llama-vocab.cpp 123 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245
  1. #include "llama-vocab.h"
  2. #include "llama-impl.h"
  3. #include "llama-model-loader.h"
  4. #include "unicode.h"
  5. #include <algorithm>
  6. #include <cassert>
  7. #include <cfloat>
  8. #include <climits>
  9. #include <cstdarg>
  10. #include <cstring>
  11. #include <forward_list>
  12. #include <map>
  13. #include <queue>
  14. #include <set>
  15. #include <unordered_map>
  16. //
  17. // helpers
  18. //
  19. struct naive_trie {
  20. naive_trie() : has_value(false), value(0) {
  21. }
  22. void insert(const char * key, size_t len, int32_t value = 0) {
  23. if (len == 0) {
  24. this->has_value = true;
  25. this->value = value;
  26. return;
  27. }
  28. char c = key[0];
  29. auto res = children.find(c);
  30. if (res != children.end()) {
  31. res->second.insert(key + 1, len - 1, value);
  32. } else {
  33. auto res = children.insert(std::make_pair(c, naive_trie()));
  34. res.first->second.insert(key + 1, len - 1, value);
  35. }
  36. }
  37. std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) const {
  38. if (len == 0 || offset == len) {
  39. return std::make_pair(key, offset);
  40. }
  41. char c = key[offset];
  42. auto res = children.find(c);
  43. if (res != children.end()) {
  44. return res->second.get_longest_prefix(key, len, offset + 1);
  45. }
  46. return std::make_pair(key, offset);
  47. }
  48. const struct naive_trie * traverse(const char c) const {
  49. auto res = children.find(c);
  50. if (res != children.end()) {
  51. return &res->second;
  52. }
  53. return NULL;
  54. }
  55. std::map<char, struct naive_trie> children;
  56. bool has_value;
  57. llama_token value;
  58. };
  59. //
  60. // tokenizers
  61. //
  62. struct llm_tokenizer {
  63. llm_tokenizer() {}
  64. virtual ~llm_tokenizer() = default;
  65. };
  66. struct llm_symbol {
  67. using index = int;
  68. index prev;
  69. index next;
  70. const char * text;
  71. size_t n;
  72. };
  73. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  74. //
  75. // SPM tokenizer
  76. // original implementation:
  77. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  78. //
  79. struct llm_bigram_spm {
  80. struct comparator {
  81. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  82. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  83. }
  84. };
  85. using queue_storage = std::vector<llm_bigram_spm>;
  86. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  87. llm_symbol::index left;
  88. llm_symbol::index right;
  89. float score;
  90. size_t size;
  91. };
  92. struct llm_tokenizer_spm : llm_tokenizer {
  93. llm_tokenizer_spm(const llama_vocab & /*vocab*/) {}
  94. };
  95. struct llm_tokenizer_spm_session {
  96. llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {}
  97. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  98. // split string into utf8 chars
  99. int index = 0;
  100. size_t offs = 0;
  101. while (offs < text.size()) {
  102. llm_symbol sym;
  103. size_t len = unicode_len_utf8(text[offs]);
  104. sym.text = text.c_str() + offs;
  105. sym.n = std::min(len, text.size() - offs);
  106. offs += sym.n;
  107. sym.prev = index - 1;
  108. sym.next = offs == text.size() ? -1 : index + 1;
  109. index++;
  110. symbols.emplace_back(sym);
  111. }
  112. // seed the work queue with all possible 2-character tokens.
  113. for (int i = 1; i < (int) symbols.size(); ++i) {
  114. try_add_bigram(i - 1, i);
  115. }
  116. // keep substituting the highest frequency pairs for as long as we can.
  117. while (!work_queue.empty()) {
  118. auto bigram = work_queue.top();
  119. work_queue.pop();
  120. auto & left_sym = symbols[bigram.left];
  121. auto & right_sym = symbols[bigram.right];
  122. // if one of the symbols already got merged, skip it.
  123. if (left_sym.n == 0 || right_sym.n == 0 ||
  124. left_sym.n + right_sym.n != bigram.size) {
  125. continue;
  126. }
  127. // merge the right sym into the left one
  128. left_sym.n += right_sym.n;
  129. right_sym.n = 0;
  130. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  131. // remove the right sym from the chain
  132. left_sym.next = right_sym.next;
  133. if (right_sym.next >= 0) {
  134. symbols[right_sym.next].prev = bigram.left;
  135. }
  136. // find more substitutions
  137. try_add_bigram(left_sym.prev, bigram.left);
  138. try_add_bigram(bigram.left, left_sym.next);
  139. }
  140. for (int i = 0; i != -1; i = symbols[i].next) {
  141. auto & symbol = symbols[i];
  142. resegment(symbol, output);
  143. }
  144. }
  145. private:
  146. void resegment(llm_symbol & symbol, std::vector<llama_token> & output) {
  147. auto text = std::string(symbol.text, symbol.n);
  148. auto token = vocab.text_to_token(text);
  149. // Do we need to support is_unused?
  150. if (token != LLAMA_TOKEN_NULL) {
  151. output.push_back(token);
  152. return;
  153. }
  154. const auto p = rev_merge.find(text);
  155. if (p == rev_merge.end()) {
  156. // output any symbols that did not form tokens as bytes.
  157. output.reserve(output.size() + symbol.n);
  158. for (int j = 0; j < (int)symbol.n; ++j) {
  159. llama_token id = vocab.byte_to_token(symbol.text[j]);
  160. output.push_back(id);
  161. }
  162. return;
  163. }
  164. resegment(symbols[p->second.first], output);
  165. resegment(symbols[p->second.second], output);
  166. }
  167. void try_add_bigram(int left, int right) {
  168. if (left == -1 || right == -1) {
  169. return;
  170. }
  171. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  172. auto token = vocab.text_to_token(text);
  173. if (token == LLAMA_TOKEN_NULL) {
  174. return;
  175. }
  176. if (static_cast<uint32_t>(token) >= vocab.n_tokens()) {
  177. return;
  178. }
  179. const auto & tok_data = vocab.get_token_data(token);
  180. llm_bigram_spm bigram;
  181. bigram.left = left;
  182. bigram.right = right;
  183. bigram.score = tok_data.score;
  184. bigram.size = text.size();
  185. work_queue.push(bigram);
  186. // Do we need to support is_unused?
  187. rev_merge[text] = std::make_pair(left, right);
  188. }
  189. const llama_vocab & vocab;
  190. // currently unused
  191. // const llm_tokenizer_spm * spm_tokenizer;
  192. std::vector<llm_symbol> symbols;
  193. llm_bigram_spm::queue work_queue;
  194. std::map<std::string, std::pair<int, int>> rev_merge;
  195. };
  196. //
  197. // BPE tokenizer
  198. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  199. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  200. //
  201. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  202. template<typename T, typename Container = std::vector<T>, typename Compare = std::less<typename Container::value_type>>
  203. class llama_priority_queue : public std::priority_queue<T, Container, Compare> {
  204. public:
  205. using std::priority_queue<T, Container, Compare>::priority_queue;
  206. T pop_move() {
  207. T item = std::move(this->c.front());
  208. std::pop_heap(this->c.begin(), this->c.end(), this->comp);
  209. this->c.pop_back();
  210. return item;
  211. }
  212. void pop() = delete;
  213. };
  214. struct llm_bigram_bpe {
  215. struct comparator {
  216. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  217. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  218. }
  219. };
  220. using queue_storage = std::vector<llm_bigram_bpe>;
  221. using queue = llama_priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  222. llm_symbol::index left;
  223. llm_symbol::index right;
  224. std::string text;
  225. int rank;
  226. size_t size;
  227. };
  228. struct llm_tokenizer_bpe : llm_tokenizer {
  229. llm_tokenizer_bpe(const llama_vocab & vocab) {
  230. GGML_ASSERT(vocab.get_type() == LLAMA_VOCAB_TYPE_BPE);
  231. switch (vocab.get_pre_type()) {
  232. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  233. regex_exprs = {
  234. // original regex from tokenizer.json
  235. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  236. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  237. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  238. };
  239. break;
  240. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  241. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  242. regex_exprs = {
  243. // same as llama3
  244. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  245. };
  246. break;
  247. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  248. regex_exprs = {
  249. "[\r\n]",
  250. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  251. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  252. "\\s+$",
  253. "[一-龥ࠀ-一가-퟿]+",
  254. "\\p{N}+",
  255. };
  256. break;
  257. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM:
  258. regex_exprs = {
  259. "\\p{N}{1,3}",
  260. "[一-龥぀-ゟ゠-ヿ]+",
  261. "[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
  262. };
  263. break;
  264. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  265. regex_exprs = {
  266. "[\r\n]",
  267. "\\s?\\p{L}+",
  268. "\\s?\\p{P}+",
  269. "[一-龥ࠀ-一가-퟿]+",
  270. "\\p{N}",
  271. };
  272. break;
  273. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  274. regex_exprs = {
  275. "[\\p{P}\\$\\+<=>\\^~\\|`]+",
  276. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  277. "[0-9][0-9][0-9]",
  278. };
  279. break;
  280. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  281. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  282. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  283. case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
  284. case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
  285. case LLAMA_VOCAB_PRE_TYPE_EXAONE:
  286. case LLAMA_VOCAB_PRE_TYPE_MINERVA:
  287. regex_exprs = {
  288. "\\p{N}",
  289. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  290. };
  291. break;
  292. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  293. case LLAMA_VOCAB_PRE_TYPE_MPT:
  294. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  295. case LLAMA_VOCAB_PRE_TYPE_JAIS:
  296. regex_exprs = {
  297. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  298. };
  299. break;
  300. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  301. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  302. regex_exprs = {
  303. // original regex from tokenizer.json
  304. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  305. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  306. };
  307. break;
  308. case LLAMA_VOCAB_PRE_TYPE_PORO:
  309. case LLAMA_VOCAB_PRE_TYPE_BLOOM:
  310. case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH:
  311. regex_exprs = {
  312. " ?[^(\\s|.,!?…。,、।۔،)]+",
  313. };
  314. break;
  315. case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
  316. regex_exprs = {
  317. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  318. };
  319. break;
  320. case LLAMA_VOCAB_PRE_TYPE_VIKING:
  321. regex_exprs = {
  322. " ?[^(\\s|.,!?…。,、।۔،)]+",
  323. "\\p{N}",
  324. };
  325. break;
  326. case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
  327. // original regex from tokenizer.json
  328. // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  329. regex_exprs = {
  330. "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  331. };
  332. break;
  333. case LLAMA_VOCAB_PRE_TYPE_CHAMELEON:
  334. // Note: in theory, the special token (sentinel and image token) regex_exprs below
  335. // are unnecessary, as they are split in `tokenizer_st_partition` anyway.
  336. // However, since the upstream pre-tokenizer uses them, they are also
  337. // included here (see https://huggingface.co/facebook/chameleon-7b).
