);
  5504. const __m128i q8sclsub_1 = _mm_slli_epi32(_mm_madd_epi16(q8sums_1, scales_16_1), 5);
  5505. __m128i sumi_0 = _mm_setzero_si128();
  5506. __m128i sumi_1 = _mm_setzero_si128();
  5507. int is = 0;
  5508. for (int j = 0; j < QK_K/128; ++j) {
  5509. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  5510. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  5511. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  5512. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  5513. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, _mm_set1_epi8(12)), 2);
  5514. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, _mm_set1_epi8(12)), 2);
  5515. const __m128i q4h_4 = _mm_and_si128(q4bitsH_0, _mm_set1_epi8(48));
  5516. const __m128i q4h_5 = _mm_and_si128(q4bitsH_1, _mm_set1_epi8(48));
  5517. const __m128i q4h_6 = _mm_srli_epi16(_mm_and_si128(q4bitsH_0, _mm_set1_epi8(-64)), 2);
  5518. const __m128i q4h_7 = _mm_srli_epi16(_mm_and_si128(q4bitsH_1, _mm_set1_epi8(-64)), 2);
  5519. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5520. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5521. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5522. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5523. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m15), q4h_0);
  5524. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m15), q4h_1);
  5525. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m15), q4h_2);
  5526. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m15), q4h_3);
  5527. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m15), q4h_4);
  5528. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m15), q4h_5);
  5529. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m15), q4h_6);
  5530. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m15), q4h_7);
  5531. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5532. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5533. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5534. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5535. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5536. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5537. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5538. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5539. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  5540. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  5541. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  5542. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  5543. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  5544. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  5545. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  5546. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  5547. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  5548. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  5549. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  5550. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  5551. is += 4;
  5552. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  5553. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_0, 8)), p16_1);
  5554. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  5555. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_1, 8)), p16_3);
  5556. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  5557. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_2, 8)), p16_5);
  5558. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  5559. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_3, 8)), p16_7);
  5560. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5561. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  5562. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  5563. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  5564. }
  5565. sumi_0 = _mm_sub_epi32(sumi_0, q8sclsub_0);
  5566. sumi_1 = _mm_sub_epi32(sumi_1, q8sclsub_1);
  5567. const __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5568. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi)), acc);
  5569. }
  5570. *s = hsum_float_8(acc);
  5571. #elif defined __riscv_v_intrinsic
  5572. float sumf = 0;
  5573. for (int i = 0; i < nb; ++i) {
  5574. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5575. const uint8_t * restrict q6 = x[i].ql;
  5576. const uint8_t * restrict qh = x[i].qh;
  5577. const int8_t * restrict q8 = y[i].qs;
  5578. const int8_t * restrict scale = x[i].scales;
  5579. size_t vl;
  5580. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5581. int sum_t = 0;
  5582. int is = 0;
  5583. for (int j = 0; j < QK_K/128; ++j) {
  5584. vl = 32;
  5585. // load qh
  5586. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  5587. // load Q6
  5588. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  5589. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  5590. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  5591. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  5592. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  5593. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  5594. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  5595. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  5596. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  5597. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  5598. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  5599. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  5600. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  5601. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  5602. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  5603. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  5604. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  5605. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  5606. // load Q8 and take product
  5607. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5608. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5609. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5610. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5611. vl = 16;
  5612. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  5613. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  5614. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  5615. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  5616. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  5617. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  5618. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  5619. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  5620. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  5621. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  5622. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  5623. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  5624. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5625. q6 += 64; qh += 32; q8 += 128; is=8;
  5626. }
  5627. sumf += d * sum_t;
  5628. }
  5629. *s = sumf;
  5630. #elif defined(__POWER9_VECTOR__)
  5631. const vector signed char lowMask = vec_splats((signed char)0xF);
  5632. const vector int v0 = vec_splats((int32_t)0);
  5633. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5634. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5635. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5636. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5637. const vector signed char off = vec_splats((signed char)0x20);
  5638. vector float vsumf0 = vec_splats(0.0f);
  5639. vector float vsumf1 = vec_splats(0.0f);
  5640. vector float vsumf2 = vec_splats(0.0f);
  5641. vector float vsumf3 = vec_splats(0.0f);
  5642. for (int i = 0; i < nb; ++i) {
  5643. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5644. vector float vyd = vec_splats(y[i].d);
  5645. vector float vd = vec_mul(vxd, vyd);
  5646. vector signed int vsumi0 = v0;
  5647. vector signed int vsumi1 = v0;
  5648. vector signed int vsumi2 = v0;
  5649. vector signed int vsumi3 = v0;
  5650. vector signed int vsumi4 = v0;
  5651. vector signed int vsumi5 = v0;
  5652. vector signed int vsumi6 = v0;
  5653. vector signed int vsumi7 = v0;
  5654. const uint8_t * restrict q6 = x[i].ql;
  5655. const uint8_t * restrict qh = x[i].qh;
  5656. const int8_t * restrict qs = x[i].scales;
  5657. const int8_t * restrict q8 = y[i].qs;
  5658. for (int j = 0; j < QK_K/128; ++j) {
  5659. __builtin_prefetch(q6, 0, 0);
  5660. __builtin_prefetch(qh, 0, 0);
  5661. __builtin_prefetch(q8, 0, 0);
  5662. vector signed char qxs0 = (vector signed char)vec_xl( 0, q6);
  5663. vector signed char qxs1 = (vector signed char)vec_xl(16, q6);
  5664. vector signed char qxs2 = (vector signed char)vec_xl(32, q6);
  5665. vector signed char qxs3 = (vector signed char)vec_xl(48, q6);
  5666. q6 += 64;
  5667. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5668. vector signed char qxs01 = vec_sr(qxs0, v4);
  5669. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5670. vector signed char qxs11 = vec_sr(qxs1, v4);
  5671. vector signed char qxs20 = vec_and(qxs2, lowMask);
  5672. vector signed char qxs21 = vec_sr(qxs2, v4);
  5673. vector signed char qxs30 = vec_and(qxs3, lowMask);
  5674. vector signed char qxs31 = vec_sr(qxs3, v4);
  5675. vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh);
  5676. vector signed char qxhs1 = (vector signed char)vec_xl(16, qh);
  5677. qh += 32;
  5678. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  5679. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  5680. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4);
  5681. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4);
  5682. vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  5683. vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  5684. vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4);
  5685. vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4);
  5686. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  5687. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  5688. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  5689. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  5690. vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off);
  5691. vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off);
  5692. vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off);
  5693. vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off);
  5694. vector signed char q8y00 = vec_xl( 0, q8);
  5695. vector signed char q8y10 = vec_xl( 16, q8);
  5696. vector signed char q8y20 = vec_xl( 32, q8);
  5697. vector signed char q8y30 = vec_xl( 48, q8);
  5698. vector signed char q8y01 = vec_xl( 64, q8);
  5699. vector signed char q8y11 = vec_xl( 80, q8);
  5700. vector signed char q8y21 = vec_xl( 96, q8);
  5701. vector signed char q8y31 = vec_xl(112, q8);
  5702. q8 += 128;
  5703. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  5704. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  5705. vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20));
  5706. vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30));
  5707. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  5708. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  5709. vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21));
  5710. vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31));
  5711. vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8));
  5712. qs += 8;
  5713. vector signed short vs0 = vec_splat(vscales, 0);
  5714. vector signed short vs1 = vec_splat(vscales, 1);
  5715. vector signed short vs2 = vec_splat(vscales, 2);
  5716. vector signed short vs3 = vec_splat(vscales, 3);
  5717. vector signed short vs4 = vec_splat(vscales, 4);
  5718. vector signed short vs5 = vec_splat(vscales, 5);
  5719. vector signed short vs6 = vec_splat(vscales, 6);
  5720. vector signed short vs7 = vec_splat(vscales, 7);
  5721. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  5722. vsumi1 = vec_msum(qv01, vs4, vsumi1);
  5723. vsumi2 = vec_msum(qv10, vs1, vsumi2);
  5724. vsumi3 = vec_msum(qv11, vs5, vsumi3);
  5725. vsumi4 = vec_msum(qv20, vs2, vsumi4);
  5726. vsumi5 = vec_msum(qv21, vs6, vsumi5);
  5727. vsumi6 = vec_msum(qv30, vs3, vsumi6);
  5728. vsumi7 = vec_msum(qv31, vs7, vsumi7);
  5729. }
  5730. vsumi0 = vec_add(vsumi0, vsumi4);
  5731. vsumi1 = vec_add(vsumi1, vsumi5);
  5732. vsumi2 = vec_add(vsumi2, vsumi6);
  5733. vsumi3 = vec_add(vsumi3, vsumi7);
  5734. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5735. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5736. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5737. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5738. }
  5739. vsumf0 = vec_add(vsumf0, vsumf2);
  5740. vsumf1 = vec_add(vsumf1, vsumf3);
  5741. vsumf0 = vec_add(vsumf0, vsumf1);
  5742. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5743. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5744. *s = vec_extract(vsumf0, 0);
  5745. #elif defined __loongarch_asx
  5746. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  5747. const __m256i m2 = __lasx_xvreplgr2vr_b(3);
  5748. const __m256i m32s = __lasx_xvreplgr2vr_b(32);
  5749. __m256 acc = (__m256)__lasx_xvldi(0);
  5750. for (int i = 0; i < nb; ++i) {
  5751. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5752. const uint8_t * restrict q4 = x[i].ql;
  5753. const uint8_t * restrict qh = x[i].qh;
  5754. const int8_t * restrict q8 = y[i].qs;
  5755. const __m128i scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  5756. __m256i sumi = __lasx_xvldi(0);
  5757. int is = 0;
  5758. for (int j = 0; j < QK_K/128; ++j) {
  5759. const __m128i scale_0 = lsx_shuffle_b(scales, get_scale_shuffle(is + 0));
  5760. const __m128i scale_1 = lsx_shuffle_b(scales, get_scale_shuffle(is + 1));
  5761. const __m128i scale_2 = lsx_shuffle_b(scales, get_scale_shuffle(is + 2));
  5762. const __m128i scale_3 = lsx_shuffle_b(scales, get_scale_shuffle(is + 3));
  5763. is += 4;
  5764. const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  5765. const __m256i q4bits2 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  5766. const __m256i q4bitsH = __lasx_xvld((const __m256i*)qh, 0); qh += 32;
  5767. const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(q4bitsH, m2), 4);
  5768. const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 2), m2), 4);
  5769. const __m256i q4h_2 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 4), m2), 4);
  5770. const __m256i q4h_3 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 6), m2), 4);
  5771. const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0);
  5772. const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(q4bits2, m4), q4h_1);
  5773. const __m256i q4_2 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_2);
  5774. const __m256i q4_3 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits2, 4), m4), q4h_3);
  5775. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5776. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5777. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5778. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5779. __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0);
  5780. __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1);
  5781. __m256i q8s_2 = lasx_maddubs_h(m32s, q8_2);
  5782. __m256i q8s_3 = lasx_maddubs_h(m32s, q8_3);
  5783. __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0);
  5784. __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1);
  5785. __m256i p16_2 = lasx_maddubs_h(q4_2, q8_2);
  5786. __m256i p16_3 = lasx_maddubs_h(q4_3, q8_3);
  5787. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  5788. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  5789. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  5790. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  5791. p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0);
  5792. p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1);
  5793. p16_2 = lasx_madd_h(lasx_ext8_16(scale_2), p16_2);
  5794. p16_3 = lasx_madd_h(lasx_ext8_16(scale_3), p16_3);
  5795. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  5796. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_2, p16_3));
  5797. }
  5798. acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  5799. }
  5800. *s = hsum_float_8(acc);
  5801. #else
  5802. int8_t aux8[QK_K];
  5803. int16_t aux16[8];
  5804. float sums [8];
  5805. int32_t aux32[8];
  5806. memset(sums, 0, 8*sizeof(float));
  5807. float sumf = 0;
  5808. for (int i = 0; i < nb; ++i) {
  5809. const uint8_t * restrict q4 = x[i].ql;
  5810. const uint8_t * restrict qh = x[i].qh;
  5811. const int8_t * restrict q8 = y[i].qs;
  5812. memset(aux32, 0, 8*sizeof(int32_t));
  5813. int8_t * restrict a = aux8;
  5814. for (int j = 0; j < QK_K; j += 128) {
  5815. for (int l = 0; l < 32; ++l) {
  5816. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  5817. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  5818. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  5819. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  5820. }
  5821. a += 128;
  5822. q4 += 64;
  5823. qh += 32;
  5824. }
  5825. a = aux8;
  5826. int is = 0;
  5827. for (int j = 0; j < QK_K/16; ++j) {
  5828. int scale = x[i].scales[is++];
  5829. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5830. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5831. q8 += 8; a += 8;
  5832. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5833. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5834. q8 += 8; a += 8;
  5835. }
  5836. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5837. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5838. }
  5839. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5840. *s = sumf;
  5841. #endif
  5842. }
  5843. #if defined (__AVX__) || defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx)
  5844. static const int8_t keven_signs_q2xs[1024] = {
  5845. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  5846. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  5847. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  5848. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  5849. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  5850. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  5851. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  5852. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  5853. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  5854. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  5855. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  5856. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  5857. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  5858. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  5859. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  5860. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  5861. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  5862. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  5863. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  5864. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  5865. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  5866. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  5867. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  5868. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  5869. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  5870. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  5871. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  5872. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  5873. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  5874. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  5875. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  5876. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  5877. };
