tensor_mapping.py 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv
  27. ),
  28. # Token type embeddings
  29. MODEL_TENSOR.TOKEN_TYPES: (
  30. "embeddings.token_type_embeddings", # bert nomic-bert
  31. ),
  32. # Normalization of token embeddings
  33. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  34. "word_embeddings_layernorm", # bloom
  35. "embeddings.LayerNorm", # bert
  36. "emb_ln", # nomic-bert
  37. "transformer.norm", # openelm
  38. "rwkv.blocks.0.pre_ln", # rwkv
  39. ),
  40. # Position embeddings
  41. MODEL_TENSOR.POS_EMBD: (
  42. "transformer.wpe", # gpt2
  43. "embeddings.position_embeddings", # bert
  44. "wpe", # gpt2
  45. ),
  46. # Output
  47. MODEL_TENSOR.OUTPUT: (
  48. "embed_out", # gptneox
  49. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2
  50. "output", # llama-pth bloom internlm2
  51. "word_embeddings_for_head", # persimmon
  52. "lm_head.linear", # phi2
  53. "output_layer", # chatglm
  54. "head", # rwkv
  55. ),
  56. # Output norm
  57. MODEL_TENSOR.OUTPUT_NORM: (
  58. "gpt_neox.final_layer_norm", # gptneox
  59. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  60. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2
  61. "norm", # llama-pth
  62. "transformer.norm_f", # mpt dbrx
  63. "ln_f", # refact bloom qwen gpt2
  64. "language_model.encoder.final_layernorm", # persimmon
  65. "model.final_layernorm", # persimmon
  66. "lm_head.ln", # phi2
  67. "model.norm_f", # mamba-qbert
  68. "backbone.norm_f", # mamba
  69. "transformer.rms_norm", # Grok
  70. "encoder.final_layernorm", # chatglm
  71. "transformer.norm", # openelm
  72. "model.norm", # nemotron
  73. "rwkv.ln_out", # rwkv
  74. ),
  75. # Rope frequencies
  76. MODEL_TENSOR.ROPE_FREQS: (
  77. "rope.freqs", # llama-pth
  78. "rotary_pos_emb.inv_freq", # chatglm
  79. ),
  80. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  81. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  82. }
  83. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  84. # Attention norm
  85. MODEL_TENSOR.ATTN_NORM: (
  86. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  87. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  88. "transformer.blocks.{bid}.norm_1", # mpt
  89. "transformer.h.{bid}.input_layernorm", # falcon7b
  90. "h.{bid}.input_layernorm", # bloom
  91. "transformer.h.{bid}.ln_mlp", # falcon40b
  92. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe
  93. "layers.{bid}.attention_norm", # llama-pth
  94. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  95. "model.layers.{bid}.ln1", # yi
  96. "h.{bid}.ln_1", # gpt2
  97. "transformer.h.{bid}.ln", # phi2
  98. "model.layers.layers.{bid}.norm", # plamo
  99. "model.layers.{bid}.attention_norm", # internlm2
  100. "model.layers.{bid}.norm", # mamba-qbert
  101. "backbone.layers.{bid}.norm", # mamba
  102. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  103. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  104. "encoder.layers.{bid}.input_layernorm", # chatglm
  105. "transformer.layers.{bid}.attn_norm", # openelm
  106. "rwkv.blocks.{bid}.ln1", # rwkv
  107. ),
  108. # Attention norm 2
  109. MODEL_TENSOR.ATTN_NORM_2: (
  110. "transformer.h.{bid}.ln_attn", # falcon40b
  111. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  112. "rwkv.blocks.{bid}.ln2", # rwkv
  113. ),
  114. # Attention query-key-value
  115. MODEL_TENSOR.ATTN_QKV: (
  116. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  117. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  118. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  119. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  120. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  121. "h.{bid}.self_attention.query_key_value", # bloom
  122. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  123. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  124. "h.{bid}.attn.c_attn", # gpt2
  125. "transformer.h.{bid}.mixer.Wqkv", # phi2
  126. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  127. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  128. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  129. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  130. ),
  131. # Attention query
  132. MODEL_TENSOR.ATTN_Q: (
  133. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2
  134. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  135. "layers.{bid}.attention.wq", # llama-pth
  136. "encoder.layer.{bid}.attention.self.query", # bert
  137. "transformer.h.{bid}.attn.q_proj", # gpt-j
  138. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  139. "model.layers.{bid}.attention.wq", # internlm2
  140. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  141. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  142. ),
  143. # Attention key
  144. MODEL_TENSOR.ATTN_K: (
  145. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2
  146. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  147. "layers.{bid}.attention.wk", # llama-pth
  148. "encoder.layer.{bid}.attention.self.key", # bert
  149. "transformer.h.{bid}.attn.k_proj", # gpt-j
  150. "transformer.h.{bid}.attn.k", # refact