  338. regex_exprs = {
  339. "<sentinel:[0-9]+>", // Sentinel tokens
  340. "(IMGIMG)((A|B|C|D|E|F|G|H|I){1,4})Z", // Image tokens
  341. "([\\t\\n]| | )", // directly from tokenizer.json
  342. "\\p{N}", // Individual digits
  343. "[\\p{P}!-/:-@\\[-`{-~]", // Punctuation, Isolated
  344. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  345. };
  346. break;
  347. default:
  348. // default regex for BPE tokenization pre-processing
  349. regex_exprs = {
  350. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  351. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  352. "\\p{N}+",
  353. "[0-9][0-9][0-9]",
  354. };
  355. break;
  356. }
  357. }
  358. std::vector<std::string> regex_exprs;
  359. };
  360. struct llm_tokenizer_bpe_session {
  361. llm_tokenizer_bpe_session(const llama_vocab & vocab, const llm_tokenizer_bpe & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
  362. static void append(const llama_token token_id, std::vector<llama_token> & output) {
  363. output.push_back(token_id);
  364. }
  365. bool append_bos(std::vector<llama_token> & output) const {
  366. if (vocab.get_add_bos()) {
  367. GGML_ASSERT(vocab.token_bos() != LLAMA_TOKEN_NULL);
  368. output.push_back(vocab.token_bos());
  369. return true;
  370. }
  371. return false;
  372. }
  373. bool append_eos(std::vector<llama_token> & output) const {
  374. if (vocab.get_add_eos()) {
  375. GGML_ASSERT(vocab.token_eos() != LLAMA_TOKEN_NULL);
  376. output.push_back(vocab.token_eos());
  377. return true;
  378. }
  379. return false;
  380. }
  381. void check_double_bos_eos(const std::vector<llama_token> & output) const {
  382. if (vocab.get_add_bos() && output.size() >= 2 && output[1] == vocab.token_bos()) {
  383. LLAMA_LOG_WARN(
  384. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  385. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  386. "Are you sure this is what you want?\n", __FUNCTION__);
  387. }
  388. if (vocab.get_add_bos() && output.size() >= 2 && *(output.end()-2) == vocab.token_eos()) {
  389. LLAMA_LOG_WARN(
  390. "%s: Added a EOS token to the prompt as specified by the model but the prompt "
  391. "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
  392. "Are you sure this is what you want?\n", __FUNCTION__);
  393. }
  394. }
  395. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  396. int final_prev_index = -1;
  397. const auto word_collection = unicode_regex_split(text, tokenizer.regex_exprs);
  398. symbols_final.clear();
  399. for (const auto & word : word_collection) {
  400. work_queue = llm_bigram_bpe::queue();
  401. symbols.clear();
  402. int index = 0;
  403. size_t offset = 0;
  404. //if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  405. if (vocab.get_ignore_merges() && vocab.text_to_token(word) != LLAMA_TOKEN_NULL) {
  406. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  407. offset = word.size();
  408. }
  409. while (offset < word.size()) {
  410. llm_symbol sym;
  411. size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset]));
  412. sym.text = word.c_str() + offset;
  413. sym.n = char_len;
  414. offset += sym.n;
  415. sym.prev = index - 1;
  416. sym.next = offset == word.size() ? -1 : index + 1;
  417. index++;
  418. symbols.emplace_back(sym);
  419. }
  420. for (int i = 1; i < (int) symbols.size(); ++i) {
  421. add_new_bigram(i - 1, i);
  422. }
  423. // build token(s)
  424. while (!work_queue.empty()) {
  425. auto bigram = work_queue.pop_move();
  426. auto & left_symbol = symbols[bigram.left];
  427. auto & right_symbol = symbols[bigram.right];
  428. if (left_symbol.n == 0 || right_symbol.n == 0) {
  429. continue;
  430. }
  431. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  432. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  433. if (left_token + right_token != bigram.text) {
  434. continue; // Skip this bigram if it's outdated
  435. }
  436. // merge the right sym into the left one
  437. left_symbol.n += right_symbol.n;
  438. right_symbol.n = 0;
  439. // remove the right sym from the chain
  440. left_symbol.next = right_symbol.next;
  441. if (right_symbol.next >= 0) {
  442. symbols[right_symbol.next].prev = bigram.left;
  443. }
  444. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  445. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  446. }
  447. // add the finished tokens to the final list keeping correct order for next and prev
  448. for (auto & sym : symbols) {
  449. if (sym.n > 0) {
  450. sym.prev = final_prev_index;
  451. sym.next = -1;
  452. if (final_prev_index != -1) {
  453. symbols_final[final_prev_index].next = symbols_final.size();
  454. }
  455. symbols_final.emplace_back(sym);
  456. final_prev_index = symbols_final.size() - 1;
  457. }
  458. }
  459. }
  460. symbols = symbols_final;
  461. if (!symbols.empty()) {
  462. for (int i = 0; i != -1; i = symbols[i].next) {
  463. auto & symbol = symbols[i];
  464. if (symbol.n == 0) {
  465. continue;
  466. }
  467. const std::string str = std::string(symbol.text, symbol.n);
  468. const auto token = vocab.text_to_token(str);
  469. if (token == LLAMA_TOKEN_NULL) {
  470. for (auto j = str.begin(); j != str.end(); ++j) {
  471. std::string byte_str(1, *j);
  472. auto token_multibyte = vocab.text_to_token(byte_str);
  473. if (token_multibyte != LLAMA_TOKEN_NULL) {
  474. output.push_back(token_multibyte);
  475. }
  476. }
  477. } else {
  478. output.push_back(token);
  479. }
  480. }
  481. }
  482. }
  483. private:
  484. void add_new_bigram(int left, int right) {
  485. if (left == -1 || right == -1) {
  486. return;
  487. }
  488. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  489. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  490. int rank_found = -1;
  491. rank_found = vocab.find_bpe_rank(left_token, right_token);
  492. if (rank_found < 0) {
  493. return;
  494. }
  495. llm_bigram_bpe bigram;
  496. bigram.left = left;
  497. bigram.right = right;
  498. bigram.text = left_token + right_token;
  499. bigram.size = left_token.size() + right_token.size();
  500. bigram.rank = rank_found;
  501. work_queue.push(bigram);
  502. }
  503. const llama_vocab & vocab;
  504. const llm_tokenizer_bpe & tokenizer;
  505. std::vector<llm_symbol> symbols;
  506. std::vector<llm_symbol> symbols_final;
  507. llm_bigram_bpe::queue work_queue;
  508. };
  509. //
  510. // WPM tokenizer
  511. //
  512. struct llm_tokenizer_wpm : llm_tokenizer {
  513. llm_tokenizer_wpm(const llama_vocab & /*vocab*/) {}
  514. };
  515. struct llm_tokenizer_wpm_session {
  516. llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {}
  517. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  518. // normalize and split by whitespace
  519. std::vector<std::string> words = preprocess(text);
  520. // bos token prepended already
  521. // find the longest tokens that form the words
  522. for (const std::string & word : words) {
  523. // skip empty words
  524. if (word.size() == 0) {
  525. continue;
  526. }
  527. // prepend phantom space
  528. const std::string word1 = "\xe2\x96\x81" + word;
  529. const int n = word1.size();
  530. const size_t current_tokens = output.size();
  531. // we're at the start of a new word
  532. // move through character position in word
  533. for (int i = 0; i < n; ++i) {
  534. // loop through possible match length
  535. bool match = false;
  536. for (int j = std::min(n, i + vocab.max_token_len() + 1); j > i; j--) {
  537. auto id = vocab.text_to_token(word1.substr(i, j - i));
  538. if (id != LLAMA_TOKEN_NULL) {
  539. output.push_back(id);
  540. match = true;
  541. i = j - 1;
  542. break;
  543. }
  544. }
  545. if (!match) { // discard all
  546. output.resize(current_tokens);
  547. break; // and discard next tokens
  548. }
  549. }
  550. // we didn't find any matches for this word
  551. if (current_tokens == output.size()) {
  552. output.push_back(vocab.token_unk());
  553. }
  554. }
  555. }
  556. // TODO: reduce string copies by using cpts_offs array
  557. static std::vector<std::string> preprocess(const std::string & text) {
  558. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  559. std::vector<std::string> words(1, "");
  560. for (const uint32_t cpt : cpts_nfd) {
  561. const auto flags = unicode_cpt_flags_from_cpt(cpt);
  562. if (flags.is_whitespace) {
  563. if (words.back().size()) { // finish previous word if any
  564. words.emplace_back();
  565. }
  566. continue;
  567. }
  568. assert (!flags.is_separator);
  569. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  570. continue;
  571. }
  572. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  573. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  574. if (words.back().size()) { // finish previous word if any
  575. words.emplace_back();
  576. }
  577. words.back() = s; // single char word
  578. words.emplace_back(); // start a new word
  579. } else {
  580. words.back() += s; // append char to word
  581. }
  582. }
  583. if (!words.back().size()) {
  584. words.pop_back();
  585. }
  586. return words;
  587. }
  588. static bool is_chinese_char(uint32_t cpt) {
  589. return
  590. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  591. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  592. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  593. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  594. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  595. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  596. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  597. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  598. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  599. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  600. }
  601. private:
  602. const llama_vocab & vocab;
  603. // currently unused
  604. // const llm_tokenizer_wpm * wpm_tokenizer;
  605. };
  606. //
  607. // UGM tokenizer
  608. //
  609. struct llm_tokenizer_ugm : llm_tokenizer {
  610. llm_tokenizer_ugm(const llama_vocab & vocab, const std::vector<char> & precompiled_charsmap) {
  611. if (precompiled_charsmap.size() > 0) {
  612. size_t charsmap_offset = 0;
  613. // First four bytes of precompiled_charsmap contains length of binary
  614. // blob containing XOR-compressed compact double array (XCDA) entries
  615. uint32_t xcda_blob_size = *(const uint32_t *) &precompiled_charsmap[0];
  616. charsmap_offset += sizeof(xcda_blob_size);
  617. if (xcda_blob_size + charsmap_offset >= precompiled_charsmap.size()) {
  618. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  619. }
  620. // Next xcda_blob_size bytes contain entries of XOR-compressed compact
  621. // double array (XCDA). Each entry is bit-packed into a 32-bit integer.
  622. xcda_array = (const uint32_t *) &precompiled_charsmap[charsmap_offset];
  623. xcda_array_size = xcda_blob_size / sizeof(uint32_t);
  624. charsmap_offset += xcda_blob_size;
  625. // Remaining bytes of precompiled charsmap contain null-terminated
  626. // replacement strings for prefixes matched by the XCDA.
  627. prefix_replacements = &precompiled_charsmap[charsmap_offset];
  628. prefix_replacements_size = precompiled_charsmap.size() - charsmap_offset;
  629. }
  630. for (uint32_t id = 0; id < vocab.n_tokens(); ++id) {
  631. const auto & token_data = vocab.get_token_data(id);
  632. if (vocab.is_normal(id)) {
  633. min_score = std::min<float>(min_score, token_data.score);
  634. max_score = std::max<float>(max_score, token_data.score);
  635. }
  636. if (vocab.is_normal(id) ||
  637. vocab.is_user_defined(id) ||
  638. vocab.is_unused(id)) {
  639. token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
  640. }
  641. if (vocab.is_user_defined(id)) {
  642. user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
  643. }
  644. }
  645. unknown_token_score = min_score - unknown_token_score_penalty;
  646. }
  647. // escaped space symbol - U+2581 (Lower One Eighth Block)
  648. const std::string escaped_space = "\xE2\x96\x81";
  649. const char * prefix_replacements = NULL;
  650. size_t prefix_replacements_size = 0;
  651. const uint32_t * xcda_array = NULL;
  652. size_t xcda_array_size = 0;
  653. struct naive_trie user_defined_token_matcher;
  654. float min_score = FLT_MAX;
  655. float max_score = -FLT_MAX;
  656. float unknown_token_score_penalty = 10.0;
  657. float unknown_token_score;
  658. struct naive_trie token_matcher;
  659. };
  660. struct llm_tokenizer_ugm_session {
  661. llm_tokenizer_ugm_session(const llama_vocab & vocab, const llm_tokenizer_ugm & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
  662. /* This implementation is based on SentencePiece optimized Viterbi algorithm for
  663. * unigram language models. The general idea is to:
  664. * - move along the input sequence in steps of one UTF code point,
  665. * - at each step find all possible tokenizations of the prefix by
  666. * traversing the tokens trie,
  667. * - for each tokenization store the best one so far (by higher score)
  668. * - use the position in sequence after given token as an index to store
  669. * results
  670. * - if there was no valid tokenization of the current UTF code point
  671. * then use unknown token with additional score penalty
  672. * After processing the whole sequence we backtrack from the end to get
  673. * the best tokenization.