  5878. #endif
  5879. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5880. assert(n % QK_K == 0);
  5881. assert(nrc == 1);
  5882. UNUSED(nrc);
  5883. UNUSED(bx);
  5884. UNUSED(by);
  5885. UNUSED(bs);
  5886. const block_iq2_xxs * restrict x = vx;
  5887. const block_q8_K * restrict y = vy;
  5888. const int nb = n / QK_K;
  5889. #if defined(__ARM_NEON)
  5890. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  5891. uint32_t aux32[4];
  5892. const uint8_t * aux8 = (const uint8_t *)aux32;
  5893. ggml_int8x16x4_t q2u;
  5894. ggml_int8x16x4_t q2s;
  5895. ggml_int8x16x4_t q8b;
  5896. float sumf = 0;
  5897. for (int i = 0; i < nb; ++i) {
  5898. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5899. const uint16_t * restrict q2 = x[i].qs;
  5900. const int8_t * restrict q8 = y[i].qs;
  5901. float sumf1 = 0, sumf2 = 0;
  5902. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  5903. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  5904. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  5905. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  5906. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  5907. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  5908. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  5909. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  5910. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  5911. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  5912. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  5913. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  5914. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  5915. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  5916. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  5917. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  5918. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  5919. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  5920. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  5921. }
  5922. sumf += d*(sumf1 + sumf2);
  5923. }
  5924. *s = 0.25f * sumf;
  5925. #elif defined(__AVX2__)
  5926. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  5927. uint32_t aux32[4];
  5928. const uint8_t * aux8 = (const uint8_t *)aux32;
  5929. __m256 accumf = _mm256_setzero_ps();
  5930. for (int i = 0; i < nb; ++i) {
  5931. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5932. const uint16_t * restrict q2 = x[i].qs;
  5933. const int8_t * restrict q8 = y[i].qs;
  5934. __m256i sumi1 = _mm256_setzero_si256();
  5935. __m256i sumi2 = _mm256_setzero_si256();
  5936. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  5937. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  5938. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  5939. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  5940. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  5941. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  5942. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  5943. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  5944. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  5945. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  5946. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  5947. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  5948. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  5949. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  5950. const uint16_t ls1 = aux32[1] >> 28;
  5951. const uint16_t ls2 = aux32[3] >> 28;
  5952. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  5953. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  5954. sumi1 = _mm256_add_epi32(sumi1, p1);
  5955. sumi2 = _mm256_add_epi32(sumi2, p2);
  5956. }
  5957. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  5958. }
  5959. *s = 0.125f * hsum_float_8(accumf);
  5960. #elif defined(__AVX__)
  5961. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  5962. uint32_t aux32[4];
  5963. const uint8_t * aux8 = (const uint8_t *)aux32;
  5964. __m256 accumf = _mm256_setzero_ps();
  5965. for (int i = 0; i < nb; ++i) {
  5966. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5967. const uint16_t * restrict q2 = x[i].qs;
  5968. const int8_t * restrict q8 = y[i].qs;
  5969. __m128i sumi1_0 = _mm_setzero_si128();
  5970. __m128i sumi1_1 = _mm_setzero_si128();
  5971. __m128i sumi2_0 = _mm_setzero_si128();
  5972. __m128i sumi2_1 = _mm_setzero_si128();
  5973. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  5974. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  5975. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  5976. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  5977. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  5978. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  5979. const __m128i q2_1_0 = _mm_set_epi64x(iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  5980. const __m128i q2_1_1 = _mm_set_epi64x(iq2xxs_grid[aux8[3]], iq2xxs_grid[aux8[2]]);
  5981. const __m128i q2_2_0 = _mm_set_epi64x(iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  5982. const __m128i q2_2_1 = _mm_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]]);
  5983. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  5984. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  5985. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  5986. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127]);
  5987. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  5988. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  5989. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  5990. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  5991. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  5992. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  5993. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  5994. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  5995. const uint16_t ls1 = aux32[1] >> 28;
  5996. const uint16_t ls2 = aux32[3] >> 28;
  5997. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  5998. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  5999. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  6000. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  6001. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  6002. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  6003. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  6004. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  6005. }
  6006. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  6007. }
  6008. *s = 0.125f * hsum_float_8(accumf);
  6009. #elif defined(__POWER9_VECTOR__)
  6010. const vector int v0 = vec_splats((int32_t)0);
  6011. vector float vsumf0 = vec_splats(0.0f);
  6012. vector float vsumf1 = vec_splats(0.0f);
  6013. vector float vsumf2 = vec_splats(0.0f);
  6014. vector float vsumf3 = vec_splats(0.0f);
  6015. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6016. for (int i = 0; i < nb; ++i) {
  6017. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6018. vector float vyd = vec_splats(y[i].d);
  6019. vector float vd = vec_mul(vxd, vyd);
  6020. vector signed int vsumi0 = v0;
  6021. vector signed int vsumi1 = v0;
  6022. vector signed int vsumi2 = v0;
  6023. vector signed int vsumi3 = v0;
  6024. const uint16_t * restrict q2 = x[i].qs;
  6025. const int8_t * restrict q8 = y[i].qs;
  6026. for (int j = 0; j < QK_K/32; j += 2) {
  6027. __builtin_prefetch(q2, 0, 1);
  6028. __builtin_prefetch(q8, 0, 1);
  6029. uint32_t aux32[4];
  6030. const uint8_t * aux8 = (const uint8_t *)aux32;
  6031. memcpy(aux32, q2, 4*sizeof(uint32_t));
  6032. q2 += 8;
  6033. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])};
  6034. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])};
  6035. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])};
  6036. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])};
  6037. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))};
  6038. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))};
  6039. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))};
  6040. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))};
  6041. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  6042. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  6043. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  6044. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  6045. vector signed char q8y0 = vec_xl( 0, q8);
  6046. vector signed char q8y1 = vec_xl(16, q8);
  6047. vector signed char q8y2 = vec_xl(32, q8);
  6048. vector signed char q8y3 = vec_xl(48, q8);
  6049. q8 += 64;
  6050. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  6051. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  6052. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  6053. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  6054. const uint16_t ls0 = aux32[1] >> 28;
  6055. const uint16_t ls1 = aux32[3] >> 28;
  6056. vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1));
  6057. vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1));
  6058. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  6059. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  6060. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  6061. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  6062. }
  6063. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6064. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6065. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6066. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6067. }
  6068. vsumf0 = vec_add(vsumf0, vsumf2);
  6069. vsumf1 = vec_add(vsumf1, vsumf3);
  6070. vsumf0 = vec_add(vsumf0, vsumf1);
  6071. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6072. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6073. *s = 0.125f * vec_extract(vsumf0, 0);
  6074. #elif defined(__loongarch_asx)
  6075. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6076. uint32_t aux32[4];
  6077. const uint8_t * aux8 = (const uint8_t *)aux32;
  6078. __m256 accumf = (__m256)__lasx_xvldi(0);
  6079. for (int i = 0; i < nb; ++i) {
  6080. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6081. const uint16_t * restrict q2 = x[i].qs;
  6082. const int8_t * restrict q8 = y[i].qs;
  6083. __m256i sumi1 = __lasx_xvldi(0);
  6084. __m256i sumi2 = __lasx_xvldi(0);
  6085. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6086. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6087. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6088. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  6089. const __m256i q2_1 = lasx_set_d(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  6090. const __m256i q2_2 = lasx_set_d(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  6091. const __m256i s2_1 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  6092. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  6093. const __m256i s2_2 = lasx_set_d(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  6094. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  6095. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  6096. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  6097. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  6098. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  6099. const uint16_t ls1 = aux32[1] >> 28;
  6100. const uint16_t ls2 = aux32[3] >> 28;
  6101. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  6102. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  6103. sumi1 = __lasx_xvadd_w(sumi1, p1);
  6104. sumi2 = __lasx_xvadd_w(sumi2, p2);
  6105. }
  6106. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  6107. }
  6108. *s = 0.125f * hsum_float_8(accumf);
  6109. #else
  6110. uint32_t aux32[2];
  6111. const uint8_t * aux8 = (const uint8_t *)aux32;
  6112. float sumf = 0.f;
  6113. for (int i = 0; i < nb; ++i) {
  6114. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6115. const uint16_t * restrict q2 = x[i].qs;
  6116. const int8_t * restrict q8 = y[i].qs;
  6117. int32_t bsum = 0;
  6118. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  6119. memcpy(aux32, q2, 2*sizeof(uint32_t));
  6120. q2 += 4;
  6121. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  6122. int32_t sumi = 0;
  6123. for (int l = 0; l < 4; ++l) {
  6124. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  6125. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  6126. for (int j = 0; j < 8; ++j) {
  6127. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  6128. }
  6129. q8 += 8;
  6130. }
  6131. bsum += sumi * ls;
  6132. }
  6133. sumf += d * bsum;
  6134. }
  6135. *s = 0.125f * sumf;
  6136. #endif
  6137. }
  6138. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6139. assert(n % QK_K == 0);
  6140. assert(nrc == 1);
  6141. UNUSED(nrc);
  6142. UNUSED(bx);
  6143. UNUSED(by);
  6144. UNUSED(bs);
  6145. const block_iq2_xs * restrict x = vx;
  6146. const block_q8_K * restrict y = vy;
  6147. const int nb = n / QK_K;
  6148. #if defined(__ARM_NEON)
  6149. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6150. ggml_int8x16x4_t q2u;
  6151. ggml_int8x16x4_t q2s;
  6152. ggml_int8x16x4_t q8b;
  6153. int32x4x4_t scales32;
  6154. float sumf = 0;
  6155. for (int i = 0; i < nb; ++i) {
  6156. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6157. const uint16_t * restrict q2 = x[i].qs;
  6158. const int8_t * restrict q8 = y[i].qs;
  6159. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  6160. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  6161. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  6162. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  6163. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  6164. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  6165. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  6166. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  6167. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  6168. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  6169. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  6170. int32x4_t sumi = vdupq_n_s32(0);
  6171. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  6172. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  6173. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  6174. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  6175. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  6176. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  6177. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  6178. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  6179. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  6180. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  6181. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  6182. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  6183. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  6184. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  6185. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  6186. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  6187. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  6188. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  6189. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  6190. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  6191. q2 += 8;
  6192. }
  6193. sumf += d*vaddvq_s32(sumi);
  6194. }
  6195. *s = 0.125f * sumf;
  6196. #elif defined(__AVX2__)
  6197. const __m256i mone = _mm256_set1_epi8(1);
  6198. static const char block_sign_shuffle_mask_1[32] = {
  6199. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  6200. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  6201. };
  6202. static const char block_sign_shuffle_mask_2[32] = {
  6203. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  6204. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  6205. };
  6206. static const uint8_t bit_selector_mask_bytes[32] = {
  6207. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6208. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6209. };
  6210. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  6211. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  6212. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  6213. static const uint8_t k_bit_helper[32] = {
  6214. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6215. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6216. };
  6217. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  6218. const __m256i m511 = _mm256_set1_epi16(511);
  6219. const __m128i m4 = _mm_set1_epi8(0xf);
  6220. const __m128i m1 = _mm_set1_epi8(1);
  6221. uint64_t aux64;
  6222. // somewhat hacky, but gives a significant boost in performance
  6223. __m256i aux_gindex;
  6224. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  6225. __m256 accumf = _mm256_setzero_ps();
  6226. for (int i = 0; i < nb; ++i) {
  6227. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6228. const uint16_t * restrict q2 = x[i].qs;
  6229. const int8_t * restrict q8 = y[i].qs;
  6230. memcpy(&aux64, x[i].scales, 8);
  6231. __m128i stmp = _mm_set1_epi64x(aux64);
  6232. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  6233. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  6234. __m256i sumi1 = _mm256_setzero_si256();
  6235. __m256i sumi2 = _mm256_setzero_si256();
  6236. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  6237. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  6238. aux_gindex = _mm256_and_si256(q2_data, m511);
  6239. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  6240. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  6241. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  6242. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  6243. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  6244. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6245. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6246. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6247. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6248. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  6249. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  6250. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  6251. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  6252. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  6253. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  6254. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  6255. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  6256. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  6257. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  6258. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  6259. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  6260. __m256i signs;
  6261. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  6262. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6263. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  6264. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  6265. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6266. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  6267. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  6268. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6269. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  6270. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  6271. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6272. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  6273. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  6274. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  6275. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  6276. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  6277. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  6278. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  6279. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  6280. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  6281. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  6282. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  6283. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  6284. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  6285. }