  151. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  152. "model.layers.{bid}.attention.wk", # internlm2
  153. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  154. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  155. ),
  156. # Attention value
  157. MODEL_TENSOR.ATTN_V: (
  158. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2
  159. "layers.{bid}.attention.wv", # llama-pth
  160. "encoder.layer.{bid}.attention.self.value", # bert
  161. "transformer.h.{bid}.attn.v_proj", # gpt-j
  162. "transformer.h.{bid}.attn.v", # refact
  163. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  164. "model.layers.{bid}.attention.wv", # internlm2
  165. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  166. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  167. ),
  168. # Attention output
  169. MODEL_TENSOR.ATTN_OUT: (
  170. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  171. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  172. "transformer.blocks.{bid}.attn.out_proj", # mpt
  173. "transformer.h.{bid}.self_attention.dense", # falcon
  174. "h.{bid}.self_attention.dense", # bloom
  175. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2
  176. "layers.{bid}.attention.wo", # llama-pth
  177. "encoder.layer.{bid}.attention.output.dense", # bert
  178. "transformer.h.{bid}.attn.out_proj", # gpt-j
  179. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  180. "model.layers.{bid}.self_attn.dense", # persimmon
  181. "h.{bid}.attn.c_proj", # gpt2
  182. "transformer.h.{bid}.mixer.out_proj", # phi2
  183. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  184. "model.layers.{bid}.attention.wo", # internlm2
  185. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  186. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  187. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  188. "encoder.layers.{bid}.self_attention.dense", # chatglm
  189. "transformer.layers.{bid}.attn.out_proj", # openelm
  190. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  191. ),
  192. # Attention output norm
  193. MODEL_TENSOR.ATTN_OUT_NORM: (
  194. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  195. "encoder.layers.{bid}.norm1", # nomic-bert
  196. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  197. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  198. ),
  199. MODEL_TENSOR.ATTN_POST_NORM: (
  200. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2
  201. ),
  202. # Rotary embeddings
  203. MODEL_TENSOR.ATTN_ROT_EMBD: (
  204. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  205. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  206. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  207. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  208. ),
  209. # Feed-forward norm
  210. MODEL_TENSOR.FFN_NORM: (
  211. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  212. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  213. "h.{bid}.post_attention_layernorm", # bloom
  214. "transformer.blocks.{bid}.norm_2", # mpt
  215. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe
  216. "layers.{bid}.ffn_norm", # llama-pth
  217. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  218. "model.layers.{bid}.ln2", # yi
  219. "h.{bid}.ln_2", # gpt2
  220. "model.layers.{bid}.ffn_norm", # internlm2
  221. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  222. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  223. "transformer.layers.{bid}.ffn_norm", # openelm
  224. ),
  225. # Post feed-forward norm
  226. MODEL_TENSOR.FFN_PRE_NORM: (
  227. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  228. ),
  229. # Post feed-forward norm
  230. MODEL_TENSOR.FFN_POST_NORM: (
  231. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  232. ),
  233. MODEL_TENSOR.FFN_GATE_INP: (
  234. "layers.{bid}.feed_forward.gate", # mixtral
  235. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  236. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  237. "transformer.decoder_layer.{bid}.router", # Grok
  238. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  239. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  240. ),
  241. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  242. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  243. ),
  244. # Feed-forward up
  245. MODEL_TENSOR.FFN_UP: (
  246. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  247. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  248. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  249. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  250. "h.{bid}.mlp.dense_h_to_4h", # bloom
  251. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  252. "layers.{bid}.feed_forward.w3", # llama-pth
  253. "encoder.layer.{bid}.intermediate.dense", # bert
  254. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  255. "transformer.h.{bid}.mlp.linear_3", # refact
  256. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  257. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  258. "transformer.h.{bid}.mlp.w1", # qwen
  259. "h.{bid}.mlp.c_fc", # gpt2
  260. "transformer.h.{bid}.mlp.fc1", # phi2