  674. */
  675. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  676. // get current size of output (for reversal later)
  677. size_t output_size = output.size();
  678. // normalize the input first
  679. std::string normalized;
  680. normalize(text, &normalized);
  681. size_t input_len = normalized.size();
  682. if (input_len == 0) {
  683. return;
  684. }
  685. // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
  686. std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.token_unk(), 0, -FLT_MAX});
  687. // at the beginning tokenization score is zero
  688. tokenization_results[0] = { vocab.token_unk(), 0, 0 };
  689. for (size_t input_offset = 0; input_offset < input_len;) {
  690. size_t prefix_offset = input_offset;
  691. // calculate how many code units are in the currently processed UTF code point
  692. size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset);
  693. // traverse the token matcher trie to find a matching token
  694. bool single_codepoint_token_found = false;
  695. const struct best_tokenization & current_best = tokenization_results[input_offset];
  696. const struct naive_trie * node = tokenizer.token_matcher.traverse(normalized[prefix_offset++]);
  697. while (prefix_offset <= input_len && node != NULL) {
  698. // check if we found valid token in prefix
  699. if (node->has_value) {
  700. // check if it corresponds to the whole UTF code point
  701. if (prefix_offset - input_offset == n_utf8_code_units) {
  702. single_codepoint_token_found = true;
  703. }
  704. llama_token token_id = node->value;
  705. const auto & token_data = vocab.get_token_data(token_id);
  706. // we set the user-defined token scores to 0 to make them more likely to be selected
  707. // (normal token scores are log probabilities, so they are negative)
  708. // score type is double here to make tokenization results exactly
  709. // the same as in the HF tokenizer using SentencePiece
  710. const double token_score = vocab.is_user_defined(token_id) ? 0.0 : token_data.score;
  711. const double challenger_score = current_best.score_sum + token_score;
  712. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  713. if (challenger_score > current_champ.score_sum) {
  714. struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score };
  715. current_champ = challenger;
  716. }
  717. }
  718. node = node->traverse(normalized[prefix_offset++]);
  719. }
  720. // if we didn't find a valid token corresponding to the whole UTF code point
  721. // then use unknown token as the tokenization of this UTF code point
  722. if (!single_codepoint_token_found) {
  723. const double challenger_score = current_best.score_sum + tokenizer.unknown_token_score;
  724. prefix_offset = input_offset + n_utf8_code_units;
  725. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  726. if (challenger_score > current_champ.score_sum) {
  727. struct best_tokenization challenger = { vocab.token_unk(), input_offset, (float) challenger_score };
  728. current_champ = challenger;
  729. }
  730. }
  731. // move to the next UTF code point
  732. input_offset += n_utf8_code_units;
  733. }
  734. // now backtrack from the end to gather token ids of the best tokenization
  735. // merge sequences of consecutive unknown tokens into single unknown tokens
  736. bool is_prev_unknown = false;
  737. for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
  738. bool is_unknown = tokenization.token_id == vocab.token_unk();
  739. if (!(is_prev_unknown && is_unknown)) {
  740. output.push_back(tokenization.token_id);
  741. }
  742. if (tokenization.input_offset == 0) {
  743. break;
  744. }
  745. is_prev_unknown = is_unknown;
  746. }
  747. // reverse the output since we added tokens starting from the end of the input
  748. std::reverse(output.begin() + output_size, output.end());
  749. }
  750. private:
  751. // helper structure for returning normalization results
  752. struct normalization_result {
  753. const char * normalized;
  754. size_t normalized_len;
  755. size_t consumed_input;
  756. };
  757. void normalize(const std::string& input, std::string * normalized) {
  758. normalized->clear();
  759. normalized->reserve(input.size() * 3);
  760. const std::string space = vocab.get_escape_whitespaces() ? tokenizer.escaped_space : " ";
  761. const bool shall_prepend_space = !vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix();
  762. const bool shall_append_space = vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix();
  763. const bool shall_merge_spaces = vocab.get_remove_extra_whitespaces();
  764. bool is_space_prepended = false;
  765. bool processing_non_ws = false;
  766. size_t input_len = input.size();
  767. for (size_t input_offset = 0; input_offset < input_len; ) {
  768. auto norm_res = normalize_prefix(input, input_offset);
  769. for (size_t i = 0; i < norm_res.normalized_len; i++) {
  770. char c = norm_res.normalized[i];
  771. if (c != ' ') {
  772. if (!processing_non_ws) {
  773. processing_non_ws = true;
  774. if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
  775. normalized->append(space);
  776. is_space_prepended = true;
  777. }
  778. }
  779. normalized->push_back(c);
  780. } else {
  781. if (processing_non_ws) {
  782. processing_non_ws = false;
  783. }
  784. if (!shall_merge_spaces) {
  785. normalized->append(space);
  786. }
  787. }
  788. }
  789. input_offset += norm_res.consumed_input;
  790. }
  791. if (shall_append_space) {
  792. normalized->append(space);
  793. }
  794. }
  795. /*
  796. * This structure is a view wrapper for XOR-compressed double array (XCDA)
  797. * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
  798. * Each bit-packed entry contains:
  799. * - BASE array value in bits 10-30
  800. * - LCHECK array value in bits 0-7
  801. * - LEAF array value in bit 9
  802. * Entries containing indexes of replacement sequences have set bit 31
  803. */
  804. struct xcda_array_view {
  805. public:
  806. xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
  807. }
  808. uint32_t get_base(size_t index) {
  809. uint32_t packed_node = get_node(index);
  810. return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
  811. }
  812. uint32_t get_lcheck(size_t index) {
  813. uint32_t packed_node = get_node(index);
  814. return packed_node & ((1U << 31) | 0xff);
  815. }
  816. bool get_leaf(size_t index) {
  817. uint32_t packed_node = get_node(index);
  818. return (packed_node >> 8) & 1;
  819. }
  820. uint32_t get_value(size_t index) {
  821. uint32_t packed_node = get_node(index);
  822. return packed_node & ((1U << 31) - 1);
  823. }
  824. private:
  825. uint32_t get_node(size_t index) {
  826. if (index > xcda_array_size) {
  827. throw std::runtime_error("Index out of array bounds in XCDA array!");
  828. }
  829. return xcda_array[index];
  830. }
  831. const uint32_t * xcda_array;
  832. size_t xcda_array_size;
  833. };
  834. // this structure stores the best tokenization so far at input_offset
  835. struct best_tokenization {
  836. llama_token token_id;
  837. size_t input_offset;
  838. float score_sum;
  839. };
  840. struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
  841. if (input_offset == input.size()) {
  842. return { &input[input_offset], 0, 0 };
  843. }
  844. // if input prefix matches some user-defined token return this token as normalization result
  845. auto user_defined_token_match =
  846. tokenizer.user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
  847. if (user_defined_token_match.second > 0) {
  848. return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
  849. }
  850. size_t longest_prefix_length = 0;
  851. size_t longest_prefix_offset = 0;
  852. if (tokenizer.xcda_array_size > 0) {
  853. struct xcda_array_view xcda_view(tokenizer.xcda_array, tokenizer.xcda_array_size);
  854. // Find the longest normalized sequence matching the input prefix by walking
  855. // the XOR-compressed compact double array (XCDA) starting from the root node
  856. // We find the index of the next node by calculating BASE[s] ^ c where s is
  857. // the index of the previous node and c is a numerical character value
  858. uint32_t node_index = 0;
  859. // get BASE of the root node
  860. node_index = xcda_view.get_base(node_index);
  861. for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
  862. unsigned char c = input[prefix_offset];
  863. if (c == 0) {
  864. break;
  865. }
  866. node_index ^= c;
  867. // if value of LCHECK is not c it means that this is not a child of
  868. // the previous node, so we stop matching
  869. if (xcda_view.get_lcheck(node_index) != c) {
  870. break;
  871. }
  872. bool is_leaf = xcda_view.get_leaf(node_index);
  873. // get BASE of the current node
  874. node_index ^= xcda_view.get_base(node_index);
  875. // if LEAF of the current node is true, it means that its BASE points to the node
  876. // containing index of replacement sequence for currently matched input prefix
  877. if (is_leaf)
  878. {
  879. longest_prefix_length = prefix_offset - input_offset + 1;
  880. // get index of replacement sequence for currently matched input prefix
  881. longest_prefix_offset = xcda_view.get_value(node_index);
  882. }
  883. }
  884. }
  885. if (longest_prefix_length > 0) {
  886. // we have a match, so return the replacement sequence
  887. if (longest_prefix_offset >= tokenizer.prefix_replacements_size) {
  888. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  889. }
  890. const char * prefix_replacement = &(tokenizer.prefix_replacements)[longest_prefix_offset];
  891. return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
  892. }
  893. // check if the input prefix contains a valid sequence of UTF-8 code units
  894. try {
  895. // if yes, return this sequence unmodified
  896. size_t prefix_offset = input_offset;
  897. unicode_cpt_from_utf8(input, prefix_offset);
  898. return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
  899. } catch (std::invalid_argument & /*ex*/) {
  900. // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
  901. return { "\xEF\xBF\xBD", 3, 1 };
  902. }
  903. }
  904. const llama_vocab & vocab;
  905. const llm_tokenizer_ugm & tokenizer;
  906. };
  907. //
  908. // RWKV tokenizer
  909. //
  910. static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escaped) {
  911. std::vector<uint8_t> output;
  912. output.reserve(escaped.size());
  913. // Parser state
  914. bool escaping = false;
  915. uint8_t hex_remaining = 0;
  916. uint8_t hex_acc = 0;
  917. // Step through characters, performing parsing
  918. for (const char & c : escaped) {
  919. // If we're parsing a hex code, interpret the next character
  920. if (hex_remaining != 0) {
  921. uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0');
  922. hex_acc = (hex_acc << 4) + value;
  923. hex_remaining -= 1;
  924. if (hex_remaining == 0) {
  925. output.push_back(hex_acc);
  926. hex_acc = 0;
  927. }
  928. continue;
  929. }
  930. // If we got an escape character, interpret it
  931. if (escaping) {
  932. if (c == 't') {
  933. output.push_back('\t');
  934. } else if (c == 'n') {
  935. output.push_back('\n');
  936. } else if (c == 'r') {
  937. output.push_back('\r');
  938. } else if (c == 'x') {
  939. hex_remaining = 2;
  940. } else {
  941. output.push_back(c);
  942. }
  943. escaping = false;
  944. continue;
  945. }
  946. if (c == '\\') {
  947. escaping = true;
  948. continue;
  949. }
  950. output.push_back(c);
  951. }
  952. return output;
  953. }
  954. struct llm_tokenizer_rwkv : llm_tokenizer {
  955. llm_tokenizer_rwkv(const llama_vocab & vocab) {
  956. // RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens.
  957. // For now, we decode the vocab here into the lookup we'll use for tokenization.
  958. // build trie
  959. for (uint32_t id = 0; id < vocab.n_tokens(); ++id) {
  960. const auto & data = vocab.get_token_data(id);
  961. const auto text = llama_unescape_rwkv_token(data.text);
  962. token_matcher.insert((const char *) text.data(), text.size(), id);
  963. }
  964. }
  965. struct naive_trie token_matcher;
  966. };
  967. struct llm_tokenizer_rwkv_session {
  968. llm_tokenizer_rwkv_session(const llama_vocab & vocab, const llm_tokenizer_rwkv & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
  969. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  970. uint32_t position = 0;
  971. while (position < text.size()) {
  972. const struct naive_trie * node = tokenizer.token_matcher.traverse(text[position]);
  973. if (node == NULL) {
  974. // no matching token found, add unknown token
  975. output.push_back(vocab.token_unk());
  976. position += 1;
  977. continue;
  978. }
  979. // traverse the trie to find the longest matching token
  980. uint32_t token_id = 0;
  981. uint32_t token_length = 0;
  982. while (node != NULL) {
  983. if (node->has_value) {
  984. token_id = node->value;
  985. token_length = position + 1;
  986. }
  987. node = node->traverse(text[++position]);
  988. }
  989. // add the longest matching token
  990. output.push_back(token_id);
  991. position = token_length;
  992. }
  993. }
  994. private:
  995. const llama_vocab & vocab;
  996. const llm_tokenizer_rwkv & tokenizer;
  997. };
  998. //
  999. // impl
  1000. //
  1001. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  1002. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  1003. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  1004. } FRAGMENT_BUFFER_VARIANT_TYPE;
  1005. struct fragment_buffer_variant {
  1006. fragment_buffer_variant(llama_token _token)
  1007. :
  1008. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  1009. token(_token),
  1010. raw_text(_dummy),
  1011. offset(0),
  1012. length(0) {}
  1013. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  1014. :
  1015. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  1016. token((llama_token) - 1),
  1017. raw_text(_raw_text),
  1018. offset(_offset),
  1019. length(_length){
  1020. GGML_ASSERT(_offset >= 0);
  1021. GGML_ASSERT(_length >= 1);
  1022. GGML_ASSERT(offset + length <= raw_text.length());
  1023. }
  1024. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  1025. const llama_token token;
  1026. const std::string _dummy;
  1027. const std::string & raw_text;
  1028. const uint64_t offset;
  1029. const uint64_t length;
  1030. };
  1031. struct llama_vocab::impl {
  1032. uint32_t n_token_types = 0; // for BERT-style token types
  1033. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1034. enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1035. int max_token_len = 0; // used for optimizing longest token search
  1036. // default LLaMA special tokens
  1037. // TODO: should we set all of these to LLAMA_TOKEN_NULL?