  6286. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  6287. }
  6288. *s = 0.125f * hsum_float_8(accumf);
  6289. #elif defined(__AVX__)
  6290. const __m128i mone = _mm_set1_epi8(1);
  6291. static const char block_sign_shuffle_mask_1[32] = {
  6292. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  6293. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  6294. };
  6295. static const char block_sign_shuffle_mask_2[32] = {
  6296. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  6297. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  6298. };
  6299. static const uint8_t bit_selector_mask_bytes[32] = {
  6300. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6301. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6302. };
  6303. const __m128i bit_selector_mask_0 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes);
  6304. const __m128i bit_selector_mask_1 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes + 1);
  6305. const __m128i block_sign_shuffle_1_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1);
  6306. const __m128i block_sign_shuffle_1_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1 + 1);
  6307. const __m128i block_sign_shuffle_2_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2);
  6308. const __m128i block_sign_shuffle_2_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2 + 1);
  6309. static const uint8_t k_bit_helper[32] = {
  6310. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6311. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6312. };
  6313. const __m128i bit_helper_0 = _mm_loadu_si128((const __m128i*)k_bit_helper);
  6314. const __m128i bit_helper_1 = _mm_loadu_si128((const __m128i*)k_bit_helper + 1);
  6315. const __m128i m511 = _mm_set1_epi16(511);
  6316. const __m128i m4 = _mm_set1_epi8(0xf);
  6317. const __m128i m1 = _mm_set1_epi8(1);
  6318. uint64_t aux64;
  6319. // somewhat hacky, but gives a significant boost in performance
  6320. __m256i aux_gindex;
  6321. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  6322. __m256 accumf = _mm256_setzero_ps();
  6323. for (int i = 0; i < nb; ++i) {
  6324. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6325. const uint16_t * restrict q2 = x[i].qs;
  6326. const int8_t * restrict q8 = y[i].qs;
  6327. memcpy(&aux64, x[i].scales, 8);
  6328. __m128i stmp = _mm_set1_epi64x(aux64);
  6329. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  6330. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  6331. __m128i sumi1_0 = _mm_setzero_si128();
  6332. __m128i sumi1_1 = _mm_setzero_si128();
  6333. __m128i sumi2_0 = _mm_setzero_si128();
  6334. __m128i sumi2_1 = _mm_setzero_si128();
  6335. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  6336. const __m128i q2_data_0 = _mm_loadu_si128((const __m128i*)q2);
  6337. const __m128i q2_data_1 = _mm_loadu_si128((const __m128i*)q2 + 1); q2 += 16;
  6338. aux_gindex = MM256_SET_M128I(_mm_and_si128(q2_data_1, m511), _mm_and_si128(q2_data_0, m511));
  6339. const __m128i partial_sign_bits_0 = _mm_srli_epi16(q2_data_0, 9);
  6340. const __m128i partial_sign_bits_1 = _mm_srli_epi16(q2_data_1, 9);
  6341. const __m128i partial_sign_bits_upper_0 = _mm_srli_epi16(q2_data_0, 13);
  6342. const __m128i partial_sign_bits_upper_1 = _mm_srli_epi16(q2_data_1, 13);
  6343. const __m128i partial_sign_bits_for_counting_0 = _mm_xor_si128(partial_sign_bits_0, partial_sign_bits_upper_0);
  6344. const __m128i partial_sign_bits_for_counting_1 = _mm_xor_si128(partial_sign_bits_1, partial_sign_bits_upper_1);
  6345. const __m128i odd_bits_0 = _mm_shuffle_epi8(bit_helper_0, partial_sign_bits_for_counting_0);
  6346. const __m128i odd_bits_1 = _mm_shuffle_epi8(bit_helper_1, partial_sign_bits_for_counting_1);
  6347. const __m128i full_sign_bits_0 = _mm_or_si128(partial_sign_bits_0, odd_bits_0);
  6348. const __m128i full_sign_bits_1 = _mm_or_si128(partial_sign_bits_1, odd_bits_1);
  6349. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6350. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6351. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6352. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6353. const __m128i q8_3_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6354. const __m128i q8_3_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6355. const __m128i q8_4_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6356. const __m128i q8_4_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6357. const __m128i q2_1_0 = _mm_set_epi64x(iq2xs_grid[gindex[1]], iq2xs_grid[gindex[0]]);
  6358. const __m128i q2_1_1 = _mm_set_epi64x(iq2xs_grid[gindex[3]], iq2xs_grid[gindex[2]]);
  6359. const __m128i q2_2_0 = _mm_set_epi64x(iq2xs_grid[gindex[5]], iq2xs_grid[gindex[4]]);
  6360. const __m128i q2_2_1 = _mm_set_epi64x(iq2xs_grid[gindex[7]], iq2xs_grid[gindex[6]]);
  6361. const __m128i q2_3_0 = _mm_set_epi64x(iq2xs_grid[gindex[9]], iq2xs_grid[gindex[8]]);
  6362. const __m128i q2_3_1 = _mm_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]]);
  6363. const __m128i q2_4_0 = _mm_set_epi64x(iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  6364. const __m128i q2_4_1 = _mm_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]]);
  6365. // AVX2 full_signs_1 is full_sign_bits_0 here
  6366. // AVX2 full_signs_2 is full_sign_bits_1 here
  6367. __m128i signs_0, signs_1;
  6368. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_0);
  6369. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_1);
  6370. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6371. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6372. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, _mm_or_si128(signs_0, mone));
  6373. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, _mm_or_si128(signs_1, mone));
  6374. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_0);
  6375. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_1);
  6376. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6377. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6378. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, _mm_or_si128(signs_0, mone));
  6379. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, _mm_or_si128(signs_1, mone));
  6380. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_0);
  6381. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_1);
  6382. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6383. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6384. const __m128i q8s_3_0 = _mm_sign_epi8(q8_3_0, _mm_or_si128(signs_0, mone));
  6385. const __m128i q8s_3_1 = _mm_sign_epi8(q8_3_1, _mm_or_si128(signs_1, mone));
  6386. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_0);
  6387. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_1);
  6388. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6389. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6390. const __m128i q8s_4_0 = _mm_sign_epi8(q8_4_0, _mm_or_si128(signs_0, mone));
  6391. const __m128i q8s_4_1 = _mm_sign_epi8(q8_4_1, _mm_or_si128(signs_1, mone));
  6392. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  6393. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  6394. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  6395. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  6396. const __m128i dot3_0 = _mm_maddubs_epi16(q2_3_0, q8s_3_0);
  6397. const __m128i dot3_1 = _mm_maddubs_epi16(q2_3_1, q8s_3_1);
  6398. const __m128i dot4_0 = _mm_maddubs_epi16(q2_4_0, q8s_4_0);
  6399. const __m128i dot4_1 = _mm_maddubs_epi16(q2_4_1, q8s_4_1);
  6400. __m128i sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0));
  6401. const __m128i sc1_0 = _mm_cvtepi8_epi16(sc_tmp);
  6402. const __m128i sc1_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6403. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1));
  6404. const __m128i sc2_0 = _mm_cvtepi8_epi16(sc_tmp);
  6405. const __m128i sc2_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6406. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2));
  6407. const __m128i sc3_0 = _mm_cvtepi8_epi16(sc_tmp);
  6408. const __m128i sc3_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6409. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3));
  6410. const __m128i sc4_0 = _mm_cvtepi8_epi16(sc_tmp);
  6411. const __m128i sc4_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6412. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot1_0, sc1_0));
  6413. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot1_1, sc1_1));
  6414. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot2_0, sc2_0));
  6415. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot2_1, sc2_1));
  6416. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot3_0, sc3_0));
  6417. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot3_1, sc3_1));
  6418. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot4_0, sc4_0));
  6419. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot4_1, sc4_1));
  6420. }
  6421. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  6422. }
  6423. *s = 0.125f * hsum_float_8(accumf);
  6424. #elif defined(__loongarch_asx)
  6425. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  6426. static const char block_sign_shuffle_mask_1[32] = {
  6427. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  6428. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  6429. };
  6430. static const char block_sign_shuffle_mask_2[32] = {
  6431. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  6432. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  6433. };
  6434. static const uint8_t bit_selector_mask_bytes[32] = {
  6435. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6436. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6437. };
  6438. const __m256i bit_selector_mask = __lasx_xvld((const __m256i*)bit_selector_mask_bytes, 0);
  6439. const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0);
  6440. const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0);
  6441. static const uint8_t k_bit_helper[32] = {
  6442. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6443. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6444. };
  6445. const __m256i bit_helper = __lasx_xvld((const __m256i*)k_bit_helper, 0);
  6446. const __m256i m511 = __lasx_xvreplgr2vr_h(511);
  6447. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  6448. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  6449. uint64_t aux64;
  6450. // somewhat hacky, but gives a significant boost in performance
  6451. __m256i aux_gindex;
  6452. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  6453. __m256 accumf = (__m256)__lasx_xvldi(0);
  6454. for (int i = 0; i < nb; ++i) {
  6455. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6456. const uint16_t * restrict q2 = x[i].qs;
  6457. const int8_t * restrict q8 = y[i].qs;
  6458. memcpy(&aux64, x[i].scales, 8);
  6459. __m128i stmp = __lsx_vreplgr2vr_d(aux64);
  6460. stmp = __lsx_vilvl_b( __lsx_vand_v(__lsx_vsrli_h(stmp, 4), m4), __lsx_vand_v(stmp, m4));
  6461. const __m128i scales = __lsx_vadd_b(__lsx_vslli_h(stmp, 1), m1);
  6462. __m256i sumi1 = __lasx_xvldi(0);
  6463. __m256i sumi2 = __lasx_xvldi(0);
  6464. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  6465. const __m256i q2_data = __lasx_xvld((const __m256i*)q2, 0); q2 += 16;
  6466. aux_gindex = __lasx_xvand_v(q2_data, m511);
  6467. const __m256i partial_sign_bits = __lasx_xvsrli_h(q2_data, 9);
  6468. const __m256i partial_sign_bits_upper = __lasx_xvsrli_h(q2_data, 13);
  6469. const __m256i partial_sign_bits_for_counting = __lasx_xvxor_v(partial_sign_bits, partial_sign_bits_upper);
  6470. const __m256i odd_bits = lasx_shuffle_b(bit_helper, partial_sign_bits_for_counting);
  6471. const __m256i full_sign_bits = __lasx_xvor_v(partial_sign_bits, odd_bits);
  6472. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6473. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6474. const __m256i q8_3 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6475. const __m256i q8_4 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6476. const __m256i q2_1 = lasx_set_d(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  6477. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  6478. const __m256i q2_2 = lasx_set_d(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  6479. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  6480. const __m256i q2_3 = lasx_set_d(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  6481. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  6482. const __m256i q2_4 = lasx_set_d(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  6483. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  6484. const __m128i full_signs_l = lasx_extracti128(full_sign_bits, 0);
  6485. const __m128i full_signs_h = lasx_extracti128(full_sign_bits, 1);
  6486. const __m256i full_signs_1 = lasx_insertf128(full_signs_l, full_signs_l);
  6487. const __m256i full_signs_2 = lasx_insertf128(full_signs_h, full_signs_h);
  6488. __m256i signs;
  6489. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_1);
  6490. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6491. const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1);
  6492. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_2);
  6493. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6494. const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2);
  6495. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_1);
  6496. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6497. const __m256i q8s_3 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_3);
  6498. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_2);
  6499. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6500. const __m256i q8s_4 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_4);
  6501. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  6502. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  6503. const __m256i dot3 = lasx_maddubs_h(q2_3, q8s_3);
  6504. const __m256i dot4 = lasx_maddubs_h(q2_4, q8s_4);
  6505. const __m256i sc1 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+0)));
  6506. const __m256i sc2 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+1)));
  6507. const __m256i sc3 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+2)));
  6508. const __m256i sc4 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+3)));
  6509. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot1, sc1));
  6510. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot2, sc2));
  6511. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot3, sc3));
  6512. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot4, sc4));
  6513. }
  6514. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  6515. }
  6516. *s = 0.125f * hsum_float_8(accumf);
  6517. #elif defined(__POWER9_VECTOR__)
  6518. const vector int v0 = vec_splats((int32_t)0);
  6519. vector float vsumf0 = vec_splats(0.0f);
  6520. vector float vsumf1 = vec_splats(0.0f);
  6521. vector float vsumf2 = vec_splats(0.0f);
  6522. vector float vsumf3 = vec_splats(0.0f);
  6523. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6524. for (int i = 0; i < nb; ++i) {
  6525. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6526. vector float vyd = vec_splats(y[i].d);
  6527. vector float vd = vec_mul(vxd, vyd);
  6528. vector signed int vsumi0 = v0;
  6529. vector signed int vsumi1 = v0;
  6530. vector signed int vsumi2 = v0;
  6531. vector signed int vsumi3 = v0;
  6532. const uint16_t * restrict q2 = x[i].qs;
  6533. const uint8_t * restrict sc = x[i].scales;
  6534. const int8_t * restrict q8 = y[i].qs;
  6535. for (int j = 0; j < QK_K/64; ++j) {
  6536. __builtin_prefetch(q2, 0, 1);
  6537. __builtin_prefetch(q8, 0, 1);
  6538. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))};
  6539. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))};
  6540. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))};
  6541. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))};
  6542. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))};
  6543. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))};
  6544. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))};
  6545. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))};
  6546. q2 += 8;
  6547. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  6548. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  6549. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  6550. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  6551. vector signed char q8y0 = vec_xl( 0, q8);
  6552. vector signed char q8y1 = vec_xl(16, q8);
  6553. vector signed char q8y2 = vec_xl(32, q8);
  6554. vector signed char q8y3 = vec_xl(48, q8);
  6555. q8 += 64;
  6556. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  6557. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  6558. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  6559. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  6560. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  6561. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  6562. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  6563. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  6564. sc += 2;
  6565. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  6566. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  6567. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  6568. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  6569. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  6570. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  6571. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  6572. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  6573. }
  6574. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6575. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6576. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6577. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6578. }
  6579. vsumf0 = vec_add(vsumf0, vsumf2);
  6580. vsumf1 = vec_add(vsumf1, vsumf3);
  6581. vsumf0 = vec_add(vsumf0, vsumf1);
  6582. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6583. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6584. *s = 0.125f * vec_extract(vsumf0, 0);
  6585. #else
  6586. float sumf = 0.f;
  6587. for (int i = 0; i < nb; ++i) {
  6588. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6589. const uint16_t * restrict q2 = x[i].qs;
  6590. const uint8_t * restrict sc = x[i].scales;
  6591. const int8_t * restrict q8 = y[i].qs;
  6592. int32_t bsum = 0;
  6593. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  6594. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  6595. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  6596. int32_t sumi = 0;
  6597. for (int l = 0; l < 2; ++l) {
  6598. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  6599. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  6600. for (int j = 0; j < 8; ++j) {
  6601. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  6602. }
  6603. q8 += 8;
  6604. }
  6605. bsum += sumi * ls1;
  6606. sumi = 0;
  6607. for (int l = 2; l < 4; ++l) {