  261. "model.layers.{bid}.mlp.fc1", # phi2
  262. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  263. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  264. "model.layers.{bid}.feed_forward.w3", # internlm2
  265. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  266. "model.layers.{bid}.mlp.c_fc", # starcoder2
  267. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  268. "model.layers.{bid}.residual_mlp.w3", # arctic
  269. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  270. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  271. ),
  272. MODEL_TENSOR.FFN_UP_EXP: (
  273. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  274. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  275. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  276. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  277. ),
  278. MODEL_TENSOR.FFN_UP_SHEXP: (
  279. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  280. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  281. ),
  282. # AWQ-activation gate
  283. MODEL_TENSOR.FFN_ACT: (
  284. "transformer.blocks.{bid}.ffn.act", # mpt
  285. ),
  286. # Feed-forward gate
  287. MODEL_TENSOR.FFN_GATE: (
  288. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  289. "layers.{bid}.feed_forward.w1", # llama-pth
  290. "transformer.h.{bid}.mlp.w2", # qwen
  291. "transformer.h.{bid}.mlp.c_fc2", # jais
  292. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  293. "model.layers.{bid}.feed_forward.w1", # internlm2
  294. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  295. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  296. "transformer.h.{bid}.mlp.linear_1", # refact
  297. "model.layers.{bid}.residual_mlp.w1", # arctic
  298. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  299. ),
  300. MODEL_TENSOR.FFN_GATE_EXP: (
  301. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  302. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  303. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  304. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  305. ),
  306. MODEL_TENSOR.FFN_GATE_SHEXP: (
  307. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  308. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  309. ),
  310. # Feed-forward down
  311. MODEL_TENSOR.FFN_DOWN: (
  312. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  313. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  314. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  315. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  316. "h.{bid}.mlp.dense_4h_to_h", # bloom
  317. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  318. "layers.{bid}.feed_forward.w2", # llama-pth
  319. "encoder.layer.{bid}.output.dense", # bert
  320. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  321. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  322. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  323. "h.{bid}.mlp.c_proj", # gpt2
  324. "transformer.h.{bid}.mlp.fc2", # phi2
  325. "model.layers.{bid}.mlp.fc2", # phi2
  326. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  327. "model.layers.{bid}.feed_forward.w2", # internlm2
  328. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  329. "model.layers.{bid}.mlp.c_proj", # starcoder2
  330. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  331. "transformer.layers.{bid}.ffn.proj_2", # openelm
  332. "model.layers.{bid}.residual_mlp.w2", # arctic
  333. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  334. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  335. "model.layers.h.{bid}.mlp.c_proj", # exaone
  336. ),
  337. MODEL_TENSOR.FFN_DOWN_EXP: (
  338. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  339. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  340. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  341. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  342. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  343. ),
  344. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  345. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  346. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  347. ),
  348. MODEL_TENSOR.ATTN_Q_NORM: (
  349. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  350. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  351. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  352. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  353. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  354. "transformer.layers.{bid}.attn.q_norm", # openelm
  355. ),
  356. MODEL_TENSOR.ATTN_K_NORM: (
  357. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  358. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  359. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  360. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  361. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  362. "transformer.layers.{bid}.attn.k_norm", # openelm
  363. ),
  364. MODEL_TENSOR.ROPE_FREQS: (
  365. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  366. ),
  367. MODEL_TENSOR.LAYER_OUT_NORM: (
  368. "encoder.layer.{bid}.output.LayerNorm", # bert