  1038. llama_token special_bos_id = 1;
  1039. llama_token special_eos_id = 2;
  1040. llama_token special_eot_id = LLAMA_TOKEN_NULL;
  1041. llama_token special_eom_id = LLAMA_TOKEN_NULL;
  1042. llama_token special_unk_id = 0;
  1043. llama_token special_sep_id = LLAMA_TOKEN_NULL;
  1044. llama_token special_pad_id = LLAMA_TOKEN_NULL;
  1045. llama_token special_mask_id = LLAMA_TOKEN_NULL;
  1046. llama_token linefeed_id = 13;
  1047. // fim tokens
  1048. llama_token special_fim_pre_id = LLAMA_TOKEN_NULL;
  1049. llama_token special_fim_suf_id = LLAMA_TOKEN_NULL;
  1050. llama_token special_fim_mid_id = LLAMA_TOKEN_NULL;
  1051. llama_token special_fim_pad_id = LLAMA_TOKEN_NULL;
  1052. llama_token special_fim_rep_id = LLAMA_TOKEN_NULL; // repo
  1053. llama_token special_fim_sep_id = LLAMA_TOKEN_NULL; // file separator
  1054. // tokenizer flags
  1055. bool add_space_prefix = false;
  1056. bool add_bos = false;
  1057. bool add_eos = false;
  1058. bool ignore_merges = false;
  1059. bool clean_spaces = false; // clean_up_tokenization_spaces
  1060. bool remove_extra_whitespaces = false;
  1061. bool escape_whitespaces = true;
  1062. bool treat_whitespace_as_suffix = false;
  1063. std::unordered_map<std::string, llama_token> token_to_id;
  1064. std::vector<token_data> id_to_token;
  1065. std::vector<llama_token> cache_special_tokens;
  1066. std::vector<std::string> cache_token_to_piece; // llama_token_to_piece(special = true);
  1067. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1068. // set of all tokens that cause "end of generation"
  1069. std::set<llama_token> special_eog_ids;
  1070. std::unique_ptr<llm_tokenizer> tokenizer;
  1071. std::vector<char> precompiled_charsmap;
  1072. impl(const llama_vocab & vocab) : vocab(vocab) {
  1073. }
  1074. ~impl() = default;
  1075. void load(llama_model_loader & ml, const LLM_KV & kv);
  1076. enum llama_vocab_type get_type() const;
  1077. std::string type_name() const;
  1078. bool is_normal (llama_token id) const;
  1079. bool is_unknown (llama_token id) const;
  1080. bool is_control (llama_token id) const;
  1081. bool is_byte (llama_token id) const;
  1082. bool is_user_defined(llama_token id) const;
  1083. bool is_unused (llama_token id) const;
  1084. bool is_eog (llama_token id) const;
  1085. uint8_t token_to_byte(llama_token id) const;
  1086. llama_token_attr token_get_attr(llama_token id) const;
  1087. void init_tokenizer(enum llama_vocab_type type);
  1088. void tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const;
  1089. std::string token_to_piece_for_cache(
  1090. llama_token token,
  1091. bool special) const;
  1092. std::vector<llama_token> tokenize(
  1093. const std::string & raw_text,
  1094. bool add_special,
  1095. bool parse_special = false) const;
  1096. int32_t tokenize(
  1097. const char * text,
  1098. int32_t text_len,
  1099. llama_token * tokens,
  1100. int32_t n_tokens_max,
  1101. bool add_special,
  1102. bool parse_special) const;
  1103. // does not write null-terminator to buf
  1104. int32_t token_to_piece(
  1105. llama_token token,
  1106. char * buf,
  1107. int32_t length,
  1108. int32_t lstrip,
  1109. bool special) const;
  1110. // use cached data
  1111. const std::string & token_to_piece(llama_token token) const;
  1112. int32_t detokenize(
  1113. const llama_token * tokens,
  1114. int32_t n_tokens,
  1115. char * text,
  1116. int32_t text_len_max,
  1117. bool remove_special,
  1118. bool unparse_special) const;
  1119. std::string detokenize(
  1120. const std::vector<llama_token> & tokens,
  1121. bool special) const;
  1122. void print_info() const;
  1123. private:
  1124. const llama_vocab & vocab;
  1125. };
  1126. void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
  1127. struct gguf_context * ctx = ml.meta.get();
  1128. // determine vocab type
  1129. {
  1130. std::string tokenizer_model;
  1131. std::string tokenizer_pre;
  1132. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  1133. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  1134. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, n_token_types, false);
  1135. if (tokenizer_model == "no_vocab" || tokenizer_model == "none") {
  1136. type = LLAMA_VOCAB_TYPE_NONE;
  1137. // default special tokens
  1138. special_bos_id = LLAMA_TOKEN_NULL;
  1139. special_eos_id = LLAMA_TOKEN_NULL;
  1140. special_unk_id = LLAMA_TOKEN_NULL;
  1141. special_sep_id = LLAMA_TOKEN_NULL;
  1142. special_pad_id = LLAMA_TOKEN_NULL;
  1143. special_mask_id = LLAMA_TOKEN_NULL;
  1144. linefeed_id = LLAMA_TOKEN_NULL;
  1145. // read vocab size from metadata
  1146. uint32_t n_tokens = 0;
  1147. if (!ml.get_key(LLM_KV_VOCAB_SIZE, n_tokens, false)) {
  1148. LLAMA_LOG_WARN("%s: there is no vocab_size in metadata\n", __func__);
  1149. }
  1150. return;
  1151. }
  1152. if (tokenizer_model == "llama") {
  1153. type = LLAMA_VOCAB_TYPE_SPM;
  1154. // default special tokens
  1155. special_bos_id = 1;
  1156. special_eos_id = 2;
  1157. special_unk_id = 0;
  1158. special_sep_id = LLAMA_TOKEN_NULL;
  1159. special_pad_id = LLAMA_TOKEN_NULL;
  1160. special_mask_id = LLAMA_TOKEN_NULL;
  1161. } else if (tokenizer_model == "bert") {
  1162. type = LLAMA_VOCAB_TYPE_WPM;
  1163. // default special tokens
  1164. special_bos_id = 101;
  1165. special_eos_id = LLAMA_TOKEN_NULL;
  1166. special_unk_id = 100;
  1167. special_sep_id = 102;
  1168. special_pad_id = 0;
  1169. special_mask_id = 103;
  1170. } else if (tokenizer_model == "gpt2") {
  1171. type = LLAMA_VOCAB_TYPE_BPE;
  1172. // read bpe merges and populate bpe ranks
  1173. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  1174. if (merges_keyidx == -1) {
  1175. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  1176. }
  1177. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  1178. for (int i = 0; i < n_merges; i++) {
  1179. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  1180. //GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  1181. std::string first;
  1182. std::string second;
  1183. const size_t pos = word.find(' ', 1);
  1184. if (pos != std::string::npos) {
  1185. first = word.substr(0, pos);
  1186. second = word.substr(pos + 1);
  1187. }
  1188. bpe_ranks.emplace(std::make_pair(first, second), i);
  1189. }
  1190. // default special tokens
  1191. special_bos_id = 11;
  1192. special_eos_id = 11;
  1193. special_unk_id = LLAMA_TOKEN_NULL;
  1194. special_sep_id = LLAMA_TOKEN_NULL;
  1195. special_pad_id = LLAMA_TOKEN_NULL;
  1196. special_mask_id = LLAMA_TOKEN_NULL;
  1197. } else if (tokenizer_model == "t5") {
  1198. type = LLAMA_VOCAB_TYPE_UGM;
  1199. // default special tokens
  1200. special_bos_id = LLAMA_TOKEN_NULL;
  1201. special_eos_id = 1;
  1202. special_unk_id = 2;
  1203. special_sep_id = LLAMA_TOKEN_NULL;
  1204. special_pad_id = 0;
  1205. special_mask_id = LLAMA_TOKEN_NULL;
  1206. const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
  1207. if (precompiled_charsmap_keyidx != -1) {
  1208. size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
  1209. const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
  1210. precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
  1211. #ifdef IS_BIG_ENDIAN
  1212. // correct endiannes of data in precompiled_charsmap binary blob
  1213. uint32_t * xcda_blob_size = (uint32_t *) &precompiled_charsmap[0];
  1214. *xcda_blob_size = __builtin_bswap32(*xcda_blob_size);
  1215. assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap);
  1216. size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t);
  1217. uint32_t * xcda_array = (uint32_t *) &precompiled_charsmap[sizeof(uint32_t)];
  1218. for (size_t i = 0; i < xcda_array_size; ++i) {
  1219. xcda_array[i] = __builtin_bswap32(xcda_array[i]);
  1220. }
  1221. #endif
  1222. }
  1223. } else if (tokenizer_model == "rwkv") {
  1224. type = LLAMA_VOCAB_TYPE_RWKV;
  1225. // default special tokens
  1226. special_bos_id = LLAMA_TOKEN_NULL;
  1227. special_eos_id = LLAMA_TOKEN_NULL;
  1228. special_unk_id = LLAMA_TOKEN_NULL;
  1229. special_sep_id = LLAMA_TOKEN_NULL;
  1230. special_pad_id = LLAMA_TOKEN_NULL;
  1231. } else {
  1232. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  1233. }
  1234. // for now, only BPE models have pre-tokenizers
  1235. if (type == LLAMA_VOCAB_TYPE_BPE) {
  1236. add_space_prefix = false;
  1237. clean_spaces = true;
  1238. if (tokenizer_pre.empty()) {
  1239. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  1240. LLAMA_LOG_WARN("%s: \n", __func__);
  1241. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  1242. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  1243. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  1244. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  1245. LLAMA_LOG_WARN("%s: \n", __func__);
  1246. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1247. } else if (tokenizer_pre == "default") {
  1248. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1249. } else if (
  1250. tokenizer_pre == "llama3" ||
  1251. tokenizer_pre == "llama-v3" ||
  1252. tokenizer_pre == "llama-bpe"||
  1253. tokenizer_pre == "falcon3") {
  1254. pre_type = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  1255. ignore_merges = true;
  1256. add_bos = true;
  1257. } else if (
  1258. tokenizer_pre == "deepseek-llm") {
  1259. pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  1260. clean_spaces = false;
  1261. } else if (
  1262. tokenizer_pre == "deepseek-coder") {
  1263. pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  1264. clean_spaces = false;
  1265. } else if (
  1266. tokenizer_pre == "deepseek-v3") {
  1267. pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM;
  1268. clean_spaces = false;
  1269. } else if (
  1270. tokenizer_pre == "falcon") {
  1271. pre_type = LLAMA_VOCAB_PRE_TYPE_FALCON;
  1272. } else if (
  1273. tokenizer_pre == "mpt") {
  1274. pre_type = LLAMA_VOCAB_PRE_TYPE_MPT;
  1275. } else if (
  1276. tokenizer_pre == "starcoder") {
  1277. pre_type = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  1278. } else if (
  1279. tokenizer_pre == "gpt-2" ||
  1280. tokenizer_pre == "phi-2" ||
  1281. tokenizer_pre == "jina-es" ||
  1282. tokenizer_pre == "jina-de" ||
  1283. tokenizer_pre == "gigachat" ||
  1284. tokenizer_pre == "jina-v1-en" ||
  1285. tokenizer_pre == "jina-v2-es" ||
  1286. tokenizer_pre == "jina-v2-de" ||
  1287. tokenizer_pre == "jina-v2-code" ||
  1288. tokenizer_pre == "roberta-bpe") {
  1289. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
  1290. } else if (
  1291. tokenizer_pre == "refact") {
  1292. pre_type = LLAMA_VOCAB_PRE_TYPE_REFACT;
  1293. } else if (
  1294. tokenizer_pre == "command-r") {
  1295. pre_type = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  1296. clean_spaces = false;
  1297. } else if (
  1298. tokenizer_pre == "qwen2") {
  1299. pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  1300. clean_spaces = false;
  1301. } else if (
  1302. tokenizer_pre == "stablelm2") {
  1303. pre_type = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  1304. } else if (
  1305. tokenizer_pre == "olmo") {
  1306. pre_type = LLAMA_VOCAB_PRE_TYPE_OLMO;
  1307. } else if (
  1308. tokenizer_pre == "dbrx") {
  1309. pre_type = LLAMA_VOCAB_PRE_TYPE_DBRX;
  1310. } else if (
  1311. tokenizer_pre == "smaug-bpe") {
  1312. pre_type = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  1313. } else if (
  1314. tokenizer_pre == "poro-chat") {
  1315. pre_type = LLAMA_VOCAB_PRE_TYPE_PORO;
  1316. clean_spaces = false;
  1317. } else if (
  1318. tokenizer_pre == "chatglm-bpe") {
  1319. pre_type = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
  1320. special_bos_id = LLAMA_TOKEN_NULL;
  1321. } else if (
  1322. tokenizer_pre == "viking") {
  1323. pre_type = LLAMA_VOCAB_PRE_TYPE_VIKING;
  1324. clean_spaces = false;
  1325. } else if (
  1326. tokenizer_pre == "jais") {
  1327. pre_type = LLAMA_VOCAB_PRE_TYPE_JAIS;
  1328. } else if (
  1329. tokenizer_pre == "tekken") {
  1330. pre_type = LLAMA_VOCAB_PRE_TYPE_TEKKEN;
  1331. clean_spaces = false;
  1332. ignore_merges = true;
  1333. add_bos = true;
  1334. } else if (
  1335. tokenizer_pre == "smollm") {
  1336. pre_type = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
  1337. clean_spaces = false;
  1338. } else if (
  1339. tokenizer_pre == "codeshell") {
  1340. pre_type = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
  1341. } else if (
  1342. tokenizer_pre == "bloom") {
  1343. pre_type = LLAMA_VOCAB_PRE_TYPE_BLOOM;
  1344. } else if (
  1345. tokenizer_pre == "gpt3-finnish") {
  1346. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH;
  1347. } else if (
  1348. tokenizer_pre == "exaone") {
  1349. pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE;
  1350. } else if (
  1351. tokenizer_pre == "chameleon") {
  1352. pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
  1353. add_bos = true;
  1354. clean_spaces = false;
  1355. } else if (
  1356. tokenizer_pre == "minerva-7b") {
  1357. pre_type = LLAMA_VOCAB_PRE_TYPE_MINERVA;
  1358. } else if (
  1359. tokenizer_pre == "megrez") {
  1360. pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  1361. } else {
  1362. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  1363. }
  1364. } else if (type == LLAMA_VOCAB_TYPE_SPM) {
  1365. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1366. add_space_prefix = true;
  1367. clean_spaces = false;
  1368. add_bos = true;
  1369. add_eos = false;
  1370. } else if (type == LLAMA_VOCAB_TYPE_WPM) {
  1371. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1372. add_space_prefix = false;
  1373. clean_spaces = true;
  1374. add_bos = true;
  1375. add_eos = false;
  1376. } else if (type == LLAMA_VOCAB_TYPE_UGM) {