  6608. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  6609. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  6610. for (int j = 0; j < 8; ++j) {
  6611. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  6612. }
  6613. q8 += 8;
  6614. }
  6615. bsum += sumi * ls2;
  6616. q2 += 4;
  6617. }
  6618. sumf += d * bsum;
  6619. }
  6620. *s = 0.125f * sumf;
  6621. #endif
  6622. }
  6623. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6624. assert(n % QK_K == 0);
  6625. assert(nrc == 1);
  6626. UNUSED(nrc);
  6627. UNUSED(bx);
  6628. UNUSED(by);
  6629. UNUSED(bs);
  6630. const block_iq2_s * restrict x = vx;
  6631. const block_q8_K * restrict y = vy;
  6632. const int nb = n / QK_K;
  6633. #if defined(__ARM_NEON)
  6634. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6635. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6636. };
  6637. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  6638. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  6639. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  6640. const uint8x16_t m1 = vdupq_n_u8(1);
  6641. const int32x4_t vzero = vdupq_n_s32(0);
  6642. uint8x16x2_t vs;
  6643. ggml_int8x16x4_t q2s;
  6644. ggml_int8x16x4_t q8b;
  6645. float sumf = 0;
  6646. for (int i = 0; i < nb; ++i) {
  6647. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6648. const uint8_t * restrict qs = x[i].qs;
  6649. const uint8_t * restrict qh = x[i].qh;
  6650. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6651. const int8_t * restrict q8 = y[i].qs;
  6652. int sumi1 = 0, sumi2 = 0;
  6653. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6654. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  6655. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  6656. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  6657. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  6658. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  6659. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  6660. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  6661. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  6662. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  6663. qs += 8;
  6664. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  6665. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  6666. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  6667. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  6668. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  6669. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  6670. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  6671. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  6672. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  6673. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  6674. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  6675. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  6676. signs += 4;
  6677. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  6678. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  6679. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  6680. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  6681. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  6682. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  6683. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  6684. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  6685. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  6686. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  6687. }
  6688. sumf += d*(sumi1 + sumi2);
  6689. }
  6690. *s = 0.125f * sumf;
  6691. #elif defined(__AVX2__)
  6692. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6693. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6694. };
  6695. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6696. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6697. };
  6698. const __m128i m4 = _mm_set1_epi8(0xf);
  6699. const __m128i m1 = _mm_set1_epi8(1);
  6700. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  6701. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  6702. uint64_t aux64;
  6703. __m256 accumf = _mm256_setzero_ps();
  6704. for (int i = 0; i < nb; ++i) {
  6705. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6706. const uint8_t * restrict qs = x[i].qs;
  6707. const uint8_t * restrict qh = x[i].qh;
  6708. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6709. const int8_t * restrict q8 = y[i].qs;
  6710. memcpy(&aux64, x[i].scales, 8);
  6711. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  6712. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  6713. __m256i sumi1 = _mm256_setzero_si256();
  6714. __m256i sumi2 = _mm256_setzero_si256();
  6715. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6716. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6717. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6718. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  6719. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  6720. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  6721. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  6722. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  6723. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  6724. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  6725. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  6726. qs += 8;
  6727. __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  6728. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  6729. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  6730. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  6731. aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  6732. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  6733. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  6734. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  6735. signs += 4;
  6736. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  6737. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  6738. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  6739. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  6740. sumi1 = _mm256_add_epi32(sumi1, p1);
  6741. sumi2 = _mm256_add_epi32(sumi2, p2);
  6742. }
  6743. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  6744. }
  6745. *s = 0.125f * hsum_float_8(accumf);
  6746. #elif defined(__AVX__)
  6747. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6748. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6749. };
  6750. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6751. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6752. };
  6753. const __m128i m4 = _mm_set1_epi8(0xf);
  6754. const __m128i m1 = _mm_set1_epi8(1);
  6755. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  6756. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  6757. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  6758. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  6759. uint64_t aux64;
  6760. __m256 accumf = _mm256_setzero_ps();
  6761. for (int i = 0; i < nb; ++i) {
  6762. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6763. const uint8_t * restrict qs = x[i].qs;
  6764. const uint8_t * restrict qh = x[i].qh;
  6765. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6766. const int8_t * restrict q8 = y[i].qs;
  6767. memcpy(&aux64, x[i].scales, 8);
  6768. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  6769. const __m128i scales16_0 = _mm_cvtepi8_epi16(scales8);
  6770. const __m128i scales16_1 = _mm_cvtepi8_epi16(_mm_srli_si128(scales8, 8));
  6771. __m128i sumi1_0 = _mm_setzero_si128();
  6772. __m128i sumi1_1 = _mm_setzero_si128();
  6773. __m128i sumi2_0 = _mm_setzero_si128();
  6774. __m128i sumi2_1 = _mm_setzero_si128();
  6775. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6776. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6777. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6778. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6779. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6780. const __m128i q2_1_0 = _mm_set_epi64x(iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  6781. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  6782. const __m128i q2_1_1 = _mm_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  6783. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)]);
  6784. const __m128i q2_2_0 = _mm_set_epi64x(iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  6785. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  6786. const __m128i q2_2_1 = _mm_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  6787. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)]);
  6788. qs += 8;
  6789. __m128i aux128_0 = _mm_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  6790. __m128i aux128_1 = aux128_0;
  6791. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  6792. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  6793. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  6794. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  6795. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  6796. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  6797. aux128_0 = _mm_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  6798. aux128_1 = aux128_0;
  6799. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  6800. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  6801. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  6802. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  6803. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  6804. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  6805. signs += 4;
  6806. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  6807. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  6808. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  6809. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  6810. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 0)));
  6811. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 1)));
  6812. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 0)));
  6813. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 1)));
  6814. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  6815. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  6816. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  6817. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  6818. }
  6819. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  6820. }
  6821. *s = 0.125f * hsum_float_8(accumf);
  6822. #elif defined(__POWER9_VECTOR__)
  6823. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6824. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6825. };
  6826. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  6827. const vector int v0 = vec_splats((int32_t)0);
  6828. vector float vsumf0 = vec_splats(0.0f);
  6829. vector float vsumf1 = vec_splats(0.0f);
  6830. vector float vsumf2 = vec_splats(0.0f);
  6831. vector float vsumf3 = vec_splats(0.0f);
  6832. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  6833. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  6834. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  6835. for (int i = 0; i < nb; ++i) {
  6836. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6837. vector float vyd = vec_splats(y[i].d);
  6838. vector float vd = vec_mul(vxd, vyd);
  6839. vector signed int vsumi0 = v0;
  6840. vector signed int vsumi1 = v0;
  6841. vector signed int vsumi2 = v0;
  6842. vector signed int vsumi3 = v0;
  6843. const uint8_t * restrict q2 = x[i].qs;
  6844. const uint8_t * restrict qh = x[i].qh;
  6845. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6846. const uint8_t * restrict sc = x[i].scales;
  6847. const int8_t * restrict q8 = y[i].qs;
  6848. for (int j = 0; j < QK_K/32; j += 2) {
  6849. __builtin_prefetch(q2, 0, 1);
  6850. __builtin_prefetch(q8, 0, 1);
  6851. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))};
  6852. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))};
  6853. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))};
  6854. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))};
  6855. q2 += 8;
  6856. qh += 2;
  6857. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  6858. vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  6859. signs += 4;
  6860. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  6861. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  6862. vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0);
  6863. vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1);
  6864. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  6865. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  6866. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  6867. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  6868. vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0);
  6869. vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1);
  6870. vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2);
  6871. vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3);
  6872. vector signed char q8y0 = vec_xl( 0, q8);
  6873. vector signed char q8y1 = vec_xl(16, q8);
  6874. vector signed char q8y2 = vec_xl(32, q8);
  6875. vector signed char q8y3 = vec_xl(48, q8);
  6876. q8 += 64;
  6877. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  6878. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  6879. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  6880. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  6881. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  6882. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  6883. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  6884. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  6885. sc += 2;
  6886. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  6887. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  6888. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  6889. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  6890. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  6891. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  6892. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  6893. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  6894. }
  6895. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6896. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6897. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6898. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6899. }
  6900. vsumf0 = vec_add(vsumf0, vsumf2);
  6901. vsumf1 = vec_add(vsumf1, vsumf3);
  6902. vsumf0 = vec_add(vsumf0, vsumf1);
  6903. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6904. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6905. *s = 0.125f * vec_extract(vsumf0, 0);
  6906. #elif defined(__loongarch_asx)
  6907. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6908. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6909. };
  6910. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6911. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6912. };
  6913. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  6914. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  6915. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  6916. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  6917. uint64_t aux64;
  6918. __m256 accumf = (__m256)__lasx_xvldi(0);
  6919. for (int i = 0; i < nb; ++i) {
  6920. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6921. const uint8_t * restrict qs = x[i].qs;
  6922. const uint8_t * restrict qh = x[i].qh;
  6923. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6924. const int8_t * restrict q8 = y[i].qs;
  6925. __m128i tmp1;
  6926. memcpy(&aux64, x[i].scales, 8);
  6927. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64, 0);
  6928. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64 >> 4, 1);
  6929. const __m128i scales8 = __lsx_vadd_b(__lsx_vslli_h(__lsx_vand_v(tmp1, m4), 1), m1);
  6930. const __m256i scales16 = lasx_ext8_16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  6931. __m256i sumi1 = __lasx_xvldi(0);
  6932. __m256i sumi2 = __lasx_xvldi(0);
  6933. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6934. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6935. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6936. const __m256i q2_1 = lasx_set_d(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  6937. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  6938. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  6939. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  6940. const __m256i q2_2 = lasx_set_d(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  6941. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  6942. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  6943. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  6944. qs += 8;
  6945. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | ((uint32_t) signs[1] << 16));
  6946. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  6947. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  6948. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  6949. aux256 = __lasx_xvreplgr2vr_w(signs[2] | ((uint32_t) signs[3] << 16));
  6950. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  6951. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  6952. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  6953. signs += 4;
  6954. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  6955. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  6956. const __m256i p1 = lasx_madd_h(dot1, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+0)));
  6957. const __m256i p2 = lasx_madd_h(dot2, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+1)));
  6958. sumi1 = __lasx_xvadd_w(sumi1, p1);
  6959. sumi2 = __lasx_xvadd_w(sumi2, p2);
  6960. }
  6961. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  6962. }
  6963. *s = 0.125f * hsum_float_8(accumf);
  6964. #else
  6965. float sumf = 0;
  6966. for (int i = 0; i < nb; i++) {
  6967. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6968. const int8_t * q8 = y[i].qs;
  6969. const uint8_t * qs = x[i].qs;
  6970. const uint8_t * qh = x[i].qh;
  6971. const uint8_t * signs = qs + QK_K/8;
  6972. int bsum = 0;
  6973. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  6974. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  6975. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  6976. int sumi1 = 0, sumi2 = 0;
  6977. for (int l = 0; l < 2; ++l) {
  6978. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  6979. for (int j = 0; j < 8; ++j) {
  6980. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  6981. }
  6982. q8 += 8;
  6983. }
  6984. for (int l = 2; l < 4; ++l) {
  6985. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  6986. for (int j = 0; j < 8; ++j) {
  6987. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  6988. }
  6989. q8 += 8;
  6990. }
  6991. bsum += ls1 * sumi1 + ls2 * sumi2;
  6992. qs += 4;
  6993. signs += 4;
  6994. }
  6995. sumf += d * bsum;
  6996. }
  6997. *s = 0.125f * sumf;
  6998. #endif
  6999. }
  7000. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7001. assert(n % QK_K == 0);
  7002. assert(nrc == 1);
  7003. UNUSED(nrc);
  7004. UNUSED(bx);
  7005. UNUSED(by);
  7006. UNUSED(bs);
  7007. const block_iq3_xxs * restrict x = vx;
  7008. const block_q8_K * restrict y = vy;
  7009. const int nb = n / QK_K;
  7010. #if defined(__ARM_NEON)
  7011. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7012. uint32_t aux32[2];
  7013. ggml_int8x16x4_t q3s;
  7014. ggml_int8x16x4_t q8b;
  7015. float sumf = 0;
  7016. for (int i = 0; i < nb; ++i) {
  7017. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7018. const uint8_t * restrict q3 = x[i].qs;