  369. "encoder.layers.{bid}.norm2", # nomic-bert
  370. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  371. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  372. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  373. ),
  374. MODEL_TENSOR.SSM_IN: (
  375. "model.layers.{bid}.in_proj",
  376. "backbone.layers.{bid}.mixer.in_proj",
  377. ),
  378. MODEL_TENSOR.SSM_CONV1D: (
  379. "model.layers.{bid}.conv1d",
  380. "backbone.layers.{bid}.mixer.conv1d",
  381. ),
  382. MODEL_TENSOR.SSM_X: (
  383. "model.layers.{bid}.x_proj",
  384. "backbone.layers.{bid}.mixer.x_proj",
  385. ),
  386. MODEL_TENSOR.SSM_DT: (
  387. "model.layers.{bid}.dt_proj",
  388. "backbone.layers.{bid}.mixer.dt_proj",
  389. ),
  390. MODEL_TENSOR.SSM_A: (
  391. "model.layers.{bid}.A_log",
  392. "backbone.layers.{bid}.mixer.A_log",
  393. ),
  394. MODEL_TENSOR.SSM_D: (
  395. "model.layers.{bid}.D",
  396. "backbone.layers.{bid}.mixer.D",
  397. ),
  398. MODEL_TENSOR.SSM_OUT: (
  399. "model.layers.{bid}.out_proj",
  400. "backbone.layers.{bid}.mixer.out_proj",
  401. ),
  402. MODEL_TENSOR.TIME_MIX_W1: (
  403. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6
  404. ),
  405. MODEL_TENSOR.TIME_MIX_W2: (
  406. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6
  407. ),
  408. MODEL_TENSOR.TIME_MIX_LERP_X: (
  409. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6
  410. ),
  411. MODEL_TENSOR.TIME_MIX_LERP_K: (
  412. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6
  413. ),
  414. MODEL_TENSOR.TIME_MIX_LERP_V: (
  415. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6
  416. ),
  417. MODEL_TENSOR.TIME_MIX_LERP_R: (
  418. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6
  419. ),
  420. MODEL_TENSOR.TIME_MIX_LERP_G: (
  421. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6
  422. ),
  423. MODEL_TENSOR.TIME_MIX_LERP_W: (
  424. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6
  425. ),
  426. MODEL_TENSOR.TIME_MIX_FIRST: (
  427. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv v6
  428. ),
  429. MODEL_TENSOR.TIME_MIX_DECAY: (
  430. "rwkv.blocks.{bid}.attention.time_decay", # rwkv v6
  431. ),
  432. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  433. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6
  434. ),
  435. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  436. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6
  437. ),
  438. MODEL_TENSOR.TIME_MIX_KEY: (
  439. "rwkv.blocks.{bid}.attention.key", # rwkv
  440. ),
  441. MODEL_TENSOR.TIME_MIX_VALUE: (
  442. "rwkv.blocks.{bid}.attention.value", # rwkv
  443. ),
  444. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  445. "rwkv.blocks.{bid}.attention.receptance", # rwkv
  446. ),
  447. MODEL_TENSOR.TIME_MIX_GATE: (
  448. "rwkv.blocks.{bid}.attention.gate", # rwkv
  449. ),
  450. MODEL_TENSOR.TIME_MIX_LN: (
  451. "rwkv.blocks.{bid}.attention.ln_x", # rwkv
  452. ),
  453. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  454. "rwkv.blocks.{bid}.attention.output", # rwkv
  455. ),
  456. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  457. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv v6
  458. ),
  459. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  460. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv v6
  461. ),
  462. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  463. "rwkv.blocks.{bid}.feed_forward.key", # rwkv
  464. ),
  465. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  466. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv
  467. ),
  468. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  469. "rwkv.blocks.{bid}.feed_forward.value", # rwkv
  470. ),
  471. MODEL_TENSOR.ATTN_Q_A: (
  472. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  473. ),
  474. MODEL_TENSOR.ATTN_Q_B: (
  475. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  476. ),
  477. MODEL_TENSOR.ATTN_KV_A_MQA: (
  478. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  479. ),
  480. MODEL_TENSOR.ATTN_KV_B: (
  481. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  482. ),
  483. MODEL_TENSOR.ATTN_Q_A_NORM: (
  484. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  485. ),
  486. MODEL_TENSOR.ATTN_KV_A_NORM: (
  487. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  488. ),
  489. MODEL_TENSOR.ATTN_SUB_NORM: (
  490. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  491. ),
  492. MODEL_TENSOR.FFN_SUB_NORM: (
  493. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  494. ),
  495. MODEL_TENSOR.DEC_ATTN_NORM: (
  496. "decoder.block.{bid}.layer.0.layer_norm", # t5
  497. ),
  498. MODEL_TENSOR.DEC_ATTN_Q: (
  499. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  500. ),
  501. MODEL_TENSOR.DEC_ATTN_K: (
  502. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  503. ),
  504. MODEL_TENSOR.DEC_ATTN_V: (
  505. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  506. ),
  507. MODEL_TENSOR.DEC_ATTN_OUT: (
  508. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  509. ),
  510. MODEL_TENSOR.DEC_ATTN_REL_B: (
  511. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  512. ),