  1377. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1378. add_bos = false;
  1379. add_eos = true;
  1380. } else if (type == LLAMA_VOCAB_TYPE_RWKV) {
  1381. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1382. add_space_prefix = false;
  1383. clean_spaces = false;
  1384. add_bos = false;
  1385. add_eos = false;
  1386. } else {
  1387. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1388. }
  1389. ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX, add_space_prefix, false);
  1390. ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, remove_extra_whitespaces, false);
  1391. }
  1392. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  1393. if (token_idx == -1) {
  1394. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  1395. }
  1396. const float * scores = nullptr;
  1397. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  1398. if (score_idx != -1) {
  1399. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  1400. }
  1401. const int * toktypes = nullptr;
  1402. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  1403. if (toktype_idx != -1) {
  1404. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  1405. }
  1406. uint32_t n_tokens = gguf_get_arr_n(ctx, token_idx);
  1407. id_to_token.resize(n_tokens);
  1408. for (uint32_t i = 0; i < n_tokens; i++) {
  1409. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  1410. if (word.empty()) {
  1411. LLAMA_LOG_WARN("%s: empty token at index %u\n", __func__, i);
  1412. word = "[EMPTY_" + std::to_string(i) + "]";
  1413. }
  1414. token_to_id[word] = i;
  1415. max_token_len = std::max(max_token_len, (int) word.size());
  1416. auto & token_data = id_to_token[i];
  1417. token_data.text = std::move(word);
  1418. token_data.score = scores ? scores[i] : 0.0f;
  1419. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  1420. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  1421. switch(toktypes[i]) {
  1422. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  1423. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  1424. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  1425. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  1426. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  1427. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  1428. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  1429. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  1430. }
  1431. }
  1432. }
  1433. GGML_ASSERT(id_to_token.size() == token_to_id.size());
  1434. init_tokenizer(type);
  1435. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  1436. if (type == LLAMA_VOCAB_TYPE_SPM) {
  1437. try {
  1438. linefeed_id = vocab.byte_to_token('\n');
  1439. } catch (const std::exception & e) {
  1440. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  1441. linefeed_id = special_pad_id;
  1442. }
  1443. } else if (type == LLAMA_VOCAB_TYPE_WPM) {
  1444. linefeed_id = special_pad_id;
  1445. } else if (type == LLAMA_VOCAB_TYPE_RWKV) {
  1446. const std::vector<int> ids = tokenize("\n", false);
  1447. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  1448. linefeed_id = ids[0];
  1449. } else {
  1450. const std::vector<int> ids = tokenize("\xC4\x8A", false); // U+010A
  1451. //GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  1452. if (ids.empty()) {
  1453. LLAMA_LOG_WARN("%s: model vocab missing newline token, using special_pad_id instead\n", __func__);
  1454. linefeed_id = special_pad_id;
  1455. } else {
  1456. linefeed_id = ids[0];
  1457. }
  1458. }
  1459. // special tokens
  1460. {
  1461. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  1462. { LLM_KV_TOKENIZER_BOS_ID, special_bos_id },
  1463. { LLM_KV_TOKENIZER_EOS_ID, special_eos_id },
  1464. { LLM_KV_TOKENIZER_EOT_ID, special_eot_id },
  1465. { LLM_KV_TOKENIZER_EOM_ID, special_eom_id },
  1466. { LLM_KV_TOKENIZER_UNK_ID, special_unk_id },
  1467. { LLM_KV_TOKENIZER_SEP_ID, special_sep_id },
  1468. { LLM_KV_TOKENIZER_PAD_ID, special_pad_id },
  1469. { LLM_KV_TOKENIZER_MASK_ID, special_mask_id },
  1470. { LLM_KV_TOKENIZER_FIM_PRE_ID, special_fim_pre_id },
  1471. { LLM_KV_TOKENIZER_FIM_SUF_ID, special_fim_suf_id },
  1472. { LLM_KV_TOKENIZER_FIM_MID_ID, special_fim_mid_id },
  1473. { LLM_KV_TOKENIZER_FIM_PAD_ID, special_fim_pad_id },
  1474. { LLM_KV_TOKENIZER_FIM_REP_ID, special_fim_rep_id },
  1475. { LLM_KV_TOKENIZER_FIM_SEP_ID, special_fim_sep_id },
  1476. // deprecated
  1477. { LLM_KV_TOKENIZER_PREFIX_ID, special_fim_pre_id },
  1478. { LLM_KV_TOKENIZER_SUFFIX_ID, special_fim_suf_id },
  1479. { LLM_KV_TOKENIZER_MIDDLE_ID, special_fim_mid_id },
  1480. };
  1481. for (const auto & it : special_token_types) {
  1482. const std::string & key = kv(std::get<0>(it));
  1483. int32_t & id = std::get<1>(it);
  1484. uint32_t new_id;
  1485. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  1486. continue;
  1487. }
  1488. if (new_id >= id_to_token.size()) {
  1489. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  1490. __func__, key.c_str(), new_id, id);
  1491. } else {
  1492. id = new_id;
  1493. }
  1494. }
  1495. // Handle add_bos and add_eos
  1496. {
  1497. bool temp = true;
  1498. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  1499. add_bos = temp;
  1500. }
  1501. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  1502. add_eos = temp;
  1503. }
  1504. }
  1505. // auto-detect special tokens by text
  1506. // TODO: convert scripts should provide these tokens through the KV metadata LLM_KV_TOKENIZER_...
  1507. // for now, we apply this workaround to find the tokens based on their text
  1508. for (const auto & t : token_to_id) {
  1509. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  1510. if (special_eot_id == LLAMA_TOKEN_NULL) {
  1511. if (false
  1512. || t.first == "<|eot_id|>"
  1513. || t.first == "<|im_end|>"
  1514. || t.first == "<|end|>"
  1515. || t.first == "<end_of_turn>"
  1516. || t.first == "<|endoftext|>"
  1517. || t.first == "<EOT>"
  1518. || t.first == "<|end▁of▁sentence|>" // DeepSeek
  1519. ) {
  1520. special_eot_id = t.second;
  1521. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1522. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1523. __func__, t.second, t.first.c_str());
  1524. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1525. }
  1526. }
  1527. }
  1528. // find EOM token: "<|eom_id|>"
  1529. if (special_eom_id == LLAMA_TOKEN_NULL) {
  1530. if (false
  1531. || t.first == "<|eom_id|>"
  1532. ) {
  1533. special_eom_id = t.second;
  1534. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1535. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1536. __func__, t.second, t.first.c_str());
  1537. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1538. }
  1539. }
  1540. }
  1541. // find FIM_PRE token: "<|fim_prefix|>", "<fim-prefix>", "<PRE>", etc.
  1542. if (special_fim_pre_id == LLAMA_TOKEN_NULL) {
  1543. if (false
  1544. || t.first == "<|fim_prefix|>" // Qwen
  1545. || t.first == "<fim-prefix>"
  1546. || t.first == "<|fim▁begin|>" // DeepSeek
  1547. || t.first == "<PRE>"
  1548. ) {
  1549. special_fim_pre_id = t.second;
  1550. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1551. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1552. __func__, t.second, t.first.c_str());
  1553. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1554. }
  1555. }
  1556. }
  1557. // find FIM_SUF token: "<|fim_suffix|>", "<fim-suffix>", "<SUF>", etc.
  1558. if (special_fim_suf_id == LLAMA_TOKEN_NULL) {
  1559. if (false
  1560. || t.first == "<|fim_suffix|>" // Qwen
  1561. || t.first == "<fim-suffix>"
  1562. || t.first == "<|fim▁hole|>" // DeepSeek
  1563. || t.first == "<SUF>"
  1564. ) {
  1565. special_fim_suf_id = t.second;
  1566. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1567. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1568. __func__, t.second, t.first.c_str());
  1569. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1570. }
  1571. }
  1572. }
  1573. // find FIM_MID token: "<|fim_middle|>", "<fim-middle>", "<MID>", etc.
  1574. if (special_fim_mid_id == LLAMA_TOKEN_NULL) {
  1575. if (false
  1576. || t.first == "<|fim_middle|>" // Qwen
  1577. || t.first == "<fim-middle>"
  1578. || t.first == "<|fim▁end|>" // DeepSeek
  1579. || t.first == "<MID>"
  1580. ) {
  1581. special_fim_mid_id = t.second;
  1582. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1583. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1584. __func__, t.second, t.first.c_str());
  1585. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1586. }
  1587. }
  1588. }
  1589. // find FIM_PAD token: "<|fim_pad|>", "<fim-pad>", "<PAD>", etc.
  1590. if (special_fim_pad_id == LLAMA_TOKEN_NULL) {
  1591. if (false
  1592. || t.first == "<|fim_pad|>" // Qwen
  1593. || t.first == "<fim-pad>"
  1594. || t.first == "<PAD>"
  1595. ) {
  1596. special_fim_pad_id = t.second;
  1597. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1598. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1599. __func__, t.second, t.first.c_str());
  1600. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1601. }
  1602. }
  1603. }
  1604. // find FIM_REP token: "<|fim_repo|>", "<fim-repo>", "<REP>", etc.
  1605. if (special_fim_rep_id == LLAMA_TOKEN_NULL) {
  1606. if (false
  1607. || t.first == "<|fim_repo|>" // Qwen
  1608. || t.first == "<|repo_name|>"
  1609. || t.first == "<fim-repo>"
  1610. || t.first == "<REPO>"
  1611. ) {
  1612. special_fim_rep_id = t.second;
  1613. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1614. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1615. __func__, t.second, t.first.c_str());
  1616. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1617. }
  1618. }
  1619. }
  1620. // find FIM_SEP token: "<|file_sep|>"
  1621. if (special_fim_sep_id == LLAMA_TOKEN_NULL) {
  1622. if (false
  1623. || t.first == "<|file_sep|>" // Qwen
  1624. ) {
  1625. special_fim_sep_id = t.second;
  1626. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1627. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1628. __func__, t.second, t.first.c_str());
  1629. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1630. }
  1631. }
  1632. }
  1633. }
  1634. // maintain a list of tokens that cause end-of-generation
  1635. // this is currently determined based on the token text, which is obviously not ideal
  1636. // ref: https://github.com/ggerganov/llama.cpp/issues/9606
  1637. special_eog_ids.clear();
  1638. if (special_fim_pad_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_pad_id) == 0) {
  1639. special_eog_ids.insert(special_fim_pad_id);
  1640. }
  1641. if (special_fim_rep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_rep_id) == 0) {
  1642. special_eog_ids.insert(special_fim_rep_id);
  1643. }
  1644. if (special_fim_sep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_sep_id) == 0) {
  1645. special_eog_ids.insert(special_fim_sep_id);
  1646. }
  1647. for (const auto & t : token_to_id) {
  1648. if (false
  1649. || t.first == "<|eot_id|>"
  1650. || t.first == "<|im_end|>"
  1651. || t.first == "<|end|>"
  1652. || t.first == "<end_of_turn>"
  1653. || t.first == "<|endoftext|>"
  1654. || t.first == "<|eom_id|>"
  1655. || t.first == "<EOT>"
  1656. ) {
  1657. special_eog_ids.insert(t.second);
  1658. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1659. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1660. __func__, t.second, t.first.c_str());
  1661. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1662. }
  1663. } else {
  1664. // token is control, but not marked as EOG -> print a debug log
  1665. if (id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL && special_eog_ids.count(t.second) == 0) {
  1666. LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
  1667. __func__, t.second, t.first.c_str());
  1668. }
  1669. }
  1670. }
  1671. // sanity checks
  1672. if (special_eos_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eos_id) == 0) {
  1673. special_eog_ids.insert(special_eos_id);
  1674. LLAMA_LOG_WARN("%s: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
  1675. }
  1676. if (special_eot_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eot_id) == 0) {
  1677. special_eog_ids.insert(special_eot_id);
  1678. LLAMA_LOG_WARN("%s: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
  1679. }
  1680. if (special_eom_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eom_id) == 0) {
  1681. special_eog_ids.insert(special_eom_id);
  1682. LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
  1683. }
  1684. }
  1685. // build special tokens cache
  1686. {
  1687. for (llama_token id = 0; id < (llama_token) n_tokens; ++id) {
  1688. if (id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
  1689. cache_special_tokens.push_back(id);
  1690. }
  1691. }
  1692. std::sort(cache_special_tokens.begin(), cache_special_tokens.end(),
  1693. [&] (const llama_token a, const llama_token b) {
  1694. return id_to_token[a].text.size() > id_to_token[b].text.size();
  1695. }
  1696. );
  1697. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t) cache_special_tokens.size());
  1698. }
  1699. // build token to piece cache
  1700. {
  1701. size_t size_cache = 0;
  1702. std::vector<std::string> cache(n_tokens);
  1703. for (uint32_t id = 0; id < n_tokens; ++id) {
  1704. cache[id] = token_to_piece_for_cache(id, true);
  1705. size_cache += cache[id].size();
  1706. }
  1707. std::swap(cache_token_to_piece, cache);
  1708. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  1709. }
  1710. // Handle per token attributes
  1711. //NOTE: Each model customizes per token attributes.
  1712. //NOTE: Per token attributes are missing from the GGUF file.
  1713. //TODO: Extract attributes from GGUF file.