  7019. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7020. const int8_t * restrict q8 = y[i].qs;
  7021. float sumf1 = 0, sumf2 = 0;
  7022. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7023. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7024. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  7025. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  7026. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  7027. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  7028. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  7029. q3 += 16;
  7030. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  7031. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  7032. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7033. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7034. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  7035. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  7036. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  7037. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  7038. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7039. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7040. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  7041. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  7042. }
  7043. sumf += d*(sumf1 + sumf2);
  7044. }
  7045. *s = 0.5f * sumf;
  7046. #elif defined(__AVX2__)
  7047. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7048. uint32_t aux32[2];
  7049. __m256 accumf = _mm256_setzero_ps();
  7050. for (int i = 0; i < nb; ++i) {
  7051. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7052. const uint8_t * restrict q3 = x[i].qs;
  7053. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7054. const int8_t * restrict q8 = y[i].qs;
  7055. __m256i sumi1 = _mm256_setzero_si256();
  7056. __m256i sumi2 = _mm256_setzero_si256();
  7057. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7058. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7059. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7060. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7061. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7062. q3 += 8;
  7063. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7064. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7065. q3 += 8;
  7066. memcpy(aux32, gas, 8); gas += 8;
  7067. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  7068. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7069. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7070. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7071. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7072. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7073. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7074. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7075. const uint16_t ls1 = aux32[0] >> 28;
  7076. const uint16_t ls2 = aux32[1] >> 28;
  7077. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7078. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7079. sumi1 = _mm256_add_epi32(sumi1, p1);
  7080. sumi2 = _mm256_add_epi32(sumi2, p2);
  7081. }
  7082. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7083. }
  7084. *s = 0.25f * hsum_float_8(accumf);
  7085. #elif defined(__AVX__)
  7086. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7087. uint32_t aux32[2];
  7088. __m256 accumf = _mm256_setzero_ps();
  7089. for (int i = 0; i < nb; ++i) {
  7090. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7091. const uint8_t * restrict q3 = x[i].qs;
  7092. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7093. const int8_t * restrict q8 = y[i].qs;
  7094. __m128i sumi1_0 = _mm_setzero_si128();
  7095. __m128i sumi1_1 = _mm_setzero_si128();
  7096. __m128i sumi2_0 = _mm_setzero_si128();
  7097. __m128i sumi2_1 = _mm_setzero_si128();
  7098. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7099. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7100. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7101. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7102. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7103. const __m128i q2_1_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7104. const __m128i q2_1_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  7105. q3 += 8;
  7106. const __m128i q2_2_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7107. const __m128i q2_2_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  7108. q3 += 8;
  7109. memcpy(aux32, gas, 8); gas += 8;
  7110. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7111. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127]);
  7112. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7113. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  7114. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  7115. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  7116. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  7117. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  7118. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7119. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7120. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7121. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7122. const uint16_t ls1 = aux32[0] >> 28;
  7123. const uint16_t ls2 = aux32[1] >> 28;
  7124. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  7125. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  7126. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  7127. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  7128. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7129. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7130. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7131. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7132. }
  7133. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7134. }
  7135. *s = 0.25f * hsum_float_8(accumf);
  7136. #elif defined(__POWER9_VECTOR__)
  7137. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7138. const vector int v0 = vec_splats((int32_t)0);
  7139. vector float vsumf0 = vec_splats(0.0f);
  7140. vector float vsumf1 = vec_splats(0.0f);
  7141. vector float vsumf2 = vec_splats(0.0f);
  7142. vector float vsumf3 = vec_splats(0.0f);
  7143. for (int i = 0; i < nb; ++i) {
  7144. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7145. vector float vyd = vec_splats(y[i].d);
  7146. vector float vd = vec_mul(vxd, vyd);
  7147. vector signed int vsumi0 = v0;
  7148. vector signed int vsumi1 = v0;
  7149. vector signed int vsumi2 = v0;
  7150. vector signed int vsumi3 = v0;
  7151. const uint8_t * restrict q3 = x[i].qs;
  7152. const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4);
  7153. const int8_t * restrict q8 = y[i].qs;
  7154. #pragma GCC unroll 1
  7155. for (int j = 0; j < QK_K/32; j += 2) {
  7156. __builtin_prefetch(q3, 0, 1);
  7157. __builtin_prefetch(q8, 0, 1);
  7158. vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
  7159. vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
  7160. vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
  7161. vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
  7162. q3 += 16;
  7163. vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])};
  7164. vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])};
  7165. vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])};
  7166. vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])};
  7167. vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0);
  7168. vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1);
  7169. vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2);
  7170. vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3);
  7171. vector signed char q8y0 = vec_xl( 0, q8);
  7172. vector signed char q8y1 = vec_xl(16, q8);
  7173. vector signed char q8y2 = vec_xl(32, q8);
  7174. vector signed char q8y3 = vec_xl(48, q8);
  7175. q8 += 64;
  7176. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  7177. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  7178. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  7179. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  7180. const uint16_t ls0 = (uint16_t)(signs[0] >> 28);
  7181. const uint16_t ls1 = (uint16_t)(signs[1] >> 28);
  7182. signs += 2;
  7183. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  7184. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  7185. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7186. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7187. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7188. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7189. }
  7190. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7191. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7192. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7193. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7194. }
  7195. vsumf0 = vec_add(vsumf0, vsumf2);
  7196. vsumf1 = vec_add(vsumf1, vsumf3);
  7197. vsumf0 = vec_add(vsumf0, vsumf1);
  7198. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7199. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7200. *s = 0.25f * vec_extract(vsumf0, 0);
  7201. #elif defined(__loongarch_asx)
  7202. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7203. uint32_t aux32[2];
  7204. __m256 accumf = (__m256)__lasx_xvldi(0);
  7205. for (int i = 0; i < nb; ++i) {
  7206. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7207. const uint8_t * restrict q3 = x[i].qs;
  7208. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7209. const int8_t * restrict q8 = y[i].qs;
  7210. __m256i sumi1 = __lasx_xvldi(0);
  7211. __m256i sumi2 = __lasx_xvldi(0);
  7212. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7213. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7214. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7215. const __m256i q2_1 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7216. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7217. q3 += 8;
  7218. const __m256i q2_2 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7219. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7220. q3 += 8;
  7221. memcpy(aux32, gas, 8); gas += 8;
  7222. const __m256i s2_1 = lasx_set_d(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  7223. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7224. const __m256i s2_2 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7225. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7226. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  7227. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  7228. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7229. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7230. const uint16_t ls1 = aux32[0] >> 28;
  7231. const uint16_t ls2 = aux32[1] >> 28;
  7232. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7233. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7234. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7235. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7236. }
  7237. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7238. }
  7239. *s = 0.25f * hsum_float_8(accumf);
  7240. #else
  7241. uint32_t aux32;
  7242. float sumf = 0.f;
  7243. for (int i = 0; i < nb; ++i) {
  7244. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7245. const uint8_t * restrict q3 = x[i].qs;
  7246. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7247. const int8_t * restrict q8 = y[i].qs;
  7248. int32_t bsum = 0;
  7249. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7250. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  7251. const uint32_t ls = 2*(aux32 >> 28) + 1;
  7252. int32_t sumi = 0;
  7253. for (int l = 0; l < 4; ++l) {
  7254. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  7255. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  7256. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  7257. for (int j = 0; j < 4; ++j) {
  7258. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  7259. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  7260. }
  7261. q8 += 8;
  7262. }
  7263. q3 += 8;
  7264. bsum += sumi * ls;
  7265. }
  7266. sumf += d * bsum;
  7267. }
  7268. *s = 0.25f * sumf;
  7269. #endif
  7270. }
  7271. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7272. assert(n % QK_K == 0);
  7273. assert(nrc == 1);
  7274. UNUSED(nrc);
  7275. UNUSED(bx);
  7276. UNUSED(by);
  7277. UNUSED(bs);
  7278. const block_iq3_s * restrict x = vx;
  7279. const block_q8_K * restrict y = vy;
  7280. const int nb = n / QK_K;
  7281. #if defined(__ARM_NEON)
  7282. typedef union {
  7283. uint16x8_t vec_index;
  7284. uint16_t index[8];
  7285. } vec_index_t;
  7286. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7287. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7288. };
  7289. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7290. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  7291. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  7292. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7293. const int16x8_t hshift = vld1q_s16(k_shift);
  7294. const uint16x8_t m256 = vdupq_n_u16(256);
  7295. const uint8x16_t m1 = vdupq_n_u8(1);
  7296. uint8x16x2_t vs;
  7297. ggml_int8x16x4_t q3s;
  7298. ggml_int8x16x4_t q8b;
  7299. vec_index_t idx;
  7300. uint32_t scales32[2];
  7301. const uint8_t * scales8 = (const uint8_t *)scales32;
  7302. float sumf = 0;
  7303. for (int i = 0; i < nb; ++i) {
  7304. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7305. const uint8_t * restrict qs = x[i].qs;
  7306. const uint8_t * restrict qh = x[i].qh;
  7307. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7308. const int8_t * restrict q8 = y[i].qs;
  7309. memcpy(scales32, x[i].scales, 4);
  7310. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  7311. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  7312. int sumi1 = 0, sumi2 = 0;
  7313. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7314. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7315. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  7316. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  7317. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  7318. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  7319. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  7320. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  7321. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  7322. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  7323. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  7324. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  7325. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  7326. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  7327. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7328. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7329. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  7330. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  7331. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  7332. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  7333. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  7334. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7335. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7336. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  7337. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  7338. signs += 4;
  7339. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  7340. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  7341. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7342. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7343. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  7344. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  7345. }
  7346. sumf += d*(sumi1 + sumi2);
  7347. }
  7348. *s = sumf;
  7349. #elif defined(__AVX2__)
  7350. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7351. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7352. };
  7353. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7354. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7355. };
  7356. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7357. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7358. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  7359. const __m256i idx_mask = _mm256_set1_epi32(256);
  7360. typedef union {
  7361. __m256i vec[2];
  7362. uint32_t index[16];
  7363. } index_t;
  7364. index_t idx;
  7365. __m256 accumf = _mm256_setzero_ps();
  7366. for (int i = 0; i < nb; ++i) {
  7367. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7368. const uint8_t * restrict qs = x[i].qs;
  7369. const uint8_t * restrict qh = x[i].qh;
  7370. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7371. const int8_t * restrict q8 = y[i].qs;
  7372. __m256i sumi1 = _mm256_setzero_si256();
  7373. __m256i sumi2 = _mm256_setzero_si256();
  7374. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7375. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7376. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7377. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  7378. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  7379. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  7380. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  7381. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  7382. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  7383. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  7384. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  7385. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  7386. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  7387. const __m256i q2_1 = _mm256_set_epi32(
  7388. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  7389. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  7390. );
  7391. const __m256i q2_2 = _mm256_set_epi32(
  7392. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  7393. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  7394. );
  7395. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  7396. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7397. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7398. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7399. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  7400. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7401. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7402. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7403. signs += 4;
  7404. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7405. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7406. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7407. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7408. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7409. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7410. sumi1 = _mm256_add_epi32(sumi1, p1);
  7411. sumi2 = _mm256_add_epi32(sumi2, p2);
  7412. }
  7413. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7414. }
  7415. *s = hsum_float_8(accumf);
  7416. #elif defined(__AVX__)
  7417. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7418. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7419. };
  7420. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7421. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7422. };
  7423. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  7424. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  7425. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  7426. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  7427. const __m128i idx_mul_0 = _mm_set_epi32(32, 64, 128, 256);
  7428. const __m128i idx_mul_1 = _mm_set_epi32(2, 4, 8, 16);