  513. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  514. "decoder.block.{bid}.layer.1.layer_norm", # t5
  515. ),
  516. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  517. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  518. ),
  519. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  520. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  521. ),
  522. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  523. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  524. ),
  525. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  526. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  527. ),
  528. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  529. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  530. ),
  531. MODEL_TENSOR.DEC_FFN_NORM: (
  532. "decoder.block.{bid}.layer.2.layer_norm", # t5
  533. ),
  534. MODEL_TENSOR.DEC_FFN_GATE: (
  535. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  536. ),
  537. MODEL_TENSOR.DEC_FFN_UP: (
  538. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  539. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  540. ),
  541. MODEL_TENSOR.DEC_FFN_DOWN: (
  542. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  543. ),
  544. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  545. "decoder.final_layer_norm", # t5
  546. ),
  547. MODEL_TENSOR.ENC_ATTN_NORM: (
  548. "encoder.block.{bid}.layer.0.layer_norm", # t5
  549. ),
  550. MODEL_TENSOR.ENC_ATTN_Q: (
  551. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  552. ),
  553. MODEL_TENSOR.ENC_ATTN_K: (
  554. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  555. ),
  556. MODEL_TENSOR.ENC_ATTN_V: (
  557. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  558. ),
  559. MODEL_TENSOR.ENC_ATTN_OUT: (
  560. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  561. ),
  562. MODEL_TENSOR.ENC_ATTN_REL_B: (
  563. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  564. ),
  565. MODEL_TENSOR.ENC_FFN_NORM: (
  566. "encoder.block.{bid}.layer.1.layer_norm", # t5
  567. ),
  568. MODEL_TENSOR.ENC_FFN_GATE: (
  569. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  570. ),
  571. MODEL_TENSOR.ENC_FFN_UP: (
  572. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  573. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  574. ),
  575. MODEL_TENSOR.ENC_FFN_DOWN: (
  576. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  577. ),
  578. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  579. "encoder.final_layer_norm", # t5
  580. ),
  581. MODEL_TENSOR.CLS: (
  582. "classifier", # jina
  583. "classifier.dense", # roberta
  584. ),
  585. MODEL_TENSOR.CLS_OUT: (
  586. "classifier.out_proj", # roberta
  587. ),
  588. }
  589. # architecture-specific block mappings
  590. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  591. MODEL_ARCH.ARCTIC: {
  592. MODEL_TENSOR.FFN_NORM: (
  593. "model.layers.{bid}.residual_layernorm",
  594. ),
  595. MODEL_TENSOR.FFN_NORM_EXP: (
  596. "model.layers.{bid}.post_attention_layernorm",
  597. ),
  598. },
  599. }
  600. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  601. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  602. self.mapping = {}
  603. for tensor, keys in self.mappings_cfg.items():
  604. if tensor not in MODEL_TENSORS[arch]:
  605. continue
  606. tensor_name = TENSOR_NAMES[tensor]
  607. self.mapping[tensor_name] = (tensor, tensor_name)
  608. for key in keys:
  609. self.mapping[key] = (tensor, tensor_name)
  610. if arch in self.arch_block_mappings_cfg:
  611. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  612. for bid in range(n_blocks):
  613. for tensor, keys in self.block_mappings_cfg.items():
  614. if tensor not in MODEL_TENSORS[arch]:
  615. continue
  616. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  617. self.mapping[tensor_name] = (tensor, tensor_name)
  618. for key in keys:
  619. key = key.format(bid = bid)
  620. self.mapping[key] = (tensor, tensor_name)
  621. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  622. result = self.mapping.get(key)
  623. if result is not None:
  624. return result
  625. for suffix in try_suffixes:
  626. if key.endswith(suffix):
  627. result = self.mapping.get(key[:-len(suffix)])
  628. if result is not None:
  629. return result[0], result[1] + suffix
  630. return None
  631. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  632. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  633. if result is None:
  634. return None
  635. return result[1]
  636. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  637. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  638. if result is None:
  639. return None
  640. return result[0]
  641. def __getitem__(self, key: str) -> str:
  642. try:
  643. return self.mapping[key][1]
  644. except KeyError:
  645. raise KeyError(key)
  646. def __contains__(self, key: str) -> bool:
  647. return key in self.mapping
  648. def __repr__(self) -> str:
  649. return repr(self.mapping)
  650. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  651. return TensorNameMap(arch, n_blocks)