  1714. {
  1715. auto _contains_any = [] (const std::string & str, const std::vector<std::string> & substrs) -> bool {
  1716. for (const auto & substr : substrs) {
  1717. if (str.find(substr) < std::string::npos) {
  1718. return true;
  1719. }
  1720. }
  1721. return false;
  1722. };
  1723. auto _set_tokenid_attr = [&] (const llama_token id, llama_token_attr attr, bool value) {
  1724. uint32_t current = id_to_token.at(id).attr;
  1725. current = value ? (current | attr) : (current & ~attr);
  1726. id_to_token[id].attr = (llama_token_attr) current;
  1727. };
  1728. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  1729. _set_tokenid_attr(token_to_id.at(token), attr, value);
  1730. };
  1731. std::string model_name;
  1732. std::string tokenizer_pre;
  1733. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  1734. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  1735. // model name to lowercase
  1736. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  1737. [] (const std::string::value_type x) {
  1738. return std::tolower(x);
  1739. }
  1740. );
  1741. // set attributes by model/tokenizer name
  1742. if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
  1743. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  1744. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  1745. for (auto id : cache_special_tokens) {
  1746. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  1747. }
  1748. for (const auto * token : {"</s>"}) {
  1749. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  1750. }
  1751. for (const auto * token : {"<unk>", "<s>", "<|endoftext|>"}) {
  1752. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  1753. }
  1754. }
  1755. }
  1756. }
  1757. enum llama_vocab_type llama_vocab::impl::get_type() const {
  1758. return type;
  1759. }
  1760. std::string llama_vocab::impl::type_name() const{
  1761. switch (type) {
  1762. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  1763. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  1764. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  1765. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  1766. case LLAMA_VOCAB_TYPE_UGM: return "UGM";
  1767. case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
  1768. default: return "unknown";
  1769. }
  1770. }
  1771. bool llama_vocab::impl::is_normal(llama_token id) const {
  1772. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  1773. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  1774. }
  1775. bool llama_vocab::impl::is_unknown(llama_token id) const {
  1776. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  1777. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  1778. }
  1779. bool llama_vocab::impl::is_control(llama_token id) const {
  1780. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  1781. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  1782. }
  1783. bool llama_vocab::impl::is_byte(llama_token id) const {
  1784. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  1785. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  1786. }
  1787. bool llama_vocab::impl::is_user_defined(llama_token id) const {
  1788. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  1789. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  1790. }
  1791. bool llama_vocab::impl::is_unused(llama_token id) const {
  1792. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  1793. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
  1794. }
  1795. bool llama_vocab::impl::is_eog(llama_token id) const {
  1796. return id != LLAMA_TOKEN_NULL && special_eog_ids.count(id) > 0;
  1797. }
  1798. uint8_t llama_vocab::impl::token_to_byte(llama_token id) const {
  1799. GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE);
  1800. GGML_ASSERT(is_byte(id));
  1801. const auto & token_data = id_to_token.at(id);
  1802. switch (get_type()) {
  1803. case LLAMA_VOCAB_TYPE_SPM:
  1804. case LLAMA_VOCAB_TYPE_UGM: {
  1805. auto buf = token_data.text.substr(3, 2);
  1806. return strtol(buf.c_str(), NULL, 16);
  1807. }
  1808. case LLAMA_VOCAB_TYPE_BPE: {
  1809. GGML_ABORT("fatal error");
  1810. }
  1811. case LLAMA_VOCAB_TYPE_WPM: {
  1812. GGML_ABORT("fatal error");
  1813. }
  1814. default:
  1815. GGML_ABORT("fatal error");
  1816. }
  1817. }
  1818. llama_token_attr llama_vocab::impl::token_get_attr(llama_token id) const {
  1819. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  1820. return id_to_token.at(id).attr;
  1821. }
  1822. void llama_vocab::impl::init_tokenizer(enum llama_vocab_type type) {
  1823. LLAMA_LOG_DEBUG("%s: initializing tokenizer for type %d\n", __func__, type);
  1824. switch (type) {
  1825. case LLAMA_VOCAB_TYPE_SPM:
  1826. tokenizer = std::make_unique<llm_tokenizer_spm>(vocab);
  1827. break;
  1828. case LLAMA_VOCAB_TYPE_BPE:
  1829. tokenizer = std::make_unique<llm_tokenizer_bpe>(vocab);
  1830. break;
  1831. case LLAMA_VOCAB_TYPE_WPM:
  1832. tokenizer = std::make_unique<llm_tokenizer_wpm>(vocab);
  1833. break;
  1834. case LLAMA_VOCAB_TYPE_UGM:
  1835. tokenizer = std::make_unique<llm_tokenizer_ugm>(vocab, precompiled_charsmap);
  1836. break;
  1837. case LLAMA_VOCAB_TYPE_RWKV:
  1838. tokenizer = std::make_unique<llm_tokenizer_rwkv>(vocab);
  1839. break;
  1840. default:
  1841. GGML_ABORT("unsupported vocab type");
  1842. }
  1843. }
  1844. //
  1845. // (de-) tokenize
  1846. //
  1847. // #define PRETOKENIZERDEBUG
  1848. void llama_vocab::impl::tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const {
  1849. // for each special token
  1850. for (const llama_token special_id : cache_special_tokens) {
  1851. const auto & data = vocab.get_token_data(special_id);
  1852. const auto & text = data.text;
  1853. if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
  1854. // Ignore control and unknown tokens when parse_special == false
  1855. continue;
  1856. // User-defined tokens are still pre-tokenized before everything else
  1857. // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
  1858. // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
  1859. }
  1860. // for each text fragment
  1861. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  1862. while (it != buffer.end()) {
  1863. auto & fragment = (*it);
  1864. // if a fragment is text ( not yet processed )
  1865. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1866. const auto & raw_text = fragment.raw_text;
  1867. auto raw_text_base_offset = fragment.offset;
  1868. auto raw_text_base_length = fragment.length;
  1869. // loop over the text
  1870. while (true) {
  1871. // find the first occurrence of a given special token in this fragment
  1872. // passing offset argument only limit the "search area" but match coordinates
  1873. // are still relative to the source full raw_text
  1874. auto match = raw_text.find(text, raw_text_base_offset);
  1875. // no occurrences found, stop processing this fragment for a given special token
  1876. if (match == std::string::npos) break;
  1877. // check if match is within bounds of offset <-> length
  1878. if (match + text.length() > raw_text_base_offset + raw_text_base_length) break;
  1879. #ifdef PRETOKENIZERDEBUG
  1880. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  1881. #endif
  1882. auto source = std::distance(buffer.begin(), it);
  1883. // if match is further than base offset
  1884. // then we have some text to the left of it
  1885. if (match > raw_text_base_offset) {
  1886. // left
  1887. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  1888. int64_t left_reminder_length = match - raw_text_base_offset;
  1889. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  1890. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  1891. left_reminder_length--;
  1892. }
  1893. }
  1894. if (left_reminder_length > 0) {
  1895. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  1896. it++;
  1897. }
  1898. #ifdef PRETOKENIZERDEBUG
  1899. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  1900. #endif
  1901. }
  1902. // special token
  1903. buffer.emplace_after(it, special_id);
  1904. it++;
  1905. // right
  1906. if (match + text.length() < raw_text_base_offset + raw_text_base_length) {
  1907. int64_t right_reminder_offset = match + text.length();
  1908. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + text.length());
  1909. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  1910. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  1911. right_reminder_offset++;
  1912. right_reminder_length--;
  1913. }
  1914. }
  1915. if (right_reminder_length > 0) {
  1916. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  1917. it++;
  1918. }
  1919. #ifdef PRETOKENIZERDEBUG
  1920. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  1921. #endif
  1922. if (source == 0) {
  1923. buffer.erase_after(buffer.before_begin());
  1924. } else {
  1925. buffer.erase_after(std::next(buffer.begin(), (source - 1)));
  1926. }
  1927. // repeat for the right side
  1928. raw_text_base_offset = right_reminder_offset;
  1929. raw_text_base_length = right_reminder_length;
  1930. #ifdef PRETOKENIZERDEBUG
  1931. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  1932. #endif
  1933. } else {
  1934. if (source == 0) {
  1935. buffer.erase_after(buffer.before_begin());
  1936. } else {
  1937. buffer.erase_after(std::next(buffer.begin(), (source - 1)));
  1938. }
  1939. break;
  1940. }
  1941. }
  1942. }
  1943. it++;
  1944. }
  1945. }
  1946. }
  1947. // NOTE: avoid ever using this except for building the token_to_piece caches
  1948. std::string llama_vocab::impl::token_to_piece_for_cache(llama_token token, bool special) const {
  1949. std::string piece;
  1950. piece.resize(piece.capacity()); // using string internal cache
  1951. const int n_chars = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special);
  1952. if (n_chars < 0) {
  1953. piece.resize(-n_chars);
  1954. int check = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special);
  1955. GGML_ASSERT(check == -n_chars);
  1956. }
  1957. else {
  1958. piece.resize(n_chars);
  1959. }
  1960. return piece;
  1961. }
  1962. static void llama_escape_whitespace(std::string & text) {
  1963. replace_all(text, " ", "\xe2\x96\x81");
  1964. }
  1965. static void llama_unescape_whitespace(std::string & word) {
  1966. replace_all(word, "\xe2\x96\x81", " ");
  1967. }
  1968. static std::string llama_decode_text(const std::string & text) {
  1969. std::string decoded_text;
  1970. const auto cpts = unicode_cpts_from_utf8(text);
  1971. for (const auto cpt : cpts) {
  1972. const auto utf8 = unicode_cpt_to_utf8(cpt);
  1973. try {
  1974. decoded_text += unicode_utf8_to_byte(utf8);
  1975. } catch (const std::out_of_range & /*e*/) {
  1976. decoded_text += "[UNK_BYTE_0x";
  1977. for (const auto c : utf8) {
  1978. decoded_text += format("%02x", (uint8_t) c);
  1979. }
  1980. decoded_text += text + "]";
  1981. }
  1982. }
  1983. return decoded_text;
  1984. }
  1985. std::vector<llama_token> llama_vocab::impl::tokenize(
  1986. const std::string & raw_text,
  1987. bool add_special,
  1988. bool parse_special) const {
  1989. GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
  1990. std::vector<llama_token> output;
  1991. std::forward_list<fragment_buffer_variant> fragment_buffer;
  1992. if (!raw_text.empty()) {
  1993. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  1994. tokenizer_st_partition(fragment_buffer, parse_special);
  1995. }
  1996. switch (get_type()) {
  1997. case LLAMA_VOCAB_TYPE_SPM:
  1998. {
  1999. // OG tokenizer behavior:
  2000. //
  2001. // tokenizer.encode('', add_special_tokens=True) returns [1]
  2002. // tokenizer.encode('', add_special_tokens=False) returns []
  2003. bool is_prev_special = true; // prefix with space if first token
  2004. if (add_special && add_bos) {
  2005. GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
  2006. output.push_back(special_bos_id);
  2007. is_prev_special = true;
  2008. }
  2009. for (const auto & fragment : fragment_buffer) {
  2010. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2011. std::string text;
  2012. // prefix with space if previous is special
  2013. if (add_space_prefix && is_prev_special) {
  2014. text = ' ';
  2015. }
  2016. text += fragment.raw_text.substr(fragment.offset, fragment.length);
  2017. #ifdef PRETOKENIZERDEBUG
  2018. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2019. #endif
  2020. llama_escape_whitespace(text);
  2021. llm_tokenizer_spm_session session(vocab);
  2022. session.tokenize(text, output);
  2023. is_prev_special = false;
  2024. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2025. output.push_back(fragment.token);
  2026. is_prev_special = true;
  2027. }
  2028. }
  2029. if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) {
  2030. LLAMA_LOG_WARN(
  2031. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  2032. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  2033. "Are you sure this is what you want?\n", __FUNCTION__);
  2034. }
  2035. if (add_special && add_eos) {
  2036. GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL);
  2037. output.push_back(special_eos_id);
  2038. }
  2039. } break;
  2040. case LLAMA_VOCAB_TYPE_BPE:
  2041. {
  2042. llm_tokenizer_bpe_session session(vocab, *static_cast<const llm_tokenizer_bpe *>(tokenizer.get()));
  2043. // it calls some other methods that are not exist in llm_tokenizer,
  2044. // here just cast it to bpe tokenizer object
  2045. if (add_special) {
  2046. session.append_bos(output);
  2047. }
  2048. for (const auto & fragment : fragment_buffer) {
  2049. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2050. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2051. #ifdef PRETOKENIZERDEBUG
  2052. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2053. #endif
  2054. session.tokenize(text, output);
  2055. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2056. session.append(fragment.token, output);
  2057. }
  2058. }
  2059. if (add_special) {
  2060. session.append_eos(output);
  2061. session.check_double_bos_eos(output);
  2062. }
  2063. } break;
  2064. case LLAMA_VOCAB_TYPE_WPM:
  2065. {
  2066. if (add_special) {
  2067. GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
  2068. output.push_back(special_bos_id);
  2069. }
  2070. llm_tokenizer_wpm_session session(vocab);
  2071. for (const auto & fragment : fragment_buffer) {
  2072. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2073. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2074. #ifdef PRETOKENIZERDEBUG
  2075. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2076. #endif
  2077. session.tokenize(text, output);
  2078. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2079. output.push_back(fragment.token);
  2080. }
  2081. }
  2082. if (add_special) {
  2083. GGML_ASSERT(special_sep_id != LLAMA_TOKEN_NULL);
  2084. output.push_back(special_sep_id);
  2085. }
  2086. } break;
  2087. case LLAMA_VOCAB_TYPE_UGM:
  2088. {
  2089. if (add_special && add_bos) {
  2090. GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
  2091. output.push_back(special_bos_id);
  2092. }
  2093. llm_tokenizer_ugm_session session(vocab, *static_cast<const llm_tokenizer_ugm *>(tokenizer.get()));
  2094. for (const auto & fragment : fragment_buffer) {
  2095. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2096. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2097. #ifdef PRETOKENIZERDEBUG
  2098. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2099. #endif
  2100. session.tokenize(text, output);
  2101. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2102. output.push_back(fragment.token);
  2103. }
  2104. }
  2105. if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) {
  2106. LLAMA_LOG_WARN(
  2107. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  2108. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  2109. "Are you sure this is what you want?\n", __FUNCTION__);
  2110. }
  2111. if (add_special && add_eos) {
  2112. GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL);
  2113. output.push_back(special_eos_id);
  2114. }
  2115. } break;
  2116. case LLAMA_VOCAB_TYPE_RWKV:
  2117. {
  2118. llm_tokenizer_rwkv_session session(vocab, *static_cast<const llm_tokenizer_rwkv *>(tokenizer.get()));
  2119. for (const auto & fragment : fragment_buffer) {
  2120. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2121. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2122. #ifdef PRETOKENIZERDEBUG
  2123. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2124. #endif
  2125. session.tokenize(text, output);
  2126. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2127. output.push_back(fragment.token);
  2128. }
  2129. }
  2130. } break;
  2131. case LLAMA_VOCAB_TYPE_NONE:
  2132. GGML_ABORT("fatal error");
  2133. }
  2134. return output;
  2135. }
  2136. int32_t llama_vocab::impl::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const {
  2137. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  2138. static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
  2139. const llama_token_attr attr = token_get_attr(token);
  2140. if (!special && (attr & attr_special)) {
  2141. return 0;
  2142. }
  2143. // copy piece chars to output text buffer
  2144. // skip up to 'lstrip' leading spaces before copying
  2145. auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
  2146. for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
  2147. token++;
  2148. size--;
  2149. }
  2150. if (length < (int32_t)size) {
  2151. return -(int32_t) size;
  2152. }
  2153. memcpy(buf, token, size);
  2154. return (int32_t) size;
  2155. };
  2156. // if we have a cache - use it
  2157. {
  2158. const auto & cache = cache_token_to_piece;
  2159. if (!cache.empty()) {
  2160. const auto & result = cache.at(token);
  2161. return _try_copy(result.data(), result.size());
  2162. }
  2163. }
  2164. if (0 <= token && token < (int32_t) id_to_token.size()) {
  2165. const std::string & token_text = id_to_token[token].text;
  2166. switch (get_type()) {
  2167. case LLAMA_VOCAB_TYPE_WPM:
  2168. case LLAMA_VOCAB_TYPE_SPM:
  2169. case LLAMA_VOCAB_TYPE_UGM: {
  2170. // NOTE: we accept all unsupported token types,
  2171. // suppressing them like CONTROL tokens.