  7429. const __m128i idx_mask = _mm_set1_epi32(256);
  7430. typedef union {
  7431. __m128i vec[4];
  7432. uint32_t index[16];
  7433. } index_t;
  7434. index_t idx;
  7435. __m256 accumf = _mm256_setzero_ps();
  7436. for (int i = 0; i < nb; ++i) {
  7437. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7438. const uint8_t * restrict qs = x[i].qs;
  7439. const uint8_t * restrict qh = x[i].qh;
  7440. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7441. const int8_t * restrict q8 = y[i].qs;
  7442. __m128i sumi1_0 = _mm_setzero_si128();
  7443. __m128i sumi1_1 = _mm_setzero_si128();
  7444. __m128i sumi2_0 = _mm_setzero_si128();
  7445. __m128i sumi2_1 = _mm_setzero_si128();
  7446. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7447. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7448. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7449. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7450. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7451. const __m128i qs_tmp = _mm_loadu_si128((const __m128i *)qs);
  7452. const __m128i idx_l_0 = _mm_cvtepu8_epi16(qs_tmp);
  7453. const __m128i idx_l_1 = _mm_cvtepu8_epi16(_mm_srli_si128(qs_tmp, 8)); qs += 16;
  7454. idx.vec[0] = _mm_set1_epi32(qh[ib32+0]);
  7455. idx.vec[1] = idx.vec[0];
  7456. idx.vec[2] = _mm_set1_epi32(qh[ib32+1]);
  7457. idx.vec[3] = idx.vec[2];
  7458. idx.vec[0] = _mm_and_si128(_mm_mullo_epi32(idx.vec[0], idx_mul_0), idx_mask);
  7459. idx.vec[1] = _mm_and_si128(_mm_mullo_epi32(idx.vec[1], idx_mul_1), idx_mask);
  7460. idx.vec[2] = _mm_and_si128(_mm_mullo_epi32(idx.vec[2], idx_mul_0), idx_mask);
  7461. idx.vec[3] = _mm_and_si128(_mm_mullo_epi32(idx.vec[3], idx_mul_1), idx_mask);
  7462. idx.vec[0] = _mm_or_si128(idx.vec[0], _mm_cvtepi16_epi32(idx_l_0));
  7463. idx.vec[1] = _mm_or_si128(idx.vec[1], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_0, 8)));
  7464. idx.vec[2] = _mm_or_si128(idx.vec[2], _mm_cvtepi16_epi32(idx_l_1));
  7465. idx.vec[3] = _mm_or_si128(idx.vec[3], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_1, 8)));
  7466. const __m128i q2_1_0 = _mm_set_epi32(iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]);
  7467. const __m128i q2_1_1 = _mm_set_epi32(iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]]);
  7468. const __m128i q2_2_0 = _mm_set_epi32(iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[9]], iq3s_grid[idx.index[8]]);
  7469. const __m128i q2_2_1 = _mm_set_epi32(iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]]);
  7470. __m128i aux128_0 = _mm_set1_epi32(signs[0] | (signs[1] << 16));
  7471. __m128i aux128_1 = aux128_0;
  7472. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  7473. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  7474. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  7475. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  7476. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  7477. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  7478. aux128_0 = _mm_set1_epi32(signs[2] | (signs[3] << 16));
  7479. aux128_1 = aux128_0;
  7480. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  7481. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  7482. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  7483. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  7484. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  7485. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  7486. signs += 4;
  7487. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7488. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7489. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7490. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7491. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7492. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7493. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  7494. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  7495. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  7496. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  7497. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7498. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7499. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7500. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7501. }
  7502. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7503. }
  7504. *s = hsum_float_8(accumf);
  7505. #elif defined(__POWER9_VECTOR__)
  7506. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7507. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7508. };
  7509. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7510. const vector int v0 = vec_splats((int32_t)0);
  7511. vector float vsumf0 = vec_splats(0.0f);
  7512. vector float vsumf1 = vec_splats(0.0f);
  7513. vector float vsumf2 = vec_splats(0.0f);
  7514. vector float vsumf3 = vec_splats(0.0f);
  7515. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  7516. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  7517. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  7518. for (int i = 0; i < nb; ++i) {
  7519. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7520. vector float vyd = vec_splats(y[i].d);
  7521. vector float vd = vec_mul(vxd, vyd);
  7522. const uint8_t * restrict q3 = x[i].qs;
  7523. const uint8_t * restrict qh = x[i].qh;
  7524. const uint16_t * restrict signs = (const uint16_t *)(x[i].signs);
  7525. const uint8_t * restrict sc = x[i].scales;
  7526. const int8_t * restrict q8 = y[i].qs;
  7527. vector signed int vsumi0 = v0;
  7528. vector signed int vsumi1 = v0;
  7529. vector signed int vsumi2 = v0;
  7530. vector signed int vsumi3 = v0;
  7531. for (int j = 0; j < QK_K/32; j += 2) {
  7532. __builtin_prefetch(q3, 0, 1);
  7533. __builtin_prefetch(q8, 0, 1);
  7534. vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)],
  7535. iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]};
  7536. vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)],
  7537. iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]};
  7538. vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)],
  7539. iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]};
  7540. vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)],
  7541. iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]};
  7542. q3 += 16;
  7543. qh += 2;
  7544. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  7545. vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  7546. signs += 4;
  7547. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  7548. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  7549. vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0);
  7550. vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1);
  7551. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  7552. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  7553. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  7554. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  7555. vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0);
  7556. vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1);
  7557. vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2);
  7558. vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3);
  7559. vector signed char q8y0 = vec_xl( 0, q8);
  7560. vector signed char q8y1 = vec_xl(16, q8);
  7561. vector signed char q8y2 = vec_xl(32, q8);
  7562. vector signed char q8y3 = vec_xl(48, q8);
  7563. q8 += 64;
  7564. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  7565. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  7566. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  7567. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  7568. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  7569. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  7570. sc ++;
  7571. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  7572. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  7573. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7574. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7575. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7576. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7577. }
  7578. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7579. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7580. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7581. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7582. }
  7583. vsumf0 = vec_add(vsumf0, vsumf2);
  7584. vsumf1 = vec_add(vsumf1, vsumf3);
  7585. vsumf0 = vec_add(vsumf0, vsumf1);
  7586. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7587. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7588. *s = vec_extract(vsumf0, 0);
  7589. #elif defined(__loongarch_asx)
  7590. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7591. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7592. };
  7593. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7594. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7595. };
  7596. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  7597. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  7598. __m256i idx_shift = lasx_set_w(1, 2, 3, 4, 5, 6, 7, 8);
  7599. const __m256i idx_mask = __lasx_xvreplgr2vr_w(256);
  7600. typedef union {
  7601. __m256i vec[2];
  7602. uint32_t index[16];
  7603. } index_t;
  7604. index_t idx;
  7605. __m256 accumf = (__m256)__lasx_xvldi(0);
  7606. for (int i = 0; i < nb; ++i) {
  7607. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7608. const uint8_t * restrict qs = x[i].qs;
  7609. const uint8_t * restrict qh = x[i].qh;
  7610. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7611. const int8_t * restrict q8 = y[i].qs;
  7612. __m256i sumi1 = __lasx_xvldi(0);
  7613. __m256i sumi2 = __lasx_xvldi(0);
  7614. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7615. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7616. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7617. const __m256i idx_l = lasx_extu8_16(__lsx_vld(qs, 0)); qs += 16;
  7618. idx.vec[0] = __lasx_xvreplgr2vr_w(qh[ib32+0]);
  7619. idx.vec[1] = __lasx_xvreplgr2vr_w(qh[ib32+1]);
  7620. idx.vec[0] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[0], idx_shift), idx_mask);
  7621. idx.vec[1] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[1], idx_shift), idx_mask);
  7622. idx.vec[0] = __lasx_xvor_v(idx.vec[0], lasx_ext16_32(lasx_extracti128(idx_l, 0)));
  7623. idx.vec[1] = __lasx_xvor_v(idx.vec[1], lasx_ext16_32(lasx_extracti128(idx_l, 1)));
  7624. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  7625. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  7626. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  7627. const __m256i q2_1 = lasx_set_w(
  7628. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  7629. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  7630. );
  7631. const __m256i q2_2 = lasx_set_w(
  7632. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  7633. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  7634. );
  7635. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | (signs[1] << 16));
  7636. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  7637. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  7638. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  7639. aux256 = __lasx_xvreplgr2vr_w(signs[2] | (signs[3] << 16));
  7640. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  7641. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  7642. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  7643. signs += 4;
  7644. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7645. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7646. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7647. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7648. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7649. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7650. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7651. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7652. }
  7653. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7654. }
  7655. *s = hsum_float_8(accumf);
  7656. #else
  7657. float sumf = 0.f;
  7658. for (int i = 0; i < nb; ++i) {
  7659. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7660. const uint8_t * restrict qs = x[i].qs;
  7661. const uint8_t * restrict qh = x[i].qh;
  7662. const uint8_t * restrict signs = x[i].signs;
  7663. const int8_t * restrict q8 = y[i].qs;
  7664. int32_t bsum = 0;
  7665. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7666. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  7667. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  7668. int32_t sumi = 0;
  7669. for (int l = 0; l < 4; ++l) {
  7670. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  7671. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  7672. for (int j = 0; j < 4; ++j) {
  7673. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7674. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7675. }
  7676. q8 += 8;
  7677. }
  7678. qs += 8;
  7679. signs += 4;
  7680. bsum += sumi * ls1;
  7681. sumi = 0;
  7682. for (int l = 0; l < 4; ++l) {
  7683. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  7684. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  7685. for (int j = 0; j < 4; ++j) {
  7686. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7687. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7688. }
  7689. q8 += 8;
  7690. }
  7691. qs += 8;
  7692. signs += 4;
  7693. bsum += sumi * ls2;
  7694. }
  7695. sumf += d * bsum;
  7696. }
  7697. *s = sumf;
  7698. #endif
  7699. }
  7700. #if defined(__AVX2__)
  7701. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  7702. const __m256i ax = _mm256_sign_epi8(x, x);
  7703. const __m256i sy = _mm256_sign_epi8(y, x);
  7704. return _mm256_maddubs_epi16(ax, sy);
  7705. }
  7706. #elif defined(__loongarch_asx)
  7707. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  7708. const __m256i ax = __lasx_xvsigncov_b(x, x);
  7709. const __m256i sy = __lasx_xvsigncov_b(x, y);
  7710. __m256i tmp1, tmp2, tmp3;
  7711. tmp1 = __lasx_xvmulwev_h_bu_b(ax, sy);
  7712. tmp2 = __lasx_xvmulwod_h_bu_b(ax, sy);
  7713. tmp3 = __lasx_xvadd_h(tmp1, tmp2);
  7714. return __lasx_xvsat_h(tmp3, 15);
  7715. }
  7716. #endif
  7717. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7718. assert(n % QK_K == 0);
  7719. assert(nrc == 1);
  7720. UNUSED(nrc);
  7721. UNUSED(bx);
  7722. UNUSED(by);
  7723. UNUSED(bs);
  7724. const block_iq1_s * restrict x = vx;
  7725. const block_q8_K * restrict y = vy;
  7726. const int nb = n / QK_K;
  7727. #if defined __ARM_NEON
  7728. ggml_int8x16x4_t q1b;
  7729. ggml_int8x16x4_t q8b;
  7730. float sumf = 0;
  7731. for (int i = 0; i < nb; ++i) {
  7732. const int8_t * q8 = y[i].qs;
  7733. const uint8_t * qs = x[i].qs;
  7734. const uint16_t * qh = x[i].qh;
  7735. int sumi1 = 0, sumi2 = 0, sumi3 = 0;
  7736. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7737. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
  7738. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
  7739. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
  7740. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
  7741. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
  7742. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
  7743. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
  7744. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
  7745. qs += 8;
  7746. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7747. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
  7748. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
  7749. const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7750. const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7751. sumi1 += vaddvq_s32(p1) * ls1;
  7752. sumi2 += vaddvq_s32(p2) * ls2;
  7753. sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
  7754. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
  7755. }
  7756. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
  7757. }
  7758. *s = sumf;
  7759. #elif defined __AVX2__
  7760. __m256 accum = _mm256_setzero_ps();
  7761. float accum1 = 0;
  7762. for (int i = 0; i < nb; ++i) {
  7763. const int8_t * q8 = y[i].qs;
  7764. const uint8_t * qs = x[i].qs;
  7765. const uint16_t * qh = x[i].qh;
  7766. __m256i sumi = _mm256_setzero_si256();
  7767. int sumi1 = 0;
  7768. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7769. const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
  7770. iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  7771. const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
  7772. iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  7773. qs += 8;
  7774. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7775. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7776. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  7777. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  7778. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7779. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7780. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
  7781. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
  7782. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
  7783. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  7784. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  7785. }
  7786. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7787. accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
  7788. accum1 += d * sumi1;
  7789. }
  7790. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  7791. #elif defined __AVX__
  7792. __m256 accum = _mm256_setzero_ps();
  7793. float accum1 = 0;
  7794. for (int i = 0; i < nb; ++i) {
  7795. const int8_t * q8 = y[i].qs;
  7796. const uint8_t * qs = x[i].qs;
  7797. const uint16_t * qh = x[i].qh;
  7798. __m128i sumi1_0 = _mm_setzero_si128();
  7799. __m128i sumi1_1 = _mm_setzero_si128();
  7800. int sumi1 = 0;
  7801. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7802. const __m128i q1b_1_0 = _mm_set_epi64x(iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  7803. const __m128i q1b_1_1 = _mm_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)]);
  7804. const __m128i q1b_2_0 = _mm_set_epi64x(iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  7805. const __m128i q1b_2_1 = _mm_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)]);
  7806. qs += 8;
  7807. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7808. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7809. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7810. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7811. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  7812. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  7813. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  7814. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  7815. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7816. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7817. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(ls1));
  7818. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(ls1));
  7819. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(ls2));
  7820. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(ls2));
  7821. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  7822. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  7823. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  7824. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  7825. }
  7826. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7827. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum);
  7828. accum1 += d * sumi1;
  7829. }