  2172. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  2173. return _try_copy(token_text.data(), token_text.size());
  2174. }
  2175. if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  2176. std::string result = token_text;
  2177. llama_unescape_whitespace(result);
  2178. return _try_copy(result.data(), result.size());
  2179. }
  2180. if (attr & LLAMA_TOKEN_ATTR_BYTE) {
  2181. char byte = (char) token_to_byte(token);
  2182. return _try_copy((char*) &byte, 1);
  2183. }
  2184. break;
  2185. }
  2186. case LLAMA_VOCAB_TYPE_BPE: {
  2187. // NOTE: we accept all unsupported token types,
  2188. // suppressing them like CONTROL tokens.
  2189. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  2190. return _try_copy(token_text.data(), token_text.size());
  2191. }
  2192. if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  2193. std::string result = llama_decode_text(token_text);
  2194. return _try_copy(result.data(), result.size());
  2195. }
  2196. break;
  2197. }
  2198. case LLAMA_VOCAB_TYPE_RWKV: {
  2199. std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text);
  2200. // If we don't have enough space, return an error
  2201. if (result.size() > (size_t)length) {
  2202. return -(int)result.size();
  2203. }
  2204. memcpy(buf, result.data(), result.size());
  2205. return (int)result.size();
  2206. }
  2207. default:
  2208. GGML_ABORT("fatal error");
  2209. }
  2210. }
  2211. return 0;
  2212. }
  2213. const std::string & llama_vocab::impl::token_to_piece(llama_token token) const {
  2214. return cache_token_to_piece.at(token);
  2215. }
  2216. int32_t llama_vocab::impl::detokenize(
  2217. const llama_token * tokens,
  2218. int32_t n_tokens,
  2219. char * text,
  2220. int32_t text_len_max,
  2221. bool remove_special,
  2222. bool unparse_special) const {
  2223. if (type == LLAMA_VOCAB_TYPE_NONE) {
  2224. return 0;
  2225. }
  2226. GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
  2227. int32_t avail = text_len_max;
  2228. int32_t total = 0;
  2229. // remove the leading space
  2230. bool remove_space = add_space_prefix;
  2231. if (remove_special && add_bos) {
  2232. if (n_tokens > 0 && tokens[0] == special_bos_id) {
  2233. remove_space = false;
  2234. n_tokens--;
  2235. tokens++;
  2236. }
  2237. }
  2238. if (remove_special && add_eos) {
  2239. if (n_tokens > 0 && tokens[n_tokens - 1] == special_eos_id) {
  2240. n_tokens--;
  2241. }
  2242. }
  2243. for (int32_t i = 0; i < n_tokens; ++i) {
  2244. GGML_ASSERT(avail >= 0);
  2245. int32_t n_chars = token_to_piece(tokens[i], text, avail, remove_space, unparse_special);
  2246. remove_space = false;
  2247. if (n_chars < 0) {
  2248. avail = 0;
  2249. total -= n_chars;
  2250. } else if (n_chars > 0) {
  2251. avail -= n_chars;
  2252. text += n_chars;
  2253. total += n_chars;
  2254. }
  2255. }
  2256. if (total > text_len_max) {
  2257. return -total;
  2258. }
  2259. if (clean_spaces) {
  2260. text -= total; // restart text
  2261. // first pass: characters ?!., //TODO: where do these characters come from?
  2262. const int32_t total1 = total;
  2263. total = total ? 1 : 0;
  2264. for (int32_t i = 1; i < total1; ++i) {
  2265. const char x = text[i];
  2266. if (text[i - 1] == ' ') {
  2267. if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
  2268. total--; // remove space
  2269. }
  2270. }
  2271. text[total++] = x;
  2272. }
  2273. // second pass: strip single apostrophe between spaces
  2274. const int32_t total2 = total;
  2275. total = total ? 1 : 0;
  2276. for (int32_t i = 1; i < total2; ++i) {
  2277. const char x = text[i];
  2278. if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
  2279. total--; // remove prev space
  2280. text[++i] = '\0'; // remove next space
  2281. }
  2282. text[total++] = x;
  2283. }
  2284. // third pass: apostrophe contractions //NOTE: this makes sense?
  2285. const int32_t total3 = total;
  2286. total = total ? 1 : 0;
  2287. for (int32_t i = 1; i < total3; ++i) {
  2288. const char x = text[i];
  2289. if (text[i - 1] == ' ') {
  2290. if (x == '\'' && i + 1 < total3) {
  2291. const char x1 = text[i + 1];
  2292. if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
  2293. //total--; // remove space
  2294. } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
  2295. total--; // remove space
  2296. } else if (i + 2 < total3) {
  2297. const char x2 = text[i + 2];
  2298. if ((x1 == 'l' && x2 == 'l')) { // " 'll"
  2299. //total--; // remove space
  2300. } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
  2301. total--; // remove space
  2302. } else {
  2303. //total--; // remove space
  2304. }
  2305. } else {
  2306. //total--; // remove space
  2307. }
  2308. }
  2309. }
  2310. text[total++] = x;
  2311. }
  2312. }
  2313. return total <= text_len_max ? total : -total;
  2314. }
  2315. void llama_vocab::impl::print_info() const {
  2316. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, type_name().c_str());
  2317. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, vocab.n_tokens());
  2318. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (uint32_t) bpe_ranks.size());
  2319. // special tokens
  2320. if (special_bos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, special_bos_id, id_to_token[special_bos_id].text.c_str() ); }
  2321. if (special_eos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, special_eos_id, id_to_token[special_eos_id].text.c_str() ); }
  2322. if (special_eot_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, special_eot_id, id_to_token[special_eot_id].text.c_str() ); }
  2323. if (special_eom_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, special_eom_id, id_to_token[special_eom_id].text.c_str() ); }
  2324. if (special_unk_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, special_unk_id, id_to_token[special_unk_id].text.c_str() ); }
  2325. if (special_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, special_sep_id, id_to_token[special_sep_id].text.c_str() ); }
  2326. if (special_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, special_pad_id, id_to_token[special_pad_id].text.c_str() ); }
  2327. if (special_mask_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, special_mask_id, id_to_token[special_mask_id].text.c_str() ); }
  2328. if (linefeed_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, linefeed_id, id_to_token[linefeed_id].text.c_str() ); }
  2329. if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token = %d '%s'\n", __func__, special_fim_pre_id, id_to_token[special_fim_pre_id].text.c_str() ); }
  2330. if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token = %d '%s'\n", __func__, special_fim_suf_id, id_to_token[special_fim_suf_id].text.c_str() ); }
  2331. if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token = %d '%s'\n", __func__, special_fim_mid_id, id_to_token[special_fim_mid_id].text.c_str() ); }
  2332. if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token = %d '%s'\n", __func__, special_fim_pad_id, id_to_token[special_fim_pad_id].text.c_str() ); }
  2333. if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token = %d '%s'\n", __func__, special_fim_rep_id, id_to_token[special_fim_rep_id].text.c_str() ); }
  2334. if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token = %d '%s'\n", __func__, special_fim_sep_id, id_to_token[special_fim_sep_id].text.c_str() ); }
  2335. for (const auto & id : special_eog_ids) {
  2336. LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, id_to_token[id].text.c_str() );
  2337. }
  2338. LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, max_token_len);
  2339. }
  2340. llama_vocab::llama_vocab() : pimpl(new impl(*this)) {
  2341. }
  2342. llama_vocab::~llama_vocab() {
  2343. }
  2344. void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) {
  2345. pimpl->load(ml, kv);
  2346. }
  2347. enum llama_vocab_type llama_vocab::get_type() const {
  2348. return pimpl->type;
  2349. }
  2350. enum llama_vocab_pre_type llama_vocab::get_pre_type() const {
  2351. return pimpl->pre_type;
  2352. }
  2353. uint32_t llama_vocab::n_tokens() const {
  2354. return (uint32_t) pimpl->id_to_token.size();
  2355. }
  2356. uint32_t llama_vocab::n_token_types() const {
  2357. return (uint32_t) pimpl->n_token_types;
  2358. }
  2359. std::string llama_vocab::type_name() const{
  2360. return pimpl->type_name();
  2361. }
  2362. bool llama_vocab::is_normal(llama_token id) const {
  2363. return pimpl->is_normal(id);
  2364. }
  2365. bool llama_vocab::is_unknown(llama_token id) const {
  2366. return pimpl->is_unknown(id);
  2367. }
  2368. bool llama_vocab::is_control(llama_token id) const {
  2369. return pimpl->is_control(id);
  2370. }
  2371. bool llama_vocab::is_byte(llama_token id) const {
  2372. return pimpl->is_byte(id);
  2373. }
  2374. bool llama_vocab::is_user_defined(llama_token id) const {
  2375. return pimpl->is_user_defined(id);
  2376. }
  2377. bool llama_vocab::is_unused(llama_token id) const {
  2378. return pimpl->is_unused(id);
  2379. }
  2380. bool llama_vocab::is_eog(llama_token id) const {
  2381. return pimpl->is_eog(id);
  2382. }
  2383. uint8_t llama_vocab::token_to_byte(llama_token id) const {
  2384. return pimpl->token_to_byte(id);
  2385. }
  2386. llama_token llama_vocab::byte_to_token(uint8_t ch) const {
  2387. GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE);
  2388. static const char * hex = "0123456789ABCDEF";
  2389. switch (get_type()) {
  2390. case LLAMA_VOCAB_TYPE_SPM:
  2391. case LLAMA_VOCAB_TYPE_UGM: {
  2392. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  2393. auto token = pimpl->token_to_id.find(buf);
  2394. if (token != pimpl->token_to_id.end()) {
  2395. return (*token).second;
  2396. }
  2397. // Try to fall back to just the byte as a string
  2398. const char buf2[2] = { (char)ch, 0 };
  2399. return pimpl->token_to_id.at(buf2);
  2400. }
  2401. case LLAMA_VOCAB_TYPE_WPM:
  2402. case LLAMA_VOCAB_TYPE_BPE: {
  2403. return pimpl->token_to_id.at(unicode_byte_to_utf8(ch));
  2404. }
  2405. default:
  2406. GGML_ABORT("fatal error");
  2407. }
  2408. }
  2409. llama_token llama_vocab::text_to_token(const std::string & text) const {
  2410. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2411. auto it = pimpl->token_to_id.find(text);
  2412. if (it != pimpl->token_to_id.end()) {
  2413. return (*it).second;
  2414. }
  2415. return LLAMA_TOKEN_NULL;
  2416. }
  2417. const llama_vocab::token_data & llama_vocab::get_token_data(llama_token id) const {
  2418. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2419. return pimpl->id_to_token.at(id);
  2420. }
  2421. const char * llama_vocab::token_get_text(llama_token id) const {
  2422. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2423. return pimpl->id_to_token.at(id).text.c_str();
  2424. }
  2425. float llama_vocab::token_get_score(llama_token id) const {
  2426. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2427. return pimpl->id_to_token.at(id).score;
  2428. }
  2429. llama_token_attr llama_vocab::token_get_attr(llama_token id) const {
  2430. return pimpl->token_get_attr(id);
  2431. }
  2432. llama_token llama_vocab::token_bos() const {
  2433. return pimpl->special_bos_id;
  2434. }
  2435. llama_token llama_vocab::token_eos() const {
  2436. return pimpl->special_eos_id;
  2437. }
  2438. llama_token llama_vocab::token_eot() const {
  2439. return pimpl->special_eot_id;
  2440. }
  2441. llama_token llama_vocab::token_eom() const {
  2442. return pimpl->special_eom_id;
  2443. }
  2444. llama_token llama_vocab::token_unk() const {
  2445. return pimpl->special_unk_id;
  2446. }