  7830. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  7831. #elif defined(__POWER9_VECTOR__)
  7832. const vector unsigned char v0 = vec_splats((unsigned char)0x0);
  7833. const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
  7834. vector float vsumf0 = vec_splats(0.0f);
  7835. vector float vsumf1 = vec_splats(0.0f);
  7836. vector float vsumf2 = vec_splats(0.0f);
  7837. vector float vsumf3 = vec_splats(0.0f);
  7838. for (int i = 0; i < nb; ++i) {
  7839. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7840. vector float vyd = vec_splats(y[i].d);
  7841. vector float vd = vec_mul(vxd, vyd);
  7842. vector signed int vsumi0 = vec_splats((int32_t)0);
  7843. vector signed int vsumi1 = vec_splats((int32_t)0);
  7844. vector signed int vsumi2 = vec_splats((int32_t)0);
  7845. vector signed int vsumi3 = vec_splats((int32_t)0);
  7846. vector signed int vsumi8 = vec_splats((int32_t)0);
  7847. const uint8_t * restrict q1 = x[i].qs;
  7848. const uint16_t * restrict qh = x[i].qh;
  7849. const int8_t * restrict q8 = y[i].qs;
  7850. const int16_t * restrict qs = y[i].bsums;
  7851. for (int j = 0; j < QK_K/32; j += 2) {
  7852. __builtin_prefetch(q1, 0, 1);
  7853. __builtin_prefetch(qh, 0, 1);
  7854. __builtin_prefetch(q8, 0, 1);
  7855. vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))};
  7856. vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))};
  7857. vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))};
  7858. vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))};
  7859. q1 += 8;
  7860. vector signed char q1x0 = (vector signed char)aux64x2_0;
  7861. vector signed char q1x1 = (vector signed char)aux64x2_1;
  7862. vector signed char q1x2 = (vector signed char)aux64x2_2;
  7863. vector signed char q1x3 = (vector signed char)aux64x2_3;
  7864. vector signed char q8y0 = vec_xl( 0, q8);
  7865. vector signed char q8y1 = vec_xl(16, q8);
  7866. vector signed char q8y2 = vec_xl(32, q8);
  7867. vector signed char q8y3 = vec_xl(48, q8);
  7868. q8 += 64;
  7869. vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0));
  7870. vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1));
  7871. vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2));
  7872. vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3));
  7873. const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7);
  7874. const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7);
  7875. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  7876. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  7877. vector signed short vscales = vec_sld(vscales23, vscales01, 8);
  7878. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7879. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7880. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7881. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7882. vector signed short q8ysums = vec_xl_len(qs, 8);
  7883. qs += 4;
  7884. q8ysums = vec_mergeh(q8ysums, (vector signed short)v0);
  7885. vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8);
  7886. qh += 2;
  7887. vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0);
  7888. vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel);
  7889. vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8);
  7890. }
  7891. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7892. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7893. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7894. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7895. vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0);
  7896. }
  7897. vsumf0 = vec_add(vsumf0, vsumf2);
  7898. vsumf1 = vec_add(vsumf1, vsumf3);
  7899. vsumf0 = vec_add(vsumf0, vsumf1);
  7900. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7901. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7902. *s = vec_extract(vsumf0, 0);
  7903. #elif defined(__loongarch_asx)
  7904. __m256 accum = (__m256)__lasx_xvldi(0);
  7905. float accum1 = 0;
  7906. for (int i = 0; i < nb; ++i) {
  7907. const int8_t * q8 = y[i].qs;
  7908. const uint8_t * qs = x[i].qs;
  7909. const uint16_t * qh = x[i].qh;
  7910. __m256i sumi = __lasx_xvldi(0);
  7911. int sumi1 = 0;
  7912. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7913. __m256i q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)], 0);
  7914. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], 1);
  7915. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], 2);
  7916. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], 3);
  7917. __m256i q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)], 0);
  7918. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], 1);
  7919. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], 2);
  7920. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], 3);
  7921. qs += 8;
  7922. const __m256i q8b_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7923. const __m256i q8b_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7924. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  7925. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  7926. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7927. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7928. __m256i tmp1, tmp5, tmp6;
  7929. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  7930. tmp5 = __lasx_xvmulwev_w_h(dot1, tmp1);
  7931. tmp6 = __lasx_xvmulwod_w_h(dot1, tmp1);
  7932. const __m256i p1 = __lasx_xvadd_w(tmp5, tmp6);
  7933. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  7934. tmp5 = __lasx_xvmulwev_w_h(dot2, tmp1);
  7935. tmp6 = __lasx_xvmulwod_w_h(dot2, tmp1);
  7936. const __m256i p2 = __lasx_xvadd_w(tmp5, tmp6);
  7937. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p1, p2));
  7938. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  7939. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  7940. }
  7941. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7942. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum);
  7943. accum1 += d * sumi1;
  7944. }
  7945. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  7946. #else
  7947. float sumf = 0;
  7948. for (int i = 0; i < nb; i++) {
  7949. const int8_t * q8 = y[i].qs;
  7950. const uint8_t * qs = x[i].qs;
  7951. const uint16_t * qh = x[i].qh;
  7952. int sumi = 0, sumi1 = 0;
  7953. for (int ib = 0; ib < QK_K/32; ++ib) {
  7954. const int ls = 2*((qh[ib] >> 12) & 7) + 1;
  7955. const int delta = qh[ib] & 0x8000 ? -1 : 1;
  7956. int lsum = 0;
  7957. for (int l = 0; l < 4; ++l) {
  7958. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  7959. for (int j = 0; j < 8; ++j) {
  7960. lsum += q8[j] * grid[j];
  7961. }
  7962. q8 += 8;
  7963. }
  7964. sumi += ls * lsum;
  7965. sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
  7966. qs += 4;
  7967. }
  7968. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
  7969. }
  7970. *s = sumf;
  7971. #endif
  7972. }
  7973. void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7974. assert(n % QK_K == 0);
  7975. assert(nrc == 1);
  7976. UNUSED(nrc);
  7977. UNUSED(bx);
  7978. UNUSED(by);
  7979. UNUSED(bs);
  7980. const block_iq1_m * restrict x = vx;
  7981. const block_q8_K * restrict y = vy;
  7982. const int nb = n / QK_K;
  7983. iq1m_scale_t scale;
  7984. #if defined __ARM_NEON
  7985. const int32x4_t mask = vdupq_n_s32(0x7);
  7986. const int32x4_t mone = vdupq_n_s32(1);
  7987. const int32x4_t mzero = vdupq_n_s32(0);
  7988. ggml_int8x16x4_t deltas;
  7989. deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
  7990. deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
  7991. deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
  7992. deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
  7993. ggml_int8x16x4_t q1b;
  7994. ggml_int8x16x4_t q8b;
  7995. uint32_t aux32;
  7996. const uint8_t * aux8 = (const uint8_t *)&aux32;
  7997. float sumf = 0;
  7998. for (int i = 0; i < nb; ++i) {
  7999. const int8_t * q8 = y[i].qs;
  8000. const uint8_t * qs = x[i].qs;
  8001. const uint8_t * qh = x[i].qh;
  8002. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8003. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8004. int32x4_t sumi1 = mzero;
  8005. int32x4_t sumi2 = mzero;
  8006. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8007. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
  8008. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
  8009. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
  8010. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
  8011. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
  8012. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
  8013. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
  8014. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
  8015. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8016. const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
  8017. const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
  8018. const int32x4_t p12 = vpaddq_s32(p1, p2);
  8019. const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
  8020. aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
  8021. const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
  8022. const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
  8023. const int32x4_t p34 = vpaddq_s32(p3, p4);
  8024. int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
  8025. scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
  8026. sumi1 = vmlaq_s32(sumi1, scales_4, p12);
  8027. sumi2 = vmlaq_s32(sumi2, scales_4, p34);
  8028. qs += 8; qh += 4;
  8029. }
  8030. sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  8031. }
  8032. *s = sumf;
  8033. #elif defined __AVX2__
  8034. const __m256i mask = _mm256_set1_epi16(0x7);
  8035. const __m256i mone = _mm256_set1_epi16(1);
  8036. __m256 accum1 = _mm256_setzero_ps();
  8037. __m256 accum2 = _mm256_setzero_ps();
  8038. for (int i = 0; i < nb; ++i) {
  8039. const int8_t * q8 = y[i].qs;
  8040. const uint8_t * qs = x[i].qs;
  8041. const uint8_t * qh = x[i].qh;
  8042. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8043. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8044. __m256i sumi1 = _mm256_setzero_si256();
  8045. __m256i sumi2 = _mm256_setzero_si256();
  8046. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8047. const __m256i q1b_1 = _mm256_set_epi64x(
  8048. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
  8049. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
  8050. );
  8051. const __m256i q1b_2 = _mm256_set_epi64x(
  8052. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
  8053. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
  8054. );
  8055. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8056. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8057. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  8058. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  8059. const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8060. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  8061. qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8062. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8063. const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8064. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  8065. qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8066. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8067. const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
  8068. const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
  8069. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
  8070. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
  8071. scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
  8072. scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
  8073. const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
  8074. const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
  8075. const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
  8076. const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
  8077. sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
  8078. sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
  8079. qs += 8; qh += 4;
  8080. }
  8081. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  8082. accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
  8083. accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
  8084. }
  8085. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  8086. #elif defined __AVX__
  8087. const __m128i mask = _mm_set1_epi16(0x7);
  8088. const __m128i mone = _mm_set1_epi16(1);
  8089. __m256 accum1 = _mm256_setzero_ps();
  8090. __m256 accum2 = _mm256_setzero_ps();
  8091. for (int i = 0; i < nb; ++i) {
  8092. const int8_t * q8 = y[i].qs;
  8093. const uint8_t * qs = x[i].qs;
  8094. const uint8_t * qh = x[i].qh;
  8095. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8096. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8097. __m128i sumi1_0 = _mm_setzero_si128();
  8098. __m128i sumi1_1 = _mm_setzero_si128();
  8099. __m128i sumi2_0 = _mm_setzero_si128();
  8100. __m128i sumi2_1 = _mm_setzero_si128();
  8101. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8102. const __m128i q1b_1_0 = _mm_set_epi64x(
  8103. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]);
  8104. const __m128i q1b_1_1 = _mm_set_epi64x(
  8105. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)]);
  8106. const __m128i q1b_2_0 = _mm_set_epi64x(
  8107. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]);
  8108. const __m128i q1b_2_1 = _mm_set_epi64x(
  8109. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)]);
  8110. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8111. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8112. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8113. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8114. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  8115. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  8116. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  8117. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  8118. const __m128i delta1_0 = _mm_set_epi64x(qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8119. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8120. const __m128i delta1_1 = _mm_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8121. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8122. const __m128i delta2_0 = _mm_set_epi64x(qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8123. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8124. const __m128i delta2_1 = _mm_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8125. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8126. const __m128i dot3_0 = mul_add_epi8_sse(delta1_0, q8b_1_0);
  8127. const __m128i dot3_1 = mul_add_epi8_sse(delta1_1, q8b_1_1);
  8128. const __m128i dot4_0 = mul_add_epi8_sse(delta2_0, q8b_2_0);
  8129. const __m128i dot4_1 = mul_add_epi8_sse(delta2_1, q8b_2_1);
  8130. __m128i scale1_0 = _mm_set1_epi16(sc[ib/2] >> 0);
  8131. __m128i scale1_1 = _mm_set1_epi16(sc[ib/2] >> 3);
  8132. __m128i scale2_0 = _mm_set1_epi16(sc[ib/2] >> 6);
  8133. __m128i scale2_1 = _mm_set1_epi16(sc[ib/2] >> 9);
  8134. scale1_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_0, mask), 1), mone);
  8135. scale1_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_1, mask), 1), mone);
  8136. scale2_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_0, mask), 1), mone);
  8137. scale2_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_1, mask), 1), mone);
  8138. const __m128i p1_0 = _mm_madd_epi16(dot1_0, scale1_0);
  8139. const __m128i p1_1 = _mm_madd_epi16(dot1_1, scale1_1);
  8140. const __m128i p2_0 = _mm_madd_epi16(dot2_0, scale2_0);
  8141. const __m128i p2_1 = _mm_madd_epi16(dot2_1, scale2_1);
  8142. const __m128i p3_0 = _mm_madd_epi16(dot3_0, scale1_0);
  8143. const __m128i p3_1 = _mm_madd_epi16(dot3_1, scale1_1);
  8144. const __m128i p4_0 = _mm_madd_epi16(dot4_0, scale2_0);
  8145. const __m128i p4_1 = _mm_madd_epi16(dot4_1, scale2_1);
  8146. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  8147. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  8148. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_add_epi32(p3_0, p4_0));
  8149. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_add_epi32(p3_1, p4_1));
  8150. qs += 8; qh += 4;
  8151. }
  8152. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  8153. accum1 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum1);
  8154. accum2 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi2_1, sumi2_0))), accum2);
  8155. }
  8156. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  8157. #else
  8158. int sum1[2], sum2[2], delta[4];
  8159. float sumf = 0;
  8160. for (int i = 0; i < nb; i++) {
  8161. const int8_t * q8 = y[i].qs;
  8162. const uint8_t * qs = x[i].qs;
  8163. const uint8_t * qh = x[i].qh;
  8164. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8165. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8166. int sumi1 = 0, sumi2 = 0;
  8167. for (int ib = 0; ib < QK_K/32; ++ib) {
  8168. delta[0] = qh[0] & 0x08 ? -1 : 1;
  8169. delta[1] = qh[0] & 0x80 ? -1 : 1;
  8170. delta[2] = qh[1] & 0x08 ? -1 : 1;
  8171. delta[3] = qh[1] & 0x80 ? -1 : 1;
  8172. sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
  8173. for (int l = 0; l < 4; ++l) {
  8174. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
  8175. int lsum1 = 0, lsum2 = 0;
  8176. for (int j = 0; j < 8; ++j) {
  8177. lsum1 += q8[j] * grid[j];
  8178. lsum2 += q8[j];
  8179. }
  8180. q8 += 8;
  8181. sum1[l/2] += lsum1;
  8182. sum2[l/2] += lsum2*delta[l];
  8183. }
  8184. const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
  8185. const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
  8186. sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
  8187. sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
  8188. qs += 4;
  8189. qh += 2;
  8190. }
  8191. sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  8192. }
  8193. *s = sumf;
  8194. #endif
  8195. }
  8196. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8197. assert(nrc == 1);
  8198. UNUSED(nrc);
  8199. UNUSED(bx);
  8200. UNUSED(by);
  8201. UNUSED(bs);
  8202. assert(n % QK4_NL == 0);
  8203. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  8204. const block_iq4_nl * restrict x = vx;
  8205. const block_q8_0 * restrict y = vy;
  8206. const int nb = n / QK4_NL;
  8207. int ib = 0;
  8208. float sumf = 0;
  8209. #if defined __ARM_NEON
  8210. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  8211. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  8212. uint8x16x2_t q4bits;
  8213. int8x16x4_t q4b;
  8214. int8x16x4_t q8b;
  8215. int32x4_t prod_1, prod_2;
  8216. for (; ib + 1 < nb; ib += 2) {
  8217. q4bits.val[0] = vld1q_u8(x[ib + 0].qs);
  8218. q4bits.val[1] = vld1q_u8(x[ib + 1].qs);
  8219. q8b.val[0] = vld1q_s8(y[ib + 0].qs);
  8220. q8b.val[1] = vld1q_s8(y[ib + 0].qs + 16);
  8221. q8b.val[2] = vld1q_s8(y[ib + 1].qs);
  8222. q8b.val[3] = vld1q_s8(y[ib + 1].qs + 16);
  8223. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  8224. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  8225. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  8226. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  8227. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  8228. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  8229. sumf +=
  8230. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib + 0].d) * vaddvq_s32(prod_1) +
  8231. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) * vaddvq_s32(prod_2);
  8232. }
  8233. #elif defined __AVX2__
  8234. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8235. const __m128i m4b = _mm_set1_epi8(0x0f);