  2447. llama_token llama_vocab::token_sep() const {
  2448. return pimpl->special_sep_id;
  2449. }
  2450. llama_token llama_vocab::token_nl() const {
  2451. return pimpl->linefeed_id;
  2452. }
  2453. llama_token llama_vocab::token_pad() const {
  2454. return pimpl->special_pad_id;
  2455. }
  2456. llama_token llama_vocab::token_prefix() const {
  2457. return pimpl->special_fim_pre_id;
  2458. }
  2459. llama_token llama_vocab::token_middle() const {
  2460. return pimpl->special_fim_mid_id;
  2461. }
  2462. llama_token llama_vocab::token_suffix() const {
  2463. return pimpl->special_fim_suf_id;
  2464. }
  2465. llama_token llama_vocab::token_fim_pre() const {
  2466. return pimpl->special_fim_pre_id;
  2467. }
  2468. llama_token llama_vocab::token_fim_suf() const {
  2469. return pimpl->special_fim_suf_id;
  2470. }
  2471. llama_token llama_vocab::token_fim_mid() const {
  2472. return pimpl->special_fim_mid_id;
  2473. }
  2474. llama_token llama_vocab::token_fim_pad() const {
  2475. return pimpl->special_fim_pad_id;
  2476. }
  2477. llama_token llama_vocab::token_fim_rep() const {
  2478. return pimpl->special_fim_rep_id;
  2479. }
  2480. llama_token llama_vocab::token_fim_sep() const {
  2481. return pimpl->special_fim_sep_id;
  2482. }
  2483. bool llama_vocab::get_add_space_prefix() const {
  2484. return pimpl->add_space_prefix;
  2485. }
  2486. bool llama_vocab::get_add_bos() const {
  2487. return pimpl->add_bos;
  2488. }
  2489. bool llama_vocab::get_add_eos() const {
  2490. return pimpl->add_eos;
  2491. }
  2492. bool llama_vocab::get_ignore_merges() const {
  2493. return pimpl->ignore_merges;
  2494. }
  2495. bool llama_vocab::get_clean_spaces() const {
  2496. return pimpl->clean_spaces;
  2497. }
  2498. bool llama_vocab::get_remove_extra_whitespaces() const {
  2499. return pimpl->remove_extra_whitespaces;
  2500. }
  2501. bool llama_vocab::get_escape_whitespaces() const {
  2502. return pimpl->escape_whitespaces;
  2503. }
  2504. bool llama_vocab::get_treat_whitespace_as_suffix() const {
  2505. return pimpl->treat_whitespace_as_suffix;
  2506. }
  2507. int llama_vocab::max_token_len() const {
  2508. return pimpl->max_token_len;
  2509. }
  2510. int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  2511. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  2512. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  2513. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  2514. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  2515. auto it = pimpl->bpe_ranks.find(std::make_pair(token_left, token_right));
  2516. if (it == pimpl->bpe_ranks.end()) {
  2517. return -1;
  2518. }
  2519. return it->second;
  2520. }
  2521. int32_t llama_vocab::tokenize(
  2522. const char * text,
  2523. int32_t text_len,
  2524. llama_token * tokens,
  2525. int32_t n_tokens_max,
  2526. bool add_special,
  2527. bool parse_special) const {
  2528. auto res = tokenize(std::string(text, text_len), add_special, parse_special);
  2529. if (n_tokens_max < (int) res.size()) {
  2530. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  2531. return -((int) res.size());
  2532. }
  2533. for (size_t i = 0; i < res.size(); i++) {
  2534. tokens[i] = res[i];
  2535. }
  2536. return res.size();
  2537. }
  2538. std::vector<llama_token> llama_vocab::tokenize(
  2539. const std::string & raw_text,
  2540. bool add_special,
  2541. bool parse_special) const {
  2542. return pimpl->tokenize(raw_text, add_special, parse_special);
  2543. }
  2544. const std::string & llama_vocab::token_to_piece(llama_token token) const {
  2545. return pimpl->token_to_piece(token);
  2546. }
  2547. int32_t llama_vocab::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const {
  2548. return pimpl->token_to_piece(token, buf, length, lstrip, special);
  2549. }
  2550. int32_t llama_vocab::detokenize(
  2551. const llama_token * tokens,
  2552. int32_t n_tokens,
  2553. char * text,
  2554. int32_t text_len_max,
  2555. bool remove_special,
  2556. bool unparse_special) const {
  2557. return pimpl->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
  2558. }
  2559. std::string llama_vocab::detokenize(const std::vector<llama_token> & tokens, bool special) const {
  2560. std::string text;
  2561. text.resize(std::max(text.capacity(), tokens.size()));
  2562. int32_t n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  2563. if (n_chars < 0) {
  2564. text.resize(-n_chars);
  2565. n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  2566. GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
  2567. }
  2568. text.resize(n_chars);
  2569. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  2570. return text;
  2571. }
  2572. void llama_vocab::print_info() const {
  2573. pimpl->print_info();
  2574. }
  2575. //
  2576. // interface implementation
  2577. //
  2578. int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab) {
  2579. return vocab->n_tokens();
  2580. }
  2581. // deprecated
  2582. int32_t llama_n_vocab(const struct llama_vocab * vocab) {
  2583. return llama_vocab_n_tokens(vocab);
  2584. }
  2585. enum llama_vocab_type llama_vocab_type(const struct llama_vocab * vocab) {
  2586. return vocab->get_type();
  2587. }
  2588. const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token) {
  2589. return vocab->token_get_text(token);
  2590. }
  2591. float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token) {
  2592. return vocab->token_get_score(token);
  2593. }
  2594. enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token) {
  2595. return vocab->token_get_attr(token);
  2596. }
  2597. bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token) {
  2598. return vocab->is_eog(token);
  2599. }
  2600. bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token) {
  2601. return vocab->is_control(token);
  2602. }
  2603. llama_token llama_vocab_bos(const struct llama_vocab * vocab) {
  2604. return vocab->token_bos();
  2605. }
  2606. llama_token llama_vocab_eos(const struct llama_vocab * vocab) {
  2607. return vocab->token_eos();
  2608. }
  2609. llama_token llama_vocab_eot(const struct llama_vocab * vocab) {
  2610. return vocab->token_eot();
  2611. }
  2612. // deprecated
  2613. llama_token llama_vocab_cls(const struct llama_vocab * vocab) {
  2614. return vocab->token_bos();
  2615. }
  2616. llama_token llama_vocab_sep(const struct llama_vocab * vocab) {
  2617. return vocab->token_sep();
  2618. }
  2619. llama_token llama_vocab_nl (const struct llama_vocab * vocab) {
  2620. return vocab->token_nl();
  2621. }
  2622. llama_token llama_vocab_pad(const struct llama_vocab * vocab) {
  2623. return vocab->token_pad();
  2624. }
  2625. bool llama_vocab_get_add_bos(const struct llama_vocab * vocab) {
  2626. return vocab->get_add_bos();
  2627. }
  2628. bool llama_vocab_get_add_eos(const struct llama_vocab * vocab) {
  2629. return vocab->get_add_eos();
  2630. }
  2631. llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab) {
  2632. return vocab->token_fim_pre();
  2633. }
  2634. llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab) {
  2635. return vocab->token_fim_suf();
  2636. }
  2637. llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab) {
  2638. return vocab->token_fim_mid();
  2639. }
  2640. llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab) {
  2641. return vocab->token_fim_pad();
  2642. }
  2643. llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab) {
  2644. return vocab->token_fim_rep();
  2645. }
  2646. llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab) {
  2647. return vocab->token_fim_sep();
  2648. }
  2649. // deprecated
  2650. const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token) {
  2651. return llama_vocab_get_text(vocab, token);
  2652. }
  2653. // deprecated
  2654. float llama_token_get_score(const struct llama_vocab * vocab, llama_token token) {
  2655. return llama_vocab_get_score(vocab, token);
  2656. }
  2657. // deprecated
  2658. enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token) {
  2659. return llama_vocab_get_attr(vocab, token);
  2660. }
  2661. // deprecated
  2662. bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token) {
  2663. return llama_vocab_is_eog(vocab, token);
  2664. }
  2665. // deprecated
  2666. bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token) {
  2667. return llama_vocab_is_control(vocab, token);
  2668. }
  2669. // deprecated
  2670. llama_token llama_token_bos(const struct llama_vocab * vocab) {
  2671. return llama_vocab_bos(vocab);
  2672. }
  2673. // deprecated
  2674. llama_token llama_token_eos(const struct llama_vocab * vocab) {
  2675. return llama_vocab_eos(vocab);
  2676. }
  2677. // deprecated
  2678. llama_token llama_token_eot(const struct llama_vocab * vocab) {
  2679. return llama_vocab_eot(vocab);
  2680. }
  2681. // deprecated
  2682. llama_token llama_token_cls(const struct llama_vocab * vocab) {
  2683. //return llama_vocab_cls(vocab);
  2684. return llama_vocab_bos(vocab); // avoid deprecation warning
  2685. }
  2686. // deprecated
  2687. llama_token llama_token_sep(const struct llama_vocab * vocab) {
  2688. return llama_vocab_sep(vocab);
  2689. }
  2690. // deprecated
  2691. llama_token llama_token_nl (const struct llama_vocab * vocab) {
  2692. return llama_vocab_nl(vocab);
  2693. }
  2694. // deprecated
  2695. llama_token llama_token_pad(const struct llama_vocab * vocab) {
  2696. return llama_vocab_pad(vocab);
  2697. }
  2698. // deprecated
  2699. bool llama_add_bos_token(const struct llama_vocab * vocab) {
  2700. return llama_vocab_get_add_bos(vocab);
  2701. }
  2702. // deprecated
  2703. bool llama_add_eos_token(const struct llama_vocab * vocab) {
  2704. return llama_vocab_get_add_eos(vocab);
  2705. }
  2706. // deprecated
  2707. llama_token llama_token_fim_pre(const struct llama_vocab * vocab) {
  2708. return llama_vocab_fim_pre(vocab);
  2709. }
  2710. // deprecated
  2711. llama_token llama_token_fim_suf(const struct llama_vocab * vocab) {
  2712. return llama_vocab_fim_suf(vocab);
  2713. }
  2714. // deprecated
  2715. llama_token llama_token_fim_mid(const struct llama_vocab * vocab) {
  2716. return llama_vocab_fim_mid(vocab);
  2717. }
  2718. // deprecated
  2719. llama_token llama_token_fim_pad(const struct llama_vocab * vocab) {
  2720. return llama_vocab_fim_pad(vocab);
  2721. }
  2722. // deprecated
  2723. llama_token llama_token_fim_rep(const struct llama_vocab * vocab) {
  2724. return llama_vocab_fim_rep(vocab);
  2725. }
  2726. // deprecated
  2727. llama_token llama_token_fim_sep(const struct llama_vocab * vocab) {
  2728. return llama_vocab_fim_sep(vocab);
  2729. }
  2730. //
  2731. // tokenization
  2732. //
  2733. int32_t llama_tokenize(
  2734. const struct llama_vocab * vocab,
  2735. const char * text,
  2736. int32_t text_len,
  2737. llama_token * tokens,
  2738. int32_t n_tokens_max,
  2739. bool add_special,
  2740. bool parse_special) {
  2741. return vocab->tokenize(text, text_len, tokens, n_tokens_max, add_special, parse_special);
  2742. }
  2743. int32_t llama_token_to_piece(
  2744. const struct llama_vocab * vocab,
  2745. llama_token token,
  2746. char * buf,
  2747. int32_t length,
  2748. int32_t lstrip,
  2749. bool special) {
  2750. return vocab->token_to_piece(token, buf, length, lstrip, special);
  2751. }
  2752. int32_t llama_detokenize(
  2753. const struct llama_vocab * vocab,
  2754. const llama_token * tokens,
  2755. int32_t n_tokens,
  2756. char * text,
  2757. int32_t text_len_max,
  2758. bool remove_special,
  2759. bool unparse_special) {
  2760. return vocab->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
  2761. }