  8236. const __m256i mone = _mm256_set1_epi16(1);
  8237. __m256 accum1 = _mm256_setzero_ps();
  8238. __m256 accum2 = _mm256_setzero_ps();
  8239. for (; ib + 1 < nb; ib += 2) {
  8240. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
  8241. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
  8242. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[ib + 0].qs);
  8243. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[ib + 1].qs);
  8244. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  8245. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  8246. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  8247. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  8248. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8249. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8250. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  8251. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  8252. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  8253. _mm256_cvtepi32_ps(p_1), accum1);
  8254. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  8255. _mm256_cvtepi32_ps(p_2), accum2);
  8256. }
  8257. sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
  8258. #elif defined __AVX__
  8259. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8260. const __m128i m4b = _mm_set1_epi8(0x0f);
  8261. __m256 accum = _mm256_setzero_ps();
  8262. for (; ib + 1 < nb; ib += 2) {
  8263. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
  8264. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  8265. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
  8266. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
  8267. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  8268. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  8269. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  8270. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  8271. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  8272. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  8273. const __m256 p = mul_sum_i8_quad_float(q4b_1_0, q4b_1_1, q4b_2_0, q4b_2_1, q8b_1_0, q8b_1_1, q8b_2_0, q8b_2_1);
  8274. const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
  8275. accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
  8276. }
  8277. sumf = hsum_float_8(accum);
  8278. #elif defined(__POWER9_VECTOR__)
  8279. const vector signed char lowMask = vec_splats((signed char)0xF);
  8280. const vector signed int v0 = vec_splats((int32_t)0);
  8281. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  8282. vector float vsumf0 = vec_splats(0.0f);
  8283. vector float vsumf1 = vec_splats(0.0f);
  8284. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  8285. #pragma GCC unroll 4
  8286. for (; ib < nb; ++ib) {
  8287. __builtin_prefetch(x[ib].qs, 0, 1);
  8288. __builtin_prefetch(y[ib].qs, 0, 1);
  8289. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  8290. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  8291. vector float vd = vec_mul(vxd, vyd);
  8292. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  8293. vector signed char q4x0 = vec_and(qxs, lowMask);
  8294. vector signed char q4x1 = vec_sr(qxs, v4);
  8295. q4x0 = vec_perm(values, values, (vector unsigned char)q4x0);
  8296. q4x1 = vec_perm(values, values, (vector unsigned char)q4x1);
  8297. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  8298. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  8299. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  8300. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  8301. vector signed int vsumi0 = v0;
  8302. vector signed int vsumi1 = v0;
  8303. vsumi0 = vec_sum4s(qv0, vsumi0);
  8304. vsumi1 = vec_sum4s(qv1, vsumi1);
  8305. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8306. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8307. }
  8308. vsumf0 = vec_add(vsumf0, vsumf1);
  8309. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8310. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8311. sumf = vec_extract(vsumf0, 0);
  8312. #elif defined (__loongarch_asx)
  8313. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  8314. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  8315. const __m256i mone = __lasx_xvreplgr2vr_h(1);
  8316. __m256 accum1 = (__m256)__lasx_xvldi(0);
  8317. __m256 accum2 = (__m256)__lasx_xvldi(0);
  8318. for (; ib + 1 < nb; ib += 2) {
  8319. const __m128i q4bits_1 = __lsx_vld((const __m128i*)x[ib + 0].qs, 0);
  8320. const __m128i q4bits_2 = __lsx_vld((const __m128i*)x[ib + 1].qs, 0);
  8321. const __m256i q8b_1 = __lasx_xvld((const __m256i *)y[ib + 0].qs, 0);
  8322. const __m256i q8b_2 = __lasx_xvld((const __m256i *)y[ib + 1].qs, 0);
  8323. const __m256i q4b_1 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b)),
  8324. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_1, m4b)));
  8325. const __m256i q4b_2 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b)),
  8326. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_2, m4b)));
  8327. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8328. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8329. const __m256i p_1 = lasx_madd_h(p16_1, mone);
  8330. const __m256i p_2 = lasx_madd_h(p16_2, mone);
  8331. accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  8332. __lasx_xvffint_s_w(p_1), accum1);
  8333. accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  8334. __lasx_xvffint_s_w(p_2), accum2);
  8335. }
  8336. sumf = hsum_float_8(__lasx_xvfadd_s(accum1, accum2));
  8337. #endif
  8338. for (; ib < nb; ++ib) {
  8339. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  8340. int sumi1 = 0, sumi2 = 0;
  8341. for (int j = 0; j < QK4_NL/2; ++j) {
  8342. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  8343. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  8344. }
  8345. sumf += d * (sumi1 + sumi2);
  8346. }
  8347. *s = sumf;
  8348. }
  8349. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8350. assert(nrc == 1);
  8351. UNUSED(nrc);
  8352. UNUSED(bx);
  8353. UNUSED(by);
  8354. UNUSED(bs);
  8355. assert(n % QK_K == 0);
  8356. const block_iq4_xs * restrict x = vx;
  8357. const block_q8_K * restrict y = vy;
  8358. const int nb = n / QK_K;
  8359. #if defined __ARM_NEON
  8360. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  8361. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  8362. ggml_uint8x16x2_t q4bits;
  8363. ggml_int8x16x4_t q4b;
  8364. ggml_int8x16x4_t q8b;
  8365. int32x4_t prod_1, prod_2;
  8366. float sumf = 0;
  8367. for (int ibl = 0; ibl < nb; ++ibl) {
  8368. const int8_t * q8 = y[ibl].qs;
  8369. const uint8_t * q4 = x[ibl].qs;
  8370. uint16_t h = x[ibl].scales_h;
  8371. int sumi1 = 0, sumi2 = 0;
  8372. for (int ib = 0; ib < QK_K/64; ++ib) {
  8373. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  8374. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8375. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  8376. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  8377. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  8378. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  8379. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  8380. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  8381. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  8382. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  8383. h >>= 4;
  8384. sumi1 += vaddvq_s32(prod_1) * ls1;
  8385. sumi2 += vaddvq_s32(prod_2) * ls2;
  8386. }
  8387. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  8388. }
  8389. *s = sumf;
  8390. #elif defined __AVX2__
  8391. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8392. const __m128i m4b = _mm_set1_epi8(0x0f);
  8393. __m256 accum = _mm256_setzero_ps();
  8394. for (int ibl = 0; ibl < nb; ++ibl) {
  8395. const uint8_t * qs = x[ibl].qs;
  8396. const int8_t * q8 = y[ibl].qs;
  8397. uint16_t sh = x[ibl].scales_h;
  8398. __m256i sumi1 = _mm256_setzero_si256();
  8399. __m256i sumi2 = _mm256_setzero_si256();
  8400. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8401. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  8402. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  8403. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8404. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8405. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  8406. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  8407. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  8408. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  8409. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8410. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8411. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  8412. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  8413. sh >>= 4;
  8414. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  8415. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  8416. sumi1 = _mm256_add_epi32(p_1, sumi1);
  8417. sumi2 = _mm256_add_epi32(p_2, sumi2);
  8418. }
  8419. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  8420. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  8421. }
  8422. *s = hsum_float_8(accum);
  8423. #elif defined __AVX__
  8424. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8425. const __m128i m4b = _mm_set1_epi8(0x0f);
  8426. __m256 accum = _mm256_setzero_ps();
  8427. for (int ibl = 0; ibl < nb; ++ibl) {
  8428. const uint8_t * qs = x[ibl].qs;
  8429. const int8_t * q8 = y[ibl].qs;
  8430. uint16_t sh = x[ibl].scales_h;
  8431. __m128i sumi1_0 = _mm_setzero_si128();
  8432. __m128i sumi1_1 = _mm_setzero_si128();
  8433. __m128i sumi2_0 = _mm_setzero_si128();
  8434. __m128i sumi2_1 = _mm_setzero_si128();
  8435. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8436. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  8437. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  8438. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8439. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8440. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8441. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8442. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  8443. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  8444. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  8445. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  8446. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  8447. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  8448. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  8449. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  8450. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  8451. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  8452. sh >>= 4;
  8453. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, _mm_set1_epi16(ls1));
  8454. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, _mm_set1_epi16(ls1));
  8455. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, _mm_set1_epi16(ls2));
  8456. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, _mm_set1_epi16(ls2));
  8457. sumi1_0 = _mm_add_epi32(p_1_0, sumi1_0);
  8458. sumi1_1 = _mm_add_epi32(p_1_1, sumi1_1);
  8459. sumi2_0 = _mm_add_epi32(p_2_0, sumi2_0);
  8460. sumi2_1 = _mm_add_epi32(p_2_1, sumi2_1);
  8461. }
  8462. __m128i sumi12_0 = _mm_add_epi32(sumi1_0, sumi2_0);
  8463. __m128i sumi12_1 = _mm_add_epi32(sumi1_1, sumi2_1);
  8464. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  8465. _mm256_cvtepi32_ps(MM256_SET_M128I(sumi12_1, sumi12_0))), accum);
  8466. }
  8467. *s = hsum_float_8(accum);
  8468. #elif defined(__POWER9_VECTOR__)
  8469. const vector signed char lowMask = vec_splats((signed char)0xF);
  8470. const vector int v0 = vec_splats((int32_t)0);
  8471. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  8472. vector float vsumf0 = vec_splats(0.0f);
  8473. vector float vsumf1 = vec_splats(0.0f);
  8474. vector float vsumf2 = vec_splats(0.0f);
  8475. vector float vsumf3 = vec_splats(0.0f);
  8476. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  8477. for (int ibl = 0; ibl < nb; ++ibl) {
  8478. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d));
  8479. vector float vyd = vec_splats(y[ibl].d);
  8480. vector float vd = vec_mul(vxd, vyd);
  8481. vector signed int vsumi0 = v0;
  8482. vector signed int vsumi1 = v0;
  8483. vector signed int vsumi2 = v0;
  8484. vector signed int vsumi3 = v0;
  8485. uint16_t h = x[ibl].scales_h;
  8486. const uint8_t * restrict q4 = x[ibl].qs;
  8487. const uint8_t * restrict sc = x[ibl].scales_l;
  8488. const int8_t * restrict q8 = y[ibl].qs;
  8489. for (int ib = 0; ib < QK_K/64; ib ++ ) {
  8490. __builtin_prefetch(q4, 0, 1);
  8491. __builtin_prefetch(q8, 0, 1);
  8492. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  8493. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  8494. q4 += 32;
  8495. vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask);
  8496. vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4);
  8497. vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask);
  8498. vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4);
  8499. q4x00 = vec_perm(values, values, (vector unsigned char)q4x00);
  8500. q4x01 = vec_perm(values, values, (vector unsigned char)q4x01);
  8501. q4x10 = vec_perm(values, values, (vector unsigned char)q4x10);
  8502. q4x11 = vec_perm(values, values, (vector unsigned char)q4x11);
  8503. vector signed char q8y0 = vec_xl( 0, q8);
  8504. vector signed char q8y1 = vec_xl(16, q8);
  8505. vector signed char q8y2 = vec_xl(32, q8);
  8506. vector signed char q8y3 = vec_xl(48, q8);
  8507. q8 += 64;
  8508. vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0));
  8509. vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1));
  8510. vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2));
  8511. vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3));
  8512. const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32);
  8513. const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32);
  8514. h >>= 4;
  8515. sc ++;
  8516. vector signed short vscales01 = vec_splats((int16_t)ls0);
  8517. vector signed short vscales23 = vec_splats((int16_t)ls1);
  8518. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  8519. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  8520. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  8521. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  8522. }
  8523. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8524. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8525. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8526. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8527. }
  8528. vsumf0 = vec_add(vsumf0, vsumf2);
  8529. vsumf1 = vec_add(vsumf1, vsumf3);
  8530. vsumf0 = vec_add(vsumf0, vsumf1);
  8531. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8532. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8533. *s = vec_extract(vsumf0, 0);
  8534. #elif defined(__loongarch_asx)
  8535. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  8536. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  8537. __m256 accum = (__m256)__lasx_xvldi(0);
  8538. __m256i tmp1;
  8539. __m128i tmp0, tmp2, tmp3, tmp4, mask_8f, mask;
  8540. mask_8f = __lsx_vreplgr2vr_b(0x8f);
  8541. for (int ibl = 0; ibl < nb; ++ibl) {
  8542. const uint8_t * qs = x[ibl].qs;
  8543. const int8_t * q8 = y[ibl].qs;
  8544. uint16_t sh = x[ibl].scales_h;
  8545. __m256i sumi1 = __lasx_xvldi(0);
  8546. __m256i sumi2 = __lasx_xvldi(0);
  8547. __m128i zero = __lsx_vldi(0);
  8548. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8549. const __m128i q4bits_1 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  8550. const __m128i q4bits_2 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  8551. const __m256i q8b_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8552. const __m256i q8b_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8553. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b), mask_8f);
  8554. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8555. mask = __lsx_vsle_b(zero, tmp2);
  8556. tmp3 = __lsx_vand_v(tmp0, mask);
  8557. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  8558. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_1, m4b), mask_8f);
  8559. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8560. mask = __lsx_vsle_b(zero, tmp2);
  8561. tmp4 = __lsx_vand_v(tmp0, mask);
  8562. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  8563. const __m256i q4b_1 = lasx_insertf128(tmp3, tmp4);
  8564. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b), mask_8f);
  8565. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8566. mask = __lsx_vsle_b(zero, tmp2);
  8567. tmp3 = __lsx_vand_v(tmp0, mask);
  8568. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  8569. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_2, m4b), mask_8f);
  8570. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8571. mask = __lsx_vsle_b(zero, tmp2);
  8572. tmp4 = __lsx_vand_v(tmp0, mask);
  8573. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  8574. const __m256i q4b_2 = lasx_insertf128(tmp3, tmp4);
  8575. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8576. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8577. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  8578. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  8579. sh >>= 4;
  8580. __m256i tmp5, tmp6;
  8581. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  8582. tmp5 = __lasx_xvmulwev_w_h(p16_1, tmp1);
  8583. tmp6 = __lasx_xvmulwod_w_h(p16_1, tmp1);
  8584. const __m256i p_1 = __lasx_xvadd_w(tmp5, tmp6);
  8585. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  8586. tmp5 = __lasx_xvmulwev_w_h(p16_2, tmp1);
  8587. tmp6 = __lasx_xvmulwod_w_h(p16_2, tmp1);
  8588. const __m256i p_2 = __lasx_xvadd_w(tmp5, tmp6);
  8589. sumi1 = __lasx_xvadd_w(p_1, sumi1);
  8590. sumi2 = __lasx_xvadd_w(p_2, sumi2);
  8591. }
  8592. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  8593. __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum);
  8594. }
  8595. *s = hsum_float_8(accum);
  8596. #else
  8597. float sumf = 0;
  8598. for (int ibl = 0; ibl < nb; ++ibl) {
  8599. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  8600. uint16_t h = x[ibl].scales_h;
  8601. const uint8_t * qs = x[ibl].qs;
  8602. const int8_t * q8 = y[ibl].qs;
  8603. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8604. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  8605. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  8606. h >>= 4;
  8607. const float d1 = d4d8*(ls1 - 32);
  8608. const float d2 = d4d8*(ls2 - 32);
  8609. int sumi1 = 0, sumi2 = 0;
  8610. for (int j = 0; j < 16; ++j) {
  8611. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  8612. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  8613. }
  8614. sumf += d1 * (sumi1 + sumi2);
  8615. qs += 16;
  8616. q8 += 32;
  8617. sumi1 = sumi2 = 0;
  8618. for (int j = 0; j < 16; ++j) {
  8619. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  8620. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  8621. }
  8622. sumf += d2 * (sumi1 + sumi2);
  8623. qs += 16;
  8624. q8 += 32;
  8625. }
  8626. }
  8627. *s = sumf;
  8628. #endif
  8629. }
  8630. // ============================ 4-bit non-linear quants
  8631. void quantize_row_iq4_nl(const float * restrict x, void * restrict y, int64_t k) {
  8632. assert(k % QK4_NL == 0);
  8633. quantize_row_iq4_nl_ref(x, y, k);
  8634. }
  8635. void quantize_row_iq4_xs(const float * restrict x, void * restrict y, int64_t k) {
  8636. assert(k % QK_K == 0);
  8637. quantize_iq4_xs(x, y, 1, k, NULL);
  8638. }